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on biquotients

Oliver Goertsches, Panagiotis Konstantis, and Leopold Zoller

We construct symplectic structures on roughly half of all equal
rank biquotients of the form G//T , where G is a compact simple
Lie group and T a torus, and investigate Hamiltonian Lie group
actions on them. For the Eschenburg flag, this action has similar
properties as Tolman’s and Woodward’s examples of Hamiltonian
non-Kähler actions. In addition to the previously known Kähler
structure on the Eschenburg flag, we find another Kähler structure
on a biquotient SU(4)//T 3.

1. Introduction

Given a Lie group G, as well as a subgroup H ⊂ G×G acting freely on
G by left and right multiplication, the orbit space of this action is called
a biquotient of G, denoted G//H. Starting with the habilitation thesis of
Eschenburg [3] biquotients have been of interest for differential geometers,
mainly because they admit Riemannian metrics with rare curvature prop-
erties: all of them can be equipped with metrics of nonnegative sectional
curvature, and some even admit positive sectional curvature. [3][1]

In other types of geometries biquotients feature less prominently. Boyer,
Galicki, and Mann constructed 3-Sasakian structures on some biquotients,
in particular on the 7-dimensional Eschenburg spaces SU(3)//S1, via reduc-
tion of circle actions on the standard 3-Sasakian sphere. Although Kapovich
[13] posed the question which biquotients admit a Kähler structure, there
seems to be no literature on symplectic or Kähler structures on biquotients.
To our knowledge, the only known such structure on a (nonhomogeneous)
biquotient is implicit in the work of Eschenburg [5, Theorem 2] and Es-
cher and Ziller [6] where they show that the 6-dimensional Eschenburg flag
SU(3)//S12 is a Kähler manifold — see Section 4.2 below. A general result
that gives related information is by Singhof [17] who showed that any equal
rank biquotient G//T , where T is a torus, admits a stable almost complex
structure.
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In this paper we construct symplectic structures on roughly half of all
equal rank biquotients of compact simple Lie groups G//T , where T is a
torus, see Theorem 2.2 below. Given a biquotient G//T , and a compact
connected subgroup T ⊂ H ⊂ G×G, where the ranks of T,H and G coin-
cide, one has a fibration

H/T −→ G//T −→ G//H.

In case G//H admits a symplectic structure, one can use a construction of
Thurston [18] to obtain a symplectic structure onG//T . Work of Eschenburg
[3] helped us to find the correct choices for H.

In Section 3 we observe that our new symplectic structures admit Hamil-
tonian Lie group actions. As an explicit example, we show that the momen-
tum image of the Eschenburg flag SU(3)//S12 is a Tolman trapezoid [19]
and compare it to that of the ordinary full flag manifold SU(3)/T 2. In par-
ticular, this sheds new light on Tolman’s [19] and Woodward’s [21] examples
of Hamiltonian non-Kähler actions, see Theorem 3.3. We will compare these
examples more closely in the follow-up paper [7].

In Section 4 we address the question of existence of Kähler structures
on equal rank biquotients. Besides the Eschenburg flag mentioned above, we
find a Kähler structure on one more example, namely on SU(4)//S12. We
strongly suspect that all equal rank biquotients admit a Kähler structure,
and support this conjecture by verifying that for low-dimensional examples
the cohomology algebra satisfies the Hard Lefschetz property.

Acknowledgements. The authors would like to thank Ben Anthes, Jost-
Hinrich Eschenburg, Daniel Greb, and Wolfgang Ziller for sharing their in-
sight on the subject. We also want to express our thanks to Maximilian
Schmitt for pointing out to us the relation of our results to Tolman’s and
Woodward’s examples. The third named author is supported by the German
Academic Scholarship foundation.

2. Symplectic structures on biquotients

Let G be a compact Lie group and H ⊂ G×G. Then H acts on G via
(hl, hr) · g = hlgh

−1
r . This action has the kernel H ∩∆Z, where ∆Z denotes

the diagonal of the center of G. When the induced action of H/(H ∩∆Z) is
free, the quotient of the H-action is a smooth manifold. The orbit space will
then be called a biquotient and denoted by G//H. To simplify the language
we will often call the H-action free even if only the H/(H ∩∆Z)-actions is
free.



✐

✐

“6-Konstantis” — 2020/7/17 — 0:22 — page 793 — #3
✐

✐

✐

✐

✐

✐

Symplectic and Kähler structures on biquotients 793

We specifically study the case of a torus T ⊂ G×G of maximal di-
mension acting freely on G. By maximal dimension we mean that dimT =
rank(G). It is our goal to endow the biquotient G//T with a symplectic
structure. We first present a construction by which this can be achieved un-
der some additional assumption and later discuss to which of the cases in
the classification list of simple biquotients this can actually be applied.

2.1. The construction

In what follows we assume that there is an equal rank extension T ⊂ H ⊂
G×G such that H is connected, the natural H-action on G is free, and the
biquotient G//H carries a symplectic form ωB. We have

G//T ∼= G×H H/T

with H acting on H/T from the left and the diffeomorphisms explicitly given
by

T · g 7→ [g, eT ], [g, hT ] 7→ T · h−1 · g.

We have a fiber bundle

(1) H/T → G//T → G//H.

Any fiber over some orbit H · g can be identified with H/T via the map
hT 7→ [g, hT ] ∈ G×H H/T . This depends on the choice of a particular g in
the orbit gH, however two different choices for the identification differ only
by multiplication with some element of H on H/T . It is well known that
a flag manifold H/T carries a symplectic form ω0 such that the H-action
on H/T is Hamiltonian. Hence ω0 induces a symplectic form on every fiber,
independent of any choices of representatives. We want to apply the following

Theorem 2.1 ([18], see also Theorem 6.1.4 in [14]). Let F → E → B
be a fiber bundle of compact manifolds with structure group G in which
(F, ω0) and (B,ωB) are symplectic. Assume further that ω0 is invariant un-
der the structure group of the bundle and that [ω0] lies in the image of
the map H2(E) → H2(F ) (we always assume real coefficients in this arti-
cle). Then there exists a closed ωF ∈ Ω2(E) that restricts to the symplec-
tic form induced on every fiber and for C > 0 sufficiently large the form
ωF + Cπ∗(ωB) is a symplectic form on E.

The spectral sequence associated to the fiber bundle (1) collapses since
the cohomologies of fiber and base are concentrated in even degrees — which
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was shown in [4] and [13], see Theorem 4.7 below. Thus, the fiber inclusion
induces a surjection H∗(G//T ) → H∗(H/T ). To apply Theorem 2.1 to a
given G//T we thus only need to find an appropriate group H such that
G//H admits a symplectic structure.

2.2. Examples of symplectic biquotients

Simply connected simple groups. For a simply connected, simple,
compact Lie group G, biquotients G//T with T of maximal rank as above
have been classified in [3], up to a certain notion of equivalence, see [3, p. 75]
— roughly, it allows to flip the left and right factor of T and to modify T by
automorphisms of G; for us it is only important that equivalent biquotients
are diffeomorphic. Apart from the usual action of a maximal torus by left
multiplication and up to equivalence, the free double-sided actions of tori of
maximal rank are given by the following tori in G×G:

• G = SU(n) ([3, Satz 664]): Let e1, . . . , en be the standard basis of the
Lie algebra t of the diagonal maximal torus T in U(n). Let e = e1 +
· · ·+ en denote the generator of the center of u(n). For an element x ∈
u(n) we denote by x′ the projection of x to su(n) along the complement
generated by e, and for a pair of elements (x; y) we write (x; y)′ :=
(x′; y′). Up to equivalence, the only two families of tori inducing a free
double-sided action are given by sk1, sk2, 1 ≤ k ≤ ⌊n2 ⌋, where

sk1 =
〈

(2en; e1 + en)
′, (0; ea − e1), (0; eb − en), 1 ≤ a ≤ k, k + 1 ≤ b ≤ n

〉

sk2 =

〈(

2

k
∑

i=1

ei; en − e1 + 2

k
∑

i=1

ei

)′

, (0, ei − e1), 2 ≤ i ≤ n− 1

〉

.

• G = Spin(2n), n ≥ 4, andG = Spin(2n+ 1), Sp(n), n ≥ 2 ([3, Satz 75]):
For G = Sp(n) we fix the torus T ⊂ U(n) ⊂ Sp(n) from before. In the
other cases we choose T to be the maximal torus of Spin(2n) (resp.
Spin(2n+ 1)) which covers the standard diagonal torus in U(n) ⊂
SO(2n) ⊂ SO(2n+ 1). In any case let e1, . . . , en be the standard basis
of its Lie algebra. Again we set e = e1 + · · ·+ en. Then, up to equiva-
lence, there are two tori in G×G inducing a free double-sided action.
They have the Lie algebras

s1 = ⟨(en; 0), (0; e1 − en), . . . , (0; en−1 − en)⟩

s2 = ⟨(e; 0), (0; e1), . . . , (0; en−1)⟩.
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• On the exceptional Lie groups there are no genuine double-sided free
actions of tori of maximal rank ([3, Sätze 82,83,84]).

For roughly half of these cases we find symplectic structures on the re-
sulting biquotients by giving an extension of the torus as in the previous
section. Our constructions are inspired by [3] where the author does not
only classify all freely acting tori of maximal rank but also their maximal
freely acting extensions. For SU(n) this extension will satisfy our require-
ments whereas for the other groups we take a slightly smaller one. All of the
constructions are summarized here for the convenience of the reader.

Theorem 2.2. For G = SU(n) (resp. G = Spin(2n), Sp(n)) the tori asso-
ciated to sk2 (resp. s2) admit an equal rank extension H ⊂ G×G satisfying
the properties assumed for construction 2.1 above. In particular, the associ-
ated biquotients admit a symplectic structure.

Proof. Let us begin with G = SU(n). Let S′ be the circle generated by

(

2

k
∑

i=1

ei; en − e1 + 2

k
∑

i=1

ei

)′

and set U := {e} × SU(n− 1) with the second factor embedded in the up-
per left corner. Then H := S′ · U contains the desired torus. Note that S′

normalizes U so we can see G//H as the quotient of the induced S′-action
on G//U = SU(n)/SU(n− 1) defined by

(sl, sr) ·A · SU(n− 1) = slAs−1
r · SU(n− 1).

We can simplify things if, instead of looking at the S′-action, we consider

the circle S ⊂ U(n)×U(n) generated by
(

2
∑k

i=1 ei; en − e1 + 2
∑k

i=1 ei

)

.

It acts on SU(n)/SU(n− 1) with the same orbits as S′ because the center
does not contribute to the double-sided action. Concretely, the elements of
S are pairs (Bz, Cz), z ∈ S1 where Bz is the diagonal matrix with entries z2

from positions 1 to k and 1 on the rest of the diagonal and Cz is diagonal
with entries b11, . . . , bnn satisfying b11 = z, b22 = · · · = bkk = z2, bnn = z and
bii = 1 for the remaining entries. The diffeomorphism SU(n)/SU(n− 1) →
S2n−1 that sends A · SU(n− 1) to the last column (a1n, . . . , ann) of A carries
(Bz, Cz) ·A · SU(n− 1) = BzAC−1

z · SU(n− 1) to (za1n, . . . , zakn, za(k+1)n,
. . . , zann). If we further compose with the diffeomorphism that conjugates
coordinates k + 1 to n the S-action is identified with the standard S1-action
on S2n−1 which yields G//H ∼= CPn−1.
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For G = Sp(n) setH = S × Sp(n− 1), where S is the circle generated by
e and Sp(n− 1) is embedded in the upper left corner. As before we can regard
G//H as the quotient of the S-action on Sp(n)/Sp(n− 1) ∼= S4n−1. This
time the latter identification directly carries the S-action to the standard
S1-action on S4n−1 so again G//H ∼= CP 2n−1.

The same phenomenon occurs for G = Spin(2n). Define H = S ×
SO(2n− 1), where S ⊂ SO(2n) is the circle generated by e and SO(2n− 1)
is embedded in the upper left corner. Now set H = (p2)−1(H), p being the
projection Spin(2n) → SO(2n). The identity component H0 of H contains
the torus defined by ¿ s2. As we shall see in the subsequent discussion of cov-
erings, ¿ H0 acts freely on G and G//H0 is a covering of ¿ SO(2n)//H. The
latter is the quotient of the S-action on ¿ SO(2n)/SO(2n− 1) which is easily
exposed to be CPn−1 as ¿ before. Hence we already have G//H0

∼= CPn−1

as the base of ¿ the covering is simply-connected. □

Coverings. We have seen that there exists quite a large number of sym-
plectic biquotients of simply connected simple groups. We wish to extend
the discussion to the realm of groups with nontrivial fundamental group.

Any Lie group G has a universal covering group Ĝ such that G = Ĝ/Γ
for some subgroup Γ of the center of Ĝ. We assume G to be simple, so
Γ is necessarily discrete. Now if H ⊂ G×G acts freely on G and p : Ĝ →
G is the projection, the group Ĥ = (p2)−1(H) ⊂ Ĝ× Ĝ acts freely on Ĝ
[3, Satz 35]. Actually Ĝ//Ĥ = G//H, where Ĥ may be disconnected. If
we consider instead the action of the identity component Ĥ0 we obtain a
covering Ĝ//Ĥ0 → G//H by dividing out the Γ-action.

This implies that any free double sided torus action on G is covered
by one of the cases in the classification list above. Note however that the
converse statement does not necessarily apply as not every free double sided
action on Ĝ induces such an action on G.

Now assume that for some biquotient G//T we have constructed a sym-
plectic form ω̂ on Ĝ//T̂0 via an extension Ĥ of T̂0 satisfying the conditions
of construction 2.1. Assume further that the symplectic form ωB on Ĝ//Ĥ
that was used for the construction is invariant under the action of Γ. Then
by the discussion in Section 3 (setting K = Γ× {e}), we see that ω̂ can be
chosen Γ-invariant. In particular, it induces a symplectic form on G//T .

To conclude, note that all of the cases covered in Theorem 2.2 admit
such a choice of ωB:

• For Ĝ = SU(n), and Ĥ as in the proof of 2.2, the identification Ĝ//Ĥ ∼=
CPn−1 sends Ĥ ·A to the last column of A with certain entries conju-
gated. In particular, under this identification the center of SU(n) acts
on CPn−1 by multiplying entries with certain elements of S1. Thus
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choosing a symplectic form ωB on CPn−1 that is invariant under the
standard U(n)-action fulfills the requirements.

• The center of Ĝ=Sp(n) is {±1} which acts trivially on Ĝ/Ĥ∼=CP 2n−1.

• For Ĝ = Spin(2n) we observe that the action of the center on Ĝ/Ĥ
factors through the action of the center of SO(2n) which is {±1}.
Again, this acts trivially on Ĝ/Ĥ.

The above discussion is summarized in the following

Proposition 2.3. Let G//T be an equal rank biquotient of a simple Lie
group G, with T ⊂ G×G a torus. Then it is covered by one of the biquotients
Ĝ//T̂0 of simply connected Lie groups Ĝ from the list above. Moreover, if
Ĝ//T̂0 belongs to the cases covered in Theorem 2.2, then the symplectic
structure on Ĝ//T̂0 descends to G//T .

3. Hamiltonian actions on biquotients

3.1. Invariant symplectic forms

In our examples we find additional symmetry on G//T : Take a closed
subgroup K ⊂ ZG×G(H). Then there is an induced action of K on G//T
and G//H defined by (k1, k2) · T · g = T · k1gk

−1
2 and (k1, k2) ·H · g = H ·

k1gk
−1
2 . If the K-action on G//H is symplectic we can adapt the construc-

tion of the symplectic form ω on G//T such that the K-action on G//T is
symplectic as well:

Suppose we have constructed ω = ωF + Cπ∗(ωB) as in Theorem 2.1
above. The K-action on G//T commutes with the projection onto G//H
and thus respects fibers. The diagram

H/T

zz %%

[g,H/T ] //

��

[k · g,H/T ]

��

G//T
·k

// G//T

commutes, where H/T → [g,H/T ], hT 7→ [g, hT ] identifies the fiber over
H · g with H/T (analogous for the fiber over H · kg). Since ωF pulls back to



✐

✐

“6-Konstantis” — 2020/7/17 — 0:22 — page 798 — #8
✐

✐

✐

✐

✐

✐

798 O. Goertsches, P. Konstantis, and L. Zoller

ω0 in H/T we see that k∗ωF also restricts to the symplectic form on every
fiber. Therefore, if we replace ωF by

ω̃F =

∫

K

k∗ωFdk

it will still restrict to the symplectic forms on the fibers. Potentially replacing
C by a bigger constant ω̃F + Cπ∗(ωB) is a K-invariant symplectic form on
G//T . Thus K acts in a Hamiltonian fashion by the following

Lemma 3.1 (Addendum to Theorem 26.1 in [11]). Let K be a Lie
group acting symplectically on a symplectic manifold (M,ω) with H1(M) =
0. Then the action is Hamiltonian.

Let us have a look which Hamiltonian actions arise on the examples of
symplectic biquotients from the previous section. We denote by Ski (resp.
Si) the torus associated to ski (resp. si). For T equal to one of these tori and
H the corresponding extensions from the proof of 2.2 we obtain Hamiltonian
actions of the following groups on G//T :

• G = SU(n), T = Sk2: The centralizer ZG×G(H) is given by S(U(k)×
U(n− k))× S where S ⊂ SU(n) is the circle generated by e′n. Note
that the action of the whole centralizer on G//T is not effective. An
effective action with the same orbits is obtained by restricting only to
the left-hand factor that is S(U(k)×U(n− k))× {1}.

• G = Sp(n), T = S2: We have ZG×G(H) = U(n)× Sp(1) with the sec-
ond factor in the lower right corner. Again the action of the whole
group is not effective for the center of the left factor U(n) acts triv-
ially.

• G = Spin(2n), T = S2: Recall from the definition of H that G//H
is actually equal to SO(2n)//H and that the action of ZG×G(H)
arises as a pullback of the ZSO(2n)×SO(2n)(H)-action along ZG×G(H) →

ZSO(2n)×SO(2n)(H). Consequently, our actual interest lies in the latter
which equals U(n)× {±1}. Note that the right-hand factor as well as
the center of U(n) act trivially on SO(2n)//H.

3.2. Isotropy representations

In the above setting we can determine the isotropy representations of K
in terms of base and fiber. This is useful for computing the image of the
moment map of the K-action and will be applied in Section 3.3 below.
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Let T · g be a fixed point of the K-action on G//T . Then H · g is a fixed
point of the K-action on G//H so K acts on the fiber over H · g. At this
point it is convenient to work with the effective versions of the action so let
T = T/(T ∩∆G). Then the T -action on G is really free and for any k ∈ K
there is a unique ϕ(k) ∈ T such that k · g = ϕ(k)−1 · g. We identify the fiber
F = [g,H/T ] with H/T . Note that there is a well defined left action of T on
H/T for the central part acts trivially. We have

k · [g, h · T ] = [k · g, h · T ] = [g, ϕ(k) · h · T ].

Thus K acts by pulling back the T -action on H/T along the homomorphism
ϕ : K → T .

Observe that the decomposition TT ·gG//T = TT ·gF ⊕ V is preserved by
the isotropy action of K, where V is the symplectic complement of TT ·gF .
The latter is K-equivariantly isomorphic to TH·gG//H so the isotropy rep-
resentation at p is isomorphic to the sum of the isotropy representation of
K at gH and the pullback along ϕ of the isotropy representation of the
T -action on H/T at eT .

To define the weights of the representations (of a maximal torus of K)
one uses the symplectic form ω on G//T . Since ω restricts to ω0 when
identifying F with H/T one can determine the weights coming from TT ·gF
by computing the weights of the isotropy representation of T on TeTH/T
with respect to the orientation given by ω0 and pulling back along the map
t∗ → k∗ defined by ϕ. The weights coming from V agree with the ones of
the K-action on TH·gG//H using ωB for orientation. Note that ω|V is not
necessarily identified with ωB on TH·gG//H. However the two are sufficiently
close if we choose the constant C big enough.

3.3. The moment map on the Eschenburg flag

By the Eschenburg flag we mean the quotient of SU(3) by the double-
sided action associated to s12 (cf. Section 2.2). Consider G = SU(3) and
T ⊂ U(3)×U(3) the torus with Lie algebra

t = ⟨(2, 0, 0; 1, 0, 1), (0, 0, 0; 1,−1, 0)⟩

with respect to the standard basis of the standard maximal torus in U(3).
Note that T acts on SU(3) since elements in T have the same determi-
nant in both components. This action has the same orbits as the action
associated to s12. Take H ⊂ U(3)×U(3) to be the subgroup with Lie al-
gebra h = ⟨(2, 0, 0; 1, 0, 1), (0; su(2)⊕ 0)⟩. We have induced actions on G//T
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and G//H by left multiplication of K = S (U(1)×U(2)). We want to de-
termine the image of the moment map associated to the action of the two
dimensional diagonal torus S of K by computing the weights of the isotropy
representations.

We fix the basis e1 − e2, e1 − e3 of s (where the ei are the standard
basis of the Lie algebra of the diagonal torus in U(3)) and also use the
corresponding dual basis for s∗. We identify G//H with CP 2 as in the proof
of Theorem 2.2. Explicitly, the map from G//H to CP 2 is given by sending
H · g to [g13 : g23 : g33], where gij denotes the respective matrix entries of g.

Using the standard symplectic form on CP 2 the weights of the isotropy
representations of the standard (non-effective) T 3-action on CP 2 at the fixed
points are

• (−1, 1, 0), (−1, 0, 1) at [1 : 0 : 0]

• (1,−1, 0), (0,−1, 1) at [0 : 1 : 0]

• (1, 0,−1), (0, 1,−1) at [0 : 0 : 1].

The S-action on G//H ∼= CP 2 can be understood as the pullback of this
standard action along the homomorphism S → T 3 which on the level of Lie
algebras is represented by the matrix





1 1
1 0
0 1





using the standard basis for the Lie algebra of T 3. We compute

(

1 1 0
1 0 1

)

·





−1 −1 1 0 1 0
1 0 −1 −1 0 1
0 1 0 1 −1 −1



 =

(

0 −1 0 −1 1 1
−1 0 1 1 0 −1

)

Thus the weights of the horizontal part of the isotropy representations
of the S-action on G//T at the fixed points within the respective fibers are
given by

• (0,−1), (−1, 0) over [1 : 0 : 0]

• (0, 1), (−1, 1) over [0 : 1 : 0]

• (1, 0), (1,−1) over [0 : 0 : 1].

It remains to find the actual fixed points of the S-action on the fixed fibers
and compute the weights of the corresponding vertical representations. We
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fix (2, 0, 0; 1, 0, 1), (2, 0, 0; 0, 1, 1) as a basis for t and also use the dual basis
for t∗. The group H consists of all elements of the form









det(A)2

1
1



 ,

(

A
det(A)

)





with A ∈ U(2). Mapping an element of H displayed as above to A defines
an isomorphism H ∼= U(2) that sends the chosen basis of t to the standard
basis of the Lie algebra of the maximal torus of U(2). We identify H/T ∼=
U(2)/T 2 ∼= CP 1 by projecting onto the second column. The T -action from
the left on H/T corresponds to the standard (non-effective) T 2-action on
CP 1. Using the standard symplectic form on CP 1, the T -action on H/T has
the weights (−1, 1) and (1,−1) at the two fixed points [1 : 0] and [0 : 1].

We want to understand the action on the three fixed fibers. The fixed
points of the S-action on G//T are represented by matrices p1, . . . , p6 which
are, in this order, given by





1
1

1



 ,





1
1

1



 ,





1
1

1



 ,





1
1

−1



 ,





1
1

−1



 ,





1
1

−1



 ,

out of which the pairs (p1, p5), (p2, p4), and (p3, p6) lie in the same fiber over
G//H. In what follows, we use p1, p2, and p3 for the identification of the
respective fibers [pi, H/T ] ∼= H/T . We compute





s
s̄

1



 p1 =





1
1

1



 p1





s
s̄

1





and





s
1

s̄



 p1 =





s2

1
1



 p1





s̄
1

s̄



 .

for s ∈ S1. We deduce that S acts on [p1, H/T ] ∼= H/T by pulling back the
T -action along the homomorphism ϕ1 : S → T whose matrix representation
on Lie algebras is given by

(

1 −1
−1 0

)

.
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Thus in the fiber over [0 : 0 : 1] there are 2 fixed points and the weights of
the respective isotropy representations are given by the pullbacks

±

(

1 −1
−1 0

)(

1
−1

)

= ±

(

2
−1

)

,

where the positive sign is the weight at p1 and the negative sign corresponds
to p5. Analogously we compute





s
s̄

1



 p2 =





s2

1
1



 p2





1
s̄

s̄





and





s
1

s̄



 p2 =





1
1

1



 p2





s̄
s

1





as well as




s
s̄

1



 p3 =





s2

1
1



 p3





s̄
1

s̄





and





s
1

s̄



 p3 =





s2

1
1



 p3





1
s̄

s̄



 .

Thus S acts on the respective fibers by pullback along ϕ2 and ϕ3, represented
by

(

0 −1
−1 1

)

and

(

−1 0
0 −1

)

giving rise to the weights

±

(

0 −1
−1 1

)(

1
−1

)

= ±

(

1
−2

)

and ±

(

−1 0
0 −1

)(

1
−1

)

= ±

(

−1
1

)

,

with the positive signs corresponding to p2 and p3 while the negative sign
belongs to the weights at p4 and p6. In total the weights at the six fixed
points are given by

• (1, 0), (1,−1), (2,−1) at p1

• (1, 0), (1,−1), (−2, 1) at p5

• (0, 1), (−1, 1), (1,−2) at p2
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• (0, 1), (−1, 1), (−1, 2) at p4

• (0,−1), (−1, 0), (−1, 1) at p3

• (0,−1), (−1, 0), (1,−1) at p6.

One checks that for two of the triples above the generated cone is R2,
hence two fixed points get mapped to the interior of the moment image
while the rest maps to the vertices. Conceptually, the image of the moment
map of the Hamiltonian action of K on the Eschenburg flag has the shape as
depicted in the left hand figure below, where the dots correspond to the fixed
points whereas the (dashed) lines are the image of the the 1-skeleton of the
action. The ambiguity of the image is up to translation, global rescaling and
the ratio of the lengths of the edges (p1, p6) and (p3, p6). Fixing all three
factors yields a unique polytope. Compare this to the right hand figure
which shows the image of the moment map of the S-action on G//H (up to
translation and global rescaling).

p6p1

p2

p5 p3

p4

The ambiguity of the ratios of the lengths of the edges (p1, p6) and
(p3, p6) is due to the fact that there is a varying parameter in our con-
struction: the symplectic form on G//T which we used above is of the form
ω = ωF + Cπ∗(ωB) for some big enough C > 0, where ωF is closed and ωB

is the chosen symplectic form on G//H. Now if we rescale ω by considering
C−1ωF + π∗ωB we see that for large C the lengths of the edges that are the
images of the fixed fibers ((p1, p5), (p2, p4), and (p3, p6)) become short and
the image of the moment map of G//T approaches that of G//H.
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We point out that the positioning of the inner fixed point images gives
an upper bound for the length of the edges coming from the fixed fibers:
elongating them would eventually force p2 and p5 to move past each other,
which is impossible.

Remark 3.2. Comparing the above picture to the moment image of the S-
action on the standard flag SU(3)/S, a hexagonal region (cf. [9]), we observe
that the latter has much more symmetry. This is due to the fact that the
action on SU(3)/S extends to a Hamiltonian SU(3)-action, which means the
Weyl group of SU(3) acts on the moment image. For the Eschenburg flag
however, the S-action only extends to an S(S1 ×U(2))-action. The latter
has the rather small Weyl group Z2 which acts in the above picture by
reflection at a suitable line in direction (1, 1).

We observe that the momentum image of the S-action on the Eschenburg
flag is of the same shape as that of Tolman’s example [19] of a six-dimensional
symplectic T 2-manifold with finitely many fixed points that does not admit
an invariant Kähler structure: it is a Tolman trapezoid, as it was called in
[10, Section 5.2]. As Tolman’s argument for the non-existence of an invari-
ant Kähler structure only involves the momentum image, it applies to our
situation as well. On the other hand, the Eschenburg flag admits a Kähler
structure, see [6] and Section 4.2 below. Note also that Woodward [21] con-
structed an example of this type admitting a multiplicity-free U(2)-action
using symplectic surgery, and that our example admits a U(2)-action as well.
To summarize, our construction shows:

Theorem 3.3. There exists a six-dimensional compact, simply-connected
manifold M with a U(2)-action, such that the restriction to a maximal torus
T 2 has exactly six fixed points, and which satisfies the following properties:

1) M admits a Kähler structure.

2) There is a U(2)-invariant symplectic structure on M and the action
on M is multiplicity-free.

3) M does not admit a T 2-invariant Kähler structure.

In [7] we compare the symplectic Eschenburg flag more closely to Tol-
man’s and Woodward’s examples. There, we show all these examples are
(non-equivariantly) diffeomorphic — in particular, Tolman’s and Wood-
ward’s examples also admit a (noninvariant) Kähler structure.
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4. Kähler structures on Biquotients

4.1. Flag bundles

In this section we will remind the reader of some basic facts concerning flag
bundles. More precisely we will explain how one associates a flag bundle to a
complex vector bundle and moreover we will note that if the base manifold
is Kähler and if the vector bundle has a holomorphic structure, then the
total space of a flag bundle will be Kähler too.

First, recall the following definition. The ordered set of subspaces
(V1, . . . , Vn) of a complex n-dimensional vector space V is called a flag if
V1 ⊂ V2 ⊂ · · ·Vn = V , where dimVi = i. The set F (V ) of all flags is a smooth
manifold and can be identified with U(n)/Tn, where Tn is the diagonal n-
dimensional torus in U(n). More precisely, if V = Cn then

Φ: U(n)/Tn −→ F (Cn), A · T 7→ {⟨a1⟩, ⟨a1, a2⟩, . . . , ⟨a1, . . . , an⟩},

is a bijection where ai (1 ≤ i ≤ n) are the columns of A and ⟨· · · ⟩ means the
span over the complex numbers. We say that F (V ) is a (complex) full flag
manifold.

Second, we call a locally trivial fiber bundle E → M a flag bundle over
a manifold M if the fibers are complex full flag manifolds.

Now if W → M is a complex vector bundle of rank n, then there is
a splitting manifold F (W ) and a map π : F (W ) → M such that π∗(W ) is
isomorphic to a Whitney-sum of complex line bundles over F (W ) (cf. [2,
§21]). Moreover π : F (W ) → M has the structure of a flag bundle. We will
recall briefly this construction, since it will be needed for this section.

Start with the projectivization π0 : P (W ) → M of W → M which is a
locally trivial bundle with fibers complex projective spaces. There is a line
subbundle S1 of π∗

0(W ) such that S1 restricted to the fibers of π0 is the
tautological bundle. Denote by Q1 the quotient bundle π∗

0(W )/S1 and re-
peat the procedure with Q1 → P (W ) =: P1 to produce π1 : P (Q1) → P (W )
and a vector bundle Q2 → P (Q1) = P2. The splitting manifold is defined
to be F (W ) := Pn−1 and the map π = π0 ◦ · · · ◦ πn−1 : F (W ) → M has the
structure of a locally trivial fiber bundle.

Note thereby, that if M is a point, then W is just a complex vector space
and the space F (W ) is the complex full flag manifold defined above. This
shows that for a general vector bundle W → M the map π : F (W ) → M has
the structure of a flag bundle.
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Assume that M is a compact Kähler manifold and W → M a holomor-
phic vector bundle. Then we have a well-known lemma

Lemma 4.1 ([20, Proposition 3.18]). The total space of the projectiviza-
tion P (W ) is Kähler and the projection π0 : P (W ) → M is holomorphic.

Thus π∗

0(W ) is again a holomorphic bundle over P (W ). Note that S1

is a holomorphic subbundle of π∗

0(W ), therefore Q1 = π∗

0(W )/S1 is again
holomorphic. With Lemma 4.1 we obtain that P (Q1) is Kähler and the map
π1 : P (Q1) → P (W ) is holomorphic. Inductively we finally deduce

Lemma 4.2. Let M be a compact Kähler manifold and W → M a holo-
morphic vector bundle. Then the total space F (W ) of the associated flag
bundle to W → M is also Kähler.

4.2. A new example

In [5, Theorem 2] and [6] the Eschenburg flag, that is the biquotient
SU(n)//Sk2 in the case n = 3, k = 1 (with Sk2 being the torus associated to
sk2 as defined in Section 2.2), was written as the projectivization of a holo-
morphic vector bundle over CP 2. This in particular implies the existence of
a Kähler metric on the Eschenburg flag. We wish to extend this strategy to
the case n = 4.

Proposition 4.3. For n ≥ 3, The biquotient SU(n)//S12 is the total space
of the flag bundle associated to a complex vector bundle over CPn−1.

Proof. Note first that the torus S ⊂ U(n)×U(n) with Lie algebra

⟨(2e1; e1 + en) , (0; e2 − e1), . . . , (0; en−1 − e1)⟩

acts on SU(n) in the usual double-sided fashion and that SU(n)//S =
SU(n)//S12. We consider the equal rank extension H of matrix tuples of
the form

((

det(A)2 0
0 In−1

)

,

(

A 0
0 det(A)

))

with A ∈ U(n− 1). The group H acts freely on SU(n) and as before we
write SU(n)//S = SU(n)×H H/S. Note that sending a tuple ofH written as
above to the matrix A defines an isomorphism H ∼= U(n− 1) under which S
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maps to the standard diagonal torus Tn−1. In particular, using the bijection
Φ of the previous section,

SU(n)//S ∼= SU(n)×U(n−1) U(n− 1)/Tn−1

is the flag bundle associated to the complex bundle SU(n)×U(n−1) C
n−1.

For the identification SU(n)//H ∼= CPn−1 one proceeds as in the proof of
Theorem 2.2. □

Corollary 4.4. The biquotients SU(3)//S12 and SU(4)//S12 admit a
Kähler structure.

Proof. From [16, Chapter I, §6] every (topological) vector bundle over CP 2

or CP 3 possesses a holomorphic structure. Proposition 4.3, combined with
Lemma 4.2, yields the result. □

Remark 4.5. Other biquotients can be regarded from a similar point
of view. For instance, for G = Sp(n) and the torus S2 = S × Tn−1 ⊂ S ×
Sp(n− 1), the bundle

Sp(n)//S2 = S \ Sp(n)×Sp(n−1) Sp(n− 1)/Tn−1

−→ S \ Sp(n)/Sp(n− 1) ∼= CP 2n−1

is the bundle of full isotropic flags (with respect to a complex symplectic
form) in the complex vector bundle S \ Sp(n)×Sp(n−1) C

2n−2 → CP 2n−1.
We expect that one might use this description to find a Kähler structure on
this space, provided that one can show that this bundle and the complex
symplectic form are holomorphic.

4.3. The Hard Lefschetz property

It is natural to ask whether the existence of Kähler structures on biquotients
can be excluded due to topological obstructions. The most prominent alge-
braic topological feature of compact Kähler manifolds is the fact that their
cohomology algebras satisfy the Hard Lefschetz property (HLP). Recall the
following

Definition 4.6. A commutative graded algebra A is said to have the Hard
Lefschetz property if there is an element ω ∈ A2 such that, for some fixed n
and all k ≥ 0, multiplication with ωk induces an isomorphism An−k ∼= An+k.
In this case we call ω a Hard Lefschetz element.
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The study of the HLP and more general Lefschetz properties on certain
algebras is an active field of research in commutative algebra. However, re-
sults that prove the HLP for whole families of algebras seem to be restricted
to very special cases like e.g. quotients of polynomial rings by monomial ide-
als [12, 15]. The relations appearing in the cohomology rings of biquotients
of simple Lie groups (cf. Section 2.2) are much more complicated and we
were not able to prove the HLP for one of the listed families. The purpose
of this section is rather to give examples from all families in which the HLP
does hold, backing up the authors suspicion that indeed all of the spaces
satisfy the HLP and might even be Kähler.

Cohomology rings of biquotients. Before we can give the examples, we
need to understand the cohomology rings of the spaces in question. They are
easily computable as was shown e.g. in [4] and [17] using spectral sequences
or in [13] via rational homotopy. Let S(·) denote the symmetric algebra.
Simplified and tailored to the situation from Section 2.2 one has

Theorem 4.7. Let T ⊂ G a maximal torus and suppose S ⊂ T × T induces
a free double-sided action on G where rank(S) = rank(G). Let i : s → t× t

denote the inclusion of Lie algebras. Then

H∗(G//S) ∼= S(s∗)/ (i∗(δ1), . . . , i
∗(δn)) ,

where δi = σi ⊗ 1− 1⊗ σi ∈ S(t∗ × t∗) for the polynomial generators σi of
the Weyl-invariant polynomials in S(t∗).

In our description of the biquotients in Section 2.2 comes with bases for
s and t which we fix as bases here. If we denote the corresponding dual basis
of t∗ by y1, . . . yn, then the σi are given by

• G = SU(n): The elementary symmetric polynomials of degree 2, . . . , n
in the variables y1, . . . , yn.

• G = Spin(2n+ 1), Sp(n): The elementary symmetric polynomials of
degree 1, . . . , n in the variables y21, . . . , y

2
n.

• G = Spin(2n): The elementary symmetric polynomials of degree
1, . . . , n− 1 in the variables y21, . . . , y

2
n as well as the nth elementary

symmetric polynomial in the variables y1, . . . , yn.

In particular, it follows that the matching biquotients of Spin(2n+ 1)
and Sp(n) have isomorphic cohomology. Using more general formulations of
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Theorem 4.7 one could even see that they have the same rational homotopy
type.

We are now ready to give explicit examples of elements in H2(G//S)
that are Hard Lefschetz elements. Let G be simple and S be one of the tori
Sk (resp. Skl) from Section 2.2. Also let x1, . . . , xn be the dual basis of the
basis used for the definition of the Lie algebra s of S in 2.2. Then, via the
isomorphism of Theorem 4.7, the element ω =

∑n
i=1 ixi induces an element

of H2(G//S). In the cases where n ≤ 5, the element ω is a Hard Lefschetz
element. In particular we have the following

Proposition 4.8. Let G be simple, rank(G) ≤ 5 and G//S a biquotient
with S a torus of maximal rank. Then H∗(G//S) satisfies the Hard Lefschetz
property.

Remark 4.9. The bases xi are chosen noncanonically for every torus S.
As expected, the sets of coefficients αi for which

∑

αixi induces a Hard
Lefschetz element of H2(G//S) do in general not coincide for different S,
even for small ranks. It is therefore rather surprising that the coefficients
defining ω above work for all those tori simultaneously.

The calculations to verify that ω is indeed a Hard Lefschetz element
are too lengthy to be displayed here explicitly. To compensate, we discuss
below how the question of whether a certain element of an algebra as above
is Hard Lefschetz can be reduced to a problem of ideal membership which
is solvable with any standard computer algebra software. Additionally, we
demonstrate how to verify the proposition, using the freely available software
Macaulay2 [8]. While we only display the code for the Torus S1 of G = Sp(n)
and G = Spin(2n+ 1), all remaining cases can be checked with only slight
modifications.

Testing for Hard Lefschetz elements. The cohomology algebras of the
biquotients above are of the form H = R[x1, . . . , xn]/(f1, . . . , fn) where the
xi are of degree 2 and the fi are homogeneous polynomials (in fact the fi
form a regular sequence). We have the additional information thatH satisfies
Poincaré duality with fundamental class in even degree 2m. For dimensional
reasons, an element ω ∈ H2 is Hard Lefschetz if and only if multiplication
with ωk is surjective onto the degree m+ k component of H for all k.

Let p ∈ R[x1, . . . , xn] be a representative of ω. The cokernel of multipli-
cation by ωk is just

R[x1, . . . , xn]/(f1, . . . , fn, p
k).
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Thus ω is Hard Lefschetz if and only if for k = 1, . . . ,m the degree m+ k
component of R[x1, . . . , xn]/(f1, . . . , fn, p

k) is trivial. This is of course equiv-
alent to the question of whether all degree m+ k monomials lie in the ideal
(f1, . . . , fn, p

k).
We present in the following lines a Macaulay2 algorithm for testing the

Hard Lefschetz property.

-- Sp(n) or Spin(2n+1)

n = 3; -- dimension of a maximal torus, change at will

R=QQ[x_1..x_n,Degrees=> for i from 1 to n list 2];

S=QQ[y_1..y_(2*n)]

m=n^2; -- Dimension of biquotient / 2

-- the x_0-th elementary symmetric polynomial evaluated at

x_1,...,x_n.

sigma = x -> (

if (not class x === Sequence) or #x < 2 or x_0 < 0 then (

error "Wrong input data";

return 0;

);

i := x_0;

n := #x-1;

args := toList drop(x,1);

args’ := drop(args,-1);

if i > n then return 0;

if i == 0 then return 1;

if i == 1 then return sum args;

return x_n*sigma(toSequence prepend(i-1,args’))

+sigma(toSequence prepend(i,args’));

);

-- create lists with squared generators

L_1 = for i from 1 to n list y_i^2;

L_2 = for i from n+1 to 2*n list y_i^2;

for i from 1 to n do (

d_i=sigma(prepend(i, toSequence L_1))

- sigma(prepend(i, toSequence L_2));

);
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-- Linear transformation between the symmetric algebras

-- (see Theoerem 4.7) for S_1

M = for i from 1 to n-1 list 0;

for i from 1 to n do M=append(M,x_i);

M=append(M,sum for i from 2 to n list -x_i);

g=map(R,S, M);

--create polynomial relations of the cohomology

I = for i from 1 to n list g(d_i);

-- define omega

w = sum for i from 1 to n list i*x_i;

-- main algorithm

for k from 1 to m do (

j=basis(m+k,R/ideal(join(I,{w^k})));

if j != 0 then break;

);

if j == 0 then print "Hard Lefschetz!"

else print "Not Hard Lefschetz!";

quit()
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