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Ideal Liouville domains, a cool gadget

Emmanuel Giroux

Liouvile domains are central objects in symplectic geometry today,
but they have unsatisfactory aspects due to the requested choice of
Liouville forms and to the non-compactness of their completions.
Ideal Liouville domains, in contrast, are compact manifolds with
boundary merely equipped with a symplectic form in the interior.
Still, their isomorphism classes are in one-to-one correspondence
with the deformation classes of usual Liouville domains. They are
also very useful to relate contact structures with open books.

The purpose of these notes is to describe a convenient packaging for those
objects nowadays called Liouville domains but which have been studied for-
merly under various names such as “symplectic manifolds with restricted
contact type boundaries” or “complete convex symplectic manifolds with
conical/cylindrical ends” [We, EG, Mc, Ge, La, CFH, Vi, Se, CE]. In this
text, the term domain systematically refers to a compact manifold with
boundary.

Definition 0 (Liouville domains). A Liouville domain is a domain F
endowed with a Liouville form, that is, a 1-form λ satisfying the following
two axioms:

• ω := dλ is a symplectic form on F ;

• λ induces a contact form on K := ∂F orienting K as the boundary of
(F, ω).

Liouville domains are ubiquitous in symplectic geometry. Obvious ex-
amples are starshaped tubes about the zero-section in cotangent spaces of
closed manifolds. More generally, Stein domains are fundamental examples.
In addition, it follows from Donaldson’s work [Do] that every closed integral
symplectic manifold can be obtained from a Liouville domain (whose Reeb
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flow on the boundary defines a free circle action) by a “symplectic reduction”
crashing the boundary to its quotient by the circle action [Le]. Similarly, any
closed contact manifold can be constructed from a Liouville domain as the
“relative mapping torus” of some symplectic self-diffeomorphism fixing the
boundary points [Gi1].

On every Liouville domain (F, λ), there exists a wide choice of Liouville
forms. In particular, the form λ has many multiples efλ which are Liouville
forms as well: the pertinent condition on the function f is that λ−→ · f > −1,
where λ−→ · f denotes the derivative of f in the direction of the Liouville vector
field λ−→ given by λ−→ ⌟ dλ = λ. By the second axiom of Definition 0, λ−→ points

transversely outwards along ∂F (because λ−→ ⌟ (dλ)n = nλ ∧ (dλ)n−1), so the
inequality λ−→ · f > −1 admits a non-empty convex set of solutions f . How-
ever, these rescaled Liouville forms share important geometric features: they
determine the same contact structure ξ (with all possible contact forms) on
∂F , the singular foliations spanned by their Liouville fields coincide, and the
symplectic structures they define on F are the same up to completion (and
sliding in the direction of the Liouville fields). The completion of a Liouville
domain (F, λ) is an open manifold F̂ ⊃ F equipped with a 1-form λ̂ such
that:

• ω̂ := dλ̂ is a symplectic form on F̂ ,

• λ̂↾F equals λ, and

• λ−→ is a complete vector field whose flow induces a diffeomorphism from

∂F × R≥0 to F̂ − IntF .

It is easy to check that such a completion always exists and is unique up
to symplectomorphism. More precisely, between any two completions of the
same domain (F, λ), there is a unique diffeomorphism which is the identity
on F and conjugates the extended Liouville forms.

The completion (F̂ , λ̂) offers an alternative description of the contact
manifold (∂F, ξ) (with no preferred contact form) as the orbit space of λ−→
at infinity. In [EKP], this orbit space is called the ideal contact boundary

of (F̂ , λ̂). A natural question then arises: does this ideal contact boundary
really depend on the form λ̂ (with well-behaved dual vector field) or only on
the symplectic form ω̂ := dλ̂? This question was studied by S. Courte in his
thesis and he exhibited examples of completions with isomorphic symplectic
structures but non-diffeomorphic ideal contact boundaries [Co1, Co2]. The
observation leading to the concept of ideal Liouville domains is that this am-
biguity about the ideal contact boundary can be lifted by fixing a smooth
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compactification of the completion “taming” the symplectic structure. Ideal
Liouville domains are domains with a symplectic structure in the interior
(subject to some “tameness condition” near the boundary) which uniquely
determines a contact structure on the boundary. They have an affine space of
(ideal) Liouville forms (and none of them being part of the data) whose dual
vector fields are complete and hit the boundary transversely. They enjoy the
stability that is expected from symplectic objects (for the suitable topology)
and they can be manipulated (modified and combined) by means of various
operations, notably products (without corners), handle attachments (in par-
ticular, boundary connect sums), and plumbings (along proper Lagrangian
disks, whose boundaries are automatically Legendrian). They are also very
useful to understand and describe the relationships between contact struc-
tures and open books, and they were actually introduced in this context.
The second half of the paper is devoted to the contact aspects. After dis-
cussing subtleties related to the monodromy of open books, we define and
study Liouville open books. We prove that every open book supporting a
contact structure is a Liouville open book and that every Liouville open
book supports an essentially unique contact structure.

Acknowledgments. I am indebted to Robert Roussarie for his nice obser-
vation reproduced in Remark 12. I also wish to thank Sylvain Courte for his
careful reading and his helpful comments on the preliminary version of this
text which he used to write his thesis [Co2]. Finally, I am grateful to Patrick
Massot and Klaus Niederkrüger for adopting and advertising the notion of
ideal Liouville domains, and for pushing me to write these notes.

A. Ideal Liouville domains in their own

Definition 1 (Ideal Liouville domains). An ideal Liouville domain

(F, ω) is a domain F endowed with an ideal Liouville structure ω. This
ideal Liouville structure is an exact symplectic form on IntF admitting a
primitive λ such that: for some (and then any) function u : F → R≥0 with
regular level set ∂F = {u = 0}, the product uλ extends to a smooth 1-form
on F which induces a contact form on ∂F .

A 1-form λ as above is called an ideal Liouville form. Its dual vector
field λ−→ is an ideal Liouville field.

Liouville forms in ideal Liouville domains are analogous to contact forms
on contact manifolds: they exist, and it is sometimes useful to choose one,
but this choice is most often unimportant. In this analogy, ideal Liouville
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fields correspond to Reeb fields though their dynamics are very different:
the latter are Hamiltonian while the former expand the symplectic form —
and hence the volume — exponentially. Speaking of contact manifolds, one
of the striking features of ideal Liouville domains is:

Proposition 2 (The boundary contact structure). Let (F, ω) be an

ideal Liouville domain. Then the boundary K := ∂F has a positive contact

structure ξ, uniquely determined by ω, which is left invariant by any diffeo-

morphism of F preserving ω. Moreover, the positive equations of ξ are in

one-to-one correspondence with the negative sections of the conormal bundle

of K.

Proof. Let λ be a Liouville form and u : F → R≥0 a function with regular
level set K = {u = 0}. By assumption, uλ extends to a smooth 1-form β
on F which induces a contact form on K. Write

ω = dλ = d(β/u) = u−2(u dβ + β ∧ du).

This formula demonstrates that u2ω extends to a smooth 2-form γ on F
which depends on u only up to a conformal factor. Now, along K, the form γ
has rank 2, and its kernel is the contact structure ξ on K defined by β. It
follows that ξ is independent of the choice of λ and u. Moreover, the identity
γ = β ∧ du shows that β↾K is also independent of λ and is uniquely (and
pointwise linearly) determined by du viewed as a section of the conormal
bundle of K. □

Now recall that the symplectization of a contact manifold (K, ξ) is the
symplectic submanifold SK of T ∗K consisting of non-zero covectors βp ∈
T ∗
pK, p ∈ K, whose cooriented kernel is ξp (contact structures are cooriented

in this text). We denote by λξ the 1-form induced on SK by the canonical
Liouville form of T ∗K. We also define the “projective completion” of SK as
the quotient

SK := (SK × R≥0)
/
R>0

where R>0 acts (freely, properly and) diagonally by multiplication. Thus,
SK is a smooth manifold with boundary obtained by attaching a copy of
K = SK/R>0 to SK = (SK × R>0)/R>0.

Proposition 3 (Ideal Liouville fields). Let (F, ω) be an ideal Liouville

domain, (K, ξ) its contact boundary, and λ an ideal Liouville form in IntF .
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a) The Liouville field λ−→ is complete and the singular foliation spanned by λ−→
extends to a foliation of F which is non-singular along K and transverse

to K. We denote by U the open collar neighborhood of K consisting of all

extended leaves reaching K.

b) There exists a unique embedding ι = ιλ : SK → F such that ι↾K = id and

ι∗λ = λξ; its image is the open collar neighborhood U .

Proof. Let u : F → R≥0 be a function with regular level set K = {u = 0}
and β the form extending uλ over F . For n = 1

2
dimF ,

ωn =
(
d(β/u)

)n
= u−2n(u dβ + β ∧ du)n

= u−n−1(u dβ + nβ ∧ du) ∧ (dβ)n−1 = u−n−1µ

where µ := (u dβ + nβ ∧ du) ∧ (dβ)n−1 is a volume form on F .
Let ν denote the vector field on F given by ν ⌟ µ = nβ ∧ (dβ)n−1. Since

β induces a positive contact form on the boundary, ν is non-singular alongK
and points transversely outwards (specifically, ν · u = −1 by the very defi-
nition of things). On the other hand, in the interior of F ,

nβ ∧ (dβ)n−1 = nunλ ∧ (dλ)n−1 = un λ−→ ⌟ ωn = u−1 ( λ−→ ⌟ µ).

Comparing this relation with the definition of ν, we get λ−→ = uν. Since u
vanishes along K, the vector field λ−→ is complete and the foliation it defines
extends to the foliation spanned by ν. This proves Part a).

As for Part b), first note that if the embedding ι exists then it maps
the standard Liouville field λξ−→ of SK to λ−→, so its image has to be U . Now
observe that the holonomy of the foliation spanned by ν yields a projection
U → K and, for any point p ∈ U −K projecting to q ∈ K, identifies λp ∈
T ∗
pU with a covector in T ∗

qK whose cooriented kernel equals ξq (just because
the holonomy preserves the kernel of β = uλ). Thus, we have a smooth map
U → SK which is the identity on K. The expansion properties of the flow
of λ−→ imply that this map is a diffeomorphism, and we define ι to be the

inverse map. The relation ι∗λ = λξ follows from the very definition of λξ, and
ι is unique because the identity map of K lifts to a unique diffeomorphism
of SK preserving λξ. □

Corollary 4 (Ideal Liouville forms). On any ideal Liouville domain

(F, ω), ideal Liouville forms constitute an affine space. Given a function

u : F → R≥0 with regular level set ∂F = {u = 0}, the underlying vector space
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can be described as consisting of all closed 1-forms κ on IntF satisfying the

following equivalent conditions:

(i) the form uκ extends to a smooth form on F ;

(ii) the vector field κ−→/u extends to a smooth vector field on F (which is
automatically tangent to K := ∂F );

(iii) there exists a function f : F → R such that κ− d(f log u) is the re-
striction of a closed 1-form on F .

As a result, a Lagrangian submanifold L ⊂ IntF is exact for some ideal
Liouville form if and only if its Liouville class (with respect to an arbitrary
given ideal Liouville form) lies in the image of the natural map H1(F,R) →
H1(L,R).

Proof. The only (maybe) non-trivial claim which is not a straightforward
consequence of Propositions 2 and 3 is that (i) implies (iii). So assume that
uκ extends to a smooth form γ on F . In IntF ,

0 = dκ = d(γ/u) = u−2(u dγ + γ ∧ du).

By continuity, u dγ + γ ∧ du is identically zero on F , and hence γ ∧ du = 0
along K = {u = 0}. Thus, there exists a function f : K → R such that γ =
f du along K. Extend f (keeping its name) to a function on F and observe
that the form

γ − u d(f log u) = γ − u log u df − f du

extends to a 1-form γ′ on F which vanishes identically along K. It follows
that γ′ = uκ′ where κ′ is a closed 1-form on F . □

Another corollary is the following avatar of a standard lemma commonly
used to construct contact structures supported by “Liouville open books”;
we obtain a better control of the isotopy in ideal Liouville domains than in
open complete Liouville manifolds (compare Lemma 1.1 and the subsequent
remark in [BEE]):

Corollary 5 (Exact isotopies). Let (F, ω) be an ideal Liouville domain

and λt (t ∈ [0, 1]) a path of ideal Liouville forms in IntF . Then there is a

symplectic isotopy ψt (t ∈ [0, 1]) of F , relative to the boundary, such that

ψ0 = id and, for every t ∈ [0, 1], the form ψ∗
t λt − λ0 is the differential of a

function with compact support in IntF .
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Here the path λt is assumed to be smooth in the sense that λt = βt/u
where βt (t ∈ [0, 1]) is a smooth path of 1-forms on F , ie. a smooth 1-form
on [0, 1]× F whose contraction with ∂t is zero (u, as usual, is a non-negative
function on F with regular level set K := ∂F = {u = 0}).

Proof. For t ∈ [0, 1], let ιt : SK → F be the unique embedding such that
ιt↾K = id and ι∗tλt = λξ, where ξ is the boundary contact structure (cf.
Proposition 3). Setting Ut := ιt(SK), we have an isotopy of embeddings

ψ0
t := ιt ◦ ι

−1
0 : U := U0 → F

with the following properties:

• ψ0
0 = id and ψ0

t ↾K = id for all t ∈ [0, 1],

• (ψ0
t )

∗λt = λ0 on U −K for all t ∈ [0, 1].

Therefore, the time-dependent vector field η0t on Ut generating the isotopy
ψ0
t satisfies, for all t ∈ [0, 1]:

• η0t = 0 along K, and

• (η0t · λt) + λ̇t = 0 on Ut −K.

Let f0t := λt(η
0
t ) and denote by η1t the time-dependent locally Hamiltonian

vector field on IntF given by η1t ⌟ ω = −λ̇t. In Ut −K,

(η1t − η0t ) ⌟ ω = df0t .

Now take a time-dependent function ft on F equal to f0t near K, and con-
sider the locally Hamiltonian vector field ηt on IntF such that (η1t − ηt) ⌟
ω = dft. Since ηt = η0t close to the boundary, ηt extends smoothly to a vector
field on F which vanishes identically along K. On the other hand, in IntF ,

(ηt · λt) + λ̇t = d
(
λt(ηt)− ft

)
,

and the function λt(ηt)− ft is zero on the neighborhood of K where ft = f0t
(and ηt = η0t ). The desired isotopy ψt is obtained by integrating the vector
field ηt. □

Ideal Liouville domains are stable in the following sense:

Lemma 6 (Stability). Let F be a domain and (ωt) (t ∈ [0, 1]) a path of

ideal Liouville structures on F . Then there exists an isotopy φt (t ∈ [0, 1])
of F such that φ0 = id and φ∗tωt = ω0 for all t ∈ [0, 1]. Moreover, we can
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choose this isotopy relative to K = ∂F if — and clearly only if — all forms

ωt induce the same boundary contact structure.

Here again, the required smoothness of the path ωt is that there is a
smooth path βt of 1-forms on F such that ωt = d(βt/u).

Sketch of proof. Due to the smoothness of the path ωt, the induced contact
structure on K vary smoothly with t. Then, by Gray’s stability Theorem
(and the obvious fact that any isotopy of K extends to an isotopy of F ),
it suffices to treat the case when all forms ωt induce the same boundary
contact structure ξ. Using Proposition 3, we can further arrange that the
forms ωt coincide near K and, more specifically, have smoothly varying ideal
Liouville forms λt which all agree in a neighborhood of K. Then we conclude
with Moser’s standard argument. □

The next proposition is another expected and straightforward result re-
lating the symplectic geometry of (the interior of) an ideal Liouville domain
(F, ω) with the contact geometry of its boundary (K, ξ). The notations are
as follows:

• D(F, ω) is the group of diffeomorphisms of F preserving ω,

• D∂(F, ω) ⊂ D(F, ω) is the subgroup of diffeomorphisms fixingK := ∂F
pointwise, and

• D(K, ξ) is the group of diffeomorphisms of K preserving ξ.

Proposition 7 (Relations between automorphism groups). Take an

ideal Liouville domain (F, ω) with contact boundary (K, ξ). The restriction

homomorphism

D(F, ω) → D(K, ξ)

is a Serre fibration, with associated long exact sequence of homotopy groups

· · ·πkD∂(F, ω) → πkD(F, ω) → πkD(K, ξ) → πk−1D∂(F, ω) · · · .

The homomorphism π1D(K, ξ) → π0D∂(F, ω) can be used to define nat-
ural semigroups in the symplectic mapping class group MCG(F, ω) :=
π0D∂(F, ω): an element in there is positive (resp. non-negative) if it is the
image of a positive (resp. non-negative) loop in D(K, ξ). When (K, ξ) is a
“contact circle bundle” (meaning that some Reeb flow generates a free cir-
cle action), the image of the corresponding loop is the mapping class of a
“fibered Dehn twist.”
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Sketch of proof. We merely explain how to lift paths. Let φ0 ∈ D(F, ω) and
take a path φ̌t ∈ D(K, ξ) (t ∈ [0, 1]) starting with φ̌0 = φ0↾K . The contact
isotopy φ̌t lifts to a Hamiltonian isotopy Sφ̌t in the symplectization SK. Pick
an arbitrary ideal Liouville form λ and identify SK with the collar neigh-
borhood U = ιλ(SK) of Proposition 3. The path Sφ̌t can then be viewed
as a Hamiltonian isotopy of U extending φ̌t. We obtain the path φt by cut-
ting off the corresponding Hamiltonian functions away from K inside U ,
and by integrating the new Hamiltonian functions with φ0 as the initial
condition. □

We now describe the two main examples of ideal Liouville domains.

Example 8 (in vivo: Convex hypersurfaces in contact manifolds).
Let (V, ξ) be a contact manifold and S a hypersurface in V which is ξ-convex,
meaning that S is transverse to some contact vector field ν. Consider the
“dividing set”

Γ := {p ∈ S : νp ∈ ξp} ⊂ S.

Then the closure of every relatively compact connected component of S − Γ
is naturally an ideal Liouville domain (see [Gi1, I.3-C]).

To see this, pick an equation α of ξ, set u := α(ν) and note that Γ is
the zero-set of u↾S . We claim that u↾S vanishes transversely, i.e. Γ is cut-out
transversely. Indeed, the identity du↾ξ = −(ν ⌟ dα)↾ξ (drawn from the Cartan
formula for the Lie derivative) implies that du↾ξ∩TS ̸= 0 along Γ, and that
Γ is actually a contact submanifold of (V, ξ). Moreover, ν restricted to the
open set {u ̸= 0} ⊂ V is the Reeb vector field of the contact form α/u. Since
ν is transverse to S, the differential d(α/u) induces a symplectic form on
S − Γ.

Example 9 (in vitro: Ideal completion of a Liouville domain). Let
(F, λ) be a Liouville domain in the sense of Definition 0, and let u : F → R≥0

be a function with the following properties:

1) u admits K := ∂F as its regular level set {u = 0},

2) λ−→ · log u < 1 at every point in IntF .

Then a simple calculation (already resorted to in the introduction) shows
that ω := d(λ/u) is a symplectic form on IntF , and so (F, ω) is an ideal Liou-
ville domain. Moreover, since conditions 1 and 2 define a convex cone of func-
tions u, it follows from Lemma 6 that, up to isotopy relative to the boundary,
the geometry of (F, ω) is independent of u. Taking u non-increasing along
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the orbits of λ−→ and equal to 1 outside the collar neighborhood of K as-
sociated with λ (by Proposition 3), we see that (IntF, ω) is symplectically
isomorphic to the completion of (F, λ). For this reason, (F, ω) is called the
ideal completion of (F, λ). It can be alternatively obtained by gluing K to
the usual completion (F̂ , λ̂) in exactly the same way as SK was constructed
from SK.

To conclude this general discussion of ideal Liouville domains, here is
the product construction alluded to in the introduction:

Proposition 10 (Product of ideal Liouville domains). Let (F1, ω1)
and (F2, ω2) be two ideal Liouville domains. Up to isomorphism, there is

a unique ideal Liouville domain (F, ω) such that, for any ideal Liouville

forms λ1 and λ2 on F1 and F2, respectively, one can find a diffeomorphism

φ : IntF → Int(F1 × F2) which pulls back λ1 ⊕ λ2 to an ideal Liouville form.

Moreover, φ can be chosen continuous as a function of the pair (λ1, λ2).

Proof. Clearly, (Int(F1 × F2), λ1 ⊕ λ2) is the (usual) completion of some Li-
ouville domain. The desired product is the ideal completion of this domain.
Continuity of φ with respect to (λ1, λ2) can be obtained using Lemma 6 and
the convexity of the sets of Liouville forms on F1 and F2. Finally, uniqueness
(up to isomorphism) follows from Proposition 3. □

Remark 11 (Generalizations). I presented the notion of ideal Liouville
domains in a talk at ETH (Zurich) in November 2010 (for Eddi Zehnder’s
70th birthday), and the first published paper where they explicitly appear
is [MNW]. The concept was further generalized in [Co2] where Courte de-
fined ideal Liouville cobordisms. A cobordism is an oriented domain F whose
boundary components are given prescribed orientations; ∂+F (resp. ∂−F )
denotes the union of the boundary components endowed with the boundary
orientation (resp. with the reversed orientation). An ideal Liouville cobor-

dism is a cobordism F together with an exact symplectic form ω on IntF
which admits a primitive λ such that:

• for some/any function u : F → R≥0 with regular level set ∂+F = {u =
0}, the product uλ extends to a smooth 1-form on IntF ∪ ∂+F which
induces a contact form on ∂+F ;

• for some/any function u : F → R≥0 with regular level set ∂−F = {u =
0}, the quotient λ/u extends to a smooth 1-form on IntF ∪ ∂−F which
induces a contact form on ∂−F .
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Thus, an ideal Liouville domain (F, ω) is an ideal Liouville cobordism for
which ∂−F is empty.

All the results discussed above readily extend to ideal Liouville cobor-
disms. In particular, both ∂−F and ∂+F inherit canonical contact structures
which are positive for their prescribed orientations. In other words, ∂−F is
concave while ∂+F is convex.

Finally, the global exactness condition on the symplectic form can be
relaxed since exactness is needed only near the boundary. This leads to
notions of ideal symplectic domains and ideal strong symplectic cobordisms.

B. Ideal Liouville domains in contact geometry

We will now explain how the notion of ideal Liouville domain can help in
the study of the relationships between contact structures and open books.
We begin with a few basic definitions and constructions.

An open book in a closed manifold V is a pair (K, θ), where:

• K ⊂ V is a submanifold of codimension 2 with trivial normal bundle;

• θ : V −K → S1 = R/2πZ is a smooth locally trivial fibration which, in
some neighborhood D2 ×K of K = {0} ×K, is simply the (pullback
of the) angular coordinate in D2 − {0}.

The submanifold K is called the binding of the open book while the closures
of the fibers of θ are the pages. The binding and the pages inherit coorien-
tations from the canonical orientation of S1. Hence, if V is oriented, they
are automatically oriented (and the binding is oriented as the boundary of
every page).

In practice, most often open books arise from (smooth) complex-valued
maps. If a map h : V → C vanishes transversely, with zero-set K := {h = 0},
and if the argument function θ := h/|h| : V −K → S1 has no critical points,
then the pair (K, θ) is an open book. Obviously, every open book (K, θ) can
be obtained in this way, and the defining map h is unique up to multiplication
by a positive function.

An open book (K, θ) in a closed manifold V is characterized by its mon-
odromy, which is a diffeomorphism of the 0-page F := K ∪ {θ = 0} relative
to the boundary K and defined only up to isotopy. More precisely, con-
sider the affine space of spinning vector fields, namely vector fields ν on V
satisfying the following properties:

• ν = 0 along K and ν · θ = 2π in V −K;
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• ν is weakly smooth in the sense that it lifts to a smooth vector field
on the manifold with boundary obtained from V by a real oriented
blowup along K (see Remark 12 for comments on this condition).

For any such vector field ν, the time 1 map of its flow restricted to F is
a diffeomorphism φ of F relative to K. Moreover, as ν runs over its affine
space, φ sweeps out an entire mapping class in MCG(F ) := π0D∂(F ) (cf. Re-
mark 12). (For a given φ ∈ D∂(F ), the existence of a spinning vector field
which “generates” φ follows easily form the usual construction of the map-
ping torus of φ.) This mapping class — and sometimes also, by extension,
any of its representatives — is called the monodromy of the open book
(K, θ).

Conversely, given a domain F with non-empty boundary and a diffeo-
morphism φ of F relative to K := ∂F , one can construct a closed manifold
OB(F, φ) endowed with an obvious open book whose 0-page is parametrized
by F and whose monodromy is represented by φ. There are two steps in the
construction.

1) We consider the mapping torus of φ, namely the quotient

MT(F, φ) := (R× F )
/
∼ where (t, p) ∼

(
t− 1, φ(p)

)
.

This is a compact manifold (with boundary) which has an obvious fibration

θ̂ : MT(F, φ) → S
1 = R/2πZ

coming from the projection R× F → R multiplied by 2π. All fibers are dif-
feomorphic to F and we use the projection R× F → MT(F, φ) restricted to
{0} × F as a special parametrization of the 0-fiber {θ̂ = 0} by F . We notice
that, since φ induces the identity on K = ∂F , the boundary of MT(F, φ)
is canonically diffeomorphic to S1 ×K, the restriction of θ̂ to ∂MT(F, φ)
being given by the projection S1 ×K → S1.

An important point about the manifold MT(F, φ) is that it depends
only on the mapping class of φ in the following sense: if φ0 and φ1 are
diffeomorphisms of F relative to K and representing the same mapping
class in MCG(F ), then there is a diffeomorphism MT(F, φ0) → MT(F, φ1)
which respects the fibrations over S1 and the special parametrizations of the
0-fibers.

2) We construct the closed manifold OB(F, φ) from MT(F, φ) by collapsing
every circle S1 × {.} ⊂ S1 ×K = ∂MT(F, φ) to a point. Thus, OB(F, φ) is
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the union of IntMT(F, φ) and K = (S1 ×K)/S1. We denote by

θ : OB(F, φ)−K = IntMT(F, φ) → S
1

the restriction of the fibration θ̂.
To see that (K, θ) is indeed an open book in OB(F, φ), we need to

specify the smooth structure near K. In short, we blow down ∂MT(F, φ),
the points of ∂MT(F, φ) = S1 ×K corresponding to oriented lines in the
(trivial) normal bundle of K in OB(F, φ). Concretely, we fix a collar neigh-
borhood N̂ of ∂MT(F, φ) whose fibers are intervals contained in the fibers
of θ̂ and we declare that, for every p ∈ K, the union of all intervals ending on
S1 × {p} ⊂ ∂MT(F, φ) projects to a smooth disk Dp in OB(F, φ) transverse
to K at p. More specifically, we choose a function r̂ : MT(F, φ) → R≥0 with
regular level set ∂MT(F, φ) = {r̂ = 0}, and we take the induced function r
on OB(F, φ), together with θ, as polar coordinates near p on the disk Dp.

It is not hard to check that a different choice of collar neighborhood N̂
and function r̂ leads to an equivalent smooth structure. Actually, the two
structures are conjugated by a homeomorphism of OB(F, φ) which preserves
θ and induces the identity on the page F0 := K ∪ {θ = 0}. As a result, (K, θ)
is an open book in OB(F, φ), its 0-page F0 has a (special) parametrization
by F , and its monodromy is represented by φ (note that the vector field ∂t
on R× F descends to a smooth vector field on MT(F, φ), so its image in
OB(F, φ) is tautologically weakly smooth).

Remark 12 (Smoothly generated monodromy diffeomorphisms).
Given an open book (K, θ) in V , one can easily find spinning vector fields ν
on V that are smooth, not just weakly smooth. Thus, the monodromy of
(K, θ) has representatives which are smoothly generated, meaning that they
can be obtained by integrating smooth spinning vector fields ν on V . In
particular, one can check that any representative of the monodromy which is
the identity on a neighborhood ofK is smoothly generated (see Lemma 16 for
the symplectic version of this assertion). However, Not every representative
of the monodromy is smoothly generated. The following simple example was
pointed out to me by Roussarie [Ro].

Consider in R2 a smooth vector field ν = 2π(∂θ + rf∂r), where f : R
2 →

R is a smooth function. Let ψ, φ : R → R denote the diffeomorphisms of
the x-axis induced by the flow of ν at times 1/2 and 1, respectively. Then
φ and ψ commute, and ψ reverses orientation while φ preserves it. These
properties restrict the behavior of φ. For instance, the germ of φ at 0 cannot
have the shape φ(x) = x+ x2 + higher order terms. More generally, here
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is Roussarie’s observation: if φ− id is not infinitely flat at 0 then the first
non-zero term in its Taylor expansion has odd degree. Indeed, if φ− id is
not flat, it has a fixed sign on (0, ε] for ε > 0 sufficiently small. Suppose that
φ(x) > x for all x ∈ (0, ε]. Since ψ is decreasing and commutes with φ,

φ ◦ ψ(x) = ψ ◦ φ(x) < ψ(x) for all x ∈ (0, ε].

Hence, φ(x) < x for all x ∈ [ψ(ε), 0), and this proves the claim.
In contrast, if the vector field ν = 2π(∂θ + rf∂r) is only assumed to be

“weakly smooth” (namely, if ν lifts to a smooth vector field on the blownup
plane), then its return map φ on R≥0 remains smooth and can freely vary in
its mapping class. Indeed, the hypothesis means that f is smooth not as a
function on R2 but as a function of the polar coordinates (r, θ) ∈ R≥0 × S1.
Note also that, since f and df are bounded near {0} × S1, the vector field ν
is Lipschitz. These remarks equally apply to weakly smooth spinning vector
fields in any dimension.

The following definition was introduced in [Gi2] to establish formal links
between open books and contact structures:

Definition 13 (Open books and contact structures). A contact struc-
ture ξ on a closed manifold V is supported by an open book (K, θ) in V if
it admits a Pfaff equation α which is adapted to (K, θ) in the sense that:

• α induces a positive contact form on K, and

• dα induces a positive symplectic form on the fibers of θ.

Orientations here come from the orientation of V defined by ξ.

We will show below that an open book supporting a contact structure
has some specific geometric structure that we now describe:

Definition 14 (Liouville open books). A Liouville open book (K, θ, ωt)
in a closed manifold V is an open book (K, θ) whose pages Ft := K ∪ {θ =
2πt} are equipped with ideal Liouville structures ωt (2πt ∈ S1) having primi-
tives λt such that: for some/any map h : V → C defining (K, θ), the products
|h|λt are the restrictions to the fibers Ft −K of a global (smooth) 1-form β
on V . Such a 1-form β is referred to as a binding 1-form (associated with h),
as it indeed ties the forms ωt about K and induces a contact form on the
binding K.
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In this context, we consider the affine space of weakly smooth spinning
vector fields ν on V satisfying the additional condition that ν preserves the
ideal Liouille structures of the pages. This means that the flow of ν, which
rotates the open book (K, θ), preserves the family of forms ωt. Equivalently,
ν spans the kernel of a closed 2-form on V −K which induces ωt on each
page Ft.

For such a symplectically spinning vector field ν, the time 1 map of
its flow restricted to the ideal Liouville page (F, ω) := (F0, ω0) is a sym-
plectic diffeomorphism φ relative to K = ∂F . Moreover, as ν runs over its
affine space, φ sweeps out a full symplectic mapping class in MCG(F, ω) :=
π0D∂(F, ω). This mapping class is the symplectic monodromy of the Liou-
ville open book.

The next lemma shows that the symplectic monodromy of a Liouville
open book has representatives which are generated by smooth symplectically
spinning vector fields and can be further assumed to be the identity on a
neighborhood of K. As in the usual (non-Liouville) case, however, not every
representative of the symplectic monodromy can be generated in this way.

Lemma 15 (Binding forms and monodromy). Let (K, θ, ωt) be a Li-

ouville open book in a closed manifold V , and h : V → C a map defining

(K, θ). For every binding 1-form β, the vector field ν on V −K spanning

the kernel of d(β/|h|) and satisfying ν · θ = 2π extends to a smooth vector

field on V which is zero along K. Furthermore, β can be chosen so that ν is

1-periodic near K.

Note that the binding forms associated with any fixed defining map h
constitute an affine space. Another thing to be mentioned here is that,
among symplectically spinning vector fields, those associated to binding 1-
forms generate exact symplectic diffeomorphisms (see our comment following
Proposition 17).

Proof. First observe that β↾K is a contact form and defines the (common)
boundary contact structure of all ideal Liouville pages. We fix a small ε > 0
such that β induces a contact form on every fiber Kw := {h = w}, |w| ≤ ε.
We set αw := β↾Kw

and N := {|h| ≤ ε}. The hyperplane field τ := Ker(β↾N )
splits as a direct sum τ = ξ ⊕ ξ⊥, where ξ is the subdistribution consisting
of the contact structures ξw := Kerαw, |w| ≤ ε, and ξ⊥ is the dβ-orthogonal
complement of ξ in τ (and determines a contact connection over εD2). Now
consider the following vector fields on N :
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• ∂α is the vector field in Ker dh whose restriction to each fiber Kw of h
is the Reeb field ∂αw

of αw;

• ∂̃θ and ∂̃r are the vector fields in ξ⊥ projecting to ∂θ and ∂r, respec-
tively, where (r, θ) denote polar coordinates in εD2.

A routine calculation shows that the vector field ν on V −K spanning the
kernel of d(β/|h|) and satisfying ν · θ = 2π is given in N by

ν = 2π(∂̃θ + ar∂̃r + b∂α),

where r = r ◦ h = |h| while

a :=
dβ(∂̃θ, ∂α)

1 + dβ(∂α, r∂̃r)
and b :=

dβ(r∂̃r, ∂̃θ)

1 + dβ(∂α, r∂̃r)
.

Clearly, a and b are smooth functions on N and vanish identically along K,
so ν has the desired smooth extension on V .

We will now modify β to obtain a binding form β′ such that the spin-
ning vector field ν ′ spanning the kernel of d(β′/|h|) in V −K is 1-periodic
near K. First, we trivialize N as a product N = εD2 ×K so that, in the
corresponding cylindrical coordinates (r, θ, q), the vector field ∂r lies in ξ⊥.
In other words, ∂r equals ∂̃r and, along K = {0} ×K, the 2-plane field ξ⊥

is horizontal (namely, tangent to the disks D2 × {q}, q ∈ K). It is then an
exercise to check that β(∂θ) dθ is a smooth form in N . Now pick a function
ρ : V → [0, 1] compactly supported in N and equal to 1 near K, and let

β′ := β − ρ β(∂θ) dθ.

This smooth 1-form on V coincides with β on every page, so it is a binding
form. Moreover, near K,

β′ = β − β(∂θ) dθ = f π∗α0

where f is a positive function, π the projection N = εD2 ×K → K, and α0

the restriction of β to K. It follows that the spinning vector field ν ′ spanning
the kernel of d(β′/|h|) is horizontal (in the product structure of N) and
tangent to the level sets of the function f/|h|. Therefore, ν ′ is 1-periodic. □

A practical consequence of this lemma is:

Lemma 16 (Criterion for smooth generation). Any representative of

the symplectic monodromy of a Liouville open book which is the identity near

the boundary is generated by a smooth symplectically spinning vector field.
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Proof. This follows from the last assertion of Lemma 15 and the fact that, if
two symplectic diffeomorphisms of an ideal Liouville domain (F, ω) coincide
with the identity near K := ∂F and represent the same class in MCG(F, ω),
then they are connected by a symplectic isotopy relative to a neighborhood
of K (an easy way to construct such an isotopy is to use the embeddings of
Proposition 3 as in the proof of Corollary 5). □

The next proposition is a variation on a wellknown construction first
introduced by Thurston–Winkelnkemper in three dimensions [TW] and ex-
tended to higher dimensions in [Gi2]:

Proposition 17 (Construction of Liouville open books). Consider

an ideal Liouville domain (F, ω) and a symplectic diffeomorphism φ : F → F
relative to K := ∂F . The open book in OB(F, φ) is a Liouville open book for

which the parametrization of its 0-page by F is a symplectomorphism.

The proof below actually shows that, if the symplectic diffeomorphism φ
is the identity near K and is exact (meaning that there exists an ideal
Liouville form λ such that φ∗λ− λ is the differential of a function with
compact support in IntF ), then φ is (smoothly) generated by the spinning
vector field of a binding 1-form.

Proof. Let λt be a path of ideal Liouville forms on (F, ω) joining an ar-
bitrary λ0 to λ1 := φ∗λ0. According to Corollary 5, there is a symplectic
isotopy ψt of F , relative to K, such that ψ0 = id and ψ∗

t λt − λ0 = dft for all
t ∈ [0, 1], where the functions ft have compact supports in IntF . Then the
symplectic isotopy φt := φ ◦ ψt is relative to K and connects φ = φ0 to a
symplectic diffeomorphism φ1 which is exact and coincides with the identity
near K. Since OB(F, φ) depends only on the (smooth) mapping class of φ,
we assume from now on that φ is exact and is the identity on a neighborhood
of K.

We now pick an ideal Liouville form λ such that φ∗λ = λ+ df1, where
f1 is a function with compact support in IntF , and we choose a path of
functions ft — all with compact supports in IntF — joining f0 := 0 to f1.
Then the 1-form λ+ dft + ḟtdt on [0, 1]× IntF is a primitive of (the pullback
of) ω and descends to a 1-form β̂ on IntMT(F, φ) (to ignore smoothing
issues, take the path ft to be constant near its endpoints).

The next step is to fix cylindrical coordinates near K in OB(F, φ) and a
map h : OB(F, φ) defining the obvious open book. We pick a non-negative
function u on F , with regular level set K = {u = 0}, such that:
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• λ−→ · log u = −1 in a neighborhood ofK (equivalently, the Lie derivative
λ−→ · (uλ) is zero), and

• u ◦ φ = u (this property is typically satisfied if u is constant on the
support of φ).

Then the map

(t, p) ∈ [0, 1]× F 7→ u(p)e2iπt ∈ C

provides the required defining map h : OB(F, φ) → C. Furthermore, the
function u and the collar neighborhood of K associated with λ (cf. Proposi-
tion 3) provide cylindrical coordinates near K. More precisely, let G := {u ≤
ε} ⊂ F with ε small enough that λ−→ · log u = −1 on G and G is disjoint from
the supports of φ and of all functions ft (t ∈ [0, 1]). Then the function u
and the foliation spanned by λ−→ identify G with [0, ε]×K. In the same way,

N := {|h| ≤ ε} is identified with εD2 ×K.
It remains to see that the form |h| β̂ on OB(F, φ)−K extends to a

smooth (binding) form on OB(F, φ). In fact, the form uλ↾G−K is invariant
under the flow of λ−→, so it is the pullback on (0, ε]×K of a 1-form α on K.

Similarly, the form |h| β̂↾N−K is the pullback on (εD2 − {0})×K of the same
1-form α on K. Hence, it extends smoothly across K. □

Now the most obvious relationship between supporting and Liouville
open books is:

Proposition 18 (Supporting open book are Liouville). Let (V, ξ) be
a closed contact manifold, and (K, θ) a supporting open book with defining

map h : V → C. Then the equations α of ξ such that d(α/|h|) induces an

ideal Liouville structure on each page form a non-empty convex cone.

Proof. This follows readily from uniqueness of ideal completions of (usual)
Liouville domains (see Example 9). □

An equation α of ξ as in th above proposition yields ideal Liouville struc-
tures ωt on the pages of (K, θ), and (K, θ, ωt) is a Liouville open book. By
Lemma 15, the kernel of d(α/|h|) is spanned by a smooth symplectically spin-
ning vector field ν, but it is easy to verify that ν is never 1-periodic near K.
Though it may create some psychological discomfort, this inconvenience is
not a problem. It could in fact be remedied by replacing Liouville open
books with open books whose pages are given “degenerate ideal Liouville
structures” (to define those objects, take Definition 1 and simply substitute
uλ with u2λ in the extension condition). In short, the key observation here is
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that, if we consider for instance the contact form α := dz + r2dθ in 3-space
(with cylindrical coordinates (r, θ, z)) then, away from the z-axis, the Reeb
field of α/r2 is ∂θ while the Reeb field of α/r is proportional to the vector
field ∂θ + r2∂z.

Proposition 18 leads to a new definition:

Definition 19 (Liouville open books and contact structures). Let
(K, θ, ωt) be a Liouville open book on a closed manifold V , and h : V → C a
map defining (K, θ). A contact structure on V is (symplectically) supported
by (K, θ, ωt) if it admits a binding equation on V , that is, an equation α
such that α/|h| induces an ideal Liouville form on each ideal Liouville page
(Ft, ωt) (2πt ∈ S1).

Remark 20 (Uniqueness of the binding equation). If it exists, the
above equation α is unique (the defining map h being fixed). The underlying
more general assertion is that, given an ideal Liouville domain (F, ω) and
an ideal Liouville form λ, the constant function 1 is the only function f on
IntF such that d(fλ) = ω. For dimF ≥ 4, the reason is purely algebraic:
fω and ω must agree on the kernel of λ, which contains an ω-symplectic
space; hence f has to equal 1. If dimF = 2, non-constant solutions f exist
locally, so we need a more global argument. Since

d(fλ) = fω + df ∧ λ = (f + λ−→ · f)ω,

the condition d(fλ) = ω reads g + λ−→ · g = 0, where g := f − 1. Now any
non-zero solution g of this equation has to be unbounded on every com-
plete non-trivial orbit of λ−→. The claim then follows from λ−→ being complete
(Proposition 3).

If a contact structure is (symplectically) supported by a Liouville open
book then it is supported by the underlying smooth open book: to obtain
an adapted equation in the sense of Definition 13, simply replace α/|h| by
α/u(|h|) where u : R≥0 → R>0 is an increasing function such that u(x) = x
for x ≥ ε and u(x) = x2 + ε2 for x ≤ ε/2 (with ε sufficiently small).

We now conclude this paper by showing that the inclusion of the space of
contact structures supported by a Liouville open book into the affine space
of binding forms is a weak homotopy equivalence:

Proposition 21 (Existence and uniqueness of supported contact
structures). On a closed manifold, contact structures supported by a given



✐

✐

“5-Giroux” — 2020/7/16 — 23:57 — page 788 — #20
✐

✐

✐

✐

✐

✐

788 Emmanuel Giroux

Liouville open book form a non-empty and weakly contractible subset in the

space of all contact structures. In particular, they lie in a unique isotopy

class.

Note that the symplectic orientation of the pages, together with their
natural coorientation, determines an orientation of the ambient manifold.
It is implicit in this statement that the supported contact structures are
positive for this orientation.

Proof. Let V be the ambient closed 2n+ 1-manifold, (K, θ, ωt) a Liouville
open book in V and h : V → C a map defining (K, θ). For any binding form β
on V (associated with h), we can find an ε > 0 such that β induces a contact
form on every fiber Kw := {h = w} with |w| ≤ ε. We fix a non-decreasing
function f : R≥0 → R such that f(x) = x for x ≤ ε/2 and f(x) = 1 for x ≥ ε.
Then, for c ≥ 0, we define

βc := β + c |h| f(|h|) dθ.

Clearly, βc/|h| coincides with β/|h| on every page. Therefore, if βc is a con-
tact form, the contact structure it defines is symplectically supported by our
Liouville open book. We claim that βc is a contact form for all sufficiently
large c, and in fact for all c ≥ 0 if β itself is already a contact form. To see
this, we set r := |h| and we write

βc ∧ (dβc)
n = ncrf ′(r) dr ∧ dθ ∧ β ∧ (dβ)n−1

+ cf(r) dθ ∧ (r dβ + nβ ∧ dr) ∧ (dβ)n−1 + β ∧ (dβ)n.

Since β induces a contact form on each fiber Kw of h with |w| ≤ ε, the term
rf ′(r) dr ∧ dθ ∧ β ∧ (dβ)n−1 is a positive volume form provided f ′(r) ̸= 0.
On the other hand, for all r > 0,

f(r) dθ ∧ (r dβ + nβ ∧ dr) ∧ (dβ)n−1 = rn+1f(r) dθ ∧
(
d(β/r)

)n

is also a positive volume form. The claim follows.
Now consider a k-sphere ξs (s ∈ Sk) of contact structures supported by

the Liouville open book (K, θ, ωt). By Remark 20, every contact structure ξs
has a unique binding equation αs, and the forms αs (s ∈ Sk) depend contin-
uously on s. Since binding forms (associated with a fixed h) constitute an
affine space, we can find a (k + 1)-disk of binding forms βs (s ∈ Dk+1) such
that βs = αs for all s ∈ Sk = ∂Dk+1. We choose ε > 0 small enough that
each βs (s ∈ Dk+1) induces a contact form on all fibers Kw with |w| ≤ ε,
and we apply our claim twice:
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• For some c0 sufficiently large, the forms

βs,c0 := βs + c0|h| f(|h|) dθ (s ∈ D
k+1)

constitute a (k + 1)-disk of contact forms.

• For the same value c0, the forms

αs,c := αs + c |h| f(|h|) dθ (s ∈ S
k, c ∈ [0, c0])

constitute a homotopy of k-spheres of contact forms between the orig-
inal k-sphere αs = αs,0 (s ∈ Sk) and the k-sphere αs,c0 = βs,c0 (s ∈ Sk)
which bounds a (k + 1)-disk of contact forms.

Since all these contact forms are binding forms, all the contact structures
they define are supported by the Liouville open book (K, θ, ωt), and so our
argument shows that the k-sphere ξs (s ∈ Sk) is nulhomotopic in the space
of contact structures supported by (K, θ, ωt). □
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