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Let LG be the loop group of a compact, connected Lie group G.
We show that the tangent bundle of any proper Hamiltonian LG-
space M has a natural completion TM to a strongly symplectic
LG-equivariant vector bundle. This bundle admits an invariant
compatible complex structure within a natural polarization class,
defining an LG-equivariant spinor bundle S

TM
, which one may

regard as the Spin
c
-structure of M. We describe two procedures

for obtaining a finite-dimensional version of this spinor module. In
one approach, we construct from S

TM
a twisted Spin

c
-structure

for the quasi-Hamiltonian G-space associated to M. In the sec-
ond approach, we describe an ‘abelianization procedure’, passing
to a finite-dimensional T ⊆ LG-invariant submanifold of M, and
we show how to construct an equivariant Spin

c
-structure on that

submanifold.

1 Introduction 890

2 Spinor modules in infinite dimensions 893

3 Hamiltonian loop group spaces and quasi-Hamiltonian
spaces 901

4 The spinor bundle for a Hamiltonian LG-space 905

5 The twisted spin-c -structure for a quasi-Hamiltonian
G-space 909

6 Abelianization 917

7 Twisted loop groups 926

Appendix A Spaces of compatible complex structures 930

889



✐

✐

“10-Loizides” — 2020/7/30 — 19:55 — page 890 — #2
✐

✐

✐

✐

✐

✐

890 Y. Loizides, E. Meinrenken, and Y. Song

Appendix B Central extension of the loop group 932

Appendix C The 2-form ϖ 933

References 934

1. Introduction

Let G be a compact, connected Lie group, with an invariant inner product
· on g. We take the loop group LG to be the Banach Lie group of G-
valued loops of a fixed Sobolev class s > 1

2 ; loops in this Sobolev range are
continuous, and the group structure is given by pointwise multiplication. The
loop group acts by gauge transformations on the space A of connections over
the circle, given as g-valued 1-forms on S1 of Sobolev class s− 1.

λ.µ = Adλ µ− ∂λ λ−1, µ ∈ A, λ ∈ LG.

A proper Hamiltonian loop group space (M, ω,Φ) is a weakly symplectic
Banach manifold M, with an action of the loop group and a proper LG-
equivariant moment map

Φ:M→A
satisfying the moment map condition ι(ξM)ω = −d⟨Φ, ξ⟩ for ξ ∈ Lg, where
the function ⟨Φ, ξ⟩ is defined by the pointwise inner product of Φ and ξ,
followed by integration over S1.

The 2-form ω being weakly symplectic means that the bundle map
ω♭ : TM→ T ∗M is injective, in contrast to strongly symplectic 2-forms for
which it is required to be an isomorphism. Our first result is

Theorem 1.1. The tangent bundle of any proper Hamiltonian loop group
space M has a canonically defined LG-equivariant completion TM, such
that the 2-form ω extends to a strongly symplectic 2-form on TM.

Roughly speaking, this completion TM is obtained by taking the Sobolev
1
2 completion in orbit directions – note that this is precisely the borderline
case where G-valued loops no longer form a group.

To define a spinor module, the next step is to choose a compatible com-
plex structure. For finite-dimensional symplectic manifolds, the resulting
spinor module does not depend on the choice, up to isomorphism. In infinite
dimensions, the situation is more delicate [35]. We will consider equivalence
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classes of complex structures, where two complex structures are equivalent
if their difference is Hilbert-Schmidt. Such an equivalence class is sometimes
called a polarization.

Theorem 1.2. The bundle TM has a distinguished LG-invariant polar-
ization. It admits a global LG-invariant ω-compatible complex structure J
within this polarization class, unique up to homotopy.

The Riemannian metric on TM associated to J and ω defines a bundle
of Clifford algebras, Cl(TM), and using J one obtains a Z2-graded spinor
bundle,

Cl(TM) ⟳ STM.

For finite-dimensional Riemannian manifolds of even dimension, a Z2-graded
spinor module over the Clifford bundle is the same thing as a Spinc-structure;
hence we may think of STM as defining a Spinc-structure onM. Given a pre-
quantum line bundle L →M, then one can form a new Spinc-structure L ⊗
STM, and the action of a Spinc-Dirac operator ofM should formally describe
the ‘quantization’ ofM. In the case of moduli spaces of flat connections, a
technique for constructing pre-quantum line bundles L →M was explained
in [37], in the context of geometric quantization for Chern-Simons theory.

In practice, dealing with Dirac operators in infinite dimensions is too
difficult, and one prefers to work with suitable finite-dimensional counter-
parts. As shown in [2], every proper Hamiltonian LG-space (M, ω,Φ) has
an associated quasi-Hamiltonian G-space (M,ωM ,ΦM ), with a group-valued
moment map ΦM : M → G. In this paper, we will interpret this relation us-
ing a correspondence diagram

N
p

}}

q

  

M M

Here N is a Banach manifold with an action of LG×G, where the G-action
is principal with quotient map p, and the LG-action is principal as well, with
quotient map q. The idea is to pull the spinor module STM back to N , and
then push forward to M . For the second step, one uses the spinor module
for the Lie algebra of the loop group, in order to quotient out the LG-
orbit directions. This spinor module is equivariant with respect to a central
extension of the loop group LG by U(1), where the central circle acts non-
trivially. Hence, the construction does not quite give a spinor module over
TM :
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Theorem 1.3. The bundle q∗TM → N has an L̂G
spin ×G-equivariant

Spinc-structure, with associated spinor module

Cl(q∗TM) ⟳ Sq∗TM .

Here L̂G
spin

is the spin central extension of the loop group. This Spinc-
structure on q∗TM is canonical, up to equivariant homotopy.

We think of Sq∗TM as a twisted Spinc-structure on M , in the spirit of
Murray-Singer [32] and Mathai-Melrose-Singer [24]. In the pre-quantized
case, one uses the pre-quantum line bundle L to define a new twisted Spinc-
structure p∗L ⊗ Sq∗TM . The twisted Spincstructure may also be interpreted
in terms of a G-equivariant Morita morphism from the Clifford bundle
Cl(TM) over M to a Dixmier-Douady bundle Aspin over G; see [3, 28].

Another finite-dimensional approach is the following abelianization pro-
cedure. Let T ⊆ G be a maximal torus, with Lie algebra t, and fix a system
of positive roots of (G, T ). The integral lattice Λ ⊆ t can be regarded as
a subgroup of LG, consisting of exponential loops, while N(T ) ⊆ G is a
subgroup of LG consisting of constant loops. The central extension of LG
restricts to the subgroup Λ⋊N(T ).

Suppose the moment map Φ: M→A is transverse to t. Then X =
Φ−1(t) is a finite-dimensional pre-symplectic manifold, with a Hamiltonian
action of Λ× T , with an equivariant moment map ΦX : X → t where Λ acts
on t by translation.

Theorem 1.4. The LG-equivariant Spinc-structure on M determines a
Spinc-structure

Cl(TX ) ⟳ STX

on X , equivariant under the action of the spin-central extension of Λ⋊
N(T ). Up to homotopy, the spinor module STX depends only on the choice
of positive roots.

In the pre-quantized case, one considers the Dirac operator associated to
the new spinor module L|X ⊗ STX ; it is equivariant for the action of a semi-
direct product of T with a (different) central extension Λ̂ of the lattice. In an
article by two of the authors [22], we show that the associated Dirac operator
over the non-compact manifold X has a well-defined T -equivariant index,
with finite multiplicities having the requisite symmetry under the affineWeyl
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group to correspond to an element of the Verlinde ring. In [21] it is shown
that the result is compatible with the quantization of quasi-Hamiltonian G-
spaces defined in [28]. In [23] we show furthermore how to compute the T -
equivariant index on X using localization for the norm-square of the moment
map. In the case of a compact Hamiltonian G-space, an analogous formula
was proved by Paradan [34]. In the loop group setting, the norm-square of
the moment map has been used to prove a Kirwan surjectivity theorem [7],
and to study (twisted) Duistermaat-Heckman distributions [20].

The organization of this article is as follows. Section 2 starts with a re-
view of spinor modules in infinite dimensions, recalling the classical result
that the isomorphism class of such a spinor module defined by a complex
structure depends on the polarization class of the complex structure. Given
a symplectic form, we show that any two compatible complex structures
in a given polarization class are homotopic within that polarization class.
The subsequent Section 3 explains the relationship between Hamiltonian
loop group spaces and quasi-Hamiltonian spaces as a Morita equivalence.
Section 4 constructs the spinor bundle for a Hamiltonian loop group space,
and Section 5 gives the twisted Spinc-structure for the associated quasi-
Hamiltonian space. Section 6 is concerned with the abelianization proce-
dure for the transverse case, along with a discussion of how to adjust this
procedure for the possibly non-transverse case. The final Section 7 explains
how to generalize all these constructions to the case of twisted loop groups
(where the twist is by an automorphism κ ∈ Aut(G)) and the associated
κ-twisted quasi-Hamiltonian spaces.

Acknowledgements. We are grateful to Nigel Higson and Tudor Ratiu
for helpful discussions.

2. Spinor modules in infinite dimensions

The theory of spinor modules for infinite-dimensional real Hilbert spaces H
was developed in the 1960s by Shale and Stinespring, Araki, and others.
References for this section include the books by Plymen-Robinson [35] and
Pressley-Segal [36]; see also Freed-Hopkins-Teleman [14, Section 3.1].

In this section, we will review some of the theory, with its application to
the construction of the spin representation of the loop group. We will also
need to discuss the setting where the initial data given on H is a symplectic
structure rather than a Riemannian metric, with the latter depending on a
choice of a compatible complex structure.
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2.1. Notation

Recall that a topological vector space H is banachable (resp. hilbertable) if its
topology may be defined by a Banach norm (resp. Hilbert inner product) on
H. We will use the simpler terminology Banach space (resp. Hilbert space),
keeping in mind that we do not consider the norm (resp. Hilbert metric) to be
part of the structure. For (real or complex) Banach spaces H1,H2, we denote
by B(H1,H2) the Banach space of continuous linear operators from H1 to H2,
and by K(H1,H2) the compact operators (the limits of finite rank operators).
If H1 = H2 = H we write B(H) and K(H) for the algebras of bounded and
compact operators, respectively. If H1,H2 are separable Hilbert spaces, we
write BHS(H1,H2) ∼= H2 ⊗ H∗

1 (using the Hilbert space tensor product) for
the space of Hilbert-Schmidt operators from H1 to H2, with the notation
BHS(H) if H1 = H2 = H. (This does not depend on the choice of metric, only
on the topology.) Introduce an equivalence relation on bounded operators
A ∈ B(H), where

(1) A0 ∼ A1 ⇔ A0 −A1 ∈ BHS(H).

More generally, we have such an equivalence relation on the space B(H1,H2)
of bounded linear operators between possibly different Hilbert spaces.

Let J (H) ⊆ B(H) be the set of complex structures on H, that is, J2 =
− id. Following [14, 36] we define

Definition 2.1. A polarization of a real Hilbert space H is an equivalence
class of complex structures J ∈ J (H), using the equivalence relation (1). We
denote by Jres(H) the set of complex structures in the given polarization
class.

2.2. Spinor modules

Let H be a separable real Hilbert space, and g a Riemannian metric on
H, in the strong sense that the map g♭ : H→ H∗ is an isomorphism. We
denote by O(H) = O(H, g) ⊆ B(H) the corresponding orthogonal group, and
by Cl(H) = Cl(H, g) the Clifford algebra, i.e. the complex algebra linearly
generated by H, with relations

v1v2 + v2v1 = 2g(v1, v2), v1, v2 ∈ H.

Given an orthogonal complex structure J ∈ O(H) (that is, J preserves g and
squares to − id), the complexified Hilbert space splits as HC = H+ ⊕ H−,
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where H± are the ±
√
−1 eigenspaces of J . The restricted orthogonal group

Ores(H) consists of those orthogonal transformations A ∈ O(H) that preserve
the polarization, i.e., such that AJA−1 ∼ J . Let ∧H+ be the exterior algebra
over H+. Its Hilbert space completion

SH = ∧H+

has the structure of a Z2-graded unitary Cl(H)-module, where the Clifford
action ϱ(v) of elements v ∈ H+ is by exterior multiplication and that of
v ∈ H− is contraction. It will be referred to as the spinor module defined by
J . We sometimes write SH,J to indicate the dependence on J .

The following theorem summarizes results of Araki and Shale-Stinespring,
see [35, Chapter 3]

Theorem 2.2 (Spinor modules in infinite dimensions).

a) The spinor modules defined by two orthogonal complex structures J0, J1
are isomorphic as ungraded Cl(H)-modules if and only if they define the
same polarization, i.e. J0 ∼ J1.

b) In this case, the space L = HomCl(H)(SH,J0
, SH,J1

) of intertwining oper-
ators is 1-dimensional, and SH,J1

= L⊗ SH,J0
. For J0 ∼ J1, the kernel

of J0 + J1 is even dimensional, and the parity of L coincides with the
parity of 1

2 dimker(J0 + J1).

c) An orthogonal transformation A ∈ O(H) admits a unitary implementer
Â∈U(SH,J), i.e. ϱ(Av)=Ãϱ(v)Ã−1 for v∈H, if and only if A∈Ores(H).
In this case, the implementer is unique up to scalar.

Part (c) defines a central extension of the restricted orthogonal group
Ores(H) by U(1); this can be taken as a definition of the group Pinc(H) with
respect to the choice of polarization.

We will also need the following addendum:

Proposition 2.3. Let W ⊆ H be a finite-dimensional subspace of even di-
mension, and H′ =W⊥ its orthogonal space with respect to g. Let J, J ′ be
orthogonal complex structures on H,H′. Then

SW = HomCl(H′)(SH′ , SH)

is non-trivial if and only if J ∼ J ′, and in this case it is a spinor module
over Cl(W ).
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In this statement, J ′ ∈ B(H′) is regarded as an operator on H, acting as
zero on W .

Proof. Pick an auxiliary orthogonal complex structure JW onW . Then J ′′ =
JW ⊕ J ′ is an orthogonal complex structure on H =W ⊕ H′. Since J ′′ ∼ J ′

we have that SJ ′′ = SJW
⊗ SJ ′ , hence

HomCl(H′)(SH′,J ′ , SH,J ′′) = SW,JW
.

By Theorem 2.2, L = HomCl(H)(SH,J ′′ , SH,J) is non-trivial if and only if J ∼
J ′′ ∼ J ′, and in this case SH,J = SH,J ′′ ⊗ L, hence

SW = HomCl(H′)(SH′,J ′ , SH,J) = SW,JW
⊗ L. □

We will need to understand the dependence on the metric. If H is finite-
dimensional, then any two metrics g0, g1 on H, with associated maps g♭i : H→
H∗ and g♯i = (g♭i )

−1, are related by an isometry A = (g♯1 ◦ g♭0)1/2, in the sense
that g1(Av,Aw) = g0(v, w). In the infinite-dimensional case, we need further
conditions to ensure that the square root is defined. Introduce an equivalence
relation on Riemannian metrics on H, by declaring that g0 ∼ g1 if and only
if g♭0 ∼ g♭1, i.e., the difference is Hilbert-Schmidt.

Lemma 2.4. Let g0, g1 be two Riemannian metrics on H, with g0 ∼ g1.
Then the operator C = g♯1 ◦ g♭0 has spectrum contained in the set of positive
real numbers, and in particular has a well-defined square root A = C1/2. We
have that A ∼ I, and

g1(Av,Aw) = g0(v, w)

for all v, w ∈ H.

Proof. Since g1(Cv,w) = g0(v, w) = g1(v, Cw) for all v, w ∈ H, the opera-
tor C is symmetric with respect to g1. Furthermore, it is non-negative
since g1(Cv, v

∗) = g0(v, v
∗) ≥ 0 for all v ∈ HC. To show that 0 is not in the

spectrum, let λ ∈ C, with λ ̸= 1. Since g0 ∼ g1 ⇒ C ∼ I, we have C − λI ∼
(1− λ)I, an invertible operator. Since Hilbert-Schmidt operators are com-
pact, this shows that C − λI is Fredholm of index zero, and hence is in-
vertible if and only if its kernel is zero. But if v ∈ HC is in the kernel, then
Cv = λv, hence

λg1(v, v
∗) = g1(Cv, v

∗) = g0(v, v
∗),

thus λ > 0 or v = 0. This shows spec(C) ⊆ (0,∞). It follows that the square
root A = C1/2 is defined. A is again a positive symmetric operator with



✐

✐

“10-Loizides” — 2020/7/30 — 19:55 — page 897 — #9
✐

✐

✐

✐

✐

✐

Spinor modules for Hamiltonian loop group spaces 897

respect to g1, and since C ∼ I we have that A ∼ I. It satisfies g1(Av,Aw) =
g1(Cv,w) = g0(v, w) as required. □

The isometry A : (H, g0)→ (H, g1) for g0 ∼ g1 extends to an isomorphism
of Clifford algebras

A : Cl(H, g0)→ Cl(H, g1).

If J0 is a g0-orthogonal complex structure, and J1 is a g1-orthogonal complex
structure, then there exists an isomorphism of spinor modules SH,J0

→ SH,J1

compatible with the isomorphism of Clifford algebras if and only if J0 ∼ J1.
Indeed, using A ∼ I the condition is equivalent to J0 ∼ A ◦ J1 ◦A−1, hence
the claim follows from Theorem 2.2. Proposition 2.3 generalizes similarly.

2.3. Compatible complex structures in infinite dimensions

Let H be a separable real Hilbert space, with a (strongly) symplectic 2-
form ω : H× H→ R. That is, ω is non-degenerate in the sense that the
associated map ω♭ : H→ H∗ is an isomorphism. A complex structure J on
H is compatible with ω if

g(v, w) = ω(v, Jw)

is a Riemannian metric on H. Such a complex structure J is orthogonal with
respect to g and symplectic with respect to ω, and the choice of J makes H
into a complex Hilbert space (cf. Section 1.1 in [11]). We denote by J (H, ω)
the set of ω-compatible complex structures.

Lemma 2.5. If J0, J1 ∈ J (H, ω), with corresponding Riemannian metrics
g0, g1, then J0 ∼ J1 if and only if g0 ∼ g1.

Proof. We have J0 ∼ J1 if and only if g♯1 ◦ g♭0 = J−1
1 ◦ J0 ∼ I. But this means

g♭0 ∼ g♭1. □

Given two J ’s in J (H, ω), there exists a real-linear automorphism A of H
intertwining the two resulting Hilbert space inner products. Equivalently,
A preserves ω and intertwines the two J ’s. This shows that J (H, ω) is a
homogeneous space for the group Sp(H) of symplectic transformations, with
stabilizer at J ∈ J (H, ω) the corresponding unitary group UJ(H).
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The restricted symplectic group Spres(H) consists of all A ∈ Sp(H) satis-
fying AJA−1 ∼ J ; it is a Banach Lie group for the topology induced by

∥A∥J = ∥A∥+ ∥[J,A]∥HS ,

where ∥ − ∥ is the operator norm, and ∥ − ∥HS is the Hilbert-Schmidt norm
with respect to the Riemannian metric defining the Hilbert space structure
([36]). By the same argument as above, Spres(H), acts transitively on the set
Jres(H, ω) of compatible complex structures in the given polarization class.

The spaces J (H, ω) and Jres(H, ω) become Banach manifolds, such that
the quotient maps

Sp(H)→ Sp(H)/UJ(H) ∼= J (H, ω),
Spres(H)→ Spres(H)/UJ(H) ∼= Jres(H, ω)

are submersions. Similar to finite dimensions, polar decomposition gives a
contraction of Sp(H) (resp. Spres(H)) onto UJ(H), showing that J (H, ω)
(resp. Jres(H, ω)) is contractible; we discuss this briefly in Appendix A.
The following gives an explicit path connecting two compatible complex
structures defining the same polarization class.

Theorem 2.6. Let ω be a symplectic structure on a real Hilbert space H,
and let J0, J1 be two compatible complex structures, defining the same po-
larization.

For all t ∈ [0, 1], the spectrum of Kt = (1− t)J0 + tJ1 is contained in
the set of non-zero imaginary numbers. The operators

Jt = Kt (−K2
t )

−1/2

are well-defined compatible complex structures connecting J1 and J0 within
the given polarization class.

Proof. Suppose λ ∈ C is in the spectrum of Kt, so that Kt − λI is not in-
vertible. Unless λ = ±

√
−1, the operator Kt − λI is a compact perturbation

of an invertible operator J0 − λI; hence it is non-invertible if and only of
its kernel is non-zero. Let v ∈ HC be a non-zero element in the kernel. Then
ω(v∗, (Kt − λI)v) = 0, hence

(1− t)g0(v∗, v) + tg1(v
∗, v) = λω(v∗, v).

For 0 ≤ t ≤ 1, the left hand side is > 0, hence so is the right hand side.
On the other hand, since ω is a real 2-form, ω(v∗, v) ∈

√
−1R. This shows
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that that the spectrum of Kt lies in the set of non-zero imaginary numbers;
hence −K2

t has spectrum in strictly positive real numbers. It follows that
Jt = Kt(−K2

t )
−1/2 are well-defined complex structures. To show that Jt ∼

J0, it suffices to show that (−K2
t )

−1/2 ∼ I. But this follows because Rt :=
I +K2

t ∼ 0, and since

(−K2
t )

−1/2 − I = Rtf(Rt),

with f(x) = 1
x(

1√
1−x
− 1), is the product of a Hilbert-Schmidt operator and

a bounded operator. □

The choice of an ω-compatible complex structure on H determines a
spinor module SH. The discussion above shows that equivalent compatible
complex structures J0 ∼ J1 are homotopic within their equivalence class,
and that they determine a homotopy class of Hilbert-Schmidt equivalent
Riemannian metrics. Hence they give isomorphic (in fact, homotopic) spinor
modules.

2.4. The spin representation of the loop group

Let G be a compact, connected Lie group, and LG the space of G-valued
loops of Sobolev class s. If s > 1

2 , then LG consists of continuous loops, and
is a Banach Lie group under pointwise multiplication, with Lie algebra Lg
the g-valued loops of Sobolev class s. We refer to LG for a fixed choice of
s > 1

2 as the loop group of G. The choice of an invariant inner product on
g defines an LG-invariant weak Riemannian metric g on Lg, given by the
pointwise inner product followed by integration over S1, using the standard
volume form dt on S1. It extends to a (strong) Riemannian metric on the
real Hilbert space Lg of square integrable loops (i.e., Sobolev class 0). Its
complexification has a triangular decomposition

LgC = (LgC)+ ⊕ gC ⊕ (LgC)−

given as the spans of positive, zero, and negative Fourier modes, respectively.
Let J0 ∈ B(Lg) be the operator whose complexification is equal to −

√
−1

on negative Fourier modes, 0 on zero Fourier modes, and +
√
−1 on positive

Fourier modes.

Remark 2.7. Equivalently,

J0 = ∂0/|∂0|,
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where ∂0 is the unbounded skew-adjoint operator, given as the exterior
derivative (we use the standard volume form ∂t on S1 to identify 1-forms
and functions). On the loop z 7→ X ⊗ zn in LgC, for X ∈ gC and n ∈ Z, it
is given by ∂0(X ⊗ zn) = 2πinX ⊗ zn . The kernel of ∂0 are the constant
loops, and |∂0|−1 denotes the inverse of |∂0| on g⊥ ⊆ Lg, extended by zero.

In order to have an actual complex structure, we consider the larger
space Lg⊕ g, with the complex structure J given as the sum of J0 with
the standard complex structure (X,Y ) 7→ (−Y,X) on ker(J0)⊕ g = g⊕ g.
Then J determines a Z2-graded spinor module

Cl(Lg⊕ g) ⟳ SLg⊕g.

The operator J0 is not LG-invariant, but one can show (see e.g. [36]) that
the polarization class is preserved. Hence, the adjoint action defines a group
homomorphism from LG into the restricted orthogonal group, and so LG
inherits a central extension from that of Ores(Lg⊕ g). We let

(2) 1→ U(1)→ L̂G
spin → LG→ 1

be the opposite of this central extension of LG defined in this way; it will be
referred to as the spin-central extension of the loop group. We refer to the
action on the dual spinor module Hom(SLg⊕g,C) as the spin representation
of the loop group. By definition, the central circle in (2) acts with weight
one. The spin representation of the loop group (or of its Lie algebra) was
described in Kac-Peterson [17], see also Araki [5].

Remark 2.8. For G simple and simply connected, the isomorphism classes
of central extensions of LG are indexed by their level k ∈ Z, corresponding to
the k-th power of the basic central extension L̂G. The level of the spin central
extension is the dual Coxeter number h∨ of G. As a L̂G-representation, it
is a direct sum of irreducible representations of highest weight (ρ, h∨). See
Appendix B.

Remark 2.9. One can also consider the action of larger group LG×G
on Lg⊕ g; the central extension of LG extends to the product. If G is
simply connected, then the central extension is trivial over G (with a unique

trivialization), hence SLg⊕g has an action of L̂G
spin ×G.
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3. Hamiltonian loop group spaces and quasi-Hamiltonian

spaces

In this section we will recall the basic definitions for Hamiltonian loop group
spaces and quasi-Hamiltonian G-spaces. Improving on the discussion in [2],
we will phrase the 1-1 correspondence between such spaces as a Morita
equivalence (see [41] for related ideas).

3.1. The space of connections

LetG be a compact, connected Lie group, with Lie algebra g. For fixed s ∈ R,
denote by LG the Banach manifold of maps S1 → G of Sobolev class s. We
will assume s > 1

2 , so that LG consists of continuous loops, and is a Banach
Lie group under pointwise multiplication. Let A be the space of connections,
given as g-valued 1-forms on S1 of Sobolev class s− 1. The loop group LG
acts smoothly on the Banach manifold A by gauge transformations:

λ · µ = Adλ(µ)− ∂λ λ−1, µ ∈ A, λ ∈ LG.

Here we are reserving the notation ∂ for the exterior derivative on S1; thus
∂λ λ−1 is the pull-back of the right-invariant Maurer-Cartan form θR ∈
Ω1(G, g) under the map λ : S1 → G. The generating vector fields ξA, ξ ∈ Lg
for the gauge action are the covariant derivatives: At µ ∈ A, we have that
ξA|µ = ∂µξ where

∂µ = ∂ + adµ : Lg→ TµA.

Remark 3.1. To avoid the dependence on a Sobolev level, one could also
work with Frechet manifolds, and consider smooth loops and connections.
See [33] for foundational results regarding the smooth loop group.

3.2. The path fibration

Denote by PG the Banach manifold of all paths γ : R→ G of Sobolev class
s, with the property that γ(t+ 1)γ(t)−1 is constant. The direct product
LG×G acts on PG by

((λ, g).γ)(t) = g γ(t)λ(t)−1.

The LG-action makes PG into a G-equivariant principal LG-bundle over G,
with quotient map q(γ) = γ(1)γ(0)−1, where the G-action on the base G is
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given by conjugation. This is called the path fibration. On the other hand,
the G-action makes PG into an LG-equivariant principal G-bundle over the
space of connections, with quotient map p : PG→ A, γ 7→ γ−1∂γ. We arrive
at the correspondence diagram

(3) PG
p

}}

q

!!

A G

Remarks 3.2. a) The bundle p : PG→ A has a distinguished section,
with image the space PeG of based paths (i.e., paths with γ(0) = e).
Note however that since this trivialization of the bundle p : PG→ A
involves an evaluation map, it does not have good properties for the
Sobolev 1

2 completions to be considered later.

b) The holonomy map Hol : A → G, taking the parallel transport of a con-
nection around S1, may be defined as the inclusion A → PG followed
by q. Note however that Hol ◦ p ̸= q. Indeed, for a connection µ = p(γ)
we have that Hol(µ) = γ(0)−1γ(1) whereas q(γ) = γ(1)γ(0)−1.

c) The pull-back of the bundle q : PG→ G under the exponential map
exp: g→ G is canonically trivial; the trivializing section takes X ∈ g

to the path t 7→ exp(tX).

The correspondence diagram (3) may be seen as a Morita equivalence of
groupoids, between the action groupoids [G/G] for the conjugation action
and [A/LG] for the gauge action, with PG as the equivalence bimodule. In
particular, the stabilizer groups for the actions, as well as the ‘transverse
geometry’ to orbits, are isomorphic. To be precise, let γ ∈ PG, mapping to
the elements µ = p(γ) ∈ A and a = q(γ) ∈ G. The projections from LG×G
to the two factors induce isomorphisms of the stabilizer groups,

(4) (LG)µ ←− (LG×G)γ −→ Ga,

The resulting isomorphism Ga
∼= LGµ takes h ∈ Ga to the loop λ(t) =

Adγ(t)−1 h. Furthermore, there are slices

Vγ ⊆ PG for the LG×G-action at γ

Vµ ⊆ A for the LG-action at µ

Va ⊆ G for the G-action at a



✐

✐

“10-Loizides” — 2020/7/30 — 19:55 — page 903 — #15
✐

✐

✐

✐

✐

✐

Spinor modules for Hamiltonian loop group spaces 903

invariant under the respective groups (4), in such way that p and q restrict
to diffeomorphisms

(5) Vµ ←− Vγ −→ Va,

equivariant with respect to (4). Letting Ua ⊆ ga be a sufficiently small
Ad(Ga)-invariant open neighborhood of the origin, we may take

Vµ = {µ+Adγ−1(X ∂t)| X ∈ Ua},
Vγ = {exp(tX)γ(t)| X ∈ Ua},
Va = {exp(X)a| X ∈ Ua}.

The slice Vµ can also be written as

Vµ = {µ+ ζ∂t| ζ ∈ Uµ}

where Uµ ⊆ Lgµ is the image of Ua under the isomorphism Lgµ ∼= ga. We
will often use these slices in conjunction with partitions of unity: Since G
is compact, it is covered by finitely many of the flow-outs G.Va of slices,
and we may choose an associated G-invariant partition of unity. Using the
diagram (3), this determines finite open covers of PG and of A, along with
invariant partitions of unity.

Suppose now that the Lie algebra g comes with an Ad-invariant metric
·. Let θL, θR ∈ Ω1(G, g) denote the Maurer-Cartan-forms. The metric on g

determines a bi-invariant Cartan 3-form η = 1
12θ

L · [θL, θL] ∈ Ω3(G), and its
G-equivariant extension ηG(X) = η − 1

2(θ
L + θR) ·X for X ∈ g. The 3-form

η is closed, and ηG is equivariantly closed:

(d− ι(XG))ηG(X) = 0.

The metric also determines a certain LG×G-invariant 2-form ϖ ∈ Ω2(PG),
with the properties

dϖ = −q∗η, ι(ξPG)ϖ = p∗d⟨µ, ξ⟩, ι(XPG)ϖ = −q∗
(
1

2
(θL + θR) ·X

)

for ξ ∈ Lg and X ∈ g. Letting evt : PG→ G be the evaluation map, this
2-form is given by (cf. Appendix C)

ϖ =
1

2

∫ 1

0

(
ev∗t θ

R · ∂
∂t

ev∗t θ
R

)
∂t +

1

2
ev∗0 θ

L · ev∗1 θL.

See [4, 39] for a conceptual construction of this 2-form.
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Remark 3.3. These formulas have a Dirac-geometric significance: The
group G carries the so-called Cartan-Dirac structure, and the total space
of the action groupoid [G/G] is a quasi-presymplectic groupoid integrating
this Dirac structure (see [8, 41]) . On the other hand, A carries an infinite-
dimensional ‘Lie-Poisson’ Dirac structure [10], and [A/LG], with a certain
2-form, is its integration. The correspondence diagram (3) for the path fibra-
tion PG, together with the 2-formϖ, makes it a dual pair of Dirac manifolds,
in the sense of [15], and also defines a Morita equivalence of pre-symplectic
groupoids, see [41, Proposition 4.26].

3.3. Hamiltonian loop group spaces

The invariant inner product · on g defines a pairing between A and Lg, given
by pointwise inner product followed by integration over S1.

Definition 3.4. [29] A Hamiltonian LG-space (M, ω,Φ) is a Banach man-
ifold M, equipped with a smooth action of LG, an invariant weakly sym-
plectic 2-form ω, and a smooth LG-equivariant map Φ:M→A satisfying
the moment map condition

ι(ξM)ω = −⟨dΦ, ξ⟩, ξ ∈ Lg.

It is called proper if the moment map Φ is proper.

The first examples of Hamiltonian LG-spaces are the coadjoint orbits
O = LG · µ ⊆ A, with the 2-form given on generating vector fields by

ω((ξ1)O, (ξ2)O)|µ =

∫

S1

∂µξ1 · ξ2, ξ1, ξ2 ∈ Lg;

the moment map is the inclusion. Another natural example is the moduli
space of flat connections on surfaces with boundary. There are many other
examples; some of these are best understood from the correspondence with
quasi-Hamiltonian spaces, which we discuss next.

3.4. Quasi-Hamiltonian spaces

Definition 3.5. A quasi-Hamiltonian G-space (M,ωM ,ΦM ) is a (finite-
dimensional) G-manifold M with an invariant 2-form ωM and a G-
equivariant smooth map ΦM : M → G satisfying the following conditions:

a) dωM = −Φ∗
Mη,
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b) ι(XM )ωM = −Φ∗
M (12(θ

L + θR) ·X) for all X ∈ g

c) ker(ωM ) ∩ ker(TMΦ) = 0.

The first two conditions may be combined into a single requirement

(d− ι(XM ))ωM = −Φ∗
MηG(X),

stating that ωM is an equivariant primitive of −Φ∗
MηG.

Basic examples are the conjugacy classes C ⊆ G, with moment map
the inclusion, and the double D(G) = G×G, with moment map the group
commutator. Other examples include SU(n) acting on an even-dimensional
sphere S2n [16], and Sp(n) acting on quaternionic projective spaces [12] or
on quaternionic Grassmannians [18]. A full classification of such multiplicity-
free quasi-Hamiltonian spaces was obtained in the work of Knop [18], with
many new examples.

There is a correspondence between proper Hamiltonian LG-spaces M
and quasi-Hamiltonian G-spaces M , described by a diagram

(6) N
p

}}

q

  

M M

Given M, the space N is the pullback of the bundle p : PG→ A under
the moment map Φ, and M = N/LG. Conversely, given M , the space N
is the pullback of the bundle q : PG→ G under the moment map ΦM , and
M = N/G. The 2-forms are related by

q∗ωM − p∗ω = Φ∗
Nϖ.

The correspondence may be used to define examples of Hamiltonian loop
group spaces by construction of the corresponding quasi-Hamiltonian spaces.
For a coadjoint orbit O ⊆ A, the associated quasi-Hamiltonian spaces is a
conjugacy class C ⊆ G.

4. The spinor bundle for a Hamiltonian LG-space

Our construction of a spinor bundle starts out by showing that the weakly
symplectic 2-form of any proper Hamiltonian loop group space becomes
strongly symplectic on a suitable completion of the tangent bundle. The
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construction is particularly nice for the case of coadjoint orbits; hence we
will discuss this case first.

4.1. The spinor bundle over coadjoint loop group orbits

Let O ⊆ A be a coadjoint orbit for the loop group. The weak symplectic
form on O is given on tangent spaces TµO = Lg/Lgµ by

(7) ω((ξ1)O, (ξ2)O)|µ =

∫

S1

∂µξ1 · ξ2, ξi ∈ Lg.

The topological dual space of Lg (consisting of g-valued loops of Sobolev
class s) are g-valued 1-forms of Sobolev class −s, hence the dual space
of TµO = Lg/Lgµ is the annihilator of Lgµ inside the space of 1-forms of
Sobolev class −s. But

(ωµ)
♭ : TµO → (TµO)∗, ξO|µ 7→ ∂µξ,

takes values in the subspace of 1-forms of Sobolev class s− 1. Since s > 1
2 ,

we have that s− 1 > −s. This verifies that (ωµ)
♭ is not onto. On the other

hand, letting

Lg := L( 1

2
)g

be the loops of Sobolev class 1
2 , we see that ωµ extends to a strongly sym-

plectic bilinear form on TµO = Lg/Lgµ = Lg⊥µ :

(8) ωµ : Lg
⊥
µ × Lg⊥µ → R

Here ⊥ stands for the orthogonal space relative to the (weak) metric on Lg.
Hence, the bundle TO becomes a strongly symplectic vector bundle over O.
There is a canonical LG-invariant ω-compatible complex structure on TO,
given at µ by the LGµ-invariant complex structure

(9) Jµ = ∂µ/|∂µ| ∈ B(Lg⊥µ )

The resulting Riemannian metric on TO defines a Clifford bundle Cl(TO),
and the complex structure gives an LG-equivariant spinor module

Cl(TO) ⟳ STO.

Remark 4.1. The bracket on Lg does not extend continuously to Lg; hence
Lg does not become a Banach Lie algebra. Similarly the G-valued loops of
Sobolev class 1

2 are not a Banach Lie group.
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4.2. The spinor bundle for proper Hamiltonian LG-spaces

We will now extend this construction to arbitrary proper Hamiltonian LG-
spaces. For any Banach manifold Q with a proper LG-action, we let

TQ := (TQ× Lg)/ ∼

be the quotient space under the relation

(v + ξQ|q, 0) ∼ (v, ξ), v ∈ TqQ, ξ ∈ Lg ⊆ Lg,

where ξQ denotes the vector field on Q generated by ξ ∈ Lg. The proper-
ness assumption implies that the action has finite-dimensional slices with
compact stabilizer groups LGq, and the definition amounts to replacing the
orbit directions Tq(LG · q) = Lg/(Lg)q with Lg/(Lg)q. In particular, TA is
defined, and for every proper Hamiltonian LG-space M the bundle TM
is defined (since properness of the moment map implies properness of the
action) . Equivariant maps of Banach manifolds Q1 → Q2 with proper LG-
actions define equivariant bundle maps TQ1 → TQ2.

Theorem 4.2. Let (M, ω,Φ) be a proper Hamiltonian LG-space. Then

a) the 2-form ω extends to a strongly symplectic form on TM,

b) the bundle TM has a distinguished LG-invariant polarization, defining
Jres(TM, ω),

c) there exists a global LG-invariant compatible complex structure J ∈
Jres(TM, ω), within this polarization class.

Proof. For everym ∈M, with image µ = Φ(m), we have a subspace of finite
codimension

Lg⊥µ ⊆ TmM
embedded via the action map. On this subspace, we have the standard com-
plex structure Jµ defined in (9). This determines a polarization Jres(TmM),
consisting of those complex structures on TmM that differ from Jµ by a
Hilbert-Schmidt operator.

We will use the symplectic cross-section theorem for Hamiltonian loop
group actions [29, Section 4.2]. Given m ∈M with image µ = Φ(m), let
Vµ ⊆ A be the slice through µ as described in Section 3.2. Its pre-image
Y = Φ−1(Vµ) is a finite-dimensional LGµ-invariant symplectic submanifold
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ofM. We have the LGµ-equivariant ω-orthogonal decomposition

(10) TM|Y = TY ⊕ (Y × Lg⊥µ ),

where the second summand is embedded by the generating vector fields.
The weak symplectic structure on {y} × Lg⊥µ for y ∈ Y is determined by
the moment map condition, and is given by

ω((ξ1)M, (ξ2)M)|y =

∫

S1

∂νξ1 · ξ2, ξi ∈ Lg⊥µ

where ν = Φ(y) (cf. (7),(8)). This 2-form extends to a strongly symplec-
tic form on {y} × Lg⊥µ , and so ω|Y extends to an LGµ-invariant strongly
symplectic 2-form on

(11) TM|Y ∼= TY ⊕ (Y × Lg⊥µ ),

and by equivariance to an LG-invariant symplectic form on TM.
The summand Y × Lg⊥µ in (11) has an LGµ-invariant compatible com-

plex structure, given by (9). By choosing an LGµ-invariant compatible com-
plex structure on TY , we obtain an LGµ-invariant compatible complex
structure on TM|Y , hence an LG-invariant compatible complex structure
JLG.Y on TM|LG.Y . Given another symplectic cross-section Y ′, the differ-
ence between JLG.Y , JLG.Y ′ over LG.Y ∩ LG.Y ′ has finite rank; hence the
corresponding Riemannian metrics gY , gY ′ agree on a subbundle of finite
codimension. The LG-invariant finite open cover and partition of unity on
A in Section 3.2 may be pulled back to M, giving an open cover of M by
open sets of the form LG.Y (Y a symplectic cross-section as above), with
subordinate partition of unity {ρY }. The construction of the compatible
Riemannian metric and associated almost complex structure then proceeds
as in finite dimensions. Define a preliminary metric on TM by

g0 =
∑

Y

ρY gY .

The fibres of TM are real Hilbert spaces with respect to g0. Then A :=
−ω♯ ◦ g♭0 : TM→ TM is a continuous invertible skew-symmetric (with re-
spect to g0) bundle endomorphism, and we define J = (−A2)−1/2A to be the
orthogonal part of A in the polar decomposition. The compatible Rieman-
nian metric is then defined by g♭ = −ω♭ ◦ J . By construction, the complex
structure Jm on TmM, at any given m ∈M, with image µ = Φ(m), differs
from the complex structure Jµ on Lg⊥µ ⊆ TmM by a finite rank operator. In
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particular, it is independent of the choices modulo Hilbert-Schmidt equiva-
lence. □

Let g be the Riemannian metric on TM defined by ω and J . We obtain
a Clifford bundle with an LG-equivariant spinor module,

(12) Cl(TM) ⟳ STM.

As explained in Section 2.3, two choices J0, J1 of compatible complex struc-
tures in the given polarization class give rise to equivalent Riemannian met-
rics g0 ∼ g1, hence the Clifford algebras are canonically identified. A homo-
topy between J0, J1 within the polarization class gives a homotopy of spinor
modules.

Remark 4.3. On a (finite-dimensional) Kähler manifold, one takes the
spinor module for the Dolbeault operator as STM := ∧(T ∗M)0,1. This is con-
sistent with our conventions, since the isomorphism g♭ : TM ∼= T ∗M given
by the metric identifies (TM)+ = (TM)(1,0) ∼= (T ∗M)(0,1).

5. The twisted spin-c -structure for a quasi-Hamiltonian

G-space

Having obtained the spinor module STM over the Hamiltonian LG-space
M, we will use it to construct the twisted Spinc-structure for the associated
quasi-Hamiltonian G-space M . Our strategy is to use the correspondence
diagram (6) to ‘pull back’ the spinor bundle over M under the projection
p : N →M, and then ‘descend’ to M under the map q : N →M . This will
require the use of principal connections, obtained as pullbacks of principal
connections from the path fibration. As we will see, the appearance of a
central extension of the loop group will prevent us from actually descending
the spinor module to M ; this is the reason why we will not obtain an actual
Spinc-structure on M , in general, but only a twisted Spinc-structure. We
will begin our discussion with the case thatM is a coadjoint orbit, with M
the associated conjugacy class.

5.1. The twisted Spinc-structure for conjugacy classes

Let N ⊆ PG be an orbit for the LG×G-action, and O = p(N ), C = q(N )
the corresponding coadjoint LG-orbit and G-conjugacy class:
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(13) N
p

~~

q

��

O C

Proposition 5.1 (Connections over orbits). The bundles p : N → O,
q : N → C have distinguished invariant connections

α ∈ Ω1(N , g)LG×G, β ∈ Ω1(N , Lg)LG×G,

with continuous extensions to the completions, α : TN → g, β : TN → Lg.

Proof. Let γ ∈ N be given, with µ = p(γ) ∈ O and a = q(γ) ∈ C. Let Rµ :
Lg→ g be defined by the composition

Rµ : Lg→ Lgµ ∼= ga →֒ g

where the first map is the orthogonal projection. Note that this extends to
the completion, Rµ : Lg→ g. The desired LG-invariant principal connection
α on p : N → O is given by the (LG×G)γ-equivariant map

αγ : TγN ≡ (Lg⊕ g)/(Lg⊕ g)γ → g, [(ξ,X)] 7→ X −Rµ(ξ).

This is well-defined, since X −Rµ(ξ) = 0 for (ξ,X) ∈ (Lg⊕ g)γ , and it ex-
tends to a map on the completion (given by the same formula, with R
replaced by R). Similarly, let Sµ : g→ Lg be the composition

Sµ : g→ ga ∼= Lgµ →֒ Lg

where the first map is orthogonal projection. The desired G-invariant prin-
cipal connection β on q : N → C is given by the (LG×G)γ-equivariant map

βγ : TγN ≡ (Lg⊕ g)/(Lg⊕ g)γ → Lg, [(ξ,X)] 7→ ξ − Sµ(X).

Its extension to the completion is given by the same formula. □

For the following result, we will assume that G is simply connected. Then all
central extensions of G by U(1) are trivial, and since Hom(G,U(1)) = {1}
the trivialization is in fact unique.
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Theorem 5.2 (Twisted Spin-c structure of conjugacy classes). For
every conjugacy class C ⊆ G of a compact, simply connected Lie group G,
there is a distinguished spinor module

Cl(q∗TC) ⟳ Sq∗TC ,

equivariant under L̂G
spin ×G. Here q : N → C is the principal LG-bundle

N ⊆ PG consisting of all quasi-periodic paths with holonomy in C.

Proof. The connections α, β constructed above give LG×G-equivariant iso-
morphisms of TN with p∗TO × g and q∗TC × Lg, respectively. Adding an-
other copy of the trivial bundle N × g (with the trivial action of G on g) we
obtain LG×G-equivariant isomorphisms

p∗TO × (g⊕ g) ∼= TN × g ∼= q∗TC × (Lg⊕ g).

The LG-invariant symplectic structure, compatible complex structure, and
associated Riemannian metric on TO pull back to p∗TO; together with the
standard complex structure and given Riemannian metric on g⊕ g, these
define a Riemannian metric and orthogonal complex structure on TN × g.
The corresponding LG×G-equivariant spinor module STN×g is simply the

tensor product of p∗STO with N × ∧gC. (The G-action does not preserve
the complex structure, but the central extension of G acting on the spinor
module is uniquely trivialized.)

The (completed) tangent space to the fibers of q : N → C is a trivial
bundle kerTq ∼= Lg, and inherits a metric as a subbundle of TN . We will
need an isometric isomorphism of kerTq = N × Lg with N × Lg, where
Lg has the L2-metric. At γ ∈ N , the splitting T γN ∼= TµO ⊕ g given by α
restricts to the isomorphism

Lg = kerT γq → TµO ⊕ ga, ξ 7→ (ξO(µ), −Rµ(ξ)).

The resulting metric on Lg is the direct sum of the metric on TµO ∼= Lg⊥µ
and the given metric on Lgµ ∼= ga ⊆ g. Put differently, it is given by

(14) (ξ1, ξ2) 7→
∫

S1

Dµξ1 · ξ2

where Dµ is the first order pseudo-differential operator given by |∂µ| on
Lg⊥µ and by the identity on Lgµ. (We use the standard volume form on S1
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to identify 1-forms with functions.) The square root of Dµ gives an LGµ-
equivariant isomorphism

D1/2
µ : Lg→ Lg

intertwining the two metrics, and the collection of these operators gives the
desired LG×G-isometric bundle isomorphism kerTq → N × Lg. We may
thus define a spinor module over Cl(q∗TM) as

(15) Sq∗TC := HomCl(Lg⊕g)(SLg⊕g, STN×g).

It inherits an action of L̂G
spin ×G. □

The presence of the central extension prevents us from taking a quo-
tient by LG to obtain a spinor module over C itself; in this sense we think
of Sq∗TC as a twisted Spinc-structure on C. There are examples of conju-
gacy classes of simply connected compact Lie groups not admitting ordinary
Spinc-structures (let alone canonical ones). See [27, Example 4.6] and [19,
Appendix D] for further discussion.

5.2. Connections on PG

To extend this discussion to more general Hamiltonian loop group spaces,
we will need an LG-invariant connection α ∈ Ω1(PG, g) on the principal
G-bundle p : PG→ A, as well as a G-invariant connection β ∈ Ω1(PG,Lg)
on the principal LG-bundle PG→ G, with the additional property that the
bundle maps

α : TPG→ g, β : TPG→ Lg

extend to the completion TPG. This requires some care: As pointed out
in Remark 3.2, the principal bundle p : PG→ A has a canonical trivializa-
tion PG→ G, γ 7→ γ(0), but the corresponding ‘trivial connection’ α does
not extend to the completion. For example, at the trivial path γ = e, this
connection is αe : TePG→ g, ξ 7→ ξ(0), which does not extend.

Proposition 5.3 (Connections on the path fibration). The principal
bundles p : PG→ A and q : PG→ G have invariant principal connections

α ∈ Ω1(PG, g)LG×G, β ∈ Ω1(PG, Lg)LG×G,

with continuous extensions to the completions, α : TPG→ g, β : TPG→
Lg.
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Proof. We first define a connection over an LG×G-invariant open neigh-
borhood of a given γ ∈ PG. Let µ = p(γ), a = q(γ), and let Vγ ⊆ PG, Vµ ⊆
A, Va ⊆ G be the slices described in Section 3.2. Then

TPG|Vγ
= (TVγ × (Lg⊕ g))/ ∼

where the quotient is by the anti-diagonal inclusion of (Lg⊕ g)γ . The com-
pletion TPG|Vγ

has a similar description, with Lg on the right hand side.
Let Rµ, Sµ be as in the proof of Proposition 5.1. The (LG×G)γ-equivariant
map

(16) TPG|Vγ
→ g, [(v, ξ,X)] 7→ X −Rµ(ξ),

for v ∈ TVγ , ξ ∈ Lg, X ∈ g, extends to a map on the completions, given by
the same formula. It extends by equivariance to an LG-invariant connection
for p : PG→ A over LG.Vγ ⊆ PG.

Similarly, the connection on q : PG→ G over LG.Vγ is given by the
(LG×G)γ-equivariant map

(17) TPG|Vγ
→ Lg, [(v, ξ,X)] 7→ ξ − Sµ(X).

It is well-defined, because ξ − Sµ(X) = 0 for (ξ,X) ∈ (Lg⊕ g)γ . Having thus
constructed equivariant connections over flow-outs of cross-sections, we may
use an LG×G-invariant partition of unity, as in Section 3.2, to patch to
global connections over all of PG. □

The connections α, β give LG×G-equivariant isomorphisms

p∗TA× g ∼= TPG ∼= q∗TG× Lg.

These have the useful property that for all γ ∈ PG, the tangent space TγVγ
to the slice is contained in the ‘horizontal space’ for the connection. In fact,
there is an open neighborhood of γ inside Vγ such that Tγ1

Vγ is horizontal
for all γ1 in that open neighborhood.

5.3. The twisted Spinc-structure for general quasi-Hamiltonian
spaces

The construction for conjugacy classes generalizes to arbitrary compact
quasi-Hamiltonian G-spaces. Unlike the case of conjugacy classes, the con-
struction depends on some choices, but these choices and the resulting
twisted Spinc-structure are unique up to homotopy.
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Theorem 5.4. Let G be a compact simply connected Lie group, andM be
a proper Hamiltonian LG-space, with associated quasi-Hamiltonian G-space
M . Consider the correspondence diagram (6). Then there is a spinor module

Cl(q∗TM) ⟳ Sq∗TM ,

equivariant with respect to the action of the spin-central extension of

L̂G
spin ×G, in such a way that the central circle acts with weight 1. The

spinor module is canonically defined, up to equivariant homotopy.

Proof. Pick an LG-invariant compatible complex structure J ∈ Jres(TM, ω),
within the polarization class from Theorem 4.2, and let STM be its spinor
module (12). As in the case of orbits, we consider the splittings

p∗TM× (g⊕ g) ∼= TN × g ∼= q∗TM × (Lg⊕ g)

defined by α, β. We obtain a Riemannian metric and orthogonal complex
structure on TN × g, and a spinor module

STN×g
∼= p∗STM ⊗ (N × ∧gC)

over Cl(TN × g). To ‘descend’ under q, we need an LG×G-equivariant
isometric isomorphism

ker(Tq) ∼= N × Lg
∼=−→ N × Lg.

The square root of the operator Dµ, µ = Φ(m) from the construction
for orbits gives such an isometric isomorphism pointwise, but the resulting
bundle map is not smooth, due to the fact that rank of the kernel of ∂µ
need not be constant. To get around this problem, choose a strictly positive
function χ ∈ C∞(R) such that χ(t) = |t| for t outside some interval (−ϵ, ϵ).
Then χ(∂µ) (defined using the functional calculus) differs fromDµ by a finite
rank operator. The collection of LGµ-equivariant isomorphisms

(18) χ(∂µ)
1/2 : Lg→ Lg,

defines an LG×G-equivariant bundle isomorphism

PG× Lg→ PG× Lg,
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given at γ by (18) with µ = p(γ). Hence, by pull-back it gives an equivariant
bundle isomorphism

(19) ker(Tq)→ N × Lg.

By Lemma 5.5 below, this bundle isomorphism (19) intertwines metrics, up
to Hilbert-Schmidt equivalence. The construction from Section 2.2 modifies
it further to an equivariant isomorphism exactly intertwining the metrics.
Hence, Cl(Lg⊕ g) acts on STN×g, and applying Proposition 2.3,

Sq∗TM := HomCl(Lg⊕g)(SLg⊕g, STN×g)

is a well-defined L̂G
spin ×G-equivariant spinor module over the Clifford al-

gebra of q∗TM . As the central circle in L̂G
spin

acts on SLg⊕g with weight −1,
we see that the central circle acts on Sq∗TM with weight +1. The choices
made in the construction of the spinor module Sq∗TM are: the choice of
an ω-compatible complex structure on TM (within the equivalence class
described in Theorem 4.2), of splittings of the maps Tp and Tq as in The-
orem 2.2, and of a cut-off function χ. All of these choices are unique up to
homotopy. □

It remains to prove:

Lemma 5.5. The bundle isomorphism (19) intertwines metrics, up to
Hilbert-Schmidt equivalence.

Proof. We argue locally, near any given point n ∈ N . Let γ = ΦN (n) and
µ = Φ(m), let Vγ ⊆ PG and Vµ ⊆ A be the slices through these points, as in
Section 3.2, and denote by Y = Φ−1(Vµ) ⊆M the symplectic cross-section
through m = p(n).

By Lemma 2.5, any two choices of compatible complex structures on
TM, within the polarization class from Theorem 4.2, give rise to Hilbert-
Schmidt equivalent metrics on TM. The resulting metric on TN also de-
pends on the choice of α; but the bundle map relating the splittings TN ∼=
TM× g from any two choices of α differs from the identity by a finite
rank bundle map; hence so do the g♭ maps. Hence, the Hilbert-Schmidt
equivalence class of the metric on TN is independent of the choices made.
In particular, we may take the complex structure J adapted to the cross-
section Y (cf. the proof of Theorem 4.2), in the sense that it is the sum
of an LGµ-invariant compatible complex structure on TY and the standard
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complex structure Jµ (cf. (9)) on Lg⊥µ . The resulting metric on the Lg⊥µ
summand, at y ∈ Y with image ν = p(y) ∈ Vµ, is given by

(20) (ξ, ζ) 7→ Dνξ · ζ.

We may furthermore assume that the connection α is defined as in the
proof of Proposition 5.3, using the map Rµ : Lg→ g. At z ∈ Ψ−1(Vγ), with
image point y ∈ Y , the splitting identifies T zN = T yM× g, the inclusion
of ker(Tq)z = Lg→ T zN is given by ξ 7→ (ξM(y), Rµ(ξ)), and the metric
is therefore given by

(21) (ξ, ζ) 7→ gM(ξM, ζM)
∣∣
y
+Rµ(ξ) ·Rµ(ζ).

If ξ, ζ ∈ Lg⊥µ ⊆ Lg, the second term in (21) does not contribute, while the

first term is given by (20). We conclude that the given metric on ker(Tq)z =
Lg differs from the metric (20) only on a finite-dimensional subspace. On
the other hand, the metric induced by (19) reads as

(22) (ξ, ζ) 7→ χ(∂ν)ξ · ζ

Since χ(∂ν)−Dν has finite rank everywhere, we conclude that the two met-
rics agree on a subspace of finite codimension. □

5.4. The canonical line bundle

Since the Clifford bundle Cl(q∗TM) has finite rank, its spinor module Sq∗TM

has a well-defined canonical line bundle

K = HomCl(q∗TM)(Sq∗TM , S
op
q∗TM )→ N

where the superscript “op” signifies the opposite (or dual) Clifford module.
This line bundle is equivariant for the action of the spin-central extension,
in such a way that the central circle acts with weight −2 (by Theorem 5.4
the weights of the action of the central circle on Sq∗TM , Sopq∗TM are +1, −1
respectively). The bundle K restricts to an equivariant line bundle overM
(using the inclusion M →֒ N defined by the inclusion A →֒ PG as based
paths). If the compact Lie group G is simple and simply connected, with

dual Coxeter number h∨, and letting L̂G denote the basic central extension
of its loop group, then K is L̂G-equivariant at level −2h∨. The canonical
line bundle over a Hamiltonian loop group space had been constructed in
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[30] in terms of cross-sections. For the case of coadjoint orbits of the loop
group, such line bundles were first discussed in [13].

5.5. Morita morphisms

The action of L̂G
spin

on the Hilbert space SLg⊕g descends to an action of LG
on the algebra of compact operators, K(SLg⊕g). We define a G-equivariant
Dixmier-Douady bundle

A
spin = PG×LG K(SLg⊕g)

op → PG/LG = G

where the superscript stands for the opposite algebra. Suppose that
(M, ω,Φ) is a proper Hamiltonian LG-space, and consider the factoriza-
tion

(23) STN×g
∼= Sq∗TM ⊗ (N × SLg⊕g).

of the spinor module over N . We may regard the LG×G-equivariant spinor
module STN×g as a bimodule, with Cl(q∗TM) acting by left multiplication
andN × K(SLg⊕g)

op acting by right multiplication. Taking quotients by LG,
this gives a G-equivariant Morita bimodule

Cl(TM) ⟳ E ⟲ Φ∗
A
spin.

where E = STN×g/LG. In the terminology of [3], it is a Morita morphism

Cl(TM) //

��

Aspin

��

M
Φ

// G

This Morita morphism was constructed in [3] using a completely different
approach.

6. Abelianization

In this section, G is a compact, simply connected Lie group, with a fixed
maximal torus T . We show that if the moment map of a proper Hamiltonian
LG-space is transverse to t∗ ⊆ A (as a space of constant connections valued
in the Lie algebra of the maximal torus), then the pre-image X = Φ−1(t∗)
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inherits a T -equivariant Spinc-structure which is also equivariant under a
central extension of the lattice Λ ⊆ t. We will also explain how to deal with
the non-transverse case. Before discussing the infinite-dimensional setting,
we will review the known construction for Hamiltonian G-spaces.

6.1. The spinor module Sg/t

Let T ⊆ G be a maximal torus , with normalizer N(T ) and Weyl group
W = N(T )/T . We denote by R ⊆ t∗ be the (real) roots α of (G, T ), and let
R+ be the set of of positive roots relative to some choice of Weyl chamber
t+ ⊆ t. It determines a T -invariant complex structure on g/t ∼= t⊥, in such
a way that the +

√
−1 eigenspace n+ = (g/t)+ ⊆ (g/t)C is the direct sum of

the root spaces for the positive roots. Let

Sg/t = Cl(g/t)/Cl(g/t) n− ∼= ∧n+

be the associated T -equivariant spinor module over Cl(g/t). The N(T )-
action on g/t does not preserve the complex structure, hence does not give
an action on the spinor module. The set of ‘implementers’ of this action
defines a central extension of N(T ) by U(1), with an action on the spinor
module such that the central circle acts with weight 1. Equivalently, this
central extension is the pull-back of the central extension

1→ U(1)→ Pinc(g/t)→ O(g/t)→ 1

under the action of N(T ) on g/t. The T -action on the spinor module defines
a homomorphism from T into this central extension; we will identify T with

its image in N̂(T ). The following is well-known.

Lemma 6.1. Let g ∈ N(T ), with lift ĝ ∈ N̂(T ). Then

(24) ĝ−1tĝ = tρ−wρ w−1(t),

where w ∈W is the Weyl group element determined by g, and tρ−wρ ∈ U(1)
is the image of t under the homomorphism T → U(1) defined by the weight
ρ− wρ.

Proof. Since the left hand side of (24) is a lift of g−1tg = w−1(t), it differs
from the ‘canonical’ lift by a scalar. To determine this scalar, let us apply
both sides to the ‘vacuum vector’ 1 ∈ ∧n+. This element is annihilated by the
Clifford action of all root vectors eα with α ∈ R−, hence ĝ.1 is annihilated by
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all g.eα with α ∈ R−. These are the root vectors for the weights wα, and the
pure spinor line annihilated by these root vectors is spanned by the wedge
product of root vectors for roots β ∈ R+ such that w−1β ∈ R−. The weight
for the action of t on this wedge product is thus the sum over all positive
roots β for which w−1.β is negative. But this is the weight ρ− wρ. □

The spinor module has a Z2-grading Sev
g/t ⊕ Sodd

g/t , and the Z2-graded charac-
ter

∆(t) = tr
(
t
∣∣
Sev
g/t

)
− tr

(
t
∣∣
Sodd
g/t

)

is complex conjugate to the Weyl denominator:

∆(t)∗ =
∏

α∈R+

(1− t−α) =
∑

w∈W
(−1)l(w)twρ−ρ.

Remark 6.2. The structure group of the central extension N̂(T ) can be
reduced to Z2, by taking the pull-back of Pin(g/t) rather than Pinc(g/t).
The embedding T → N̂(T ) does not take values in this Z2-central extension.
However, if G is simply connected, then ρ is a weight, and one can use a
new lift

ι : T → N̂(T ), t 7→ t̂ = t−ρ t

which takes values in Pin. Equation (24) shows that the image of this map
is a normal subgroup, resulting in a central extension of W by Z2 = ±1. See
[31] for an explicit description of this central extension in terms of generators
and relations.

There is a similar discussion for the Clifford algebra over Lg/t (identified
with the orthogonal space to t inside Lg). This space has a complex structure
whose +

√
−1 eigenspace is spanned by n+ together with the subspace of LgC

spanned by the positive Fourier modes. It defines a T -equivariant spinor
module

SLg/t = ∧(Lg/t)+

where the bar signifies a Hilbert space completion.
The action of the subgroup Λ⋊N(T ) ⊆ LG, where Λ ⊆ t is the inte-

gral lattice embedded as ‘exponential paths’, preserves t, hence also Lg/t.
The latter action is by transformations in the restricted orthogonal group
Ores(Lg/t), hence we obtain a central extension of Λ⋊N(T ) consisting of
all implementers of this action.

As before it is convenient to do computations using a basis of root vec-
tors. There is an action of T × S1 on LgC, where T acts by the adjoint action
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and S1 acts by rotating the loop. The non-zero weights for this action are the
affine roots Raff : all pairs (α, n), α ∈ R ∪ {0}, n ∈ Z where either n ̸= 0, or
n = 0 and α ̸= 0. The subset Raff,+ with either n > 0 or n = 0 and α ∈ R+

are the positive affine roots; the latter are the weights for the action of
T × S1 on (Lg/t)+. Let Raff,− = −Raff,+ denote the negative affine roots.

Since the T -action preserves the complex structure, the central extension
is canonically trivial over T , and given a lift ĝ of g ∈ Λ⋊N(T ), where g maps
to the affine Weyl group element w ∈ Λ⋊W , we have

(25) ĝ−1tĝ = t
∑

′ α w−1(t),

where the sum
∑′ α is over all (α, n) ∈ Raff,+ ∩ wRaff,−.

If g is simple then
∑′

α = ρ− wρ.

Here wρ denotes the action of the affine Weyl group on t∗ at level the dual
Coxeter number h∨; in terms of the basic inner product B for g, the latter
is generated by reflections in the affine hyperplanes h∨H(α,n) where

H(α,n) = {ξ ∈ t∗|B(α, ξ) + n = 0}

and (α, n) ∈ Raff,+.

Remark 6.3. Let θ denote the highest root. Using the formula

h
∨ = 1 +B(ρ, θ)

for the dual Coxeter number, one finds immediately that ρ− wρ = −θ, for
w the reflection in h∨H(−θ,1). This verifies the formula

∑′ α = ρ− wρ for
the additional generator w of the affine Weyl group.

6.2. Abelianization for Hamiltonian G-spaces

In this section, we consider Hamiltonian G-spaces (M,ω,Φ) whose moment
map Φ: M → g∗ is transverse to t∗ = (g∗)T ⊆ g∗. Simple examples of such
spaces include M = T ∗G, with the G-action given by the cotangent lift of
the left-action of G on itself, or the regular coadjoint orbits O ⊆ g∗.

Remark 6.4. The paper [40] gives a classification of all multiplicity free
Hamiltonian G-spaces whose moment map is transverse to t∗. For example,
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every regular coadjoint orbit of U(3), regarded as a Hamiltonian G = U(2)-
space under the inclusion U(2)→ U(3) in the upper left corner, is such a
space.

The transversality assumption implies that the submanifold

X = Φ−1(t∗),

with the pull-backs ωX ,ΦX of the symplectic form and moment map, be-
comes a degenerate Hamiltonian N(T )-space. Here degenerate refers to the
fact that the 2-form ωX is no longer symplectic; its has a non-trivial ker-
nel at points x ∈ X for which Φ(x) is not regular (i.e., has stabilizer larger
than T ). There is a canonical N(T )-equivariant trivialization of the normal
bundle,

ν(M,X) ∼= X × g/t

coming from the bundle map ν(M,X)→ ν(g∗, t∗) ∼= (T t∗)⊥ = t∗ × g/t in-
duced by Φ. It has a T -equivariant Spinc-structure from the complex struc-
ture on g/t, with associated spinor module X × Sg/t.

On the other hand, the choice of a G-invariant compatible almost com-
plex structure on M defines a G-equivariant spinor module STM , and we
obtain a T -equivariant spinor module for X,

(26) STX = HomCl(g/t)(X × Sg/t, STM |X).

Here the metric on TX⊥ ∼= ν(M,X) induced by the metric on M may be
different from that coming from the isomorphism with X × g/t, but as ex-
plained in Section 2.2 there is a natural isometric isomorphism relating the
two metrics. .

Given a G-equivariant line bundle L→M , the equivariant indices of
L|X ⊗ STX and of L⊗ STM are related by the Weyl denominator:

(27) indexG(L⊗ STM )(t) =
indexT (L|X ⊗ STX)(t)∏

α∈R+
(1− t−α)

for all regular t ∈ T . In particular, the two equivariant indices carry the
same information.
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Remark 6.5. The T -equivariant index χ(t) = indexT (L|X ⊗ STX)(t) has
the following transformation property.

χ(w−1.t) = (−1)l(w)twρ−ρχ(t).

This follows one the one hand from the invariance properties of the Weyl
denominator in (27), while the left hand side is W -invariant.

Alternatively, it follows because the T -action on the spinor module STX ,
extends to an action of the central extension of N(T ), see Section 6.1: If
g ∈ N(T ) represents w, and ĝ lifts g, then

χ(w−1.t) = χ(twρ−ρ ĝ−1tĝ) = (−1)l(w)twρ−ρ χ(t).

Here the sign appears because g changes the orientation, and hence ĝ changes
the parity of the spinor module, by (−1)l(w).

Since the complex structure on g/t is not N(T )-equivariant, the spinor
module STX is not N(T )-equivariant. However, we obtain a central ex-
tension of N(T ) (given by implementers for the action on Sg/t), and this
central extension acts. This accounts for the fact that the resulting index
indexT (LX ⊗ STX) ∈ R(T ) is anti-invariant with respect to the shifted Weyl
group action.

In practice, the assumption that Φ is transverse to t∗ is rather strong. To
make the abelianization procedure work in general, one can use an N(T )-
invariant tubular neighborhood U ⊆ g∗ of t∗, over which an ‘equivariant
Bott element’ β (the K-theory counterpart of a Thom form) is defined.
Over Φ−1(U), one then takes the cup product of the K-homology class of
Spinc-structure, with the pull-back of β; this has a well-defined equivariant
index. In the transverse case, one can ‘integrate over the fibers’ and replace
the K-cycle on Φ−1(U) with one on X = Φ−1(t∗).

6.3. Abelianization for Hamiltonian LG-spaces

Our aim is to carry out a similar abelianization approach for Hamiltonian
loop group spaces, with moment maps taking values in A. This works partic-
ularly well in the ‘transverse case’. Let Λ ⊆ t be the integral lattice (kernel
of the exponential map), with the natural action of N(T ) via the homomor-
phism to W . The semi-direct product Λ⋊N(T ) acts on t via its homomor-
phism to the affine Weyl group Λ⋊W , that is, (ℓ, h).µ = Adh µ− ℓ. The
inclusion t→ PG as exponential loops γ(t) = exp(tµ) is equivariant relative
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to the homomorphism

Λ⋊N(T ) →֒ LG×G, (ℓ, h) 7→ (exp(tℓ)h, h).

Under the projection p : PG→ A, it descends to an equivariant inclusion t→
A, µ 7→ µ∂t as ‘constant connections’, and under q : PG→ G it descends
to the standard inclusion T → G.

Proposition 6.6. For a proper Hamiltonian LG-manifold (M, ω,Φ), with
correspondence diagram (6), the following are equivalent:

• the map Φ:M→A is transverse to t →֒ A,
• the map ΦM : M → G is transverse to T →֒ G,

• the map ΦN : N → PG is transverse to t →֒ PG.

Proof. Let µ ∈ t be given, corresponding to the exponential path γ(t) =
exp(tµ), and let n ∈ N with ΦN (n) = γ. Let Vγ be the slice at γ, and
Yγ = (ΦN )−1(Vγ) ⊆ N the cross-section. Note that Vγ contains an open
neighborhood of γ inside the image of t →֒ PG. Hence, by equivariance, ΦN
is transverse to t →֒ PG at n if and only if its restriction ΦN |Yγ

is transverse
to t at n. Similarly, the transversality of ΦM to t at p(n), and of ΦM to T at
q(n), is equivalent to a similar transversality conditions for the restriction to
the cross-sections. Since p and q define diffeomorphisms of the cross-sections
Yp(γ) ← Yγ → Yq(γ), intertwining the moment maps and the inclusions of t
resp, of T , we conclude that all three transversality conditions are equiva-
lent. □

Example 6.7. There is an interesting example, due to Woodward, of a
multiplicity-free quasi-Hamiltonian SU(3)-spaces, with moment map trans-
verse to the maximal torus T . Its moment polytope is a triangle, with vertices
the mid-points of the edges of the alcove. See [26] or [20] for a description
of this space.

Proposition 6.8. Let (M, ω,Φ) be a proper Hamiltonian LG-space. If the
moment map Φ:M→A is transverse to the inclusion t →֒ A, then the pre-
image X = Φ−1(t) becomes a (degenerate) Hamiltonian Λ⋊N(T )-manifold.
The choice of positive roots for (G, T ) determines a Spinc-structure on X ,
equivariant with respect to

Λ̂spin ⋊ T
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where the superscript indicates the central extension obtained by restriction
from the spin central extension of the loop group.

Proof. By the transversality condition, the pre-image X = Φ−1(T ) is a
(degenerate) quasi-Hamiltonian N(T )-manifold, while X = Φ−1(t) ⊆M be-
comes a (degenerate) Hamiltonian Λ⋊N(T )-manifold. We may also regard
it as the submanifold X = Φ−1

N (t) ⊆ N .
The moment map ΦM and any choice of invariant Riemannian metric

gives an N(T )-equivariant decomposition TM |X ∼= TX ⊕ (X × g/t), hence

q∗TM |X = TX ⊕ (X × g/t)

Using the spinor bundle Sg/t defined by a system of positive roots, we obtain
a spinor bundle,

STX = HomCl(X×g/t)(X × Sg/t, Sq∗TM |X ),

hence a Spinc-structure on X . □

Remark 6.9. From the proof, we see that the spinor module is actually
equivariant for the action of a central extension of Λ⋊N(T ) whose restric-
tion to N(T ) is the opposite of the spin-central extension for its action on
Sg/t.

Remark 6.10. In this argument, we used the twisted Spinc-structure on
q∗TM constructed earlier. Alternatively, one can also start out with STM.
Similar to Section 5.3, one can construct an Λ⋊N(T )-equivariant isometric
isomorphism

TM = TX ⊕ Lg/t,

and then define STX = HomCl(X×Lg/t)(X × SLg/t, STM).

Remark 6.11. Given a pre-quantum line bundle L for M, one obtains a
new Spinc-structure on X , with spinor module STX ⊗ L, and an associated
Dirac operator /∂. This Dirac operator is equivariant with respect to T , as
well as with respect to a spin-central extension of Λ. Using the commutation
relations between these two actions, we can show that the irreducible T -
representations appear with finite multiplicity in the (infinite-dimensional)
kernel and cokernel of /∂. Details will be given in a forthcoming paper.
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6.4. Thickenings

In the non-transverse case, the situation is slightly more complicated. Choose
ϵ > 0 so that the map

T × g/t ∼= ν(G, T )→ G, (t, ξ) 7→ t exp(ξ)

(where we identify g/t ∼= t⊥) restricts to a tubular neighborhood embedding

(28) T ×Bϵ(g/t) →֒ G.

Using an LG×G-equivariant principal connection on PG→ G (for instance,
the connection β constructed in Section 5.2), this lifts uniquely to a tubular
neighborhood embedding

(29) q−1(T )×Bϵ(g/t) →֒ PG

in such a way that the corresponding Euler vector field on the image of
(29) is the horizontal lift of the Euler vector field on the image of (28).
See [9] for the construction of tubular neighborhoods in terms of Euler-
like vector fields; the relevant infinite-dimensional techniques can be found
in [1]. Its composition with the inclusion t→ q−1(T ) ⊆ PG as exponential
maps defines a Λ⋊N(T )-equivariant embedding t×Bϵ(g/t) →֒ PG, which
fits into a commutative diagram

(30) t×Bϵ(g/t) //

��

PG

��

T ×Bϵ(g/t) // G

Since the upper map is transverse to the action of LG, the pre-image

Y = Φ−1
N (t×Bϵ(g/t)) ⊆ N

is a smooth finite-dimensional submanifold. We think of it as a thickened
version of the possibly singular space X = Φ−1

N (t) ∼= Φ−1(t). Projection to
M gives an identification

Y/Λ ∼= Y := Φ−1
M (T ×Bϵ(g/t)) ⊆M,

an open neighborhood of X inM . The restriction of q∗STM to Y is a Λ̂spin ⋊
T -equivariant spinor bundle, defining a Spinc-structure on Y.
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7. Twisted loop groups

Let κ ∈ Aut(G) be a Lie group automorphism. We take the κ-twisted loop
group L(κ)G to be the group of paths λ : R→ G of (local) Sobolev class s
with the property λ(t+ 1) = κ(λ(t)).

Let P(κ)G consist of paths γ : R→ G of Sobolev class s such that γ(t+
1) = aκ(γ(t)) for some a ∈ G. The group G acts on P(κ)G by multiplication
from the left, while L(κ)G acts as multiplication by the inverse from the right.
We will use the notation Gκ for the group G regarded as a G-space under the
κ-twisted conjugation action, g.a = gaκ(g)−1. Then P(κ)G is aG-equivariant
principal L(κ)G-bundle over Gκ, with quotient map q(γ) = γ(1)κ(γ(0))−1.
Let A(κ) be the space of connection 1-forms on R of Sobolev class s− 1,
with the property µ(t+ 1) = κ(µ(t)). The group L(κ)G acts on this space
by gauge transformations, and the map p : P(κ)G→ A(κ), γ 7→ γ−1∂γ is
an L(κ)G-equivariant principal G-bundle. We arrive at the correspondence
diagram,

(31) P(κ)G
p

{{

q

##

A(κ) Gκ

giving a Morita equivalence of the action groupoids [A(κ)/L(κ)G] and [Gκ/G].
Given an Ad-invariant metric on g that is also κ-invariant, we obtain an
L(κ)G×G-invariant 2-form ϖ(κ) ∈ Ω2(P(κ)G), with the properties dϖ(κ) =
−q∗η, as well as

(32) ι(XPG)ϖ
(κ) = −1

2
q∗(θL · κ(X) + θR ·X), ι(ξPG)ϖ

(κ) = p∗⟨dµ, ξ⟩

for X ∈ g, ξ ∈ L(κ)g. It is given by the explicit formula (see Appendix C)

ϖ(κ) =
1

2

∫ 1

0

(
ev∗t θ

R · ∂
∂t

ev∗t θ
R

)
∂t+

1

2
ev∗0 κ(θ

L) · ev∗1 θL.

Proper Hamiltonian L(κ)G-spaces are defined just as in the case of a trivial
automorphism (see Definition 3.4), replacing A with A(κ). Similarly, quasi-
Hamiltonian G-spaces with Gκ-valued moment maps [6, 25] are defined simi-
lar to Definition 3.5, but requiring equivariance with respect to the κ-twisted
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conjugation action, and replacing the moment map condition by

ι(XM )ωM = −1

2
Φ∗
M (θL · κ(X) + θR ·X),

in accordance with (32). As before, one has a 1-1 correspondence between
proper Hamiltonian L(κ)G-spaces and quasi-Hamiltonian G-spaces with Gκ-
valued moment maps, described by a diagramM p←− N q−→M , similar to
(6). Examples of such quasi-Hamiltonian spaces are the twisted conjugacy
classes C ⊆ Gκ; the corresponding L(κ)G-spaces are the coadjoint L(κ)G-
orbits O ⊆ A(κ). Here, the symplectic form on coadjoint orbits is given by
the same expression (7) as in the untwisted case, using that ∂µξ1 · ξ2 for
µ ∈ A(κ) and ξi ∈ L(κ)g is a periodic 1-form on R. Further examples may be
found in the context of twisted wild character varieties [6], twisted moduli
spaces of flat connections [25], and multiplicity free quasi-Hamiltonian spaces
[18].

Remark 7.1. For most purposes, it is enough to consider one represen-
tative of automorphisms in any given class in Aut(G)/ Inn(G). (See [25,
Section 3.4].) Indeed, suppose κ̃ = Adh ◦κ for some h ∈ G. Then the map
Gκ→ Gκ̃, g 7→ gh−1 intertwines the κ-twisted conjugation action with
the κ̃-twisted conjugation action. Similarly, the choice of any σ ∈ P(κ)G
with q(σ) = h defines a group isomorphism L(κ)G→ L(κ̃)G, λ 7→ Adσ λ. The
map P(κ)G→ P (κ̃)G, γ 7→ γσ−1, is G-equivariant and intertwines the ac-
tions of L(κ)G and L(κ̃)G. The corresponding map A(κ) → A(κ̃) is given by
µ 7→ Adσ(µ)− ∂σσ−1. In this way, right multiplication by h−1 turns a Gκ-
valued moment map into a Gκ̃-valued moment map, and the gauge action
of σ turns an A(κ)-valued moment map into a A(κ̃)-valued moment map.

Given a proper Hamiltonian L(κ)G-spaceM, the construction of a spinor
module STM proceeds parallel to the case of κ = 1. We will be brief, provid-
ing details only where special aspects of the construction arise. We introduce

the space L
(κ)

g of κ-twisted loops of Sobolev class 1
2 , and use it to define

a completion TM of the tangent bundle, on which the 2-form becomes
strongly symplectic. If O ⊆ A(κ) is a coadjoint orbit, then the completed
tangent bundle TO has a canonical L(κ)G-invariant compatible complex
structure, given by the formula (9). In the general case, we obtain a polar-
ization class of L(κ)G-invariant compatible complex structures J on TM.
Up to isomorphism, the resulting L(κ)G-equivariant spinor bundle STM is
independent of the choice of J .
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To obtain a twisted Spinc-structure for the associated quasi-Hamiltonian
space (where ‘twist’ refers to the twisting of K-theory, rather than to the
automorphism κ of the twisted loop group), we need L(κ)G×G-equivariant
connections α, β on the two principal bundles in (31), in such way that
the corresponding vertical projections extend to the completions. Such con-
nections are obtained by the same method as in Section 5.2; see [25] for a
discussion of slices for the twisted conjugation action. As another ingredi-
ent, we need the spin representation of the twisted loop group. Let L(κ)g be
the κ-twisted loops of Sobolev class 0, with the Hilbert space inner product
given by integration over [0, 1] ⊆ R. The covariant derivative ∂0 with respect
to 0 ∈ A(κ) is an unbounded skew-adjoint operator on this Hilbert space, its
kernel are the constant κ-twisted loops, that is, elements of gκ. The spectral
decomposition of ∂0 defines a complex structure on (gκ)⊥ ⊆ L(κ)g; together
with the standard complex structure on gκ ⊕ gκ we hence have a complex
structure on L(κ)g⊕ gκ, and an associated spinor module:

Cl(L(κ)g⊕ gκ) ⟳ SL(κ)g⊕gκ .

We obtain a central extension of L(κ)G by its map to the restricted orthogo-
nal group; its opposite will be called the spin-central extension of the twisted
loop group L(κ)G.

Consider the principal bundles M p←− N q−→M , obtained by pulling
back (31) under the respective moment maps, and equipped with the pull-
backs of the connections α, β. We obtain L(κ)G×G-equivariant isometric
bundle isomorphisms

p∗TM× (g⊕ g) ∼= TN × g ∼= q∗TM × (L(κ)g⊕ g)

(using a trivial action on the second g copy). Here the second isomorphism
is obtained by first using β to identify TN × g with the bundle q∗TM ×
(L

(κ)
g⊕ g), and then using the method from Section 5.3 to pass to L(κ)g,

in such a way that metrics and actions are preserved. The first isomorphism
gives an equivariant spinor bundle

STN×g := p∗STM ⊗ (N × ∧gC)

Taking a ‘quotient’, we obtain a spinor module

q∗Cl(TM ⊕ g/gκ) ⟳ Sq∗TM×g/gκ := HomCl(L(κ)g⊕gκ)

(
SL(κ)g⊕gκ , STN×g

)
;
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equivalently, we obtain a Spinc-structure on the bundle

(33) q∗TM × g/gκ → N ,

which is equivariant for the action of L̂(κ)G
spin
×G. The presence of the

g/gκ factor is both natural and convenient. In fact, quasi-Hamiltonian spaces
with Gκ-valued moment maps can be odd-dimensional; examples include the
twisted conjugacy classes of SU(3) with κ defined by the standard diagram
automorphism. Using the cross-section theorems from [25], one finds that
the parity of dimM coincides with that of dim g/gκ, hence q∗TM × g/gκ

always has even rank.
We define a G-equivariant Dixmier-Douady bundle over Gκ,

A
(κ),spin = P(κ)G×L(κ)G K(SL(κ)g⊕gκ)op → Gκ.

The reasoning from Section 5.5 gives a G-equivariant Morita morphism,

Cl(q∗TM × g/gκ) 99K A
(κ),spin.

The K-homology fundamental class of M lives in the G-equivariant twisted
K-homology of M with coefficients in Cl(q∗TM × g/gκ); taking a tensor
product with a pre-quantization, and pushing forward under the moment
map as in [28] gives an element of twisted equivariant K-homology of Gκ,
at a suitable level.

For the abelianization procedure, we assume that G is simple and simply
connected, and (with no loss of generality, see Remark 7.1) that κ is given by
a Dynkin diagram automorphism, relative to some choice of maximal torus
T and positive roots. Then κ preserves T ; let T κ be the fixed point torus.
Every κ-twisted conjugacy class meets T κ; similarly, every coadjoint orbit of
L(κ)G meets tκ ⊆ A(κ) (embedded as constant connections), and every orbit
of L(κ)G×G on P(κ)G meets tκ ⊆ P(κ)G (embedded as exponential paths).

Suppose M is a proper Hamiltonian L(κ)G-space whose moment map
Φ:M→A(κ) is transverse to tκ ⊆ A(κ). Equivalently, ΦN is transverse to
tκ ⊆ P(κ)G, and ΦM is transverse to T κ ⊆ Gκ. Then X = Φ−1(tκ) ∼= Φ−1

N (tκ)
is a degenerate Hamiltonian Λκ ⋊NG(T )

κ-space, whileX = Φ−1
M (T κ) is a de-

generate quasi-Hamiltonian NG(T )
κ-space. We have TM |X = TX ⊕ (X ×

g/tκ), and a similar decomposition for the pull-back to X ⊆ N . Conse-
quently,

q∗TM |X ⊕ (X × g/gκ) = TX ⊕ (X × (g/tκ ⊕ g/gκ)),
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We obtain a complex structure on g/tκ ⊕ g/gκ = gκ/tκ ⊕ g/gκ ⊕ g/gκ, by
taking the standard complex structure on g/gκ ⊕ g/gκ = g/gκ ⊗ R2, and the
complex structure on gκ/tκ determined by the positive roots. Together with
the Spinc-structure on q

∗TM |X ⊕ (X × g/gκ), this then determines a Spinc-
structure on X , equivariant under the action of the spin central extension
of Λκ ⋊NG(T )

κ ⊆ L(κ)G. The non-transverse case can be dealt with by a
thickening procedure similar to Section 6.4.

Remark 7.2. The Spinc-structure on X is equivariant for the spin-central
extension of the full subgroup of L(κ)G preserving tκ ⊆ A(κ). This is some-
what larger than Λκ ⋊NG(T )

κ. To see this, let Tκ be the range of T →
T, h 7→ f(h) := hκ(h)−1 given by the twisted conjugation action on the
group unit e. The subtorus Tκ is transverse to T κ, of complementary di-
mension; hence Tκ ∩ T κ is a finite group. The twisted conjugation action
of h ∈ T preserves T κ if and only if f(h) ∈ Tκ ∩ T κ (in which case the ac-

tion is translation by f(h)), and N
(κ)
G (T κ) (the subgroup of G whose action

on Gκ preserves T κ) is generated by NG(T )
κ together with f−1(Tκ ∩ T κ).

Accordingly, N
(κ)
G (T κ)/T κ is a semi-direct product of W κ = NG(T )

κ/T κ,
with the finite group T κ ∩ Tκ. In a similar fashion, the subgroup of L(κ)G
preserving tκ ⊆ A(κ) is generated by Λκ ⋊NG(T )

κ, together with paths of
the form λ(t) = h exp(tX) with X ∈ tκ such that f(h) expT (X) = e. Let-
ting Λ(κ) = exp−1

Tκ(Tκ ∩ T κ) ⊆ tκ, the resulting transformation group of tκ is

W
(κ)
aff = Λ(κ) ⋊W κ. (This is the Weyl group of the twisted affine Kac-Moody

algebra corresponding to L(κ)G.)

Appendix A. Spaces of compatible complex structures

Recall the setup of Section 2.3: H is a real Hilbert space with inner product
g, (strong) symplectic structure ω, and complex structure J such that

g(v, w) = ω(v, Jw).

For A ∈ B(H), let A∗ denote the transpose of A with respect to g. The polar
decomposition

A = RP, P = |A| =
√
A∗A, R = A|A|−1

leads to a contraction

At := RP t, t ∈ [0, 1]
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of the space of invertible elements of B(H) onto the orthogonal group O(H).
The following is well-known.

Proposition A.1. The contraction t 7→ At restricts to a contraction of
Sp(H) onto UJ(H).

Proof. Note that A ∈ Sp(H) implies A∗JA = J . In particular A∗ ∈ Sp(H),
hence A∗A ∈ Sp(H). Taking fractional powers of the equation JA∗AJ−1 =
(A∗A)−1 shows that |A|t ∈ Sp(H) for all t ∈ Q, hence for all t ∈ R by norm-
closedness of Sp(H). Setting t = 1 shows that R = A|A|−1 ∈ O(H) ∩ Sp(H) =
UJ(H). □

The contraction descends to the quotient, giving a contraction of J (H, ω)
to a point.

Proposition A.2. The contraction t 7→ At restricts to a contraction of
Spres(H) onto UJ(H).

Proof. Let A∈Spres(H) have polar decomposition A=RP . Since R∈UJ(H),

(A.1) [J,At] = R[J, P t].

Extend P complex-linearly to HC. The spectrum of P is a compact subset
of (0,∞). Choose a simple closed contour Γ contained in C \ (−∞, 0] and
containing the spectrum of P . Then

P t =
1

2πi

∫

Γ
zt(z − P )−1dz,

where zt = et log(z) (branch cut along (−∞, 0]), hence

[J, P t] =
1

2πi

∫

Γ
zt(z − P )−1[J, P ](z − P )−1dz.

Taking Hilbert-Schmidt norms

∥[J, P t]∥HS ≤
1

2π

∫

Γ
|zt| · ∥(z − P )−1∥2∥[J, P ]∥HS |dz|

shows that ∥[J, P t]∥HS <∞. By equation (A.1), At ∈ Spres(H) for t ∈ [0, 1].
Using similar arguments one shows that (t, A) 7→ At is continuous with re-
spect to the norm ∥ − ∥J = ∥ − ∥+ ∥[J,−]∥HS . □
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Remark A.3. By Kuiper’s theorem, U(H) is contractible in the norm
topology. Thus Sp(H) and Spres(H) are contractible. For Sp(H), this and
related results can be found in [38].

Appendix B. Central extension of the loop group

Let G be a compact, connected Lie group, with Lie algebra g. Let Lpolg =
g[z, z−1] ⊆ LgC be the Lie algebra of Laurent loops. The choice of invariant

metric · on g determines a central extension L̂polg = Lpolg⊕ C, with bracket

[(ξ1, t1), (ξ2, t2)] =

(
[ξ1, ξ2], 2πi

∫

S1

dξ1 · ξ2
)
.

IfG is simple and simply connected, then any invariant metric is a multiple of
the basic inner product. The multiple is a real number k called the level of the
central extension. One knows that the Lie algebra extension exponentiates
to a Lie group extension by C× if and only if k ∈ Z.

Let Lpolg = Lpolg+ ⊕ gC ⊕ Lpolg− be the triangular decomposition de-
fined by the Fourier modes. We obtain a representation of Cl(Lpolg) on

R = Cl(Lpolg)/Cl(Lpolg)Lpolg+
∼= Cl(g)⊗ ∧Lpolg−.

The adjoint action of Lpolg gives a Lie algebra homomorphism ξ 7→ adξ,
Lpolg→ o(Lpolg), acting on Cl(Lpolg) by derivations. It turns out to be
impossible to lift to a Lie algebra morphism Lpolg→ Cl(Lpolg), ξ 7→ γ(ξ) ∈
Cl(Lpolg) with

(B.2) adξ(x) = [γ(ξ), x], x ∈ Cl(Lpolg).

However, it turns out that one can define γ(ξ) as operators on R, satisfying
(B.2) but with

[γ(ξ), γ(ζ)] = γ([ξ, ζ]) + ψKP (ξ, ζ),

where ψKP is the Kac-Peterson cocycle [17]

ψKP (ξ, ζ) =
1

2
Resz=0B

kil

(
∂ξ

∂z
, ζ

)
=

1

4πi

∫

S1

Bkil(dξ, ζ)

and Bkil(ξ1, ξ2) = tr(adξ1 adξ2) is the Killing form on g. If g is simple, the
Killing form is related to the basic inner product by Bkil = −8π2h∨Bbasic;
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hence we obtain

ψKP (ξ, ζ) = 2πi h∨
∫

S1

Bbasic(dξ, ζ).

This verifies that the spin central extension of the loop group is at level the
dual Coxeter number.

Appendix C. The 2-form ϖ

The 2-form ϖ ∈ Ω2(PG) is given in terms of the evaluation map evs : PG→
G as follows,

ϖ =
1

2

∫ 1

0

(
ev∗t θ

R · ∂
∂t

ev∗t θ
R

)
∂t+

1

2
ev∗0 θ

L · ev∗1 θL

Letting Aλ denote the action of λ ∈ LG on PG, we have

evt ◦Aλ = rλ(t)−1 ◦ evt,

where ra denotes right multiplication by a ∈ G. It is thus follows that the
g-valued 1-forms ev∗t θ

R are LG-invariant:

A∗
λ ev

∗
t θ

R = ev∗t r
∗
λ(t)−1θ

R = ev∗t θ
R.

On the other hand, under the action of G by left multiplication, ev∗t θ
R

transforms by the adjoint action. Hence ϖ is LG×G-invariant. The ex-
terior differential of ϖ is calculated by integration by parts, similar to [2,
Appendix A] and is given by

dϖ = ev∗0 η − ev∗1 η +
1

2
d
(
ev∗0 θ

L · ev∗1 θL
)
= −q∗η,

where we used q(γ) = γ1γ
−1
0 . Since evt intertwines the left-action on PG

with that on G, we have that XPG ∼evt
−XR. Consequently, at γ ∈ PG,

ι(XPG)ϖ = −1

2
X · (γ∗1θR − γ∗0θR)−

1

2
Adγ−1

0
X · γ∗1θL +

1

2
Adγ−1

1
X · γ∗0θL

=
1

2
X ·

(
(γ1γ

−1
0 )∗θL − (γ0γ

−1
1 )∗θL

)

= −q∗
(1
2
X · (θL + θR)

)
.
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On the other hand, for ξ ∈ Lg we have that ξPG ∼evt
ξLt . Therefore, at γ ∈

PG,

ι(ξPG)ϖ =
1

2

∫ 1

0

(
Adγt

ξt ·
∂

∂t
γ∗t θ

R − γ∗t θR ·
∂

∂t
Adγt

ξt

)
∂t

+
1

2
ξ(0) ·

(
γ∗1θ

L − γ∗0θL
)

=

∫ 1

0

(
ξt ·Adγ−1

t

∂

∂t
γ∗t θ

R

)
∂t = p∗d⟨µ, ξ⟩

where the last equality used

Adγ−1
t

∂

∂t
γ∗t θ

R = d(γ−1
t γ̇t).

In the presence of an automorphism κ, we define ϖ(κ) ∈ Ω2(P(κ)G) as fol-
lows,

ϖ(κ) =
1

2

∫ 1

0

(
ev∗t θ

R · ∂
∂t

ev∗t θ
R

)
∂t+

1

2
ev∗0 κ(θ

L) · ev∗1 θL.

A calculation similar to the above shows dϖ(κ) = −q∗η, and

ι(XPG)ϖ
(κ) = −q∗

(1
2
(κ(X) · θL +X · θR)

)
, ι(ξPG)ϖ

(κ) = p∗⟨dµ, ξ⟩.
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