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non-squeezing for relative embeddings
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We introduce the notion of a symplectic capacity relative to a co-
isotropic submanifold of a symplectic manifold, and we construct
two examples of such capacities through modifications of the Hofer-
Zehnder capacity. As a consequence, we obtain a non-squeezing
theorem for symplectic embeddings relative to coisotropic con-
straints and existence results for leafwise chords on energy surfaces.
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1. Introduction

Symplectic capacities are an important tool in the study of symplectic rigid-
ity phenomena. The first one was constructed by Gromov [16], and the notion
was subsequently axiomatized by Ekeland and Hofer [13]. Many such capac-
ities exist; indeed, each phenomenon of symplectic rigidity arguably gives
rise to its own capacity. A large number of examples are described in [9],
and relationships between them, notably energy-capacity inequalities, lead
to interesting connections between Hamiltonian dynamics and symplectic
topology.

Very little is known about capacities defined relative to special subman-
ifolds N →֒M of a symplectic manifold, and even in the Lagrangian case
there are many open questions. Barraud and Cornea introduced the first

819



✐

✐

“8-Lisi” — 2020/7/29 — 23:38 — page 820 — #2
✐

✐

✐

✐

✐

✐

820 S. Lisi and A. Rieser

relative capacities for the Lagrangian case, the Lagrangian Gromov width
and relative packing numbers [3]. Upper bounds for the Lagrangian Gromov
width of the Clifford torus in CPn were computed by Biran and Cornea
[5], and Buhovsky [7] later computed lower bounds for the Clifford torus.
Schlenk’s constructions [24] also work in the relative case, and therefore com-
pute the relative packing numbers for k ≤ 6 balls in (CP 2,RP 2). In [23], the
second author defined a blow-up and blow-down procedure for Lagrangian
submanifolds, and used it to compute the Lagrangian Gromov width of a
class of Lagrangians that are fixed point sets of real, rank-1 symplectic mani-
folds. In [26, 27], Zehmisch constructed a capacity of a manifold (M,ω) from
embeddings of n-disk bundles over a Lagrangian submanifold and related it
to the geometry of the Lagrangian. In [6], Borman and McLean constructed
a spectral capacity for wrapped Floer homology, and used it to study the
Lagrangian Gromov width of closed Lagrangian submanifolds in Liouville
manifolds. Dimitroglou Rizell [11] gave examples of compact Lagrangians in
C3 with infinite Barraud-Cornea Lagrangian width, building on [14].

In this paper, we study a notion of a capacity relative to a coisotropic
submanifold, which we call a coisotropic capacity. In a heuristic sense, if
a symplectic capacity measures the ‘width’ of a symplectic manifold, a
coisotropic capacity similarly measures the symplectic ‘size’ of a coisotropic
embedding inside an ambient symplectic manifold. We construct a family
of such capacities, analogous to the Hofer-Zehnder capacity, indexed by a
suitable equivalence relation on the coisotropic submanifolds.

We recall that a coisotropic submanifold is foliated by the leaves of the
characteristic foliation. A Hamiltonian trajectory that starts and ends on
the same leaf of this foliation is called a leafwise chord. As an applica-
tion of the capacity we introduce, we obtain existence of leafwise chords for
the coisotropic submanifold for almost every energy level of an autonomous
Hamiltonian, under the assumptions of having a finite capacity neighbour-
hood and transversality of the level set to the coisotropic submanifold. (See
Theorem 4.2.)

Leafwise chords have been studied extensively in the literature, perhaps
first appearing in the work of Moser [22]. We mention a few works that
similarly approach this problem from an energy–capacity–inequality point
of view, notably Hofer [18], Ginzburg [15], Dragnev [12], Ziltener [29], Gürel
[17], Albers and Frauenfelder [1], Albers and Momin [2], Usher [25] and Kang
[20].

Of particular relevance to us are [15, Theorem 2.7] and [17, Theorem 1.1].
These papers show that in the case of coisotropic submanifolds of restricted
contact type, there is a lower bound on the leafwise displacement energy
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of the coisotropic submanifold coming from the symplectic area of a disk
tangent to a leaf of the characteristic foliation.

Definition 1.1. Let

1) Rn,k :=
{

x ∈ R2n|x = (x1, . . . , xn, y1, . . . , yk, 0, . . . , 0)
}

2) W (R) :=
{

(x1, . . . , xn, y1, . . . , yn) ∈ R2n | x2n + y2n < R2 or yn < 0
}

3) Wn,k(R) :=W (R) ∩ Rn,k

4) B(a, r) is the open ball of radius r centered at

a := (0, . . . , 0, bn) ∈ R2n,

and B(r) is the open ball of radius r centered at the origin.

5) Bn,k(r) := B(r) ∩ Rn,k

Definition 1.2. Let (M,ω) be a symplectic manifold and let N ⊂M be
a submanifold. Then, N is coisotropic if the symplectic orthogonal TNω ⊂
TN .

The restriction ω|N defines a distribution on N , consisting of the kernel
of ω|N . By the Frobenius integrability theorem, this distribution is integrable
and integrates to the characteristic foliation. The leaves of this distribution
are the isotropic leaves.

Example 1.3. Let ω0 denote the standard symplectic form on R2n, and
recall that Rn,k is the linear coisotropic subspace of (R2n, ω0) consisting of
the first n+ k coordinates, i.e.

Rn,k =
{

x ∈ R2n | x = (x1, . . . , xn, y1, . . . , yk, 0, . . . , 0)
}

.

Let V0 be the linear subspace

V0 =
{

x ∈ R2n | x = (0, . . . , 0, xk+1, . . . , xn, 0, . . . , 0)
}

,

and note that any leaf F in the characteristic foliation F of Rn,k has the
form z + V0, for some z ∈ Rn,k.

Definition 1.4. A coisotropic equivalence relation on N is an equivalence
relation ∼ with the property that if x, y are in the same isotropic leaf, then
x ∼ y.
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In particular, the leaf relation, given by x ∼ y if and only if x, y are in the
same isotropic leaf, is the finest coisotropic equivalence relation. The trivial
relation defined by x ∼ y for every pair x, y ∈ N is the coarsest coisotropic
relation.

Note that if N is a connected Lagrangian, there is only one coisotropic
equivalence relation since there is only one leaf.

Definition 1.5. Let (M0, ω0) and (M1, ω1) be symplectic manifolds and
let N0, N1 be coisotropic submanifolds of M0,M1 respectively. Let ∼0 and
∼1 be coisotropic equivalence relations on N0, N1.

Then, an embedding ψ:M0 →M1 is a relative symplectic embedding,

ψ: (M0, N0, ω0) →֒ (M1, N1, ω1)

if ψ∗ω1 = ω0 and ψ−1(N1) = N0.
The embedding ψ respects the pair of coisotropic equivalence relations

(∼0,∼1) if furthermore, for every x, y ∈ C, if ψ(x) ∼1 ψ(y) then x ∼0 y.
If ψ: (M0, N0, ω0) →֒ (M1, N1, ω1) is a relative embedding, we define the

pull-back relation ∼ψ on N0 by

x ∼ψ y ⇐⇒ ψ(x) ∼1 ψ(y).

Thus, ψ respects the pair (∼0,∼1) if ∼0 is a coarser relation than the pull-
back ∼ψ.

In particular, if N0, N1 are Lagrangian, this recovers the definition of a
relative symplectic embedding, first introduced (without the terminology)
in Barraud-Cornea [3], Section 1.3.3, and formally defined in Biran-Cornea
[4], Section 6.2. Observe also that ψ respects the relations ∼ψ and ∼1 by
construction of the pull-back. If ∼, ≈ are two equivalence relations on the
coistropic submanifold N , the identity on (M,N,ω) respects ∼,≈ if and
only if ∼ is coarser than ≈.

Example 1.6. The first class of non-trivial examples comes from consider-
ing a properly embedded coisotropic submanifold C in an ambient symplectic
manifold, say R2n. We now consider all pairs (U,N) so that there exists an
embedding ψ:U → R2n for which ψ(N) = C ∩ ψ(U). Then, we may take the
coisotropic equivalence relation on N to be the pull-back of the leaf relation
on C by ψ. Described more concretely, we say x ∼ y for x, y ∈ N if ψ(x) and
ψ(y) are in the same leaf of C.
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Definition 1.7. A coisotropic capacity is a map

(M,N,ω,∼) 7→ c(M,N,ω,∼)

which associates to a tuple (M,N,ω,∼) consisting of a symplectic mani-
fold (M,ω), a coisotropic submanifold Nn+k →֒M , k < n, and a coisotropic
equivalence relation ∼, a non-negative number or infinity and satisfies the
following axioms:

1) Monotonicity. If there exists a relative symplectic embedding, respect-
ing the coisotropic equivalence relations ∼0,∼1 on N0, N1

ϕ: (M0, N0, ω0) →֒ (M1, N1, ω1)

for M0 and M1 of the same dimension, then

c(M0, N0, ω0,∼0) ≤ c(M1, N1, ω1,∼1).

2) Conformality. For fixed (M,N,ω,∼),

c(M,N,αω,∼) = |α|c(M,N,ω,∼), α ∈ R\{0}.

3) Non-triviality. With ∼ denoting the leaf relation (see Definition 1.2),
c
(

B(1), Bn,k(1), ω0,∼
)

=c
(

W (1),Wn,k(1), ω0,∼
)

=π/2, where W (1),
Wn,k(1) are as in Definition 1.1.

In general, a coisotropic capacity may not be defined for all possible
tuples, but only for a distinguished class. In particular, most of our examples
will be of this nature.

Remark 1.8. When the symplectic form and the equivalence relation ∼ in
(M,N,ω) are understood, we will abbreviate this to (M,N).

Remark 1.9. The non-triviality axiom is subtly different from the one
required for a symplectic capacity (as in [19]). Let Z(1) = B2(1)× Cn−1

be the standard symplectic cylinder, and let Zn,k(1) := Z(1) ∩ Rn,k. For a
symplectic capacity c0, the non-triviality axiom is c0(B(1)) = c0(Z(1)) = π,
and rules out the volume. The non-triviality axiom for a coisotropic capacity
serves to rule out taking a standard symplectic capacity: for any standard
symplectic capacity c0, c0(W (1)) is infinite. If we replaced this axiom with
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a weaker one, for instance requiring instead

c(Z(1), Zn,k(1)) =
π

2
,

we would be able to take a standard symplectic capacity c0(M,ω) and define
c(M,N,ω) = 1

2c(M,ω).
Observe also that by considering embeddings of the form Id×ψ where

ψ:R2 → R2 is symplectic, we may construct an embedding of Z(1) to W (1)
so that Zn,k(1) is mapped to Wn,k(1), and thus the weaker condition is
implied by the stronger one.

The point of the non-triviality condition 3 is thus to rule out the triv-
ial examples of rescaled symplectic capacities, but also implies the weaker
(perhaps more natural seeming) non-triviality condition.

The coisotropic capacities that we will introduce are constructed simi-
larly to the Hofer-Zehnder capacity, and depend on several classes of Hamil-
tonians that we define below.

Definition 1.10. An autonomous Hamiltonian H:M → R is simple if

1) There exists a compact set K ⊂M (depending on H) and a constant
m(H) such that K ⊂M \ ∂M , ∅ ̸= K ∩N ⊊ N , and

H(M \K) = m(H).

2) There exists an open set U ⊂M (depending on H), with ∅ ̸= U ∩N ⊊

N , and on which H(U) ≡ 0.

3) 0 ≤ H(x) ≤ m(H) for all x ∈M .

Denote the set of simple Hamiltonians by H(M,N).

We now define a return time relative to a coisotropic equivalence relation.

Definition 1.11. Let (M,ω) be a symplectic manifold, let N →֒M be a
coisotropic submanifold and let ∼ be a coisotropic equivalence relation on
N . Let XH denote the Hamiltonian vector field of the function H:M → R.
Suppose γ(t) is a solution to γ̇ = XH(γ), with γ(0) ∈ N .

The return time of the orbit γ, relative to N and ∼, is defined by

Tγ = inf{t | t > 0, γ(t) ∈ N with γ(0) ∼ γ(t).}

We define the infimum of the empty set to be +∞.



✐

✐

“8-Lisi” — 2020/7/29 — 23:38 — page 825 — #7
✐

✐

✐

✐

✐

✐

Coisotropic Hofer-Zehnder capacities 825

Notice that if ∼ is the trivial equivalence relation, this is a return time to
the submanifold N itself. If ∼ is the leaf relation, this measures the shortest
non-trivial leafwise chord.

We now define admissibility for a simple Hamiltonian, and use this to
define a Hofer-Zehnder-type capacity. We will find this particularly useful
in the case of coisotropic submanifolds equipped with equivalence relations
induced from an ambient coisotropic submanifold, as in Example 1.6.

Definition 1.12. Fix (M,N,ω,∼). A function H ∈ H(M,N) will be called
admissible for the coisotropic equivalence relation ∼, if all of the solutions of
γ̇ = XH(γ), γ(0) ∈ N are either such that (i) γ(t) is constant for all t ∈ R,
or (ii) Tγ > 1, i.e. that the return time of the orbit γ relative to (N,∼)
is greater than 1. We denote the collection of all admissible functions by
Ha(M,N,ω,∼).

We now define the map

Definition 1.13. c(M,N,ω,∼) = sup{m(H) |H ∈ Ha(M,N,ω,∼)}.

Our main theorem is then:

Theorem 1.14. The map c is a coisotropic capacity.

An application of this theorem together with a computation of capacities
is the following non-squeezing result for coisotropic balls and cylinders which
is the natural analogue of the Gromov non-squeezing theorem [16]. To the
best of our knowledge, this gives the first relative embedding obstruction
with coisotropic constraints which are not Lagrangian.

Corollary 1.15. Let B(a, 1) ⊂ R2n be the (open) ball of radius 1 cen-
tered at a = (0, . . . , 0,−|a|), let r satisfy |a|2+r2 = 1 (so that, in particular,
Bn,k(r) = B(a, 1) ∩ Rn,k), and suppose that k < n.

There exists a relative symplectic embedding

ϕ: (B(a, 1), Bn,k(r), ω0) →֒ (W (R),Wn,k(R), ω0),

such that any two distinct isotropic leaves of Bn,k(r) are mapped to distinct
leaves of Wn,k(R) if and only if

arcsin(r)− r(1− r2)1/2 ≤ π

2
R2.
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R

W (R)

Figure 1.1: The region W (R).

Remark 1.16. The significance of this lower bound becomes clear in the
2-dimensional case. Consider the disk B(a, 1) ⊂ R2 of radius 1 centered at
a, then B1,0(r) is (the interior of) a chord of the circle ∂B(a, 1). This chord
cuts the disk into two regions.

The quantity

arcsin(r)− r(1− r2)1/2

is the area of the smaller of the two regions.
In this two dimensional case, W (R) is precisely the region shown in

Figure 1.1, and R1,0 = R cuts the region into the lower half-plane and an
open half-disk of radius R. This half-disk has area πR2/2. This obstruction
is therefore obvious in dimension 2.

Thus, the content of this corollary is that this a priori two dimensional
area obstruction continues to hold in higher dimensions. The dynamical
origins of the left side of the inequality may be observed in Proposition 2.7
and its proof.

Observe that R2n−2 ×W (1) has infinite Gromov width, so this embed-
ding is only obstructed by the coisotropic constraint.

Several additional applications also follow given the existence of the
coisotropic capacity c, again using techniques from [19]. We give a few of
these applications to the existence of chords in Section 4. In particular, we
have:
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W (R)

Figure 1.2: The 2-dimensional case. The hashed area on the left must be
less than the hashed area on the right for the embedding to exist.

Theorem 4.2. Let (M,ω) be a symplectic manifold. Let S →֒M be a com-
pact, regular energy surface for the Hamiltonian H. Without loss of gener-
ality, S = H−1(1). Let N →֒M be an (n+ k)-dimensional coisotropic sub-
manifold transverse to S, and let ∼ be the leafwise relation on N .

Suppose there is a neighbourhood U of S such that c(U,N, ω,∼) <∞.
Then there is a ρ > 0 and a dense subset Σ ⊂ [1− ρ, 1 + ρ] such that

XH admits a leafwise chord on every energy surface of H with energy in Σ.

2. Capacities relative to coisotropic submanifolds

We now begin the proof of Theorem 1.14, giving the monotonicity and con-
formality axioms, as well as a lower bound. We follow the construction of
the Hofer-Zehnder capacity from [19]. We also provide a proof of Corollary
1.15.

Let (M,N) be a pair consisting of a symplectic manifold (M,ω) and
a properly embedded coisotropic submanifold N →֒M , i.e. with ∂N ⊂ ∂M
(or ∂N = ∅). All of our symplectic manifolds will be assumed to be of the
same dimension 2n.

We begin with a few definitions.

Definition 2.1. Recall that

Rn,k := {x ∈ R2n|x = (x1, . . . , xn, y1, . . . , yk, 0, . . . , 0)}

is an (n+ k)-dimensional coisotropic linear subspace of R2n, and that B(a, r)
is the 2n dimensional symplectic ball of radius r centered at

a := (0, . . . , 0, bn) ∈ R2n,
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(0, 0)

(0, a)

r

R = 1

B(a, 1)

Bn,k(r)

Figure 2.1: A schematic image of the embedding of Bn,k(r) into B(a, 1).

and Bn,k(r) ⊂ Rn,k as the coisotropic ball of radius r centered at 0 ∈ Rn,k:

Bn,k(r) := {x ∈ Rn,k | |x| ≤ r}.

Recall that we likewise denote by

Z(a, r) := {x ∈ R2n |x2n + (yn − bn)
2 ≤ r2}

the symplectic cylinder centered at a ∈ R2n, and by Zn,k(r) the coisotropic
cylinder

Zn,k(r) := {x ∈ Rn,k | |xn|≤ r}

Remark 2.2. Note that Bn,k(r) and Zn,k(r) are properly embedded in
B(a, 1), Z(a, 1), respectively, when a = (0, . . . , 0, bn) with |bn|< 1, and r2 =
1− |a|2. See Figure 2.1.

We will now study the properties of the map c(M,N,ω,∼). We will show
that this satisfies the axioms for coisotropic capacities.

We prove the monotonicity and conformality properties below, which
proceed as in [19]. The proof of non-triviality will be completed in Section 3.
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Lemma 2.3. The map c satisfies the monotonicity axiom.

Proof. Let ϕ: (M1, N1, ω1,∼1) → (M2, N2, ω2,∼2) be a relative embedding,
respecting the coisotropic equivalence relations, as in Definition 1.5. Define
the map ϕ∗:H(M1, N1) → H(M2, N2) by

ϕ∗(H) =

{

H ◦ ϕ−1 x ∈ ϕ(M1)

m(H) x /∈ ϕ(M1)

Note that if A ⊂M1 \ ∂M1 is a non-empty compact set and ∅ ⊊ A ∩N1 ⊊

N1, then ϕ(A) ⊂M2\∂M2 and ∅ ⊊ ϕ(A) ∩N2 ⊊ N2. By construction,
m(H) = m(ϕ∗(H)). If U ⊂M1 is an open set on which H = 0, then, since
ϕ is an embedding ϕ(U) is an open set on which ϕ∗(H) = 0. Also, by con-
struction, 0 ≤ ϕ∗(H) ≤ m(ϕ∗(H)), and therefore ϕ∗(H) ∈ H(M2, N2, ω2).

We now check that ϕ∗(Ha(M1, N1, ω1,∼1)) ⊂ Ha(M2, N2, ω2,∼2). Let
H:M1 → R be an admissible simple Hamiltonian. Since ϕ is symplectic,
ϕ∗(XH) = Xϕ∗(H). Furthermore, the Hamiltonian vector field Xϕ∗(H) van-
ishes outside the image of ϕ. Thus, all non-constant trajectories of Xϕ∗(H)

are conjugate to non-constant trajectories of XH . In particular then, if
y(t) is a non-constant trajectory of Xϕ∗(H) with y(0) ∈ N2, y(T ) ∈ N2 with
y(0) ∼2 y(T ), then y(t) must be in the image of ϕ and thus there exists a
trajectory x(t) of XH so that ϕ(x(t)) = y(t).

Since ϕ is a relative embedding with ϕ−1(N2) = N1, we have that
x(0), x(T ) ∈ N1. Since the relative embedding ϕ respects the coisotropic
equivalence relations, if y(0) ∼2 y(T ) then it must hold that x(0) ∼1 x(T ).
As H ∈ Ha(M1, N1, ω1,∼1), it follows that T > 1. Hence, it follows that
ϕ∗H ∈ Ha(M2, N2, ω2,∼2), as desired. □

We now give a slight extension of the above monotonicity, which will be
of use to us in the proof of Theorem 3.26.

Lemma 2.4. Let (M,ω) and (M ′, ω′) be symplectic manifolds, let N ⊂M
and N ′ ⊂M ′ be coisotropic submanifolds equipped with coisotropic equiva-
lence relations ∼ and ∼′.

Suppose that for every compact set K ⊂M , there exists an open neigh-
bourhood U ⊃ K and a relative symplectic embedding ψ: (U,N ∩ U, ω|U ) →
(M,N,ω) that respects the pair of coisotropic equivalence relations (∼,∼′).

Then, c(M,N,ω,∼) ≤ c(M ′, N ′, ω′,∼′).

Proof. Let H:M → R be a Hamiltonian with 0 ≤ H ≤ m(H) and that
m(H)−H is compactly supported inM . Then, by hypothesis, there exists a
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neighbourhood U of the support of m(H)−H and a symplectic embedding
ψ:U →M ′. Let G = H ◦ ψ−1 defined on ψ(U) and then extend G to all of
M ′ by setting G(x) = m(H) for all x /∈ ψ(U).

Proceeding as in Lemma 2.3, it follows that G is simple if and only if
H is simple, with m(G) = m(H). Furthermore, XG = ψ∗XH on ψ(U) and
vanishes outside ψ(U). Thus, arguing as in Lemma 2.3, G is admissible if
and only if H is.

Thus for any H ∈ Ha(M,N,ω,∼), there exists G ∈ Ha(M
′, N ′, ω′,∼′)

such that m(H) = m(G). The desired inequality now follows immediately.
□

Remark 2.5. The monotonicity of the capacity depends in an essential
way on the coisotropic equivalence relation. Indeed, if no condition is put on
the relative embedding ϕ: (M1, N1, ω1) → (M2, N2, ω2), it is easy to imagine
a situation in which two or more leaves on N1 are mapped to the same
leaf in N2. For instance, there are many examples of compact hypersurfaces
in R2n for which there is a dense leaf in the characteristic foliation — in
this case, this is about dense orbits in a Hamiltonian system with compact
energy level. One possible construction is originally due to Katok [21], as
is used in [8]. In particular, Katok’s construction can be done as a small,
locally supported perturbation of the unit sphere in R2n. This construction
of Katok’s also shows that the existence of leafwise chords must see the
entirety of the coisotropic submanifold.

As discussed in Example 1.6, a natural class to consider is to consider
a fixed (compact) coisotropic submanifold N̂ in R2n. We then consider only
symplectic manifolds that are open subsets U ⊂ R2n and coisotropic sub-
manifolds N = N̂ ∩ U . The coisotropic equivalence relation is that x ∼ y if
and only if x, y are in the same isotropic leaf on N̂ . Then, all of the inclusion
maps respect the equivalence relation, by construction.

A very simple example of this phenomenon occurs even with Lagrangians.
Let (M̂, N̂) be the pair consisting of the unit disk in R2 and the x-axis. Let
M be an open annulus centred at the origin. Then, N = N̂ ∩M is the dis-
joint union of two line segments.

In M , each line segment is its own leaf: an admissible Hamiltonian for
the leafwise relation, just considered relative to N , would allow for a finger
move that pushed centre of the segments almost all the way around the
annulus.

Notice however that the inclusion of (M,N) →֒ (M̂, N̂) does not respect
the leafwise relation! The two leaves of N̂ are both mapped to the unique
leaf of N . Relative to the equivalence relation induced from the leafwise
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relation on N̂ , however, these chords from one segment to the other would
be eliminated.

We thank Kaoru Ono and Yoshihiro Sugimoto for pointing out that
our original version of this capacity c overlooked this point and implicitly
required the embeddings to respect the leaf relation.

Lemma 2.6. c satisfies the conformality axiom.

Proof. Let α ̸= 0. Define a map ψ:H(M,N) → H(M,N) by

ψ(H) := |α|·H,

and let Hα denote ψ(H).
Note that ψ is clearly injective, and m(Hα) = |α|m(H), so the lemma

follows if

ψ|Ha(M,N,ω,∼):Ha(M,N,ω,∼) → Ha(M,N,αω,∼)

is a bijection. Let XHα
be the Hamiltonian vector field generated by Hα

with respect to αω, in other words such that αω(XHα
, ·) = −dHα. Hence,

αω(XHα
, ·) = −|α|dH ω(XHα

, ·) = −|α|
α
dH.

Thus, XHα
= ±XH , depending on the sign of α. Therefore, the Hamiltonian

flows for H and Hα have the same orbits. In particular, the constant chords
are the same for the two Hamiltonians. A non-constant chord for one of
them, x(0) ∈ N , x(T ) ∈ N with x(0) ∼ x(T ), will be a chord for the other,
by considering x(t) itself if α > 0 and the time reversal t 7→ x(T − t) if α < 0.
Their return times are thus the same. □

In the next proposition, we give a lower bound for c
(

B(a, 1), Bn,k(r), ω0

)

with r =
√

1− |a|2.

Proposition 2.7. Let a := (0, . . . , 0, b) ∈ R2n, and set r2 = 1− |a|2= 1−
|b|2. For k ∈ {0, . . . , n− 1},

c
(

B(a, 1), Bn,k(r), ω0

)

≥ arcsin(r)− r(1− r2)1/2.

Proof. We consider first when |a|> 0. We suppose, without loss of generality,
that b < 0 and thus b = −|a|.
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We will construct a family of Hamiltonian functions all of which are
admissible and whose maximum is arbitrarily close to arcsin(r)− r(1−
r2)1/2. First, decompose R2n = Rn ⊕ JRn = (x1, . . . , xn, y1, . . . , yn), where
J : R2n → R2n

J(0, . . . , 0, xi, 0, . . . , 0) = (0, . . . , 0, yi, 0, . . . , 0)

J(0, . . . , 0, yi, 0, . . . , 0) = (0, . . . , 0,−xi, 0, . . . , 0),
(2.1)

and we understand JRn to indicate J applied to the first n dimensions of
R2n. Choose ϵ > 0, and let f : [0, 1] ⊂ R → R be a function with the following
properties:

f(t) = 0 for t ∈ [0, |a|+ϵ],

0 ≤ f ′(t) < arccos

( |a|√
t

)

for t > |a|+ϵ,

f(t) = max f for t ∈ [1− ϵ, 1].

Let H:R2n → R be the Hamiltonian defined by H(x) := f(|x− a|2).
We will first observe that H is simple. Note first of all that H = 0 in

an open ball around a, and this ball intersects Bn,k(r), as required. Also
observe that H = max f once |x− a|2≥ 1− ϵ, so this gives H = max f in a
collar neighbourhood of the boundary of B(a, 1) as required.

We will now show that any such Hamiltonian H will be admissible.
We consider the associated Hamiltonian ODE given by

ẋ = J∇H(x) =2f ′
(

|x− a|2
)

J(x− a)

where J :R2n → R2n is the standard almost complex structure defined by
Equation 2.1 above. Since ⟨Jx, x⟩ = 0, we see that |x− a|2 is constant along
solutions of the equation. Thus, with z(t) := x(t)− a we have for κ =
2f ′(|z(0)|2) ≥ 0,

(2.2) ż = κJz.

Thus, z(t) = eκJt z(0).
If a trajectory z(t) starts on the coisotropic submanifold, we then have

the initial conditions

z(0) ∈ Rn,k.

To verify admissibility, we will show that every non-constant trajectory
starting on the coisotropic submanifold has (non-leafwise, coisotropic) return
time greater than 1.
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0

a

Bn,k(r)

θ

x(0)

ρ

z(0)

B(a, 1)

Figure 2.2.

Let z(t) be such a non-constant trajectory, with z(0) ∈ Bn,k(r). It follows
then that κ ̸= 0. Now consider the triangle formed by the origin, a, and
c = (0, . . . ,−r, 0, . . . , 0), where the −r is in the n-th position. Note that, if
we consider the plane defined by these three points, then any flow z(t) with
z(0) on the line from a to c flows counterclockwise in this plane. Since f is a
radial function, we may, without loss of generality, simply consider any such
flow z(t) with z(0) on this line.

Let ρ =
√

|x(0)|2+|a|2 = |z(0)|≥ |a|, and let θ be the angle so that
|x(0)|= ρ cos(θ) and |a|= ρ sin(θ). See Figure 2.2 for an illustration. Hence,

θ = arcsin( |a|ρ ). If T is such that z(T ) belongs to Rn,k, we have sin(κT + θ) =

sin(θ) = |a|
ρz
, which holds if and only if κT ∈ 2πZ or κT = −2θ + kπ for some

k odd. In particular then, if κ < π − 2θ, there can be no chords of length at
most 1. Recall now that κ = 2f ′(|z(0)|2). Thus, the condition is satisfied if
we have 2f ′(ρ2) < π − 2θ for each ρz. This is achieved if

f ′(ρ2) <
π

2
− θ = arccos

( |a|
ρ

)

However, by assumption, f ′(ρ2z) < arccos
(

|a|
ρz

)

. Observe now that by choos-

ing ϵ > 0 sufficiently small, we may arrange for f(1) to be arbitrarily close
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to
∫ 1

|a|2
arccos

( |a|√
t

)

dt =

∫ arccos(|a|)

0
2|a|2α cos(α)−3 sin(α)dα

= |a|2
(

α cos(α)−2 − tanα
)

∣

∣

∣

arccos(|a|)

0

= arcsin r − r
√

1− r2.

(Recalling that a2 + r2 = 1.)
From this, we conclude

c(B(a, 1), Bn,k(r), ω0) ≥ arcsin(r)− r(1− r2)1/2,

as desired, in the case that |a|> 0.
If a = 0, we observe that for each δ > 0, we may set p = (0, . . . , 0,−δ)

and then we consider the inclusion of the ball B(p, 1− δ) ⊂ B(0, 1). The
intersection of Bn,k(r) with this smaller ball is given by Bn,k(

√
1− 2δ) + p.

After a translation of the origin, this gives a relative embedding of the pair
(B(−p, 1− δ), Bn,k(

√
1− 2δ)). Let rδ =

√
1− 2δ. Then, applying the above

construction and the Monotonicity Axiom (Lemma 2.3), we have for each
δ > 0,

c(B(0, 1), Bn,k(1), ω0) ≥ arcsin(rδ)− rδ(1− r2δ )
1/2

Taking δ → 0, we obtain c(B(0, 1), Bn,k(1)) ≥ arcsin(1) = π
2 , proving the re-

sult. □

Proof of Corollary 1.15. By the non-triviality and conformality axioms for
the capacity, we obtain that c(W (R),Wn,k(R)) = π

2R
2.

The monotonicity of the capacity c and Proposition 2.7 then give that
a relative embedding (B(a, 1), Bn,k(r)) →֒ (W (R),Wn,k(R)) respecting the
leaf relations exists only if

arcsin(r)− r(1− r2)1/2 ≤ π

2
R2.

To prove that this suffices, we will construct an embedding for any R
that satisfies

arcsin(r)− r(1− r2)1/2 <
π

2
R2.

By a slight abuse of notation (since a ∈ R2n), let D(a, ρ) ⊂ R2 be the
disk of radius ρ centred at (0,−|a|).



✐

✐

“8-Lisi” — 2020/7/29 — 23:38 — page 835 — #17
✐

✐

✐

✐

✐

✐

Coisotropic Hofer-Zehnder capacities 835

First, we notice that the ball embeds in an appropriate polydisk:

B(a, 1) ⊂ D2(0, 1)× . . . D2(0, 1)×D2(a, 1)

= {(x1, . . . , xn, y1, . . . , yn) |
x21 + y21 < 1, . . . , x2n−1 + y2n−1 < 1, (xn + a)2 + y2n < 1}.

This respects the leaf relation on Rn,k.
We will now construct an embedding

ψ:D2(0, 1)× . . . D2(0, 1)×D2(a, 1) →W (R)

of the form

ψ(x1, . . . , xn−1, xn, y1, . . . , yn−1, yn)

= (x1, . . . , xn−1, f(xn, yn), y1, . . . , yn−1, g(xn, yn))

for a suitable choice of map

ϕ:R2 → R2, ϕ(x, y) = (f(x, y), g(x, y)).

Let W 2(R) := {(x, y) ∈ R2 |x2 + y2 < R2 or y < 0}. Observe now that ψ is
symplectic if and only if ϕ is area preserving. Furthermore, ψ gives a relative
embedding of the polydisk into W (R) (with coisotropic submanifold given
by the restriction of Rn,k to each) if and only ϕ: (D(a, 1),R ∩D(a, 1)) →
(W 2(R),R ∩W 2(R)) is a relative embedding. Finally, we observe that if
ϕ is such a relative embedding, it immediately follows from the explicit de-
scription of the leaf relation in Example 1.3 that ψ respects the leaf relation.

It suffices therefore to find an embedding ϕ:D(a, 1) →W 2(R). By a
standard Moser-type argument, this exists whenever the area of the smaller
of the two connected components of D2(a, 1) \ R is strictly smaller than
the area of the upper half disk in W 2(R) \ R. The result now follows by
computing this area, as in Remark 1.16. □

3. An upper bound for c
(

U(r), Un,k(r), ω0,∼
)

In the following, we will write c(M,N) = c(M,N,ω,∼) since we are con-
sidering subsets M ⊂ R2n with respect to the standard symplectic form.
Furthermore, we will take the equivalence relation to be the leafwise equiv-
alence relation.
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In order to show that c is a coisotropic capacity, we must establish the
non-triviality axiom. Recall that we have defined

W (1) =
{

(x1, . . . , xn, y1, . . . , yn) ∈ R2n | x2n + y2n < 1 or yn < 0
}

and Wn,k(1) =W (1) ∩ Rn,k, with Rn,k the standard (n+ k)-dimensional
coisotropic subspace of R2n, given by

Rn,k = {(x1, . . . , xn, y1, . . . , yk, 0, . . . , 0)} .

By the relative symplectic embedding of the ball

(B(1), Bn,k(1)) →֒ (W (1),Wn,k(1)),

and monotonicity (Lemma 2.3), together with Proposition 2.7, it suffices to
prove the following inequality:

c(W (1),Wn,k(1)) ≤ π

2
.

For our analytical set-up, it is most convenient to work with the region
U(1) in R2n given as the union of the disk with a half-infinite strip

U(1) = R2n−2 × {(x, y) ∈ R2 |x2 + y2 < 1 or − 1 < x < 1 and y < 0}

and Un,k(1) = U(1) ∩ Rn,k. In the following, we will write U = U(1) and
Un,k = Un,k(1).

We claim that the relative capacities of these two domains are the same:

c(W (1),Wn,k(1)) = c((U(1), Un,k(1))).

Observe that there is a relative embedding

(U(1), Un,k(1)) →֒ (W (1),Wn,k(1))

by inclusion, showing one inequality. The other inequality is by applying
Lemma 2.4. Indeed, for any compact set K ⊂W (1), by a Moser argument,
we may find an open neighbourhood V and a symplectic embedding V →֒
U(1) that may be taken to the the identity in the region yn > −δ for δ > 0
sufficiently small, and hence is the identity on the coisotropic submanifold.
The existence of such a symplectic embedding for each compact K ⊂W (1)
then verifies the hypotheses of the Lemma, and the claim follows.
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Proposition 3.1. The map c verifies

c(U,Un,k) ≤ π

2
.

As explained above, this will then prove Theorem 1.14. The remainder
of this section will prove Proposition 3.1.

3.1. The analytical setting

Definition 3.2. We recall from Example 1.3 that ω0 denotes the standard
symplectic form on R2n, and that Rn,k is the linear coisotropic subspace of
(R2n, ω0) consisting of the first n+ k coordinates, i.e.

Rn,k =
{

x ∈ R2n | x = (x1, . . . , xn, y1, . . . , yk, 0, . . . , 0)
}

.

Let V0, V1 and W0 be the linear subspaces

V0 =
{

x ∈ R2n | x = (0, . . . , 0, xk+1, . . . , xn, 0, . . . , 0)
}

,

V1 =
{

x ∈ R2n | x = (x1, . . . , xk, 0, . . . , 0, y1, . . . , yk, 0 · · · , 0)
}

W0 =
{

∈ R2n | x = (0, . . . , 0, yk+1, . . . , yn)
}

.

Remark 3.3. As noted in Example 1.3, any leaf F in the characteristic
foliation has the form z + V0, for z ∈ Rn,k.

Let C∞
n,k ([0, 1]) denote the space of smooth maps ψ : [0, 1] → R2n such

that ψ(0), ψ(1) ∈ F ⊂ F for some isotropic leaf F in the characteristic foli-
ation F of Rn,k. Let ⟨·, ·⟩ be the standard inner product on R2n, and define
the functional ΦH :C

∞
n,k ([0, 1]) → R by

(3.1) ΦH(ψ) =
1

2

∫ 1

0
⟨−Jψ̇(t), ψ(t)⟩dt−

∫ 1

0
H(ψ(t))dt.

In order to study the critical points of ΦH , we will extend the definition
of ΦH to the Hilbert space ofH1/2 paths. The Hilbert space is constructed so
the paths have boundary in Rn,k, even though H1/2 does not embed in C0,
and thus a pointwise constraint cannot be imposed. The key observation we
use is that Rn,k is the fixed point locus of an involution on R2n, which then
induces an isometry on H1/2(S1,R2n). Our path space is then an eigenspace
of this isometry, though we also describe it explicitly.
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We first show the following.

Lemma 3.4. Any element γ ∈ C∞
n,k ([0, 1]) is given by

(3.2) γ(t) =
∑

k∈Z

ekπJtak +
∑

k∈2Z

ekπJtbk

where

ak ∈ V0 ⊂ Rn,k ⊂ R2n, and

bk ∈ V1 ⊂ Rn,k ⊂ R2n.
(3.3)

Equivalently,

γ(t) =
∑

k∈Z

zke
kπJt

with zk ∈ V0 for odd k and zk ∈ V0 ⊕ V1 for even k (i.e. zk = ak + bk with
bk = 0 for all odd k).

Proof. We begin by identifying R2 with C, and we consider a smooth map
γ(t) : [0, 1] → C such that γ(0), γ(1) ∈ R ⊂ C. We now extend this map to
a piecewise smooth map α(t) : S1 → C by

α(t) =

{

γ(2t) t ∈
[

0, 12
]

γ(2− 2t) t ∈
(

1
2 , 1
]

,

where the bar indicates complex conjugation. Note that α(t) is continuous
by definition. Writing α(t) in terms of its Fourier decomposition, we have

α(t) =
∑

k

e2πiktak.

However, since α(t) = α(1− t), and therefore

∑

k

e2πiktak =
∑

k

e−2πik(1−t)ak

=
∑

k

e−2πike2πiktak

=
∑

k

e2πiktak,

which implies that ak = ak, and therefore ak ∈ R ⊂ C. Our original function
γ(t) is recovered by γ(t) = α(t/2) =

∑

k e
πiktak, where ak ∈ R.
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Now consider a function γ(t) : [0, 1] → R2n such that γ(0), γ(1) ∈ F ,
where F is a leaf of the characteristic foliation of Rn,k. Write a point
x ∈ R2n by (x1, . . . , xn, y1, . . . , yn), where ω0(

∂
∂xi
, ∂
∂yi

) = 1, J ∂
∂xi

= ∂
∂yi

, for

J the standard complex structure on R2n, and define cn,k : R
2n → R2n by

cn,k(x) := (x1, . . . , xn, y1, . . . , yk,−yk+1,−yn).

Recall that Rn,k is the set of points

Rn,k = {x ∈ R2n|x = (x1, . . . , xn, y1, . . . , yk, 0, . . . , 0)}.

In the special case of a Lagrangian, i.e. for Rn,0, we note that cn,0 is a real
structure for ω0, i.e. c

∗
n,0ω0 = −ω0.

Any leaf F of F is a set of the form

{x ∈ Rn,k |x = (0, . . . , 0, xk+1, . . . , xn, 0, . . . , 0) + z}

for some fixed z = (x1, . . . , xk, 0, . . . , 0, y1, . . . , yk, 0, . . . , 0). We may write
γ(t) as a function γ(t) = z1(t) + z2(t) + · · ·+ zn(t), where each function
zi: [0, 1] → R2n is a map t 7→ (0, . . . , 0, xi(t), 0, . . . , 0, yi(t), 0, . . . , 0) for real
functions xi, yi : [0, 1] → R.

From the above, we see that if i > k, then

zi(t) =
∑

j

eJπjtai,j

where ai,j = ajei for constants aj ∈ R, ei a vector with 1 in the i-th position
and 0s elsewhere. This then gives that ai,j ∈ V0.

For i ≤ k, zi(0) = zi(1), and we have

zi(t) =
∑

j

e2πjJtai,j ,

where ai,j = ajei with aj ∈ C. From this, we have that ai,j ∈ V1.
The conclusion of the lemma now follows immediately. □

Remark 3.5. Note that if γ ∈ C0([0, 1],R2n) ∩ L1 and is of the form

γ(t) =
∑

k∈Z

ekπJtak +
∑

k∈2Z

ekπJtbk

with ak, bk as in Equation 3.3 above, then necessarily γ(0), γ(1) ∈ F .
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Definition 3.6. Let L2
n,k([0, 1]) be the Hilbert space

L2
n,k =

{

γ ∈ L2([0, 1],R2n)

∣

∣

∣

∣

γ =
∑

k∈Z

ake
kπJt +

∑

k∈2Z

bke
kπJt,

ak ∈ V0, bk ∈ V1,

∑

k∈Z

|ak|2+|bk|2<∞
}

with inner product

⟨ψ, ϕ⟩L2

n,k
=

(
∫ 1

0
⟨ψ(t), ϕ(t)⟩ dt

)

1

2

.

Define Hs
n,k ([0, 1]) to be the space

Hs
n,k([0, 1]) =

{

x ∈ L2
n,k ([0, 1])

∣

∣

∣

∣

∑

k∈Z

|k|2s|zk|2<∞
}

where zk ∈ V0 for odd k and zk ∈ V0 ⊕ V1 for even k.

In the following lemmas, we collect several standard results from [19]
concerning the spaces Hs

n,k([0, 1]). The proofs are identical to those in [19],
replacing the spaces considered there with the corresponding spaces in our
setting. For the convenience of the reader, we have tried to keep our notation
compatible with the notation of [19, Sections 3.3, 3.4]. One notable change is
that we use X to denote the appropriate H

1

2 Hilbert space, which is denoted
by E in [19]. Some of the more immediate results are stated without proof.

Definition 3.7. Denote by

X = H
1/2
n,k ([0, 1]) .

For γ ∈ X, we have

γ =
∑

k∈Z

zke
kπJt

where zk ∈ V0 for odd k and zk ∈ V0 ⊕ V1 for even k.
We take the norm on X to be given by

∥γ∥= |z0|2+
π

2

∑

k∈Z

|k||zk|2.
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Lemma 3.8. For each s ≥ 0, Hs
n,k([0, 1]) is a Hilbert space with the inner

product

⟨ϕ, ψ⟩(s,n,k) = ⟨a0, a′0⟩+
π

2

∑

k ̸=0

|k|2s
〈

ak, a
′
k

〉

.

Furthermore, if s > t, then the inclusion of Hs
n,k([0, 1]) into Ht

n,k([0, 1]) is
compact.

In particular, (X, ∥·∥) is a Hilbert space.

Proof. Recall that Hs(S1,R2n) is a Hilbert space. The involution on R2n

given by

(x1, . . . , xn, y1, . . . ,yk, yk+1, . . . , yn) 7→
(x1, . . . , xn, y1, . . . , yk,−yk+1, . . . ,−yn)

induces an isometry on Hs(S1,R2n) by acting on each Fourier coefficient.
Observe now that Hs

n,k([0, 1]) can be identified with the +1 eigenspace of
this operator, and thus identifiesHs

n,k([0, 1]) as a closed subspace of a Hilbert
space.

The compactness of the inclusion follows by considering the finite rank
truncation operators

PN :
∑

k

zk e
kπJt 7→

∑

|k|≤N

zk e
kπJt .

Let ı denote the inclusion ı:Hs
n,k → Ht

n,k. Then, in the operator norm for ı,

PN :H
s
n,k → Ht

n,k, ||PN − ı||≤ CN t−s, and thus the inclusion is the uniform
limit of finite rank operators, and is thus compact. □

Lemma 3.9. Let s > t. If j:Hs
n,k([0, 1]) → Ht

n,k([0, 1]) is the inclusion op-

erator, then the Hilbert space adjoint j∗ : Ht
n,k([0, 1]) → Hs

n,k([0, 1]) is com-
pact.

Lemma 3.10. If x ∈ Hs
n,k([0, 1]) for s >

1
2 + r, where r is an integer, then

x ∈ Crn,k([0, 1]).

Lemma 3.11. j∗(L2) ⊂ H1, and ∥j∗(y)∥H1≤ ∥y∥L2.
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Definition 3.12. The Hilbert space X = H
1/2
n,k ([0, 1]) admits a decomposi-

tion into negative, zero and positive Fourier frequencies:

X− =

{

x ∈ H
1/2
n,k ([0, 1]) |x =

∑

k<0

xk e
iπkt

}

X0 =
{

x ∈ H
1/2
n,k ([0, 1]) |x = x0 ∈ Rn,k

}

X+ =

{

x ∈ H
1/2
n,k ([0, 1]) |x =

∑

k>0

xk e
iπkt

}

Let P−, P 0 and P+ denote the orthogonal projections onto each of these
subspaces, and we denote x± := P±(x) and x0 := P 0(x).

3.2. An extended Hamiltonian

Given a simple Hamiltonian H:U → R with m(H) > π
2 , we will analyze an

associated Hamiltonian H̄:R2n → R, and find a solution of ẋ = XH̄(x) which
is also a non-trivial solution of ẋ = XH(x). In the following, we construct
the Hamiltonian H̄.

We consider n, k fixed and the simple Hamiltonian H with m(H) > π
2

fixed.

Definition 3.13. We now set some notation.

1) R2n
+ := {z ∈ R2n|yn > 0}, R2n

− := {z ∈ R2n|yn < 0},
2) U± := U ∩ R2n

± .

3) Let q : R2n → R be the quadratic function

q(x) =
(

x2n + y2n
)

+
1

N2

n−1
∑

i=k+1

(

x2i + y2i
)

+
2

N2

k
∑

i=1

(x2i + y2i ).

Let q2 : R
2n → R be defined by

q2(x) =

{

x2n + y2n for y ≥ 0

x2n for y < 0
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and q2n−2 : R
2n → R be given by

q2n−2(x) =
1

N2

n−1
∑

i=k+1

(

x2i + y2i
)

+
2

N2

k
∑

i=1

(x2i + y2i ).

Define now

qΠ(x) = q2(x) + q2n−2(x).

Choose N sufficiently large so that

supp dH ⊂ q−1
Π ([0, 1)).

Observe that qΠ is a C1 function with a jump discontinuity it its
second derivative.

Now, given a small ϵ > 0 such that π
2 + ϵ < m(H), we define f : R → R

to be a function such that

f(r) = m(H) for r ≤ 1

f(r) ≥
(π

2
+ ϵ
)

r for all r ∈ R

f(r) =
(π

2
+ ϵ
)

r for r large

0 < f ′(r) ≤
(π

2
+ ϵ
)

for r > 1.

We define the extended Hamiltonian H̄ by

(3.4) H̄(x) =

{

H(x) if qΠ(x) ≤ 1

f(qΠ(x)) if qΠ(x) > 1.

In the next lemma, we give a criterion to show that certain orbits of the
Hamiltonian H̄ are actually orbits of H.

Lemma 3.14. Suppose x(t), t ∈ [0, 1] is a solution of ẋ = XH̄ such that
x(0), x(1) ∈ Rn,k. If ΦH̄(x) > 0, then x(t) is non-constant and x(t) is an
orbit of H.

Proof. Let the functional ΦH̄ :C
∞
n,k ([0, 1]) → R be defined by Equation 3.1.

Note first that if x is constant, then ΦH̄(x) ≤ 0, since H̄ ≥ 0.
To show the orbit of H̄ is an orbit of H, we will show that qΠ ≤ 1 at

each point of the orbit. We will show instead that a chord x(t) of H̄ for
which there exists a time at which qΠ(x(t)) > 1 must have negative action.
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Let x(t) be such a trajectory, with x(0), x(1) ∈ Rn,k and qΠ(x(t)) > 1 for
some time t. Notice that by construction, the region {x ∈ R2n | qΠ(x) > 1}
is flow invariant. Thus, the trajectory x(t) has qΠ(x(t)) > 1 for all time.

We will first argue that any such trajectory must lie in the upper half-
space {(x1, . . . , xn, y1, . . . , yn) | yn ≥ 0}. Indeed, since qΠ(x(t)) > 1, we have
that the Hamiltonian vector field is explicitly given by

ẋ(t) = f ′(qΠ(x(t)))J∇qΠ(x(t)).

For all times t at which yn < 0, we have

ẋn(t) = 0 ẏn(t) = 2f ′(qΠ(x(t)))xn.

In particular, xn is constant and yn is either monotone non-increasing or
monotone non-decreasing, depending on the sign of xn. In particular then,
it is impossible for both yn(0) = 0 and yn(1) = 0 if there is a time 0 < t < 1
at which yn(t) < 0. The claim that the chord must lie in the upper half-space
now follows.

Now, observe that on the upper half-space, we have qΠ(x) = q(x),
and hence the Hamiltonian vector field on R2n

+ \U+ is given by XH̄ =
f ′(q(x))J∇q(x), and thus q(x) is an integral of motion in this region. It
follows that q(x(t)) = τ > 1 for all t ∈ [0, 1]. Also notice that since q(x) is
quadratic, we have ⟨x,∇q(x)⟩ = 2q(x). From this, we obtain:

ΦH̄(x) =

∫ 1

0
−1

2
⟨Jẋ, x⟩ − H̄(x(t)) dt

=

∫ 1

0

1

2
f ′(q(x(t)))⟨∇q(x), x⟩ − f(τ) dt

=

∫ 1

0
f ′(τ)q(x(t))− f(τ) dt

= f ′(τ)τ − f(τ)

≤ 0

which completes the proof. □



✐

✐

“8-Lisi” — 2020/7/29 — 23:38 — page 845 — #27
✐

✐

✐

✐

✐

✐

Coisotropic Hofer-Zehnder capacities 845

3.3. The action functional

Definition 3.15. For ϕ, ψ ∈ C∞
n,k([0, 1]), we define

a(ϕ, ψ) =
1

2

∫ 1

0
⟨−Jϕ̇, ψ⟩ dt.

We show the following simple lemma.

Lemma 3.16. For any ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R2n, i ∈ {1, . . . , 2n},
∫ 1

0

〈

ekπJtei, e
lπJtei

〉

dt = δkl

Proof. First, note that, if 0 ≤ i ≤ n,

ekπJtei = (0, . . . , 0, cos(kπt), 0, . . . , 0, sin(kπt), 0, . . . , 0),

and if n+ 1 ≤ i ≤ 2n, then

ekπJtei = (0, . . . , 0,− sin(kπt), 0, . . . , 0, cos(kπt), 0, . . . , 0).

In either case, we have

∫ 1

0

〈

ekπJtei, e
lπJtei

〉

dt =

∫ 1

0
cos(kπt) cos(lπt) + sin(kπt) sin(lπt) dt

=

∫ 1

0
cos((k − l)πt) dt

= δkl.

□

Lemma 3.17. For ϕ, ψ ∈ C∞
n,k([0, 1]),

(3.5) a(ϕ, ψ) =
π

2

∑

k>0

|k|⟨zk, wk⟩ −
π

2

∑

k<0

|k|⟨zk, wk⟩

where

(3.6) ϕ =
∑

k∈Z

zke
kπJt, and ψ =

∑

k∈Z

wke
kπJt.
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Proof. First, recall that, by Lemma 3.4, that for ϕ, ψ ∈ C∞
n,k, the Fourier

expansions ϕ =
∑

k∈Z zke
kπJt and ψ =

∑

k∈Zwke
kπJt have that zk, wk ∈ V0

for odd k and zk, wk ∈ V0 ⊕ V1 for even k.
Substituting Equations 3.6 into the expression for a and using

Lemma 3.16, we get

a(ϕ, ψ) =
1

2

∑

k

kπ⟨zk, wk⟩

=
π

2

(

∑

k>0

|k|⟨zk, wk⟩ −
∑

k<0

|k|⟨zk, wk⟩
)

.

□

Definition 3.18. Given ϕ, ψ ∈ H
1/2
n,k ([0, 1]), we define a(ϕ, ψ) by Equa-

tion 3.5, and a(ϕ) := a(ϕ, ϕ).

Remark 3.19. Lemma 3.17 gives that Definitions 3.18 and 3.15 are con-
sistent, i.e. they coincide for smooth paths, ϕ, ψ ∈ C∞

n,k([0, 1]). Recalling the
norm on X given in Definition 3.7, the function a:X → R given by

a(ϕ) = ∥ϕ+∥2−∥ϕ−∥2

is therefore differentiable with derivative

da(ϕ)(ψ) = ⟨(P+ − P−)ϕ, ψ⟩

and therefore the gradient ∇a is

∇a(ϕ) = (P+ − P−)ϕ = ϕ+ − ϕ− ∈ X.

For ϕ ∈ C∞
n,k([0, 1]), consider the expression

b(ϕ) =

∫ 1

0
H̄(ϕ(t)) dt.

Since, by construction, |H̄(x)|≤M |x|2 for qΠ(x) large, we have that b
may be extended to L2, and therefore also on H1/2 ⊂ L2. The following
results follow immediately from the proofs in [19].
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Lemma 3.20 ([19], Section 3.3, Lemma 4). The map b : X → R is dif-
ferentiable. Its gradient is continuous and maps bounded sets into relatively
compact sets. Moreover,

∥∇b(x)−∇b(y)∥≤M∥x− y∥

and |b(x)| ≤M∥x∥2L2

n,k

for all x, y ∈ X.

Remark 3.21. We now see that the functional ΦH̄ : H
1/2
n,k ([0, 1]) → R given

by

ΦH̄(x) = a(x)− b(x)

is well-defined. Furthermore, since H̄ ∈ C1([0, 1],R2n) and a and b are dif-
ferentiable, ΦH̄ is differentiable with gradient

∇ΦH̄(x) = x+ − x− −∇b(x).

The results below summarize some of the properties of ΦH̄ that we will
use in the following sections. The proofs follow those given in [19]. Let S =
{(x1, . . . , yn) | −1 ≤ yn ≤ 1}.

Lemma 3.22. Assume x ∈ X is a critical point of ΦH̄ , i.e. ∇ΦH̄(x) = 0.
Then x is in C1

n,k([0, 1]). If, in addition, x(t) ∈ R2n
+ ∪ S̊ for all t ∈ (0, 1),

then x ∈ C∞
n,k([0, 1]).

Proof. The proof given in Hofer and Zehnder [19], Section 3.3, Lemma 5
also applies in this case. That is, we write x and ∇(H̄(x)) ∈ L2

n,k by their
Fourier series, we have

x =
∑

k

ekπJtxk

∇H̄(x) =
∑

k

ekπJtak.

Since dΦH(x)(v) = 0, this implies that

〈

(P+ − P−)x, v
〉

1/2,n,k
−
∫ 1

0

〈

∇H̄(x(t)), v(t)
〉

dt = 0, ∀v ∈ X.

Substituting the Fourier series of x and ∇H̄(x) into this expression, we
obtain

kπxk = ak.
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Therefore a0 = 0 and

∑

k

|k|2|xk|2≤
∑

|ak|2<∞.

We conclude that x ∈ H1
n,k([0, 1]), and therefore x ∈ C0

n,k([0, 1]) by

Lemma 3.10. It follows that ∇H̄(x(t)) ∈ C0
n,k([0, 1]), so

ξ(t) =

∫ t

0
J∇H̄(x(s)) ds ∈ C1(R).

However, it follows from the Fourier expansions that ξ(t) = x(t)− x(0), and
therefore x ∈ C1([0, 1]) and solves

ẋ(t) = J∇H̄(x(t)).

If x(t) ∈ R̄2n
+ ∪ S for all t, then J∇H̄(x(t)) ∈ C1

n,k([0, 1]), so x ∈ C2
n,k([0, 1]).

Repeating this, the second part of the lemma follows. □

Lemma 3.23. ΦH̄ satisfies the Palais-Smale condition.

Proof. We recall that, for ΦH̄ to satisfy the Palais-Smale condition, we must
have that, for every sequence {xn} with∇ΦH̄(xn) → 0, there exists a conver-
gent subsequence. If ∥xn∥ is bounded, then this follows from the compactness
of ∇b and of P 0.

We now assume that the sequence of norms ∥xn∥ is unbounded. Consider
the rescaled paths yn := 1

∥xn∥
xn, so that ∥yn∥= 1. Now, by assumption,

(P+ − P−)yk − j∗
(

1

∥xk∥
∇H̄(xk)

)

→ 0.

Now note that there exists an M such that |∇H̄(z)|< M |z| for all z ∈ R2n.
It follows that the sequence

∇H̄(xk)

∥xk∥
∈ L2

is bounded in L2.
Since j∗ : L2 → X is compact, (P+ − P−)yk is relatively compact, and

y0k is bounded in R2n, it follows that the sequence yk is relatively compact
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in X. Let ϵ > 0 be as in the definition of H̄ in Equation 3.4. Define

Q(x) =
(π

2
+ ϵ
)

qΠ(x).

After taking a subsequence we may assume that yk → y in X and therefore
yk → y in L2. Note that, since ∇Q defines a continuous operator on L2, and
also that, for λ > 0,

∇Q(λx) = λ∇Q(x).

It follows that
∥

∥

∥

∥

∇H̄(xk)

∥xk∥
− ∇Q(y)

∥

∥

∥

∥

L2

≤
∥

∥

∥

∥

∇H̄(xk)

∥xk∥
− ∇Q(yk)

∥

∥

∥

∥

L2

+ ∥∇Q(yk)−∇Q(y)∥L2

=
1

∥xk∥
∥

∥∇H̄(xk)−∇Q(xk)
∥

∥

L2

+ ∥∇Q(yk)−∇Q(y)∥L2 .

Since, furthermore, |∇H̄(z)−∇Q(z)| ≤M for all z ∈ R2n, we may conclude
that

∇H̄(xk)

∥xk∥
→ ∇Q(y) in L2.

Therefore,

∇b(xk)
∥xk∥

= j∗
(∇H̄(xk)

∥xk∥

)

→ j∗ (∇Q(y)) in X.

It follows from this convergence that y satisfies the following system of equa-
tions in X:

y+ − y− − j∗∇Q(y) = 0,

∥y∥ = 1.

As in Lemma 3.22, we now have that y ∈ C1([0, 1],R2n) and that y also
satisfies the Hamiltonian equation

ẏ(t) = XQ(y(t)),

y(0), y(1) ∈ Rn,k.
(3.7)

By construction of Q, however, there are no non-trivial solutions of (3.7).
This, however, contradicts the assumption that ∥y∥= 1, and we conclude
that the sequence xk must be bounded, proving the lemma. □
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Lemma 3.24. The equation

ẋ = −∇ΦH̄(x), x ∈ X

defines a unique global flow R×X → X : (t, x) 7→ ϕt(x) ≡ x · t.

Proof. This follows immediately from the global Lipschitz continuity of∇ΦH̄
as a vector field on X. □

Lemma 3.25. The flow of the ODE ẋ = −∇ΦH̄(x) has the following form

(3.8) ϕt(x) = etx− + x0 + e−tx+ +K(t, x),

where K : R×X → X is continuous and maps bounded sets into precompact
sets and x− = P−(x), x0 = P 0(x) and x+ = P+(x).

Proof. The proof of this lemma follows exactly the proof in Hofer and Zehn-
der [19], Section 3.3, Lemma 7. The key point is that if we explicitly define
K by the formula

K(t, x) = −
∫ t

0

(

et−sP− + P 0 + e−t+sP+
)

∇b(x · s) ds,

we may verify directly that this has the required properties. □

3.4. Existence of a chord

We will now complete the proof of Proposition 3.1. To do this, we will prove
the following:

Theorem 3.26. If H is a simple Hamiltonian on (U,Un,k) and m(H) > π
2 ,

then there exists an orbit of the system ẋ = XH(x) with return time T = 1
and ΦH̄(x) > 0.

The remainder of this section will prove the theorem. The proof follows
closely the proof of [19], Section 3.1, Theorem 2, though it introduces some
new subtleties. We start by recalling the Minimax Lemma (see [19], page 79
for a proof), which will play a key role.

Definition 3.27. Let f : X → R be a differentiable function on a Hilbert
space X, i.e. f ∈ C1(X,R), and let F be a family of subsets F ⊂ X. We call
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the value

c(f,F) := inf
F∈F

sup
x∈F

f(x) ∈ R ∪ {∞} ∪ {−∞}

the minimax of f on the family F .

Lemma 3.28 (Minimax Lemma). Suppose f ∈ C1(X,R), where X is a
Hilbert space, and that f satisfies the following conditions:

1) f is Palais-Smale,

2) x = −∇f(x) defines a global flow ϕt(x) on X,

3) The family F is positively invariant under the flow, i.e., ϕt(F ) ∈ F
for all F ∈ F and all t ≥ 0,

4) −∞ < c(f,F) <∞,

then the real number c(f,F) is a critical value of f , that is, there exists an
element x∗ ∈ X with ∇f(x∗) = 0 and f(x∗) = c(f,F).

We will use the Minimax Lemma above over the family of sets F =
{ϕt(Στ )} to establish the existence of a critical point of the action functional.
As established in Lemma 3.14, it suffices to show this for the Hamiltonian
H̄, as the resulting orbit will be an orbit of H.

The plan of the proof is as follows. In Lemmas 3.32 and 3.33, we prove a
pair of technical inequalities on the polynomial part of H̄. Then, we produce
two “half-infinite” dimensional subsets of X, Σ and Γ, and in Lemmas 3.34
and 3.35 we show that the action ΦH̄ |∂Σ< 0 and that the action ΦH̄ |Γ> 0,
respectively. We then use the a Leray-Schauder degree argument in Lemma
3.36 to show that the flow of ϕt(Στ ) intersects Γα for all t ≥ 0, and finally,
we apply the Minimax Lemma to the union of the sets ϕt(Στ ), which proves
the result.

We begin with the following lemma.

Lemma 3.29. Let H ∈ H(U,Un,k). Then there exists a compactly sup-
ported Hamiltonian diffeomorphism ψ:U → U with ψ(Un,k) = Un,k such that
H ◦ ψ ∈ H(U,Un,k) and H ◦ ψ vanishes in a neighbourhood of 0.

Proof. Observe that in order for a Hamiltonian K to have a Hamiltonian
vector field whose flow preserves Un,k, the following derivatives

∂

∂xi
K(x1, . . . , xk, xk+1, . . . , xn, y1, . . . , yk, 0, . . . , 0) = 0 for i ≥ k + 1
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must vanish along Un,k.
By hypothesis, H is admissible, so there exists an interior point p ∈ Un,k

in whose neighbourhood H vanishes. Let V be a neighbourhood of the ray
{τp | τ ∈ [0, 1]} that is invariant under the involution

(3.9) cn,k: (x1, . . . , xn, y1, . . . , yk, yk+1, . . . , yn)

7→ (x1, . . . , xn, y1, . . . , yk,−yk+1, . . . ,−yn).

Let ρ be a cn,k-invariant cut-off function, identically equal to 1 on the neigh-
bourhood V and whose support is compactly contained in the interior of U .

Now define a Hamiltonian by K:Z(1) → R by

K: z 7→ ρ(z)⟨z,−Jp⟩.

Let XK be its associated Hamiltonian vector field and ψK its time 1 map.
Observe first that the Hamiltonian vector field XK(z) = p for any z ∈ V ,

so ψK(0) = p and thus H ◦ ψK vanishes in a neighbourhood of 0.
A computation of ∂xj

K for j ≥ k + 1 shows that the vector field is tan-
gent to Un,k (using both that p ∈ Un,k and that ρ is cn,k-invariant). □

From now on, without loss of generality, we assume that H vanishes in
a neighborood of 0.

Proposition 3.30. There exists x∗ ∈ X satisfying ∇ΦH̄(x
∗) = 0 and

ΦH̄(x
∗) > 0.

The proof of Proposition 3.30 follows from the following lemmas. We set
some notation for the discussion which follows.

Definition 3.31. 1) en := (0, . . . , xn = 1, 0, . . . , 0)T

2) e+(t) := eπJten = (0, . . . , 0, xn = cos(πt), 0, . . . , 0, yn = sin(πt))T

3)

Στ := {x ∈ X |x = x− + x0 + se+, x− ∈ X−, x0 ∈ X0,

∥x− + x0∥≤ τ, and 0 ≤ s ≤ τ}

4) Γα := {x ∈ X+ | ∥x∥= α}
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Lemma 3.32. Let u = (0, . . . , 0, ξ, 0, . . . , 0, η): [0, 1] → R2n be a smooth
function, where ⟨u(t), en⟩ = ξ(t) and ⟨u(t), e2n⟩ = η(t) are the xn and yn
coordinates, respectively, of u(t), and suppose that s ≥ 0. Then

q2(u(t) + se+(t)) ≥ s2 + 2s⟨e+(t), u(t)⟩+ ξ(t)2,

where q2 is as in Definition 3.13.

Proof. Recall that, for x ∈ R2n,

q2(x) =

{

x2n + y2n for yn ≥ 0

x2n for yn < 0.

Let πn : R2n → R2 be given by πn(x) = (xn, yn). We now calculate

q2(se
+ + u) =























s2 + ⟨2se+, u⟩+ ξ2(t) + η2(t)

if πn((se
+ + u)(t)) ∈ R2

+

s2 cos2(πt) + 2s cos(πt)ξ(t) + ξ2(t)

if πn((se
+ + u)(t)) ∈ R2

−

If t is such that πn(se
+(t) + u(t)) ∈ R2

+, the result follows immediately.
We consider then the case when πn(se

+(t) + u(t)) ∈ R2
−. Equivalently, this

occurs when s sin(πt) + η(t) ≤ 0.
We compute

s2 cos2(πt) + 2s cos(πt)ξ(t) = s2 cos2(πt) + 2s cos(πt)ξ(t)

+ 2s sin(πt)η(t)− 2s sin(πt)η(t)

= s2 cos2(πt) + ⟨2se+, u⟩ − 2s sin(πt)η(t)

= s2(1− sin2(πt)) + ⟨2se+, u⟩ − 2s sin(πt)η(t)

= s2 + ⟨2se+, u⟩ − s sin(πt) (s sin(πt) + 2η(t)) .

Observe now that we have s sin(πt) + η(t) ≤ 0, but t ∈ [0, 1] and s ≥ 0, so
it follows that η(t) ≤ −s sin(πt) ≤ 0. Thus, s sin(πt) + 2η(t) ≤ 0, and hence:

q2(x) = s2 + ⟨2se+, u⟩ − s sin(πt) (s sin(πt) + 2η(t)) + ξ2

≥ s2 + 2s⟨e+(t), u(t)⟩+ ξ(t)2,

proving the result. □
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Lemma 3.33. For τ > 0 and x = x− + x0 + se+ ∈ Στ

∫ 1

0
qΠ(x) dt ≥

∫ 1

0
qΠ(x

0) dt+

∫ 1

0
qΠ(se

+) dt.

Proof. Recall that qΠ(x) = q2(x) + q2n−2(x), where

q2n−2(x) =
1

N2

n−1
∑

i=k+1

(

x2i + y2i
)

+
2

N2

k
∑

i=1

(x2i + y2i )

and q2 is as in Definition 3.13.
If x1 and x2 are in orthogonal subspaces of L2([0, 1],R2n)

∫ 1

0
⟨x1(t), x2(t)⟩ dt = 0,

it follows that

∫ 1

0
q2n−2(x) dt =

∫ 1

0
q2n−2(x

−) dt(3.10)

+

∫ 1

0
q2n−2(x

0) dt+

∫ 1

0
q2n−2(x

+) dt.

Now, consider a smooth element x of L2
n,k([0, 1]) of the form x = x− +

x0 + se+, with s ≥ 0, and x− ∈ X−, x0 ∈ X0. Let ξ−(t) be the projection of
x−(t) to the xn coordinate, and similarly let ξ0 be the projection of x0. Then,
ξ(t) = ξ−(t) + ξ0 is the projection of x−(t) + x0. Note that by Lemma 3.4,
we have ξ0 = a0en and

ξ−(t) =
∑

k<0

ak cos(kπt),

where the real constants a0, ak, k < 0 are obtained as the projections to en
of the terms zk as given in Lemma 3.4.

By Lemma 3.32 and using the fact that x− + x0 is orthogonal to e+, we
have

∫ 1

0
q2(x) dt ≥

∫

s2 + 2s⟨e+, x− + x0⟩+ ξ2 dt

=

∫ 1

0
q2(se

+) dt+

∫ 1

0
ξ2 dt.
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Now, we observe that q2(x
0) = (ξ0)2, since x0 ∈ V0 ∩ V1, and therefore

∫ 1

0
ξ2 dt =

∫ 1

0
(ξ0)2 dt+

∫ 1

0
(ξ−)2 dt

≥
∫ 1

0
(ξ0)2

=

∫ 1

0
q2(x

0) dt.

It now follows that

∫ 1

0
q2(x) dt ≥

∫ 1

0
q2(se

+) dt+

∫ 1

0
ξ2 dt(3.11)

≥
∫ 1

0
q2(se

+) dt+

∫ 1

0
q2(x

0) dt.

Combining now the inequalities (3.10) and (3.11), we obtain for smooth
x = x− + x0 + se+:

∫ 1

0
qΠ(x) dt ≥

∫ 1

0
qΠ(se

+) dt+

∫ 1

0
qΠ(x

0) dt.

It now follows by continuity for all x = x− + x0 + se+ ∈ L2
n,k. □

Lemma 3.34. There exists a τ∗ > 0 such that for τ > τ∗,

ΦH̄ |∂Στ
≤ 0.

Proof. First, recall that ΦH̄(x) = a(x) + b(x). Since b ≤ 0 and a|X−⊕X0≤ 0
we have that ΦH̄ |X−⊕X0≤ 0. We now need to examine ΦH̄ on the boundary
regions, where either ∥x− + x0∥= τ or s = τ . We note that by the construc-
tion of H̄ above, there exists a constant C > 0 such that

H̄(z) ≥
(π

2
+ ϵ
)

qΠ(z)− C ∀z ∈ R2n.

Therefore,

ΦH̄(x) ≤ a(x)−
(π

2
+ ϵ
)

∫ 1

0
qΠ(x(t)) dt+ C ∀x ∈ X.
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We now estimate ΦH̄(x) for x(t) = x−(t) + x0 + se+(t) with s ≥ 0. Note
that by Lemma 3.4, x0 ∈ R2n

+ . Lemma 3.33 gives

ΦH̄(x
− + x0 + se+)

≤ a(x− + x2 + se+)−
(π

2
+ ϵ
)

∫ 1

0
qΠ(se

+(t)) + qΠ(x
0) dt+ C

Using now Definition 3.18 and Remark 3.19:

≤ s2∥e+∥2−∥x−∥2−
(π

2
+ ϵ
)

∫ 1

0
qΠ(se

+(t)) + qΠ(x
0) dt+ C

= C + s2∥e+∥2−∥x−∥2−
(π

2
+ ϵ
)

qΠ(x
0)− s2

(π

2
+ ϵ
)

∫ 1

0
qΠ(e

+(t)) dt.

Recalling the definition of the norm from Definition 3.7, ||e+||2= π
2 ,

∫ 1
0 qΠ(e

+)dt = 1, and qΠ(x
0) = ∥x0∥2, it follows that

ΦH̄(x
− + x0 + se+) ≤ C − ∥x−∥2−

(π

2
+ ϵ
)

∥x0∥2−ϵs2,

and thus there is a τ > 0, such that ΦH̄(x)|∂Στ
≤ 0. □

Lemma 3.35. There exists α and β such that ΦH̄ |Γα
≥ β > 0

Proof. The proof proceeds exactly as in [19], Section 3.4, Lemma 9. As they
observe, this lemma follows from the Sobolev inequality ∥u∥L3≤ C∥u∥1/2.
Since H̄ vanishes at the origin, Taylor’s theorem and the fact that H̄ is
quadratic at infinity implies that we may find a constant K > 0 such that
|H̄|≤ K|x|3, and therefore

ΦH̄(x) ≥
1

2
∥x+∥2−1

2
∥x−∥2−CK∥x∥3.

For x ∈ X+ with ∥x∥ sufficiently small, the result follows. □

Lemma 3.36. ϕt(Στ ) ∩ Γα ̸= ∅, for all t ≥ 0.

Proof. The proof of this lemma proceeds as in [19], Section 3.4, Lemma 10,
which we summarize here. We use the Leray-Schauder degree to show the
existence of an element in ϕt(Σ) ∩ Γ. (See Deimling [10], Theorem 8.2 or
Zeidler [28], Chapter 12, for properties of the Leray-Schauder degree.) Let
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F denote the space X− +X0 + Re+. Using the expression in Lemma 3.25,
we will rewrite the condition

(3.12) ϕt(Στ ) ∩ Γα ̸= ∅

in the form x+B(t, x) = 0 for the operator B : R× F → F defined by

B(t, x) := (e−tP− + P 0)K(t, x) + P+
(

(∥ϕt(x)∥−α)e+ − x
)

.

We remark that B is continuous and maps bounded sets into relatively
compact sets by Lemma 3.25. We now recall that, since x ∈ Στ , x = x− +
x0 + se+, for some 0 ≤ s ≤ τ , so the system of Equations 3.12 is equivalent
to

0 =x+B(t, x)

x ∈Στ .
(3.13)

Let I denote the identity operator. By the Leray-Schauder degree theory,
for any fixed t ≥ 0, Equation 3.13 has a solution x ∈ Στ if

deg(Στ , I +B(t, ·), 0) ̸= 0.

Since, by Lemmas 3.34 and 3.35, ϕt(∂Στ ) ∩ Γ = ∅ for t ≥ 0, there is no
solution of Equation 3.13 on the boundary ∂Στ . Therefore, since the Leray-
Schauder degree is homotopy invariant, we have

deg(Στ , I +B(t, ·), 0) = deg(Στ , I +B(0, ·), 0).

We see that K(0, x) = 0, so B(0, x) = P+ ((∥x∥−α)e+ − x). We define h :
[0, 1]×X → X+ by

h(µ, x) = P+
(

(µ∥x∥−α)e+ − µx
)

,

and we claim that x+ h(µ, x) ̸= 0 for x ∈ ∂Στ .
To see this, note first that if x ∈ Στ solves x+ h(µ, x) = 0 then x = se+,

so s((1− µ) + µ∥e+∥) = α. Therefore, 0 < s ≤ α, so x /∈ ∂Στ if τ > α, which
is true by hypothesis. Furthermore, since τ > α, αe+ ∈ Στ , so by homotopy,

deg(Στ , I +B(t, ·), 0) = deg(Στ , I + h(0, ·), 0)
= deg(Στ , I − αe+, 0)

= deg(Στ , I, αe
+)

= 1.
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This completes the proof. □

We now proceed with the proof of Proposition 3.30.

Proof of Proposition 3.30. Let α be such that Στ and Γα satisfy the hy-
potheses of Lemmas 3.34 and 3.35. Let U be the union

U :=
⋃

t≥0

ϕt(Στ ),

and define

c(ΦH̄ ,U) := inf
t≥0

sup
x∈ϕtΣτ

ΦH̄(x).

We wish to apply the Minimax Lemma to ΦH̄ and c(ΦH̄ ,U).
We first check that c(ΦH̄ ,U) is finite. Since, by Lemmas 3.34, 3.35, and

the hypothesis on α, we have ϕt(Στ ) ∩ Γα ̸= ∅ and ΦH̄ |Γα
≥ β, we have

(3.14) β ≤ inf
x∈Γα

ΦH̄(x) ≤ sup
x∈ϕt(Στ )

ΦH̄(x).

By Lemma 3.20, ΦH̄ maps bounded sets into bounded sets. Therefore, for
each t ≥ 0,

(3.15) sup
x∈ϕt(Στ )

ΦH̄(x) <∞.

Combining the inequalitites 3.14 and 3.15 we see that for every t ≥ 0,

−∞ < β < sup
x∈ϕt(Στ )

ΦH̄(x) <∞

and therefore −∞ < c(ΦH̄ ,U) <∞. By Lemma 3.23, ΦH̄ satisfies the Palais-
Smale condition, and by Lemma 3.24, the equation ẋ = ∇ΦH̄(x) gener-
ates a global flow, from which it follows that ϕt(U) ⊆ U . By the Mini-
max Lemma, c(ΦH̄ ,U) is a critical value. There is therefore a point x∗ ∈ X
with ∇ΦH̄(x

∗) = 0 and ΦH̄(x
∗) = c(ΦH̄ ,U) ≥ β > 0, which completes the

proof. □

Theorem 3.26 now follows immediately.

4. Existence of chords near an energy surface

We give here a dynamical consequence of our constructions: that the ex-
istence of the capacity c proven in Theorem 1.14 implies the existence of
Hamiltonian chords on a large family of energy surfaces.
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Definition 4.1. Let H:M → R be a Hamiltonian function on the symplec-
tic manifold (M,ω) and λ ∈ R. We call S = H−1(λ) a regular energy surface
with energy λ if dH(x) ̸= 0 for x ∈ S.

Theorem 4.2. Let (M,ω) be a symplectic manifold. Let S →֒M be a com-
pact, regular energy surface for the Hamiltonian H. Without loss of gener-
ality, S = H−1(1). Let N →֒M be an (n+ k)-dimensional coisotropic sub-
manifold transverse to S, and let ∼ be the leafwise relation on N .

Suppose there is a neighbourhood U of S such that c(U,N, ω,∼) <∞.
Then there is a ρ > 0 and a dense subset Σ ⊂ [1− ρ, 1 + ρ] such that

XH admits a leafwise chord on every energy surface of H with energy in Σ.

Proof. The proof follows closely the proof of Theorem 1 in Chapter 4 of [19].
The new ingredient here comes from the fact that the admissible Hamiltoni-
ans in the coisotropic setting require that trajectories either be constant or
have positive return time (i.e. ruling out trajectories that have tangencies
to the isotropic leaves). This will be dealt with by Lemma 4.3 below.

Denote level sets by Sλ = H−1(λ). Since S1 ⊂ U , and since transversality
is an open condition, there exists a ρ > 0 such that for every energy λ ∈
(1− ρ, 1 + ρ), Sλ ⊂ U and Sλ is transverse to N .

By shrinking U as necessary, we may assume U = H−1(1− ρ, 1 + ρ).
Monotonicity of the capacity gives that the smaller U also has finite capacity.

We will construct an auxiliary Hamiltonian function F on U which is
constant on every surface Sλ contained in U . Choose ϵ in (0, ρ), and let
f : R → R be a smooth function such that

f(s) = c(U,N, ω,∼) + 1 for s ≤ 1− ϵ and s ≥ 1 + ϵ

f(s) = 0 for 1− ϵ

2
≤ s ≤ 1 +

ϵ

2

f ′(s) < 0 for 1− ϵ < s < 1− ϵ

2

f ′(s) > 0 for 1 +
ϵ

2
< s < 1 + ϵ.

Define F :U → R by F (x) := f (H(x)) for x ∈ U , and extend F to F :M → R

by defining F (x) := c(U,N, ω,∼) + 1 for x ∈M\U .
Observe that this function F is therefore simple (see Definition 1.10).

The maximum of F , m(F ) > c(U,N, ω,∼), so F cannot be admissible. The
failure of admissibility either gives the existence of a short leafwise chord of
F or there is a non-constant trajectory that fails to leave its isotropic leaf.
We use the following lemma to rule out the latter case:



✐

✐

“8-Lisi” — 2020/7/29 — 23:38 — page 860 — #42
✐

✐

✐

✐

✐

✐

860 S. Lisi and A. Rieser

Lemma 4.3. Let N ⊂M be a coisotropic submanifold and H:M → R be
a function. If x ∈ N satisfies that TxN + ker dHx = TxM , then if XH(x) is
tangent to the isotropic leaf through x, then XH(x) = 0.

Proof. Let K denote the isotropic leaf through x. If XH(x) ∈ TxK, we then
have for any v ∈ TxN ,

0 = ω(XH(x), v) = −dH(x) · v.

By definition, we also have ω(XH(x), v) = 0 for all v ∈ ker dH. By hypothe-
sis, TxM = ker dHx + TxN , so ω(XH(x), v) = 0 for all v ∈ TxM , hence
XH(x) = 0. □

To conclude the proof, we recall that, by assumption, N ⋔ Sλ for every
Sλ ⊂ U , so at each x ∈ N ∩ U , we have TxN + ker dHx = TxM . By the con-
struction of F , we have dFx = f ′(H(x))dHx so ker dHx ⊂ ker dFx, and thus
the hypotheses of the lemma are verified for F . It then follows that XF (x)
either vanishes or points out of the isotropic leaf.

The remainder of the proof now proceeds as in [19]. We include it here
for the convenience of the reader. Since m(F ) > c(U,N, ω,∼), there exists
a nonconstant leafwise chord x(t) with return time 0 < T ≤ 1 which is a
solution of the Hamiltonian system ẋ(t) = XF (x(t)). Since F = f(H), we
have

XF (x) = f ′(H(x))(XH(x)) .

Also, note that, for a solution x(t) of the Hamiltonian equation, H(x(t)) = λ
is constant in t, since

d

dt
H(x(t)) = dH(x(t)) · ẋ(t) = f ′(H)ω(XH , XH) = 0.

Since x(t) is non-constant we must have

f ′(H(x(t))) = f ′(λ) ̸= 0.

From the definition of f , we see that λ ∈ (1− ϵ, 1− ϵ
2) ∪ (1 + ϵ

2 , 1 + ϵ). Let
τ := f ′(λ). Reparametrizing, we define y : R → Sλ by y(t) := x( tτ ). This
curve has period τT and satisfies the equation

ȳ(t) =
1

τ
x̄(t) = XH(y(t)),

and is therefore a solution of the original Hamiltonian equation on the energy
surface Sλ. Since ϵ is arbitrary, we have shown that there exists a sequence



✐

✐

“8-Lisi” — 2020/7/29 — 23:38 — page 861 — #43
✐

✐

✐

✐

✐

✐

Coisotropic Hofer-Zehnder capacities 861

λj → α of energy levels such that there is a leafwise chord on each Sj . How-
ever, the same argument proves this for any λ ∈ I. Therefore, the theorem
is proved. □

Remark. This theorem only guarantees the existence of leafwise chords
near a given energy level and says nothing about the energy level itself.
However, if we add the assumption that the return times Tj of the solutions
xj(t) on each Sλj

are uniformly bounded, and that S and each Sλj
are

compact, then a standard Arzelà-Ascoli argument together with Lemma 4.3
(which prevents the resulting limit from being contained in a leaf) allows us
to conclude:

Proposition 4.4. Let (M,ω) be a symplectic manifold, N →֒M be a coiso-
tropic submanifold. Let H :M → R be a Hamiltonian function with Hamil-
tonian vector field XH , and suppose there is an energy level Sα which is
compact and such that N ⋔ Sα. Furthermore, let λj → α and assume that
the return times Tj of the leafwise Hamiltonian chords xj(t) are bounded by
some β > 0 and that the Sλj

are compact. Then S = Sα admits a leafwise
Hamiltonian chord which is a solution of the equation x̄(t) = XH(x(t)).

Similarly, applying Lemma 4.3 to obtain compactness for non-trivial
chords of bounded length, we may adapt many results proving the existence
of periodic orbits on energy surfaces to our context of chords on coisotropic
submanifolds. We finish by stating two such results here on the existence of
leafwise Hamiltonian chords on energy surfaces transverse to a coisotropic
submanifold N of (M,ω). The proofs are modifications of the proofs of
Theorems 3 and 4 in [19, Chapter 4], using Lemma 4.3 and the same strategy
as in the proof of Theorem 4.2. We omit them here.

Before stating the next theorem, we recall two definitions from [19].
First, a parametrized family of hypersurfaces based on S is a diffeomorphism
ψ : S × I → U ⊂M , where I is an open interval containing 0, U is bounded,
and ψ(x, 0) = x for all x ∈ S.

Now suppose that each hypersurface Sϵ in a parametrized family of hy-
persurfaces based on S bound a symplectic manifold Uϵ. We say that Sϵ is
of c-Lipschitz type if there are positive constants L and a such that

c(Uϵ, N, ω,∼) < c(Uϵ∗ , N, ω,∼) + L(ϵ− ϵ∗)

for all ϵ∗ < ϵ < ϵ∗ + L(ϵ− ϵ∗).
When S is a hypersurface as above, and N is a coisotropic submanifold

such that S and N intersect transversally, we write C(S,N) to denote the
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set of leafwise Hamiltonian chords on S for any Hamiltonian that has S as
a regular level set.

Theorem 4.5. Let N →֒M be a coisotropic submanifold of (M,ω), and
suppose that c(M,N,ω,∼) <∞. Let S →֒M be a compact hypersurface that
intersects N transversally and which bounds a compact symplectic subman-
ifold of M . If S is of c0-Lipschitz type, then C(S,N) ̸= ∅.

Theorem 4.6. Let N →֒M be a coisotropic submanifold of (M,ω), and
suppose that c(M,N,ω,∼) <∞. Suppose the compact hypersurface S →֒M
bounds a compact symplectic manifold. Let Sϵ, with ϵ ∈ I be a parametrized
family of hypersurfaces modelled on S, with Sϵ transverse to N for each
ϵ ∈ I. Then

µ {ϵ ∈ I | C(Sϵ, N) ̸= ∅} = µ(I),

where µ denotes the Lebesgue measure on R.
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