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In this paper we introduce the notion of a formal complex contact
structure on an odd dimensional complex manifold. Our main re-
sult is that every formal complex contact structure on a Stein mani-
fold, X, is homotopic to a holomorphic contact structure on a Stein
domain Ω ⊂ X which is diffeotopic to X. We also prove a paramet-
ric h-principle in this setting, analogous to Gromov’s h-principle for
contact structures on smooth open manifolds. On Stein threefolds
we obtain a complete homotopy classification of formal complex
contact structures. Our method furnishes a parametric h-principle
for germs of holomorphic contact structures along totally real sub-
manifolds of class C 2 in any complex manifold.
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1. Introduction

A complex contact manifold is a pair (X, ξ), whereX is a complex manifold of
(necessarily) odd dimension 2n+ 1 ≥ 3 and ξ is a completely nonintegrable
holomorphic hyperplane subbundle (a contact subbundle) of the holomor-
phic tangent bundle TX, meaning that the O’Neill tensor ξ × ξ → TX/ξ,
(v, w) 7→ [v, w] mod ξ, is nondegenerate. Note that ξ = kerα, where α is
a holomorphic 1-form on X with values in the holomorphic line bundle
L = TX/ξ (the normal bundle of ξ) which realises the quotient projection

(1.1) 0 −→ ξ −֒→ TX
α−→ L −→ 0.

Thus, α is a holomorphic section of the twisted cotangent bundle T ∗X ⊗ L.
The contact condition is equivalent to α ∧ (dα)n ̸= 0 at every point of X. A
theorem of Darboux [9] says that ξ is locally at any point holomorphically
contactomorphic to the standard contact bundle ξstd = kerαstd on C2n+1

given by the 1-form αstd = dz +
∑n

j=1 xjdyj , where (x, y, z) are complex

coordinates on C2n+1. (See also [36] or [23, p. 67] for the real case and [2,
Theorem A.2] for the holomorphic case.)

We denote by Conthol(X) the space of all holomorphic contact forms on
X endowed with the compact-open topology.

In this paper we study the existence and homotopy classification of com-
plex contact structures on Stein manifolds of any dimension 2n+ 1 ≥ 3. We
begin by recalling a few general observations due to LeBrun and Salamon
[33, 34] which pertain to an arbitrary complex contact manifold.

If α ∈ Conthol(X) and L = TX/ kerα, then ω = α ∧ (dα)n is a holomor-
phic (2n+ 1)-form on X with values in the line bundle Ln+1 = L⊗(n+1), i.e.,
an element of H0(X,KX ⊗ Ln+1) where KX = Λ2n+1T ∗X is the canonical
bundle ofX. Being nowhere vanishing, ω defines a holomorphic trivialisation
of the line bundle KX ⊗ Ln+1, so we conclude that

(1.2) K−1
X = K∗

X
∼= Ln+1.

Similarly, (dα)n|ξ is a nowhere vanishing section of the holomorphic line
bundle (Λ2nξ)∗ ⊗ Ln (i.e., dα|ξ is an L-valued complex symplectic form on
the bundle ξ), so we have that

(1.3) Λ2nξ ∼= Ln = (TX/ξ)n.

In particular, on a contact 3-fold we have Λ2ξ ∼= TX/ξ. It is easily seen that
conditions (1.2) and (1.3) are equivalent to each other. These facts impose
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strong restrictions on the existence of complex contact structures, especially
on compact manifolds. In particular, if X is compact and simply connected,
it carries at most one complex contact structure up to isotopy (see [34,
Proposition 2.2]). For further results and references we refer to the survey
by Beauville [3] and the introduction to the paper [1] by Alarcón and the
author.

Assume now that X is a Stein manifold of dimension 2n+ 1 ≥ 3. For
a generic holomorphic 1-form α on X, the equation α ∧ (dα)n = 0 defines
a (possibly empty) complex hypersurface Σα ⊂ X, and α is a contact form
on the Stein manifold X \ Σα. This observation shows that there exist a
plethora of Stein contact manifolds, but it does not answer the question
whether a given Stein manifold (or a given diffeomorphism class of Stein
manifolds) admits a contact structure. More precisely, when is a complex
hyperplane subbundle ξ ⊂ TX satisfying (1.3) homotopic to a holomorphic
contact subbundle?

The following notion is motivated by Gromov’s h-principle for real con-
tact structures on smooth open manifolds (see [30] or [14, 10.3.2]).

Definition 1.1 (Formal complex contact structure). Let X be a com-
plex manifold of dimension 2n+ 1 ≥ 3. A formal complex contact structure
on X is a pair (α, β), where α is a smooth (1, 0)-form on X with values in
a complex line bundle L → X satisfying (1.2), β is a smooth (2, 0)-form on
ξ = kerα with values in L, and

(1.4) α ∧ βn = α ∧
n︷ ︸︸ ︷

β ∧ · · · ∧ β ̸= 0 holds at every point of X.

Note that α is a nowhere vanishing section of the complex vector bun-
dle T ∗X ⊗ L of rank dimX; such always exists if X is a Stein manifold. A
(2, 0)-form β satisfying (1.4) is an L-valued complex symplectic form on the
complex 2n-plane bundle ξ = kerα ⊂ TX, and α ∧ βn is a topological triv-
ialisation of KX ⊗ Ln+1. On a Stein manifold, every complex vector bundle
carries a unique structure of a holomorphic vector bundle up to isomor-
phisms according to the Oka-Grauert principle (see [17, Theorem 5.3.1]).

We denote by Contfor(X) the space of all formal complex contact struc-
tures on X endowed with the C∞ compact-open topology. We have the
natural inclusion

(1.5) Conthol(X) −֒→ Contfor(X), α 7→ (α, dα|kerα).

The following is our first main result; it is proved in Sect. 6.
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Theorem 1.2. Let X be a Stein manifold. Given (α0, β0) ∈ Contfor(X),
there are a Stein domain Ω ⊂ X diffeotopic to X and a homotopy (αt, βt) ∈
Contfor(X) (t ∈ [0, 1]) such that α1|Ω ∈ Conthol(Ω) and β1|kerα1

= dα1|kerα1

on Ω. Furthermore, if α0, α1 ∈ Conthol(X) are connected by a path in
Contfor(X), they are also connected by a path of holomorphic contact forms
on some Stein domain Ω ⊂ X diffeotopic to X.

A domain Ω ⊂ X is said to be diffeotopic to X if there is a smooth family

of diffeomorphisms ht : X
∼=−→ ht(X) ⊂ X (t ∈ [0, 1]) such that h0 = IdX and

h1(X) = Ω. If J denotes the almost complex structure operator on X, then
Jt = h∗t (J) is a homotopy of complex structures on X with J0 = J and J1 =
h∗1(J |Ω). By Cieliebak and Eliashberg [8, Theorem 8.43 and Remark 8.44]
the domain Ω, and the diffeotopy {ht}t∈[0,1] in Theorem 1.2 can be chosen
such that for every t ∈ [0, 1] the domain ht(X) ⊂ X is Stein; equivalently,
the manifold (X, Jt) with Jt = h∗t (J) is Stein.

Remark 1.3. In our definition of a formal complex contact structure we
may (and often do) consider (2, 0)-forms β defined on TX, and not merely
on the subbundle kerα; however, only the restriction β|kerα contributes to
the product α ∧ β. On the other hand, the differential of a holomorphic L-
valued 1-form α on X is not an L-valued 2-form on X in general if L is
nontrivial, the reason being that for any holomorphic function f we have
that d(fα) = fdα+ df ∧ α. This shows however that the restriction dα|kerα
is a well-defined L-valued 2-form on the subbundle kerα, and α ∧ (dα)k is an
Lk+1-valued form on X for any k ∈ N. When writing dα for a holomorphic
1-form α with values in a nontrivial holomorphic line bundle L → X, we
shall always mean dα|kerα, and the equation β = dα will be understood to
hold modulo α (i.e., on the subbundle kerα).

We also prove a parametric version of Theorem 1.2 (see Theorem 6.1)
which says that a continuous compact family of formal complex contact
structures on X can be deformed to a continuous family of holomorphic
contact structures on a Stein domain Ω ⊂ X diffeotopic to X, and the de-
formation may be kept fixed for those values of the parameter for which the
given formal structure is already a holomorphic contact structure.

For real contact structures, Gromov’s h-principle [30] says that the in-
clusion (1.5) of the space of smooth contact forms into the space of formal
contact forms is a weak homotopy equivalence on any smooth open mani-
fold; in particular, every formal contact structure is homotopic to an honest
contact structure. (See also Eliashberg and Mishachev [14, Sect. 10.3].) The
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situation is more complicated for closed manifolds as was discovered later
by Bennequin [4] and Eliashberg [11, 13]. In particular, the h-principle for
real contact structures fails on the 3-sphere, but it holds for the class of
overtwisted contact structures on any compact orientable 3-manifold; see
[11, Theorem 1.6.1]. This was extended to manifolds of dimensions ≥ 5 by
Borman, Eliashberg, and Murphy in 2015; see [6].

Our results in the present paper seem to be the first analogues in the
holomorphic category of the above mentioned Gromov’s h-principle. At this
time we are unable to construct holomorphic contact forms on the whole
Stein manifold under consideration. The main, and seemingly highly non-
trivial problem arising in the proof, is the following. (The analogous ap-
proximation problem for integrable holomorphic subbundles — holomorphic
foliations — is also open in general; see [17, Problem 9.16.8].)

Problem 1.4. Given a holomorphic contact form α on an open neighbour-
hood of a compact convex set K ⊂ C2n+1, can we approximate α uniformly
on K by holomorphic contact forms defined on C2n+1? Is such approxima-
tion also possible for any continuous family of holomorphic contact forms
αp with parameter p ∈ P in a compact Hausdorff space?

This issue does not appear in the smooth case since one can pull back a
contact structure on a neighbourhood U of a compact convex set K ⊂ R2n+1

to a contact structure on R2n+1 by a diffeomorphism R2n+1 → U which
equals the identity near K.

Theorem 1.5. If Problem 1.4 has an affirmative answer, then every for-
mal complex contact structure on a Stein manifold X is homotopic to a
holomorphic contact structure on X. Furthermore, if the parametric version
of Problem 1.4 has an affirmative answer, then the inclusion (1.5) is a weak
homotopy equivalence.

Theorem 1.5 is proved in Sect. 6.
We now consider more carefully the case whenX is a Stein manifold with

dimX = 3. Let L be a holomorphic line bundle on X satisfying (1.2), i.e.,
such thatKX ⊗ L2 is a trivial line bundle. (By the Oka-Grauert principle, ev-
ery complex vector bundle on a Stein manifold carries a compatible structure
of a holomorphic vector bundle; see [17, Theorem 5.3.1].) Note that T ∗X ⊗ L
admits a nowhere vanishing holomorphic section α, i.e., an L-valued holo-
morphic 1-form on X (see [17, Corollary 8.3.2]). Let ξ = kerα ⊂ TX. Then,
KX

∼= Λ2ξ∗ ⊗ (TX/ξ)∗ ∼= Λ2ξ∗ ⊗ L∗. Since KX
∼= (L∗)2 by the assumption,

we infer that Λ2ξ∗ ⊗ L is a trivial bundle. A trivialisation of Λ2ξ∗ ⊗ L is



✐

✐

“4-Forstneric” — 2020/7/10 — 18:01 — page 738 — #6
✐

✐

✐

✐

✐

✐

738 Franc Forstnerič

a 2-form β on ξ with values in L such that ω = α ∧ β is a trivialisation of
KX ⊗ L2, i.e., (α, β) ∈ Contfor(X). Hence, the necessary condition (1.2) for
the existence of an L-valued formal complex contact structure on X is also
sufficient when X is a Stein manifold and dimX = 3.

We denote by Contfor(X,L) the subset of Contfor(X) consisting of pairs
of L-valued forms (α, β) ∈ Contfor(X). Clearly, Contfor(X,L) is a union of
connected components of Contfor(X). We claim that the connected com-
ponents of Contfor(X,L) coincide with the homotopy classes of trivialisa-
tions of KX ⊗ L2. One direction is obvious: given a homotopy (αt, βt) ∈
Contfor(X,L) with t ∈ [0, 1], the family αt ∧ βt is a homotopy of trivialisa-
tions of KX ⊗ L2. Conversely, assume that (α0, β0), (α1, β1) ∈ Conthol(X,L)
and there is a homotopy ωt of trivialisations of KX ⊗ L2 with ω0 = α0 ∧ β0
and ω1 = α1 ∧ β1. Since dimX = 3 and X is Stein, it is homotopy equiv-
alent to a 3-dimensional CW complex. A simple topological argument in
the line of [17, proof of Corollary 8.3.2] then shows that α0 and α1 can be
connected by a homotopy αt of nowhere vanishing sections of T ∗X ⊗ L. Let
ξt = kerαt ⊂ TX for t ∈ [0, 1]. Then, ωt = αt ∧ β̃t where β̃t is a trivialisation
of Λ2ξ∗t ⊗ L and β̃0 = β0. At t = 1 we have ω1 = α1 ∧ β1 = α1 ∧ β̃1, and it
follows that β̃1|ξ1 = β1|ξ1 . This proves the claim.

Recall that the isomorphism classes of complex (or holomorphic) line
bundles on a Stein manifold X are in bijective correspondence with the
elements of H2(X;Z) by Oka’s theorem (see [17, Theorem 5.2.2]). The above
observations yield the following homotopy classification of formal complex
contact structures on Stein threefolds.

Proposition 1.6. If X is a Stein manifold of dimension 3, then the con-
nected components of the space Contfor(X) of formal complex contact struc-
tures on X are in one-to-one correspondence with the following pairs of
data:

(i) an isomorphism class of a complex line bundle L on X satisfying L2 ∼=
(KX)−1, i.e., an element c ∈ H2(X;Z) with 2c = c1(TX), and

(ii) a choice of a homotopy class of trivialisations of the line bundle KX ⊗
L2, that is, an element of [X,C∗] = [X,S1] = H1(X;Z).

In particular, if H1(X;Z) = 0 and H2(X;Z) = 0 then the space Contfor(X)
is connected; this holds for X = C3.

Theorem 1.2 and Proposition 1.6 imply the following corollary.
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Corollary 1.7. Let X be a Stein manifold of dimension 3. Given a holo-
morphic line bundle L on X such that (KX)−1 ∼= L2, there are a Stein do-
main Ω ⊂ X diffeotopic to X and a holomorphic contact subbundle ξ ⊂ TΩ
such that TΩ/ξ is isomorphic to L|Ω. Furthermore, given holomorphic L-
valued contact forms α0, α1 on X such that the map α1∧dα1

α0∧dα0
: X → C∗ is

null homotopic, there are a Stein domain Ω ⊂ X as above and a homotopy
αt ∈ Contfor(X) (t ∈ [0, 1]) connecting α0|Ω to α1|Ω.

Since we must pass to Stein subdomains of X when constructing contact
structures and homotopies between them, the following problem remains
open.

Problem 1.8. Let X be a Stein manifold of dimension 3 with H1(X;Z) =
H2(X;Z) = 0. Is the space Conthol(X) connected? In particular, is
Conthol(C

3) connected?

Remark 1.9. Corollary 1.7 gives a homotopy classification of contact forms
on Stein 3-folds, but not necessarily of contact bundles. A holomorphic con-
tact bundle ξ on X is determined by a holomorphic 1-form α up to a non-
vanishing multiplicative factor f ∈ O(X,C∗). Since fα ∧ d(fα) = f2α ∧ dα,
this changes the trivialisation ofKX ⊗ L2 by f2. (More generally, if dimX =
2n+ 1 then the trivialisation of KX ⊗ Ln+1 given by α ∧ (dα)n changes by
the factor fn+1.) Hence, a homotopy class of holomorphic contact bundles on
a Stein 3-fold X is uniquely determined by a pair (c, d), where c ∈ H2(X;Z)
satisfies 2c = c1(TX) and d ∈ H1(X;Z)/2H1(X;Z). By Corollary 1.7 every
such pair is represented by a holomorphic contact bundle on a Stein domain
Ω ⊂ X diffeotopic to X.

We do not have a comparatively good classification result for Contfor(X)
on Stein manifolds of dimension five or more. Granted the necessary condi-
tions (1.2), (1.3) for the normal bundle L, the existence and classification
of complex symplectic L-valued 2-forms β on the 2n-plane bundle ξ = kerα
amounts to the analogous problem for sections of an associated fibre bundle
with the fibre GL2n(C)/Sp2n(C). We do not pursue this issue here.

One may wonder to what extent it is possible to control the choice of
the domain Ω ⊂ X in Theorem 1.2 and Corollary 1.7. In our proof, Ω arises
as a thin Stein neighbourhood of an embedded CW complex in X which
represents its Morse complex, so it carries all the topology of X. However,
since a Mergelyan-type approximation theorem is used in the construction,
we do not know how large Ω can be. We describe the construction more
precisely at the end of this introduction and supply references.
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Our method actually gives much more. Assume that X is an odd di-
mensional complex manifold (not necessarily Stein) and W ⊂ X is a tamely
embedded CW complex of dimension at most dimX. (A suitable notion of
tameness was introduced by Gompf [25, 26].) Let (α, β) be a formal contact
structure on X. After a small topological adjustment of W in X, there is
a holomorphic contact form α̃ ∈ Conthol(Ω) on a Stein thickening Ω ⊂ X of
W such that (α̃, dα̃) is homotopic to (α, β) in Contfor(Ω).

This is illustrated most clearly by looking at holomorphic contact struc-
tures on neighbourhoods of totally real submanifolds. A real submanifold M
of class C 1 in a complex manifold X is said to be totally real if the tangent
space TxM at any point x ∈ M (a real vector subspace of TxX) does not
contain any complex line. By Grauert [27], such M admits a basis of tubu-
lar Stein neighbourhoods in X, the Grauert tubes. Every smooth n-manifold
M is a totally real submanifold of a Stein n-manifold: take the compatible
real analytic structure on M , let MC be its complexification, and choose X
to be a Grauert tube around M in MC. The following is the 1-parametric
h-principle for germs of complex contact structures along a totally real sub-
manifold; see Theorem 4.1 for the parametric case.

Theorem 1.10. Let M be a totally real submanifold of class C 2 in a com-
plex manifold X. Every formal complex contact structure (α0, β0) ∈
Contfor(X) is homotopic in Contfor(X) to a holomorphic contact form α
on a tubular Stein neighbourhood of M in X. Furthermore, any two holo-
morphic contact forms α0, α1 on a neighbourhood of M which are formally
homotopic along M are homotopic through a family of holomorphic contact
forms αt ∈ Conthol(Ω) (t ∈ [0, 1]) on a Stein neighbourhood Ω ⊂ X of M .

In dimension 3 we have the following simpler statement in view of Propo-
sition 1.6.

Corollary 1.11. Let X be a 3-dimensional complex manifold and M ⊂ X
be a totally real submanifold of class C 2. Then, germs of complex contact
forms on X along M are classified up to homotopy by pairs consisting
of a complex line bundle L over a neighbourhood of M satisfying L2|M ∼=
(KX)−1|M and an element of H1(M ;Z).

IfM is a totally real submanifold of maximal dimension n in a complex n-
manifold X, we have that TX|M ∼= TM ⊕ TM (since the complex structure
operator J on TX induces an isomorphism of the tangent bundle TM onto
the normal bundle of M in X). Replacing X by a Grauert tube around M ,
it follows that c1(TX) = c1(TX|M ) = c1(TM ⊗ C), so the canonical class of
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X only depends on M . We shall see in Example 1.13 that this is not the
case in general for totally real submanifolds of lower dimension.

Example 1.12. Let X be a Grauert tube around the 3-sphere S3. Then,
H1(X;Z)=H1(S3;Z)=0 and H2(X;Z)=H2(S3;Z)=0. By Corollary 1.11
there is a unique homotopy class of germs of complex contact structures
around S3 in X. We get it for instance by taking a totally real embedding
of S3 into C3 (see [22, Theorem 1.4] or [29, p. 193]) and using the standard
complex contact form dz + xdy on C3.

It was shown by Eliashberg [11] that there exist countably many ho-
motopy classes of smooth contact structures on S3. By choosing them real
analytic, we can complexity them to obtain holomorphic contact structures
on neighbourhoods of S3 inX. By what has been said above, these structures
are homotopic to each other as holomorphic contact bundles.

Example 1.13. Let Y be a Grauert tube around the 2-sphere S2. An
explicit example is the complexified 2-sphere

Y = {(z0, z1, z2) ∈ C
3 : z20 + z21 + z22 = 1}.

Recall that the holomorphic tangent bundle any smooth complex hypersur-
face in Cn is holomorphically trivial (see [17, Proposition 8.5.3, p. 370]);
in particular, TY is trivial. Let π : X → Y be a holomorphic line bun-
dle; the isomorphism classes of such bundles correspond to the elements
of H2(Y ;Z) = H2(S2;Z) = Z. Considering Y as the zero section of X, we
can view X as the normal bundle NY,X of Y in X. Since TY is trivial, the
adjunction formula for the canonical bundle gives

KX |Y ∼= KY ⊗ (NY,X)−1 = X−1.

For each choice of the bundle X → Y with even Chern number c1(X) ∈
H2(Y ;Z) = Z, (KX)−1 has a unique holomorphic square root L with c1(L) =
1
2c1(X). By Corollary 1.11 there is a holomorphic L-valued contact form on
a neighbourhood of S2 in X. A Stein tube around S2 in the trivial bundle
X = Y × C can be represented as a domain in C3, for example, as a tube
around the standard 2-sphere S2 ⊂ R3 ⊂ C3. The examples with nonzero
Chern classes clearly cannot be represented as domains in C3.

Example 1.14. Let X be a 3-dimensional Grauert tube around an embed-
ded circle S1 ⊂ X. In this case H2(X;Z) = H2(S1;Z) = 0, and by Corol-
lary 1.11 the homotopy classes of holomorphic contact forms on X along
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S1 are classified by H1(X;Z) = H1(S1;Z) = Z. We can see them explicitly
on X = C∗ × C2 as follows. Let (x, y, z) be complex coordinates on C3. Set
S1 = {(x, 0, 0) ∈ C3 : |x| = 1}. For each k ∈ Z let

αk =

{
dz + 1

k+1x
k+1dy if k ̸= −1,

1√
2

(
1
xdz + xdy

)
if k = −1.

Then, αk ∧ dαk = xkdx ∧ dy ∧ dz for every k ∈ Z, so the homotopy class of
the corresponding framing of the trivial bundle X × C → X equals k. By
Remark 1.9 the contact bundle ξk = kerαk on C∗ × C2 is homotopic to ξ0
if k is even, and to ξ1 ∼= ξ−1 is k is odd. The bundles ξ0 and ξ1 are not
homotopic to each other through contact bundles.

Note that the 1-form αk for k ̸= −1 is the pullback of the standard
contact form α0 = dz + xdy on C3 by the covering map C∗ × C2 → C∗ ×
C2, (x, y, z) 7→ (xk+1/(k + 1), y, z). In order to understand α−1, consider the
contact form on C3 given by

β = cosx · dz + sinx · dy.

It defines the standard structure on C3, because it is the pullback of dz − ydx
by the automorphism (x, y, z) → (x, y cosx− z sinx, y sinx+ z cosx). Let
F : C3 → C∗ × C2 denote the universal covering map F (x, y, z) = (eix, y, z).
A calculation shows that β = F ∗α′, where α′ is the contact form on C∗ × C2

given by

α′ =
1

2

(
x+

1

x

)
dz +

1

2i

(
x− 1

x

)
dy, α′ ∧ dα′ =

1

ix
dx ∧ dy ∧ dz.

Then, α−1 is homotopic to α′ through the family of contact forms on C∗ × C2

defined by

σt =
1√

2(1 + t2)

((
tx+

1

x

)
dz +

(
x− t

x

)
e−iπt/2dy

)
, t ∈ [0, 1].

We have σ0 = α−1, σ1 = α′, and σt ∧ dσt = e−iπt/2x−1dx ∧ dy ∧ dz for all
t ∈ [0, 1].

Example 1.15. The previous example can be generalised to (C∗)2 × C

and (C∗)3 which are complexifications of the 2-torus and the 3-torus, re-
spectively. Let us consider the latter. Denote by T k the k-dimensional torus,
the product of k copies of the circle S1. The domain X = (C∗)3 is a Stein
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tube around the standard totally real embedding T 3 →֒ C3 onto the dis-
tinguished boundary of the polydisc. We have H2(X;Z) = H2(T 3;Z) = Z3

and H1(X;Z) = H1(T 3;Z) = Z3 (see Rotman [37, p. 404]). Clearly, KX is
trivial, and since H2(X;Z) is a free abelian group, its only square root is
the trivial bundle. Hence by (1.2) all contact forms on X assume values in
the trivial bundle, and we have Z3-many homotopy classes of trivialisations
of the latter. Consider the following family of contact forms on X = (C∗)3,
where (k, l,m) ∈ Z3:

αk,l,m =

{
zmdz + 1

k+1x
k+1yldy if k ̸= −1,

1
2xz

mdz + xyldy if k = −1,

A calculation shows that αk,l,m ∧ dαk,l,m = xkylzmdx ∧ dy ∧ dz, so this fam-
ily provides all possible homotopy classes of framings of the trivial bundle
X × C.

The above examples suggest that in many natural cases one can find
globally defined holomorphic contact forms representing all homotopy classes
in Proposition 1.6.

Problem 1.16. Is it possible to represent every homotopy class of formal
complex contact structures on an affine algebraic manifold by an algebraic
contact form?

Our proofs of Theorems 1.10 and 4.1 proceed by triangulating the man-
ifold M and inductively deforming a formal contact structure (α, β) to an
almost contact structure along M (see Definition 3.3 (b) for this notion).
We show that the open partial differential relation of first order, controlling
the almost contact condition on a totally real disc, is ample in the coordi-
nate directions; see Lemma 2.1. Hence, Gromov’s h-principle [29, 31] can
be applied to extend an almost contact structure from the boundary of a
cell to the interior, provided that it extends as a formal complex contact
structure; see Lemma 2.3. Finally, approximating an almost contact form α
on M sufficiently closely in the fine C 1 topology by a holomorphic 1-form α̃
ensures that α̃ is a contact form on a neighbourhood of M in X. The same
arguments apply to families of such forms, thereby yielding the parametric
h-principle in Theorem 4.1.

A similar method is used to prove Theorems 1.2 and 6.1 (see Sect. 6).
The inductive step amounts to extending a holomorphic contact form α
from a neighbourhood of a compact strongly pseudoconvex domain W in X
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across a handle whose core is a totally real disc M attached with its bound-
ary sphere bM to bW . More precisely, M \ bM ⊂ X \W , the attachment
is J-orthogonal along bM (where J denotes the almost complex structure
on X), and bM is a Legendrian submanifold of the strongly pseudoconvex
hypersurface bW with its smooth contact structure given by the complex
tangent planes. The union W ∪M then admits a basis of tubular Stein
neighbourhoods (see [12, 18]). Assuming that α extends to M as a formal
contact structure, Lemma 4.3 furnishes an almost contact extension. Fi-
nally, by Mergelyan’s theorem we can approximate α in the C 1 topology
on W ∪M by a holomorphic contact form α̃ on a Stein neighbourhood of
W ∪M .

With these analytic tools in hand, Theorems 1.2 and 6.1 are proved by
following the scheme developed by Eliashberg [12] in his landmark construc-
tion of Stein manifold structures on any smooth almost complex manifold
(X, J) with the correct handlebody structure. (The special case dimX = 2 is
rather different and was explained by Gompf [24–26], but this is not relevant
here.) A more precise explanation of Eliashberg’s construction was given by
Slapar and the author [20, 21] in their proof of the soft Oka principle for
maps from any Stein manifold X to an arbitrary complex manifold Y . Ex-
positions are also available in the monographs by Cieliebak and Eliashberg
[8, Chap. 8] and the author [17, Secs. 10.9–10.11].

Finally, the proof of Theorem 1.5 (see Sect. 6) follows the induction
scheme used in Oka theory; see [17, Sect. 5]. Besides the tools already men-
tioned above, an additional ingredient is a new gluing lemma for holomorphic
contact forms; see Lemma 6.3.

2. Germs of complex contact structures on domains in

R
2n+1

⊂ C
2n+1

We denote the complex variables on Cn by z = (z1, . . . , zn) with zi = xi + iyi
for i = 1, . . . , n, where i =

√
−1. We shall consider Rn as the standard real

subspace of Cn.
LetD be a compact set in R2n+1 (n ∈ N) which is the closure of a domain

with piecewise C 1 boundary. We shall denote by bD the boundary of D. In
this section we consider the problem of approximating a holomorphic contact
form α, defined on a neighbourhood of a compact subset Γ ⊂ bD, by a holo-
morphic contact form α̃ defined on a neighbourhood of D in C2n+1, provided
that α admits a formal contact extension to D in the sense of Definition 1.1.
(For applications in this paper, it suffices to consider the case when D is the
standard handle Dm ×Dd ⊂ R2n+1 of some index m ∈ {1, . . . , 2n+ 1} and
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d = 2n+ 1−m, where Dm ⊂ Rm and Dd ⊂ Rd are closed unit balls in the
respective spaces, and Γ = bDm ×Dd is the attaching set of the handle.) We
will show that the parametric h-principle holds in this problem (see Lemma
2.3).

We begin with preliminaries. Let l ∈ N, and let K be a closed set in a
complex manifold X. A function f of class C l on an open neighbourhood
U ⊂ X of K is said to be ∂-flat to order l on K if the jet of ∂f of order l − 1
vanishes at each point of K. In any system of local holomorphic coordinates
z = (z1, . . . , zn) : V → Cn on X centred at a point x0 ∈ K, this means that
the value and all partial derivatives of order up to l − 1 of the functions
∂f/∂z̄j =

1
2

(
∂fxj

+ i ∂fyj

)
(j = 1, . . . , n) vanish at each point x ∈ K ∩ V .

In particular, such f satisfies the Cauchy-Riemann equations at every point
x ∈ K ∩ V :

∂f

∂zj
(x) =

∂f

∂xj
(x) =

1

i

∂f

∂yj
(x), j = 1, . . . , n.

If f is smooth of class C∞ and the above holds for all l ∈ N, then f is said
to be ∂-flat (to infinite order) on K.

Assume now that D ⊂ R2n+1 ⊂ C2n+1 is a compact domain with piece-
wise C 1 boundary in R2n+1. It is classical (see e.g. [32, Lemma 4.3] or [8,
Proposition 5.55]) that every function f : D → C of class C l extends to a
C l function F : C2n+1 → C which is ∂-flat to order l on D. When f is of
class C∞, we can obtain such an extension explicitly by first extending f to
a smooth function on R2n+1 and setting

F (x+ iy) =
∑

|I|≤l

1

I!

∂|I|f
∂xI

(x) i|I|yI = f(x) + i

2n+1∑

i=1

∂f

∂xi
(x)yi +O(|y|2).

Here,

I = (i1, . . . , i2n+1) ∈ Z
2n+1
+ , |I| = i1 + · · ·+ i2n+1,

∂|I|f
∂xI

(x) =
∂|I|f

∂xi11 · · · ∂xi2n+1

n

,

and yI = yi11 · · · yi2n+1

n . If f is only of class C l then a ∂-flat extension is
obtained by applying Whitney’s jet-extension theorem [39] to the jet on the
right hand side above.

A smooth differential (1, 0)-form

(2.1) α =

2n+1∑

i=1

ai(z)dzi
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on a neighbourhood of D in C2n+1 is said to be ∂-flat to order l on D is
every coefficient function ai is such. Every smooth (1, 0)-form defined onD ⊂
R2n+1 extends to a ∂-flat (1, 0)-form on C2n+1 by taking ∂-flat extensions
of its coefficient. Assume that α is such. In view of the Cauchy-Riemann
equations we have for each x ∈ D that

(2.2) dα(x) = ∂α(x) =
∑

1≤i<j≤2n+1

(
∂aj
∂xi

(x)− ∂ai
∂xj

(x)

)
dzi ∧ dzj .

Write pi,j(x) =
∂ai

∂xj
(x) and set

(2.3) βi,j(x) := pj,i(x)− pi,j(x) =
∂aj
∂xi

(x)− ∂ai
∂xj

(x).

With this notation, we have for all x ∈ D that

(2.4) dα(x) = β(x) =
∑

1≤i<j≤2n+1

βi,j(x) dzi ∧ dzj

and

(2.5) (dα)n(x) = βn(x) =

2n+1∑

i=1

bi(x) dz1 ∧ · · · d̂zi · · · ∧ dz2n+1,

where d̂zi indicates that this term is omitted. Every coefficient bi(x) in (2.5)
is a homogeneous polynomial of order n in the coefficients βj,k of β = dα
(2.2), obtained as follows. Let P = {A1, . . . , An} be a partition of the set
{1, 2 . . . , 2n+ 1} \ {i} into a union of n pairs Ak = (ik, jk) (k = 1, . . . , n),
with ik < jk. Then,

bi(x) = n!
∑

P

∏

(ik,jk)∈P
βik,jk(x)(2.6)

= n!
∑

P

∏

(ik,jk)∈P
(pjk,ik(x)− pik,jk(x))

for all x ∈ D. Finally, from (2.2) and (2.5) we obtain for all x ∈ D that

α(x) ∧ (dα)n(x) = α(x) ∧ βn(x)(2.7)

=

( 2n+1∑

i=1

(−1)i−1ai(x)bi(x)

)
dz1 ∧ · · · ∧ dz2n+1.
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A smooth (1, 0)-form α on C2n+1, defined on a neighbourhood of D ⊂
R2n+1 and ∂-flat on D to the first order, is said to be an almost contact form
on D if

(2.8) α ∧ (dα)n ̸= 0 at every point of D.

Note that dα|D = ∂α|D. Approximating α sufficiently closely in the C 1

topology on D by a holomorphic 1-form α̃ gives a holomorphic contact
structure ξ̃ = ker α̃ on a neighbourhood of D in C2n+1. If the coefficients
of α are real analytic, then the complexification of α defines a holomorphic
contact structure near D.

We see from (2.3), (2.6), and (2.7) that the condition (2.8) depends only
on the first order jet of the restrictions ai|D of the coefficients of α to D, so it
defines an open set in the space of 1-jets of 1-forms on D. More precisely, we
may view α|D as a smooth section x 7→ (x, a1(x), . . . , a2n+1(x)) of the trivial
bundle E = D × C2n+1 → D. Let E(1) → E be the bundle of 1-jets of sec-
tions of E → D. The fibre of E(1) over a point (x, a) ∈ E = D × C2n+1 (with
a = (a1, . . . , a2n+1)) consists of all matrices p = (pi,j) ∈ C(2n+1)·(2n+1). A sec-
tionD → E(1) is a map x 7→ (x, a(x), p(x)) ∈ E(1), where a : D → C2n+1 and
p : D → C(2n+1)·(2n+1). Such a section is said to be holonomic if p(x) is the 1-
jet of a(x) for each x ∈ D, that is, pi,j(x) =

∂ai

∂xj
(x) for all i, j = 1, . . . , 2n+ 1.

Let R be the open subset of E(1) defined by

(2.9) R =

{
(x, a, p) ∈ E(1) :

2n+1∑

i=1

(−1)i−1aibi ̸= 0

}
,

where each bi is determined by p = (pj,k) according to the formula (2.6)
(ignoring the base point x). Thus, R is an open differential relation of first
order in E(1) which controls the contact condition for ∂-flat 1-forms along D.

Lemma 2.1. The partial differential relation R defined by (2.9) is ample
in the coordinate directions (in the sense of M. Gromov [29, 31]).

Proof. Choose an index i ∈ {1, . . . , 2n+ 1}. Write p = (p1, . . . , p2n+1) and
pj = (pj,1, . . . , pj,2n+1) ∈ C2n+1 for j = 1, . . . , 2n+ 1. Consider a restricted
1-jet of the form e = (x, a, p1, . . . , p̂i, . . . , p2n+1) where the vector pi is omit-
ted. Set

(2.10) Re = {pi ∈ C
2n+1 : (x, a, p1, . . . , pi−1, pi, pi+1, . . . , p2n+1) ∈ R}.
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The differential relation R is said to be ample in the coordinate directions
if every set Re of this type is either empty, or else the convex hull of each
of its connected components equals C2n+1. In the case at hand, we see from
(2.6) and (2.7) that the function

h(a, p) =

2n+1∑

j=1

(−1)i−1ajbj(p),

where bj = bj(p) is determined by (2.6), is affine linear in pi = (pi,1, . . . ,
pi,2n+1). Indeed, every pi,j appears at most once in each of the products in
(2.6). Since

Re = {pi ∈ C
2m+1 : h(a, p1, . . . , pi, . . . , p2n+1) ̸= 0},

it follows that Re is either empty or else the complement of a complex affine
hyperplane in C2n+1; in the latter case its convex hull equals C2n+1. This
proves Lemma 2.1. □

Remark 2.2. Note that the real analogue of Lemma 2.1 is false. For this
reason, the corresponding h-principle for real contact structures, due to Gro-
mov [30], does not hold on compact smooth manifolds, but only on open
ones.

In order to apply this lemma, we need the following observation. Let α
be a 1-form (2.1) with smooth coefficients a = (a1, . . . , a2n+1) : D → C2n+1,
and let

(2.11) β(x) =
∑

1≤i<j≤2n+1

βi,j(x) dzi ∧ dzj , x ∈ D,

be a smooth 2-form onD. (At this point we are considering forms with values
in the trivial line bundle.) Note that the linear projection C(2n+1)2 ∋ (pi,j) 7→
(βi,j = pj,i − pi,j) ∈ Cn(2n+1) is surjective and hence a Serre fibration, i.e.,
it enjoys the homotopy lifting property. In particular, we may write βi,j =
pj,i − pi,j for some smooth functions pi,j on D. Let p = (pi,j) : D → C(2n+1)2 .
It then follows from the definition of the differential relation R (see (2.9))
that (α, β) is a formal contact structure on D (see Definition 1.1), i.e.,

(2.12) α ∧ βn ̸= 0 on D,

if and only if the map x 7→ (x, a(x), p(x)) is a (not necessarily holonomic)
section of R. Note that the condition (2.12) is purely algebraic and does not
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depend on the particular choices of extensions of α and β to a neighbourhood
of D.

A seminal result of M. Gromov says that sections of an ample open
differential relation R of first order satisfy all forms of the h-principle (see
[29, Sect. 2.4], [14, Sect. 18.2], or [38, Theorem 4.2]). This means that every
section of R is homotopic through sections of R to a holonomic section,
the homotopy can be chosen fixed on a compact subset of the base domain
where the given section is already holonomic, and a similar statement holds
for families of sections, where the homotopy is kept fixed on the set of
holonomic sections. The basic technical result is the following; we state it
for the case at hand. (See for instance [31, Lemma 3.1.3, p. 339] which is
stated for the special case whenD is a compact cube and Γ = bD; the general
case follows by induction on a suitable triangulation of the pair (D,Γ). A
brief survey is also available in [17, Sect. 1.10].)

Lemma 2.3. Let D ⊂ R2n+1 be a compact domain with piecewise C 1 bound-
ary, and let Γ ⊂ bD be the closure of an open subset of bD with piecewise C 1

boundary. Assume that α is a smooth ∂-flat (1, 0)-form and β is a smooth
(2, 0)-form on a neighbourhood of D in C2n+1 (see (2.1), (2.11)) such that
(2.12) holds and dα(x) = β(x) for all x ∈ Γ, i.e.,

βi,j(x) =
∂aj
∂xi

(x)− ∂ai
∂xj

(x) for all x ∈ Γ and i, j = 1, . . . , 2n+ 1.

Given ϵ > 0 there is a homotopy (αt, βt) (t ∈ [0, 1]) of pairs of forms of the
same type satisfying the following conditions.

(i) (α0, β0) = (α, β).

(ii) αt(x) ∧ βt(x)
n ̸= 0 for all x ∈ D and t ∈ [0, 1].

(iii) |αt(x)− α(x)| < ϵ for all x ∈ D and t ∈ [0, 1].

(iv) The homotopy is fixed for x ∈ Γ.

(v) β1 = dα1 holds at all points of D, i.e., α1 is an almost contact form
on D.

Assume furthermore that P is a compact Hausdorff space, Q ⊂ P is a closed
subspace, and {(αp, βp)}p∈P is a continuous family of data as above such that
for every p ∈ Q we have that dαp = βp on D. Then, there is a homotopy
(αp,t, βp,t) (t ∈ [0, 1]) which is fixed (independent of t) for every p ∈ Q and
satisfies conditions (i)–(v) for every p ∈ P .
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In condition (iii) we use the Euclidean norm for the coefficient vector
of the 1-form αt − α, that is, αt is uniformly ϵ-close to α = α0 on D for all
t ∈ [0, 1]. Note however that in general α1 cannot be chosen C 1-close to α.

Lemma 2.3 is proved by applying the h-principle on R2n+1 and then
extending the resulting forms ∂-flatly to a neighbourhood in C2n+1.

3. Asymptotically holomorphic and almost contact forms

We now introduce a general notion of an almost contact form along a closed
subset M in a complex manifold X (see Definition 3.3). This is necessary
since we shall be applying coordinate changes which are asymptotically holo-
morphic on M , but not necessarily holomorphic. For simplicity we discuss
scalar-valued forms, although the same notions apply to differential forms
with values in any holomorphic line bundle on X. However, Lemma 3.2 and
Corollary 3.5 only apply to scalar-valued forms and will be used locally.

A smooth differential m-form α on a complex manifold X decomposes
uniquely as the sum α =

∑
p+q=m αp,q of its (p, q)-homogeneous parts. In

local holomorphic coordinates z = (z1, . . . , zn) on X we have

αp,q =
∑

aI,J dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq

for some smooth coefficient functions aI,J . In particular, for a 1-form α we
have

(3.1) α =

n∑

i=1

aidzi +

n∑

i=1

bidz̄i = α1,0 + α0,1.

The exterior derivative on X splits as d = ∂ + ∂. If α is a 1-form then

(dα)2,0 = ∂α1,0, (dα)1,1 = ∂α0,1 + ∂α1,0, (dα)0,2 = ∂α0,1.

Definition 3.1. Let M be a closed subset of a complex manifold X.

(a) A smooth m-form α, defined on a neighbourhood of M in X, is of type
(m, 0) on M if

α|M = αm,0|M .

The space of suchm-forms (on variable neighbourhoods ofM) is denoted
Em,0(M,X).

(b) A smooth 1-form α, defined on a neighbourhood of M in X, is asymp-
totically holomorphic (of order 1) on M if for every point x0 ∈ M there
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is a holomorphic coordinate system on X around x0 in which α has the
form (3.1) and the following conditions hold for i = 1, . . . , n:

(3.2) ∂ai(x0) = 0, bi(x0) = 0, dbi(x0) = 0.

The space of all such forms on variable neighbourhoods of M is denoted
AH1(M,X).

The first two conditions in (3.2) are equivalent to α ∈ E1,0(M,X) and
∂α1,0|M = 0, so dα1,0|M = ∂α1,0|M . The last condition in (3.2) implies
dα0,1|M = 0, but the converse is not true since ∂α0,1|M = 0 holds under
the weaker condition ∂bi

∂z̄k
= ∂bk

∂z̄i
on M for all i, k = 1, . . . , n. In particular,

we have that

AH1(M,X) ⊂ {α ∈ E1,0(M,X) : dα0,1|M = 0,

∂α1,0|M = 0, dα ∈ E2,0(M,X)}.

Assume now that X and Y are complex manifolds and F : X → Y is
smooth map. Let M be a closed subset of X. We say F is ∂-flat (or asymp-
totically holomorphic) to order k ∈ N on M if, in any pair of holomorphic
coordinates on the two manifolds, we have that

(3.3) Dk−1(∂F )|M = 0,

where Dk−1 is the total derivative of order k − 1 applied to the components
∂Fi/∂z̄j of ∂F . The chain rule shows that this notion is independent of the
choice of coordinates.

The following lemma shows in particular that condition (3.2) defining
the class AH1(M,X) is invariant under ∂-flat coordinate changes.

Lemma 3.2. Assume that X and Y are complex manifolds and F : X → Y
is a C 2 map which is ∂-flat to order 2 on a closed subset M ⊂ X. Set
M ′ = F (M) ⊂ Y . If α ∈ AH1(M ′, Y ) then F ∗α ∈ AH1(M,X) and

d(F ∗α)|M = ∂((F ∗α)1,0)|M = F ∗(∂α1,0|M ′).

Proof. Fix a point x0 ∈ M ⊂ X and let y0 = F (x0) ∈ M ′ ⊂ Y . By the as-
sumption there are holomorphic coordinates w = (w1, . . . , wn) on a neigh-
borhood U of y0 in Y such that

α =

n∑

i=1

ai dwi +

n∑

i=1

bi dwi = α1,0 + α0,1,
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where the coefficients satisfy the following conditions (see (3.2)):

∂ai(y0) = 0, bi(y0) = 0, dbi(y0) = 0.

The pullback form α̃ = F ∗α on F−1(U) ⊂ X equals

α̃ =

n∑

i=1

[
(ai ◦ F ) dFi + (bi ◦ F ) dF i

]

=

n∑

i=1

[
(ai ◦ F ) ∂Fi + (bi ◦ F ) ∂F i

]
+

n∑

i=1

[
(ai ◦ F ) ∂Fi + (bi ◦ F ) ∂ F i

]

= α̃1,0 + α̃ 0,1.

At the point x0 ∈ M we have that bi ◦ F (x0) = 0 and ∂Fi(x0) = 0 for all i,
and hence

α̃1,0(x0) =

n∑

i=1

ai(y0)∂Fi(x0) = F ∗(α1,0)(x0), α̃0,1(x0) = 0.

Furthermore, since dbi(y0) = 0 and d(∂Fi)(x0) = 0 for all i, a simple cal-
culation shows that the coefficients of α̃0,1 in any holomorphic coordinate
system on X around x0 vanish to the second order at x0. Finally, consider
the (1, 1)-form

∂ α̃1,0 =

n∑

i=1

(
∂(ai ◦ F ) ∧ ∂Fi + (ai ◦ F )∂∂Fi

+ ∂(bi ◦ F ) ∧ ∂F i + (bi ◦ F )∂∂F i

)
.

We have that

∂(ai ◦ F )(x0) =

m∑

k=1

(
∂ai
∂wk

(y0)∂Fk(x0) +
∂ai
∂wk

(y0)∂(F k)(x0)

)
= 0,

so the first term in the above sum for ∂ α̃1,0 vanishes at x0. The other terms
vanish as well since F is ∂-flat to the second order at x0. This shows that
α̃ = F ∗α is asymptotically holomorphic at x0. Since the point x0 ∈ M was
arbitrary, this completes the proof. □

Definition 3.3. Let X2n+1 be a complex manifold and M be a closed
subset of X.
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(a) A pair (α, β) with α ∈ E1,0(M,X) and β ∈ E2,0(M,X) (see Def. 3.1) is
a formal complex contact structure on M if

(3.4) α ∧ βn = α1,0 ∧ (β2,0)n ̸= 0 holds at every point of M.

We denote by Contfor(M,X) the space of formal contact structures on
M ⊂ X.

(b) An asymptotically holomorphic 1-form α ∈ AH1(M,X) (see Def. 3.1
(b)) is an almost contact form on M if

(3.5) α ∧ (dα)n ̸= 0 holds at every point of M.

We denote the space of almost contact forms on M by AC(M,X).

Remark 3.4. Note that for every (α, β) ∈ Contfor(M,X) the pair
(α1,0, β2,0) is a formal contact structure on an open neighbourhood of M in
X (since α1,0 ∧ (β2,0)n ̸= 0 is an open condition). Likewise, AC(M,X) is an
open subset of AH1(M,X) in the fine C 1 topology on M . For α ∈ AH1(M),
the almost contact condition (3.5) is equivalent to

α1,0 ∧ (dα1,0)n = α1,0 ∧ (∂α1,0)n ̸= 0 on M.

Hence, this notion generalises the one introduced in Sect. 2; see in particu-
lar (2.8).

The next corollary follows immediately from the definitions and
Lemma 3.2.

Corollary 3.5. Suppose that X and Y are complex manifolds of dimension
2n+ 1, M is a closed subset of X, and F : X → Y is a diffeomorphism which
is ∂-flat to order 2 on M .

(a) If (α, β) ∈ Contfor(F (M), Y ) then (F ∗α, F ∗β) ∈ Contfor(M,X).

(b) If α ∈ AC(F (M), Y ) then F ∗α ∈ AC(M,X).

4. Complex contact structures near totally real

submanifolds

In this section we prove the following parametric h-principle for complex
contact structures along any totally real submanifold M of class C 2 in a
complex manifold X2n+1.



✐

✐

“4-Forstneric” — 2020/7/10 — 18:01 — page 754 — #22
✐

✐

✐

✐

✐

✐

754 Franc Forstnerič

Theorem 4.1. Let M be a topologically closed totally real submanifold of
class C 2 (possibly with boundary) in a complex manifold X2n+1. Assume
that P is a compact Hausdorff space and Q ⊂ P is a closed subspace. Let
(αp, βp) ∈ Contfor(X) (p ∈ P ) be a continuous family of formal complex con-
tact structures with values in a holomorphic line bundle L on X (see Def-
inition 3.3) such that for every p ∈ Q, αp ∈ Conthol(X) and βp = dαp on
kerαp. Then, there exist a Stein neighbourhood Ω ⊂ X of M and a ho-
motopy (αp,t, βp,t) ∈ Contfor(X) (p ∈ P, t ∈ [0, 1]) satisfying the following
conditions.

(a) (αp,0, βp,0) = (αp, βp) for all p ∈ P .

(b) The homotopy is fixed for all p ∈ Q.

(c) αp,1|Ω ∈ Conthol(Ω) and βp,1 = dαp,1 on kerα1|Ω for all p ∈ P .

This result subsumes the basic h-principle given by Theorem 1.10. The
proof is based on Lemma 2.3 and the results from Sect. 3, along with some
well known results concerning totally real submanifolds which we now recall.

Assume that M is a topologically closed totally real submanifold of class
C k (k ∈ N), possibly with boundary, in a complex manifold X. Every func-
tion f ∈ C k(M) extends to a function F ∈ C k(X) which is C∞ smooth in
X \M and ∂-flat to order k on M (cf. (3.3)):

Dk−1(∂F )|M = 0.

(See [32, Lemma 4.3] or [5, Lemma 4, p. 148].) The analogous extension
theorem holds for maps f : M → Y of class C k to an arbitrary complex
manifold — such f extends to a map F : U → Y on an open tubular Stein
neighbourhood U ⊂ X of M such that F is ∂-flat to order k on M . Indeed,
the graph of f admits a Stein neighbourhood in X × Y according to Grauert
[27], so the proof reduces to the case of functions by applying the embedding
theorem for Stein manifolds into Euclidean spaces and the Docquier-Grauert
tubular neighbourhood theorem [10]. (See e.g. [17, proof of Corollary 3.5.6].)

Let TCM denote the complexified tangent bundle of M , considered
as a complex vector subbundle of TX|M of rank m = dimRM . The quo-
tient bundle νM = TX|M/TCM is the complex normal bundle of M in
X; it can be realised as a complex vector subbundle of TX|M such that
TX|M = TCM ⊕ νM . Given a diffeomorphism f : M0 → M1 between totally
real submanifolds M0 ⊂ X and M1 ⊂ Y , where X and Y are complex man-
ifolds of the same dimension, we say that the complex normal bundles
πi : νi → Mi (i = 0, 1) are isomorphic over f if there exists an isomorphism
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of complex vector bundles ϕ : ν0 → ν1 satisfying π1 ◦ ϕ = f ◦ π0. (We refer
to [19, Sect. 2] for further details on this subject.)

The following result is implicitly contained in [19, proof of Theorem 1.2].

Proposition 4.2. Let X and Y be complex manifolds of the same dimen-
sion n, and let f : M0 → M1 be a diffeomorphism of class C k (k ∈ N) be-
tween C k totally real submanifolds M0 ⊂ X and M1 ⊂ Y . If the complex
normal bundles πi : νi → Mi (i = 0, 1) are isomorphic over f , then f extends
to a C k diffeomorphism F : U → F (U) ⊂ Y on a neighbourhood U ⊂ X of
M0 such that F is ∂-flat to order k on M . Such extension always exists if
M0 (and hence M1) is contractible, or if M0 has maximal dimension n.

Proof of Theorem 4.1. For simplicity of exposition we consider the nonpara-
metric case (with P a singleton and Q = ∅); the parametric case follows by
the same arguments.

We proceed in two steps. In the first step, we deform the given formal
contact structure to one that is almost contact on M (see Definition 3.3).
Here we use the h-principle furnished by Lemma 2.3 and the results in
Sect. 3. In the second step we approximate the almost contact form on M
by a holomorphic contact form on a neighbourhood of M .

The first step is accomplished by the following lemma.

Lemma 4.3 (H-principle for almost contact structures on totally
real submanifolds). Let M be a closed totally real submanifold of class
C 2 (possibly with boundary) in a complex manifold X2n+1. Given (α0, β0) ∈
Contfor(X), there is a homotopy (αt, βt) ∈ Contfor(M,X) (t ∈ [0, 1]) such
that (α0, β0) is the given initial pair, α1 ∈ AC(M,X), and β1 = dα1 = ∂α1

on (ker dα1)|M . If M has nonempty piecewise C 1 boundary bM and we
have α0|bM ∈ AC(bM,X) and β0 = dα0 on (ker dα0)|bM , then the homo-
topy (αt, βt) may be chosen fixed on bM . The analogous result holds in the
parametric case.

Assume for a moment that Lemma 4.3 holds and let us complete the
proof of Theorem 4.1. In view of Remark 3.4, there is a neighbourhood
U ⊂ X of M such that (α1,0

t , β2,0
t ) ∈ Contfor(U) for t ∈ [0, 1]. Hence, we may

assume that αt = α1,0
t and βt = β2,0

t in U . By the hypothesis we also have
α1 ∈ AC(M,X) and β1 = ∂α1 on (kerα1)|M . By a homotopic deformation
(shrinking U if necessary) we may assume that β1 = ∂α1 on (kerα1)|U .

In the next step, we find a smaller neighbourhood U ′ ⊂ U of M and a
homotopy in Contfor(U

′) from (α1, ∂α1) to (α̃, dα̃) where α̃ ∈ Conthol(U
′).

This can be done by approximating α1 sufficiently closely in the fine C 1
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topology on M by a holomorphic 1-form α̃ defined on a neighbourhood of
M and setting

α̃t = (1− t)α1 + tα̃, β̃t = ∂α̃t = (1− t)∂α1 + tdα̃ on ker α̃t

for t ∈ [0, 1]. Holomorphic approximation results for functions in the fine
topology on totally real manifolds are well known, see for instance Manne,
Øvrelid and Wold [35] and the survey [15]. These results also apply to sec-
tions of holomorphic vector bundles as shown in [17, proof of Theorem 2.8.4].
Finally, the homotopy in Contfor(U

′) from (α0, β0) to (α̃, dα̃), constructed
above, can be extended to all of X in a standard way by using a cut-off func-
tion on X in the parameter of the homotopy, thereby yielding a homotopy
in Contfor(X) which equals the given one on a smaller Stein neighbourhood
Ω ⊂ U ′ of M and it agrees with (α0, β0) on X \ U ′.

Assuming that Lemma 4.3 holds, this completes the proof of Theo-
rem 4.1. As said before, the parametric case follows the same pattern and
we omit the details. □

Proof of Lemma 4.3. Choose a triangulation of M and let Mk denote its
k-dimensional skeleton, i.e., the union of all cells of dimension at most k.
Assume inductively that for some k < m = dimM we have already found a
homotopy in Contfor(M,X) from (α0, β0) to (α, β) ∈ Contfor(M,X) satisfy-
ing the following conditions:

α ∈ AC(Mk, X), β = dα on (kerα)|Mk
, α ∧ (dα)n|Mk

̸= 0.

The inductive step amounts to deforming (α, β) by a homotopy
in Contfor(M,X) that is fixed on Mk to another pair (α̃, β̃) ∈ Contfor(M,X)
such that

α̃ ∈ AC(Mk+1, X), β̃ = dα̃ on (ker α̃)|Mk+1
, α̃ ∧ (dα̃)n|Mk+1

̸= 0.

This can be done by applying Lemma 2.3 successively on each (k + 1)-
dimensional cell Ck+1 in the given triangulation of M ; we now explain the
details.

Let L → X be the holomorphic line bundle such that α0, β0 have values
in L. Note that L is holomorphically trivial over a neighbourhood of the
cell Ck+1 by the Oka-Grauert principle, so we may consider all our L-valued
differential forms to be scalar-valued there. The cell Ck+1 is diffeomorphic to
a compact contractible domain Dk+1 ⊂ Rk+1 as in Lemma 2.3. We identify
Rk+1 with Rk+1 × {0}2n−k ⊂ R2n+1 ⊂ C2n+1. Since M is totally real and
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of class C 2, any diffeomorphism F : Ck+1 → Dk+1 of class C 2 extends to a
diffeomorphism F from a neighbourhood of Ck+1 inX onto a neighbourhood
of Dk+1 in C2n+1 which is ∂-flat to order 2 on Ck+1 (see Proposition 4.2).
The inverse G = F−1 is then ∂-flat to order 2 on Dk+1. By Corollary 3.5 we
have that

(i) (G∗α,G∗β) ∈ Contfor(Dk+1,C
2n+1),

(ii) G∗α ∈ AC(bDk+1,C2n+1), and

(iii) G∗β = d(G∗α) holds on ker(G∗α) at all points of bDk+1.

By Lemma 2.3 we can deform (G∗α,G∗β) by a homotopy in Contfor(D
k+1,

C2n+1) that is fixed on bDk+1 to an element (α′, β′) ∈ Contfor(D
k+1,C2n+1)

such that α′ ∈ AC(Dk+1,C2n+1) and β′ = dα′ on (kerα′)|Dk+1
. (Lemma 2.3

applies verbatim if k + 1 = m = 2n+ 1. If k + 1 < 2n+ 1, we can apply it
on Dk+1 × rD2n−k for some r > 0, where D2n−k is the closed ball around
the origin in R2n−k. We can extend G∗α to an element of AH1(Dk+1 ×
rD2n−k,C2n+1) whose restriction to bDk+1 × rD2n−k belongs to AC(bDk+1 ×
rD2n−k,C2n+1) and apply Lemma 2.3 to this extension.) By Corollary 3.5
we have that F ∗α′ ∈ AC(Ck+1, X) and d(F ∗α′) = F ∗β′ on ker(F ∗α′) along
Ck+1. We also use F ∗ to transfer the homotopy in Contfor(Dk+1,C

2n+1),
connecting (G∗α,G∗β) to (α′, β′), to a homotopy in Contfor(C

k+1, X) which
is fixed on bCk+1 and connects (α, β) to (F ∗α′, F ∗β′).

This completes the basic induction step. Applying this procedure suc-
cessively on each (k + 1)-cell in the given triangulation of M yields a de-
sired almost complex structure α̃ ∈ AC(Mk+1, X). In the final step when
k + 1 = m we obtain an element α1 ∈ AC(M,X).

Clearly all steps can be carried out with a continuous dependence on a
parameter, and by using cut-off functions on the parameter space we can
ensure that the homotopy is fixed for the parameter values p ∈ Q. This yields
the corresponding parametric h-principle. □

5. Extending a complex contact structure across a totally

real handle

Recall that a compact set in a complex manifold X is called a Stein compact
if it admits a basis of open Stein neighbourhoods in X. The following lemma
provides a key induction step in the proof of Theorems 1.2, 1.5, and 6.1.

Lemma 5.1. Let K and S = K ∪M be Stein compacts in a complex man-
ifold X2n+1, where M = S \K is an embedded totally real submanifold of
class C 2. Let (α, β) ∈ Contfor(X) be a formal contact structure with values in
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a holomorphic line bundle L on X. Assume that there is an open neighbour-
hood U ⊂ X of K such that α|U ∈ Conthol(U) and β = dα on kerα|U . Then,
there exist a neighbourhood Ω0 ⊂ U of K, a Stein neighbourhood Ω ⊂ X of
S, and a homotopy (αt, βt) ∈ Contfor(X) (t ∈ [0, 1]) satisfying the following
conditions.

(i) (α0, β0) = (α, β) on Ω0.

(ii) αt|Ω0
∈ Conthol(Ω0) and βt = dαt on kerαt|Ω0

for all t ∈ [0, 1].

(iii) αt approximates α as closely as desired uniformly on K and uniformly
in t ∈ [0, 1].

(iv) α1|Ω ∈ Conthol(Ω) and β1 = dα1 on kerα1|Ω.

The analogous result holds for a continuous family {(αp, βp)}p∈P ⊂
Contfor(X) where P is a compact Hausdorff space; the homotopy may be
kept fixed for the parameter values in a closed subset Q ⊂ P such that
αp ∈ Conthol(X) for all p ∈ Q.

Proof. Let U ⊂ X be a relatively compact neighbourhood of K as in the
statement of the lemma; in particular, α|U ∈ Conthol(U). Choose a closed
domain M0 ⊂ M with C 2 boundary such that M0 ∩K = ∅ and K ′ := K ∪
M \M0 ⊂ U . By Lemma 4.3 we can deform (α, β) through a family of formal
contact structures (αt, βt) ∈ Contfor(X) such that the deformation is fixed on
a neighbourhood of K ′, and at t = 1 we have that α1|M0

∈ AC(M0, X) and
β1 = dα1 on (kerα1)|M0

. Note that α1 is holomorphic on a neighbourhood
of K ′ (where it equals α0) and is asymptotically holomorphic along M .

By the Mergelyan approximation theorem, we can approximate α1 and
its 1-jet along M as closely as desired in the C 1 topology on S = K ∪M by
an L-valued holomorphic 1-form α̃1 defined on a neighbourhood of S. We
refer to [15, Theorem 20] for the relevant version of Mergelyan’s theorem. (In
the cited source the reader can also find references to the previous works; see
in particular Manne, Øvrelid and Wold [35]. The proof of [15, Theorem 20]
easily adapts to provide jet-approximation; see Chenoweth [7, Proposition
7]. Although the cited results are stated for functions, they also hold for
sections of holomorphic vector bundles over Stein domains as shown in [17,
proof of Theorem 2.8.4].) If the approximation of α1 by α̃1 is close enough
on S, the family (1− t)α1 + tα̃1 (t ∈ [0, 1]) is a homotopy of holomorphic
contact forms on a neighbourhood of K ′, and its restriction to M0 is a
homotopy in the space AC(M0, X) of almost contact forms on M0.

By combining the homotopies from these two steps, we get a homotopy
(αt, βt) on a neighbourhood V ⊂ X of S = K ∪M satisfying the conclusion
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of the lemma. Finally, by inserting a smooth cutoff function on X into
the parameter of the homotopy, we can glue the resulting homotopy with
(α0, β0) = (α, β) outside a Stein neighbourhood Ω ⊂ V of S.

It is clear that the same proof applies in the parametric situation. The
main ingredients are the parametric version of Lemma 2.3 and a parametric
version of Mergelyan’s theorem from [15, Theorem 20]. The latter is eas-
ily obtained from the basic (nonparametric) case by applying a continuous
partition of unity on the parameter space. (Compare with the proof of the
parametric Oka-Weil theorem in [17, Theorem 2.8.4].) □

6. Proofs of the main results

Proof of Theorem 1.2. We follow the scheme explained in the paper [21] by
Slapar and the author; see in particular the proof of Theorem 1.2 in the
cited source. Complete expositions of this construction can also be found in
[8, Chapter 8] and [17, Sections 10.9–10.11].

Choose a smooth strongly plurisubharmonic Morse exhaustion function
ρ : X → R+. Let p0, p1, p2, . . . ∈ X be the critical points of ρ with ρ(p0) <
ρ(p1) < · · · ; thus p0 is a minimum of ρ. Choose numbers cj ∈ R satisfying

ρ(p0) < c0 < ρ(p1) < c1 < ρ(p2) < c2 < . . . .

For each j = 0, 1, . . . we set Xj = {x ∈ X : ρ(x) < cj}. Note that ρ has a
unique critical point pj in Xj \Xj−1 for each j = 1, 2, . . .. (If ρ has only
finitely many critical points p0, . . . , pm, the process described in the sequel
will stop after m+ 1 steps and the domain Xm = {ρ < cm} is diffeotopic to
X. This is always the case if X is an affine algebraic manifold.) By choosing
the number c0 close enough to ρ(p0), we can arrange by a homotopy in
Contfor(X) that α0 is a holomorphic contact form on a neighbourhood of
the set X0 = {ρ ≤ c0} and β0 = dα0 on kerα0 holds.

Fix a number ϵ > 0. We shall inductively construct the following objects:

(a) an increasing sequence of relatively compact, smoothly bounded, strongly
pseudoconvex domains W0 ⊂ W1 ⊂ W2 ⊂ · · · in X, with W0 = X0,

(b) a sequence of formal contact structures (αj , βj) ∈ Contfor(X) (j = 1,
2, . . .) with values in the given holomorphic line bundle L → X, and

(c) a sequence of smooth diffeomorphisms hj : X → X (j = 0, 1, . . .) with
h0 = IdX ,

satisfying the following conditions for all j = 1, 2, . . ..
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(i) The compact set W j−1 is O(Wj)-convex.

(ii) There is an open neighbourhood Uj ⊂ X of W j such that αj |Uj
∈

Conthol(Uj) and dαj = βj on kerαj |Uj
. (This already holds for j = 0.)

(iii) There is a homotopy (αj,t, βj,t) ∈ Contfor(X) (t ∈ [0, 1]) such that
(αj,0, βj,0) = (αj−1, βj−1), (αj,1, βj,1) = (αj , βj), and for every t ∈ [0, 1],
αj,t is a holomorphic contact form on a neighbourhood of W j−1 with
dαj,t = βj,t on kerαj,t there.

(iv) supx∈Wj−1
|αj,t(x)− αj−1(x)| < ϵ2−j , where the difference of forms is

measured with respect to a fixed pair of hermitian metrics on the bun-
dles T ∗X and L.

(v) hj(Xj) = Wj and hj = IdX on X \Xj+1 (hence, hj(Xj+1) = Xj+1).

(vi) hj = gj ◦ hj−1 where gj : X → X is a diffeomorphism which maps Xj

onto Wj and is diffeotopic to IdX by a diffeotopy that equals IdX on
W j−1 ∪ (X \Xj+1).

Granted such sequences, the domain Ω =
⋃

j Wj ⊂ X is Stein in view of
condition (i), the limit α̃ = limj→∞ αj exists and is a holomorphic contact
form on Ω in view of (ii) and (iv), and the individual homotopies in (iii)
can be put together into a homotopy in Contfor(Ω) from (α0, β0) to (α̃, dα̃)
(see conditions (iii) and (iv)). Furthermore, conditions (v) and (vi) ensure
that the sequence hj converges to a diffeomorphism h = limj→∞ hj : X → Ω
satisfying the conclusion of Theorem 1.2. With a bit more care in the choice
of Wj at each step, we can ensure that Ω is smoothly bounded and strongly
pseudoconvex. In general we cannot choose Ω to be relatively compact, un-
less X admits an exhaustion function ρ : X → R with at most finitely many
critical points. In the latter case, the above process clearly terminates in
finitely many steps and yields a holomorphic contact form on a bounded
strongly pseudoconvex domain Ω ⋐ X diffeotopic to X.

We now describe the induction step. To the strongly pseudoconvex do-
main Wj−1 we attach the disc Mj := hj−1(Dj), where Dj ⊂ Xj \Xj−1 (with
bDj ⊂ bXj−1) is the unstable disc at the critical point pj ∈ Xj \Xj−1. By
[21, Lemma 3.1] we can isotopically deform Mj to a smooth totally real disc
in X \Wj−1 attached to bWj−1 along the Legendrian sphere bMj ⊂ bWj−1.
Lemma 5.1 provides the next element (αj , βj) ∈ Contfor(X), and a homotopy
(αj,t, βj,t) ∈ Contfor(X) (t ∈ [0, 1]) satisfying condition (iii), such that αj is
a holomorphic contact form on a strongly pseudoconvex handlebody Wj ⊃
W j−1 ∪Mj and βj = dαj there. The next diffeomorphism hj = gj ◦ hj−1
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satisfying conditions (v) and (vi) is then furnished by Morse theory. This
concludes the proof.

Conditions (v) and (vi) show that the domain Ω is diffeotopic to X. By a
more precise argument in the induction step one can also ensure the existence
a diffeotopy ht : X → ht(X) ⊂ X from h0 = IdX to a diffeomorphism h1 =
h : X → Ω through a family of Stein domains ht(X) ⊂ X; see [8, Theorem
8.43 and Remark 8.44]. This depends on the stronger technical result given
by [8, Theorem 8.5, p. 157]. □

The same proof gives the following parametric extension of Theorem 1.2.

Theorem 6.1. Assume that X is a Stein manifold of dimension 2n+ 1 ≥ 3
and Q ⊂ P are compact Hausdorff spaces. Let (αp, βp) ∈ Contfor(X) be a
continuous family of formal contact structures such that for every p ∈ Q,
(αp, βp = dαp) is a holomorphic contact structure. Then there are a Stein do-
main Ω ⊂ X diffeotopic to X and a homotopy (αp,t, βp,t) ∈ Contfor(X) (p ∈
P, t ∈ [0, 1]) which is fixed for all p ∈ Q such that (αp,1, βp,1 = (dαp,1)kerαp,1

)
is a holomorphic contact structure on Ω for every p ∈ P .

To see this, we follow the proof of Theorem 1.2 and note that, in the
inductive step, the domain Wj (a smoothly bounded tubular Stein neigh-
bourhood of W j−1 ∪Mj) can be chosen such that Lemma 5.1 provides the
next family {(αp,j , βp,j)}p∈P ∈ Contfor(X) satisfying condition (iii), where
αp,j is a holomorphic contact form on Wj and βp,j = dαp,j on Wj for all
p ∈ P .

We recall the following definition [17, Definition 5.7.1].

Definition 6.2. A pair (A,B) of compact subsets in a complex manifold
X is a Cartan pair if it satisfies the following two conditions:

(i) A, B, C = A ∩B, and D = A ∪B are Stein compacts (i.e., they admit
a basis of open Stein neighbourhoods in X), and

(ii) A,B are separated in the sense that A \B ∩B \A = ∅.

A particularly simple kind of a Cartan pair is a convex bump; see [17,
Definition 5.10.2]. This means that, in addition to the conditions in Def-
inition 6.2, there is a coordinate neighbourhood (U, z) of B in X, with
a biholomorphic map z : U → Ũ ⊂ Cn (n = dimX), such that z(B) and
z(C) = z(A ∩B) are compact convex sets in Cn.

In the proof of Theorem 1.5 we shall need the following gluing lemma for
holomorphic contact forms on Cartan pairs. (The analogous gluing lemma



✐

✐

“4-Forstneric” — 2020/7/10 — 18:01 — page 762 — #30
✐

✐

✐

✐

✐

✐

762 Franc Forstnerič

for nonsingular holomorphic foliations given by exact holomorphic 1-forms
is [16, Theorem 4.1].)

Lemma 6.3 (Gluing lemma for holomorphic contact forms). Let
(A,B) be a Cartan pair in a complex manifold X2n+1. Assume that α, β are
holomorphic contact forms on open neighbourhoods of A and B, respectively.
If β is sufficiently uniformly close to α on a fixed neighbourhood of C =
A ∩B, then there exists a holomorphic contact form α̃ on a neighbourhood of
A ∪B which approximates α uniformly on A and approximates β uniformly
on B.

Proof. Let α and β be holomorphic contact forms on open neighbourhoods
A′ ⊃ A and B′ ⊃ B, respectively. Set C ′ = A′ ∩B′ and define

αt = (1− t)α+ tβ in C ′ for t ∈ [0, 1].

Assuming that β is sufficiently uniformly close to α on C ′, αt is a contact
form on a smaller neighbourhood of C = A ∩B for every t ∈ [0, 1]. By the
proof of Gray’s stability theorem (see [28] or [23, p. 60] for the smooth case)
we find

1) a neighbourhood C ′′ ⊂ C ′ of C,

2) an isotopy of biholomorphic maps ϕt : C
′′ → ϕt(C

′′) ⊂ C ′ (t ∈ [0, 1])
with ϕ0 = Id and ϕt close to the identity for all t ∈ [0, 1], and

3) a family of nowhere vanishing holomorphic functions λt : C
′′ → C∗

close to 1, with λ0 = 1,

satisfying ϕ∗
tαt = λtα on C ′′ for every t ∈ [0, 1]. In particular, we have

ϕ∗
1β = λ1α on C ′′.

Assuming that ϕ1 is sufficiently uniformly close to the identity on C ′′ (which
holds if β is close enough to α on C ′), we can apply the splitting lemma [17,
Theorem 9.7.1] to obtain

ϕ1 ◦ ϕA = ϕB

on a neighbourhood of C, where ϕA and ϕB are biholomorphic maps close
to the identity on open neighbourhoods of A and B, respectively. On a
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neighbourhood of C we then have

(λ1 ◦ ϕA) ·ϕ∗
Aα = ϕ∗

A(λ1α) = ϕ∗
A(ϕ

∗
1β) = (ϕ1 ◦ ϕA)

∗β = ϕ∗
Bβ.

This shows that the holomorphic contact forms ϕ∗
Aα, ϕ

∗
Bβ, defined on neigh-

bourhoods of A and B, respectively, have the same kernel on a neighbour-
hood of C, and hence they define a holomorphic contact structure ξ̃ on a
neighbourhood of A ∪B. Assuming as we may that the function λ1 ◦ ϕA is
sufficiently close to 1 on a neighbourhood of C, we can solve a multiplicative
Cousin problem on the Cartan pair (A,B) and correct the above 1-forms
by the respective factors to obtain a holomorphic 1-form α̃ on a neighbour-
hood of A ∪B, with ker α̃ = ξ̃, which approximates α and β on A and B,
respectively. □

Proof of Theorem 1.5. We follow the inductive scheme used in Oka theory;
see for instance [17, the proof of Theorem 5.4.4].

We use the notation established in the proof of Theorem 1.2. The only
difference from that proof is that we can now extend a holomorphic contact
form (by approximation) from a neighbourhood of the sublevel set Xj−1 =
{ρ ≤ cj−1} to a neighbourhood of Xj = {ρ ≤ cj}, provided it extends as a
formal contact structure.

The first step, namely the extension to a Stein handlebody Wj−1 around
Xj−1 ∪Mj (where Mj is a totally real disc which provides the change of
topology at the critical point pj ∈ Xj \Xj−1) is furnished by the proof of
Theorem 1.2. We may arrange the process so thatXj is a noncritical strongly
pseudoconvex extension of Wj−1 (see [17, Sect. 5.10]). This implies that we
can obtain Xj from Wj−1 by attaching finitely many convex bumps (see
[17, Lemma 5.10.3] for the details). We now successively extend the contact
form (by approximation) across each bump. At every step of this process we
have a Cartan pair (A,B), where B is a convex bump attached to a compact
strongly pseudoconvex domain A along the set C = A ∩B. (The sets C ⊂ B
are convex in some holomorphic coordinates on a neighbourhood of B in
X.) We also have a holomorphic contact form α on a neighbourhood of A.
Assuming that Problem 1.4 has an affirmative answer, we can approximate
α uniformly on a neighbourhood of C by a holomorphic contact form β
on a neighbourhood of B. If the approximation is close enough, Lemma
6.3 furnishes a holomorphic contact form α̃ on neighbourhood of A ∪B
which approximates α uniformly on A. In finitely many steps of this kind we
approximate the given holomorphic contact form on W j−1 by a holomorphic
contact form on a neighbourhood of Xj . Hence, this process converges to
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a holomorphic contact form on all of X. The same holds in the parametric
case if the parametric version of Problem 1.4 has an affirmative answer. □
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[1] A. Alarcón and F. Forstnerič, Darboux charts around holomorphic leg-
endrian curves and applications, Internat. Math. Res. Not. 153 (2017),
no. 9, 1945–1986.
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[20] F. Forstnerič and M. Slapar, Deformations of Stein structures and
extensions of holomorphic mappings, Math. Res. Lett. 14 (2007), no. 2,
343–357.



✐

✐

“4-Forstneric” — 2020/7/10 — 18:01 — page 766 — #34
✐

✐

✐

✐

✐

✐

766 Franc Forstnerič
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