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egory and prove that the distance between an object and its Hamil-
tonian deformation is at most the Hofer norm of the Hamiltonian
function. Using the distance, we show a quantitative version of
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1. Introduction

In this paper, we introduce a pseudo-distance on Tamarkin’s category, in-
spired by the recent work by Kashiwara–Schapira [KS18] on the sheaf-
theoretic interpretation of the interleaving distance for persistence modules.
We also propose a new sheaf-theoretic method to estimate the displacement
energy of compact subsets of cotangent bundles, which is a quantitative
generalization of Tamarkin’s non-displaceability theorem. We will recall the
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notion of displacement energy in Subsection 1.1 and then state our results
in Subsection 1.2.

1.1. Displacement energy

For a given compact subset of a symplectic manifold, its displacement en-
ergy measures the minimal energy of Hamiltonian isotopies which displace
the subset. In this paper, we consider the displacement energy in the case
the symplectic manifold is a cotangent bundle. Let M be a connected man-
ifold and I be an open interval containing [0, 1]. We denote by T ∗M the
cotangent bundle equipped with the canonical exact symplectic structure.
A compactly supported C∞-function H = (Hs)s∈I : T

∗M × I → R defines
a time-dependent Hamiltonian vector field XH = (XHs

)s on T ∗M . By the
compactness of the support, XH generates a Hamiltonian isotopy ϕH =
(ϕHs )s : T

∗M × I → T ∗M . Following Hofer [Hof90], for a compactly sup-
ported function H : T ∗M × I → R, we define

(1.1) ∥H∥ :=

∫ 1

0

(
max

p
Hs(p)−min

p
Hs(p)

)
ds.

For compact subsets A and B of T ∗M , we define their displacement energy
e(A,B) by

(1.2) e(A,B) := inf

{
∥H∥

∣∣∣∣∣
H : T ∗M × I → R with compact support,

A ∩ ϕH1 (B) = ∅

}
.

Here ϕH1 denotes the time-one map of the Hamiltonian isotopy ϕH . Note
that if e(A,B) = +∞, then A ∩ ϕH1 (B) ̸= ∅ for any compactly supported
function H. The aim of this paper is to give a lower bound of e(A,B) in
terms of the microlocal sheaf theory due to Kashiwara and Schapira [KS90].

1.2. Main results

We shall estimate the displacement energy by introducing a pseudo-distance
on Tamarkin’s category D(M). In order to state our results, we prepare
some notions. In the sequel, let k be a field. Moreover, let X be a C∞-
manifold. We denote by Db(X) the bounded derived category of sheaves of
k-vector spaces. For an object F ∈ Db(X), its microsupport SS(F ) is defined
as the set of directions in which the cohomology of F cannot be extended
isomorphically. The microsupport is a closed subset of the cotangent bundle
T ∗X and invariant under the action of R>0 on T ∗X.
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In [Tam18], Tamarkin introduced a category D(M) and used it to prove
the non-displaceability of particular compact subsets. The category D(M)
is defined as a quotient category of Db(M × R). For a compact subset A of
T ∗M , DA(M) denotes the full subcategory of D(M) consisting of objects
whose microsupports are contained in the cone of A in T ∗(M × R). For an
object F ∈ D(M) and c ∈ R≥0 there is a canonical morphism τ0,c(F ) : F →
Tc∗F , where Tc : M × R →M × R, (x, t) 7→ (x, t+ c). See Section 3 for more
details.

First, using the R-direction ofM × R, we introduce the following pseudo-
distance dD(M) on Tamarkin’s category D(M), which is similar to the inter-
leaving distance for persistence modules (see [CCSG+09, CdSGO16]). Our
definition is inspired by the pseudo-distances on the derived categories of
sheaves on vector spaces recently introduced by Kashiwara–Schapira [KS18].
See also Remark 4.10 for their relation.

Definition 1.1.

(i) Let F,G ∈ D(M) and a, b ∈ R≥0. Then the pair (F,G) is said to be
(a, b)-interleaved if there exist morphisms α, δ : F → Ta∗G and β, γ :
G→ Tb∗F such that

(1) F
α−→ Ta∗G

Ta∗β−−−→ Ta+b∗F is equal to τ0,a+b(F ) : F → Ta+b∗F ,

(2) G
γ−→ Tb∗F

Tb∗δ−−−→ Ta+b∗G is equal to τ0,a+b(G) : G→ Ta+b∗G.

(ii) For objects F,G ∈ D(M), one defines

(1.3) dD(M)(F,G) := inf

{
a+ b ∈ R≥0

∣∣∣∣∣
a, b ∈ R≥0,

(F,G) is (a, b)-interleaved

}
,

and calls dD(M) the translation distance.

It might seem strange that four morphisms α, β, γ, δ appear in (i) of the
definition above. However, to the best of the authors’ knowledge, if we add
the conditions α = δ and β = γ, there is no guarantee that Theorem 1.2
below holds. See also Remark 4.5.

Now, let us consider the distance between an object in D(M) and its
Hamiltonian deformation. Let H : T ∗M × I → R be a compactly supported
Hamiltonian function. Then, using the sheaf quantization associated with
the Hamiltonian isotopy ϕH due to Guillermou–Kashiwara–Schapira [GKS12]
one can define a functor ΦH

1 : D(M) → D(M), which induces a functor
ΦH
1 : DA(M) → DϕH

1 (A)(M) for any compact subset A of T ∗M . Our first
result is the following.
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Theorem 1.2 (see Theorem 4.16). Let G ∈ D(M) and H : T ∗M × I →
R be a compactly supported Hamiltonian function. Then dD(M)(G,Φ

H
1 (G)) ≤

∥H∥.

The outline of the proof is as follows. First we prove that the distance
between two objects is controlled by the angle of a cone which contains
the microsupport of a “homotopy sheaf” connecting them. Then using the
sheaf quantization associated with ϕH , we can construct a homotopy sheaf
G′ ∈ Db(M × R× I) such that G′|M×R×{0} ≃ G,G′|M×R×{1} ≃ ΦH

1 (G) and
SS(G′) ⊂ T ∗M × γH , where
(1.4)

γH =

{
(t, s; τ, σ)

∣∣∣∣ −max
p
Hs(p) · τ ≤ σ ≤ −min

p
Hs(p) · τ

}
⊂ T ∗(R× I).

We thus obtain the result.
Next, we use the above result to estimate the displacement energy. One

can define an internal Hom functor Hom⋆ on the category D(M), which
satisfies the isomorphism

(1.5) HomD(M)(F,G) ≃ H0RΓM×[0,+∞)(M × R;Hom⋆(F,G))

for any F,G ∈ D(M). Let qR : M × R → R denote the projection. Tamarkin’s
separation theorem asserts that if A ∩B = ∅ then RqR∗Hom⋆(F,G) ≃ 0 for
any F ∈ DA(M) and G ∈ DB(M). See also Section 3. Using these notions,
we make the following definition.

Definition 1.3. For F,G ∈ D(M), one defines

eD(M)(F,G) := dD(pt)(RqR∗Hom⋆(F,G), 0)(1.6)

= inf{c ∈ R≥0 | τ0,c(RqR∗Hom⋆(F,G)) = 0}.

Our main theorem is the following.

Theorem 1.4 (see Theorem 4.18). Let A and B be compact subsets of
T ∗M . Then, for any F ∈ DA(M) and G ∈ DB(M), one has

(1.7) e(A,B) ≥ eD(M)(F,G).

In particular, for any F ∈ DA(M) and G ∈ DB(M),

(1.8) e(A,B)≥ inf{c ∈ R≥0 |HomD(M)(F,G)→HomD(M)(F, Tc∗G) is zero}.
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This theorem implies, in particular, that τ0,c(RqR∗Hom⋆(F,G)) is non-
zero for any c ∈ R≥0, then A and B are mutually non-displaceable. In this
sense, the theorem is a quantitative version of Tamarkin’s non-displaceability
theorem (see Tamarkin [Tam18, Theorem 3.1] and Guillermou–Schapira
[GS14, Theorem 7.2]).

Theorem 1.4 is proved by Tamarkin’s separation theorem and Theo-
rem 1.2 as follows. Suppose that a compactly supported Hamiltonian func-
tion H satisfies A ∩ ϕH1 (B) = ∅. Then, by Tamarkin’s separation theorem,
RqR∗Hom⋆(F,ΦH

1 (G)) ≃ 0. Thus, by fundamental properties of dD(M) and
Theorem 1.2, we obtain

eD(M)(F,G) = dD(pt)(RqR∗Hom⋆(F,G), 0)(1.9)

≤ dD(M)(Hom⋆(F,G),Hom⋆(F,ΦH
1 (G)))

≤ dD(M)(G,Φ
H
1 (G)) ≤ ∥H∥.

As an application of Theorem 1.4, we prove that the displacement energy
of the image of the compact exact Lagrangian immersion

Sm = {(x, y) ∈ R
m × R | ∥x∥2 + y2 = 1} −→ T ∗

R
m ≃ R

2m,(1.10)

(x, y) 7−→ (x; yx)

is greater than or equal to 2/3 (see Example 4.22). Using this estimate, we
give a purely sheaf-theoretic proof of the following theorem of Polterovich
[Pol93], for subsets of cotangent bundles. Note that he proved the result
for more general class of symplectic manifolds, using pseudo-holomorphic
curves.

Proposition 1.5 ([Pol93, Corollary 1.6]). Let A be a compact subset of
T ∗M whose interior is non-empty. Then its displacement energy is positive:
e(A,A) > 0.

1.3. Related topics

The interleaving distance for persistence modules is now widely used in
topological data analysis (see, for example, [CCSG+09, CdSGO16]). Re-
cently, Kashiwara–Schapira [KS18] interpreted the distance as that on the
derived category of sheaves. In symplectic geometry, the notion of persis-
tence modules was introduced by Polterovich–Shelukhin [PS16] (see also
Polterovich–Shelukhin–Stojisavljević [PSS17]). For barcodes of chain com-
plexes over Novikov fields such as Floer cohomology complexes, see also
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Usher–Zhang [UZ16]. Note also that Theorem 1.2 seems to be related to the
results of Schwarz [Sch00] and Oh [Oh05] for continuation maps, although
they did not use persistence modules.

As remarked in Tamarkin [Tam18, Section 1], for F,G ∈ D(M), one
can associate a submodule H(F,G) of

∏
c∈RHomD(M)(F, Tc∗G), which is a

module over a Novikov ring Λ0,nov(k) (with a formal variable T ). Using this
module, we can express (1.8) in Theorem 1.4 as

(1.11) e(A,B) ≥ inf{c ∈ R≥0 | H(F,G) is T c-torsion}.

See Remark 4.21 for more details. This inequality seems to be closely related
to the estimate of the displacement energy discussed in Fukaya–Oh–Ohta–
Ono [FOOO09a, FOOO09b, Theorem J] and [FOOO13, Theorem 6.1].

1.4. Organization

This paper is structured as follows. In Section 2, we recall some basics of the
microlocal sheaf theory. In Section 3, we review results of [Tam18, GKS12,
GS14] on Tamarkin’s separation theorem and sheaf quantization of Hamilto-
nian isotopies. Section 4 is the main part of the paper. First, we introduce the
translation distance dD(M) on Tamarkin’s category and prove Theorem 1.2.
Then we show Theorem 1.4 and give some examples and applications.
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to IMJ-PRG and “equipe Analyse Algébrique” for hospitality during the
preparation of this paper. This work was partially supported by a Grant-
in-Aid for JSPS Fellows 15J07993 and the Program for Leading Graduate
Schools, MEXT, Japan.

2. Preliminaries on microlocal sheaf theory

Throughout this paper, all manifolds are assumed to be of class C∞ without
boundary. Until the end of this paper, let k be a field.
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In this section, we recall some basics of the microlocal sheaf theory due
to Kashiwara and Schapira [KS90]. We mainly follow the notation in [KS90].

2.1. Geometric notions ([KS90, §4.3, §A.2])

Let X be a C∞-manifold without boundary. For a locally closed subset A
of X, we denote by A its closure and by Int(A) its interior. We also denote
by ∆X or simply ∆ the diagonal of X ×X. We denote by τX : TX → X
the tangent bundle of X and by πX : T ∗X → X the cotangent bundle of
X. If there is no risk of confusion, we simply write π instead of πX . For
a submanifold M of X, we denote by T ∗

MX the conormal bundle to M in
X. In particular, T ∗

XX denotes the zero-section of T ∗X. We set T̊ ∗X :=
T ∗X \ T ∗

XX.
Let f : X → Y be a morphism of manifolds. With f we associate mor-

phisms and a commutative diagram

T ∗X

πX

��

X ×Y T
∗Y

π

��

fd
oo

fπ
// T ∗Y

πY

��

X X
f

// Y,

(2.1)

where fπ is the projection and fd is induced by the transpose of the tangent
map f ′ : TX → X ×Y TY .

We denote by (x; ξ) a local homogeneous coordinate system of T ∗X. The
cotangent bundle T ∗X is an exact symplectic manifold with the Liouville
1-form αT ∗X = ⟨ξ, dx⟩. The antipodal map a : T ∗X → T ∗X is defined by
(x; ξ) 7→ (x;−ξ). For a subset A of T ∗X, we denote by Aa its image under
the map a.

2.2. Microsupports of sheaves ([KS90, §5.1, §5.4, §6.1])

For a manifold X, we denote by kX the constant sheaf with stalk k and
by Db(X) = Db(kX) the bounded derived category of sheaves of k-vector
spaces on X. One can define Grothendieck’s six operations between derived
categories of sheaves RHom,⊗, Rf∗, f−1, Rf!, f

! for a morphism of manifolds

f : X → Y . Since we work over the field k, we simply write ⊗ instead of
L
⊗.

Moreover for F ∈ Db(X) and G ∈ Db(Y ), we define their external tensor
product F ⊠G ∈ Db(X × Y ) by F ⊠G := q−1

X F ⊗ q−1
Y G, where qX : X ×

Y → X and qY : X × Y → Y are the projections. For a locally closed subset
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Z of X, we denote by kZ ∈ Db(X) the constant sheaf with stalk k on Z,
extended by 0 on X \ Z. Moreover, for a locally closed subset Z of X and
F ∈ Db(X), we define

(2.2) FZ := F ⊗ kZ , RΓZ(F ) := RHom(kZ , F ).

One denotes by ωX ∈ Db(X) the dualizing complex on X, that is, ωX :=
a!Xk, where aX : X → pt is the natural morphism. Note that ωX is isomor-
phic to orX [dimX], where orX is the orientation sheaf on X. More generally,
for a morphism of manifolds f : X → Y , we denote by ωf = ωX/Y := f !kY ≃
ωX ⊗ f−1ω⊗−1

Y the relative dualizing complex. For F ∈ Db(X), we define the
Verdier dual of F by DXF := RHom(F, ωX).

Let us recall the definition of the microsupport SS(F ) of an object F ∈
Db(X).

Definition 2.1 ([KS90, Definition 5.1.2]). Let F ∈ Db(X) and p ∈
T ∗X. One says that p ̸∈ SS(F ) if there is a neighborhood U of p in T ∗X
such that for any x0 ∈ X and any C∞-function φ on X (defined on a neigh-
borhood of x0) with dφ(x0) ∈ U , one has RΓ{φ≥φ(x0)}(F )x0

≃ 0.

The following properties can be checked from the definition of microsup-
ports.

(i) The microsupport of an object inDb(X) is a conic (i.e., invariant under
the action of R>0 on T ∗X) closed subset of T ∗X.

(ii) For an object F ∈ Db(X), one has SS(F ) ∩ T ∗
XX = π(SS(F )) =

Supp(F ).

(iii) The microsupports satisfy the triangle inequality: if F1 −→ F2 −→
F3

+1−→ is a distinguished triangle in Db(X), then SS(Fi) ⊂ SS(Fj) ∪
SS(Fk) for j ̸= k.

We also use the notation S̊S(F ) := SS(F ) ∩ T̊ ∗X = SS(F ) \ T ∗
XX.

Example 2.2. (i) If F is a locally constant sheaf onX, then SS(F ) ⊂ T ∗
XX.

Conversely, if SS(F ) ⊂ T ∗
XX then the cohomology sheaves Hk(F ) are locally

constant for all k ∈ Z.

(ii) Let M be a closed submanifold of X. Then SS(kM ) = T ∗
MX ⊂ T ∗X.
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(iii) Let φ be a C∞-function on X and assume that dφ(x) ̸= 0 for any x ∈
φ−1(0). Set U := {x ∈ X | φ(x) > 0} and Z := {x ∈ X | φ(x) ≥ 0}. Then

SS(kU ) = T ∗
XX|U ∪ {(x;λdφ(x)) | φ(x) = 0, λ ≤ 0},

SS(kZ) = T ∗
XX|Z ∪ {(x;λdφ(x)) | φ(x) = 0, λ ≥ 0}.(2.3)

The following proposition is called (a particular case of) the microlo-
cal Morse lemma. See [KS90, Proposition 5.4.17 and Corollary 5.4.19] for
more details. The classical theory corresponds to the case F is the constant
sheaf kX .

Proposition 2.3. Let F ∈ Db(X) and φ : X → R be a C∞-function. More-
over, let a, b ∈ R with a < b or a ∈ R, b = +∞. Assume that

(1) φ is proper on Supp(F ),

(2) dφ(x) ̸∈ SS(F ) for any x ∈ φ−1([a, b)).

Then the canonical morphism

(2.4) RΓ (φ−1((−∞, b));F ) −→ RΓ (φ−1((−∞, a));F )

is an isomorphism.

Next, we shall consider bounds for the microsupports of proper direct
images, non-characteristic inverse images, and RHom.

Definition 2.4. Let f : X → Y be a morphism of manifolds and A ⊂ T ∗Y
be a closed conic subset. The morphism f is said to be non-characteristic
for A if

(2.5) f−1
π (A) ∩ f−1

d (T ∗
XX) ⊂ X ×Y T

∗
Y Y.

See (2.1) for the notation fπ and fd. In particular, any submersion from
X to Y is non-characteristic for any closed conic subset of T ∗Y . Note that
submersions are called smooth morphisms in [KS90]. One can show that
if f : X → Y is non-characteristic for A ⊂ T ∗Y , then fdf

−1
π (A) is a conic

closed subset of T ∗X.

Theorem 2.5 ([KS90, Proposition 5.4.4 and Proposition 5.4.13]).
Let f : X → Y be a morphism of manifolds, F ∈ Db(X), and G ∈ Db(Y ).

(i) Assume that f is proper on Supp(F ). Then SS(Rf∗F ) ⊂ fπf
−1
d (SS(F )).
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(ii) Assume that f is non-characteristic for SS(G). Then the canonical
morphism f−1G⊗ ωf → f !G is an isomorphism and SS(f−1G) ∪
SS(f !G) ⊂ fdf

−1
π (SS(G)).

For closed conic subsets A and B of T ∗X, let us denote by A+B the
fiberwise sum of A and B, that is,

(2.6) A+B :=

{
(x; a+ b)

∣∣∣∣∣
x ∈ π(A) ∩ π(B),

a ∈ A ∩ π−1(x), b ∈ B ∩ π−1(x)

}
⊂ T ∗X.

Proposition 2.6 ([KS90, Proposition 5.4.14]). Let F,G ∈ Db(X).

(i) If SS(F ) ∩ SS(G)a ⊂ T ∗
XX, then SS(F ⊗G) ⊂ SS(F ) + SS(G).

(ii) If SS(F ) ∩ SS(G) ⊂ T ∗
XX, then SS(RHom(F,G)) ⊂ SS(F )a + SS(G).

Moreover if F is cohomologically constructible (see [KS90, §3.4] for the
definition), the natural morphism RHom(F,kX)⊗G→ RHom(F,G)
is an isomorphism.

Using microsupports, we can microlocalize the category Db(X). Let
A ⊂ T ∗X be a subset and set Ω = T ∗X \A. We denote by Db

A(X) the sub-
category of Db(X) consisting of sheaves whose microsupports are contained
in A. By the triangle inequality, the subcategory Db

A(X) is a triangulated
subcategory. We set

(2.7) Db(X; Ω) := Db(X)/Db
A(X),

the categorical localization of Db(X) by Db
A(X). A morphism u : F → G in

Db(X) becomes an isomorphism in Db(X; Ω) if u is embedded in a distin-

guished triangle F
u→ G→ H

+1→ with SS(H) ∩ Ω = ∅. For a closed subset
B of Ω, Db

B(X; Ω) denotes the full triangulated subcategory of Db(X; Ω)
consisting of F with SS(F ) ∩ Ω ⊂ B. Note that our notation is the same as
in [KS90] and slightly differs from that of [Gui12, Gui16a].

2.3. Kernels ([KS90, §3.6])

For i = 1, 2, 3, let Xi be a manifold. We write Xij := Xi ×Xj and X123 :=
X1 ×X2 ×X3 for short. We use the same symbol qi for the projections
Xij → Xi and X123 → Xi. We also denote by qij the projection X123 → Xij .
Similarly, we denote by pij the projection T

∗X123 → T ∗Xij . One denotes by
p12a the composite of p12 and the antipodal map on T ∗X2.
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Let A ⊂ T ∗X12 and B ⊂ T ∗X23. We set

(2.8) A ◦B := p13(p
−1
12aA ∩ p−1

23 B) ⊂ T ∗X13.

We define the operation of composition of kernels as follows:

◦
X2

: Db(X12)×Db(X23) → Db(X13)

(K12,K23) 7→ K12 ◦
X2

K23 := Rq13! (q
−1
12 K12 ⊗ q−1

23 K23).
(2.9)

If there is no risk of confusion, we simply write ◦ instead of ◦
X2

. By Theo-

rem 2.5 and Proposition 2.6 we have the following.

Proposition 2.7. Let Kij ∈ Db(Xij) and set Λij := SS(Kij) ⊂ T ∗Xij (ij =
12, 23). Assume that

(1) q13 is proper on q−1
12 Supp(K12) ∩ q−1

23 Supp(K23),

(2) p−1
12aΛ12 ∩ p−1

23 Λ23 ∩ (T ∗
X1
X1 × T ∗X2 × T ∗

X3
X3) ⊂ T ∗

X123
X123.

Then

(2.10) SS(K12 ◦
X2

K23) ⊂ Λ12 ◦ Λ23.

3. Tamarkin’s separation theorem and sheaf quantization of

Hamiltonian isotopies

In what follows, until the end of the paper, letM be a non-empty connected
manifold without boundary.

In this section, we recall the definition of Tamarkin’s category D(M)
and the separation theorem due to Tamarkin [Tam18]. We can prove the
non-emptiness of the intersection of two compact subsets of T ∗M using the
theorem. We also review the existence result of sheaf quantizations of Hamil-
tonian isotopies due to Guillermou–Kashiwara–Schapira [GKS12]. This en-
ables us to consider Hamiltonian deformations in Tamarkin’s category.

3.1. Tamarkin’s separation theorem ([Tam18, GS14])

In this subsection, we recall the definition of Tamarkin’s category D(M) and
the separation theorem.
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Denote by (x; ξ) a local homogeneous coordinate system on T ∗M and
by (t; τ) the homogeneous coordinate system on T ∗

R. Define the maps

q̃1, q̃2, sR : M × R× R −→M × R,(3.1)

q̃1(x, t1, t2) = (x, t1), q̃2(x, t1, t2) = (x, t2), sR(x, t1, t2) = (x, t1 + t2).

If there is no risk of confusion, we simply write s for sR. We also set

(3.2) i : M × R →M × R, (x, t) 7−→ (x,−t).

Definition 3.1. For F,G ∈ Db(M × R), one sets

F ⋆ G := Rs!(q̃
−1
1 F ⊗ q̃−1

2 G),(3.3)

Hom⋆(F,G) := Rq̃1∗RHom(q̃−1
2 F, s!G)(3.4)

≃ Rs∗RHom(q̃−1
2 i−1F, q̃!1G).(3.5)

Note that the functor ⋆ is a left adjoint to Hom⋆.
The functor

(3.6) kM×[0,+∞) ⋆ (∗) : Db(M × R) −→ Db(M × R)

defines a projector on the left orthogonal ⊥Db
{τ≤0}(M × R). Similarly, the

functor

(3.7) Hom⋆(kM×[0,+∞), ∗) : Db(M × R) −→ Db(M × R)

defines a projector on the right orthogonal Db
{τ≤0}(M × R)⊥. By using these

projectors, Tamarkin proved that the localized category Db(M × R; {τ >
0}) is equivalent to both the left orthogonal ⊥Db

{τ≤0}(M × R) and the right

orthogonal Db
{τ≤0}(M × R)⊥:

Pl := kM×[0,+∞) ⋆ (∗) : Db(M × R; {τ > 0}) ∼−→ ⊥Db
{τ≤0}(M × R),(3.8)

Pr := Hom⋆(kM×[0,+∞), ∗) : Db(M × R; {τ > 0}) ∼−→ Db
{τ≤0}(M × R)⊥.

Note also the inclusion ⊥Db
{τ≤0}(M × R),Db

{τ≤0}(M × R)⊥ ⊂ Db
{τ≥0}(M ×

R). We set Ω+ := {τ > 0} ⊂ T ∗(M × R) and define the map

ρ : Ω+
// T ∗M

(x, t; ξ, τ) ✤ //

∈

(x; ξ/τ).

∈(3.9)
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Definition 3.2. One defines

D(M) := Db(M × R; Ω+)(3.10)

≃ ⊥Db
{τ≤0}(M × R) ≃ Db

{τ≤0}(M × R)⊥.

For a compact subset A of T ∗M , one also defines a full subcategory DA(M)
of D(M) by

(3.11) DA(M) := Db
ρ−1(A)(M × R; Ω+).

For F ∈ D(M), we take the canonical representative

(3.12) Pl(F ) ∈ ⊥Db
{τ≤0}(M × R)

unless otherwise specified. For a compact subset A of T ∗M and F ∈ DA(M),
the canonical representative Pl(F ) ∈ ⊥Db

{τ≤0}(M × R) satisfies SS(Pl(F )) ⊂
ρ−1(A). Note also that if F ∈ ⊥Db

{τ≤0}(M × R) then

(3.13) Hom⋆(F,G) ∈ Db
{τ≤0}(M × R)⊥.

Thus Hom⋆ induces an internal Hom functor Hom⋆ : D(M)op ×D(M) →
D(M).

Remark 3.3. Let f : M → N be a morphism of manifolds and set f̃ :=
f × idR : M × R → N × R. Then, for F ∈ ⊥Db

{τ≤0}(M × R) we have

(3.14) Rf̃!F ∈ ⊥Db
{τ≤0}(N × R).

Similarly, for G ∈ Db
{τ≤0}(M × R)⊥ we have

(3.15) Rf̃∗G ∈ Db
{τ≤0}(N × R)⊥.

In other words, the morphism f induces functors D(M) → D(N).

Proposition 3.4 ([GS14, Lemma 4.18]). For F,G ∈ D(M), there is an
isomorphism

(3.16) HomD(M)(F,G) ≃ H0RΓM×[0,+∞)(M × R;Hom⋆(F,G)).

The following separation theorem was proved by Tamarkin [Tam18].
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Theorem 3.5 ([Tam18, Theorem 3.2, Lemma 3.8] and [GS14, The-
orem 4.28]). Let A and B be compact subsets of T ∗M and assume that
A ∩B = ∅. Denote by qR : M × R → R the second projection. Then for any
F ∈ DA(M) and G ∈ DB(M), one has RqR∗Hom⋆(F,G) ≃ 0. In particular,
for any F ∈ DA(M) and G ∈ DB(M), one has HomD(M)(F,G) ≃ 0.

3.2. Sheaf quantization of Hamiltonian isotopies ([GKS12])

We recall a result of Guillermou–Kashiwara–Schapira [GKS12], which as-
serts the existence of a sheaf whose microsupport coincides with the conified
graph of a Hamiltonian isotopy. The sheaf is called a sheaf quantization of
the Hamiltonian isotopy. Using sheaf quantization of Hamiltonian isotopies,
we can define Hamiltonian deformations in Tamarkin’s category D(M).

Let I be an open interval in R containing 0 and ϕH = (ϕHs )s∈I : T
∗M ×

I → T ∗M be a Hamiltonian isotopy associated with a compactly supported
Hamiltonian function H : T ∗M × I → R. Note that the Hamiltonian vector
field is defined by dαT ∗M (XHs

, ∗) = −dHs and ϕH is the identity for s = 0.
One can conify ϕH and construct ϕ̂ such that ϕ̂ lifts ϕH as follows. Define
Ĥ : T ∗M × T̊ ∗

R× I → R by Ĥs(x, t; ξ, τ) := τ ·Hs(x; ξ/τ). Note that Ĥ is
homogeneous of degree 1, that is, Ĥs(x, t; cξ, cτ) = c · Ĥs(x, t; ξ, τ) for any
c ∈ R>0. The Hamiltonian isotopy ϕ̂ : T ∗M × T̊ ∗

R× I → T ∗M × T̊ ∗
R asso-

ciated with Ĥ makes the following diagram commute (recall that we have
set Ω+ = {τ > 0} ⊂ T ∗(M × R) and ρ : Ω+ → T ∗M, (x, t; ξ, τ) 7→ (x; ξ/τ)):

Ω+ × I
ϕ̂

//

ρ×id
��

Ω+

ρ

��

T ∗M × I
ϕH

// T ∗M.

(3.17)

Moreover there exists a C∞-function u : T ∗M × I → R such that

(3.18) ϕ̂s(x, t; ξ, τ) = (x′, t+ us(x; ξ/τ); ξ
′, τ),

where (x′; ξ′/τ) = ϕHs (x; ξ/τ). By construction, ϕ̂ is a homogeneous Hamilto-
nian isotopy: ϕ̂s(x, t; cξ, cτ) = c · ϕ̂s(x, t; ξ, τ) for any c ∈ R>0. See [GKS12,
Subsection A.3] for more details. We define a conic Lagrangian submanifold
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Λ
ϕ̂
⊂ T ∗M × T̊ ∗

R× T ∗M × T̊ ∗
R× T ∗I by

(3.19)

Λ
ϕ̂
:=





(
ϕ̂s(x, t; ξ, τ), (x, t;−ξ,−τ), (s;−Ĥs ◦ ϕ̂s(x, t; ξ, τ))

)
∣∣∣∣∣∣∣

(x; ξ) ∈ T ∗M,

(t; τ) ∈ T̊ ∗
R,

s ∈ I




.

By construction, we have

(3.20) Ĥs ◦ ϕ̂s(x, t; ξ, τ) = τ · (Hs ◦ ϕHs (x; ξ/τ)).

Note also that

Λ
ϕ̂
◦ T ∗

s I =
{(
ϕ̂s(x, t; ξ, τ), (x, t;−ξ,−τ)

) ∣∣∣ (x, t; ξ, τ) ∈ T ∗M × T̊ ∗
R

}

⊂ T ∗M × T̊ ∗
R× T ∗M × T̊ ∗

R(3.21)

for any s ∈ I (see (2.8) for the definition of A ◦B).

Theorem 3.6 ([GKS12, Theorem 4.3]). In the preceding situation,
there exists a unique object K ∈ Db(M × R×M × R× I) satisfying the fol-
lowing conditions:

(1) S̊S(K) ⊂ Λ
ϕ̂
,

(2) K|M×R×M×R×{0} ≃ k∆M×R
, where ∆M×R is the diagonal of M × R×

M × R.

Moreover both projections Supp(K) →M × R× I are proper.

Remark 3.7. In [GKS12, Theorem 4.3], it was proved thatK|M×R×M×R×J

is a bounded object for any relatively compact interval J of I. Since we
assume that H has compact support, we find that K ∈ Db(M × R×M ×
R× I).

The object K is called the sheaf quantization of ϕ̂ or associated with ϕH .
Set Ks := K|M×R×M×R×{s} ∈ Db(M × R×M × R). Note that S̊S(Ks) ⊂
Λ
ϕ̂
◦ T ∗

s I. It is also proved by Guillermou–Schapira [GS14, Proposition 4.29]
that the composition with Ks defines a functor

(3.22) Ks ◦ (∗) : D(M) −→ D(M).
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Moreover, for F ∈ DA(M) and any s ∈ I, we haveKs ◦ F ≃ (K ◦ F )|M×{s} ∈
DϕH

s (A)(M). In fact, by Proposition 2.7 and (3.17) we get

SS(Ks ◦ F ) ∩ Ω+ ⊂ (Λ
ϕ̂
◦ T ∗

s I) ◦ ρ−1(A)(3.23)

= ϕ̂s(ρ
−1(A)) ⊂ ρ−1(ϕHs (A)).

In other words, the composition Ks ◦ (∗) induces a functor DA(M) →
DϕH

s (A)(M) for any compact subset A on T ∗M .

4. Pseudo-distance on Tamarkin’s category and

displacement energy

In this section, we introduce a pseudo-distance dD(M) on Tamarkin’s cate-
gory D(M). We prove that the distance between an object and its Hamil-
tonian deformation via sheaf quantization is less than or equal to the Hofer
norm of the Hamiltonian function. Using the result, we also show a quantita-
tive version of Tamarkin’s non-displaceability theorem, which gives a lower
bound of the displacement energy.

4.1. Complements on torsion objects

Torsion objects were introduced by Tamarkin [Tam18] and the category of
torsion objects was systematically studied by Guillermou–Schapira [GS14].
In this subsection, we introduce the notion of c-torsion for c ∈ R≥0, which
we will use to estimate the displacement energy. Note that the results in this
subsection are essentially due to Guillermou–Schapira [GS14].

First we recall the microlocal cut-off lemma in a general setting. Let V
be a finite-dimensional real vector space and γ be a closed convex cone with
0 ∈ γ in V . Define the maps

q̃1, q̃2, sV : M × V × V −→M × V,(4.1)

q̃1(x, v1, v2) = (x, v1), q̃2(x, v1, v2) = (x, v2), sV (x, v1, v2) = (x, v1 + v2).

For F ∈ Db(M × V ), the canonical morphism kM×γ → kM×{0} induces the
morphism

(4.2) RsV ∗(q̃
−1
1 kM×γ ⊗ q̃−1

2 F ) −→ RsV ∗(q̃
−1
1 kM×{0} ⊗ q̃−1

2 F ) ≃ F.

The following is called the microlocal cut-off lemma due to Kashiwara–
Schapira [KS90, Proposition 5.2.3], which is reformulated by Guillermou–
Schapira [GS14, Proposition 4.9]. For a cone γ with 0 ∈ γ in V , we define
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its polar cone γ◦ ⊂ V ∗ by

(4.3) γ◦ := {w ∈ V ∗ | ⟨w, v⟩ ≥ 0 for any v ∈ γ}.

We also identify T ∗V with V × V ∗.

Proposition 4.1. Let V be a finite-dimensional real vector space and γ be
a closed convex cone with 0 ∈ γ in V . Then, for F ∈ Db(M × V ), SS(F ) ⊂
T ∗M × V × γ◦ if and only if the morphism RsV ∗(q̃

−1
1 kM×γ ⊗ q̃−1

2 F ) → F is
an isomorphism.

If Int(γ) ̸= ∅, then q̃−1
1 kM×γ ≃ RHom(kM×Int(γ)×V ,kM×V×V ). Hence,

by Proposition 2.6(ii), we have

(4.4) RsV ∗(q̃
−1
1 kM×γ ⊗ q̃−1

2 F ) ≃ RsV ∗RΓM×Int(γ)×V (q̃
−1
2 F ).

Now we return to the case V = R and γ = [0,+∞). Let F ∈ Db(M × R).
Then, by Proposition 4.1, F ∈ Db

{τ≥0}(M × R) if and only if

(4.5) Rs∗(q̃
−1
1 kM×[0,+∞) ⊗ q̃−1

2 F )
∼−→ F.

For c ∈ R, we define the translation map

(4.6) Tc : M × R →M × R, (x, t) 7−→ (x, t+ c).

For F ∈ Db
{τ≥0}(M × R), by (4.5), we have

(4.7) Rs∗(q̃
−1
1 kM×[c,+∞) ⊗ q̃−1

2 F )
∼−→ Tc∗F

for any c ∈ R. Hence, for c ≤ d, the canonical morphism kM×[c,+∞) →
kM×[d,+∞) induces a morphism of functors from Db

{τ≥0}(M × R) to

Db
{τ≥0}(M × R):

(4.8) τc,d : Tc∗ −→ Td∗.

Definition 4.2 (cf. [Tam18]). Let c ∈ R≥0. An object F ∈ Db
{τ≥0}(M ×

R) is said to be c-torsion if the morphism τ0,c(F ) : F → Tc∗F is zero.

Note that a c-torsion object is c′-torsion for any c′ ≥ c. Recall also
that the category D(M) = Db(M × R; {τ > 0}) is regarded as a full sub-
category of Db

{τ≥0}(M × R) via the projector Pl : D
b(M × R; {τ > 0}) →
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⊥Db
{τ≤0}(M × R) or Pr : D

b(M × R; {τ > 0}) → Db
{τ≤0}(M × R)⊥. Hence

we can define c-torsion objects in D(M).
Let I be an open interval of R. We recall a result on sheaves over

M × R× I due to Guillermou–Schapira [GS14]. We denote by (t; τ) the
homogeneous symplectic coordinate system on T ∗

R and by (s;σ) that on
T ∗I. For a, b ∈ R>0, we set

(4.9) γa,b := {(τ, σ) ∈ R
2 | −aτ ≤ σ ≤ bτ} ⊂ R

2.

Let q : M × R× I →M × R be the projection. We identify T ∗(R× I) with
(R× I)× R

2.

Proposition 4.3 (cf. [GS14, Proposition 6.9]). Let H ∈ Db
{τ≥0}(M ×

R× I) and s1 < s2 be in I. Assume that there exist a, b, r ∈ R>0 satisfying

(4.10) SS(H) ∩ π−1(M × R× (s1 − r, s2 + r)) ⊂ T ∗M × (R× I)× γa,b.

Then Rq∗(HM×R×[s1,s2)) is (a(s2 − s1) + ε)-torsion and Rq∗(HM×R×(s1,s2])
is (b(s2 − s1) + ε)-torsion for any ε ∈ R>0.

Proof. The proof is essentially the same as that of [GS14, Proposition 6.9].
For the convenience of the reader, we give a detailed proof again. We only
consider Rq∗(HM×R×[s1,s2)) and omit the proof for the other case.

(a) Choose a diffeomorphism ψ : (s1 − r, s2 + r)
∼−→ R satisfying ψ|[s1,s2] =

id[s1,s2] and dψ(s) ≥ 1 for any s ∈ (s1 − r, s2 + r). Set Ψ := idM × idR×ψ :

M × R× (s1 − r, s2 + r)
∼−→M × R× R and H′ := Ψ∗H|M×R×(s1−r,s2+r) ∈

Db(M × R× R). Then, by the assumption on ψ, we have

(4.11) SS(H′) ⊂ T ∗M × (R× R)× γa,b

and Rq∗(HM×R×[s1,s2)) ≃ Rq∗(H′
M×R×[s1,s2)

). Here q in the right-hand side

denotes the projection M × R× R →M × R, (x, t, s) 7→ (x, t) by abuse of
notation. Therefore, replacing H with H′, we may assume I = R and (4.11).

(b) Set V = R
2 and denote by sV : M × V × V →M × V the addition map.

By Proposition 4.1, we have

(4.12) RsV ∗RΓM×Int(γ◦

a,b)×V (q̃
−1
2 H) ≃ H.

Note that Int(γ◦a,b) = {(t, s) ∈ R
2 | −b−1t < s < a−1t}. Since

(4.13) SS(kM×R×(s1,s2]) ⊂ T ∗
MM × T ∗

R
R× T ∗

R,
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Proposition 2.6(ii) gives H⊗ kM×R×[s1,s2) ≃ RΓM×R×(s1,s2](H). Combining
with (4.12), we obtain

(4.14) Rq∗(HM×R×[s1,s2)) ≃ Rq∗RsV ∗RΓM×D(q̃
−1
2 H),

whereD = Int(γ◦a,b)× V ∩ {(t, s, t′, s′) | s1 < s+ s′ ≤ s2}. Consider the com-
mutative diagram

M × V × V
sV

//

idM ×q̃

��

q̃2

ww

M × V

q

��

M × V M × R× Vq2
oo

s̃
//M × R,

(4.15)

where q̃(t, s, t′, s′) = (t, t′, s′), q2(x, t, t
′, s′) = (x, t′, s′), and s̃(x, t, t′, s′) =

(x, t+ t′). By the adjunction of (idM ×q̃)! and (idM ×q̃)!, we get

Rq∗(HM×R×[s1,s2)) ≃ Rs̃∗(idM ×q̃)∗RHom(kM×D, (idM ×q̃)!q−1
2 H)[−1]

≃ Rs̃∗RHom(kM ⊠Rq̃!kD, q
−1
2 H)[−1].(4.16)

Here, we used q̃! ≃ q̃−1[1] for the first isomorphism.

(c) Through the isomorphism (4.12), τ0,c(H) is induced by the canonical mor-

phism kT̃c(Int(γ◦

a,b)×V ) → kInt(γ◦

a,b)×V , where T̃c(t, s, t
′, s′) = (t+ c, s, t′, s′).

Moreover through (4.16), we find that τ0,c(Rq∗(HM×R×[s1,s2))) is induced
by the morphism kT̃c(D) → kD. In order to prove that Rq̃!kT̃c(D) → Rq̃!kD

is zero morphism for c > a(s2 − s1), we will show that Rq̃!kD and Rq̃!kT̃c(D)
have disjoint supports.

(d) For a point (t, t′, s′) ∈ R× V , q̃−1(t, t′, s′) ∩D = ∅ if t ≤ 0 and

(4.17) q̃−1(t, t′, s′) ∩D = (s1 − s′, s2 − s′] ∩ (−b−1t, a−1t)

if t > 0. This set is an empty set or a half closed interval if t ̸∈ (a(s1 −
s′), a(s2 − s′)]. Thus Supp(Rq̃!kD) is contained in {(t, t′, s′) | t ∈ [a(s1 − s′),
a(s2 − s′)]}. Similarly, Supp(Rq̃!kT̃c(D)) is contained in {(t, t′, s′) | t ∈ [a(s1 −
s′) + c, a(s2 − s′) + c]}. Hence Supp(Rq̃!kD) and Supp(Rq̃!kT̃c(D)) are dis-

joint for c > a(s2 − s1). □

4.2. Pseudo-distance on Tamarkin’s category

In this subsection, we introduce a pseudo-distance on Tamarkin’s category
D(M). This enables us to discuss the relation between possibly non-torsion
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objects in D(M). Recall again that D(M) is regarded as a full subcategory
of Db

{τ≥0}(M × R) via the projector Pl or Pr.

Definition 4.4. Let F,G ∈ Db
{τ≥0}(M × R) and a, b ∈ R≥0.

(i) The pair (F,G) is said to be (a, b)-interleaved if there exist morphisms
α, δ : F → Ta∗G and β, γ : G→ Tb∗F such that

(1) F
α−→ Ta∗G

Ta∗β−−−→ Ta+b∗F is equal to τ0,a+b(F ) : F → Ta+b∗F ,

(2) G
γ−→ Tb∗F

Tb∗δ−−−→ Ta+b∗G is equal to τ0,a+b(G) : G→ Ta+b∗G.

(ii) F is said to be (a, b)-isomorphic toG if there exist morphisms α, δ : F →
Ta∗G and β, γ : G→ Tb∗F satisfying (1), (2) in (i) and also
(3) τa,2a(G) ◦ α = τa,2a(G) ◦ δ and τb,2b(F ) ◦ β = τb,2b(F ) ◦ γ.

Remark 4.5. (i) It might seem strange that we do not add the con-
ditions α = δ and β = γ in Definition 4.4. However, if we add such
conditions, there is no guarantee that Lemma 4.14 below holds.

(ii) An (a, b)-isomorphism is indeed an isomorphism in the localized cate-
gory T (M) := D(M)/Ntor, which is localized by the triangulated sub-
category consisting of torsion objects ([GS14, Definition 6.6]). Let
F,G ∈ D(M). Then by a result of Guillermou–Schapira [GS14, Propo-
sition 6.7], we have

(4.18) HomT (M)(F,G) ≃ lim−→
c→+∞

HomD(M)(F, Tc∗G).

Thus if F is (a, b)-isomorphic to G for some a, b ∈ R≥0, then F ≃ G in
T (M). All statements below hold if “(a, b)-interleaved” is replaced by
“(a, b)-isomorphic”, but we omit the proofs for simplicity.

The two notions we have introduced above are related to the notion
of “a-isomorphic” recently introduced by Kashiwara–Schapira [KS18] and
interleavings on persistence modules. See Remark 4.10.

Remark 4.6. Let F,G ∈ Db
{τ≥0}(M × R) and a, b ∈ R≥0.

(i) The pair (F,G) is (a, b)-interleaved if and only if (G,F ) is (b, a)-
interleaved.

(ii) If (F,G) is (a, b)-interleaved, then (F,G) is (a′, b′)-interleaved for any
a′ ≥ a, b′ ≥ b.

(iii) (F, 0) is (a, b)-interleaved if and only if F is (a+ b)-torsion.
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Lemma 4.7. If (F0, F1) is (a0, b0)-interleaved and (F1, F2) is (a1, b1)-
interleaved, then (F0, F2) is (a0 + a1, b0 + b1)-interleaved.

Proof. By assumption, for i = 0, 1, there exist morphisms

(4.19) αi, δi : Fi → Tai∗Fi+1, βi, γi : Fi+1 → Tbi∗Fi

satisfying

(4.20) Tai∗βi ◦ αi = τ0,ai+bi(Fi), Tbi∗δi ◦ γi = τ0,ai+bi(Fi+1).

We set

(4.21)

α := Ta0∗α1 ◦ α0 : F0 → Ta0+a1∗F2,

β := Tb1∗β0 ◦ β1 : F2 → Tb0+b1∗F1,

γ := Tb1∗γ0 ◦ γ1 : F2 → Tb0+b1∗F1,

δ := Ta0∗δ1 ◦ δ0 : F0 → Ta0+a1∗F2.

Let us consider the following commutative diagram:

F0
α0

ss
τ0,a0+b0

(F0)

��

Ta0∗F1
Ta0∗

β0

++

τa0,a0+a1+b1
(F1)

��

Ta0∗
α1

tt

Ta0+a1∗F2

Ta0+a1∗
β1 **

Ta0+b0∗F0

τa0+b0,a0+a1+b0+b1
(F0)

��

Ta0+a1+b1∗F1

Ta0+a1+b1∗
β0 ++

Ta0+a1+b1+b2∗F0.

The two triangles in the diagram commute by (4.20). Since we obtain the
square by applying τa0,a0+a1+b1 to β0, it also commutes. Hence we have
Ta0+a1∗β ◦ α = τ0,a0+a1+b0+b1(F0). Similarly, we get

(4.22) Tb0+b1∗δ ◦ γ = τ0,a0+a1+b0+b1(F2).

□

A similar argument to the proof of Lemma 4.7 shows the following
lemma.
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Lemma 4.8. Let F0, F1, G0, G1 ∈ Db
{τ≥0}(M × R) and assume that (F0, F1)

is (aF , bF )-interleaved and (G0, G1) is (aG, bG)-interleaved. Then the pair
(Hom⋆(F0, G0),Hom⋆(F1, G1)) is (bF + aG, aF + bG)-interleaved.

Now we define a pseudo-distance on Tamarkin’s category D(M).

Definition 4.9. For object F,G ∈ D(M), one defines

(4.23) dD(M)(F,G) := inf

{
a+ b ∈ R≥0

∣∣∣∣∣
a, b ∈ R≥0,

(F,G) is (a, b)-interleaved

}
,

and calls dD(M) the translation distance.

Remark 4.10. (i) Definition 4.4 and Definition 4.9 are inspired by the
notion of “a-isomorphic” and the convolution distance on the derived
categories of sheaves on vector spaces recently introduced by
Kashiwara–Schapira [KS18]. In fact, if M = pt and F and G are a-
isomorphic, then (F,G) is (a, a)-interleaved. Moreover, if F is (a, b)-
isomorphic to G, then F and G are 2max{a, b}-isomorphic in the sense
of Kashiwara–Schapira [KS18].

(ii) The translation distance dD(M) is similar to the interleaving distance
for persistence modules introduced by [CCSG+09] (see also [CdSGO16]).
Their definition of “a-interleaved” corresponds to Definition 4.4 with
a = b and α = δ, β = γ. However, as remarked by Usher–Zhang [UZ16,
Remark 8.5], removing the restriction a = b gives a better estimate of
the displacement energy. In fact, if we restrict ourselves to a = b and
use the associated pseudo-distance, then we can only prove d(G0, G1) ≤
2
∫ 1
0 ∥Hs∥∞ ds in Theorem 4.16 below.

We summarize some properties of dD(M).

Proposition 4.11. Let F,G,H, F0, F1, G0, G1 ∈ D(M).

(i) dD(M)(F,G) = dD(M)(G,F ),

(ii) dD(M)(F,G) ≤ dD(M)(F,H) + dD(M)(H,G),

(iii) dD(M)(Hom⋆(F0, G0),Hom⋆(F1, G1))≤dD(M)(F0, F1)+dD(M)(G0, G1).

Moreover, let f : M → N be a morphism of manifolds and set f̃ := f ×
idR : M × R → N × R. Regarding F and G as objects in the right orthog-
onal Db

{τ≤0}(M × R)⊥, one has
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(iv) dD(N)(Rf̃∗F,Rf̃∗G) ≤ dD(M)(F,G) (see also Remark 3.3).

Proof. (i) and (iv) follow from the definition of dD(M). (ii) follows from
Lemma 4.7 and (iii) follows from Lemma 4.8. □

Example 4.12. Assume that M is compact and let φ : M → R be a C∞-
function. Recall also that we assume M is connected. Define

Z := {(x, t) ∈M × R | φ(x) + t ≥ 0},
F := kM×[0,+∞), G := kZ ∈ ⊥Db

{τ≤0}(M × R) ≃ D(M).
(4.24)

Set a := max{maxφ, 0}, b := −min{minφ, 0}. Then there exist morphisms
α : F → Ta∗G and β : G→ Tb∗F such that Ta∗β ◦ α = τ0,a+b(F ) and Tb∗α ◦
β = τ0,a+b(G). This implies that (F,G) is (a, b)-interleaved and

(4.25) dD(M)(F,G) ≤ a+ b = max{maxφ, 0} −min{minφ, 0}.

Since HomD(M)(F, Tc∗G) ≃ H0RΓM×[−c,+∞)(M × R;Hom⋆(F,G)) ≃ 0 for
any c < maxφ and HomD(M)(G, Tc∗F ) ≃ 0 for any c < −minφ, the equa-
tion dD(M)(F,G) = a+ b holds.

Example 4.13. Assume thatM is compact. Let L be a compact connected
exact Lagrangian submanifold of T ∗M and f : L→ R be a primitive of the
Liouville 1-form αT ∗M , that is, a C∞-function satisfying αT ∗M |L = df . De-
fine a locally closed conic Lagrangian submanifold L̂f of T ∗(M × R) by

(4.26) L̂f := {(x, t; τξ, τ) | τ > 0, (x; ξ) ∈ L, t = −f(x; ξ)}.

Then by a result of Guillermou [Gui12, Gui16a], there exists an object FL ∈
Db(M × R) called the canonical sheaf quantization such that S̊S(FL) = L̂f

and FL|M×{t} ≃ kM for t > −min f . Moreover FL can be regarded as an
object in DL(M).

Now, for i = 1, 2, let Li be a compact connected exact Lagrangian sub-
manifold of T ∗M and fi : Li → R be a primitive of the Liouville 1-form
αT ∗M . Then it is known that L1 ∩ L2 ̸= ∅ (see [Ike19] for a sheaf-theoretic
proof). For simplicity, we assume that

(4.27) min
p∈L1∩L2

(f2 − f1) ≤ 0 ≤ max
p∈L1∩L2

(f2 − f1).

Moreover, let Fi ∈ Db(M × R) be the canonical sheaf quantization associ-
ated with Li and fi for i = 1, 2. Set a := maxp∈L1∩L2

(f2 − f1). Then, using
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an estimate of SS(Hom⋆(F1, F2)) and the microlocal Morse lemma (Propo-
sition 2.3), one can show that

(4.28) HomD(M)(F1, Ta∗F2[k]) ≃ Hk(M ;kM )

for any k ∈ Z. Thus there exists a morphism α : F1 → Ta∗F2 correspond-
ing to 1 ∈ k ≃ H0(M ;k). Set b := maxp∈L1∩L2

(f1 − f2). Then, similarly to
the above, we obtain HomD(M)(F2, Tb∗F1) ≃ H0(M ;k) and get a morphism
β : F2 → Tb∗F1 corresponding to 1 ∈ k. By construction, we find that Tb∗β ◦
α = τ0,a+b(F1) and Ta∗α ◦ β = τ0,a+b(F2). Thus (F1, F2) is (a, b)-interleaved
and

dD(M)(F1, F2) ≤ max
p∈L1∩L2

(f2 − f1) + max
p∈L1∩L2

(f1 − f2)(4.29)

= max
p∈L1∩L2

(f2 − f1)− min
p∈L1∩L2

(f2 − f1).

Next, we prove that a “homotopy sheaf” gives an (a, b)-interleaved pair.

Lemma 4.14. Let F
u−→ G

v−→ H
w−→ F [1] be a distinguished triangle in

Db
{τ≥0}(M × R) and assume that F is c-torsion. Then (G,H) is (0, c)-

interleaved.

Proof. By assumption, we have Tc∗w ◦ τ0,c(H) = τ0,c(F [1]) ◦ w = 0. Hence,
we get a morphism γ : H → Tc∗G satisfying τ0,c(H) = Tc∗v ◦ γ.

F
u

//

��

G
v

//

�� ⟳

H
w

//

����

γ

{{

F [1]

0
��

Tc∗F Tc∗u
// Tc∗G Tc∗v

// Tc∗H Tc∗w
// Tc∗F [1]

(4.30)

On the other hand, since τ0,c(G) ◦ u = Tc∗u ◦ τ0,c(F ) = 0, there exists a mor-
phism β : H → Tc∗G satisfying τ0,c(G) = β ◦ v.

F
u

//

0

��

G
v

//

��

⟳

H
w

//

����
β

{{

F [1]

��

Tc∗F Tc∗u
// Tc∗G Tc∗v

// Tc∗H Tc∗w
// Tc∗F [1]

(4.31)

This proves the result. □
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Proposition 4.15. Let I be an open interval containing the closed inter-
val [0, 1] and H ∈ Db

{τ≥0}(M × R× I). Assume that there exist continuous
functions f, g : I → R≥0 satisfying

(4.32) SS(H) ⊂ T ∗M × {(t, s; τ, σ) | −f(s) · τ ≤ σ ≤ g(s) · τ}.

Then
(
H|M×R×{0},H|M×R×{1}

)
is
(∫ 1

0 g(s)ds+ ε,
∫ 1
0 f(s)ds+ ε

)
-interleaved

for any ε ∈ R>0.

Proof. Set Λ′ := {(t, s; τ, σ) | −f(s) · τ≤σ≤g(s) · τ}. Let s1 < s2 be in [0, 1]
and ε′ ∈ R>0 be an arbitrary positive number. Then there is r ∈ R>0 such
that

(4.33) f(s) ≤ max
s∈[s1,s2]

f(s) +
ε′

2
and g(s) ≤ max

s∈[s1,s2]
g(s) +

ε′

2

for any s ∈ (s1 − r, s2 + r), which implies

(4.34) Λ′ ∩ π−1(M × R× (s1 − r, s2 + r)) ⊂ T ∗M × (R× I)× γa+ ε′

2
,b+ ε′

2

with a = maxs∈[s1,s2] f(s) and b = maxs∈[s1,s2] g(s). Let q :M×R×I→M×
R be the projection. By Proposition 4.3, Rq∗(HM×R×[s1,s2)) is (a(s2 − s1) +
ε′)-torsion and Rq∗(HM×R×(s1,s2]) is (b(s2 − s1) + ε′)-torsion. Hence, by
Lemmas 4.7 and 4.14, and the distinguished triangles

Rq∗(HM×R×(s1,s2]) −→ Rq∗(HM×R×[s1,s2]) −→ H|M×R×{s1}
+1−→,

Rq∗(HM×R×[s1,s2)) −→ Rq∗(HM×R×[s1,s2]) −→ H|M×R×{s2}
+1−→,

(4.35)

we find that
(
H|M×R×{s1},H|M×R×{s2}

)
is (b(s2 − s1) + ε′, a(s2 − s1) + ε′)-

interleaved. Thus, by Lemma 4.7 again,
(
H|M×R×{0},H|M×R×{1}

)
is (bn +

ε/2, an + ε/2)-interleaved for any n ∈ Z>0, where an and bn are the Riemann
sums

(4.36) an =

n−1∑

k=0

1

n
· max
s∈[ k

n
, k+1

n
]
f(s) and bn =

n−1∑

k=0

1

n
· max
s∈[ k

n
, k+1

n
]
g(s).

Since f and g are continuous on I, there is a sufficiently large n ∈ Z>0 such
that

(4.37) an ≤
∫ 1

0
f(s)ds+

ε

2
and bn ≤

∫ 1

0
g(s)ds+

ε

2
,

which completes the proof. □
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Now, let us consider the distance between Hamiltonian isotopic objects in
D(M). Using sheaf quantization of Hamiltonian isotopies (Theorem 3.6), we
can define Hamiltonian deformations in D(M). From now on, until the end
of this section, we assume moreover that the dimension ofM is greater than
0 and fix an open interval I containing [0, 1]. For a compactly supported
Hamiltonian function H = (Hs)s : T

∗M × I → R, following Hofer [Hof90],
we define

(4.38)

E+(H) :=

∫ 1

0
max

p
Hs(p)ds, E−(H) := −

∫ 1

0
min
p
Hs(p)ds,

∥H∥ := E+(H) + E−(H) =

∫ 1

0

(
max

p
Hs(p)−min

p
Hs(p)

)
ds.

Theorem 4.16. Let H = (Hs)s : T
∗M × I → R be a compactly supported

Hamiltonian function and denote by ϕH the Hamiltonian isotopy generated
by H. Let K ∈ Db(M × R×M × R× I) be the sheaf quantization associ-
ated with ϕH . Moreover, let G ∈ D(M), and set G′ := K ◦G ∈ Db(M × R×
I) and Gs := G′|M×R×{s} ∈ D(M) for s ∈ I. Then (G0, G1) is (E−(H) +
ε, E+(H) + ε)-interleaved for any ε ∈ R>0. In particular, dD(M)(G0, G1) ≤
∥H∥.

Proof. By Proposition 2.7 and (3.19), we get
(4.39)

SS(G′) ⊂ T ∗M ×
{
(t, s; τ, σ)

∣∣∣∣ −max
p
Hs(p) · τ ≤ σ ≤ −min

p
Hs(p) · τ

}
.

Thus the result follows from Proposition 4.15. □

4.3. Displacement energy

In this subsection, we prove a quantitative version of Tamarkin’s non-
displaceability theorem, which gives a lower bound of the displacement en-
ergy.

For compact subsets A and B of T ∗M , their displacement energy e(A,B)
is defined by

(4.40) e(A,B) := inf

{
∥H∥

∣∣∣∣∣
H : T ∗M × I → R with compact support,

A ∩ ϕH1 (B) = ∅

}
.

For a compact subset A of T ∗M , set e(A) = e(A,A).
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We give a sheaf-theoretic lower bound of e(A,B). For that purpose, we
make the following definition.

Definition 4.17. For F,G ∈ D(M), one defines

eD(M)(F,G) := dD(pt)(RqR∗Hom⋆(F,G), 0)(4.41)

= inf{c ∈ R≥0 | RqR∗Hom⋆(F,G) is c-torsion}.

Note that by Proposition 3.4, for F,G ∈ D(M) we have

eD(M)(F,G) ≥ inf{c ∈ R≥0 | HomD(M)(F,G)(4.42)

→ HomD(M)(F, Tc∗G) is zero}.

Theorem 4.18. Let A and B be compact subsets of T ∗M . Then, for any
F ∈ DA(M) and G ∈ DB(M), one has

(4.43) e(A,B) ≥ eD(M)(F,G).

In particular, for any F ∈ DA(M) and G ∈ DB(M),

e(A,B) ≥ inf{c ∈ R≥0 | HomD(M)(F,G)(4.44)

→ HomD(M)(F, Tc∗G) is zero}.

Proof. Suppose that a compactly supported Hamiltonian function H :
T ∗M × I → R satisfies A ∩ ϕH1 (B) = ∅. Let K ∈ Db(M × R×M × R× I)
be the sheaf quantization associated with ϕH and define G′ := K ◦G ∈
Db(M × R× I) andGs := G′|M×R×{s} ∈ D(M) for s ∈ I as in Theorem 4.16.
Since G1 ∈ DϕH

1 (B)(M), Tamarkin’s separation theorem (Theorem 3.5) im-
plies RqR∗Hom⋆(F,G1) ≃ 0. On the other hand, by Theorem 4.16, we have
dD(M)(G0, G1) ≤ ∥H∥. Hence, by Proposition 4.11, we obtain

eD(M)(F,G) = dD(pt)(RqR∗Hom⋆(F,G0), 0)(4.45)

≤ dD(M)(Hom⋆(F,G0),Hom⋆(F,G1))

≤ dD(M)(G0, G1) ≤ ∥H∥,

which proves the theorem. □

We list some properties of eD(M).

Proposition 4.19. Let F,G ∈ D(M).
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(i) eD(M)(F,G) ≤ eD(M)(F, F ) and eD(M)(F,G) ≤ eD(M)(G,G).

(ii) Assume that F and G are cohomologically constructible as objects in
⊥Db

{τ≤0}(M × R) ⊂ Db(M × R). Then

(4.46) eD(M)(F,G) = eD(M)(i∗DM×RG, i∗DM×RF ).

(iii) Assume that there exist compact subsets A and B of T ∗M such that
F ∈ DA(M) and G ∈ DB(M). Let ϕH : T ∗M × I → T ∗M be a Hamil-
tonian isotopy with compact support and K ∈ Db(M × R×M × R×
I) be the sheaf quantization associated with ϕH . Set F ′ := K ◦ F,G′ :=
K ◦G and Fs := F ′|M×R×{s}, Gs := G′|M×R×{s} for s ∈ I. Then

(4.47) eD(M)(F,G) = eD(M)(Fs, Gs)

for any s ∈ I.

Proof. (i) First note that for any c ∈ R≥0, we have the following commuta-
tive diagram:

(4.48)

Hom⋆(F,G)

��uu ))

Hom(T−c∗F,G) ∼
// Tc∗Hom⋆(F,G) Hom⋆(F, Tc∗G).∼

oo

Assume that the morphism

τ0,c(RqR∗Hom⋆(F, F )) : RqR∗Hom⋆(F, F ) −→ Tc∗RqR∗Hom⋆(F, F )

≃ RqR∗Hom⋆(T−c∗F, F )(4.49)

is zero. Then the induced morphism HomD(M)(F, F ) → HomD(M)(T−c∗F, F )
is also zero by Proposition 3.4. Thus τ−c,0(F ) = 0 as the image of idF under
the morphism. By the commutativity of (4.48), τ0,c(RqR∗Hom⋆(F,G)) is
zero. This proves the first inequality. The proof for the second one is similar.

(ii) First, we show that i∗DM×R : D
b(M × R) → Db(M × R) induces a

functor D(M) ≃ ⊥Db
{τ≤0}(M × R) → Db

{τ≤0}(M × R)⊥ ≃ D(M). Let F ∈
⊥Db

{τ≤0}(M × R) and S ∈ Db
{τ≤0}(M × R). Then we have

HomDb(M×R)(S, i∗DM×RF ) ≃ HomDb(M×R)(i∗S,RHom(F, ωM×R))(4.50)

≃ HomDb(M×R)(i∗S ⊗ F, ωM×R)

≃ HomDb(M×R)(F,RHom(i∗S, ωM×R)).
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By Theorem 2.5 and Proposition 2.6, RHom(i∗S, ωM×R) ∈ Db
{τ≤0}(M × R).

Hence HomDb(M×R)(S, i∗DM×RF ) ≃ 0, which implies

(4.51) i∗DM×RF ∈ Db
{τ≤0}(M × R)⊥.

Now, assume that F,G∈⊥Db
{τ≤0}(M×R) are cohomologically construct-

ible. Then we have

Hom⋆(F,G) ≃ Rs∗RHom(q̃−1
2 i−1F, q̃!1G)(4.52)

≃ Rs∗RHom(DM×Rq̃
!
1G,DM×Rq̃

−1
2 i−1F )

≃ Rs∗RHom(q̃−1
1 DM×RG, q̃

!
2i

−1
DM×RF )

≃ Hom⋆(i∗DM×RG, i∗DM×RF ),

which proves the equality.

(iii) It is enough to show that RqR∗Hom⋆(F,G) ≃ RqR∗Hom⋆(Fs, Gs) for
any s ∈ I. For a compact subset C of T ∗M , define ConeH(C) ⊂ T ∗(M ×
I)× R by
(4.53)

ConeH(C) :=

{
(x′, s; ξ′,−τ ·Hs(x′; ξ′/τ), τ)

∣∣∣∣∣
τ > 0, (x; ξ/τ) ∈ C,

(x′; ξ′/τ) = ϕHs (x; ξ/τ)

}
.

Denote by π̂ : T ∗(M × I × R) ≃ T ∗(M × I)× T ∗
R → T ∗(M × I)× R the

projection. Then, by Proposition 2.7 and (3.19), we have

(4.54) SS(F ′) ⊂ π̂−1(ConeH(A)), SS(G′) ⊂ π̂−1(ConeH(B)).

Moreover, let qI×R : M × I × R → I × R be the projection. Note that qI×R

is proper on Supp(Hom⋆(F ′, G′)), where Hom⋆ denotes the internal Hom
functor on D(M × I). Then, by [GS14, Proposition 4.13 and Lemma 4.7]
and Theorem 2.5, we obtain

(4.55) SS(RqI×R∗Hom⋆(F ′, G′)) ⊂ {(s, t; 0, τ) | τ ≥ 0} ⊂ T ∗(I × R).

Since I is contractible, there exists S ∈ Db(R) such that

(4.56) RqI×R∗Hom⋆(F ′, G′) ≃ q′−1S,

where q′ : I × R → R is the projection. Finally, by [GS14, Corollary 4.15],
for any s ∈ I, we have

(4.57) RqI×R∗Hom⋆(F ′, G′)|{s}×R ≃ RqR∗Hom⋆(Fs, Gs),
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which completes the proof. □

Remark 4.20. Assume that F,G ∈ D(M) ≃ ⊥Db
{τ≤0}(M × R) are con-

structible and have compact support. Then RqR∗Hom⋆(F,G) is also con-
structible object with compact support and SS(RqR∗Hom⋆(F,G)) ⊂ {τ ≥
0}. By the decomposition result for constructible sheaves on R due to Guiller-
mou [Gui16b, Corollary 7.3] (see also [KS18, Subsection 1.4]), there exist a
finite family of half-closed intervals {[bi, di)}i∈I and ni ∈ Z (i ∈ I) such that

(4.58) RqR∗Hom⋆(F,G) ≃
⊕

i∈I

k[bi,di)[ni].

Using this decomposition, we find that eD(M)(F,G) = maxi∈I(di − bi) is
the length of the longest barcodes of RqR∗Hom⋆(F,G) in the sense of
Kashiwara–Schapira [KS18].

Remark 4.21. Let F,G ∈ D(M). As remarked by Tamarkin [Tam18, Sec-
tion 1], we can associate a module H(F,G) over a Novikov ring Λ0,nov(k) as
follows. We define
(4.59)

Λ0,nov(k) :=

{
∞∑

i=1

ciT
λi

∣∣∣∣∣ ci ∈ k, λi ∈ R≥0, λ1 < λ2 < · · · , lim
i→∞

λi = +∞
}
.

We also define a submodule H(F,G) of
∏

c∈R HomD(M)(F, Tc∗G) by
(4.60)


(hc)c ∈

∏

c∈R

HomD(M)(F, Tc∗G)

∣∣∣∣∣∣∣

∃ (ci)∞i=1 ⊂ R, c1 < c2 < · · · , lim
i→∞

ci = +∞

such that hc = 0 for any c ̸∈
∞⋃

i=1

{ci}




.

For c ∈ R and λ ∈ R≥0, there is the canonical morphism

(4.61) τc,c+λ : HomD(M)(F, Tc∗G) → HomD(M)(F, Tc+λ∗G)

induced by τc,c+λ(G) : Tc∗G→ Tc+λ∗G. Using this morphism, we can equip
H(F,G) with an action of T λ by T λ · (hc)c := (τc,c+λ(hc))c. We thus find
that the Novikov ring Λ0,nov(k) acts on H(F,G).
(i) Using the Λ0,nov(k)-module H(F,G), we can express (4.44) in Theo-
rem 4.18 as

(4.62) e(A,B) ≥ inf{c ∈ R≥0 | H(F,G) is T c-torsion}
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for any F ∈ DA(M) and G ∈ DB(M). This inequality seems to be related
to the estimate of the displacement energy by Fukaya–Oh–Ohta–Ono
[FOOO09a, FOOO09b, Theorem J] and [FOOO13, Theorem 6.1].
(ii) We denote by Λnov(k) the fraction field of Λ0,nov(k). Then, for any
F,G ∈ D(M), we have

(4.63) H(F,G)⊗Λ0,nov(k) Λnov(k) ≃ HomT (M)(F,G)⊗k Λnov(k)

See Remark 4.5(ii) for the category T (M). Note also that T (M) is invariant
under Hamiltonian deformations by Theorem 4.16 and Remark 4.5(ii).

4.4. Examples and applications

In this subsection, we give some examples to which Theorem 4.18 is appli-
cable.

The first two examples, Example 4.22 and Example 4.24, treat exact
Lagrangian immersions.

Example 4.22. Consider T ∗
R
m ≃ R

2m and denote by (x; ξ) the homoge-
neous symplectic coordinate system. Let L=Sm={(x, y)∈R

m×R |∥x∥2+
y2 = 1} and consider the exact Lagrangian immersion

(4.64) ι : L −→ T ∗
R
m, (x, y) 7−→ (x; yx).

Setting f : L→ R, f(x, y) := −1
3y

3, we have df = ι∗αT ∗Rm . We define a lo-
cally closed subset Z of Rm × R by
(4.65)

Z :=

{
(x, t) ∈ R

m × R

∣∣∣∣ ∥x∥ ≤ 1,−1

3
(1− ∥x∥2) 3

2 ≤ t <
1

3
(1− ∥x∥2) 3

2

}

and F := kZ ∈ Db(Rm × R).

x

ξ
ι(L)

Figure 4.1: ι(L) in the case m = 1.

Z

x

t

−1
3

1
3

Figure 4.2: Z in the case m = 1.
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The object F is in ⊥Db
{τ≤0}(R

m × R) and can be regarded as an object in

Dι(L)(R
m). For this object F , we find that

(4.66) HomD(Rm)(F, Tc∗F ) ≃ HomDb(Rm×R)(F, Tc∗F ) ≃
{
k

(
0 ≤ c < 2

3

)

0
(
c ≥ 2

3

)

and the induced morphism HomD(Rm)(F, F ) → HomD(Rm)(F, Tc∗F ) is the
identity for any 0 ≤ c < 2/3. Hence, we obtain e(ι(L)) ≥ eD(Rm)(F, F ) ≥ 2/3
by Theorem 4.18. This is the same estimate as that of Akaho [Aka15]. If
m = 1, it is known that e(ι(L)) = 4/3 by the use of Hofer-Zehnder capacity.

Using the example above, we can recover the following result of
Polterovich [Pol93], for subsets of cotangent bundles.

Proposition 4.23 ([Pol93, Corollary 1.6, see also the first remark in
p. 360]). Let A be a compact subset of T ∗M whose interior is non-empty.
Then its displacement energy is positive: e(A) > 0.

Proof. Take a symplectic diffeomorphism ψ : T ∗M → T ∗M such that
T ∗
MM ∩ Int(ψ(A)) ̸= ∅. Since e(ψ(A)) = e(A), we may assume T ∗

MM ∩
Int(A) ̸= ∅ from the beginning. Take a point x0 ∈ T ∗

MM ∩ Int(A) and a local
coordinate system x = (x1, . . . , xm) on M around x0. Denote by (x; ξ) the
associated local homogeneous symplectic coordinate system on T ∗M . Using
the coordinates, for ε ∈ R>0 we define ιε : S

m → T ∗M by (x, y) 7→ (εx, εyx)
as in Example 4.22. Then, there is a sufficiently small ε ∈ R>0 such that
the image ιε(S

m) is contained in Int(A). As in Example 4.22, we define
F := kZε

∈ Dιε(Sm)(R
m), where

(4.67)

Zε :=

{
(z, t) ∈ R

m × R

∣∣∣∣ ∥z∥ ≤ ε,− 1

3ε
(ε2 − ∥z∥2) 3

2 ≤ t <
1

3ε
(ε2 − ∥z∥2) 3

2

}
.

Moreover we define G ∈ Dιε(Sm)(M) as the zero extension of F to M ×
R. By monotonicity of the displacement energy and a similar argument to
Example 4.22, we have

(4.68) e(A) ≥ e(ιε(S
m)) ≥ eD(M)(G,G) ≥

2

3
ε2 > 0.

□

For the next explicit example, our estimate is better than Akaho’s esti-
mate [Aka15].
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Example 4.24. Let φ : [0, 1] → (0, 1] be a C∞-function satisfying the fol-
lowing two conditions: (1) φ ≡ 1 near 0, (2) φ(r) = r on [1/2, 1]. Set Sm =
{(x, y) ∈ R

m × R | ∥x∥2 + y2 = 1} and consider the exact Lagrangian im-
mersion

(4.69) ι : Sm −→ T ∗
R
m, (x, y) 7−→

(
x,

(
φ(∥x∥)y − φ′(∥x∥)

3∥x∥ y3
)
· x

)
.

Setting f : Sm → R, f(x, y) := −1
3φ(∥x∥)y3, we have df = ι∗αT ∗Rm . We de-

fine a locally closed subset Z of Rm × R by

(4.70) Z :=

{
(x, t) ∈ R

m × R

∣∣∣∣∣
∥x∥ ≤ 1,

− 1

3
φ(∥x∥)(1− ∥x∥2) 3

2 ≤ t <
1

3
φ(∥x∥)(1− ∥x∥2) 3

2

}

and F := kZ ∈ Db(Rm × R). Using the object F , one can show e(ι(Sm)) ≥
eD(Rm)(F, F ) ≥ 2/3 as in Example 4.22. On the other hand, the estimate by

Akaho [Aka15] only gives e(ι(Sm)) ≥ minr∈[0, 1
2
]{2

3(1− r2)
3

2 · φ(r)}, which is

less than
√
3/8.

Our theorem is also applicable to non-exact Lagrangian submanifolds.
We focus on graphs of closed 1-forms here.

Example 4.25. LetM be a compact manifold and ηi : M → T ∗M a closed
1-form for i = 1, 2. Set Li := Γηi

⊂ T ∗M the graph of ηi for i = 1, 2, and
assume that L1 and L2 intersect transversally. We consider the displace-
ment energy e(L1, L2). The symplectic diffeomorphism ψ on T ∗M defined
by ψ(x; ξ) := (x; ξ − η1(x)) sends L1 to the zero-sectionM and L2 to Γη2−η1

.
Thus we assume L1 =M and L2 = Γη, where η is a closed Morse 1-form from

the beginning. Let p : M̃ →M be the abelian covering of M corresponding
to the kernel of the pairing with η. Then there exists a function f : M̃ → R

such that p∗η = df . By assumption, f is a Morse function on M̃ . Define a
closed subset Z of M̃ × R by

(4.71) Z := {(x, t) ∈ M̃ × R | f(x) + t ≥ 0}.

Then we have
(4.72)
F := R(p× idR)∗kZ ∈ DL(M) and e(L1, L2) ≥ eD(M)(kM×[0,+∞), F )

by Theorem 4.18.
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Let us consider the estimate for eD(M)(kM×[0,+∞), F ). First, we have

RHom(kM×[0,+∞), Tc∗F ) ≃ RHom(k
M̃×[−c,+∞)

,kZ)(4.73)

≃ RΓ
M̃×[−c,+∞)

(
M̃ × R;kZ

)
.

Define Uc := {x ∈ M̃ | f(x) > c} for c ∈ R. Then the cohomology of the last

complex RΓ
M̃×[−c,+∞)

(
M̃ × R;kZ

)
is isomorphic to H∗(M̃, Uc) and for c ≤

d, τc,d is the canonical morphism induced by the map (M̃, Ud) → (M̃, Uc) of

the pairs. Hence this persistence module is isomorphic to (H∗(M̃, Uc))c∈R
and it is the dual of the persistence module (H∗(M̃, Uc))c∈R. The persistence

module (H∗(M̃, Uc))c∈R can be studied by Morse homology theory of −f
or Morse-Novikov theory of −η. Let v be a vector field on M which is
a (−η)-gradient and satisfies the transversality condition in the sense of
Pajitnov [Paj06, Chapter 3 and Chapter 4]. The existence and denseness of
such vector fields hold (see Pajitnov [Paj06, Chapter 4]). Moreover let ṽ be

the lift of v to M̃ . The Morse-Novikov complex C := C(−η, v) with respect
to ṽ has the filtration (C≤c)c∈R defined by the values of −f . Here we regard
C as a finitely generated free module over the Novikov field

(4.74)





∞∑

i=1

ciT
λi

∣∣∣∣∣∣∣

ci ∈ k, λi =

∫

γ
η for some γ ∈ H1(M ;Z),

λ1 < λ2 < · · · , lim
i→∞

λi = +∞




.

The persistence module (H∗(C/C≤c))c∈R is isomorphic to (H∗(M̃, Uc))c∈R
by usual Morse theoretic arguments. Each critical point generates or kills
rank 1 subspace of the persistent homology. Hence one can prove that our
estimate is greater than or equal to

(4.75) max
p

min
q

{
|f(p)− f(q)|

∣∣∣∣∣
p, q ∈ Crit(−f), |ind(p)− ind(q)| = 1,

there is a flow of ṽ connecting p and q

}
,

where Crit(−f) is the set of the critical points of −f and ind(p) is the Morse
index of p ∈ Crit(−f).

The persistence module (H∗(C/C≤c))c∈R is not finitely generated in the
usual sense of persistent homology theory. However we can apply the theory
of Usher–Zhang [UZ16] to C. Their result describes the “barcodes” of the
persistence module (H∗(C≤c))c and one can check that our estimate in this
case coincides with the length of the longest concise barcodes for C(−η, v)
defined in [UZ16].
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In the last example below, our estimate determines the displacement
energy.

Example 4.26 (Special case of Example 4.25). Let L = Γη ⊂ T ∗S1

be the graph of a non-exact 1-form η : S1 → T ∗S1. Assume that L and
the zero-section S1 intersect transversally at only two points. We estimate
the displacement energy e(S1, L). Let p : R → S1 be the universal cover-
ing and take a function f on R such that df = p∗η. Define F := R(p×
idR)∗k{(x,t)∈R×R|f(x)+t≥0} ∈ DL(S

1). Then a similar argument to Example
4.25 shows that eD(S1)(kS1×[0,+∞), F ) is equal to the smaller area enclosed
by S1 and L. One can check that e(S1, L) is equal to the area.
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