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1. Introduction

In [1] Buhovski, Entov and Polterovich defined invariants of triplets and
quadruplets of compact sets in a symplectic manifold, using certain varia-
tional problems involving the functional (F,G) 7→ ∥{F,G}∥. Specifically, for
three compact sets X,Y, Z in a symplectic manifold, (M,ω), the following
invariant was defined:

pb3(X,Y, Z) := inf
{
∥{F,G}∥ |F,G ∈ C∞

c (M), F |X ≤ 0,

G|Y ≤ 0, (F +G)|Z ≥ 1
}
,

where {·, ·} is the Poisson bracket, and ∥ · ∥ is the supremum norm. Analo-
gously, for four compact sets X0, X1, Y0, Y1 such that X0 ∩X1 = Y0 ∩ Y1 = ∅
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the following invariant was defined:

pb4(X0, X1, Y0, Y1)

:= inf

{
∥{F,G}∥

∣∣∣∣F,G ∈ C∞
c (M),

F |X0
≤ 0

F |X1
≥ 1

,
G|Y0

≤ 0

G|Y1
≥ 1

}
.

In [1] lower bounds for these invariants are computed. Such lower bounds
tend to involve various flavors of holomorphic curves theory. In the same pa-
per there are also proofs that the inequalities appearing in the definition can
be replaced by equalities in some neighborhoods of the sets, which depend
on the pair (F,G), and that the functions can be assumed to be bounded
between 0 and 1. Moreover, the definition of similar invariants for n-tuples
of sets is sketched. These invariants are denoted by pbn.

The pb4 invariant is shown in [1] to also have a dynamical interpertation
in terms of time-length of Hamiltonian chords, and in [3] it was applied in
the study of a topological invariant of Lagrangians.

In this paper we prove few results unifying pb3, pb4 and the general pbn.
Moreover, we show that pb4 depends only on the union of the sets,X0, X1, Y0
and Y1 which we denote by X, and on a first integer-valued cohomology class
of X, which encodes the homotopical manner in which X is decomposed into
four sets. We show that analogous results hold for pb3 and for all the pbn
invariants. The first of our results is the following theorem:

Theorem 1. Let M be a symplectic manifold, and let X0, X1, Y0, Y1 be four
compact subsets such that X0 ∩X1 = Y0 ∩ Y1 = ∅. Then,

pb4 (X0, X1, Y0, Y1) = 2 · pb3 (X0, Y0, X1 ∪ Y1) .

Remark 1.1. In [1] the following weaker inequality was proved:

pb4 (X0, X1, Y0, Y1) ≥ pb3 (X0, Y0, X1 ∪ Y1) .

Theorem 1 is in fact a part of a more general phenomenon, namely, all
the pbn invariants introduced in [1] can be reduced to pb3.

Definition 1.2. We say that N sets, X1, . . . , XN , intersect cyclically if
Xi ∩Xj = ∅ whenever i ̸∈ {j − 1, j, j + 1} where j − 1 and j + 1 are com-
puted cyclically modN .

We define invariants, PbN , of N -tuples of cyclically intersecting compact
subsets of a symplectic manifold M . For a compact M they can be defined



✐

✐

“2-Ganor” — 2020/9/8 — 23:16 — page 997 — #3
✐

✐

✐

✐

✐

✐

A homotopical viewpoint at the Poisson bracket invariants 997

as follows: Fix ∆, a compact convex subset of R2 of Area(∆) = 1 with ∂∆
either smooth or polygonal. Fix N points, pi ∈ ∂∆, ordered cyclically coun-
terclockwise. Denote by γi the arc along ∂∆ emanating from pi towards the
next point in the counterclockwise order. Define:

PbN (X1, . . . , XN )

:= inf

{
∥{Φ1,Φ2}∥

∣∣∣∣∣
Φ = (Φ1,Φ2) : M → ∆ ⊂ R

2, such that
∀i, ∃ Ui

open
⊃ Xi such that Φ (Ui) ⊆ γi

}
.

We show that the resulting quantity, PbN (X1, . . . , XN ), depends nei-
ther on the choice of the domain ∆ nor on the choice of the points
pi ∈ ∂∆ as long as they are chosen with the same cyclical order. Moreover,
we show that 2 pb3(X,Y, Z) = Pb3(X,Y, Z) and that pb4(X0, X1, Y0, Y1) =
Pb4(X0, Y0, X1, Y1). (Note that for PbN we list the sets in a cyclical order).
In fact up to multiplication by a constant, which is due to the normalization
of the area of ∆, our Pbn is equal to the pbn from [1]. Therefore, Theorem
1 follows from the following theorem:

Theorem 2. For N ≥ 4 and X1, . . . , XN intersecting cyclically, it holds
that:

PbN (X1, . . . , XN ) = PbN−1 (X1, . . . , XN−1 ∪XN ) .

This reduces from PbN to PbN−1. As a partial converse, we show that
one can also go the other way, namely, recover PbN from the data of PbN+1s,
replacing the intersection X1 ∩XN with a compact neighborhood which is
added as a new set to the tuple, and taking limit over such neighborhoods.

Theorem 3. Let X1, . . . , XN be compact sets intersecting cyclically and
if N = 3 assume also that X1 ∩X2 ∩X3 = ∅. Let Kn be a decreasing se-
quence of compact neighborhoods of X1 ∩XN , converging to X1 ∩XN in the

Hausdorff distance. Moreover assume that K1 ∩
(⋃N−1

j=2 Xj

)
= ∅. Then, the

following limit exists and equals PbN (X1, . . . , XN ):

lim
Kn↘X1∩XN

PbN+1(X1 \Kn, X2, . . . , XN−1, XN \Kn,Kn) = PbN (X1, . . . , XN ).

Theorem 3 allows us to relate pb3 to dynamics, see Corollary 3.21. To-
gether these theorems unify pb3, pb4 and their generalizations, pbn, which
were defined in [1]. As further unification we prove that Pbn depends only
on the union of the sets Xi and on some homotopical data, namely, we show
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that Pbn defines a function on the set of homotopy classes of maps from the
compact set X = X1 ∪ . . . ∪XN to S1 (which by [6] equals H1(X;Z), the
first cohomology of the constant sheaf Z), where the homotopy class (first
cohomology class) describes the manner in which X is decomposed. We will
use the two viewpoints on H1(X;Z), as either first integral-cohomology or
homotopy classes of maps from X → S1 interchangeably.

Definition 1.3. Denote by B1 the unit ball in R
2 and denote by S1 its

boundary. Let M be a symplectic manifold and X be a compact subset. For
any α ∈ H1(X;Z) define:

PbX(α) := inf




∥{ϕ1, ϕ2}∥

∣∣∣∣∣∣∣

ϕ = (ϕ1, ϕ2) : M → B1 such that
ϕ1, ϕ2 have compact support, and
∃ U
open

⊃ X, ϕ(U) ⊆ S1, [ϕ|X ] = α




,

where [ϕ|X ] denotes the homotopy class of the function ϕ|X .

Let X be be a compact subset of a manifold M , and assume X = X1 ∪
X2 ∪X3 where X1 ∩X2 ∩X3 = ∅ and each Xk is compact. Denote by α ∈
H1(X;Z) the class determined by the decomposition X = X1 ∪X2 ∪X3, in
the sense that α = [f ] where f is a function, f : X → S1, such that f |Xi

⊆
γi for all 1 ≤ i ≤ 3, where S1 = γ1 ∪ γ2 ∪ γ3 is a decomposition into three
consecutive arcs ordered counterclockwise. The class α depends neither on
the decomposition of the circle into arcs (up to a cyclical order preserving
relabeling) nor on the particular function f chosen. In Section 4.2 we prove
the following theorem:

Theorem 4.

Pb3(X1, X2, X3) = PbX(α).

Remark 1.4. A similar proof would work for any Pbn, thereby providing
another proof for Theorem 1, by equating all Pbn with the same PbX(α).
We chose to separate the proof of Theorem 1 and give a direct proof of it
first, since it is a simpler proof, and moreover, restricting to n = 3 somewhat
simplifies the discussion on decompositions of X versus homotopy classes of
maps from X to S1

As an application for Theorem 4 we prove subhomogeneity of PbX(α),
a fact which has repercussions for pb4:
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Theorem 5. Let X be a compact subset of a symplectic manifold M . Then,
for all 0 ̸= α ∈ H1(X;Z) and for all 0 < k ∈ N we have:

PbX(kα) ≤ k · PbX(α).

This result is motivated by the work of [3] on Lagrangian topology. In
[3] an invariant associated to Lagrangian submanifolds admitting fibrations
over S1 was introduced, named bpL, whose definition is based on pb+4 (a
refinement of pb4, see Remark 1.5). For a Lagrangian L admitting a smooth
fibration, f : L→ S1, one cuts S1 into four consecutive arcs, denotes their
preimages under f by X0, Y0, X1, Y1 and computes

bpL(f) :=
1

pb+4 (X0, X1, Y0, Y1)
.

The quantity bpL(f) depends neither on the isotopy class of the smooth
fibration, f , nor on the particular choice of arcs in S1 (keeping the same
cyclical ordering). For Lagrangian tori of dimensions 2 and 3 these classes
of fibrations correspond to first integral cohomology classes of L, thus bpL
defines a function, bpL : H

1(L;Z) → (0,∞]. The invariant, bpL, is shown
to be smaller or equal to another invariant of L, named defL, defined in
terms of Lagrangian isotopies with prescribed flux, which gives a function
on the real-valued first cohomology, defL : H

1(L;R) → (0,∞]. The function
defL is seen to be R+-homogeneous immediately from the definition and in
all examples in [3] where it was manageable to compute both invariants,
they turned out to be equal. This raised the question of whether always
defL |H1(L;Z) = bpL. Therefore, it is interesting to study homogeneity of bpL,
as it may provide evidence in deciding the question. Moreover, our definition
of PbX(α) allows one to extend the definition of bpL as a function on the
first integral cohomology for general Lagrangians without any regard to
fibrations or issues of smoothness of isotopies (which were the reason why
[3] had to restrict to tori of dimension 2 and 3).

Remark 1.5. In [4] Entov and Polterovich defined a refinement of pb4,
replacing the supremum norm with maximum.

pb+4 (X0, X1, Y0, Y1)

:= inf

{
max {F,G}

∣∣∣∣F,G ∈ C∞
c (M),

F |X0
≤ 0

F |X1
≥ 1

,
G|Y0

≤ 0

G|Y1
≥ 1

}
.
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It was used in [4] to study dynamics, as the invariant detects both the
existence and the direction of Hamiltonian chords. Since pb+4 is always non-
negative (Compact support guarantees a point with vanishing derivative of
either F or G, therefore at that point {F,G} = 0, hence max

M
{F,G} ≥ 0),

and since all our proofs involve upper bound inequalities with respect to non-
negative quantities, one could replace ∥ · ∥ by max(·) and obtain analogous
theorems for pb+.

Acknowledgments. I would like to thank my advisor, Leonid Polterovich
for suggesting to look at the theory of Poisson bracket invariants, pbn for
n ≥ 5. I also thank him together with Michael Entov and Lev Buhovoski for
reading the preprints of this paper and providing important feedback and
comments.

2. ε-pseudoretracts

One of our main tools for manipulating functions without increasing the
Poisson bracket too much, is by post-composing with a function from R

2

to R
2 with a bound on the Jacobian, therefore we introduce the following

notion:

Definition 2.1. Let ∆ ⊂ R
2 be a compact set in the plane. We call a

smooth map T = (T1, T2) : R
2 → ∆ an ε-pseudoretract onto ∆ ⊂ R

2 if

• T is onto ∆.

• T maps R2 \∆ to ∂∆.

• |DT | ≤ 1 + ε (Where |DT | is the Jacobian determinant of T ,
namely, T ∗ω

R2

ω
R2

).

In particular it holds for an ε-pseudoretract that ∥{T1, T2}∥ ≤ 1 + ε.

Proposition 2.2. Let Φ = (Φ1,Φ2) : M → R
2 be a smooth function and

let T = (T1, T2) : R
2 → ∆ be an ε-pseudoretract onto ∆ ⊆ R

2. Consider
T ◦ Φ = ((T ◦ Φ)1 , (T ◦ Φ)2) : M → R

2 Then:

1) ∥{(T ◦ Φ)1 , (T ◦ Φ)2}∥ ≤ (1 + ε) ∥{Φ1,Φ2}∥ .

2) For all x ∈M such that Φ(x) ∈ R
2 \∆:

{(T ◦ Φ)1 , (T ◦ Φ)2} = 0.
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Proof. Statement (1) follows from the fact that |DT | ≤ 1 + ε, and the for-
mula in the proof of Claim 3.6. Statement (2) follows from the fact that ∂∆
is one dimensional, so locally around x, the function (T ◦ Φ)1 is a function
of (T ◦ Φ)2 or vice-versa, hence the Poisson bracket vanishes. □

The following corollary will be useful when dealing with PbX(α):

Corollary 2.3. Let X be a compact subset of a symplectic manifold M .
Let Φ: M → B1 be a function such that Φ(X) ⊂ ∂(B1) = S1. Let ε > 0
and K > 0 be positive numbers such that on Φ−1 (B1−ε) we have a bound
∥{Φ1,Φ2}∥ ≤ K. Then, there exists Ψ: M → B1, such that:

• Ψ|X ≡ Φ|X .

• ∥{Ψ1,Ψ2}∥ ≤ 1+ε
1−εK.

Proof. The proof is an immediate application of Proposition 2.2. Pick an
ε-pseudoretract, T , onto B1−ε, and consider Ψ := H 1

1−ε
◦ T ◦ Φ, where H 1

1−ε

is the homothety by a factor of 1√
1−ε

. □

Proposition 2.4. ε-pseudorectracts onto ∆ exist for any compact convex
∆ with either a smooth boundary or a polygonal boundary.

Proof. For a set ∆ such that ∂∆ is smooth, WLOG assume (0, 0) ∈ Int∆
and parametrize ∂∆ in polar coordinates by r∂∆(θ)e

iθ where r∂∆ : [0, 2π] →
(0,∞) is the radial coordinate of the boundary. Let ρ : [0,∞) → [0,∞) be a
function such that ρ(x)|[0,1/2] = x, ρ|[1,∞) = 1 and 0 ≤ ρ′ ≤ 1 + ε. Now define

T : R2 → R
2 in polar coordinates by:

T (reiθ) = r∂∆(θ)ρ

(
r

r∂∆(θ)

)
eiθ.

The proof continues similarly to the proof of Lemma 2.4 in [1], we cite the
formula for the Jacobian appearing in [1]:

T ∗ωR2

ωR2

=
|T (reiθ)|

r

∂

∂r
|T (reiθ)|.

Where | · | is the distance to the origin. The r-derivative is bounded,

∂

∂r
|T (reiθ)| = ρ′

(
r

r∂∆(θ)

)
≤ 1 + ε.
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Also, since ρ(0) = 0 and by the bound on ρ′,

|T (reiθ)|
r

=
r∂∆(θ)

r
ρ

(
r

r∂∆(θ)

)
≤ r∂∆(θ)

r

r

r∂∆(θ)
(1 + ε) = 1 + ε.

It follows that T is the desired pseudoretract if ε is small enough. For sets, ∆,
whose boundary is a triangle an argument appears in [1]. A similar argument
works for every polygon and we describe it briefly. Let ∆ be a convex polygon
with N edges denoted by ℓ1, . . . , ℓN . For every 1 ≤ k ≤ N we construct a
function Tk as follows: Denote by ℓ′ and ℓ′′ the edges adjacent to ℓk, such
that they are oriented counterclockwise as ℓ′, ℓk, ℓ′′. Denote by ℓ̃k the line in
the plane on which ℓk lies, and denote by Hk the half plane containing ∆
whose boundary is ℓ̃k. We now define Tk by cases:

Case 1: ℓ′ ∥ ℓ′′. Let u, v be unit vectors such that u ∥ ℓk and v ∥ ℓ′′ where
both vectors are oriented by the same orientations of ℓk and ℓ′′ that are
induced by the counterclockwise orientation of ∂∆. Let (x, y) denote coordi-
nates in R

2 with respect to the basis {u, v} and such that (0, 0) = ℓk ∩ ℓ′′. Let
ρ : (−∞,∞) → [0,∞) be a function such that ρ(x)|[ε,∞) = x, ρ|(−∞,0] = 0

and 0 ≤ ρ′ ≤ 1 + ε. Define

Tk(x, y) := (ρ(x), y).

Thus Tk maps Hk to ∂Hk and Tk(∆) = ∆ if ε is small enough.

Case 2: The continuations of ℓ′ and ℓ′′ intersect at a point p ∈ Hk.
Pick polar coordinates (r, θ) such that p is the center of the coordinate sys-

tem. Let Jk =
{
θ
∣∣∣ ∃r such that reiθ ∈ ℓ̃k

}
and for every θ ∈ Jk denote by

Rk(θ) the distance from p to the intersection of ℓ̃k with the ray emanat-
ing from p with angle θ. Let ρ : [0,∞) → [0,∞) be a function such that
ρ(x)|[0,1−ε] = x, ρ|[1,∞) = 1 and 0 ≤ ρ′ ≤ 1 + ε. Define

Tk(r, θ) :=

{
Rk(θ)ρ

(
r

Rk(θ)

)
eiθ θ ∈ Jk

reiθ Otherwise.

Thus Tk maps Hk to ∂Hk and Tk(∆) = ∆ if ε is small enough.

Case 3: The continuations of ℓ′ and ℓ′′ intersect at a point p ̸∈
Hk. Again pick polar coordinates (r, θ) such that p is at the center of

the coordinate system. Let Jk =
{
θ
∣∣∣ ∃r such that reiθ ∈ ℓ̃k

}
and for every
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θ ∈ Jk denote by Rk(θ) the distance from p to the intersection of ℓ̃k with
the ray emanating from p with angle θ. Let ρ : [0,∞) → [0,∞) be a function
such that ρ(x)|[1+ε,∞) = x, ρ|[0,1] = 1 and 0 ≤ ρ′ ≤ 1 + ε. Define:

Tk(r, θ) := Rk(θ)ρ

(
r

Rk(θ)

)
eiθ.

In this case Tk is defined only on the open half plane containing ∆ whose
boundary is the line parallel to ℓ̃k passing through p. Denote this half plane
by H̃k. The map Tk maps H̃k to ∂Hk and Tk(∆) = ∆ if ε is small enough.

To get the desired pseudoretract one takes

T := TN ◦ . . . T1 ◦ S.

Where S is a pseudorectact on a smooth convex body containing ∆ such
that all Tk are defined on it. Choosing ε small enough yields the desired
function. □

Remark 2.5. The pseudoretract of R2 onto a polygon described above has
the following property: Consider the angle opposite to the interior angle at
a vertex v, that is, the angle formed at a vertex v by continuation of the
adjacent edges, and denote by Av the plane sector formed by it. Then, there
exists ε > 0 such that Bε(v) ∩Av is mapped to {v} by the pseudoretract.

3. The invariants Pbn

3.1. Definitions and Setup

Let (M,ω) be a symplectic manifold and let X1, . . . , XN ⊆M a collection
of compact subsets intersecting cyclically. We let ∆ = (∆, p1, . . . , pN ) denote
the following data:

1) ∆ is a closed compact convex subset of R2 of Area(∆) = 1 with ∂∆
either smooth or polygonal.

2) pi ∈ ∂∆ are marked points ordered cyclically counterclockwise.

We denote by γi the arc along ∂∆ emanating from pi towards pi+1 (i+ 1
is computed cyclically modN). To also incorporate non-compact symplectic
manifolds, we define the following condition:
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Definition 3.1. We say that a function Φ: M → ∆ satisfies the (CS)-
condition if there exists p = (p1, p2) ∈ ∆ such that Φ1 − p1 : M → R and
Φ2 − p2 : M → R are both compactly supported. When M is compact this
is automatically satisfied for all Φ.

Put:

F ′
∆,N (X1, . . . , XN )

:=

{
Φ: M → ∆

∣∣∣∣Φ is (CS) & ∀i, ∃ Ui
open

⊃ Xi such that Φ (Ui) ⊆ γi

}
.

Definition 3.2. Define:

Pb∆

N (X1, . . . , XN ) = inf
Φ∈F ′

∆,N

∥{Φ1,Φ2}∥.

Where Φ1,Φ2 are the components of Φ: M → ∆ ⊂ R
2, i.e. Φ is given by

Φ(x) = (Φ1 (x) ,Φ2 (x)).

Also denote:

F∆,N (X1, . . . , XN ) = {Φ: M → ∆ |Φ is (CS) & ∀i, Φ (Xi) ⊆ γi} .

Remark 3.3. By a method of homotheties and what we call pseudore-
tracts, one has:

inf
Φ∈F ′

∆,N

∥{Φ1,Φ2}∥ = inf
Φ∈F∆,N

∥{Φ1,Φ2}∥.

See an analogous proof in [1] for pb3, and Step 2 in the proof of Claim 3.7.

Remark 3.4. When some pieces of the data are clear from the context (for
example the sets (X1, . . . , XN ), the number of sets, etc’) we omit them from
the notation of Pb or F in favor of a less cluttered notation.

Remark 3.5. In [1] (Proposition 1.3) it is shown that the pb-invariant can
also be defined in terms of bounded functions:
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pb3(X,Y, Z)

= inf




∥{F,G}∥

∣∣∣∣∣∣∣

F,G ∈ C∞
c (M), F ≥ 0, G ≥ 0, F +G ≤ 1,

∃UX
open

⊃ X, UY
open

⊃ Y , UZ
open

⊃ Z such that

F |UX
= 0, G|UY

= 0, (F +G)|UZ
= 1




,

pb4(X0, X1, Y0, Y1)

= inf




∥{F,G}∥

∣∣∣∣∣∣∣

F,G ∈ C∞
c (M), 0 ≤ F ≤ 1, 0 ≤ G ≤ 1

∃UXi

open
⊃ Xi, UYi

open
⊃ Xi such that

F |UX0

= 0, F |UX1

= 1, G|UY0

= 0, G|UY1

= 1




.

Hence, we get that by definition, pb4(X0, X1, Y0, Y1) = Pb∆

4 (X0, Y0, X1, Y1)
for ∆ being the square with side length 1 and pi its vertices, and that
pb3(X,Y, Z) =

1
2 Pb

∆

3 (X,Y, Z), where ∆ is a right triangle with legs of length√
2 and pi are its vertices. The emergence of the factor of 1/2 in the formula

is due to us working with the normalization of mapping into domains of area
1. Note that to deduce the above equalities for a non-compact M one needs
to use the methods of Proposition 3.7 and of Theorem 1 to move the point
p ∈ ∆ witnessing the (CS) condition to a position such that p = p1 = (0, 0)
and only then the (CS) condition coincides with the requirement that the
functions F and G from pb3 or pb4 have a compact support.

Claim 3.6. Let S : ∆1 → ∆2 be a symplectomorphism, where ∆1,∆2 are
domains in R

2, and let Φ: M → ∆1 be a smooth map. Denote their compo-
sition by Ψ := S ◦ Φ: M → ∆2 . Then:

{Φ1,Φ2} = {Ψ1,Ψ2} .

Proof. This follows from the description of Poisson bracket {Φ1,Φ2} as

{Φ1,Φ2} = −ndΦ1 ∧ dΦ2 ∧ ω∧n−1

ω∧n .

and from dΦ1 ∧ dΦ2 = Φ∗ωR2 . □

3.2. Independence of ∆

We denote by Bδ(p) the open ball in R
2 of radius δ centered at p. When p

is the origin we omit it and just write Bδ. We denote by Bδ(p) the closed
ball.
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Proposition 3.7. For all ∆1,∆2 we have

Pb∆1

N (X1, . . . , XN ) = Pb∆2

N (X1, . . . , XN ),

That is, Pb∆

N neither depends on ∆ nor on the points pi ∈ ∂∆ as long as
their cyclical order is preserved.

Proof. Step 1: Let ∆,∆′ denote the same domain ∆ with smooth boundary,
and different sets of points, {pi} and {p′i}, both ordered cyclically counter-
clockwise. ∂∆ is a Lagrangian submanifold in R

2 and by Weinstein neigh-
borhood theorem ∂∆ has a neighborhood U symplectomorphic to a neigh-
borhood, V , of the zero-section in T ∗∂∆, such that ∂∆ is identified with
the zero section. Any vector field, X, along the zero section can be extended
to a compactly supported Hamiltonian vector field in V , by setting in the
canonical coordinates (q, p), H(q, p) := p(X(q)) and then multiplying with a
suitable cutoff function. Thus by extending an appropriate vector field along
∂∆ to a Hamiltonian vector field in R

2 one gets a symplectomorphism, S,
preserving ∆ and mapping each point pi to p

′
i. Hence, by Claim 3.6 we de-

duce the independence of Pb on the points pi when ∆ has smooth boundary,
and we can omit them from the notation from now on.

Step 2: We compare Pb defined with respect to ∆1 and Pb defined with
respect to a unit disc B1. Let Φ ∈ F ′

∆1,N
. Consider the deflated disc B1−ε,

by the Dacorogna-Moser theorem [2] (The theorem essentially states the
existence of a volume-form preserving map between domains of equal total
volume) there exists a symplectomorphism, S, mapping it to a domain in the
interior of ∆1. Let T denote some smooth ε-pseudoretract onto S

(
B1−ε

)
.

Let H 1

1−ε
be the homothety by a factor of 1√

1−ε
(Note that we chose to

denote homotheties by their effect on areas, not on length). Define:

Ψ := H 1

1−ε
◦ S−1 ◦ T ◦ Φ.

Then, Ψ ∈ FD, where D =
(
B1, {Ψ(pi)}

)
, i.e the unit disc with the resulting

configuration of points, {Ψ(pi)}. We have:

∥{Ψ1,Ψ2}∥ ≤ 1 + ε

1− ε
∥{Φ1,Φ2}∥ .

Sending ε→ 0 yields Pb∆1

N ≥ PbDN , in light of Step 1 which takes care of the
points along ∂∆.
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Conversely, let Φ ∈ F ′
D
, for D =

(
B1, {pi}

)
, with {pi} being arbitrary

points along the boundary, ordered counterclockwise. Let H1+ε be the ho-
mothety by a factor of

√
1 + ε. Let S be a symplectomorphism mapping B1+ε

to a domain whose interior contains ∆1, and let T be an ε-pseudoretract of
R
2 onto ∆1. Define:

Ψ := T ◦ S ◦ H1+ε ◦ Φ.
Then, Ψ ∈ F∆1

for ∆1 = (∆1, {Ψ(pi)}) and

∥{Ψ1,Ψ2}∥ ≤ (1 + ε)2 ∥{Φ1,Φ2}∥ .

Sending ε→ 0 yields Pb∆1

N ≤ PbDN .

Step 3: If Φ satisfies (CS), then also Ψ does, since Ψ is obtained from
Φ by postcomposition.

Step 4: By moving the points along the boundary of a disc as in Step 1 and
combining with the pseudoretracts of Step 2, we deduce the independence
of Pb of the points pi also when ∂∆ is a polygon. □

Remark 3.8. Since Pb∆

N is independent of ∆, when we won’t care about
the details of the implementation we will suppress ∆ from the notation and
just write PbN .

3.3. Proof of Theorem 2

We recall the statement of the theorem:

Theorem 2. For N ≥ 4 and X1, . . . , XN intersecting cyclically, it holds
that:

PbN (X1, . . . , XN ) = PbN−1 (X1, . . . , XN−1 ∪XN ) .

Proof. The inequality PbN (X1, . . . , XN )≥PbN−1 (X1, . . . , XN−1 ∪XN ) fol-
lows from forgetting the n-th point, that is, any function in F ′

∆,N (X1, . . . , XN )
automatically belongs to F ′

∆,N−1(X1, . . . , XN−1 ∪XN ) by definition. We now
focus on proving the inequality:

PbN (X1, . . . , XN ) ≤ PbN−1 (X1, . . . , XN−1 ∪XN ) .

We will use the following datum, ∆, in F ′
∆,N−1(X1, . . . , XN−1 ∪XN ):
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• ∆ is the square [0, 1]× [0, 1] ⊂ R
2.

• p1 = (0, 1), pN−1 = (1, 1), p2, . . . , pN−2 ∈ [0, 1]× {0}.

Recalling our notation, γi is the arc along ∂∆ between pi and pi+1 oriented
counterclockwise. The proof will follow from a couple of lemmata.

Lemma 3.9. Let Φ ∈ F ′
∆,N−1(X1, . . . , XN−1 ∪XN ). Then, for all ε > 0

there exists Φ̃ : M → ∆ with the following properties:

• For all 1 ≤ k ≤ N − 2, Φ̃(Xk) ⊆ γk.

• There exists 0 < δ = δ(ε,Φ) such that

Φ̃(XN−1) ⊆ γN−1 \Bδ(p1),(1)

Φ̃(XN ) ⊆ γN−1 \Bδ(pN−1).(2)

•
∥∥∥
{
Φ̃1, Φ̃2

}∥∥∥ ≤ ∥{Φ1,Φ2}∥+ ε.

That is, we ”push away” the unwanted image of XN−1 from a neighborhood
of p1, and similarly the unwanted image XN from a neighborhood of pN−1.
We do so without increasing the norm of the Poisson bracket too much.

Proof. Let ε > 0. We consider the following sets where we would like to alter
the values of Φ. Let ε0 <

1
3 . Set:

V XN−1

p
1

:= Φ−1
(
Bε0/2(p1)

)
∩XN−1,

V XN
pN−1

:= Φ−1
(
Bε0/2(pN−1)

)
∩XN .

The notation is chosen to help the reader remember both that

Φ
(
V

XN−1

p
1

)
⊆ Bε0/2(p1) and that V

XN−1

p
1

⊆ XN−1, and similarly for V XN
pN−1

.

Since X1 and XN−1 are closed and disjoint, there exist open sets
U ′XN−1

p
1

, U ′′XN−1

p
1

⊂M such that:

• V
XN−1

p
1

⊆ U ′XN−1

p
1

⊂ U ′XN−1

p
1

⊂ U ′′XN−1

p
1

.

• There exists an open neighborhood Op (X1) such that

U ′′XN−1

p
1

∩ Op (X1) = ∅.

• Φ
(
U ′′XN−1

p
1

)
⊆ Bε0(p1).
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p1 pN−1γN−1

γ1 γN−2

"0=2 "0 "0=2"0

p2 p3 : : :

∆

Figure 1: The set ∆ and the balls around the vertices.

Fix a smooth cut-off function, ρ1 : M → [0, 1], such that ρ1|U ′
XN−1
p
1

≡ 1 and

ρ1|(U ′′
XN−1
p
1

)c ≡ 0.

Similarly, Since XN , XN−2 are closed and disjoint, there exist open sets
U ′XN

pN−1

, U ′′XN

pN−1

⊂M such that:

• V XN
pN−1

⊆ U ′XN

pN−1

⊂ U ′XN
pN−1

⊂ U ′′XN

pN−1

.

• There exists an open neighborhood Op (XN−2) such that

U ′′XN
pN−1

∩ Op (XN−2) = ∅.

• Φ
(
U ′′XN

pN−1

)
⊆ Bε0(pN−1).

Fix a smooth cut-off function, ρN−1 : M → [0, 1], such that ρN−1|U ′
XN
p
N−1

≡ 1

and ρN−1|(U ′′
XN
p
N−1

)c ≡ 0.

For any δ such that 0 < δ < ε0
2 consider Φ̃δ : M → ∆ defined by:

Φ̃δ(x) :=
(
Φ1(x) + δρ1(x)− δρN−1(x),Φ2(x)

)
.

Let us verify the desired properties of Φ̃δ.

Claim 3.10. Φ̃δ

(
XN−1

)
⊆ Bδ (p1)

c and Φ̃δ (XN ) ⊆ Bδ(pN−1)
c.

Proof. We verify the first inclusion as the second is analogous. Let
x ∈ XN−1. We denote by Φ(x) = (a, b) ∈ R

2 its image under Φ. Since
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Φ ∈ F ′
∆,N−1(X1, . . . , XN−1 ∪XN ), by definition we have Φ

(
XN−1

)
⊆ γN−1,

so b = 1 and 0 ≤ a ≤ 1. Now let us analyze Φ̃δ(x) by cases:

Φ̃δ(x) = (a+ δρ1(x)− δρN−1(x), 1),

• If a ≥ ε0 then:

a+ δρ1(x)− δρN−1(x) ≥ ε0 + 0− δ ≥ ε0 − ε0/2 = ε0/2 > δ.

• If a < ε0, then Φ(x) ∈ Bε0(p1). Now, since Φ(U ′′XN

pN−1

) ⊆ Bε0(pN−1)

and since Bε0(p1) ∩Bε0(pN−1) = ∅, it follows that x ∈ U ′′
N−1

c. Recall-
ing that ρN−1|(U ′′

XN
p
N−1

)c ≡ 0 we obtain:

a+ δρ1(x)− δρN−1(x) = a+ δρ1(x),

and again we argue case by case:
– If ε0/2 ≤ a < ε0, then a+ δρ1(x) ≥ a ≥ ε0/2 > δ.

– If a < ε0/2, then x ∈ V
XN−1

p
1

, therefore ρ1(x) = 1, thus a+ δρ1(x) =
a+ δ ≥ δ

In either case, Φ̃δ(x)=(α, 1) ∈ R
2 for some α≥δ, therefore Φ̃δ(x)∈Bδ (p1)

c,
hence Φ̃δ

(
XN−1

)
⊆ Bδ (p1)

c, completing the proof. □

Claim 3.11. Φ̃δ(XN−1 ∪XN ) ⊆ γN−1.

Proof. We have to check that Φ̃δ(XN−1 ∪XN ) does not contain points lying
to the left of p1 or to the right of pN−1. We check for XN−1 with respect to
pN−1 as the argument for x ∈ XN is analogous. Let x ∈ XN−1. Keeping the
notations from the proof of Claim 3.10 we have

Φ̃δ(x) = (a+ δρ1(x)− δρN−1(x), 1).

The argument divides according to the value of a.

• If 0 ≤ a ≤ 1− ε0, then since δ < ε0
2 , we have:

a+ δρ1(x)− δρN−1(x) ≤ 1− ε0 + δ − 0 ≤ 1− ε0 + ε0/2 < 1

• If 1− ε0 < a ≤ 1, then Φ̃δ(x) ∈ Bε0(pN−1). Now, since
Bε0(p1) ∩Bε0(pN−1) = ∅, and since Φ(U ′′

1 ) ⊂ Bε0(p1), it follows that
x ∈ U ′′

1
c. Recalling that ρ1|U ′′

1

c ≡ 0 we have:

a+ δρ1(x)− δρN−1(x) = a− δρN−1(x) ≤ 1.
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We have shown that Φ̃δ(x) = (α, 1) where 0 ≤ α ≤ 1, thus Φ̃δ(x) ∈ γN−1.
□

Combining Claims 3.10 and 3.11 we deduce that for all δ < ε0
2 Equations (1)

& (2) hold. Next we validate:

Claim 3.12.

Φ̃δ(X1) = Φ(X1) ⊆ γ1,

Φ̃δ(XN−2) = Φ(XN−2) ⊆ γN−2.

Proof. We verify the claim for X1 as the verification for XN−2 is analogous.
The claim will follow from ρ1|(U ′′

XN−1
p
1

)c ≡ 0 and ρN−1|(U ′′
XN
p
N−1

)c ≡ 0. Let

x ∈ X1. Since

Φ(X1) ∩Bε0(pN−1) ⊂ γ1 ∩Bε0(pN−1) = ∅,

and since Φ(U ′′XN

pN−1

) ⊆ Bε0(pN−1), we have X1 ⊆
(
U ′′XN

pN−1

)c
, hence

ρN−1|X1
≡ 0. Now, by definition of U ′′XN−1

p
1

, it satisfies U ′′XN−1

p
1

∩X1 = ∅,
so X1 ⊆

(
U ′′XN−1

p
1

)c
, hence also ρ1|X1

≡ 0. Therefore:

Φ̃δ(x) =
(
Φ1(x) + δρ1(x)− δρN−1(x),Φ2(x)

)

= (Φ1(x) + 0− 0,Φ2(x)) = (Φ1(x),Φ2(x)) = Φ(x).
□

Last, we verify the following claim:

Claim 3.13.

Φ̃δ(X2) = Φ(X2) ⊆ γ2,

...

Φ̃δ(XN−3) = Φ(XN−3) ⊆ γN−3.

Proof. Let 2 ≤ k ≤ N − 3 and let x ∈ Xk. Since

Φ ∈ F ′
∆,N−1(X1, . . . , XN−1 ∪XN ),

by definition we have Φ(x) ∈ γk ⊆ [0, 1]× {0}. The segment [0, 1]×
{0} is disjoint from the union of balls Bε0(p1) ∪Bε0(pN−1) and
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since Φ
(
U ′′XN−1

p
1

)
⊆ Bε0(p1) and Φ

(
U ′′XN

pN−1

)
⊆ Bε0(pN−1), we deduce

that x ∈
(
U ′′XN−1

p
1

)c
∩
(
U ′′XN

pN−1

)c
. Recalling that ρ1|(U ′′

XN−1
p
1

)c ≡ 0 and

ρN−1|(U ′′
XN
p
N−1

)c ≡ 0 we compute:

Φ̃δ(x) =
(
Φ1(x) + δρ1(x)− δρN−1(x),Φ2(x)

)

= (Φ1(x) + 0− 0,Φ2(x)) = (Φ1(x),Φ2(x)) = Φ(x).
□

To conclude the proof we compute
∥∥∥
{
Φ̃δ,1, Φ̃δ,2

}∥∥∥:
∥∥∥
{
Φ̃δ,1, Φ̃δ,2

}∥∥∥ =
∥∥{Φ1 + δρ1(x)− δρN−1(x),Φ2

}∥∥

≤ ∥{Φ1,Φ2}∥+ δ ∥{ρ1,Φ2}∥+ δ
∥∥{ρN−1,Φ2

}∥∥ δ→0−→ ∥{Φ1,Φ2}∥ .

Thus the lemma is proven by picking Φ̃ := Φ̃δ0 for

δ0 < min
{ε0
2
,
ε

2

(
∥{ρ1,Φ2}∥+

∥∥{ρN−1,Φ2

}∥∥)−1
}
.

□

Next we prove:

Lemma 3.14. Let Φ̃ := Φ̃δ0 obtained from Lemma 3.9. Then, for all ε > 0
there exists Φ̂ : M → ∆ with the following properties:

• There exist N points on ∂∆, denoted p′1, . . . , p
′
N , defining arcs, γ′1, . . . ,

γ′N , such that for all 1 ≤ k ≤ N , Φ̂(Xk) ⊆ γ′k.

•
∥∥∥
{
Φ̂1, Φ̂2

}∥∥∥ ≤ 1+ε
1−ε

∥∥∥
{
Φ̃1, Φ̃2

}∥∥∥.

Proof. The strategy of the proof is to compose Φ̃ with a pseudoretract onto
a square that maps the segment γN−1 \

(
Bδ(p1) ∪Bδ(pN−1)

)
to a vertex,

which will become the new point, p′N . Namely, we seek to contract to a

point the problematic segment where the overlap of Φ̃ (XN ) and Φ̃
(
XN−1

)

occurs. The set XN is then mapped to the left of p′N and XN−1 is mapped to
the right of p′N , while we maintain control on how much the Poisson bracket
is increased. Recall Remark 2.5; The pseudoretract of R

2 onto a square,
described in Proposition 2.4 has the property of mapping a sector spanned
by the opposite angle to the interior angle at a vertex to that vertex. See
Figure 2.
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Let ε > 0 and consider a square of side length 1− ε which we denote by

∆2 := [0, 1− ε]× [0, 1− ε].

Let S be a symplectomorphism mapping ∆ to a subset S(∆) ⊂ R
2 such that

• ∆2 is contained in the interior of S (∆).

• The arc S
(
γN−1 \

(
Bδ(p1) ∪Bδ(pN−1)

))
lies inside the sector Av

spanned by the opposing angle to the interior angle at the vertex
(1− ε, 1− ε), with its boundary points lying on the line extensions
of the edges of ∆2 adjacent to v.

∆2

eΦ(X
N
)

eΦ(X
N−1

)

Av

Figure 2: The configuration of the arcs and the angle Av.

Let T be an ε-pseudoretract onto ∆2, and let H 1

1−ε
be the homothety by a

factor of 1√
1−ε

, Define

Φ̂ := H 1

1−ε
◦ T ◦ S ◦ Φ̃.

Then,

∥∥∥
{
Φ̂1, Φ̂2

}∥∥∥ ≤ 1 + ε

1− ε

∥∥∥
{
S ◦ Φ̃1, S ◦ Φ̃2

}∥∥∥

≤ 1 + ε

1− ε

∥∥∥
{
Φ̃1, Φ̃2

}∥∥∥ ε→0−→
∥∥∥
{
Φ̃1, Φ̃2

}∥∥∥ .
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We then define the points p′i by p
′
i := H 1

1−ε
◦ T ◦ S(pi) ∈ ∂∆2 for 1 ≤ i ≤

N − 1 and p′N := v ∈ ∂∆2. By our construction, for all 1 ≤ k ≤ N it holds

that Φ̂(Xk) ⊆ γk, completing the proof. □

To conclude the theorem’s proof, WLOG one can assume that Φ satisfies
(CS) with respect to a point p ∈ ∆ \

(
Bδ(p1) ∪Bδ(pN−1)

)
, otherwise we use

the methods of Proposition 3.7 to move p outside these balls. Lemmata 3.9
and 3.14 alter Φ by post-compositions, so the (CS) condition is preserved.
Hence, the function Φ̂ constructed in Lemma 3.14 is admissible for Pb∆2

N

where ∆2 = ([0, 1]× [0, 1], {p′1, . . . , p′N}), and by choosing δ → 0 and ε→ 0
small enough, the theorem follows. □

3.4. Proof of Theorem 3

The invariant PbX satisfies monotonicity and semi-continuity properties
similarly to pbn in [1].

Proposition 3.15. Monotonicity: Let X,Y be two compact sets such
that X ⊆ Y . Denote by i : X →֒ Y the inclusion map. Then, for any class
α ∈ H1(Y ;Z) we have:

PbX(i∗α) ≤ PbY (α).

Proof. Any function Φ: M → B1 admissible for PbY (α) is also admissible
for PbX(i∗α) □

Proposition 3.16. Semicontinuity: Let X be a compact subset of a sym-
plectic manifold M . Fix a class α ∈ H1(X;Z) and consider an extension of
it to a neighborhood, UX , of X, denoted by ᾱ ∈ H1(UX ;Z), which exists by
Proposition 4.1. Let Xn be a sequence of compact sets contained in UX , con-
verging to X in the Hausdorff distance. The class ᾱ determines a class in
H1(Xn;Z) by pullback along the inclusion Xn →֒ UX , which we denote by
ᾱ|Xn

. Then,

lim sup
n→∞

PbXn
(ᾱ|Xn

) ≤ PbX(α).

Proof. For any function Φ: M → B1 admissible for PbX(α) there exists N
such that for all n ≥ N , Φ is also admissible for PbXn

(ᾱ). This is because
there exists a neighborhood of X, UΦ, such that Φ(UΦ) ⊂ S1 and [Φ|UΦ

] =
ᾱ|UΦ

(by Proposition 4.1) and there exists N such that for all n > N , Xn ⊂
UΦ. □
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Corollary 3.17. Let X be a compact set in a symplectic manifold M ,
and let Xn be a monotone decreasing sequence of compact sets (namely
Xn+1 ⊆ Xn), containing X, converging in the Hausdorff distance to X. Fix
α ∈ H1(X;Z) and consider an extension of it to a neighborhood UX of X,
denoted by ᾱ ∈ H1(UX ;Z), which exists by Proposition 4.1. Then,

lim
n→∞

PbXn
(ᾱ|Xn

) = PbX(α).

Proof. By the monotonicity property we have that PbXn
(ᾱ|Xn

) is a mono-
tone decreasing sequence of numbers bounded below by PbX(ᾱ|X)=PbX(α),
therefore it converges. On the other hand we have from semi-continuity that

lim
n→∞

PbXn
(ᾱ|Xn

) = lim sup
n→∞

PbXn
(ᾱ|Xn

) ≤ PbX(α).

Completing the proof. □

For brevity and to avoid cumbersome notation we describe the proof of
Theorem 3 for N = 3; the proof for any N is similar. We prove the following
proposition:

Proposition 3.18. Let X1, X2, X3 be a triplets of compact subsets in a
symplectic manifold,M , such that X1 ∩X2 ∩X3 = ∅. Let Kn be a decreasing
sequence of compact neighborhoods of X1 ∩X3 converging to X1 ∩X3 in the
Hausdorff distance, and moreover assume that K1 ∩X2 = ∅. Then,

1) The following limit exists:

lim
Kn↘X1∩X3

Pb4(X1 \Kn, X2, X3 \Kn,Kn).

2) lim
Kn↘X1∩X3

Pb4(X1 \Kn, X2, X3 \Kn,Kn) = Pb3(X1, X2, X3).

Remark 3.19. Ideally, one would like to take X1 \X3, X2, X3 \X1 and
X1 ∩X3 as the quadruplet of sets for Pb4 in the proposition, but this quadru-

plet might not satisfy
(
X1 \X3

)
∩
(
X3 \X1

)
= ∅. Therefore we have to

approximate X1 ∩X3 from outside by compact neighborhoods.

Remark 3.20. The sequences of sets, X1 \Kn and X3 \Kn, are monotone
increasing, and the sequence Kn is monotone decreasing, thus one cannot
directly apply [1]’s monotonicity statement for this quadruplet. Nevertheless,
the union, Zn = X1 ∪X2 ∪X3 ∪Kn, is indeed monotone decreasing so we
can proceed with monotonicity of PbZn

:
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Proof. By Theorem 2:

Pb4(X1 \Kn, X2, X3 \Kn,Kn) = Pb3(X1 \Kn, X2, X3 \Kn ∪Kn),

and by Theorem 4:

Pb3(X1 \Kn, X2, X3 \Kn ∪Kn) = PbZn
([fn]),

where Zn := X1 ∪X2 ∪X3 ∪Kn and fn is a function, fn : Zn → S1, such
that:

fn

(
X1 \Kn

)
⊆ γ1, fn (X2) ⊆ γ2, fn

(
X3 \Kn ∪Kn

)
⊆ γ3.

We note that X3 \Kn ∪Kn = X3 ∪Kn and that we can choose fn = g|Zn

where g : Z1 → S1 is a function such that

∀i, g (Xi) ⊆ γi and g (K1) = γ1 ∩ γ3.

Therefore PbZn
([fn]) = PbZn

([g|Zn
]) and by Corollary 3.17:

lim
n→∞

PbZn
([g|Zn

]) = PbZ([g|Z ]),

where Z = X1 ∪X2 ∪X3.
Finally, by Theorem 4, PbZ([g|Z ]) = Pb3(X1, X2, X3). □

3.5. pb3 and Dynamics

The above proposition, expressing Pb3 as a limit of Pb4s, yields a dynamical
interpretation of pb3(X1, X2, X3) in terms of Hamiltonian chords connecting
X1 \X3 and X3 \X1 for flows of functions which are bounded below by 1
near X2 and bounded above by 0 near X3 ∩X1, in a similar fashion to the
dynamical interpretation given for pb4 in [1]. Recall that 1/pb

4
(X0,X1,Y0,Y1)

has the following dynamical interpretation (Note that in pb4 we do not use
the cyclical notation for the sets):

Theorem ([1] 1.10). Let X0, X1, Y0, Y1 ⊂M be a quadruplet of compact
sets such that X0 ∩X1 = Y0 ∩ Y1 = ∅ and 1/pb 4(X0,X1,Y0,Y1) = p > 0. Let G ∈
C∞
c (M) be a Hamiltonian with G|Y0

≤ 0 and G|Y1
≥ 1 generating a Hamil-

tonian flow gt. Then, there exists a Hamiltonian chord of time-length ≤ p
going from X1 to X0 or from X0 to X1.
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We now show the following (slightly weaker due to noncompactness of
X3 \X1 and X1 \X3) analogue for pb3:

Corollary 3.21. Let X1, X2, X3 be a triplets of compact subsets in a sym-
plectic manifold, M , such that X1 ∩X2 ∩X3 = ∅. Let G ∈ C∞

c be a Hamil-
tonian G : M → R such that G|X2

≤ 0 and G|X1∩X3
≥ 1.

Assume p0 :=
1

2 pb
3
(X1,X2,X3)

> 0. Then, for all p > p0 there exists a trajec-

tory of the Hamiltonian flow of G of time-length ≤ p going from X3 \X1 to
X1 \X3 or from X1 \X3 to X3 \X1.

Proof. By Theorem 3, for every ε > 0 there exists a compact set, Kε, such
that X1 ∩X3 ⊂ Kε and

1/(2 pb
3
(X1,X2,X3)) − ε ≤ 1/pb

4
(X1\Kε,X2,X3\Kε,Kε) ≤ 1/(2 pb

3
(X1,X2,X3)).

Pick ε > 0 such that 1/pb
4
(X1\Kε,X2,X3\Kε,Kε) ≥ p0 − ε > 0. For any δ > 0

there exists a compact setKε,δ such that X1 ∩X3 ⊆ Kε,δ ⊆ Kε and G|Kε,δ
≥

1− δ. We have that:

0 < 1/pb
4
(X1\Kε,X2,X3\Kε,Kε) ≤ 1/pb

4
(X1\Kε,δ,X2,X3\Kε,δ,Kε,δ) ≤ p0.

Consider G
1−δ , it is a Hamiltonian such that G

1−δ

∣∣
X2

≤ 0 and G
1−δ

∣∣
Kε,δ

≥ 1, and

thus from the positivity of pb4(X1 \Kε,δ, X2, X3 \Kε,δ,Kε,δ) there exists

a Hamiltonian chord of G
1−δ connecting X1 \Kε,δ and X3 \Kε,δ (in some

direction) with time-length ≤ p0, Therefore, by rescaling we get a chord of
G connecting the same sets with time-length ≤ p0

1−δ . Picking δ small enough
such that p0

1−δ < p finishes the proof. □

4. The invariant PbX(α)

4.1. Setup

For a topological space X, denote by [X : S1] the set of homotopy classes
of continuous maps from X to S1. If Z ⊂ X is a subspace, then restriction
(of functions and of homotopies) induces a map [X : S1] → [Z : S1]. Given
a compact subset X ⊂M of a manifold M we define:

NH1(X) := lim−→
U⊇X

[U : S1].

Where the limit is taken on the directed system of open sets U containing X.
The notation H1 is suggestive of the well known isomorphism H1(X;Z) ∼=
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[X : S1], due to S1 being a K(Z, 1) space, and where the cohomology is
Čech cohomology of the constant sheaf Z. (The isomorphism is proven in
[6]). N stands for Neighborhood. Restriction of maps to X induces a map
ρ : NH1(X) → [X : S1]. Moreover, in light of the isomorphism with coho-
mology, the sets [U : S1] admit a group structure, and all the maps induced
by restriction to subsets are in fact group homomorphisms. Moreover, since
S1 is a topological group, the group structure on [U : S1] is induced from
the group structure on S1. See Chapter 22 in [5] for details on Eilenberg-
MacLane spaces and their relation to cohomology.

Proposition 4.1. The map ρ defined above is both surjective and injective,
i.e. an isomorphism of groups.

Proof. We begin with surjectivity of ρ. Consdier S1 embedded in R
2 as the

unit circle. Let [φ] ∈ [X : S1], that is φ : X → S1 ⊂ R
2, and denote φ(x) =

(φ1(x), φ2(x)) where each φi is a map φi : X → R. Since X is closed in M ,
by the Tietze extension theorem, each φi extends to a continuous function
φ̃i : M → R, which together define φ̃ : M → R

2. Let B1/2 ⊂ R
2 be an open

ball of radius 1
2 centered at the origin. There exists a retract ψ : R2 \B1/2 →

S1. Consider M \ φ−1(B) which is an open neighborhood of X. Then, ψ ◦
φ̃ : M \ φ−1(B) → S1 is an extension of φ to an open neighborhood of X,
inducing an element [ψ ◦ φ̃] ∈ NH1(X) such that ρ ([ψ ◦ φ̃]) = [φ].
Next we prove injectivity of ρ. We need to show the following statement:
Let U be an open neighborhood of X and let φ0, φ1 : U → S1 be two maps
such that ρ([φ0]) = ρ([φ1]), i.e. there exists a homotopy Ft : X × [0, 1] → S1

such that F0 = φ0|X and F1 = φ1|X . We have to show that there exists
an open set V such that X ⊆ V ⊆ U , and a homotopy Gt : V × [0, 1] → S1

such that G0 = φ0|V and G1 = φ1|V . The argument for existence of such a
homotopy is similar to the argument showing surjectivity. WLOG, assume
U is compact. Pick an open set W ⊂ U such that W ⊂ U . Consider the
following closed subset of M × [0, 1]:

Z :=
(
W × {0}

)
∪ (X × [0, 1]) ∪

(
W × {1}

)
.

Consider the function ψ : Z → S1 defined by:

ψ(x, t) :=





φ0(x) if t = 0

φ1(x) if t = 1

Ft(x) otherwise.
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Repeating the argument used in the surjectivity part, this time for the the
compact subset Z ⊂M × [0, 1] and the map ψ : Z → S1, in the manifold
with boundary M × [0, 1], yields an extension of ψ, which we denote by ψ̃ :
N → S1, where N is some neighborhood of Z inM × [0, 1]. By compactness
of Z, the set N contains an open set of the form V × [0, 1] where V is open
in M . The restriction ψ̃|V provides the desired homotopy between φ0|V and
φ1|V . □

Claim 4.2. Let M be a manifold and X a compact set such that
X = X1 ∪X2 ∪X3, with each Xk compact such that X1 ∩X2 ∩X3 = ∅.
Then, there exists a continuous f : X → S1 such that for all 1 ≤ k ≤ 3,

f(Xk) ⊆ γk where γk =
{
eiθ

∣∣∣ θ ∈
[
2π(k−1)

3 , 2πk3

]}
. In fact we can choose f

such that it extends to a neighborhood, Op (Xk), of each Xk and satisfies
f (Op (Xk)) ⊆ γk.

Proof. This argument essentially appears in [1], showing that the set of
pairs over which we infimize in pb3 is not empty. Consider the open cover of
M given by (M \X1,M \X2,M \X3) and let {ρi} be a partition of unity
subordinate to that cover. Consider f = (ρ1|X , ρ2|X) : X → ∆ where ∆ is
the boundary of a right triangle whose vertices are (0, 0), (1, 0), (0, 1). The
result is obtained by composing f with a homeomorphism from ∆ to S1. In
fact, by composing f with a retract of R2 onto a smaller triangle first, we
get f (Op (Xk)) ⊆ γk □

Claim 4.3. Let X = X1 ∪X2 ∪X3 with each Xk compact such that
X1 ∩X2 ∩X3 = ∅. Then, any two functions f, g : X → S1 such that for all
1 ≤ k ≤ 3, f(Xk), g(Xk) ⊆ γk are homotopic.

Proof. Identify γk with [0, 1] via a homeomorphism σk : γk → [0, 1]. For each
k we homotope between σk ◦ f |Xk

and σk ◦ g|Xk
via the linear homotopy:

ht := σ−1
k ◦ ((1− t)σk ◦ f + tσk ◦ g) .

Note that f(Xk ∩Xk+1) = g(Xk ∩Xk+1) which equals the far (counterclock-
wise) endpoint of γk (addition is to be taken cyclically). Moreover, by linear-
ity this also holds for ht, for all t ∈ [0, 1]. Hence, we can homotope between
f and g over each Xk sequentially. □

We summarize the contents of the above claims in the following corollary:
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Corollary 4.4. Any decomposition X = X1 ∪X2 ∪X3 such that
X1 ∩X2 ∩X3 = ∅ determines a class α ∈ H1(X;Z), hence a class in
α ∈ NH1(X). The class α is defined by picking any function f : X → S1

such that f(Xk) ⊆ γk for 1 ≤ k ≤ 3 and setting α = [f ].

Definition 4.5. For any α ∈ H1(X;Z) define

PbX(α) := inf




∥{ϕ1, ϕ2}∥

∣∣∣∣∣∣∣

Φ = (ϕ1, ϕ2) : M → B1 such that
ϕ1, ϕ2 have compact support, and
∃ U
open

⊃ X, ϕ|U ⊆ S1, [ϕ|X ] = α




.

Remark 4.6. During the writing of this paper the author learned that a
similar definition (using Φ∗ω

R2

ω
R2

, over a similar class of functions) was sug-
gested as an object of study, years ago, by Frol Zapolsky.

4.2. Proof of Theorem 4

Theorem 4.7. Let X be be a compact subset of a symplectic manifold
M , and assume X = X1 ∪X2 ∪X3 where X1 ∩X2 ∩X3 = ∅ and each Xk is
compact. Denote by α ∈ H1(X;Z) the class determined by the decomposition
X = X1 ∪X2 ∪X3 as in Corollary 4.4. Then,

Pb3(X1, X2, X3) = PbX(α).

Proof. We start by showing Pb3(X1, X2, X3) ≥ PbX(α). Any Φ: M → ∆
admissible for Pb3 can be made into a map admissible for PbX(α) with an
arbitrary ε-increase of the norm of the Poisson bracket by composing with
a smooth map from the triangle to a disc, with Jacobian norm bounded by
1 + ε, as done in the proof of Proposition 3.7.

We now turn to proving PbX(α) ≥ Pb3(X1, X2, X3). Let Φ: M → B1

admissible for PbX(α). Then, there exists an open set U ⊃ X such that
Φ(U) ⊆ S1. Shrinking U if necessary, it follows from Claims 4.1 and 4.2 that
there exist open sets U0, U1, U2 such that:

1) Uk ⊃ Xk for 1 ≤ k ≤ 3.

2) U = U0 ∪ U1 ∪ U2.

3) There exists a function f : U → S1 such that for all 1 ≤ k ≤ 3,
f (Uk) ⊆ γk.

4) Φ|U
htpy∼ f .



✐

✐

“2-Ganor” — 2020/9/8 — 23:16 — page 1021 — #27
✐

✐

✐

✐

✐

✐

A homotopical viewpoint at the Poisson bracket invariants 1021

We denote the homotopy in (4) by ft, so f0 = Φ|U and f1 = f . By the smooth
approximation theorem (Whitney’s approximation), ft can be chosen to be
smooth.

Let ε > 0. We will construct a smooth function Φ̂ : M → B1 such that:

1) Φ̂−1 (B1−3ε) = Φ−1 (B1−3ε).

2) Φ̂|Φ−1(B1−3ε)
= Φ|Φ−1(B1−3ε)

.

3) Φ̂|U = f .

From it, we obtain by a composition with a pseudoretract onto B1−3ε a
function with the desired bounds on the norm of the Poisson bracket and
the desired behaviour on X, by application of Corollary. 2.3

To construct Φ̂ we will need the the definition and characterization of a
cofibration (sometimes called a Borsuk pair), see [5] for a deeper treatment.

Definition 4.8. A continous map i : Z → X is called a cofibration if it
satisfies the homotopy extension property with respect to all spaces, Y ,
that is, if for every homotopy ft : Z × [0, 1] → Y and every map F0 : X →
Y extending f0, namely, F0|Z = f0, there exists an extension of ft to a
homotopy Ft : X × [0, 1] → Y , such that Ft|Z = ft. In a diagram:

Z Z × [0, 1]

X Y

X × [0, 1]

id×{0}

i ft i×id

F0

id×{0}

∃Ft

The next lemma, whose proof we postpone to the end of the section,
states that for a closed subset, X, of a manifold, M , there is an arbitrarily
small ”thickening” such that the inclusion of the thickened neighborhood
into M is a cofibration.

Lemma 4.9. Let M be a manifold, and let X ⊂ U ⊂M , such that X is
closed and U is open in M . Then, there exists a closed neighborhood, Z,
of X, such that X ⊂ Z ⊂ U , and such that the inclusion map Z →֒M is a
cofibration.
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We continue with the proof of Theorem 4. Denote by A1
1−2ε :=B1 \B1−2ε

the annulus of radii 1 and 1− 2ε. A1
1−2ε is open in the topology of B1. We

proceed in several steps, in each we modify the function constructed in the
previous, culminating in the desired function Ψ satisfying what is needed.
Figure 3 depicts all the balls involved in the construction.
Step 1: We construct Φ̃ : Φ−1(A1

1−2ε) → A1
1−2ε such that:

1) Φ̃|U ≡ f .

2) Φ̃|
Φ−1(B1−ε\B1−3ε/2)

≡ Φ|
Φ−1(B1−ε\B1−3ε/2)

.

Set:

Q := X ∪ Φ−1(B1−ε \B1−3ε/2).

W := U ∪N
(
Φ−1(B1−ε \B1−3ε/2)

)
.

Where N := N
(
Φ−1(B1−ε \B1−3ε/2)

)
is an open neighborhood of

Φ−1
(
B1−ε \B1−3ε/2

)
chosen to be small enough such that N ∩ U = ∅ and

such that Φ(N ) ⊂ A1
1−2ε. The set Q is a closed subset of Φ−1(A1

1−2ε) and W
is an open neighborhood of Q, therefore by the above Lemma 4.9, (Applied
withM = Φ−1(A1

1−2ε), U =W ) there exists a closed neighborhood, Z, of Q,
where Q ⊂ Z ⊂W such that the inclusion Z →֒ Φ−1(A1

1−2ε) is a cofibration.
Define a homotopy ht : Z × [0, 1] → A1

1−2ε by:

ht(x) :=

{
ft(x) x ∈ U ∩ Z
Φ(x) x ∈ N ∩ Z

h0 = Φ|Z : Z → A1
1−2ε has an extension Φ|Φ−1(A1

1−2ε)
: Φ−1(A1

1−2ε) → A1
1−2ε

and hence by the cofibration property, the homotopy ht extends to a function
Ht : Φ

−1(A1
1−2ε)× [0, 1] → A1

1−2ε such that Ht|Z = ht. By the smooth ap-
proximation theorem (Whitney’s approximation), since ht is already smooth
we can choose Ht to be smooth. Define:

Φ̃ := H1 : Φ
−1(A1

1−2ε) → A1
1−2ε.

Φ̃ has the desired properties near X but is not yet defined on all of M .

Step 2: We construct Φ̂ : M → B1, (Now defined on all of M) with the
following properties:

1) Φ̂|X ≡ Φ̃|X .
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2) Φ̂−1(B1−3ε) = Φ−1(B1−3ε).

3) Φ̂|Φ−1(B1−3ε)
≡ Φ|Φ−1(B1−3ε)

.

We define Φ̂ : M → B1 by

Φ̂ :=

{
Φ(x) x ∈ Φ−1

(
B1−5/4ε

)

Φ̃(x) Otherwise.

Since Φ̃|N = Φ|N , and since the boundary of Φ−1
(
B1−5/4ε

)
is contained in

N , the map Φ̂ is indeed smooth.
Step 3: We construct Ψ: M → B1, using Corollary 2.3, to obtain a function
with the desired bounds on the Poisson bracket.
Let T : R2 → B1−3ε be an ε-pseudoretract, and denote by H 1

1−3ε
the homo-

thety by a factor of 1√
1−3ϵ

. Define:

Ψ := H 1

1−3ε
◦ T ◦ Φ̂.

Now, by Proposition 2.2 we have ∥{Ψ1,Ψ2}∥ ≤ 1+ε
1−3ε · ∥{Φ1,Φ2}∥.

By shrinking the neighborhoods Uk of Xk so that Uk ⊂ Z, we have
Ψ(Uk) = f(Uk) ⊂ γk for all 1 ≤ k ≤ 3. Thus Ψ is Pb3(X1, X2, X3)-admissible.
WLOG, we can assume that Φ is (CS) with respect to p = (0, 0) (otherwise
we move p by the methods of Proposition 3.7). Therefore it holds that Φ̂
is (CS), and hence also Ψ, as they are obtained by post-compositions. We
have shown that for all ε > 0 small enough:

1 + ε

1− 3ε
· PbX(α) ≥ Pb3(X1, X2, X3).

By sending ε→ 0 the result follows. □

4.3. Proof of Lemma 4.9 (Thickening a set to a cofibration)

In this section we prove the following lemma:

Lemma. Let M be a manifold, and let X ⊂ U ⊂M such that X is closed
and U is open in M . Then, there exists a closed neighborhood, Z, of X, such
that X ⊂ Z ⊂ U and such that the inclusion map Z →֒M is a cofibration.

The following appears in [5] as a corollary of Theorem ”HELP” (Homo-
topy Extension and Lifting Property).
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B1−5"=4

1 2

B1−5"=4

Y

Figure 3: B1 and its subsets involved in the proof.

Proposition 4.10. Let X be a CW-complex and let i : A→ X be the in-
clusion of a subcomplex. Then, i is a cofibration.

We will also need a theorem of Whitehead about existence of triangula-
tions for smooth manifolds with boundary, see [8] and [7]:

Proposition 4.11 (Whitehead). If M is a smooth para-compact mani-
fold with boundary, then every smooth triangulation of ∂M can be extended
to a smooth triangulation of M

As a corollary we have:

Corollary 4.12. Let M be a d-dimensional manifold and let N be a d-
dimensional connected manifold with boundary. Then, any embedding i : N →
M is a cofibration.

Proof. For brevity identifyN with its image inM . ConsiderN andM \ IntN ,
they are both manifolds with a common boundary ∂N . Choose a triangu-
lation of ∂N . Extending to both N and M \ IntN yields a triangulation of
M such that N is a subcomplex. Any triangulation induces CW-structure
in the obvious way, therefore i : N →M is a cofibration. □

We can now prove Lemma 4.9.
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Proof. In light of Corollary 4.12 it is enough to show that there exists a
closed neighborhood, Z, of X, contained in U , such that Z is an embedded
dimM -dimensional manifold with boundary. Since X is a compact subset
of M , there exists a smooth function, h : M → [0,∞), such that h−1(0) =
X. By Sard’s theorem, the critical values of h are of measure 0 in [0,∞),
therefore there exists a regular value r ∈ [0,∞) such that h−1 ([0, r]) ⊂ U .
Set Z = h−1 ([0, r]). Z is an embedded dimM -dimensional manifold with
boundary, therefore i : Z →M is a cofibration. □

4.4. Proof of Theorem 5 - Subhomogeneity of PbX(·)

In this section we prove the following theorem:

Theorem 4.13. Let X be a compact subset of a symplectic manifold M .
Then, for all α ∈ H1(X;Z) and for all 0 < k ∈ N we have:

PbX(kα) ≤ k · PbX(α).

Proof. Let Φ: M → B1 be a function admissible for PbX(α). We construct a
function admissible for PbX(kα) in the following way: ConsiderRk : B1 → B1

defined in polar coordinates by

Rk

(
reiθ

)
= reikθ.

This is a smooth function except for the origin. For every ε > 0 consider
T : B1 → B1−ε defined by collapsing the disc Bε around the origin to point,
smoothly, in a similar fashion to what is done in the construction of ε-
pseudoretracts, that is

T (reiθ) = ρ (r) eiθ,

where ρ : [0,∞) → [0,∞) is a function such that:

ρ(x)|[1/2,∞) = x− ε, ρ|[0,ε] = 0 and 0 ≤ ρ′ ≤ 1 + ε.

The function ρ is constant near 0, therefore the composition T ◦Rk is
smooth. Define:

Ψ := H 1

1−ε
◦ T ◦Rk.

Ψ is a function admissible for PbX(kα). Note that

∥{Ψ1,Ψ2}∥ ≤ k · 1 + ε

1− ε
∥{Φ1,Φ2}∥ .
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Hence, for all ε > 0 we have PbX(kα) ≤ k · 1+ε
1−ε · PbX(α). The result follows

by sending ε→ 0. □
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