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We provide a moment map interpretation for the coupled Kähler-
Einstein equations introduced in [16], and in the process introduce
a more general system of equations, which we call coupled cscK
equations. A differentio-geometric formulation of the correspond-
ing Futaki invariant is obtained and a notion of K-polystability
is defined for this new system. Finally, motivated by a result of
Székelyhidi, we prove that if there is a solution to our equations,
then small K-polystable perturbations of the underlying complex
structure and polarizations also admit coupled cscK metrics.
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1. Introduction

The study of canonical metrics on complex manifolds is intimately tied with
analytic constructions of moduli spaces. For instance, the solvability of the

961



✐

✐

“1-Pingali” — 2020/9/1 — 18:11 — page 962 — #2
✐

✐

✐

✐

✐

✐

962 V. V. Datar and V. P. Pingali

Kähler-Einstein equation on a K-stable Fano manifold

Ric(ω) = ω

was used in [24] to construct a moduli space of certain Del-Pezzo surfaces.
More generally, it is natural to expect that the constant scalar curvature
Kähler (cscK) metrics can help in parametrising polarised manifolds (M,L).
Indeed, in [6] a Hausdorff moduli space of solutions of constant scalar curva-
ture Kähler metrics was constructed. With these remarks in mind, our aim
in this paper is to study a set of metrics satisfying some coupled equations
on a Kähler manifold, that generalise cscK metrics and the coupled Kähler-
Einstein metrics studied in [4, 13, 16, 17, 25, 29], and could potentially lead
to constructing the moduli space of a larger class of polarised manifolds (cf.
Remark 1). Throughout the paper we fix a polarised tuple (M, (Li)), i.e., an
n-dimensional Kähler manifold M with ample line bundles L0, L1, . . . , Lm,
and we denote the line bundle⊗m

i=0Li by L. Such polarised tuples may poten-
tially be parametrised by canonical metrics associated to them. In particular,
we are interested in metrics ωi ∈ 2πc1(Li) for i = 0, . . . ,m that satisfy

ωn0
V0

= · · · = ωnm
Vm

(1)

Sω0
= trω0

ω + Ŝ,

where Sω0
is the scalar curvature of ω0, Vi = (2πLi)

n/n!, ω = ω0 + ω1 +
· · ·+ ωm and Ŝ is a computable constant, namely,

Ŝ = n
(−KM − L) · Ln−1

0

Ln0
.

In particular, ifM is Fano and L = −KM , then Ŝ = 0, and it is easy to show
that the above system reduces to the coupled Kähler Einstein system, viz.,

Ric(ω0) = Ric(ω1) = · · · = Ric(ωm) = ω.(2)

One of the main aims of the present work is to provide a moment map in-
terpretation for coupled Kähler-Einstein metrics in the spirit of the work by
Fujiki [12] and Donaldson [8] for the cscK problem, and this in turn leads di-
rectly to the coupled system (1). In analogy to the relationship between the
Kähler-Einstein metrics and the cscK metrics, we refer to (ω0, ω1, . . . , ωm)
solving (1) as coupled cscK metrics, and we say that (M, (Li)) admits cou-
pled cscK metrics. The reader should however be forewarned that coupled
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cscK metrics will in general not have constant scalar curvatures (unless of
course m = 0).

Remark 1. In [17] there is an example of a toric projectivised bundle over
P2 × P1 that does not admit a Kähler-Einstein metric but does admit cou-
pled Kähler-Einstein metrics. Therefore, the coupled Kähler-Einstein met-
rics (and the coupled cscK metrics) might be useful in studying larger moduli
spaces. While cscK metrics are useful substitutes in the case of general po-
larised manifolds (M,L), notice that cscK metrics involve solving fourth
order equations whereas coupled Kähler-Einstein metrics involve second or-
der equations and hence are more amenable to solution. Indeed, in [16, 25] it
was proven that on manifolds with c1(M) < 0, the coupled Kähler-Einstein
equations can be solved.

Our main result is that coupled cscK metrics have a moment map inter-
pretation. To describe the setting, we fix a Kähler form ω0 ∈ 2πc1(L0) and
Hermitian metrics h1, . . . , hm on the underlying smooth bundles L1, . . . , Lm
respectively, and consider a subspace M ⊂ J ×A1 × · · ·Am of “integrable
tuples” (cf. section 3 for details), where J is the space of almost complex
structures on M compatible with ω0 and taming it, and Ai is the space of
unitary connections on Li. There is a natural almost complex structure I and
a compatible symplectic form Ω on M giving it a formal Kähler structure.
The theorem alluded to above is the following.

Theorem 2. There exists a group G with a Hamiltonian action on (M,Ω)
such that if µ : M → Lie(G)∗ is the moment map for the action, then
µ(J,A1, . . . , Am) = 0 if and only if ωi =

√
−1FAi

is a (1, 1) form for i =
1, . . . ,m, and (ω0, ω1, . . . , ωm) are coupled cscK metrics.

Recall, that in the standard moment map picture of Fujiki and Donald-
son referred to above, the group of Hamiltonian symplectomorphisms play
the role of the gauge group. Inspired by [1], we define our gauge group G
as a subgroup of the group of unitary automorphisms of the vector bundle
(E = ⊕m

i=1Li,⊕ihi) covering Hamiltonian symplectomorphisms of (M,ω0).
Details are presented in Section 2.

Remark 3. Naively, one might want to define a coupled cscK system by
simply tracing each of the equations in (2). However, unlike (1), to our
knowledge such a system does not appear to have a natural moment map
interpretation. That being said, it is not clear to us if (1) is equivalent to
the naive system or not.
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Analogous to the beautiful perturbation results of Brönnle [2] and
Székelyhidi [27], using some techniques in [14], we apply the moment map
picture to obtain a deformation result for coupled cscK metrics.

Theorem 4. Suppose (M,J, (Li)) admits coupled cscK metrics. Then a
sufficiently small deformation (M,J ′, (L′

i)) of the complex structure of
(M,J, (Li)) admits coupled cscK metrics if it is K-polystable.

We expect that the converse, namely that existence of coupled cscK
metrics implies K-polystability should also be true, but we do not get into
these considerations in this paper. We now provide a brief outline of our
paper. In section 2 we provide a moment map interpretation of the system
of equations (1). In section 3 we use our moment map interpretation to give
a definition of a coupled Futaki invariant on a normal variety, which vanishes
precisely when the tuple admits a coupled cscK metric. We then define the
corresponding notion of K-polystability, and show that when L = −KM our
definition coincides with the algebro-geometric one in [16]. As an aside, we
also define a twisted coupled Futaki invariant. Section 4 contains the proof
of Theorem 4, following closely the proofs in [2, 14, 27].

Acknowledgements. The authors would like to thank Ruadhai Dervan
for some clarifications on his work on twisted cscK metrics, and many useful
comments on the first draft of the paper. The second author (Pingali) is par-
tially supported by an SERB grant : ECR/2016/001356. He is also grateful
to the Infosys foundation for the Infosys Young Investigator Award. This
work is also partially supported by grant F.510/25/CAS-II/2018(SAP-I)
from UGC (Govt. of India).

2. A moment map interpretation for the coupled

cscK equation

In this section we prove Theorem 2. As in the introduction, for i = 0, . . . ,m,
let hi be metrics on Li and Ai be the space of hi-unitary connections on
Li. Let −

√
−1ω0 be the curvature of a fixed connection A0 ∈ A0 on L0 such

that ω0 defines a Kähler form with respect to the given complex structure on
M . Akin to [1], let Gi be the gauge group of unitary gauge transformations
of (Li, hi) covering the identity and G̃ be the group of gauge transforma-
tions of (E = ⊕m

i=1Li,⊕m
i=1hi) of the form g1 ⊕ g2 · · · covering Hamiltonian
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symplectomorphisms of (M,ω0). If H is the group of Hamiltonian symplec-
tomorphisms of (M,ω0), then there is a short exact sequence

0 → G1 × G2 · · · → G̃ → H → 0.

Indeed, the last map is onto because of the existence of a horizontal lift of
a Hamiltonian vector field.

Next, let N = J ×A1 ×A2 · · · Am where J is the space of almost com-
plex structures compatible with and taming ω0. For ease of notation, we
denote an element (J,A1, . . . , Am) simply as the pair (J,A). Note that A
can be thought of as a unitary connection on (E,⊕m

i=1hi). Let M ⊂ N be
the subset consisting of pairs (J,A), such that J is integrable and

√
−1FAi

is a positive (1, 1) form for each i. (More accurately, we only deal with the
open set consisting of the smooth part of the subset M.) Note that the tan-
gent space TAi

Ai is given by Λ1(M, iR), which we identify with Λ1(M,R).
On the other hand, the tangent space of J is given by

TJJ = {S ∈ End(TM) | SJ + JS = 0, ω0(SX, JY ) + ω0(JX, SY ) = 0},

and so the tangent space T(J,A)N to N at a point (J,A) is given by pairs
(S, a), where S ∈ TJJ and a = (a1, . . . , am) with ai ∈ Λ1(M,R). The tan-
gent space of M at an integrable point (J,A) is a subspace T(J,A)M of
T(J,A)N consisting of infinitesimally integrable pairs. There is a natural al-
most complex structure I induced on T(A,J)N , namely

I(A,J)(S, a) = (JS, J∗a),

where J∗ is the dual action J∗a(v) = a(Jv). This complex structure is inte-
grable [1].

Taking cue from [11, 26] we define a 2-form on N as follows.

Ω(J,A)((S, a), (T, b)) = −
m
∑

i=1

V0
Vi

∫

M
ai ∧ bi ∧

ωn−1
Ai

(n− 1)!
+

∫

M
tr(JST )

ωn0
n!
,

where ωAi
=

√
−1FAi

, and Vi = (2π)n L
n
i

n! ∀ i ≥ 0.

Lemma 5. Ω is a symplectic form on M compatible with I.
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Proof. Firstly note that for each i, ωAi
(·, J ·) defines a Riemannian metric.

Non-degeneracy then follows from the following observation.

Ω(J,A)((S, a), I(S, a)) = −
m
∑

i=1

V0
Vi

∫

M
ai ∧ J∗ai ∧

ωn−1
Ai

(n− 1)!
+

∫

M
Tr([JS]2)

ωn0
n!

=

m
∑

i=1

V0
Vi

∫

M
|ai|2gj

ωnAi

n!
+

∫

M
Tr(S2)

ωn0
n!
,

> 0,

unless (S, a) is the zero tangent vector. To show that Ω is closed, we first

observe that Ω is of the form π∗0Ω̃ +

m
∑

i=1

π∗iΩi where

Ωi(a, b) =

∫

M

V0
Vi
a ∧ b ∧

ωn−1
Ai

(n− 1)!
, Ω̃(S, T ) =

∫

M
tr(JST )

ωn0
n!
,

and for i = 0, 1, . . . ,m, πi is the projection from M to the ith factor. These
forms are individually closed [8, 11, 12, 26]. The compatibility of Ω with I
follows from the equation JS = −SJ and the fact that ωAi

is a (1, 1)-form
with respect to J for every i. □

The group G̃ acts on N in a natural manner. Namely, if g̃ ∈ G̃ covers
f ∈ H, then

g̃ · (J,A) = (f∗Jf
−1
∗ , g̃(f−1)∗Ag̃−1 − (f−1)∗(dg̃)g̃−1).

The following lemma is then obtained by simply tracing through the defini-
tions.

Lemma 6. The action of G̃ restricts to a symplectic action on (M,Ω).

Our aim is to show that this action is in fact Hamiltonian and to identify
the moment map. To do this, we need to understand the infinitesimal action
of Lie(G̃) on the pair (J,A). Let ξ ∈ Lie(G̃) generate the vector field ζ̃ on E,
covering a vector field ζ on M which is Hamiltonian with respect to ω0. We
let ζhor denote the horizontal lift of ζ to a vector field on E, defined with
respect to the connection A. If ti is the local complex coordinate on Li, then
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it is not difficult to see that

(3) ζhor = ζ +

m
∑

i=1

√
−1iζAi Im

(

ti
∂

∂ti

)

,

and hence there exist Hζ,Ai
∈ C∞(M,R) such that

(4) ζ̃ = ζhor −
m
∑

i=1

Hζ,Ai
Im

(

ti
∂

∂ti

)

.

We write

Hζ,A = diag(Hζ,A1
, . . . , Hζ,Am

)

and

ωA =
√
−1FA = diag(ωA1

, . . . , ωAm
).

We also let Hζ,0 be the Hamiltonian of ζ with respect to ω0. Our convention
is that

dHζ,0 = −iζω0.

Lemma 7. The infinitesimal action P : Lie(G̃) → T(J,A)M of Lie(G̃) is
given by

P (ξ) := ξ · (J,A) = (LζJ, dHζ,A + iζωA),

where recall once again that we are identifying TAi
Ai by Ω1(M,R), and

hence the first term on the right is indeed a real form. In particular, if ξ is
in the stabilizer of A, then for each i, ζ is Hamiltonian with respect to ωAi

with Hamiltonian Hi.

Proof. The second part, namely ξ · J = LζJ is obvious, and so we focus on
the connection part. Note that locally if we write g̃ · (p, v⃗) = (f(p), [gp] · v⃗)
for some diagonal matrix gp (depending of course on the point p), then the
action is given by

g ·Ai = [gp](f
−1)∗Ai[gp]

−1 − (f−1)∗d[gp][gp]
−1.

Now suppose g̃t = etξ is a path in G̃ such that the corresponding vertical
part is given locally by gp,t = e

√
−1tη, then

d

dt

∣

∣

∣

t=0
g̃t ·A = −LζA−

√
−1dη

= −diζA− iζFA −
√
−1dη.
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Since η is the vertical component of ζ̃, from (3) and (4) it is follows that

η =
√
−1iζA−Hζ,A,

and so

√
−1ξ ·A :=

d

dt

∣

∣

∣

t=0
g̃t ·A = −iζFA +

√
−1dHζ,A =

√
−1(dHζ,A + iζωA).

□

We can now state the main result of this section.

Theorem 8. The action of G̃ on M is Hamiltonian with moment map

µ(J,A)(ξ) =

∫

M
tr

(

Hζ,A

(

λ
ωnA
n!

− ωn0
n!

))

(5)

+

∫

W
Hζ,0

(

Sω0,J
ωn0
n!

− tr(ωA) ∧
ωn−1
0

(n− 1)!

)

,

where λ = diag(V0

V1
, V0

V2
, . . .) and ξ generates a vector field ζ̃ on E covering a

vector field ζ on M .

Proof. We need to show that if (J(t), A(t)) is a path in M with A(t) =
A+

√
−1bt and J ′(0) = T , then

d

dt

∣

∣

∣

t=0
µ(J(t),A(t))(ζ̃) = −Ω((LζJ, ξ ·A), (T, b))

=

∫

M
tr

(

λ

(

ξ ·A ∧ b ∧ ωn−1
A

(n− 1)!

))

−
∫

M
tr(JLζJT )

ωn0
n!
.

Here b is a diagonal matrix b = diag(b1, . . . , bm) of real one forms. In [8, 12]
it is shown that

(6)
d

dt

∣

∣

∣

t=0

∫

M
Hζ,0Sω0,J(t)

ωn0
n!

= −
∫

M
tr(JLζJT )

ωn0
n!
.
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Next, differentiating the first term in µ(J(t),A(t))(ζ̃), since
ωA(t)

dt = −db, we
have

d

dt

∣

∣

∣

t=0

∫

M
tr

(

λHζ,A(t)

ωnA(t)

n!

)

=

∫

M
tr

(

λ
dHζ,A(t)

dt

∣

∣

∣

t=0

ωnA
n!

)

−
∫

M
tr

(

λHζ,Adb ∧
ωn−1
A

(n− 1)!

)

=

∫

M
tr

(

λ
dHζ,A(t)

dt

∣

∣

∣

t=0

ωnA
n!

)

+

∫

M
tr

(

λ

(

dHζ,A ∧ b ∧ ωn−1
A

(n− 1)!

))

.

To evaluate the first term, note that
dHζ,A(t)

dt = −iζb, and so by Lemma 7

d

dt

∣

∣

∣

t=0

∫

M
tr

(

λHζ,A(t)

ωnA(t)

n!

)

= −
∫

M
tr

(

λiζb
ωnA
n!

)

+

∫

M
tr

(

λ

(

dHζ,A ∧ b ∧ ωn−1
A

(n− 1)!

))

=

∫

M
tr

(

λξ ·A ∧ b ∧ ωn−1
A

(n− 1)!

)

.

Combining this with (6) above and Lemma 9 below completes the proof. □

The following observation can be found in [1], and we reproduce the
proof for the convenience of the reader.

Lemma 9. Let A(t) = (A1(t) = A1+
√
−1b1t, A2(t) = A2+

√
−1b2t, . . .) be

a curve of unitary connections. Then,

(7)
d

dt

(
∫

M
tr(Hζ,A(t))ω

n
0 +

∫

M
nH0tr(ωA(t)) ∧ ωn−1

0

)

= 0.
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Proof. Again using the fact that
dHζ,A(t)

dt = −iζb and ωA(t)

dt = −db, we see that
∫

M

d

dt
tr(Hζ,A(t))ω

n
0 = −

∫

M
tr(iζb)ω

n
0

=

∫

M
niζω0 ∧ tr(b)ωn−1

0

= −
∫

W
ndHζ,0 ∧ tr(b) ∧ ωn−1

0

=

∫

W
nH0tr(db) ∧ ωn−1

0

= −
∫

W

d

dt
nH0tr(ωA(t)) ∧ ωn−1

0 .

□

To finish the proof of Theorem 2, we observe that given any (J,A) ∈ M,
Lie(G̃) can be identified with C∞(M,R)0 × C∞(M,R)m, where the sub-
script of zero denotes functions with vanishing average with respect to ωn0 .
Indeed, the discussion preceding Lemma 7 shows that given any ξ ∈ Lie(G̃),
one can associate a tuple (Hζ,0, Hζ,A1

, . . . , Hζ,Am
) of smooth functions on

M . Conversely, given a tuple (H0, H1, . . . , Hm), we let ζ = ∇g0H0, where the
gradient is taken with the respect to the Riemannian metric g0 = ω0(·, J ·).
Then (4) defines a vector field ζ̃ on E covering ζ, and defining an element ξ
of Lie(G̃). With this identification, it follows that µ(J,A) ≡ 0 precisely when

ωn0
V0

=
ωnA1

V1
= · · · =

ωnAm

Vm
, and

Sω0,J = trω0
(ω0 + ωA1

+ · · ·+ ωAm
) + Ŝ,

for some constant Ŝ. By the Kempf-Ness theorem, as long as a stability
condition holds, one expects a zero to occur in the gauge orbit of the com-
plexified Lie algebra action. Akin to the case of the Calabi Conjecture [11]
and the constant scalar curvature Kähler equation [8, 12], a zero occurring
in the complex gauge orbit is equivalent to varying the metrics ωAi

in their
Kähler classes.

3. Coupled Futaki invariants and K-polystability

In [16, 17], a Donaldson-Futaki type invariant is defined in the context of
coupled Kähler-Einstein metrics, using Deligne pairings and intersection-
theoretic formulae respectively. In this section, we introduce an analogue
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of the differentio-geometric Futaki invariant in the context of these cou-
pled equations, and show that this agrees with the formulae in [16, 17],
at least when W is a normal Q-Fano variety. In fact, we provide twisted
versions of these formulae, which we expect will be useful in studying the
continuity method for the existence of coupled Kähler-Einstein metrics [25].
Throughout the section, we let W be a normal variety, and Li be ample
line bundles on W with fixed admissible (say, in the sense of [7]) Hermi-
tian metrics ψi with curvature currents βi =

√
−1∂∂ψi ∈ 2πc1(Li). We de-

note a general Hermitian metric on Li by e
−ϕi and measure its curvature

by ωϕi
=

√
−1∂∂φi. Let Hi be the space of all positively curved admissible

Hermitian metrics on Li. Define ψ := ψ0 + · · ·+ ψm, φ := φ0 + · · ·+ φm and
β := β0 + · · ·+ βm ∈ 2πc1(L). We denote

gW := {w ∈ H0(W,T 1,0W ) | w is Hamiltonian with respect to

ωi ∈ 2πc1(Li) for all i}

For w ∈ gW , we denote the Hamiltonian of w with respect to ωϕi
by θw,i,

and let θw = θw,0 + · · ·+ θw,m. Our convention is that θw,i solves

√
−1 ∂θw,i = iwωϕi

.

Definition 10. LetW be smooth. The (untwisted) coupled Futaki invariant
is defined as a charater Futc(W, (Li), ·) : gW → C, where

Futc(W, (Li), w) =

m
∑

i=1

∫

W
θw,i

(

ωni
Vin!

− ωn0
V0n!

)

+
1

V0

∫

W
θw,0(Sω0

− Ŝ − trω0
ω)
ωn0
n!

=

m
∑

i=0

1

Vi

∫

W
θw,i

ωni
n!

+
1

V0

∫

W
θw,0(Sω0

− Ŝ)
ωn0
n!

− 1

V0

∫

W
[θw,0trω0

ω + θw]
ωn0
n!

Our first Proposition below shows that Futc(W, (Li), w) is an actual
invariant of the tuple (W, (Li)), that is, it does not depend on the choice of
reference Kähler forms in the respective classes 2πc1(Li).

Proposition 11. Futc(W, (Li), w) is independent of the choice of metrics
ωi ∈ 2πc1(Li). In particular, Futc(W, (Li), w) vanishes if (W, (Li)) admits
coupled cscK metrics.
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Proof. We consider a family of metrics ωi,s = ωi + s
√
−1∂∂ηi, with cor-

responding Hamiltonian functions θw,i,s = θw,i + sw(ηi), and denote ωs =
∑m

i=0 ωi,s and θw,s =
∑m

i=0 θw,i,s. Defining

f(s) =

m
∑

i=1

∫

W
θw,i,s

(

ωni,s
Vin!

−
ωn0,s
V0n!

)

+
1

V0

∫

W
θw,0,s(Sω0,s

− Ŝ − trω0,s
ωs)

ωn0,s
n!

,

our aim is then to show that f ′(s) = 0. We rewrite

f(s) =

m
∑

i=0

∫

W
θw,i,s

ωni,s
Vin!

+
1

V0

∫

W
θw,0,s(Sω0,s

− Ŝ)
ωn0,s
n!

− p(s)

V0
,

where

p(s) =

∫

W
θw,0,strω0,s

ωs
ωn0,s
n!

+

∫

W
θw,s

ωn0,s
n!

.

It is well known that the first two terms in the expression of f(s) are invari-
ants of the respective Kähler classes, and hence it is sufficient to show that
p′(s) = 0. This is analogous to Lemma 9, and indeed is a consequence of it
(cf. Remark 12). Rather than relying on the moment map interpretation, we
give a direct proof here. In the computation below, all covariant derivatives
are taken with respect to ω0,s, and we also suppress the dependence of the
Hamiltonians on w. Denoting by Λ0,s, the contraction by ω0,s, we compute,

p′(s) =
∫

W
w(η0)Λ0,sωs

ωn0,s
n!

−
∫

W
θ0,s∇k∇l̄η0(gs)kl̄

ωn0,s
n!

+

∫

W
θ0,s∆0,sη

ωn0,s
n!

+

∫

W
θ0,sΛsωs ∆0,sη0

ωn0,s
n!

+

∫

W
w(η)

ωn0,s
n!

+

∫

W
θs∆0,sη0

ωn0,s
n!

,

Firstly, for the third term, we notice that

∫

W
θ0,s∆0,sη

ωn0,s
n!

= −
∫

W
w(η)

ωn0,s
n!

.(8)
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Next, integrating the second term by parts, and noting that ∇kθ0,s(gs)kl̄ =
wk(gs)kl̄ = ∇l̄θs,

−
∫

W
θ0,s∇k∇l̄η0(gs)kl̄

ωn0,s
n!

= −
∫

W
θs∆0,sη0

ωn0,s
n!

(9)

+

∫

W
θ0,s∇l̄η0∇k(gs)kl̄

ωn0,s
n!

,

where we integrated by parts a second time in the first term. Now it is easy
to see (for instance by using normal coordinates for ω0,s) that, ∇k(gs)kl̄ =
∇l̄trω0,s

ωs, and so

∫

W
θ0,s∇l̄η0∇k(gs)kl̄

ωn0,s
n!

=

∫

W
θ0,s∇l̄η0∇l̄trω0,s

ωs
ωn0,s
n!

= −
∫

W
w(η0)Λ0,sωs

ωn0,s
n!

−
∫

W
θ0,s∆0,sη0Λ0,sωs

ωn0,s
n!

,

and so

−
∫

W
θ0,s∇k∇l̄η0(gs)kl̄

ωn0,s
n!

(10)

= −
∫

W
θs∆0,sη0

ωn0,s
n!

−
∫

W
w(η0)Λ0,sωs

ωn0,s
n!

−
∫

W
θ0,s∆0,sη0Λ0,sωs

ωn0,s
n!

.

Then combining (8) and (10) we see that p′(s) = 0. □

Remark 12 (Futaki invariant and the moment map formalism).
The Futaki invariant is essentially the moment map from the previous sec-
tion, evaluated on a certain subspace of Lie(GC). More precisely, let K ⊂ G
be the stabilizer of a tuple (A1, . . . , Am, J) ∈ M. Then K is a finite dimen-
sional compact Lie group, and hence has a complexification, which we denote
by KC. Note also, that by Lemma 7, since K is a stabilizer for (J,A), each
w̃ ∈ K covers a vector field w which is Hamiltonian with respect to each of
ωi = ωAi

, and so we can identify Lie(KC) as a subspace of gW . Then it is
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easy to see that for any w ∈ Lie(KC),

Futc(W,w) = µ(J,A)(w̃),

if we normalize θw,0 to have zero mean with respect to ωn
0

n! . Next, observe
that moving (ω0, . . . , ωm) in their Kähler classes is equivalent to the action
of KC on (J,A), and then Proposition 11 is simply the formal statement
that if g̃t ∈ KC, then

d

dt
[µg̃t·(J,A)(adg̃t(w̃))] = 0,

since adg̃tw lies in the complexification of the stabilizer of gt · (J,A), and
thus corresponds to the zero vector in Tg̃t·(J,A)M. Also, note that with this
formalism, p′(s) = 0 in the proof above is essentially equivalent to Lemma 9.

Moreover, the logarithm of the corresponding Kempf-Ness functional,
which is simply the integration of the Futaki invariant is easily seen to
give rise to a Mabuchi energy. This phenomenon is exactly the same as its
constant scalar curvature counterpart.

3.1. Donaldson-Futaki invariants and K-polystability

In order to define K-polystability, it is necessary to extend the above defini-
tion of the coupled Futaki invariant to possibly singular varieties W . While
one can probably extend the techniques in [7] to achieve this objective,
following Donaldson [9], we instead prove an alternate algebro-geometric
formula, which in turn can be used as a definition of the coupled Futaki in-
variant on singular varieites. So consider a smooth polarized tuple (W, (Li))
as before, but now with a C∗ action on each total space Li, covering a fixed
C∗ action onW generated by a holomorphic vector field w. By the Riemann-
Roch theorem, the dimensions di,k of H0(M,Lki ) satisfy the expansion

(2π)ndi,k = ai,0k
n + ai,1k

n−1 +O(kn−2),

where

(11) ai,0 =

∫

W

ωni
n!

= (2π)n
Lni
n!
, ai,1 =

1

2

∫

W
Sωi

ωni
n!

= (2π)n
(−KW ) · Lni
2(n− 1)!

.

Next, note that if ŵi is the vector field generated by the C∗ action on Li,
then just as in (4), one can write

w̃i = whori −
√
−1θw,it,
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where whori is the horizontal lift of w with respect to the Chern connection of
e−ϕi (or equivalently the Levi-Civita connection of ωi), and t is the canonical
vertical vector field on Li. The fact that ŵi is holomorphic is then precisely
the condition that θw,i is the Hamiltonian of w with respect to ωi. Now if
wi,k is the total weight of the action on H0(W,Lki ), then by the equivariant
Riemann-Roch theorem,

(2π)nwi,k = bi,0k
n+1 + bi,1k

n +O(kn−1),

where

(12) bi,0 = −
∫

W
θw,i

ωni
n!
, bi,1 = −1

2

∫

W
Sωi

θw,i
ωni
n!
.

We denote the coefficients corresponding to L by a0, a1, b0 and b1. Addi-
tionally, we also need to consider the space of sections of Lk0 ⊗ L−1, and we
denote the corresponding dimension and weight by dt,k and wt,k respectively.
Then by Corollary A2 in the Appendix we have

(2π)ndt,k = at,0k
n + at,1k

n−1 +O(kn−2)

(2π)nwt,k = bt,0k
n+1 + bt,1k

n +O(kn−1),

where

at,0 =

∫

W

ωn0
n!
, at,1 =

∫

W

(Sω0

2
− trω0

ω
)ωn0
n!

(13)

bt,0 = −
∫

W
θ0
ωn0
n!
, bt,1 = −1

2

∫

W
θ0Sω0

ωn0
n!

+

∫

W
[θ0trω0

ω + θ]
ωn0
n!
.

A simple computation now proves the following

Proposition 13. Suppose there is a C∗ action on (W, (Li)) covering a C∗

action on W generated by a holomorphic vector field w, then

Futc(W, (Li), w) = Fut(W,L0, w)−
m
∑

i=0

bi,0
ai,0

+
(at,1bt,0 − at,0bt,1)

a2t,0
,

where Fut(W,L0, w) is classical Futaki invariant for the class L0 given by

Fut(W,L0, w) =
(a0,1b0,0 − a0,0b0,1)

a20,0
.
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Remark 14. Our formula above is analogous to the formula for the
Donaldson-Futaki invariant obtained in [5] in the context of twisted cscK
metrics. Moreover it is also shown in that paper (cf. [5, Lemma 2.30]) that
when W is an arbitrary (possibly non-smooth) normal variety, the dimen-
sions dt,k and the weights wt,k are given by polynomials of degrees kn and
kn+1 respectively. Based on this, we can then use the right hand side of the
formula above to define the coupled Futaki invariant for normal varieties.

In view of the above remark, we can now finally define Donaldson-Futaki
invariants for test configurations of polarized tuples with normal central
fibres and the relvant notion of K-polystability.

Definition 15. A test configuration (with exponent r) for (W,L0, L1, . . . ,
Lm), with L = ⊗Li as above, consists of a normal variety W polarized by a
tuple (L0, . . . ,Lm) with the following additional data :

1) A C∗ action on W lifting to actions on (L0, . . . ,Lm).
2) A flat C∗ equivariant map π : W → P1, where P1 has the standard C∗

action, such that (π−1(P1 \ {0},L0, . . . ,Lm,⊗m
i=0Li) is equivariantly

isomorphic to (W × C, p∗WL
r
0, . . . , p

∗
WL

r
m, p

∗
WL

r).

A test configuration is called a product, if (W,L0, . . . ,Lm,⊗m
i=1Li) is equiv-

ariantly isomorphic to (W × P1, p∗WL
r
0, . . . , p

∗
WL

r
m, p

∗
WL

r). It is called a
smooth degeneration if W0 is non-singular.

Definition 16. The Donaldson-Futaki invariant for a test configuration
(W, (Li)) of (W, (Li)) is defined as

DF(W, (Li)) := Futc(W0, (Li,0), w),

where Li,0 := Li
∣

∣

∣

π−1(0)
and w is the vector field generating the induced C∗

action on W0. In the event that W0 is singular, the coupled Futaki invariant
is defined simply by the right side in Proposition 13 (cf. Remark 14).

Definition 17. A tuple (W, (Li)) is said to be semistable if for any test
configuration (W, (Li)),

DF(W, (Li)) ≥ 0.

It is said to be polystable if, in addition to being semistable, the Donaldson-
Futaki invariant vanishes if and only if (W, (Li)) is a product.
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3.2. Coupled Donaldson-Futaki invariants on Fano manifolds

We now specialize to the case when W is a normal Q-Fano variety, and
L = K−r

W . Recall that KW is well defined as a Weil divisor, and K−r
W extends

as an ample line bundle on W for some r ∈ N. For simplicity of notation, we
assume that r = 1 throughout. We then call such a polarized tuple (W, (Li)),
a polarized Fano tuple. Note that e−ϕ and e−ψ are now Hermitian metrics
on K−1

W , and hence are volume forms on W , and also that Ŝ = 0.
In [17], an intersection-theoretic definition of the Donaldson-Futaki in-

variant is given in the context of test configurations for Fano tuples. Our
next aim is to show (cf. Theorem 19) that in this special case, our formula
for the Donaldson-Futaki invariant agrees with the one in [17]. As a first
step towards proving Theorem 19, we obtain a much simpler formula for the
coupled Futaki invariant on Fano tuples analogous to the formula in [15]
for the classical Futaki invariant. An advantage is that even though it is an
integral formula (as opposed to an algebro-geometric one), it is much more
transparently well defined on possibly singular normal varieties. While this
paper was in preparation, an analogous formula appeared in the context of
coupled Sasaki-Einstein metrics in [13].

Lemma 18. If (W, (Li)) be a smooth polarized Fano tuple as above, then

Futc(W,w) =

m
∑

i=0

1

Vi

∫

W
θw,i

ωni
n!

−
∫

W θwe
−ϕ

∫

W e−ϕ
.

Proof. Note that Ŝ = 0 since L = −KW . If h0 ∈ C∞(W,R) such that

Ric(ω0)− ω =
√
−1∂∂h0,

then

Futc(W,w) =

m
∑

i=0

1

Vi

∫

W
θw,i

ωni
n!

+
1

Vi

∫

W
θw,0∆ω0

h0
ωn0
n!

− 1

V0

∫

W
θw
ωn0
n!
,

=

m
∑

i=0

1

Vi

∫

W
θw,i

ωni
n!

− 1

V0

∫

W
[w(h0) + θw]

ωn0
n!
.

A simply computation (for instance by taking ∂ on both sides) shows that

∆ω0
θw,0 + θw + w(h) = c
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for some constant c, and hence

1

V0

∫

W
[w(h0) + θw]

ωn0
n!

= c.

So it is enough to evaluate the constant c. Integrating, with respect to eh0ωn0
we see that

cV0 =

∫

W
[∆ω0

θw,0 + w(h0)]e
h0
ωn0
n!

+

∫

W
θwe

h0
ωn0
n!

=

∫

W
θwe

h0
ωn0
n!
.

Next, from the definition of h0, it is easy to see that eh0ωn0 = be−ϕ for some
constant b, which by integration can be found to be

b =
V0

∫

W e−ϕ
.

Together with the formula for c above, we see that

c =

∫

W θwe
−ϕ

∫

W e−ϕ
.

□

Proposition 19. Let (W, (Li)) be a test configuration with a smooth central
fiber (W, (Li)), and let w be the induced holomorphic vector field on W. Then

DF(W, (Li)) = − 1

n+ 1

m
∑

i=1

Ln+1
i

Lni
+

(KW/P1 +
∑

j Li) · (
∑Li)n

(−KW )n

Proof. In the classical case of Kähler-Einstein metrics, such intersection for-
mulae were first obtained in [31] and [23]. We instead follow the exposition
in [21]. Let (W,V) be any test configuration (so m = 0 in the above defini-
tion). The C∗ action induces an action on the total space V0 covering a C∗

action on W0, which we assume is generated by the vector field w. By the
Riemann-Roch theorem,

dimH0(W0,V0) = a0(V0)k
n + a1(V0)k

n−1 +O(kn−2).

Now, C∗ acts on V0, so if wk(V0) is the total weight of the C∗ action on
H0(W0,V0), by the equivariant Riemann-Roch theorem,

wk(V0) = b0(V0)k
n+1 + b1(ν0)k

n +O(kn−1),
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where n is the dimension of W0. Then it is shown in [21], that

b0(V0) =
Vn+1

(n+ 1)!
(14)

b1(V0) =
1

2

(−KW) · Vn
n!

− a0(V0).

On the other hand, given any Hermitian metric e−ν with positive cur-
vature form −

√
−1Ω on V0, the C∗ action on the total space V0 induces a

Hamiltonian H for w with respect to Ω and similar to similar to formulae
(11)–(12), we have

a0(V0) = (2π)−n
∫

W

ΩN

N !
=

Vn0
n!
, a1(V0) =

(2π)−n

2

∫

W
SΩ

ΩN

N !
(15)

b0(V0) = −(2π)−n
∫

W
H

ΩN

N !
, b1(V0) = −(2π)−n

2

∫

W
HSΩ

ΩN

N !
.

Applying the second formula in (14) to V = L and V0 = −KW , we see
that

KW/P1 · Ln = KW · Ln − π∗KP1 · Ln
= −2n!b1(−KW ).

Now applying the first formula in (14) and the formulae in (15) to V ∈
{L1, . . . ,Lm,L}, we have

− 1

n+ 1

m
∑

i=0

Ln+1
i

Lni
=

m
∑

i=0

1

Vi

∫

W
θw,i

ωni
n!

(16)

(KW/P1 +
∑

j Li) · (
∑Li)n

(−KW )n

=
1

(−KW )n

(

n

∫

W
θc1(ω) ∧ ωn−1 − (n+ 1)

∫

W
θωn

)

For the second equation if we let hω be the Ricci potential of ω, that is

Ric(ω)− ω =
√
−1∂∂hω,
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then,

(KW/P1 +
∑

i Li) · (
∑Li)n

(−KW )n
(17)

=
1

(−KW )n

(

−
∫

W
θωn + n

∫

W
θ∂∂̄hω ∧ ωn−1

)

=
1

(−KW )n

(

−
∫

W
θωn −

∫

W
w(hω)ω

n

)

= −
∫

W θ e−ϕ
∫

W e−ϕ
,

where we have used the well known fact that θw satisfies

∆ωθw + θw + w(h) =

∫

W θ e−ϕ
∫

W e−ϕ
.

Combining (16) and (17) with Lemma 18 completes the proof of the propo-
sition. □

Remark 20. Proposition 19, and the formula in Lemma 18, in all likelihood
also hold whenW is a Q-Fano normal variety. To prove this, one would have
to show that the formulae (13) for the coefficients of the twisted weights also
hold in this generality. This can probably be done by using the equivariant
Riemann-Roch theorem (cf. [9]) to calculate the coefficients that appear in
Lemma 2.30 in [5].

3.3. An aside: Twisted coupled Kähler-Einstein metrics

We continue using the notation of subsections 3.1 and 3.2 above. In partic-
ular, recall that e−ψi is a continuous metric on Li with curvature −

√
−1βi,

and we let ψ + ψ0 + · · ·+ ψm.

Definition 21. Twisted coupled Kähler-Einstein metrics on

(W, (1− t)ψ, (Li))

are a tuple (e−ϕ0 , . . . , e−ϕm) of positively curved Hermitian metrics on
(L1, . . . , Lm) solving

ωnϕ0

V0
= · · · =

ωnϕm

Vm
=

e−tϕ−(1−t)ψ
∫

W e−tϕ−(1−t)ψ ,
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where Vi = (2πLi)
n/n! is the volume ofW with respect to the class 2πc1(Li).

The twisted coupled Futaki invariant is defined as a character on the
restricted Lie algebra

gW,ψ := {w ∈ H0(W,TW) | w generates a C∗ action,

and iwβi = 0, for all i = 0, 1, . . . ,m}.

Definition 22. The twisted coupled Futaki invariant is defined by

Futc,(1−t)ψ(W,w) := Futc(W,w)− (1− t)

m
∑

i=0

1

Vi

∫

W
θw,i(βi − ωϕi

) ∧
ωn−1
ϕi

(n− 1)!

The next proposition shows that the above formulae do define invariants
of the respective Kähler classes.

Proposition 23. Let φi,s = φi + sηi, ωi,s =
√
−1∂∂φi,s, θw,i,s the corre-

sponding Hamiltonians, and define

f(s) =

m
∑

i=0

1

Vi

∫

W
θw,i,s

ωni,s
n!

−
∫

W θwe
−ϕs

∫

W e−ϕs

− (1− t)

m
∑

i=0

1

Vi

∫

W
θw,i,s(βi − ωi,s) ∧

ωn−1
i,s

(n− 1)!
.

Then f ′(s) = 0.

Proof. This proposition follows easily by rewriting the coupled Futaki in-
variant in terms of the classical Futaki invariant. It is a standard fact that
for any Kähler metric ωs =

√
−1
2π ∂∂φs ∈ c1(W ) and any holomorphic vector

field w with Hamiltonian θw,s,

∆θw,s + θw,s + w(hωw,s
) =

∫

W θw,se
−ϕs

∫

W e−ϕs
,(18)

and so

f(s) = Fut(W,w) +

m
∑

i=0

1

Vi

∫

W
θw,i,s

ωni,s
n!

− 1

V

∫

W
θw,s

ωns
n!

− (1− t)

m
∑

i=0

1

Vi

∫

W
θw,i,s(βi − ωi,s) ∧

ωn−1
i,s

(n− 1)!
.
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Now the last three terms are clearly invariants of the Kähler class, as can
be seen by differentiating them. □

4. Perturbing coupled cscK metrics

We prove Theorem 4 in this section. In what follows, we assume that
(M,J, (Li)) admit coupled cscK metrics (ω0, . . . , ωm). We fix hermitian met-
rics hi on Li with Chern connection Ai and curvature −

√
−1ωi to obtain a

point (J,A1, . . . , Am) ∈ M. Recall that in section 2 we interpreted coupled
cscK metrics as zeros of a moment map µ : M → Lie(G̃), and so µ(J,A) = 0.
Even though the gauge group G might not have a complexification, following
the ideas in [8], a key point is that one can make sense of the orbits of such a
complexification. First, note that Lie(G̃) has a Lie algebra complexification
Lie(G̃)C and the infinitesimal action from Lemma 7 has an obvious extension
which we still denote by

P : Lie(G̃)C → T(J,A)M.

We then say that (A0, J0) and (A1, J1) are in the same G̃C orbit if there is
a path (At, Jt) in M and a path ξt ∈ Lie(G̃)C such that for all t ∈ [0, 1],

d

dt
(At, Jt) = P (ξt).

The basic ideas of Brönnle [2] and Székelyhidi [27], with small modifications
due to [6, 18] can now be summarized as follows.

1) Following Kuranishi [20], one constructs a holomorphic slice Φ : B1 →
M such that Φ(x) meets the G̃C orbit of every J ′ sufficiently close to
J . Here B1 is a small ball (whose size is decided as one goes along
the proof) in a finite dimensional space H̃1 “normal” to the action
of the complex gauge group. The finite dimensional subgroup K ⊂ G̃
stabilizing (J,A) has a legitimate complexification KC and also has a
natural action on H̃1. One can then ensure that whenever x, x

′ ∈ B
lie in a KC-orbit, then Φ(x),Φ(x

′

) lie in the same complex infinite-
dimensional gauge orbit.

2) Using the implicit function theorem, one can perturb the image of Φ
within the same complex gauge orbit so that the infinite-dimensional
moment map µ(Φ(x)) ∈ k where k is the Lie algebra of K.

3) One pulls back the GIT problem from M to H̃1, i.e., one considers H̃1

with the symplectic form Φ∗
x=0Ω and the linear Hamiltonian action
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of K. By the finite-dimensional Kempf-Ness theorem, there exists a
zero of the corresponding moment map ν at a vector v0 ∈ H̃1 in any
polystable gauge orbit. It is easy to see that such a v0 ∈ B.

4) Thanks to a small generalisation of an observation of Donaldson
(Proposition 9 in [27]), as long as the derivative of the moment map µ
is uniformly invertible in a neighbourhood, and µ(x0) is small, one
can perturb x0 to y such that µ(y) = 0. A calculation shows that
µ(Φ(tv0)) = O(t3). A few estimates then show that the assumptions of
Donaldson’s lemma are satisfied and hence there exists a v ∈ B such
that µ(Φ(v)) = 0 whenever v is polystable with respect to KC.

5) This step is due to [6, 18] and it fills a possible gap in the proof of
[27]. There exists a v ∈ B so that the slightly deformed tuple that
is under consideration is Φ(v). If v is KC-polystable, we are done by
the previous steps. If it is either strictly semistable or unstable, the
Hilbert-Mumford criterion implies that a limiting object is a zero of
the finite-dimensional moment map ν (in the unstable case, 0 is the
limit). Using the previous steps we produce a coupled cscK metric on
the limiting object (in case the limit is 0, it already has a coupled cscK
metric by assumption). Using a construction of a test configuration due
to [27], we see that K-polystability implies that the limiting object is
biholomorphic to (M,J ′, A′) and thus we have a coupled cscK metric
on (M,J ′, A′).

The first step, i.e., constructing a slice, is accomplished by using Proposi-
tion 3 of [14].

Remark 24. Strictly speaking, we need to work with Nk, the completion of
N in theHk norm, instead ofN . However, firstly, we can choose a sufficiently
large k so that the resulting objects are highly differentiable. And at the
end of the day, we aim to produce a C l-smooth tuple satisfying the coupled
cscK equations. If l is sufficiently large, which can be ensured by choosing
k sufficiently large to begin with, elliptic regularity ensures smoothness of
the C l solutions. Secondly, the relevant Hilbert manifolds on which we apply
the implicit function theorem are carefully spelt out in [18]. For the sake of
clarity in exposition, we work with N just as in [27].

Since we restrict ourselves to integrable tuples, we consider the following
maps ∂̃i : T(J,A)N → Ω0,2(T 1,0)× Ω(0,2) given by

∂̃i(T, b) =

(

∂̄JT, ∂̄(J,A)b+

√
−1

2
F TA

)

,
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where recall that T is a section of TM ⊗ T ∗M , and F TA is defined simply by
contracting FA with the TM part of T . These maps detect whether infinites-
imal deformations of (J,A) are integrable or not. By repeated applications
of Proposition 2 of [14], it can be easily proven that the complex

Lie(G̃)C P−→ T(J,A)N ∂̃1⊕∂̃2···−−−−−→ Ω0,2(T 1,0)× Ω0,2 × Ω0,2 · · ·

is an elliptic complex. Denote by ∂̃ the map ∂̃1 ⊕ ∂̃2 · · · . Let H̃1 be the
subspace H̃1 = ker(∆) ⊂ T(J,A1,...)N where ∆ = PP ∗ + ∂̃∗∂̃. Note that H̃1

consists of infinitesimal integrable deformations that are orthogonal to the
complex gauge orbit. Let K ⊂ G̃ denote the stabilizer of (J,A) and k its Lie
algebra. Then K is a finite-dimensional Lie group, and the kernel of P can
be identified with k. Denote by KC the complexification of K. We can now
complete steps 1 and 2 in the above strategy.

Proposition 25. There exists a small ball centred at the origin B ⊂ H̃1

and a map Φ : B → N such that

1) Φ is K-equivariant, holomorphic, and Φ(0) = (J,A1, . . . , Am).

2) The G̃C orbit of every integrable almost complex structure J ′ near J
intersects intersects the image of Φ.

3) If x, x′ are in the same KC-orbit and Φ(x) is integrable, then Φ(x),
Φ(x′) are in the same G̃C-orbit.

4) µ(Φ(x)) ∈ k ∀ x ∈ B, where µ is the moment map in Theorem 8. (We
assume that Lie algebras are identified with their duals using a metric.)

Proof. An application of Proposition 3 to each of the line bundles Li yields
a map

Φ1 : B1 → N

satisfying all the requirements except the last. Since µ(Φ1(0)) = 0 ∈ k, just
like in [27], one can hope to perturb Φ1 within a complex gauge orbit to get
a Φ so that µ(Φ(x)) ∈ k.

Denote by k⊥u,l the Sobolev space (where u, l ≫ 1) of tuples of elements

g̃ = (
√
−1g1,

√
−1g2, . . . ,

√
−1gm, H0) such that they are L2-perpendicular

to k and gi ∈ Hs ∀ i,H0 ∈ H l. We identify Lie(G̃) with Lie(G)× Lie(H)
treating them purely as vector spaces. Let Ul,l ∈ k⊥l,l be a small ball around
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the origin. Consider the map G : B1 × Ul,l → k⊥l−2,l−4

G(x, g̃) = (
√
−1g1, . . . ,

√
−1gm, H0)) = µ⊥(Fg̃(Φ1(x))),(19)

where Fg̃ : N → N is obtained by the unit time flow of the infinite-
dimensional vector field induced by g̃, i.e.,

Fg̃(J,A1, A2, . . .) = (J(1), A1(1), . . .)

where
d(J(t), A1(t), A2(t) . . .)

dt
= PJ(t),A(t)(g̃).

Denote (J(t), A1(t), . . . , Am(t)) by w(t).We now use the implicit function
theorem on Hilbert manifolds to prove that g̃ can be solved for smoothly
in terms of x so that G(x, g̃(x)) = 0 near x = 0. To this end, we need to
prove that Dg̃G(0) is an isomorphism, i.e., there is no vector v ∈ k⊥l,l such

that dG
ds |s=0 = 0 where dg̃(s)

ds |s=0 = v. Indeed,

0 =
dG

ds
|s=0 = dµ⊥J,A1,A2,...

(

dFg̃
ds

|s=0

)

⇒ d⟨ζ, µw(0)⟩
(

dFg̃
ds

|s=0

)

= 0 ∀ ζ ∈ k⊥.(20)

Note that

d(dw/ds)|s=0

dt
= Pw(0,t)

(

dg̃

ds
|s=0

)

= Pw(0)(v),(21)

where the last equality holds because at s = 0, w(t) = w(0) ∀ t. Since
Fg̃(s)(J,A1, A2, . . .) = w(s, 1), we see that

dFg̃
ds

|s=0 = PJ,A1,...(v).(22)

Substituting 22 in 20 we see that

0 = d⟨ζ, µw(0)⟩ (PJ,A1,...(v)) = Ω(J,A1,A2...)(P (ζ), P (v)) ∀ ζ ∈ k⊥,(23)

thus implying that P (v) = 0, i.e., v ∈ k which is a contradiction. Hence
Dg̃G(0) is an isomorphism implying that Φ(x) = Fg̃(x)(Φ1(x)) is the desired
slice. □
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Steps 3 and 4 are exactly the same as in [14, 27]. We now complete step 5
and hence the proof of Theorem 4.

Proof. If (M ′, J ′, (L′
i)) is a small deformation of the complex structure of

(M,J, (Li)), then c1(L
′
i) = c1(Li). In particular, since ω ∈ c1(L0), we can

use Moser’s lemma to modify L′
0 and J ′ by a small diffeomorphism so that

ω0 is Hermitian with respect to J ′, and also tamed by it. That is, we can
assume without loss of generality that J ′ ∈ J . Next, since L′

i is isomorphic
to Li as a smooth line bundle, hi is also hermitian metric on L′

i. Let A
′
i be

the corresponding Chern connection on L′
i. In this way, we obtain a point

(J ′, A′) ∈ M in a small neighbourhood of (J,A). By Theorem 25, possibly
by modifying (J ′, A′) by the action of GC, we can assume that there exists
a v′ ∈ B such that Φ(v′) = (J ′, A′).

If v′ is polystable for the KC action then by steps 2 and 3, we have a zero
in the G̃C orbit of (J ′, A′), and hence coupled cscK metrics on (M,J ′, (L′

i)).
If not, applying the Hilbert-Mumford criterion to v′, we may conclude that
there exists a one-parameter subgroup ρ : C∗ → KC such that

v0 = lim
λ→0

ρ(λ)v′

satisfies

ν(v0) = 0.

Such a v0 could potentially be located outside B. If so, using an element of
KC we can bring it inside the ball. Note that since integrability is a closed
condition, v0 also represents an integrable point. Since ν(v0) = 0, by Step 4
above, we can perturb v0 within its gauge orbit to v′0 such that µ(Φ(v′0)) = 0.
We let Φ(v′0) := (J0, A0), and (M,J0, (Li,0)) denote the corresponding po-
larized tuple. There is of course a possibility that v0 = 0, in which case
we have Φ(v0) = (J,A) and hence by the hypothesis, µ(Φ(v0)) = 0, and we
simply have (J0, A0) = (J,A). In any case, since µ(J0, A0) = 0, by Theo-
rem 2, (M,J0, (Li,0)) admits coupled cscK metrics. In particular, its Futaki
invariant also vanishes. As in [27], to complete the proof we produce a test
configuration with (M,J0, (Li,0)) as the central fibre.

The test configuration is constructed as follows. The Kuranishi map Φ
from Proposition 25, along with ρ produces an S1-equivariant map from
a small disc F : ∆ → N such that F (t) ≃ (J,A1, . . .) ∀ t ̸= 0 and F (0) ≃
(J ′, A′

1 . . .). Let π : Ṽ =M ×∆ → ∆, Li = π∗1Li ∀ i ≥ 1 with the almost
complex structures given by F (t) for every t, and the holomorphic structure

on Li
∣

∣

∣

π−1(t)
defined by the connections A′

i. These structures are integrable
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because F is holomorphic. The S1-action extends to a C∗-action which then
lifts in a natural manner to the line bundles (and hence to L = ⊗m

i=0Li).
This family is flat over ∆ because V and ∆ are smooth and the dimension of
the fibre is a constant. Hence this is a valid test configuration in the sense of
section 3 with central fibre (M,J0, (Li,0)). The above discussion shows that
the Futaki invariant of (M,J0, (Li,0)) vanishes, and hence by K-polystability,
(M,J ′, (L′

i)) is isomorphic to the central fibre which admits coupled cscK
metrics. Pulling these metrics back by the isomorphism, we get coupled cscK
metrics on (M,J ′, (L′

i)). □

Appendix A. Twisted Bergman kernel

The aim of this appendix is to prove Corollary A2. After the first draft of this
paper appeared online, it was pointed to the authors by Ruadháı Dervan that
the first parts of Theorem A1 and Corollary A2, have already been obtained
by Keller in [19] by using the usual method of “peaked sections” of Tian
[30]. The equivariant expansion of the Bergman kernel, as is well known,
follows from a small modification of this proof, and can also probably be
proved using a equivariant Riemann-Roch theorem applied to twisted line
bundles (cf. [5]). For the convenience of the reader, we include an outline of
the proof following the exposition in [28]. More general results of this nature
can be found in [22]. Let Mn be a Kähler manifold with two ample bundles
L0 and L with Hermitian metrics h0 = e−ϕ0 and h = e−ϕ with curvatures
Fh0

, Fh such that ω0 =
√
−1Fh0

ω =
√
−1Fh are Kähler forms in 2πc1(L0)

and 2πc1(L) respectively. We are interested in the space H0(M,Lk0 ⊗ L−1)
of holomorphic sections of Lk0 ⊗ L−1 with the L2-inner product

⟨s, t⟩k =
∫

M
⟨s, t⟩hk

0⊗h
(kω0)

n

n!
.

Let w be a holomorphic vector field generating a C∗ action on M and
Hamiltonian with respect to both ω0 and ω with Hamiltonians θ0 and θ.
Our convention is that θ0 satisfies

√
−1∂θ0 = iwω0,

and similarly for θ. The choice of the Hamiltonian θ0 is related to a (dual)
action on H0(M,Lk0) given by

w · s = ∇(0)
−ws−

√
−1θ0s,
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where ∇(0) is the Chern connection of h0. Similarly H induces an action on
H0(M,L−1) and together they induce an action on H0(M,Lk0 ⊗ L−1) which
we denote by 2π

√
−1Ak. Then Ak is Hermitian. For any orthonormal basis

{s0, . . . , sNk
}, we define the twisted Bergman kernel by

ρk(x) :=

Nk
∑

i=0

|si, si|2hk
0⊗h(x)

and the equivariant twisted Bergman kernel by

ρS
1

k (x) := k−1
Nk
∑

i=0

⟨Aksi, si⟩hk
0⊗h(x).

In particular, if {si} is an orthonormal basis of eigenvectors with eigenvalues
{λi}, then

ρS
1

k (x) := k−1
Nk
∑

i=0

λk|si|2hk
0⊗h(x).

Theorem A1. As k → ∞ we have the following expansions

(2π)nρk(x) = 1 +

(

Sω0

2
− trω0

ω

)

k−1 +O(k−2)

(2π)nρS
1

k (x) = −θ0 −
[

θ0

(

Sω0

2
− trω0

ω

)

− θ

]

k−1 +O(k−3/2).

From general considerations the error in the second line should be
O(k−2), but our proof yields this slightly weaker result which is enough
for our purposes.

Corollary A2. With notation as above, we have

(2π)ndt,k = at,0k
n + at,1k

n−1 +O(kn−2)

(2π)nTr(Ak) = bt,0k
n+1 + bt,1k

n +O(kn−1),

where

at,0 =

∫

M

ωn0
n!
, at,1 =

∫

M

(

Sω0

2
− trω0

ω

)

ωn0
n!

bt,0 = −
∫

M
θ0
ωn0
n!
, bt,1 = −1

2

∫

M
θ0Sω0

ωn0
n!

+

∫

M
[θ0trω0

ω + θ]
ωn0
n!
.
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Proof of Theorem A1. The required expansion is obtained using the “peak”
sections method of Tian [30], and we first recall the relevant parts of this
technique following the exposition in [28]. Fixing x ∈M , the main idea is
to construct a holomorphic section η of Lk0 ⊗ L−1 such that ∥η∥L2 = 1 and
η is almost orthogonal (with an error of at most O(k−2)) to all holomorphic
sections vanishing at x. It is easy to see that

(A.1) ρk(x) =
|η(x)|2hk⊗h

∥η∥2k
, ρS

1

k (x) =
⟨k−1Akη, η⟩hk⊗h(x)

∥η∥2k
,

and so the theorem would follow from an expansion of |η|2(x) and k−1Ak.
Throughout we denote ε(k) to be any error term that is O(k−N ) for all N .

Suppose there exist normal coordinates (w1, . . . , wn) for ω0 on the unit
ball B = {w ∈ Cn | |w| < 1} such that ω0 =

√
−1∂∂φ0 where

φ0(w) = |w|2 − 1

4
Rij̄kl̄w

iw̄jwkw̄l +Q0(w) + P0(w),

where Q0 is a quintic polynomial, |P0(w)| = O(|w|6) and Rij̄kl̄ denotes the
curvature of ω0. Also we can choose the coordinates so as to diagonalize ω,
so that 2πω =

√
−1∂∂φ, where

φ(w) =
∑

i

λi|wi|2 +Q(w) + P (w),

where Q(w) is a cubic polynomial and |P (w)| = O(|w|4). Note that the fac-
tor of 2π in front means that Λω0

ω(x) =
∑

i λi. It is convenient to rescale
the coordinates zi =

√
kwi, so that ball now becomes B = {|z| ≤

√
k} and

Φ0(z) = kφ0(z) is then given by

Φ0(z) = |z|2 − k−1

4
Rij̄kl̄z

iz̄jzkz̄l + k−3/2Q0(z) + kP0(k
−1/2z).

Note that e−Φ is then the metric hk. The aim is to take an “almost holo-
morphic section” σ0 such that

|σ0|hk⊗h−1 = e−Φ0+ϕ

on {|z| < k−1/5}, and ∥∂σ0∥k = ε(k), and perturb it to a genuine holomor-
phic section σ for k >> 1. This relies on the invertibility of the Laplacian
∆∂ = ∂

∗
∂ + ∂∂

∗
on Lk valued (0, 1) forms, where the adjoint is computed
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using the L2-inner product above. By the Weitzenbock formula

∆∂ = ∇∗∇+Rickω0
+

√
−1

n
Λkω0

Fhk
0⊗h−1 .

Now for k >> 1, we have Rickω0
≥ −1

4(kω0). In the usual case, the curvature
term F is simply identity, and so the Laplacian is lower bounded by 1/2,
say. In our case, since

√
−1Fhk

0⊗h−1 = kω0 − ω, we have an extra term Λkω0
ω

which goes to zero as k → ∞, and so we also have

∆∂ ≥ 1

2

for k >> 1. As in the standard case we can then take σ = σ0 − ∂
∗
∆−1
∂
∂σ0

to be the required holomorphic section. And just as in the standard case,
we also have |σ(x)|hk

0⊗h−1 = 1 + ε(k), ∥σ − σ0∥k = ε(k), and that for every
holomorphic section τ vanishing at x,

|⟨τ, σ⟩k| ≤ Ck−1∥τ∥k.

We now claim that

(A.2) ∥σ∥2k = (2π)n
[

1−
(

Sω0
(x)

2
− Λω0

ω(x)

)

k−1 +O(k−2)

]

.

Up to an error of ε(k) it is enough to compute L2 norm of σ0 on {|z| < k1/5},
which up to an ε(k) is the integral

∫

Cn

e−Φ0(z)+ϕ(z) (
√
−1∂∂Φ0(z))

n

n!
.

We have the expansions

e−Φ0(z)+ϕ(z) = e−
∑

i(1−
λi
k
)|zi|2

(

1 +Q(k−1/2z) + P (k−1/2z)(A.3)

+
k−1

4
Rij̄pq̄z

izj̄zpzq̄ − k−3/2Q0(z)

− kP0(k
−1/2z)

)

,

(
√
−1∂∂Φ0(z))

n

n!
=
(

1− k−1Rpq̄z
pzq̄ + k−3/2q0(z) +O(k−2|z|4)

)

dV,(A.4)
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where dV is 2n times the Euclidean volume, that is,

dV = (
√
−1)ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.

The leading order term in the expansion is given by

∫

Cn

e
−∑

i

(

1−λi
k

)

|zi|2
dV =

(2π)n

Πi

(

1− λi

k

)

= (2π)n
[

1 + (Λω0
ω)k−1 +O(k−2)

]

.

As in the standard case, there is a contribution of order O(k−1) by the terms

∫

Cn

e−|z|2
(

1

4
Rij̄pq̄z

izj̄zpzq̄ −Rpq̄z
pzq̄
)

dV = −(2π)n
Sω0

(x)

2
.

The only “new” terms we need to worry about are the ones involving
Q(k−1/2z) and P (k−1/2z). Now Q is a cubic polynomial, and hence by sym-
metry

∫

Cn

e
−∑

i

(

1−λi
k

)

|zi|2
Q(k−1/2z) dV = 0.

On the other hand, the leading order term in P (k−1/2z) is k−2p4(z), where
p4 is a fourth degree polynomial and hence it follows that

∫

Cn

e
−∑

i

(

1−λi
k

)

|zi|2
P (k−1/2z) dV = O(k−2).

This completes the proof of (A.2). As in the standard case, it follows that if
E ⊂ H0(M,Lk0 ⊗ L−1) is the co-dimension one subspace of sections vanish-
ing at x, and η is the projection of σ to the orthogonal complement, then
|η(x)|2

hk
0⊗h−1 = 1 + ε(k) and

(A.5) ∥η∥2k = (2π)n
[

1−
(

Sω0
(x)

2
− Λω0

ω(x)

)

k−1 +O(k−2)

]

.

Combined with (A.1), this gives the expansion of ρk. It now remains to
analyze k−1Ak. As in [28, pg. 139-140], if we denote the Chern connection
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on Lk0 ⊗ L by ∇̃, then

(k−1∇̃w)η(x) = O(k−3/2).

The action of k−1Ak is given by

k−1Ak · η =
1

k
√
−1

∇̃−w − θ0η + k−1θη

= −θ0η + k−1θη +O(k−3/2).

Combining this with (A.1) and (A.5), and recalling that |η(x)|2
hk
0⊗h−1 = 1 +

ε(k), we obtain

(2π)nρS
1

k (x) =
(−θ0 + k−1θ +O(k−3/2))(1 + ε(k))

1−
(

Sω0 (x)
2 − Λω0

ω(x)
)

k−1 +O(k−2)

=
(

−θ0 + k−1θ
)

(

1 +

(

Sω0
(x)

2
− Λω0

ω(x)

)

k−1 +O(k−2)

)

+O(k−3/2)

= −θ0 −
(

θ0

(

Sω0
(x)

2
− Λω0

ω(x)

)

− θ

)

k−1 +O(k−3/2).

□
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