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A positive contactomorphism of a contact manifold M is the end
point of a contact isotopy on M that is always positively trans-
verse to the contact structure. Assume that M contains a Legen-
drian sphere Λ, and that (M,Λ) is fillable by a Liouville domain
(W,ω) with exact Lagrangian L. We show that if the exponential
growth of the action filtered wrapped Floer homology of (W,L)
is positive, then every positive contactomorphism of M has posi-
tive topological entropy. This result generalizes the result of Alves
and Meiwes from Reeb flows to positive contactomorphisms, and
it yields many examples of contact manifolds on which every pos-
itive contactomorphism has positive topological entropy, among
them the exotic contact spheres found by Alves and Meiwes.

A main step in the proof is to show that wrapped Floer homol-
ogy is isomorphic to the positive part of Lagrangian Rabinowitz–
Floer homology.
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1. Introduction and results

An important problem in the study of dynamical systems is to understand
the complexity of the mappings in question. A good numerical measure for
complexity is the topological entropy. Consider a compact manifold M and
a class of diffeomorphisms D of M . A much studied question is whether
a generic map from D has positive topological entropy. A very different
question is whether every map from D has positive topological entropy. This
latter question is only interesting under further assumptions on M and D.
Here, we assume that M is a compact manifold endowed with a contact
structure ξ, namely a completely non-integrable distribution of hyperplanes
in the tangent bundle TM . If we also assume that ξ is co-orientable, namely
that there exists a 1-form α onM with ξ = kerα, then associated with every
choice of such an α there is a natural flow generated by the vector field Rα

implicitly defined by the two equations

dα(Rα, ·) = 0, α(Rα) = 1.

Such flows are called Reeb flows of α. They arise as the restriction of many
classical Hamiltonian systems to fixed energy levels. In particular, geodesic
flows are Reeb flows.

The first result on positive topological entropy of all Reeb flows on a
class of contact manifolds was obtained by Macarini–Schlenk in [12], who
generalized previous results by Dinaburg, Paternain–Petean and Gromov
on geodesic flows: Every Reeb flow on the cosphere bundle over a closed
manifold Q has positive topological entropy, provided that the topology
of Q is “sufficiently complicated” (for instance, if the fundamental group or
the homology of the based loop space of Q has exponential growth).

Reeb flows form a quite special class of mappings on a contact manifold.
In [10] the above result was generalized to a much larger class of diffeo-
morphisms on the same manifolds, namely to time-dependent Reeb flows.
Let (M, ξ) be a co-oriented contact manifold. A smooth path ϕt on M is
a time-dependent Reeb flow if it is generated by a time-dependent vector
field Rαt

, where each αt is a contact form for ξ. There is a more topological
perspective on such flows: They are exactly the positive contact isotopies
on (M, ξ), namely the isotopies ϕt with ϕ0 = id that are everywhere posi-
tively transverse to ξ:

α
(
d
dt
ϕt(x)

)
> 0

for all t and all x ∈M , for one and hence any contact form α for ξ.
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Definition 1.1. A positive contactomorphism on (M, ξ) is the end point ϕ1

of a positive contact isotopy on ϕt, t ∈ [0, 1].

The first results on positive topological entropy of all Reeb flows on
contact manifolds different from cosphere bundles were given by Alves [1–3]
in dimension three. More recently, Alves and Meiwes [5] constructed many
examples of higher dimensional contact manifolds for which every Reeb flow
has positive topological entropy. In particular, they found on every sphere
of dimension at least seven a contact structure with this property. They
asked the natural question whether their results extend from Reeb flows to
positive contactomorphisms. The present paper answers this question in the
affirmative.

We will work in the following geometric setting that is further explained
in Section 2.

Assumption 1.2. The pair (W,L) consists of a Liouville domain (W,ω, λ)
with compact contact boundary (M, ξ = kerλ|M ) and an asymptotically
conical exact Lagrangian L with connected Legendrian boundary Λ = ∂L
such that (λ, L) is regular. Here, regular means that

⋃
t ̸=0 ϕ

t
λ|M

(Λ) and Λ

intersect transversely, where ϕt
λ|M

is the Reeb flow of λ|M .

Under this assumption we can define a Z2-vector space WH(W,L), which
we call wrapped Floer homology, see Section 2.1 for the definition. This is a
filtered homology, thus for every a there is a vector space WHa(W,L) and a
morphism ιa : WHa(W,L) → WH(W,L). The vector spaces WHa(W,L) are
finite dimensional. The following notion is taken from [5].

Definition 1.3 (Symplectic growth). For a function f : X → R, where
X = N or X = R, we define the exponential growth of f as

Γ(f(a)) = lim sup
a→∞

1

a
log(f(a)).

If Γ(f) > 0, we say that f grows exponentially. We define the symplectic
growth of the pair (W,L) as the growth in dimension of the filtered wrapped
Floer homology

Γsymp(W,L) = Γ(dim ιaWHa(W,L)).

All but finitely many of the generators of the chain complexes underlying
wrapped Floer homology correspond to Reeb chords from Λ to itself, and
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the filtration corresponds to the length of these Reeb chords. With length
we mean time of arrival.

Alves and Meiwes showed that if Λ = ∂L is a sphere, then positivity of
Γsymp(W,L) implies that every Reeb flow on M = ∂W has positive topo-
logical entropy. Our main result is that this theorem extends to positive
contactomorphisms.

Theorem 1. Under Assumption 1.2 assume that Γsymp(W,L) > 0. Then
the topological entropy of every positive contactomorphism of (M, ξ) is pos-
itive.

Since a generic fiber of a cosphere bundle over a closed manifold satisfies
Assumption 1.2, this result also generalizes the works [12] mentioned earlier.

Theorem 1 implies in particular that in the examples constructed by
Alves and Meiwes every positive contactomorphism has positive topological
entropy.

Corollary 2. Let M be the sphere S2n+1 of dimension 2n+ 1 ≥ 7, or S3 ×
S2, or the boundary of a plumbing tree whose vertices are unit codisc bundles
over manifolds of dimension ≥ 4. Then M admits a contact structure ξ such
that every positive contactomorphism of ξ has positive topological entropy.

Method of proof. Alves and Meiwes prove their theorem using wrapped
Floer homology WH, which is a Lagrangian (or open string) version of sym-
plectic homology. WH has the advantage that it admits product structures,
notably a Pontrjagin product, and is functorial under various geometric op-
erations, which Alves and Meiwes ingeniously combine to find examples such
that WH(W,L) has exponential growth. Then they construct a WH(W,L)-
module structure on the wrapped Floer homology WH(W,L→ L′), whose
generators are Reeb chords from L to nearby Lagrangians L′ to find positive
volume growth and thus positive topological entropy.

In our time-dependent case we did not succeed to prove Theorem 1 by
working with WH alone. Instead, we also work with time-dependent La-
grangian Rabinowitz–Floer homology (abbreviated by TH), which is La-
grangian Rabinowitz–Floer homology based on a time-dependent Hamilto-
nian and whose generators correspond to time-dependent Reeb chords from
L to itself, see Section 3.3 for the definition. We use TH because so far
there seems to be no wrapped Floer homology that encodes time-dependent
Reeb dynamics in a transparent way. The problem with WH is that the
main tool for understanding the homology are radial Hamiltonians, whose
radial coordinate explicitly corresponds to the slope and thus to the length
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of Reeb chord. But for time-dependent Hamiltonians this correspondence
breaks down since time-dependent Hamiltonians are not constant along their
chords.

In TH, however, the information of the length of a chord and its radial
position are decoupled, thus the loss of radial control does not affect the
understanding of the dynamics. On the other hand, it seems hard to set up a
Pontrjagin product structure on TH or a TH(W,L)-module structure on the
homology TH(W,L→ L′) whose generators correspond to time-dependent
Reeb chords from L to L′. Our solution is to combine the advantages of the
two theories: We show that the growth of WH, which was obtained through
algebraic structures by Alves and Meiwes, implies growth of TH, which then
can be used to count the chords of a time-dependent Hamiltonian.

The transition to counting chords between different Lagrangians L,L′ is
then performed inside the action functional for TH, capitalizing on the fact
that in TH we can encode geometric information directly in the Hamiltonian.
Thus, we do not need a module structure to deduce volume growth from
growth of TH.

To relate WH to TH, we use various intermediate homologies, closely
following [8]. As a first step we use V-shaped wrapped Floer homology w̌H
(in the language of [9] the wrapped Floer homology of the trivial Lagrangian
cobordism). An alternative approach would be to follow [8] and to elaborate
a long exact sequence connecting wrapped Floer homology, wrapped Floer
cohomology and the Morse cohomology of Lagrangians and Legendrians.
However, since we are only interested in the asymptotic behavior of the
homology, it is enough to relate the positive parts of the homologies, which
is shorter since we do not need to consider cohomology.

Propositions along the way. The following is a list of our results that
combine to the proof of Theorem 1. The individual results might be of
independent interest.

Proposition 1.4. Under Assumption 1.2, for all a, b /∈ S with 0 < a < b
we have

WH(a,b)(W,L) ∼= w̌H(a,b)(W,L),

where S is the set of lengths of Reeb chords from Λ to Λ. These isomorphisms
commute with morphisms induced by inclusion of filtered chain complexes.

The V-shaped wrapped Floer homology w̌H can be identified with the
standard Rabinowitz–Floer homology AH of (W,L) (Here the A stands
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for autonomous) through Rabinowitz–Floer homologies with perturbed La-
grange multiplier. This identification is analogous to the long exact sequence
connecting symplectic homology and closed string Rabinowitz–Floer homol-
ogy discovered in [8]:

Proposition 1.5. Under Assumption 1.2, for all a, b /∈ S with −∞ < a <
b <∞ we have

w̌H(a,b)(W,L) ∼= AH(a,b)(W,L).

These isomorphisms commute with morphisms induced by inclusion of fil-
tered chain complexes.

When combined, these two theorems imply that the positive part of WH
coincides with the positive part of AH in a way that preserves the filtration.

The dimension of the positive part of AH is a lower bound to the number
of Reeb chords from Λ to Λ. We now deform the action functional of AH to
the one of time-dependent Rabinowitz–Floer homology TH in order to count
time-dependent Reeb chords from Λ to Λ. We show that monotone defor-
mations do not decrease the growth of the dimension of filtered homology
groups, and by a sandwiching argument we then show :

Proposition 1.6 (Preservation of positivity of growth). Let (W,L)
and ht be as in Assumption 3.4 below, which is analogous to Assumption 1.2
in the new setup. If the exponential dimensional growth of TH(0,T )(ht) is pos-
itive, then the exponential dimensional growth of TH(0,T )(h̃t) is also positive
for every other h̃t that satisfies Assumption 3.4.

Quantitatively, if c ≤ ht ≤ C, then the exponential dimensional growth
γ of TH(0,T )(ht) satisfies cΓsymp(W,L) ≤ γ ≤ CΓsymp(W,L).

Finally, to find positive topological entropy, we need to count the chords
of our positive path of contactomorphisms between different Legendrians.
The following proposition is established again by deforming the functional.

Proposition 1.7. Let (W,L) and ht be as in Assumption 3.4. Suppose that
Γsymp(W,L) > 0. Let Λ′ be a Legendrian that is isotopic through Legendrians
to Λ = ∂L. Then the number of ϕt-chords from Λ to Λ′ of length ≤ T grows
exponentially.

Quantitatively, let ψ be a contactomorphism that takes Λ to Λ′ so that
(ψ−1)∗α = fα. Then the exponential growth of the number of ϕt-chords from
Λ to Λ′ of length ≤ T is at least min f ·minht · Γsymp(W,L).
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Organization of the paper

In Section 2 we describe the general geometric setup and the Floer homol-
ogy of an action functional in a generality that suffices for this paper. In
Subsections 2.1 and 2.2 we describe wrapped Floer homology and V-shaped
wrapped Floer homology and show that their positive parts coincide (Propo-
sition 1.4).

In Section 3 we discuss the results concerning Rabinowitz–Floer ho-
mology. In Subsection 3.1 we define the standard autonomous Rabinowitz–
Floer homology AH. In Subsection 3.2 we show that AH is isomorphic to
V-shaped wrapped Floer homology w̌H(Proposition 1.5) by introducing per-
turbed Rabinowitz–Floer homology. In Subsection 3.3 we introduce time-
dependent Rabinowitz–Floer homology TH and show how the homological
growth changes under the change of the dynamics (Propositions 1.6 and 1.7).

In Section 4 we puzzle together all these results to prove Theorem 1.

Acknowledgments
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Schlenk for help and advice. This work is supported by SNF grant 200021-
163419/1 and SFB/TRR 191 ‘Symplectic Structures in Geometry, Algebra
and Dynamics’ funded by the DFG.

2. Wrapped Floer homology

In this section we explain the theorems concerning wrapped Floer homolo-
gies. We begin with an exposition of the geometric setup, where we explain
the terms in Assumption 1.2 and justify these assumptions. Then we outline
the construction of Lagrangian Floer homology in a general setting.

In the two following subsections we present wrapped Floer homology
and V-shaped wrapped Floer homology and show that their positive parts
coincide. In all versions we use Z2-coefficients and no grading. The wrapped
Floer homology we present here was introduced in [6] and coincides with the
version in [5]. For the entire section we follow [8], where analogous results
for symplectic homology were established.

Liouville domains. A Liouville domain (W,ω, λ) is a compact mani-
fold W with boundary ∂W =M endowed with an exact symplectic form
ω = dλ and a choice of primitive λ such that the so-called Liouville vector



✐

✐

“3-Dahinden” — 2020/7/10 — 16:09 — page 698 — #8
✐

✐

✐

✐

✐

✐

698 Lucas Dahinden

field Y defined by ιY ω = λ is transverse to the boundary, pointing out-
wards. Then (∂W =M, ξ = kerα), where α = λ|M , is a contact manifold.

Let Ŵ =W ∪M M × [1,∞)r be the completion of W . The symplectization

(M̂ =M × R>0, d(rα)) embeds into Ŵ such that M × {1} =M , such that

λ = rα and such that the Liouville vector field coincides with r∂r on M̂ .

Example 2.1. A starshaped domain (D, dy ∧ dx, 12(y dx− x dy)) in R2n is
a Liouville domain with completion R2n and Liouville vector field x∂x + y∂y.

Similarly, the sublevel (D∗Q, dp ∧ dq, p dq) of a fiberwise starshaped hy-
persurface of T ∗Q is a Liouville domain with completion T ∗Q and Liouville
vector field p ∂p.

Asymptotically conical exact Lagrangians. Let L ⊂W be a Lagran-
gian submanifold with Legendrian boundary ∂L = Λ ⊂M . We say that L
is conical in a set U ⊂W if the Liouville vector field is tangent to L ∩ U .
We assume that

• L is exact, i.e. λ|L = df for some function f : L→ R,

• L is asymptotically conical, i.e. L is conical in M × [1− ε, 1] for ε > 0
small enough.

An exact asymptotically conical Lagrangian satisfies L ∩ (M × [1− ε, 1]) =
Λ× [1− ε, 1] for ε > 0 small enough. Since Λ is Legendrian and λ vanishes
along ∂r, λ|L vanishes in the region where L coincides with Λ× [1− ε, 1],
and hence f is locally constant in this region. Thus one can extend an
asymptotically conical exact Lagrangian L to an exact Lagrangian L̂ = L ∪Λ

(Λ× [1,∞)) in M̂ by extending f locally constantly. We will also refer to L̂
as asymptotically conical.

Later, we are mainly interested in the case where Λ is a sphere, so we
will assume throughout that Λ is connected. We can modify the Liouville
domain such that λ|L = 0 as follows. For connected Λ and with λ|L = df ,
we can change f by a constant such that f ≡ 0 on a collar neighborhood
of Ŵ\W . Extend f to a function F on Ŵ with support inside W minus a
collar neighborhood of the boundary, and then add −dF to λ. With respect
to this new λ the Lagrangian is still exact with λ|L ≡ 0. This changes λ in
the interior ofW , but not on the boundary ∂W =M , and thus also the Reeb
flow on M , in which we are ultimately interested, is unchanged. Wrapped
Floer homology as introduced below is not changed by the choice of a new
Liouville form on W . In the following, we will always assume that λ|L = 0.
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Example 2.2 (Continuation of Example 2.1). Any Lagrangian plane
through 0 is an (asymptotically) conical Lagrangian in (R2n, dy ∧ dx, 12(ydx−
xdy)).

A cotangent fiber T ∗
qQ is an (asymptotically) conical Lagrangian in T ∗Q.

Remark 2.3. If L1, L2 are two asymptotically conical exact Lagrangians
that intersect, then we can in general not change λ such that Assump-
tion 1.2 holds for both Lagrangians simultaneously. As a result there is an
additional term +[f1(x(0))− f2(x(1))] in the action functional AH defined
below. Therefore the intersection of the Lagrangians, that later on will cor-
respond to constant orbits, will not have zero action and thus one cannot
separate the constant orbits from the others by action. The subsequent re-
sults should also be valid for a pair of Lagrangians, modulo finite dimensional
terms stemming from the impossibility of separating different kinds of or-
bits. These terms do not influence the asymptotic behavior of the homology.
In this paper, however, we take a different approach and consider pairs of
Lagrangians only in the proof of Proposition 1.7, where we use a trick to
detect the chords between L1 and L2 in the space of paths from L1 to L1.

Path space, Reeb chords and regularity. For an asymptotically coni-
cal exact Lagrangian L in W we denote by P(L) the space of smooth paths

x : [0, 1] → Ŵ from L̂ to L̂ (i.e. x(0), x(1) ∈ L̂). Denote by Rα the Reeb vec-
tor field of α on M and by ϕt

α its flow. A Reeb chord of length T from Λ to
Λ is a path γ : [0, 1] →M such that γ̇ = TRα, where by length we mean the
time it takes the Reeb flow to run through the cord. We call a Reeb chord
of length T transverse if the subspaces Tγ(1)(ϕ

T
α(Λ)) and Tγ(1)Λ of Tγ(1)M

intersect only in the origin. Note that the constant maps t 7→ x ∈ Λ, which
are Reeb chords of length 0, are never transverse. The spectrum of (M,α,Λ)
is the set S(M,α,Λ) (S for short) of lengths of Reeb chords from Λ to Λ,
including negative lengths for “backward” Reeb flows. This set is nowhere
dense in R.

Given a contact manifold (M, ξ), the pair (α,Λ) consisting of a contact
form α for ξ and a Legendrian submanifold Λ is called regular if all noncon-
stant Reeb chords of α from Λ to Λ are transverse. Given a Liouville domain
(W,ω, λ), the pair (λ, L) consisting of the Liouville form and an asymptot-
ically conical exact Lagrangian is called regular if (λ|M=∂W ,Λ = L ∩M) is
regular.

Discussion of Assumption 1.2. Examples 2.1, 2.2 are natural examples
of Liouville domains with asymptotically conical exact Lagrangians with
spherical boundary. We have also seen that for (W,L) with ∂L connected,
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we can modify the Liouville form λ such that λ|L = 0 without changing the
Reeb dynamics of λ|∂W on ∂W .

In the following constructions it is important that [ω] vanishes on π2(W )
and on π2(W ;L) to prevent bubbling of holomorphic spheres and of holomor-
phic disks with boundary in L. Both conditions are automatically guaranteed
by ω = dλ and exactness of λ|L.

The strong assumption in 1.2 is that (λ, L) is regular. For general (λ, L)
this is not the case. For example, the unit codisc bundle over the round
sphere has periodic Reeb flow on its boundary, and thus any Legendrian
gets mapped to itself after a full period, resulting in high degeneracy. Other
degenerate examples are exact fillings of exactly fillable prequantization bun-
dles, e.g. the subenergy level of the harmonic oscillator on R2n (the energy
level S2n−1 is a prequantization bundle over CPn−1). In order to apply The-
orem 1, it suffices to find positive symplectic growth for one regular pair
(λ, L). Any λ can be perturbed such that the pair (λ, L) is regular, but
perturbed situations have the drawback that they are harder to understand
than explicit situations. The examples in [5] draw their positive symplec-
tic growth algebraically from constructions that can be performed on any
regular pair and thus do not suffer from this drawback.

Action functionals. For a Hamiltonian H : Ŵ → R, the Hamiltonian
vector field XH is defined by ιXH

ω = ω(·, XH) = dH. Its flow is denoted
by ϕt

H . We define the action functional AH : P(L) → R by

(2.1) AH(x) =

∫ 1

0
x∗λ−

∫ 1

0
H(x(t)) dt.

The critical points ofAH are Hamiltonian chords with x(0), x(1) ∈ L̂. We de-
note the set of critical points by CritAH . A Hamiltonian H is called regular
if L̂ and ϕ1

H(L̂) intersect transversely (i.e. all critical points of AH are non-

degenerate). We call the Hamiltonian Morse–Bott regular if L̂ and ϕ1
H(L̂)

intersect in closed manifolds such that T (L̂ ∩ ϕ1
H(L̂)) = T L̂ ∩ Tϕ1

H(L̂). Note
that regular implies Morse–Bott regular.

We will later specify the Hamiltonians we use, by imposing in particular a
certain behavior at infinity. We assume throughout and without mentioning
that all our Hamiltonians are regular, except if we consider Morse–Bott
situations. Since the only non-regular behavior will happen at the set of
constant orbits, and since we are ultimately interested in the asymptotic
behavior of the homology, the Morse–Bott situation is of marginal interest
and not elaborated here. For an exposition, see for example [7].
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Floer strips. An almost complex structure J on Ŵ compatible with ω
is called conical at a point in M̂ if it commutes with translations in the r-
coordinate, preserves ξ and sends the Reeb vector field to the Liouville vector
field JRα = r∂r. Further, we call J asymptotically conical if J is conical on
M × [r,∞) for some r > 0. Using an asymptotically conical almost complex
structure J , we can define the L2-metric on P(L) by

⟨ξ1, ξ2⟩ =

∫ 1

0
ω(ξ1, Jξ2) dt.

We interpret negative gradient flow lines xs(t) of AH as Floer strips u :

R× [0, 1] → Ŵ ,

(2.2)

{
∂su+ J(∂tu−XH) = 0,

u(·, i) ∈ L̂, i = 0, 1.

We switch between the notations xs(t) and u(s, t) according to whether we
wish to see this object as a negative gradient flow line or as a perturbed
holomorphic curve.

Given two critical points x+ and x−, we define the moduli space of
parametrized Floer strips

M̃(x−, x+, H, J) = {xs Floer strip, lim
s→±∞

xs = x± uniformly in t}.

In the sequel we suppress H and J in the notation. Denote by M̃k(x−, x+)

the subset of M̃(x−, x+) on which the operator obtained by linearizing
Floer’s equation (2.2) has Fredholm index k. There is an R-action on

M̃(x−, x+) coming from translations on the domain in the s-variable. De-
note the quotient by this action by

Mk(x−, x+) = M̃k+1(x−, x+)/R.

The energy of u ∈ M̃(x−, x+) is given by

E(u) :=

∫ ∞

−∞
⟨∇AH(xs),∇AH(xs)⟩ ds = AH(x−)−AH(x+),

a quantity that is invariant under translation of the domain and thus de-
scends to the quotient. Since E(u) is non-negative, M(x−, x+) is empty if
AH(x−) < AH(x+).
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From now on we assume that Mk(x−, x+) is a k-dimensional manifold
that is compact modulo breaking. Compactness modulo breaking follows
from L∞- bounds on u and its derivatives by bubbling analysis, and the
manifold property follows if one can show that the set M(x−, x+) is cut
out transversally from the space of all smooth strips from x− to x+ with
boundary on L̂. For a regular Hamiltonian with appropriate asymptotic be-
havior these two properties are satisfied for a generic asymptotically conical
almost complex structure. For all the Floer homologies in this section these
are classical facts.

For Morse–Bott regular Hamiltonians we consider moduli spaces of flow
lines with cascades, where compactness modulo breaking and transversality
hold for an additional generic choice of Riemannian metric on the critical
manifolds.

Floer chain complex and homology. To define a homology, for a ∈
R\S assume that the number of critical points of AH with action less than
a is finite. Then we consider as chain group the free Z2-vector space

FCa(H, J, L) =
⊕

x∈CritAH , AH(x)<a

Z2 · x.

We abbreviate FCa := FCa(H, J, L) and FC := FC∞ :=
⋃

FCa. We equip
FC with a boundary operator ∂ : FC → FC by counting isolated Floer strips
mod 2,

∂x =
∑

y∈CritAH

#Z2
M0(x, y) · y.

There are only finitely many nonzero summands since Floer strips decrease
in action and FCa is finite. Every summand is well-defined since M0(x, y)
is a compact 0-manifold and thus finite. The operator ∂ is therefore well
defined. The property ∂2 = 0 holds since broken flow lines from x to y via
intermediate critical points form exactly the boundary ∂M1(x, y), as is seen
by gluing and thus come in pairs. Hence, (FC, ∂) forms a chain complex,
and we can define its homology FH = ker ∂/ im ∂.

Since Floer strips decrease in action, the boundary operator descends to
a boundary operator ∂a on FCa. Further, we can define the chain complex
with action window (a, b), a, b /∈ S, as the quotient FC(a,b) = FCb /FCa. This
yields R-filtered Floer homology groups

FHa = ker ∂a/ im ∂a,

FH(a,b) = ker ∂(a,b)/ im ∂(a,b).
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As for all R-filtered homologies we have for a < b < c long exact se-
quences

(2.3) · · · → FH(a,b) → FH(a,c) → FH(b,c) → FH(a,b) → · · ·

where the first two arrows are induced by inclusion of chain complexes.
In the following we investigate two classes of admissible Hamiltonians

that will in a direct limit result in different versions of wrapped Floer ho-
mology. The first is the standard WH, the second the V-shaped w̌H.

2.1. Wrapped Floer homology

We begin with the classical wrapped Floer homology, as defined in [6].

Admissible Hamiltonians. We say that a Hamiltonian H : Ŵ → R is
WH-admissible with slope µ > 0 if

{
H < 0 on W ,

∃b < −µ : H(x, r) = h(r) = µr + b on M × [1,∞).

Denote by H́ the set of WH-admissible regular Hamiltonians. For H ∈ H́,
the slope µ is not in S, and so its orbits x ∈ CritAH have image in W .

If H only depends on r in Ŵ and is constant < 0 for r < 1− δ, then
XH = ( d

dr
H)Rα. Thus, the elements of CritAH have constant r-coordinate

and correspond to the Reeb chords inM from Λ to Λ of period d
dr
H (they run

backwards if d
dr
H < 0). Of course, such a Hamiltonian is not regular at points

where d
dr
H = 0. This can be mended by adding a C2-small Morse function

supported in the region where d
dr
H is smaller than minS, which perturbs

all the constant orbits and leaves the interesting Reeb orbits unchanged.

Continuation morphisms and wrapped Floer homology. A mono-
tone increasing homotopy Hs from H0 to H1 through admissible Hamil-
tonians induces a chain map FC(H0) → FC(H1) that decreases in action
and thus restricts to a chain map FC(a,b)(H0) → FC(a,b)(H1) for a, b ∈ R ∪
{±∞}\S. The morphism

ΦHs
: FH(a,b)(H0) → FH(a,b)(H1)

induced in homology is called continuation morphism. It is independent of
the monotone homotopy Hs, and if Hs does not depend on s, then ΦHs

= id.
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The set H́ admits a partial order where H0 ≤ H1 if the order is satisfied
pointwise. With this partial order, H́ becomes a directed set. The set of
homologies {FH(a,b)(H)} thus forms a direct system indexed by H́. We define
the wrapped Floer homology as the direct limit of this system,

WH(a,b)(W,L) = lim
−→

FH(a,b) .

For a = −∞ we abbreviate WHb(W,L) := WH(−∞,b)(W,L). Since long exact
sequences are preserved by direct limits, the sequence (2.3) holds for WH.

The generators of WH fall into two different classes: forward Reeb orbits
on M , and “short orbits” on W . We are mainly interested in Reeb orbits of
(M,λ|M ). They are singled out by action, as the following lemma shows.

Lemma 2.4. In the geometric situation (1.2) and for positive a /∈ S the
positive part of the homology WHa

+(W,L) := WH(ε,a)(W,L), where 0 < ε <
minS>0, is generated by the Reeb chords from Λ to Λ of length < a, and
their action is given by their length.

Proof. We start with Hamiltonians H = Hµ,ε′ as in Figure 1 defined for
µ /∈ S, 0 < 4ε′ < ε by

• H only depends on r,

• H ≡ −ε′ for r < 1,

• H = µ(r − 1)− 2ε′ for r ≥ 1 + ε′,

• H is convex.

10 r

−ε′

µ(r − 1)− 2ε′

Hµ,ε′(r)

Figure 1: The function Hµ,ε′ .

Then we perturb H in the region where | d
dr
H(r)| < ε′ to a function still

denoted by H such that L and ϕ1
H(L) intersect transversely and such that in
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the perturbation region the newH satisfies ∥H∥C0 ≤ ε′ and ∥λ(XH)∥C0 < ε′,
making it a regular admissible Hamiltonian in H́. Note that {Hµ,ε′} is cofinal
in H́ for µ→ ∞, ε′ → 0. Then critical points x of AH correspond either to
Reeb chords from Λ to Λ with H(x(t)) and ( d

dr
H)(x(t)) constant in t and

have action

AH(x) =

∫ 1

0
x∗λ−

∫ 1

0
H(x(t)) dt

=

∫ 1

0
λ

(
d

dr
H ·Rλ|M (x(t))

)
dt−H

=
d

dr
H −H,

or they are ε′-short XH -chords, namely
∫ 1
0 |λ(ẋ(t))| dt < ε′, from L to L,

such that

|AH(x)| ≤

∫ 1

0
|λ(ẋ(t))|+ |H(x(t))| dt ≤ 2ε′ ≤

1

2
ε.

In the first case the term H(x) tends to zero in the direct limit, so Reeb
chords have limit action d

dr
H = length(x) > ε, and in the second case the

action of the critical points lies outside the action window. □

In analogy to the positive part we define the non-positive part
WH0(W,L) := WHε(W,L) for 0 < ε < minS>0. For all a /∈ S the long exact
sequence (2.3) becomes

· · · → WH0(W,L) → WHa(W,L) → WHa
+(W,L) → WH0(W,L) → · · · .

One can perform the perturbation of the family of functions {Hµ,ε′} in the
proof above such that finite set L ∩ ϕ1

H(L) in the perturbation region is con-
stant, which implies that WHa(W,L) and WHa

+(W,L) are isomorphic up to
an error of finite dimension independent of a. Thus, WH grows exponen-
tially if and only if WH+ grows exponentially. In [9] it is mentioned that
WH0(W,L) corresponds to the Morse-cohomology of L.

Note that even though WH is defined as a direct limit, for finite action
windows (a, b) the homology WH(a,b) is already attained by a Hamiltonian
H ∈ H́ that is C2-small for r < 1, at r = 1 sharply increases and has asymp-
totic slope µ > b.
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2.2. V-shaped wrapped Floer homology

We construct V-shaped wrapped Floer homology by using a different class
of Hamiltonians. A Hamiltonian is called w̌H-admissible if

{
H < 0 on M × {1},

∃b < −µ : H(x, r) = h(r) = µr + b on M × [1,∞).

Denote the set of w̌H-admissible regular Hamiltonians by Ȟ. Again, using
continuation homomorphisms we can define for a, b /∈ S the direct limit ho-
mology

w̌H(a,b)(W,L) = lim
−→

FH(a,b)(W,L).

In the language of [9] this is the homology of the trivial Liouville cobordism
with Lagrangian ([0, 1]×M, [0, 1]× Λ) with filling (W,L). This homology is
different from wrapped Floer homology. The paper [8] suggests that there is a
long exact sequence splitting w̌H into wrapped Floer homology and wrapped
Floer cohomology with interesting behavior in the “0-part” w̌H(−ε,ε)(W,L).
Since we are only interested in the positive part of the homology, Proposi-
tion 1.4 is sufficient for our purposes.

Proof of Proposition 1.4. We proceed by deforming the Hamiltonians. We
consider a cofinal family of Hamiltonians in H́ and show that each such
Hamiltonian can be deformed to a Hamiltonian in Ȟ such that the set of
deformed Hamiltonians forms a cofinal family. The cofinal family in H́ is the
family {Hµ,ε′} from the proof of Lemma 2.4. Recall that critical points of
Hµ,ε′ are either ε′-short trajectories with action ≤ 2ε′ ≤ 1

2ε or Reeb trajec-
tories with length > ε and action > ε− ε′ > 1

2ε. Thus in the chain complex

FC( 1

2
ε,a)(Hµ,ε′) the trajectories of the first type are quotiented out.

To define the cofinal family in Ȟ choose δ > 0 such that L is conical for
r ∈ [1− δ, 1] and 0 < ε < min |S| such that 2ε < δ. Start with G = Gµ,ν,ε′

as depicted in Figure 2 for ν ≤ 0 < µ with µ, ν /∈ S, 0 < 4ε′ < ε with the
following properties:

• G depends only on r,

• G(r) ≡ −1
2δν for r < 1− δ,

• G(r) = ν(r − 1)− 2ε′ for r ∈ [1− 1
2δ, 1− ε′],

• G(1) = −ε′ and G′(0) = 0,

• G(r) = µ(r − 1)− 2ε′ for r ≥ 1 + ε′,
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• G is convex for r ∈ [1− ε′, 1 + ε′] and concave for r ∈ [1− δ, 1− 1
2δ].

10 r

−ε′

µ(r − 1)− 2ε′

Gµ,ν,ε′ (r)

1− δ

− 1

2
δν

Figure 2: The function Gµ,ν,ε′ .

Then we perturb G in the region where | d
dr
G(r)| < ε′ to a function still

denoted by G such that L and ϕ1
G(L) intersect transversely and such that in

the perturbation region the new G satisfies ∥G∥C0 ≤ ε′ and ∥λ(XG)∥C0 ≤ ε′,
making it a regular admissible Hamiltonian in H́. Note that for ν = 0 we have
G0,µ,ε′ = Hµ,ε′ . Critical points of AG come in several types distinguished by
their location. We can compute their action as in the proof of Lemma 2.4:

(I) r ≤ 1− δ: 1
4ε-short trajectories with G ∼ −1

2δν > 0 and with action
< 1

4ε− (−1
2δν) <

1
2ε,

(II) 1− δ < r < 1− 1
2δ: backward Reeb trajectories with length in (ν,−ε),

with G ∼ −1
2δν > 0 and action < −ε− (−1

2δν) < 0,

(III) 1− ε′ < r < 1: backwards Reeb trajectories with length in (ν,−ε),
with G ∼ −ε′ and action < −ε− (−ε′) < 0,

(IV) r≈1: ε′-short trajectories with G∼−ε′ and with action<ε′ − (−ε′) <
1
2ε,

(V) r > 1: Reeb trajectories with length in (ε, µ), G ∼ −ε′ and action >
ε− (−ε′) > 1

2ε.

Thus in the chain complex FC( 1

2
ε,a)(G) all critical points other than of

type (V) get quotiented out. It is clear from this description that we can
monotonously deformHµ,ε′ = G0,µ,ε′ to Gν,µ,ε′ through Hamiltonians of type
G by lowering the parameter ν. Since for r ≥ 1 this deformation does not
change the function, we conclude that the continuation homomorphism
FH( 1

2
ε)(Hµ,ε′) → FH( 1

2
,a)(Gν,µ,ε′) is lower diagonal and thus an isomorphism.

Taking the limit (ε′, ν, µ) → (−∞,∞, 0) for FH( 1

2
ε,a)(Gν,µ,ε′) is thus the same

as taking the limit (µ, ε′) → (0,∞) for FH( 1

2
ε,a)(Hµ,ε′).
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To show that the isomorphisms commute with morphisms induced by
inclusion of filtered chain complexes note that for parameters (ν, µ, ε′) we
have that the two chain complexes are not only isomorphic, but identical,
FCI(G(ν,µ,ε′)) = FCI(H(µ,ε′)), for any interval I = (a, b) with 1

2ε < a < b ≤
∞. This means that at the chain level inclusions trivially commute with the
identity, thus morphisms induced by inclusion commute with isomorphisms
induced by identity. Taking the direct limit preserves commutative diagrams
and we are done.

For finite action windows one can even take a shortcut in the above argu-
ment since one can find parameters (ν, µ, ε′) sufficiently close to (−∞,∞, 0)
such that FHI(Gν,µ,ε′) ∼ w̌HI(W,L) and FHI(Hµ,ε′) ∼ WHI(W,L) for both
I = (a, b) and I = (a′, b′) and the proof finishes before taking direct lim-
its. □

As an alternative we can choose not to perturb G around r = 1. If
G′(0) = 0 and G′′(0) > 0, the critical manifold of type (IV) consists of con-
stant orbits, can be identified with {0} × Λ and is Morse–Bott. This way it
becomes transparent that the 0-part w̌H0(W,L) of V-shaped wrapped Floer
homology can be identified with the Morse cohomology of Λ.

3. Lagrangian Rabinowitz–Floer homology

We introduce three types of Lagrangian Rabinowitz–Floer homology. We
start with an exposition of Lagrangian Rabinowitz–Floer homology with au-
tonomous Hamiltonian (AH). This is the standard Lagrangian Rabinowitz–
Floer homology. That the Hamiltonian is autonomous means that the critical
orbits of the functional are contained in a fixed energy surface which leads
to a much lighter analysis than for time-dependent Hamiltonians. In our
construction of AH we will work with just one fixed Hamiltonian function
H. While many different choices of autonomous Hamiltonians would result
in isomorphic homologies AH, where filtered versions have the same dimen-
sion growth, we do not elaborate on this, since this independence will later
on automatically follow in the setting of TH, where an even larger class of
(time-dependent) Hamiltonians is used.

To show that AH is isomorphic to w̌H, we introduce Lagrangian
Rabinowitz–Floer homology with perturbed Lagrange multiplier (PH), fol-
lowing [8]. Since the proof of Proposition 1.5 can be found in the paper [8]
up to small changes, we only sketch the construction of PH.

Finally, we introduce Lagrangian Rabinowitz–Floer homology for time-
dependent Hamiltonians (TH). We will study invariance of growth of TH
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under monotone changes of the Hamiltonian and derive uniform growth
properties by a sandwich argument. Further, we show how to encode changes
of the target Legendrian in the functional and how to derive uniform growth
properties for time-dependent Reeb chords from Λ to Λ′, where Λ′ is a Leg-
endrian isotopic to Λ.

3.1. Autonomous Lagrangian Rabinowitz–Floer homology (AH)

The action functional. Let H : Ŵ → R be a smooth function on Ŵ such
that 0 is a regular value (later H is specifically chosen). We define the action
functional aH : P(L)× R → R by

(3.1) aH(x, η) =

∫ 1

0
x∗λ− η

∫ 1

0
H(x(t)) dt.

A pair (x, η) is a critical point of aH if and only if it satisfies the equations

{
ẋ(t) = ηXH(x(t)),

H ◦ x ≡ 0.

The first equation implies that x is a Hamiltonian orbit from L to L with
period η (flowing backwards if η < 0). The second equation implies that the
image of x is contained in the hypersurface defined by H = 0.

If H depends only on r, H(r) = 0 only for r = 1 and H ′(1) = 1, then
Crit aH is the set of Reeb orbits from Λ to Λ with period η (running back-
wards if η < 0), and aH(x, η) = η at critical points. Note that for η = 0
the critical points are constant orbits that form the critical manifold Λ =
L ∩H−1(0). Thus a is never Morse. If (W,L) is regular, all critical points
with η ̸= 0 are regular and the critical manifold at η = 0 is Morse–Bott.
Since we only have one nontrivial critical manifold, we do not focus on the
Morse–Bott situation. We choose a Morse function on Λ and abusing no-
tation we denote by Crit aH the union of the isolated critical points of aH
with the critical points of the Morse function. The action of a critical point
of the Morse function is, by definition, 0 = aH(Λ).

Choice of Hamiltonian. We fix a smooth Hamiltonian such that

• H depends only on r,

• H ≡ −2
3δ for r < 1− δ,

• H = r − 1 for r > 1,
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• H is convex.

Then the critical points of aH are as described above. The choices of con-
stants are for compatibility with the other homologies.

Moduli spaces of Floer strips. We choose again an asymptotically con-
ical almost complex structure J on Ŵ . It induces the metric on P(L)× R

⟨(x̂1, η̂1), (x̂2, η̂2)⟩ =

∫ 1

0
ω(x̂1, Jx̂2) dt+ η̂1η̂2.

For this inner product the L2-gradient equation of aH is the Rabinowitz–
Floer equation

{
∂sx+ J(x)[∂tx− ηXH(x(s, t))] = 0,

∂sη +
∫ 1
0 H(x(s, t)) dt = 0.

In addition we choose a Riemannian metric g on the only nontrivial critical
manifold Λ× {η = 0}. For two critical points (x1, η1) and (x2, η2) of aH we

consider the moduli space M̃((x1, η1), (x2, η2), H, J) of gradient flow lines
with cascades from (x1, η1) to (x2, η2). We denote the subset where the
linearization of the Floer equation has Fredholm index k by

M̃k((x1, η1), (x2, η2), H, J).

On this space there is a natural action by s-translation of the domain (if there
are multiple cascades, then there is one such action per cascade). We take
the quotient by this action to obtain the reduced moduli space of gradient
flow lines Mk−1((x1, η1), (x2, η2), H, J) (if there are multiple cascades, then
the dimensional shift is by the number of cascades).

For regular (W,L) and generic J and g we have transversality and com-
pactness modulo breaking for these moduli-spaces.

Chain complex. We define the chain groups ACa(H) as free Z2-module
generated over Crit aH ,

ACa(H) =
∑

aH(x,η)<a

Z2 · (x, η).

The differential is defined by counting modulo Z2 isolated Rabinowitz–Floer-
strips:

∂(x, η) =
∑

(x′,η′)∈Crit a

#Z2
M0((x, η), (x′, η′), H, J).
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By a gluing argument we can identify ∂2 with counting broken cascades
in ∂M1, which is zero modulo 2. Thus we can define AH(a,b)(W,L) as the
filtered homology of this chain complex.

3.2. The relation between AH and V-shaped wrapped Floer
homology

The goal of this subsection is to prove Proposition 1.5. It follows almost
exactly as its analogue for the closed string case in [8]. The difference is in the
analysis when we show L∞-bounds for x and its derivatives in order to prove
compactness modulo breaking of moduli spaces of Floer strips (x(s, t), η(s)).
For the L∞-bound on x we invoke the maximum principle which is possible
because Floer strips satisfy Neumann conditions at their boundary. For the
L∞-bound on the first derivatives of x we perform a bubbling analysis,
where we use exactness of ω to exclude bubbling of holomorphic spheres, and
exactness of λ|L to exclude bubbling of holomorphic disks at the boundary.

The remaining argumentation remains completely unchanged. We sketch
it here, for details see [8].

Perturbed Lagrangian Rabinowitz–Floer homology. As our main
tool for the proof we introduce perturbed Lagrangian Rabinowitz–Floer ho-
mology (PH), which is defined like AH but for the functional pa : P(L)×
R → R,

paH,α,β(x, η) =

∫ 1

0
x∗λ− α(η)

∫ 1

0
H(x(t)) dt+ β(η),

depending on the smooth function H : Ŵ → R (with properties specified
later on) and α, β : R → R. In this subsection we always assume H = H(r)
to depend only on r.

Characterization of the critical points. A pair (x, η) is a critical point
of paH,α,β iff

(3.2)

{
ẋ(t) = α(η)XH(x(t)),

α̇(η)
∫ 1
0 H(x(t)) dt = β̇(η).

On the Morse–Bott component of the set of critical points, we consider
critical points of a Morse function on this manifold. Note that, since H only
depends on r, XH = H ′(r)Rλ and thus all critical points of pa correspond
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to Reeb chords of length T = α(η)H ′. Passing from the set of Reeb chords
of length T to the corresponding set of critical points amounts to finding
numbers r, η such that

(3.3)

{
T = α(η)H ′(r),

α̇(η)H(r) = β̇(η).

The action at a critical point equals paH,α,β(x, η) = α(η)(H ′(r)−H(r)) +
β(η).

Floer equations. Given an asymptotically conical almost complex struc-
ture J , the negative L2-gradient equation is equivalent to the Floer equations
for (u(s, t), η(s)):

(3.4)

{
∂su+ J(u)[∂tu− α(η)XH(u)] = 0,

∂sη − α̇(η)
∫ 1
0 H(u) dt+ β̇(η) = 0.

In the case of nontrivial critical manifolds we use an additional Riemannian
metric to define negative gradient equations with cascades.

Since we use PH to interpolate between AH and w̌H, it is important to
observe that the two homologies are indeed special cases of PH.

Special case 1: Rabinowitz–Floer homology. Note that for H as in
AH and for α(η) = η, β(η) = 0 we have paH,η,0 = aH . Thus we see directly
that

PH(a,b)(H, η, 0) ∼= AH(a,b)(W,L).

Special case 2: Wrapped Floer homology. Recall that even if w̌H is
defined as a limit, for finite action windows (a, b) the limit is attained for
H ∈ Ȟ that is C2-small for r < 1, then steeply increases and has slope at
infinity µ > b, and then FH(a,b)(AH) = w̌H(a,b). For (H,α, β) with such a
function H, with α(η) = 1 and β a Morse function with only one critical
point in 0 the critical equation (3.2) splits: (x, η) is a critical point iff x
is a critical point of AH and η is 0. The Floer equation (3.4) also splits:
(x(s, t), η(s)) is a Floer trajectory if x(s, t) is a Floer trajectory of AH and
η(s) is a Morse gradient trajectory. Since the Morse complex of η consists
of just one point, we have directly

PH(a,b)(H, 1, β) ≡ w̌H(a,b)(W,L).
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Invariance property. To prove Proposition 1.5 we thus need a way to
show that different PH are isomorphic. Of course PH(a,b)(H,α, β) depends on
the functions (H,α, β), but the following proposition shows that it is invari-
ant under homotopies for which the spectrum does not cross the boundaries
of the action window.

Proposition 3.1. Let (Hs, αs, βs), s ∈ [0, 1] be a homotopy that is sup-
ported in (0, 1), such that for all values of s the resulting homology is well
defined and such that for no value of s the boundaries of the action window
(a, b) lie in the spectrum Ss of paHs,αs,βs

. Then

PH(a,b)(H0, α0, β0) ∼= PH(a,b)(H1, α1, β1).

This result follows by the usual continuation technique.

The steps connecting the special cases. One can connect the two spe-
cial cases above by the five steps from [8] such that no step has an action
crossing and thus Proposition 3.1 is applicable. We outline the steps (includ-
ing a preparatory step), discuss what they do to the functional and give de-
tails where they differ from [8]. Remember that we start with (H, η, 0), where
pa(H,η,0) = aH and want to end with (H, 1, β), where PH(a,b)(H, 1, β) =

w̌H(a,b)(W,L). We suppose that a, b are not in the spectrum S. Since the set
S is nowhere dense, there is an ε > 0 such that a, b are ε-far from S.

We deform in the following steps, cf. Figure 3:

1) Replace (H, η, 0) by (H,α(η), 0) where α = id for η ∈ (−A,A) and
α = ±A for ±η > A (up to a smoothing) for A so large that no Floer
strip (xs(t), ηs) with asymptotics in the chosen action window exceeds
|ηs| > A, and such that −1

2δA < a.

2) Replace (H,α, 0) by (µH, 1
µ
α, 0) with µ = A.

3) Deform (µH, 1
µ
α, 0) to (µH, 1

µ
α, β) for β a C2-small Morse function

with unique minimum β(0) = 0.

4) Replace (µH, 1
µ
α, β) by (K, 1

µ
α, β) where K is µH with a small terrace

point at r = 1.

5) Homotope pa(K, 1
µ
α,β) to pa(|K|,1,β).

6) Perturb (|K|, 1, β) to Ȟ ∈ Ȟ.

Discussion of the steps. For each situation and the intermediate de-
formations we have to check that the triples (H,α, β) define a Morse–Bott
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1
r

1− δ

η

α(η)

1

µ
α(η)

A

−A
η

β(η)

H(r)

1
r

1− δ

K(r)

|K|(r)µH(r)

− 2

3
δ

−µ 2

3
δ

µ 2

3
δ

−µ 2

3
δ

Figure 3: The functions appearing along the deformation from (H, η, 0) to
(|K|, 1, β).

action functional in the desired action window. To this end we have to show
that the moduli spaces of Floer strips are compact modulo breaking which
requires establishing L∞-bounds on x, η and the derivatives of x along Floer-
strips.

First we outline the proof that there is no action crossing, which coincides
with seeing what effect the deformation of the functional has to the set of
critical points and the action spectrum. For the complete discussion we refer
the reader to [8, Section 6].

Step 1. reduces the support of α̇ to a compact interval. This step is a
replacement, not a deformation. The Kazdan–Warner type inequality in [8]
suggests that we could also achieve this step through deformations, but it is
then much harder to establish bounds (since α̇ is not compactly supported).
The isomorphism can be shown directly: For a Reeb chord the equations (3.3)
have two kinds of solutions, the ones that coincide for (H, η, 0) and (H,α, 0)
and others that lie outside the action window in question. By the choice of
A, also the Floer strips coincide and thus the chain complexes are the same,
for a detailed discussion see [8, Section 5.4]. The reason for the condition
−1

2δA < a is that it guarantees that critical points of AH at r < 1− 1
2δ have

action outside the action window. These critical points will also be visible
as critical points of pa from Step 3 on, but not within the action window.
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Step 2. gives H the asymptotic slope µ = A, and in compensation flat-
tens α so that it is constant ±1 for |η| large. This leaves the action functional
unchanged, hence induces trivially an isomorphism by the identity at the
chain level.

Step 3. puts β into its intended form. One can choose the isotopy
(µH, 1

µ
α, βs) such that βs is always a C2-small Morse function with one

unique minimum βs(0) = 0 for s > 0. The first equation of (3.3) suggests
that α(η) and thus η is not changed by this and the second equation, that lo-
cally looks like (r − 1) = β̇(η), has solutions for r close to 1 since βs is small.
Thus the change moves nonconstant critical points of the functional slightly
away from {r = 1}, for η > 0 to r > 1 and for η < 0 to r < 1, which changes
the action a little. Also, some new critical points appear around r ∼ 1− δ
for α̇ small enough to satisfy the second equation and thus η ∼ −A. There
pa ∼ −(µH ′ − (−µδ))) < −µδ < a and thus the critical points lie outside
the action window.

Step 4. deforms H to K by introducing a terrace point in a neighbor-
hood of r = 1 that contains only constant (H,α, β)-critical points. The de-
formation to the terrace translates the existing nonconstant critical points
in the r-direction by a small amount and leaves their action unchanged.
It introduces new critical points at r close to 1. These have action pa =
α(H ′

s −Hs) + β ≈ αH ′
s = T and are therefore at all times close to S and

therefore far from the boundary of the action window. This is a preparatory
step such that the mirroring in Step 5 is smooth. This perturbation is small.

Step 5. directly homotopes the functional rather than the triple
(K, 1

µ
α, β). The homotopy is made such that

pas(x, η) =

∫ 1

0
λ(ẋ)− (1− s)

1

µ
αK − s|K| dt+ β.

In total this lifts up the part left of the terrace point, converting the terrace
to a minimum and introducing the desired V-shape for the Hamiltonian.
This movement is compensated by changing η to 1. This perturbation is
large. During the deformation critical points can be characterized as Reeb
chords from L to L of period T together with numbers r, η such that

(3.5)

{
T = (1− s) 1

µ
α(η)K ′(r) + s|K|′(r),

(1− s) 1
µ
α̇(η)K(r) = β̇(η).
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The action at a critical point equals

paH,α,β(x, η) = (1− s)
1

µ
α(η)(K ′(r)−K(r))

+ s
1

µ
α(η)(|K|′(r)− |K|(r)) + β(η).

In the following we use that a, b are far from S. It is sufficient to show
that r ∼ 1, because then K(r) ∼ |K|(r) ∼ 0 and thus from the first equa-
tion (3.5) we have pas(x, η) ∼ T . But then all critical actions are close to S
and therefore far from a, b. We distinguish several cases.

[η = 0]: Then the second equation implies that K = 0, thus r = 1. Fur-
thermore we see that K ′ = 0 and by the first equation T = 0 and we have a
constant orbit.

[η > 0]: Then β̇(η) > 0 and thus by the second equation r > 1, which
implies K = |K|. The following are subcases.

[η > 0, s is close to 1]: Then (1− s) 1
µ
α(η) + s ∼ 1 and the first equation

tells us that T ∼ K ′, but since the asymptotic slope µ of K is far from S,
this implies r ∼ 1.

[η > 0, s is far from 1, α(η) = η]: The second equation (1− s) 1
µ
K(r) =

β̇(η) tells us that K(r) ∼ 0, hence r ∼ 1.
[η > 0, s is far from 1, α(η) ̸= η]: Then α(η) ∼ A = µ. Then the first

equation tells us that T ∼ K ′, but since the asymptotic slope µ of K is far
from S, this implies r ∼ 1. This finishes the case η > 0.

[η < 0]: Then β̇(η) < 0 and thus by the second equation r < 1, which
implies −K = |K|. The following are subcases.

[η < 0, s is close to 1]: Then (1− s) 1
µ
α− s ∼ −1 and by the first equation

T ∼ −K ′ = |K|′. Since µ is far from S this implies that either r ∼ 1 or that
r < 1− 1

2δ (where H is bent into the constant −2
3δ). In the first case we are

done. The second case implies that |K(r)| ∼ 1
2δµ and with (1− s) 1

µ
α− s ∼

−1 we get pa ∼ −K ′ +K ≤ K ≤ −1
2δµ. By our choice of µ this is well out

of the action window.
[η < 0, s is far from 1, α(η) = η]: Then the second equation tells as that

K(r) ∼ 0, hence r ∼ 1.
[η < 0, s is far from 1, α(η) ̸= η]: Then α(η) ∼ −A = −µ and thus (1−

s) 1
µ
α+ s ∼ −1. Then the first equation tells us that T ∼ −K ′ = |K|′, and

thus r is either close to 1 or ≤ 1− 1
2δ. But then pas ∼ −K ′ +K and we

conclude as in the case when s is close to 1.
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In conclusion in all cases the action of all critical points lies either close
to S or outside [a, b] and therefore far from a, b. All the above estimates are
quantified rigorously in [8, Section 6, Step 4].

Step 6. can already be performed in the framework of Section 2. It re-
places |K| by |K| − ε and perturbs |K| on {r ≤ δ

2} and also at the minimum
at 1 such that the functional is really Morse and not just Morse–Bott. The
resulting Hamiltonian is in Ȟ and has the form for which FH(a,b) coincides
with w̌H(a,b).

Compactness of moduli spaces. To get a well defined homology, the
moduli spaces of solutions of the Floer equations with specified asymptotics
must be compact modulo breaking. This follows from C∞

loc compactness of the

spaces M̃((x, η), (x′, η′), H, J). For this it is enough to show L∞-bounds for
x and η and L∞-bounds for the first derivatives of x. Using the Floer equa-
tion (3.4) one then also has an L∞-bound for η′. Then bootstrapping (3.4)
yields L∞-bounds on higher derivatives.

The bound for the first derivatives of x follows as always by a bubbling
analysis since [ω] vanishes on π2(W ) (because ω is exact) and on π2(W,L)
(because λ|L is exact).

L∞-bound on η. For the situation before Step 1 this is classic. After
Step 1 the bound of before still holds by our choice of A.

In Step 2 we have β = 0 and for |η| ≥ A we have α̇(η) = 0, so the equation
for η becomes ∂sη(s) = 0 for |η| > A and thus |η| cannot exceed A.

In Steps 3 to 6 the equation for η is ∂sη(s) = −β̇(η(s)) for |η| > A. Since
sign β̇(η) = sign η, it is clear that |η| is bounded by A.

L∞-bound on x. The proof follows the usual pattern. Since the energy
of the Floer strip (xs, ηs) is bounded, the gradient ∇pa(xs, ηs) can be large
only for a finite time. One shows separately that a small gradient implies a
bound on r ◦ u(s, t) and that in the finite time where the gradient is large,
r ◦ u(s, t) cannot grow too much. Note that there are positive constants
A,A′, B, C such that at each moment of the whole process we have the
bounds

(3.6)





H = h(r) = Ar +A′ for all r ≥ 2,

∥α̇∥L∞ ≤ B <∞,

∥β̇∥L∞ ≤ C <∞.

We also set D = min |H|.
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The following fundamental property says that at values of s where
∇pa(xs, ηs) is small, the radius r stays bounded. This allows us to restrict
our attention to the region where ∇pa is large, but this region must be
compact since the energy is finite.

(3.7) ∀ε > 0 ∃S such that ∥∇paH,α,β(x, η)∥ ≤ ε⇒ max
t∈[0,1]

r ◦ x(t) ≤ S.

This property holds during all the Steps 2–6, as is shown in [8, Lemma 4.7].
The proof holds verbatim in our situation.

Now we can analyze the radial coordinate r :M × R>0 → R>0; (x, r) →
r along a local solution (xs(t), ηs) = (u(s, t), η(s)) of the Floer equation. The
crucial observation is the following estimate for the Laplacian.

Lemma 3.2. If H = h(r) depends only on r, a local solution (u(s, t), η(s))
of (3.4) satisfies at image points in M × R ⊂W the bounds

∆(r ◦ u) = ∥∂su∥
2 − ∂s(h

′(r)α(η))(r ◦ u),

∆(log r ◦ u) ≥ −∂s(h
′(r)α(η)).

This is Lemma 4.1 in [8], and the proof is not affected by the change to
the open string situation.

If (H,α, β) satisfies furthermore (3.6), then we obtain for r ◦ u ≥ 2 the
bound

(3.8) ∆(log r ◦ u) ≥ −A2B2D −ABC

as in [8, Lemma 4.2].
To invoke the maximum principle, we will need that at the sets {t =

0} and {t = 1} (which get mapped to L), the function r ◦ u satisfies the
Neumann condition. At t = 0 we compute

∂t(r ◦ u(s, t))|t=0 = ⟨∇r, ∂tu(s, 0)⟩(3.9)

= ⟨∇r, J [∂su(s, 0)− Jα(η)XH ]⟩

= ω(∇r, ∂su(s, 0)− Jα(η)XH) = 0.

The last equality holds since JXH and ∇r are parallel, and since
∇r, ∂su(s, 0) ∈ Tx(s,0)L which is Lagrangian. For t = 1 the computation is
identical. It also holds for the function log r ◦ u.

Lemma 3.3 (L∞-bound on xs). Suppose that (H,α, β) satisfies condi-
tions (3.6) and (3.7). Also suppose that A /∈ S. Consider a negative gradient
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flow line (xs(t), ηs) = (u(s, t), η(s)) with is asymptotic to the critical points
(x1, η1) and (x2, η2). Let E := E(u, η) := pa(x1, η1)− pa(x2, η2) be the energy
of this flow line. Then for all ε and the corresponding S from (3.7) and for
all (s, t) we have the following estimate

log r ◦ u(s, t) ≤ max(log 2, logS) +
(A2B2D +ABC)E(u, η)2

2ε4
.

Proof. We follow [8, Proposition 4.3]. Fix s0. Let [s−, s+] be the maximal
compact interval containing s0 such that

∀σ ∈ [s−, s+] : ∥∇pa(xσ, η(σ))∥ ≥ ε.

It is possibly empty, but it exists since

E =

∫

R

∥∇pa(xs, ηs)∥
2 ds = pa(x1, η1)− pa(x2, η2)

is finite and s+ − s− ≤ E
ε2
. Because of (3.7) we have r ◦ xs±(t) < S ∀t ∈ [0, 1].

On the strip [s−, s+]× [0, 1] the function

χ = log r ◦ u+
1

2
(A2B2D +ABC)(s− s0)

2

is subharmonic at places where r ◦ u ≥ 2 because of (3.8). Define the set

Ω = {(s, t) ∈ [s−, s+]× [0, 1] | log r ◦ u ≥ max(log 2, logS)}.

At the boundary ∂Ω either log r ◦ u ≤ max(log 2, logS) or log r ◦ u satisfies
the Neumann condition (3.9). By the maximum principle we conclude that
χ has no maximum in the interior of Ω nor at a boundary point where the
Neumann condition holds. We conclude that for (s, t) ∈ Ω,

log r ◦ u(s, t) ≤ χ(s, t) ≤ max
(s,t)∈Ω

χ(s, t)

≤ max(log 2, logS) +
1

2
(A2B2D +ABC)(max{s0 − s−, s+ − s0})

2

≤ max(log 2, logS) +
1

2
(A2B2D +ABC)(s+ − s−)

2

≤ max(log 2, logS) +
1

2
(A2B2D +ABC)

(
E

ε2

)2

,

which is the desired bound. □
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3.3. Time-dependent Lagrangian Rabinowitz–Floer homology
(TH)

In contrast to the homologies we encountered so far, the aim of TH is not
to capture the dynamics of the Reeb flow of λ|M , but rather to set up a
tool that allows us to study positive contactomorphisms. This will result in
a homology TH which is an invariant of a Hamiltonian H on Ŵ . We will
find a uniform way to construct such a Hamiltonian from a positive contact
Hamiltonian ht such that TH becomes an invariant of ht.

The action functional. Let Ht :W×R→R be a time-dependent smooth
function on W . We define the action functional taHt : P(L)× R → R by

(3.10) taHt(x, η) =
1

κ

(∫ 1

0
x∗λ− η

∫ 1

0
Hηt(x(t)) dt

)
,

where κ is some positive constant discussed later. A pair (x, η) is a critical
point of taHt if and only if it satisfies the equations

{
ẋ(t) = ηXHηt(x(t)),

Hη(x(1)) = 0,

where XHt is the Hamiltonian vector field generated by Ht. The first equa-
tion implies that x is an orbit of XHt , but with time scaled by η. The second
equation, which one deduces by partial integration, implies that the orbit
ends on (Hη)−1(0). If Ht = H is autonomous, then (up to the constant κ)
the functional taH is as for autonomous Rabinowitz–Floer homology AH.
Then H−1(0) is a hypersurface for which η plays the role of a Lagrange
multiplier, and H(x(t)) = 0 for all t. For time-dependent Ht, however, there
is no such hypersurface, and Hηt(x(t)) might be very large or very small for
t < 1.

Construction of the Hamiltonians. For the study of positive contac-
tomorphisms ϕ it is crucial to carefully construct Hamiltonians Ht on W
in such a way that critical points of taHt encode dynamical information on
ϕ, such that the resulting TH is well-defined and such that for monotone
deformations of Ht the continuation morphisms are monotone with respect
to the action.

We start with the object we actually want to study: a positive con-
tactomorphism ϕ of (M,α). By definition there is a positive path of con-
tactomorphisms ϕt such that ϕ0 = id, ϕ1 = ϕ. By the second part of the
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proof of [11, Proposition 6.2], ϕt can be deformed with fixed endpoints to
ϕ̃t such that ϕ̃t is the Reeb flow of α for t near 0 and 1. This means that
the contact Hamiltonian ht on M generating ϕt is constant ≡ 1 for t near 0
and 1. This deformation can be performed such that the order is preserved:
h̃t1 ≤ h̃t2 whenever ht1 ≤ ht2. From now on we assume that this deformation
is already performed if not stated differently. Then the concatenation of
positive contactomorphisms is a positive contactomorphism. More specifi-
cally, ht permits smooth periodic or constant extensions to t ∈ R. We choose
the extension ht ≡ 1 for t ≤ 0, which later will guarantee monotonicity of
continuation morphisms. For positive time we choose ht for every integer
step t ∈ [k, k + 1] individually such that ht and its derivatives have uniform
bounds. In the actual applications the choice will be that ht is periodic for
t ≥ 0, see Figure 4. Later on we will use the interval [0, 1] to encode the
information that we count orbits from our base Legendrian to another Leg-
endrian, and then extend ht to a periodic function for t ≥ 1. We can now
update Assumption 1.2 to the following analog for the new situation:

t

ht

1 2 30

1

Figure 4: The function ht(x) at a given point x ∈M .

Assumption 3.4. The pair (W,L) consists of a Liouville domain (W,ω, λ)
with contact boundary (M, ξ = kerλ|M ) and an asymptotically conical exact
Lagrangian L with connected Legendrian boundary Λ = ∂L. The contact
Hamiltonian ht :M × R → R satisfies for some positive constants c, C, c′

• ht ≡ 1 for t ≤ 0,

• 0 < c ≤ ht ≤ C and | d
dt
ht| ≤ c′,

•
⋃

t ̸=0 ϕ
t
htΛ and Λ intersect transversely.

The third assumption implies that the action functional taHt for ht de-
fined by (3.11) and (3.10) is Morse away from η = 0.

To work in the Liouville domain we construct from the contact Hamilto-
nian ht on M a Hamiltonian Ht on W in a uniform way, depending on two
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large enough parameters κ and K, which we choose for every finite action
window individually. The flow lines of XHt are lifts of ϕt-flow lines if we set
on M × R>0

(3.11) Ht := rht − κ.

For such an Ht the critical points of taHt end in {r = κ/hη}. Changing κ
does not change critical points in an essential way (provided they do not
run into r = 0), but translates them in the r-direction. In order to have a

smooth Hamiltonian on Ŵ and to get compactness of moduli spaces later
on, we deform Ht to depend only on r but not on t for r ≤ 1 and r ≥ κK, see
Figure 5. To make this precise we choose independently of the action window
a constant µ ≥ max{ht(x) | x ∈M}, a convex smooth function ρ : R≥0 → R,
that will play the role of the radius smoothed out over W , and a smooth
function β : R≥0 → [0, 1], that will serve as a transition parameter, such that

1

κK
rht − κ

rM − κ

Ht
ht,κ,K

r

−κ

Figure 5: The function Ht
ht,κ,K at a fixed time t on a line R≥0 × {x} in

dependence of r.

ρ(r) =

{
1− 2

3δ if r ≤ 1− δ,

r if r ≥ 1,

β(r) =

{
0 if r ≤ 1− δ or r ≥ κK + 1,

1 if 1 ≤ r ≤ κK.



✐

✐

“3-Dahinden” — 2020/7/10 — 16:09 — page 723 — #33
✐

✐

✐

✐

✐

✐

Positive topological entropy of positive contactomorphisms 723

Then we define the Hamiltonian

Ht
ht,κ,K(x, r) = ρ(r)

(
β(r)ht(x) + (1− β(r))µ

)
− κ.

The factor 1
κ
in Definition (3.10) does not influence the critical points, but

only their action values. In fact, the following lemma shows that for κ,K
large enough, the critical points (up to translation in the r-direction) and
their actions do not depend on the choice of the constants.

Lemma 3.5. Let ht satisfy Assumption 3.4. Given a < b, there are con-
stants κ0,K0 such that for κ ≥ κ0 and K ≥ K0 the following holds. If (x, η)
is a critical point with a ≤ taht,κ,K(x, η) ≤ b, then the radial component of x
stays in [1,Kκ] for t ∈ [0, 1] and taht,κ,K(x, η) = η.

Proof. A detailed proof and in particular explicit choices for the constants
κ0,K0 are given in [4, Proposition 4.3] in the setup of cotangent bundles. It
applies verbatim in the present setting. □

In the following we abbreviate taht,κ,K = ta.

Remark 3.6. For ht ≡ 1 one can choose for all action windows K = κ =
µ = 1. The function Ht coincides with H in the definition of a in (3.1). Thus,
the functional ta coincides with a, and AH is a special case of TH.

The differential. The differential is constructed exactly as in the au-
tonomous case: Choose an asymptotically conical almost complex structure
J to define an L2-metric with respect to which one considers negative gradi-
ent flow lines that correspond to solutions of a perturbed Cauchy–Riemann
equation. We get transversality of moduli spaces by perturbing J . The de-
sired L∞-bounds on the flow lines follow as before since for r ≥ Kκ+ 1
the Hamiltonian Ht

ht,κ,K is autonomous and linear in r. Thus, our choice

of deforming Ht
ht,κ,K to an autonomous Hamiltonian for large r guarantees

compactness. The drawback is that the resulting homology counts the orbits
of ht only in the chosen action window.

Action windows and definition of the homology. As Lemma 3.5
shows, the definition of TH must be done for finite action windows first, and
then is extended. To do this we choose κ0,K0 so large that Lemma 3.5 holds
for critical points with action in [a, b]. We first generate the chain complex
TCb = TCb(ht, κ,K) by the critical points of ta with action≤ b ∈ R and then
define TC(a,b) = TCb /TCa and its homology TH(a,b) = TH(a,b)(ht, κ,K).
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These groups are independent of κ ≥ κ0,K ≥ K0, which is why we denote
them by TH(a,b)(ht) for brevity.

For a ≤ a′, b ≤ b′ there are (for κ,K large enough) homomorphisms in-
duced by inclusion of generators TC(a,b) → TC(a′,b′). We define TC(−∞,b) as
the inverse limit, TC(a,∞) as the direct limit and TC = TC(−∞,∞) as direct
inverse limit (in this order, to preserve exactness of long exact sequences),
while adjusting κ,K. It still holds that TC(a,b) = TC(−∞,b) /TC(−∞,a). We
denote by TCT

+ = TC(0,T ) the positive part of the chain complex and by ι
the homomorphisms THT

+ → TH∞
+ induced by inclusion.

Invariance properties. Consider now a family of Hamiltonians hts such
that ∂sh

t
s is supported in s ∈ [0, 1]. Suppose that for the associated family

of functionals tas := taht
s,κ,K

the constants κ,K are chosen uniformly large
enough for [a, b]. We set ta− = tas for s ≤ 0 and ta+ = tas for s ≥ 1. The
continuation homomorphism Φ : TC(ta−) → TC(ta+) is defined as in the
definition of the differential by counting the 0-dimensional components of
the moduli space of curves (xs, ηs) that satisfy the equation

(3.12) ∂s(xs, ηs) = −∇tas(xs, ηs),

such that lims→±∞(xs, ηs) = (x±, η±) for critical points (x±, η±) of ta±.
Then Φ induces an isomorphism TH(ta−) → TH(ta+), because η is bounded
along deformations, and actually does not depend on the homotopy hs but
only on the endpoints h±.

Unfortunately, this isomorphism does not respect the action the filtra-
tion of the homology. We therefore restrict our attention to monotone defor-
mations, i.e. ∂sh

t
s(x) ≥ 0 ∀ s, t, x. The following proposition says that such

monotone deformations are compatible with the action filtration. In the
proof it becomes clear why we extend ht to be constant for t ≤ 0.

Proposition 3.7 (Monotonicity). Let ht− ≤ ht+ be two time-dependent
positive contact Hamiltonians that satisfy Assumption 3.4. Then the conti-
nuation homomorphism

Φ : TH(ht−) → TH(ht+)

restricts for every a to

Φ|TCa(ht
−) : TH

a(ht−) → THa(ht+).
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Proof. It suffices to show that the action is non-increasing along solutions
of (3.12).

For the deformation from ht− to ht+, define a monotone smooth function
χ : R → [0, 1] such that

χ(s) =

{
0 if s ≤ 0,

1 if s ≥ 1,

and set hts := ht− + χ(s)(ht+ − ht−). Denote by Ht
s and tas the associated

Hamiltonians and functionals. The deformation satisfies

d

ds
Ht

s = χ′(s)(Ht
+ −Ht

−) = χ′(s) ρ(r)β(r)(ht+ − ht−) ≥ 0.

For every (x, η) we have,

∂

∂s
tas(x, η) =

∫ 1

0
−
η

κ
χ′(s)(Hηt

+ −Hηt
− )(x(t)) dt.

Now consider a solution (xs, ηs) of (3.12). Set E =
∫∞
−∞ ∥∂s(xs, ηs)∥

2 ds
and ta± = ta±(x±, η±). We calculate

ta+ = ta− +

∫ ∞

−∞

d

ds
tas(xs, ηs) ds

= ta− +

∫ ∞

−∞

( ∂

∂s
tas

)
(xs, ηs) +

〈
∇tas(xs, ηs), ∂s(xs, ηs)

〉
ds

= ta− − E +

∫ ∞

−∞

∫ 1

0
−
ηs
κ
χ′(s)(Hηt

+ −Hηt
− )(xs(t)) dt ds.

If ηs ≥ 0, then −ηs

κ
χ′(s)(Hηt

+ −Hηt
− )(xs(t)) ≤ 0. If ηs ≤ 0, then hηt+ = hηt− = 1

and thus −ηs

κ
χ′(s)(Hηt

+ −Hηt
− )(xs(t)) = 0. It follows that ta+ ≤ ta−. □

We use this proposition to show that along deformations, although the
exponential growth of TH might change, its positivity is preserved. We ac-
complish this by comparing with a Reeb flow.

Proof of Proposition 1.6. Suppose for now that ht0 ≤ ht1. Proposition 3.7
shows that then the deformation morphism Φ restricts to Φ|TCT (ht

0
) :

TCT (ht0) → TCT (ht1). Furthermore ht0 = ht1 for t ≤ 0, thus ta(ht0) and ta(ht1)
have the same critical points with non-positive action, and constant critical
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points (x, η) with η ≤ 0 are solutions of (3.12). Since the action is non-
increasing along solutions of (3.12) we get that

Φ|TC0(ht
0
) : TC0(ht0) → TC0(ht1)

is a lower diagonal isomorphism. For the homomorphism Φ∗ induced in the
quotient we thus have

Φ∗(TC
T
+(h

t
0)) = Φ(TCT (ht0))/Φ(TC

0(ht0))

= Φ(TCT (ht0))/ι
0,T TC0(ht1)

⊆ TCT
+(h

t
1).

Since Φ induces an isomorphism in TH∞, abbreviating ι = ιT,∞+ , we con-
clude that

(3.13) dim ι∗TH
T
+(h

t
0) ≤ dim ι∗TH

T
+(h

t
1).

Now consider constants c > 0. Unlike ht, most constants are not equal
to 1 for t near 0 or 1, so we need to modify them to fit our setup. From the
proof of [11, Proposition 6.2] it is clear that for every c there is a function htc :
M × [0, 1] → R with htc = 1 for t near 0 and 1 and such that the induced flow
ϕt
ht
c
is a time-reparametrization of the Reeb flow ϕt

1 that satisfies ϕ1
ht
c
= ϕc

1.

The functions htc can be chosen continuously in c such that htc ≤ htC if c ≤ C.
Extend htc constantly for t < 0 and periodically for t > 0. By construction of
htc it is clear that there exists a monotone function τc : R

≥0 → R≥0 such that

ϕ
τc(t)
ht
c

= ϕt
1. For such a function we have τc(ck) = k for all k ∈ N and thus

limt→∞
τc(t)
t

= 1
c
. The critical points of ta1 with action T are in bijection

with the critical points of taht
c
with action τc(t). We deform ht1 = 1 to htC

through htc, while deforming the action window (ε, T ) with ε, T /∈ S through
(τc(ε), τc(T )) to (τC(ε), τC(T )). Since τc is injective, this deformation has no
window crossing and we therefore have

ι∗TH
τC(T )
+ (htC)

∼= ι∗TH
T
+(1).

From Section 3.2 we know that Γsymp(W,L) is the exponential dimensional
growth of AH(W,L), thus also of TH(1). We conclude that for every C the
exponential growth of dim ι∗TH

T
+(h

t
C) is CΓ

symp(W,L).
Now choose c, C > 0 such that c ≤ ht ≤ C. The functions htc can be

chosen such that still htc ≤ ht ≤ htC see Figure 6.
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t

ht

htC

htc

C

c

0 1 2 3

1

Figure 6: The sandwiching of ht by htc and h
t
C .

We apply (3.13) twice, first to a monotone deformation from htc to ht

and then to a monotone deformation from ht to htC . With (3.13), this results
in

dim ι∗TH
T
+(h

t
c) ≤ dim ι∗TH

T
+(h

t) ≤ dim ι∗TH
T
+(h

t
C).

Therefore, the quantitative bound claimed in Proposition 1.6 follows. In
particular, for every positive path of contactomorphisms the growth of
Rabinowitz–Floer homology is positive if and only if it is positive for a
Reeb flow. □

Finally we show that from the homological growth of the number of
chords from Λ to Λ we can deduce information about the growth the number
of chords from Λ to a Legendrian Λ′ that is isotopic to Λ through Legendri-
ans. In [5] Alves and Meiwes showed the corresponding result for Reeb chords
by constructing a WH(W,L)-module structure on the wrapped Floer homol-
ogy WH(W,L→ L′), whose generators are Reeb chords from L to nearby
Lagrangians L′. In the following proof we do not need algebraic structures on
Rabinowitz–Floer homology, but prove the result by just using continuation
morphisms. Since the class of Reeb flows is included in the class of positive
paths of contactomorphisms, one can replace the use of module structures
in [5] by the following elementary proof.

Proof of Proposition 1.7. The idea of the proof is a rearrangement of infor-
mation: If ψ(Λ) = Λ′, then the set of ϕt-chords from Λ to Λ′ is in bijection
with the set of ψ−1 ◦ ϕt ◦ ψ-chords from ψ−1Λ to Λ, see Figure 7.

We construct a positive path of contactomorphisms that is a Reeb flow
for t ≤ 0, and the conjugate of ϕt

ht by ψ−1 precomposed with ψ−1 for t ≥ 1
as follows. By the isotopy extension theorem we can extend the isotopy of
Legendrians to a path of contactomorphisms ψt, t ∈ [0, 1], with ψ0 = id and
ψ1 = ψ. Denote by gt the (not necessarily positive) contact Hamiltonian
that generates (ψt)−1. Denote by ϕt, t ∈ R, the path of contactomorphisms
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Λ

ψΛ = Λ′

ψ−1Λ

b

b

b

x

ψ(ψt)−1x

(ψt)−1x

ϕt(x)

ψ−1ϕtψ(ψ−1x) ψ−1Λ

Λ

ψΛ = Λ′

b

b

Figure 7: A sketch of the geometric situation. A point x is taken along the
dotted line from Λ to ψ−1Λ by (ψt)−1 and then to Λ by the flow of ϕt,
conjugated by ψ−1. Applying ψ to everything yields the dashed line which,
ignoring the first part from Λ′ to Λ, is a ϕt-chord from Λ to Λ′.

generated by ht and denote by h̃t the Hamiltonian that generates ϕ̃t := ψ−1 ◦
ϕt ◦ ψ. Note that ϕ̃kt, t ∈ R, is generated by kh̃kt and that ϕ̃kt ◦ (ψt)−1, t ∈
[0, 1], is generated by g̃t := (kh̃kt)#gt = kh̃kt + gt ◦ (ϕ̃kt)−1. We choose k so
large that g̃t ≥ max{h̃t}. Using a convex combination with a Reeb flow, we
find a Hamiltonian gt such that ϕ1

gt = ϕ1
g̃t , such that gt = 1 for t close to 0

and t close to 1, and such that gt ≥ h̃t.
Define ht by

ht =





1 if t < 0,

gt if t ∈ [0, 1],

h̃t if t > 1.

This function is continuous at t = 0 and t = 1 because there 1 = gt = h̃t. The
induced positive path of contactomorphisms ϕt

ht
is a Reeb flow for t ≤ 0, the

time-1 map is ϕ1
ht

= ϕ̃k ◦ (ψ)−1 and for t ≥ 1 we have ϕt
ht

= ϕ̃t−1+k ◦ (ψ)−1.

By our choice of k, ht ≥ h̃t for all t. We can therefore deform h̃t to ht

in a monotone increasing way. This deformation thus induces a monotone
morphism in THa by Proposition 3.7. By Proposition 1.6, the exponential
dimensional growth of TH(ht) is still positive. The critical points (x, T +
1) of paht with T + 1 > 1 are orbits that start on Λ, pass through ϕ̃k ◦
ψ−1(x(0)) at time 1 and then follow ϕ̃t for time T to land on Λ. They are in
bijection with ϕ̃t-orbits from ψ−1(x(0)) ∈ ψ−1Λ to Λ of length k + T , with
a “starting tail” following (ψt)−1 from Λ to ψ−1Λ. By application of ψ and
by forgetting the starting tail, they are in bijection with ϕt-orbits from Λ
to Λ′.
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From this we conclude that the number of ϕt-orbits from Λ to Λ′ with
length between k and T is the dimension of the chain complex TC(1,T )(ht),
and thus grows at least as fast as the dimension of TH(1,T )(ht), which by
Proposition 1.6 has at least exponential growth min{ht}Γsymp(W,L). But
min{ht} = min{h̃t} by construction. Define the function f by (ψ−1)∗α = fα.
We have Xh̃t(x) = Dψ−1(Xht(ψx)) for every x ∈M and thus

h̃t(x) = α(Xh̃t(x)) = α(Dψ−1(Xht(ψx)))

= (ψ−1)∗α(Xht(ψx)) = f(ψx)ht(ψx).

Thus, min{h̃t} ≥ min{f}min{ht}, and the quantitative assertion in Propo-
sition 1.7 follows. □

4. Proof of Theorem 1

The main result follows by composition of the results of the previous sections.
The lower bounds on volume growth using a method introduced in [3].

Proof of Theorem 1. Let ϕt, t ∈ R be a positive path of contactomorphisms
with ϕ0 = id, ϕ1 = ϕ such that its underlying contact Hamiltonian ht is con-
stant 1 for t ≤ 0 and 1-periodic for t > 0. We will show that the exponential
growth of Vol(ϕtΛ) is positive, where Vol is taken with respect to some well
chosen Riemannian metric. By a theorem of Yomdin [13] this volume growth
provides a lower bound on the topological entropy.

From Propositions 1.4 and 1.5 we deduce the following chain of isomor-
phisms

WHa
+(W,L)

∼= w̌Ha
+(W,L)

∼= AH(0,a)(W,L),

for all a > 0 such that a /∈ S. Thus, the exponential growth of
dimAH(0,a)(W,L) is Γsymp(W,L). Proposition 1.6 shows that the exponen-
tial growth of dimTH(0,a)(ht) is at least cΓsymp(W,L), where c = minht > 0.

Since Λ is a Legendrian sphere, there is a tubular neighborhood N =
Bn × Λ of Λ in M that is a product of a ball and the Legendrian spheres
Λ. By isotopy extension each of the fibers Λ′ is the image of Λ by a contac-
tomorphism ψ of M isotopic to the identity such that (ψ−1)∗α = fα. After
choosing a smaller neighborhood, one can assume that min f ≥ 1− ε for a
uniform ε > 0. By Proposition 1.7 we see that for all fibers Λ′ the number
of ϕt-chords from Λ to Λ′ has growth at least γ := (1− ε)cΓsymp(W,L).

Now we choose our Riemannian metric g such that g orthogonally splits
on N = Bn × Λ. We show that Voln(

⋃
t∈[0,T ] ϕ

tΛ) has growth at least γ
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since it cuts through N many times. In the following we regard ϕt as a map
ϕ(x, t) : (Λ,R) →

⋃
t∈R ϕ

tΛ = ϕ(Λ× R).
Let π : N → Bn be the projection to the fiber. Then by Sard’s theorem

there is a subset B′ ⊂ Bn of full measure such that the map

P : ϕ−1(π−1(B′)) ⊂ Λ× R → B′; (x, t) → π ◦ ϕ(x, t)

has only regular values. At these points P−1(b) ∩ Λ× [0, T ] is finite for every
T , so we can consider its number of elements nb(T ). Note that P being
regular implies that the functional in the proof of Proposition 1.6 is Morse
for all action windows (1, T + 1), T > 0, so the corresponding TH is well
defined for these action windows. Since nb(T ) counts the number of ϕt-
trajectories from Λ to b× Λ ⊂ N , nb(T ) has growth at least γ. Since

Voln(ϕ(Λ× [0, T ]) ∩ N ≥

∫

B′

nb(T ) dVoln,

and since the integrand on the right hand side uniformly has growth at least
γ, we conclude that Voln(

⋃
t∈[0,T ] ϕ

tΛ) ≥ Voln(
⋃

t∈[0,T ] ϕ
tΛ) ∩ N has growth

at least γ.
Now to relate the growth of Voln(

⋃
t∈[0,T ] ϕ

tΛ) to the growth of Voln(ϕ
tΛ),

we note that |Xht |g ≤ C is bounded in length from above by compactness
of M . Thus we can estimate

Voln(ϕ(Λ× [0, T ]) ≤ C

∫ T

0
Voln−1(ϕ

tΛ) dt.

Since the left hand side has growth at least γ, the same holds for the right
hand side. This is only possible if the integrand also has growth at least γ.
We conclude that the volume growth of ϕtΛ, thus the volume growth of ϕ
on M , and thus the topological entropy of ϕ are at least cΓsymp(W,L) > 0,
since ε > 0 was arbitrary. □

Remark 4.1. Note that for the definition of symplectic growth we required
that (λ, L) is regular. In contrast we do not require regularity for ϕt. This
is because we only consider Hamiltonians as in the proof Proposition 1.7,
which are perturbed in the interval [0, 1].
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