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Persistence-like distance on Tamarkin’s
category and symplectic
displacement energy
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We introduce a persistence-like pseudo-distance on Tamarkin’s cat-
egory and prove that the distance between an object and its Hamil-
tonian deformation is at most the Hofer norm of the Hamiltonian
function. Using the distance, we show a quantitative version of
Tamarkin’s non-displaceability theorem, which gives a lower bound
of the displacement energy of compact subsets of cotangent bun-

dles.
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1. Introduction

In this paper, we introduce a pseudo-distance on Tamarkin’s category, in-
spired by the recent work by Kashiwara—Schapira [KS18] on the sheaf-
theoretic interpretation of the interleaving distance for persistence modules.
We also propose a new sheaf-theoretic method to estimate the displacement
energy of compact subsets of cotangent bundles, which is a quantitative
generalization of Tamarkin’s non-displaceability theorem. We will recall the
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notion of displacement energy in Subsection [I.I] and then state our results
in Subsection [[.2

1.1. Displacement energy

For a given compact subset of a symplectic manifold, its displacement en-
ergy measures the minimal energy of Hamiltonian isotopies which displace
the subset. In this paper, we consider the displacement energy in the case
the symplectic manifold is a cotangent bundle. Let M be a connected man-
ifold and I be an open interval containing [0,1]. We denote by T*M the
cotangent bundle equipped with the canonical exact symplectic structure.
A compactly supported C*>°-function H = (Hg)ser: T*M x I — R defines
a time-dependent Hamiltonian vector field Xy = (Xg,)s on T*M. By the
compactness of the support, Xy generates a Hamiltonian isotopy ¢ =
(¢H)g: T*M x I — T*M. Following Hofer [Hof90], for a compactly sup-
ported function H: T*M x I — R, we define

(1) #1 = [ (s )~ min ) ) s

p

For compact subsets A and B of T*M, we define their displacement energy
e(A, B) by

(1.2) e(A,B):= inf{IIHH Anel(B) =0

H:T*M x I — R with compact Support,}

Here (b{{ denotes the time-one map of the Hamiltonian isotopy ¢f. Note
that if e(A, B) = +oc, then AN ¢t (B) # () for any compactly supported
function H. The aim of this paper is to give a lower bound of e(A4, B) in
terms of the microlocal sheaf theory due to Kashiwara and Schapira [KS90].

1.2. Main results

We shall estimate the displacement energy by introducing a pseudo-distance
on Tamarkin’s category D(M). In order to state our results, we prepare
some notions. In the sequel, let k be a field. Moreover, let X be a C°°-
manifold. We denote by D(X) the bounded derived category of sheaves of
k-vector spaces. For an object F' € DP(X), its microsupport SS(F) is defined
as the set of directions in which the cohomology of F' cannot be extended
isomorphically. The microsupport is a closed subset of the cotangent bundle
T*X and invariant under the action of R-g on T%X.
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In [Tam18], Tamarkin introduced a category D(M) and used it to prove
the non-displaceability of particular compact subsets. The category D(M)
is defined as a quotient category of D?(M x R). For a compact subset A of
T*M, Dao(M) denotes the full subcategory of D(M) consisting of objects
whose microsupports are contained in the cone of A in T*(M x R). For an
object F' € D(M) and ¢ € R>g there is a canonical morphism 79 .(F): F —
T..F, where T,: M x R — M x R, (z,t) — (z,t + c). See Section [3 for more
details.

First, using the R-direction of M x R, we introduce the following pseudo-
distance dp(pr) on Tamarkin’s category D(M ), which is similar to the inter-
leaving distance for persistence modules (see [CCSGT09, [CdSGOT16]). Our
definition is inspired by the pseudo-distances on the derived categories of
sheaves on vector spaces recently introduced by Kashiwara—Schapira [KS1§].
See also Remark [4.10Q)] for their relation.

Definition 1.1.

(i) Let F,G € D(M) and a,b € R>o. Then the pair (F,G) is said to be
(a,b)-interleaved if there exist morphisms «,¢: F — T,,G and (3,7 :
G — T}, F such that

(1) F 2 Tu,.G 2205 Ty, F is equal to mo.040(F): F — Tary, F,
2) G5 T, F ELIN Tots, G is equal to 79 415(G): G = Tyt G.
(ii) For objects F,G € D(M), one defines

1.3 d F,G) :=inf beR
(1.3)  dpan(F,G) = in {a+ =% (F,G) is (a, b)-interleaved

a,bERzo, }

and calls dp(yy) the translation distance.

It might seem strange that four morphisms «, 3,7, d appear in (i) of the
definition above. However, to the best of the authors’ knowledge, if we add
the conditions o = § and [ = =, there is no guarantee that Theorem
below holds. See also Remark [4.5

Now, let us consider the distance between an object in D(M) and its
Hamiltonian deformation. Let H: T*M x I — R be a compactly supported
Hamiltonian function. Then, using the sheaf quantization associated with
the Hamiltonian isotopy ¢/ due to Guillermou-Kashiwara-Schapira [GKS12]
one can define a functor ®{': D(M) — D(M), which induces a functor
O Dy(M) — Dyu(4y(M) for any compact subset A of T*M. Our first
result is the following.
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Theorem 1.2 (see Theorem [4.16)). Let G € D(M) and H: T*M x I —
R be a compactly supported Hamiltonian function. Then dp(yr) (G, (@) <
IH].

The outline of the proof is as follows. First we prove that the distance
between two objects is controlled by the angle of a cone which contains
the microsupport of a “homotopy sheaf” connecting them. Then using the
sheaf quantization associated with ¢, we can construct a homotopy sheaf
G' € DP(M x R x I) such that G'pxrxioy = G, G arxrx {1} = ®H(G) and
SS(G') € T*M X ~vg, where
(1.4)

YH = (t,S;T, U)

—max Hs(p) - 7 < 0 < —min H(p) -T} CT(R xI).
P P

We thus obtain the result.

Next, we use the above result to estimate the displacement energy. One
can define an internal Hom functor Hom* on the category D(M), which
satisfies the isomorphism

(1.5) Hompr)(F, G) = H' R0, +00) (M x R; Hom*(F, G))
forany F, G € D(M). Let qg: M x R — R denote the projection. Tamarkin’s
separation theorem asserts that if AN B = () then Rgg, Hom*(F,G) ~ 0 for
any F' € Do(M) and G € Dg(M). See also Section [3| Using these notions,
we make the following definition.

Definition 1.3. For F,G € D(M), one defines

(1.6) ep)(F, G) := dp(pt) (Rqr. Hom™(F, G),0)
= inf{c € R>¢ | 70,c(Rqr, Hom™(F,G)) = 0}.

Our main theorem is the following.

Theorem 1.4 (see Theorem [4.18). Let A and B be compact subsets of
T*M. Then, for any F € Dy(M) and G € Dg(M), one has

(17) G(A, B) > eD(M)(Fa G)
In particular, for any F € Do(M) and G € Dp(M),

(1.8) e(A, B)>inf{c € R>o |[Homp ) (F, G) = Homp(pp) (F, T, G) is zero}.
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This theorem implies, in particular, that 7o .(Rqr, Hom™(F,G)) is non-
zero for any ¢ € R>, then A and B are mutually non-displaceable. In this
sense, the theorem is a quantitative version of Tamarkin’s non-displaceability
theorem (see Tamarkin [Taml8, Theorem 3.1] and Guillermou—Schapira
IGS14, Theorem 7.2]).

Theorem |[1.4] is proved by Tamarkin’s separation theorem and Theo-
rem [I.2) as follows. Suppose that a compactly supported Hamiltonian func-
tion H satisfies AN @M (B) = (. Then, by Tamarkin’s separation theorem,
Rqg, Hom*(F,®H(G)) ~ 0. Thus, by fundamental properties of dp(nry and
Theorem we obtain

(1.9) ep)(F, G) = dp(pt) (Rar, Hom™ (F, G),0)
< dpny (Hom*(F, G), Hom* (F, 1 (G)))
< dpon (G, @1 (G)) < || H].

As an application of Theorem we prove that the displacement energy
of the image of the compact exact Lagrangian immersion

(1.10) S™ = {(x,y) € R™ x R | ||lz||® + y* = 1} — T*R™ ~ R*™,

(@, y) — (z;y2)

is greater than or equal to 2/3 (see Example . Using this estimate, we
give a purely sheaf-theoretic proof of the following theorem of Polterovich
[Pol93], for subsets of cotangent bundles. Note that he proved the result
for more general class of symplectic manifolds, using pseudo-holomorphic
curves.

Proposition 1.5 ([Pol93), Corollary 1.6]). Let A be a compact subset of
T*M whose interior is non-empty. Then its displacement energy is positive:
e(4,A) > 0.

1.3. Related topics

The interleaving distance for persistence modules is now widely used in
topological data analysis (see, for example, |[CCSGT09, [CASGO16]). Re-
cently, Kashiwara—Schapira [KSI§| interpreted the distance as that on the
derived category of sheaves. In symplectic geometry, the notion of persis-
tence modules was introduced by Polterovich-Shelukhin [PS16] (see also
Polterovich-Shelukhin-Stojisavljevi¢ [PSS17]). For barcodes of chain com-
plexes over Novikov fields such as Floer cohomology complexes, see also
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Usher—Zhang [UZ16]. Note also that Theorem [1.2seems to be related to the
results of Schwarz [Sch00] and Oh [OhO5] for continuation maps, although
they did not use persistence modules.

As remarked in Tamarkin [Taml8, Section 1], for F,G € D(M), one
can associate a submodule H(F,G) of [[.cp Hompps) (F, Te.G), which is a
module over a Novikov ring Ag nov(k) (with a formal variable T'). Using this
module, we can express in Theorem as

(1.11) e(A, B) > inf{c € R>g | H(F,G) is T-torsion}.

See Remark for more details. This inequality seems to be closely related
to the estimate of the displacement energy discussed in Fukaya—Oh—Ohta—
Ono [FOOO09a, [FOOO09D, Theorem J] and [FOOO13), Theorem 6.1].

1.4. Organization

This paper is structured as follows. In Section [2, we recall some basics of the
microlocal sheaf theory. In Section [3| we review results of [TamI8|, (GKS12|
GS14] on Tamarkin’s separation theorem and sheaf quantization of Hamilto-
nian isotopies. Section[4]is the main part of the paper. First, we introduce the
translation distance dp(yr) on Tamarkin’s category and prove Theorem .
Then we show Theorem and give some examples and applications.
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2. Preliminaries on microlocal sheaf theory

Throughout this paper, all manifolds are assumed to be of class C'°° without
boundary. Until the end of this paper, let k be a field.
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In this section, we recall some basics of the microlocal sheaf theory due
to Kashiwara and Schapira [KS90]. We mainly follow the notation in [KS90].

2.1. Geometric notions ([KS90, §4.3, §A.2])

Let X be a C°°-manifold without boundary. For a locally closed subset A
of X, we denote by A its closure and by Int(A) its interior. We also denote
by Ax or simply A the diagonal of X x X. We denote by 7x: TX — X
the tangent bundle of X and by wx: T*X — X the cotangent bundle of
X. If there is no risk of confusion, we simply write 7 instead of mx. For
a submanifold M of X, we denote by T};X the conormal bundle to M in
X. In particular, T X denotes the zero-section of 7% X. We set T*X =
T*X\TxX.

Let f: X = Y be a morphism of manifolds. With f we associate mor-
phisms and a commutative diagram

T*X < x wy 7Y LTy

w oo T

XX ——Y,

where f is the projection and f; is induced by the transpose of the tangent
map f: TX — X xy TY.

We denote by (x; ) a local homogeneous coordinate system of 7*X. The
cotangent bundle T*X is an exact symplectic manifold with the Liouville
1-form ap-x = (§,dz). The antipodal map a: T*X — T*X is defined by
(x;€) — (z;—&). For a subset A of T* X, we denote by A% its image under
the map a.

2.2. Microsupports of sheaves ([KS90, §5.1, §5.4, §6.1])

For a manifold X, we denote by kx the constant sheaf with stalk k and
by DP(X) = D"(kx) the bounded derived category of sheaves of k-vector
spaces on X . One can define Grothendieck’s six operations between derived
categories of sheaves RHom, ®, Rf., f~', Rfi, f* for a morphism of manifolds

f: X — Y. Since we work over the field k, we simply write ® instead of <§L§>
Moreover for F' € DP(X) and G € DP(Y), we define their external tensor
product FXG € DP(X xY) by FRG = ¢y'F ® ¢;'G, where gx: X x
Y - X and gy: X XY — Y are the projections. For a locally closed subset
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Z of X, we denote by kz € DP(X) the constant sheaf with stalk k on Z,
extended by 0 on X \ Z. Moreover, for a locally closed subset Z of X and
F € D"(X), we define

(22) Fy;:=F®kyg, sz(F) = RHom(kZ,F)

One denotes by wy € DP(X) the dualizing complex on X, that is, wy :=
a!Xk, where ax : X — pt is the natural morphism. Note that wx is isomor-
phic to orx[dim X |, where ory is the orientation sheaf on X. More generally,
for a morphism of manifolds f: X — Y, we denote by wy = wy,y := f'ky ~
wx ® f _1w§?*1 the relative dualizing complex. For F' € DP(X), we define the
Verdier dual of F' by Dx F := RHom(F,wx).

Let us recall the definition of the microsupport SS(F') of an object F' €
D"(X).

Definition 2.1 ([KS90, Definition 5.1.2]). Let F € D’(X) and p €
T*X. One says that p ¢ SS(F) if there is a neighborhood U of p in T*X
such that for any z¢p € X and any C*°-function ¢ on X (defined on a neigh-
borhood of x¢) with dp(xg) € U, one has RI,>p(xe)} (F)z, = 0.

The following properties can be checked from the definition of microsup-
ports.

(i) The microsupport of an object in D(X) is a conic (i.e., invariant under
the action of R-¢ on 7% X) closed subset of 7% X.
(ii) For an object F € D*(X), one has SS(F)NT%X = n(SS(F)) =
Supp(F).
(iii) The microsupports satisfy the triangle inequality: if F} — F» —
F3 5 is a distinguished triangle in DP(X), then SS(F;) C SS(F;) U
SS(Fy) for j # k.

We also use the notation SS(F) := SS(F) NT*X = SS(F) \ T X.

Example 2.2. (i) If F'is a locally constant sheaf on X, then SS(F) C T% X.
Conversely, if SS(F') C T% X then the cohomology sheaves H*(F) are locally
constant for all k£ € Z.

(ii) Let M be a closed submanifold of X. Then SS(kys) = T3, X C T*X.
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(iii) Let ¢ be a C*°-function on X and assume that dy(x) # 0 for any x €
0 10). Set U :={z € X | p(x) >0} and Z := {x € X | ¢(x) > 0}. Then

SS(kv) = Tx X|v U {(z; Adp(x)) | p(x) = 0,A < 0},

B3 SS(kg) = THX |2 U {(a5 Mep(e)) | () = 0,1 > 0},

The following proposition is called (a particular case of) the microlo-
cal Morse lemma. See [KS90, Proposition 5.4.17 and Corollary 5.4.19] for
more details. The classical theory corresponds to the case F' is the constant

sheaf kx.

Proposition 2.3. Let F € D?(X) and p: X — R be a C>®-function. More-
over, let a,b € R with a < b or a € R,b = +00. Assume that

(1) ¢ is proper on Supp(F),
(2) dp(x) & SS(F) for any x € ¢~ '([a,b)).

Then the canonical morphism
(2.4) RI(p7'((=00,b)); F) — R (¢~ (=00, a)); F)
s an isomorphism.

Next, we shall consider bounds for the microsupports of proper direct
images, non-characteristic inverse images, and RHom.

Definition 2.4. Let f: X — Y be a morphism of manifolds and A C T*Y
be a closed conic subset. The morphism f is said to be non-characteristic
for A if

(2.5) FHAN N (TEX) € X xy TyY.

See for the notation f; and fy. In particular, any submersion from
X to Y is non-characteristic for any closed conic subset of 7Y . Note that
submersions are called smooth morphisms in [KS90]. One can show that
if f: X =Y is non-characteristic for A C T*Y, then f;f-'(A) is a conic
closed subset of T* X.

Theorem 2.5 ([KS90, Proposition 5.4.4 and Proposition 5.4.13]).
Let f: X =Y be a morphism of manifolds, F € DP(X), and G € DP(Y).

(i) Assume that f is proper on Supp(F). Then SS(Rf.F) C ff; ' (SS(F)).
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(ii) Assume that f is non-characteristic for SS(G). Then the canonical
morphism f71G®wf—>f!G is an isomorphism and SS(f~'G)U
SS(f'G) C fafr'(SS(G)).

For closed conic subsets A and B of T* X, let us denote by A + B the
fiberwise sum of A and B, that is,

x € nm(A)Nn(B),

(26) A+B:= {(m;cH_b) ae Ann Hz),be erl(x)} crx

Proposition 2.6 ([KS90, Proposition 5.4.14]). Let F,G € DP(X).
(i) If SS(F) N SS(G)* C T% X, then SS(F ® G) C SS(F) + SS(G).

(ii) If SS(F)NSS(G) C Tx X, then SS(RHom(F,G)) C SS(F)* + SS(G).
Moreover if F' is cohomologically constructible (see [KS90, §3.4] for the
definition), the natural morphism RHom(F,kx) ® G — RHom(F, Q)

is an isomorphism.

Using microsupports, we can microlocalize the category DP(X). Let
A C T*X be a subset and set Q = T*X \ A. We denote by DY (X) the sub-
category of DP(X) consisting of sheaves whose microsupports are contained
in A. By the triangle inequality, the subcategory DY (X) is a triangulated
subcategory. We set

(2.7) DP(X;Q) := D"(X)/D}(X),

the categorical localization of DP(X) by D% (X). A morphism u: F — G in
DP"(X) becomes an isomorphism in DP(X; Q) if u is embedded in a distin-
guished triangle F % G — H 3 with SS(H)NQ = 0. For a closed subset
B of Q, D%(X;Q) denotes the full triangulated subcategory of DP(X;Q)
consisting of F' with SS(F) N2 C B. Note that our notation is the same as
in [KS90] and slightly differs from that of [Guil2, [Guil6al.

2.3. Kernels ([KS90, §3.6])

For i =1,2,3, let X; be a manifold. We write X;; := X; x X; and X923 :=
X1 x X9 x X3 for short. We use the same symbol ¢; for the projections
Xij — X; and Xj23 — X;. We also denote by ¢;; the projection Xj23 — Xj;.
Similarly, we denote by p;; the projection T* X123 — T X;;. One denotes by
p12« the composite of p1o and the antipodal map on T*X5.
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Let A CT*X 15 and B C T* X53. We set
(2.8) Ao B := plg(pl_QlaA ﬂpgng) C T"Xq3.
We define the operation of composition of kernels as follows:

o Db(Xlg) X Db(X23) — Db(Xlg)

X
(2.9) ’ _ _
(K12, K23) — K12 2 Ko3 = Rqi3) (413 K12 @ g3 Ko3).

If there is no risk of confusion, we simply write o instead of 2. By Theo-
rem [2.5] and Proposition [2.6) we have the following. ’

Proposition 2.7. Let K;; € DP(X;;) and set A;j := SS(K;;) C T*X;; (ij =
12,23). Assume that

(1) qi3 is proper on qi5" Supp(K12) N ga Supp(Kas),
(2) pigwAi2 Npyg Ao N (T, X1 x T*Xo x T X3) C Tk, Xios.

Then

(2.10) SS(K12 ;{D K23) (- A12 ] A23.

3. Tamarkin’s separation theorem and sheaf quantization of
Hamiltonian isotopies

In what follows, until the end of the paper, let M be a non-empty connected
manifold without boundary.

In this section, we recall the definition of Tamarkin’s category D(M)
and the separation theorem due to Tamarkin [Taml8]. We can prove the
non-emptiness of the intersection of two compact subsets of T*M using the
theorem. We also review the existence result of sheaf quantizations of Hamil-
tonian isotopies due to Guillermou-Kashiwara—Schapira [GKS12]. This en-
ables us to consider Hamiltonian deformations in Tamarkin’s category.

3.1. Tamarkin’s separation theorem ([Tam18, (GS14])

In this subsection, we recall the definition of Tamarkin’s category D(M ) and
the separation theorem.



624 T. Asano and Y. Ike

Denote by (z;&) a local homogeneous coordinate system on 7%M and
by (t;7) the homogeneous coordinate system on T*R. Define the maps

(31) q1,G2,5R: M X RXR — M xR,
q1(z,t1,t2) = (v, 1), G2(z,t1,t2) = (w,t2), sr(z,t1,t2) = (z,t1 +t2).

If there is no risk of confusion, we simply write s for sg. We also set
(3.2) it MxR—MxR, (z,t) — (z,—t).

Definition 3.1. For F,G € DP(M x R), one sets

(3.3) F %G :=Rs)(§;'F®§'q),
(3.4) Hom*(F,G) := Rg1» RHom(g; 'F, s'G)
(3.5) ~ Rs, RHom(q, i 'F, §G).

Note that the functor * is a left adjoint to Hom*.
The functor

(3.6) Krx[0,+00) * (%) DP(M x R) — DP(M x R)

defines a projector on the left orthogonal * Dy, <0}(M x R). Similarly, the
functor

(3.7) Hom* (Knrx[o,400), *): DP(M x R) — D*(M x R)

defines a projector on the right orthogonal D?rgo} (M x R)*. By using these
projectors, Tamarkin proved that the localized category DP(M x R; {r >
0}) is equivalent to both the left orthogonal * Dy, <0}(M x R) and the right

orthogonal D{Tgo}(M x R)*:

(38)  Pii=Knrxfo,400) * (¥): DP(M x R; {7 > 0}) = *DY (M x R),
Py := Hom* (Kpgx o100y *): DP(M x R; {7 > 0}) = DYy (M x R)".

Note also the inclusion “*DY o\ (M x R), Dy, (M x R)* € DY o\ (M x
R). We set Q1 := {7 >0} C T*(M x R) and define the map -

p: Qy ——T*M
(3.9) w \
(x,t;&,7) — (x;&/7).
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Definition 3.2. One defines

(3.10) D(M) := D(M x R; Q)
~IDY (M x R) ~ D}, (M x R)™.

For a compact subset A of T* M, one also defines a full subcategory D4 (M)
of D(M) by

(3.11) Da(M) := D} 4y(M x R; Q).
For F' € D(M), we take the canonical representative
(3.12) P(F) € "D} (M x R)

unless otherwise specified. For a compact subset A of T*M and F' € D (M),
the canonical representative P;(F) € *D? _ (M x R) satisfies SS(P;(F)) C

{r<0}
p~1(A). Note also that if F' € LD?TSO}(M x R) then
(3.13) Hom*(F,G) € DY gy (M x R)*.

Thus Hom™ induces an internal Hom functor Hom™*: D(M)°P x D(M) —
D(M).

Remark 3.3. Let f: M — N be a morphism of manifolds and set f::

fxidr: M xR — N x R. Then, for F' € J-D]fTSO}(M x R) we have

(3.14) RfF € D} (N x R).

Similarly, for G € Dl{)rgo}(M x R)* we have

(3.15) Rf.G € DY (N x R)™.

In other words, the morphism f induces functors D(M) — D(N).

Proposition 3.4 (|[GS14, Lemma 4.18]). For F,G € D(M), there is an
isomorphism

(3.16) Homprp)(F, G) ~ HORIyr (o 400) (M x R; Hom*(F, G)).

The following separation theorem was proved by Tamarkin [Tam18§].
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Theorem 3.5 ([Tam18, Theorem 3.2, Lemma 3.8] and [GS14, The-
orem 4.28]). Let A and B be compact subsets of T*M and assume that
AN B =0. Denote by qg: M x R — R the second projection. Then for any
F € Dy(M) and G € Dp(M), one has Rqr, Hom™(F,G) ~ 0. In particular,
for any F € Da(M) and G € Dp(M), one has Hompp (F, G) = 0.

3.2. Sheaf quantization of Hamiltonian isotopies (|[GKS12])

We recall a result of Guillermou-Kashiwara—Schapira |[GKS12], which as-
serts the existence of a sheaf whose microsupport coincides with the conified
graph of a Hamiltonian isotopy. The sheaf is called a sheaf quantization of
the Hamiltonian isotopy. Using sheaf quantization of Hamiltonian isotopies,
we can define Hamiltonian deformations in Tamarkin’s category D(M ).

Let I be an open interval in R containing 0 and ¢ = (¢H)scr: T*M x
I — T*M be a Hamiltonian isotopy associated with a compactly supported
Hamiltonian function H: T*M x I — R. Note that the Hamiltonian vector
field is defined by dap-p(Xp.,*) = —dHs and qﬁH is the identity for s = 0.
One can conlfy o and construct qb such that qb lifts ¢ as follows. Define
H:T*M x T*R x I — R by H s(@,t:6,7) =7 Hy(2;§/7). Note that H is
homogeneous of degree 1, that is, H (z,t;c€cr) =c- H, (z,t;€,7) for any
¢ € Rsg. The | Hamlltoman isotopy ¢ T*M x T*R x I — T*M x T*R asso-
ciated with H makes the following diagram commute (recall that we have
set Qy = {7 >0} CT*(M xR) and p: Qp — T*M, (x,t;&,7) — (2;&/7)):

Q+XIL>Q+

(3.17) pxidl Jp

TM x I ? T*M.
Moreover there exists a C°°-function v: T*M x I — R such that

(3.18) b5 (2, 1,6,7) = (2t + us(2;6/7); €, 7),

where (2/;¢'/ T)= o (z;€/7). By construction, gg is a homogeneous Hamilto-
nian isotopy: ¢s(z,t;c&, c1) = ¢ - ps(x,t;&,7) for any ¢ € Rsg. See [GKSI12,
Subsection A.3] for more details. We define a conic Lagrangian submanifold
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Ag CT*M x T*R x T*M x T*R x T*I by

(3.19)
(x:6) € T" M,
A(g = (Q/gs(xa t7 ga T)a (Ia ta _ga _T)a (87 _ﬁs o Q/ZS\S(ZL',]‘}, 67 T))) (tv 7—) € f*Ra
sel

By construction, we have
(3.20) Hy o gy(w,t:¢,7) =7+ (Hy 0 ¥ (2:6/7)).
Note also that

Ago Tl = {(du(w t;6,7), (2, ti~€, =7)) | (@, t:6,7) € T"M x T'R}
(3.21) CT*M x T*R x T*M x T*R

for any s € I (see (2.8) for the definition of A o B).

Theorem 3.6 ([GKS12, Theorem 4.3]). In the preceding situation,
there exists a unique object K € DP(M x R x M x R x I) satisfying the fol-
lowing conditions:

(1) SS(K) C A,
(2) K|pmxrxnrxrx{0} = KAz, where Ayyr is the diagonal of M x R x

M x R.

Moreover both projections Supp(K) — M x R x I are proper.

Remark 3.7. In [GKSI12, Theorem 4.3], it was proved that K|y/xrx M xRx.J
is a bounded object for any relatively compact interval J of I. Since we
assume that H has compact support, we find that K € Db(M x R x M x
R x I).

The object K is called the sheaf quantization of QAS or associated with ¢ .
Set Ky := K|pumxarxix(s) € DP(M x R x M x R). Note that SS(K,) C
A$ o T7I. It is also proved by Guillermou—Schapira [GS14] Proposition 4.29]
that the composition with K defines a functor

(3.22) K, o (x): D(M) — D(M).



628 T. Asano and Y. Ike

Moreover, for F' € Da(M) and any s € I, we have Ks o F' >~ (K o F')|yx s} €
Dyu(4)(M). In fact, by Proposition and (3.17)) we get
(3.23) SS(Ks 0 F)NQy C (AgoTI)o p1(A)

= 0s(p(A)) € p (2 (A)).

In other words, the composition Ko (x) induces a functor Da(M) —
Dyn(a)(M) for any compact subset A on T™M.

4. Pseudo-distance on Tamarkin’s category and
displacement energy

In this section, we introduce a pseudo-distance dpys) on Tamarkin’s cate-
gory D(M). We prove that the distance between an object and its Hamil-
tonian deformation via sheaf quantization is less than or equal to the Hofer
norm of the Hamiltonian function. Using the result, we also show a quantita-
tive version of Tamarkin’s non-displaceability theorem, which gives a lower
bound of the displacement energy.

4.1. Complements on torsion objects

Torsion objects were introduced by Tamarkin [Tam18| and the category of
torsion objects was systematically studied by Guillermou—Schapira [GS14].
In this subsection, we introduce the notion of c-torsion for ¢ € R>g, which
we will use to estimate the displacement energy. Note that the results in this
subsection are essentially due to Guillermou-Schapira [GS14].

First we recall the microlocal cut-off lemma in a general setting. Let V
be a finite-dimensional real vector space and - be a closed convex cone with
0 € v in V. Define the maps

(4.1) G, G sy M XV xV — M xV,

q1(w,v1,v2) = (2,01), Ga(w,v1,v2) = (x,v2), sv(x,v1,v2) = (,v1 + va).

For F' € DP(M x V), the canonical morphism kpsx, — ks g0y induces the
morphism

(4.2) Rsv.(G; Knrxy ® @ 'F) — Rsv. (G 'Knrxqoy ® @ ' F) = F.

The following is called the microlocal cut-off lemma due to Kashiwara—
Schapira [KS90, Proposition 5.2.3], which is reformulated by Guillermou—
Schapira [GS14, Proposition 4.9]. For a cone v with 0 € v in V', we define
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its polar cone v° C V* by
(4.3) v i={w e V" | (w,v) >0 for any v € v}.
We also identify T*V with V' x V*.

Proposition 4.1. Let V' be a finite-dimensional real vector space and ~y be
a closed convex cone with 0 € v in V. Then, for F € DP(M x V), SS(F) C
T*M x V x ~° if and only if the morphism RSV*((jl_lkMX,Y ® (jz_lF) — F is
an isomorphism.

If Tnt(y) # 0, then G, 'karxy = RHom(Kpsuint()xvs Kmxvxv). Hence,
by Proposition [2.6[ii), we have

(4.4) Rsv. (G Knrxy ® @ 'F) = Rsy o RNy iny(y)xv (@ F).

Now we return to the case V = R and v = [0, +00). Let F' € DP(M x R).

Then, by Proposition Fe D?T>0}(M x R) if and only if

(4.5) Rs. (G, Knrx[o,400) @ @5 F) = F.
For ¢ € R, we define the translation map
(4.6) Te: M xR — M xR, (z,t) — (z,t+c).

For F € D*{)T>0}(M x R), by (4.5), we have

(4.7) Rsu (G " Knrnfepoo) @ @ F) = TeuF

for any c € R. Hence, for ¢ <d, the canonical morphism ks (e 4o0) =
K)rx[d+oc) induces a morphism of functors from D?TZO}(MX]R) to
D*{JT>0}(M x R):

(4'8) Te,d* Tew — Ty,

Definition 4.2 (cf. [Tam18]). Let ¢ € R>o. An object F € D?TZO}(M X

R) is said to be c-torsion if the morphism 79 .(F'): F — T¢, F is zero.

Note that a c-torsion object is ¢/-torsion for any ¢ > c. Recall also
that the category D(M) = D”(M x R; {7 > 0}) is regarded as a full sub-
category of D?T>O}(M x R) via the projector P;: DP(M x R; {r > 0}) —
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LD‘gTSO}(M xR) or P,: DP°(M x R;{r > 0}) — Dl{’TSO}
we can define c-torsion objects in D(M).

Let I be an open interval of R. We recall a result on sheaves over
M xR x I due to Guillermou-Schapira [GS14]. We denote by (¢;7) the
homogeneous symplectic coordinate system on T*R and by (s;0) that on
T*I. For a,b € Ryq, we set

(M x R)*. Hence

(4.9) Yap i={(1,0) €ER? | —a7 <o < br} C R

Let g: M x R x I — M x R be the projection. We identify 7*(R x I) with
(R x I) x R2.

Proposition 4.3 (cf. [GS14, Proposition 6.9]). Let H € D?T>0}(M X
R x I) and s1 < s2 be in I. Assume that there exist a,b,r € Rsq satisfying

(4.10)  SS(H)N7 ' (M xR x (51— 7,82 +7)) CT*M x (R x I) X Y4

Then Rq«(Harxmx[s,,s)) 5 (a(s2 — s1) + €)-torsion and Rq.(Harxrx(s,,s,])
is (b(sa — s1) + €)-torsion for any € € Rxg.

Proof. The proof is essentially the same as that of [GS14, Proposition 6.9].
For the convenience of the reader, we give a detailed proof again. We only
consider Rq.(Hpsxrx[s,,s,)) and omit the proof for the other case.

(a) Choose a diffeomorphism 1: (s1 — 7,52 +7) — R satisfying Vl(sy,s0] =
idy,, s, and di(s) > 1 for any s € (s1 —r,s2+ 7). Set ¥ :=idps x idg X :
MxRx (s1—r,89+7) > MxRxR and H := U H | M xR (51 —r,504r) €
DP(M x R x R). Then, by the assumption on 1, we have

(4.11) SS(H') C T*M x (R x R) X Y4

and Rq«(Harxrx[s;,s)) = Rx (’;'-[’]\4XJRX[S1 32))' Here ¢ in the right-hand side
denotes the projection M x R x R — M X R, (z,t,s) — (x,t) by abuse of
notation. Therefore, replacing H with H’, we may assume I = R and (4.11)).

(b) Set V' = R? and denote by sy : M x V x V — M x V the addition map.
By Proposition 4.1} we have

(4.12) Rsv Ry wtne(re v (@5 M) ~ H.
Note that Int(v; ,) = {(t,s) € R? | —b~1t < s < a~'t}. Since

(4.13) SS(K s (sn.sa) C TirM x TER x T*R,
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Proposition (ii) gives H @ Karxmx[s;,s0) = B MxRx(s1,5,](H). Combining
with (4.12)), we obtain

(4'14) Rg*(%MXRX[Sl,SQ)) = RQ*RSV*RFMXD(nglﬂ)a

where D = Int(y; ;) x VN {(t,s,t',5) [ s1 < s+ " < s2}. Consider the com-
mutative diagram

MxVxV-YsMxV

(415) o lidM xq lq
MXV(TMXRXVT)MXR,

where q(t,s,t',s") = (t,t,8), q2(x, t,t',¢') = (x,t',s"), and §(x,t,t',s') =
(z,t+t'). By the adjunction of (idys x¢); and (idys x§)', we get

Rau(Marsrxss,s)) = R3x(idas x§)« RHom(Karxp, (idar x§)' g5 ' H)[—1]
(4.16) ~ R, RHom(kyr X Rikp, g5 "H)[—1].

Here, we used §¢' ~ ¢~ '[1] for the first isomorphism.

(¢) Through the isomorphism (4.12)), 79 .(#) is induced by the canonical mor-
phism ki(lnt(vg xvy Kint(ye,)xv, Where To(t,s,t',s) = (t+cs,t,5).
Moreover through , we find that 70.c(Rqx«(Harxrx[s:,s,))) 18 induced
by the morphism ki( D)™ kp. In order to prove that chyki( D)™ Rgkp
is zero morphism for ¢ > a(s2 — s1), we will show that Rgikp and R(jgki(D)
have disjoint supports.

(d) For a point (t,,s') e R x V, g (¢, t',s)ND =0 if t <0 and
(4.17) Gt YND = (51— 5,59 — ] N (=b"1t,a )

if t > 0. This set is an empty set or a half closed interval if t & (a(s1 —
s"),a(s2 — §')]. Thus Supp(Rgkp) is contained in {(¢,t', ") | t € [a(s1 — &),
a(sg — ')|}. Similarly, Supp(R(jgki(D)) is contained in {(¢,t',s") | t € [a(s1 —
s') 4+ ¢,a(sy — §') + c]}. Hence Supp(Rgkp) and Supp(RqNgki(D)) are dis-
joint for ¢ > a(sy — s1). O

4.2. Pseudo-distance on Tamarkin’s category

In this subsection, we introduce a pseudo-distance on Tamarkin’s category
D(M). This enables us to discuss the relation between possibly non-torsion
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objects in D(M). Recall again that D(M) is regarded as a full subcategory
of D?T>0}(M x R) via the projector P; or P,.

Definition 4.4. Let F,G € D? (M x R) and a,b € Rxq.

(i) The pair (F, G) is said to be (a, b)-interleaved if there exist morphisms
a,0: F—T,,Gand 8,v: G — Ty, F such that

1) F&T,.G ELTEN Totp, F is equal to 70 qp(F): F' = Tyqp, F,
Ty, 0

(2) G5 Ty F =% T,y G is equal to 70.445(G): G — Tyip, G-

(ii) Fissaid to be (a,b)-isomorphic to G if there exist morphisms o, §: F' —
Tu+G and B,v: G — Ty, F satisfying (1), (2) in (i) and also
(3) Ta2a(G) 0o v = T4.24(G) 0 § and 7y 9p(F) 0 = Tp25(F') 0 7.

Remark 4.5. (i) It might seem strange that we do not add the con-
ditions @ = ¢ and =+ in Definition [£.4] However, if we add such
conditions, there is no guarantee that Lemma, below holds.

(ii) An (a,b)-isomorphism is indeed an isomorphism in the localized cate-
gory T (M) := D(M)/Nior, which is localized by the triangulated sub-
category consisting of torsion objects ([GS14, Definition 6.6]). Let
F,G € D(M). Then by a result of Guillermou—Schapira [GS14, Propo-
sition 6.7], we have

(4.18) HOHlT(M) (F, G) =~ hﬂ HomD(M) (F, TC*G).

c—+400

Thus if F'is (a, b)-isomorphic to G for some a,b € R>q, then F' >~ G in
T (M). All statements below hold if “(a, b)-interleaved” is replaced by
“(a, b)-isomorphic”, but we omit the proofs for simplicity.

The two notions we have introduced above are related to the notion
of “a-isomorphic” recently introduced by Kashiwara—Schapira [KS1§] and
interleavings on persistence modules. See Remark [£.10]

Remark 4.6. Let F,G € D'{°T>O}(M x R) and a,b € R>.

(i) The pair (F,G) is (a,b)-interleaved if and only if (G,F) is (b,a)-
interleaved.

(i) If (F,G) is (a,b)-interleaved, then (F,G) is (a,)-interleaved for any
a >a, b/ >b.

(iii) (F,0) is (a,b)-interleaved if and only if F' is (a + b)-torsion.
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Lemma 4.7. If (Fy, F1) is (ag,bo)-interleaved and (Fi,F3) is (ai,b1)-
interleaved, then (Fy, Fy) is (ao + a1, by + b1)-interleaved.

Proof. By assumption, for ¢ = 0, 1, there exist morphisms

(4.19) a;, 0;: Fy = To, Fiv1,  Bi,vit Figr — Ty, i
satisfying

(4.20) To..Bi 0 o = To,0,46,(F5),  Tb, .0 © Vi = 700,46, (Fit1)-
We set

a =Ty a10a0: Fy = Tyyta,,Fo,
B =Ty Boo Pi: Fo = Ty 1p, L1,
v =Ty 007 Fo = Thyto,  F1,
0 :=1Tg,,01000: Fo = Toyta, Lo

QAo %

(4.21)

Let us consider the following commutative diagram:

Fo
/
TQO*Fl To,a0+b0(FU)
7—‘0/0/ %
Tao+a1 *FQ Tag.ag+ar+by (F1) Tao+bo *FO
Tm
Ta0+a1+b1 *Fl Tag+bg,ag+ai+bg+by (Fo)
Taom
Tao+al+b1 +b2*F0‘

The two triangles in the diagram commute by (4.20]). Since we obtain the
square by applying 74, ao+a,+6, t0 Bo, it also commutes. Hence we have
Tag+ar 8 0 & = T0 ay+a,+bo+b, (F0). Similarly, we get

(422) Tb0+b1 *5 O = T0,a0+a1+bo+b: (FQ)
O

A similar argument to the proof of Lemma shows the following
lemma.
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Lemma 4.8. Let Fy, I1,Go, Gy € D?T>O}(M x R) and assume that (Fy, F)
is (ap,bp)-interleaved and (Go,G1) is (ag,bg)-interleaved. Then the pair
(Hom*(Fy, Go), Hom*(F1,G1)) is (bp + ag, ap + bg)-interleaved.

Now we define a pseudo-distance on Tamarkin’s category D(M).

Definition 4.9. For object F,G € D(M), one defines

(4.23) dD(M) (F, G) = inf {CL +be RZO

a,be RZO’
(F,G) is (a, b)-interleaved

and calls dp(yp) the translation distance.

Remark 4.10. (i) Definition and Definition are inspired by the
notion of “a-isomorphic” and the convolution distance on the derived
categories of sheaves on vector spaces recently introduced by
Kashiwara—Schapira [KS18]. In fact, if M = pt and F' and G are a-
isomorphic, then (F,G) is (a,a)-interleaved. Moreover, if F' is (a,b)-
isomorphic to G, then F' and G are 2 max{a, b}-isomorphic in the sense
of Kashiwara—Schapira [KS1§].

(ii) The translation distance dp(ys) is similar to the interleaving distance
for persistence modules introduced by [CCSG™09] (see also [CASGO16]).
Their definition of “a-interleaved” corresponds to Definition [£.4] with
a =band a =4, 8 = . However, as remarked by Usher—Zhang [UZ16),
Remark 8.5], removing the restriction a = b gives a better estimate of
the displacement energy. In fact, if we restrict ourselves to a = b and
use the associated pseudo-distance, then we can only prove d(Gp, G1) <
2 fol | Hs|| oo ds in Theorem m below.

We summarize some properties of dp ).
Proposition 4.11. Let F,G, H, Fy, F1,Go,G1 € D(M).
(i) dpan(F,G) = dp)(G, F),
(ii) dp( )(F G) < dD(M (F H) +dp (H G)
(iif) dpar)(Hom*(Fo, Go), Hom™ (F1, G1)) <dpr) (Fo, F1)+dp(ar)(Go, G1).

Moreover, let f: M — N be a morphism of manifolds and set f:: fx
idg: M x R — N x R. Regarding F' and G as objects in the right orthog-
onal D{ <0}(M x R)L, one has
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(iv) dD(N)(RJ?*F, RﬁG) < dpu)(F,G)  (see also Remark .

Proof. (i) and (iv) follow from the definition of dp(ys). (ii) follows from
Lemma and (iii) follows from Lemma O

Example 4.12. Assume that M is compact and let ¢: M — R be a C*°-
function. Recall also that we assume M is connected. Define

Z :={(x,t) e M xR | p(x) +t > 0},

(4.24)
F = Xpuo400), Gi=kz € "Dy (M x R) = D(M).

Set a := max{max ¢,0},b := —min{min ¢, 0}. Then there exist morphisms

a: F' = T,,G and B: G — Ty, F such that Tg,.8 0 a = 19 g44(F) and T, 0

B = 70,a+5(G). This implies that (F,G) is (a, b)-interleaved and

(4.25) dp(r) (F, G) < a+ b= max{max ¢,0} — min{min ¢, 0}.

Since Homp(pp) (F, TenG) ~ HRI )y ooy (M X R; Hom*(F,G)) ~ 0 for
any ¢ < max ¢ and Homp(yp) (G, Te, ') =~ 0 for any ¢ < —min g, the equa-
tion dppr)(F, G) = a + b holds.

Example 4.13. Assume that M is compact. Let L be a compact connected
exact Lagrangian submanifold of T7*M and f: L — R be a primitive of the
Liouville 1-form ap«ps, that is, a C°°-function satisAfying ar-p|r = df. De-
fine a locally closed conic Lagrangian submanifold Ly of T*(M x R) by

(4.26) Lp:={(z,t;76,7) | 7> 0, (2:6) € L,t = —f(2;€)}.

Then by a result of Guillermou [Guil2) [Guil6a], there exists an object F, €
DP(M x R) called the canonical sheaf quantization such that SS(Fy) = L f
and Fr|pxqy = ky for £ > —min f. Moreover Fj, can be regarded as an
object in Dr,(M).

Now, for ¢ = 1,2, let L; be a compact connected exact Lagrangian sub-
manifold of T*M and f;: L; — R be a primitive of the Liouville 1-form
arp«pr. Then it is known that Ly N Ly # () (see [Ikel9] for a sheaf-theoretic
proof). For simplicity, we assume that

(4.21) st 2 - ) S0 e (2= ).

Moreover, let F; € DP(M x R) be the canonical sheaf quantization associ-
ated with L; and f; for ¢ = 1,2. Set a := maxper,nr,(f2 — f1). Then, using
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an estimate of SS(Hom*(F1, F»)) and the microlocal Morse lemma (Propo-
sition [2.3)), one can show that

(4.28) Homp ) (F1, TuuFolk]) = H*(M; k)

for any k € Z. Thus there exists a morphism «: F} — T,,F> correspond-
ing to 1 € k ~ HO(M;k). Set b := maxper,nr,(fi — f2). Then, similarly to
the above, we obtain Hompyp) (F2, Ty, F1) =~ H°(M; k) and get a morphism
B: Fy — Ty, Fi corresponding to 1 € k. By construction, we find that T3, o
a =19 q4b(F1) and Ty 0 f = 70 q4p(F2). Thus (Fi, Fy) is (a, b)-interleaved
and

(4.29) dp(an) (F1, F2) < pEHLllaf%(Lz(f2 - 1)+ pEI?Iaer(LQ(fl — f2)
= pelg%?(fa —f1) - peglligLQ(fz — f1)-

Next, we prove that a “homotopy sheaf” gives an (a, b)-interleaved pair.

Lemma 4.14. Let F % G =+ H -2 F[1] be a distinguished triangle in
Dl{)T>O}(M x R) and assume that F is c-torsion. Then (G,H) is (0,c)-
interleaved.

Proof. By assumption, we have T,,w o 19 .(H) = 19 ¢(F'[1]) ow = 0. Hence,
we get a morphism v: H — T¢,G satistying 19 .(H) = Te,v 0 7.

F——G—"—H —"—F[]

w T

TooF o TouG o ToH o T F 1]

On the other hand, since 79 +(G) o u = Te,u 0 79 o(F') = 0, there exists a mor-
phism g: H — T¢,G satisfying 79 .(G) = S o v.

F—"»G—"—H ——F[]

w T

TC*FH}TC*G I Te H

v T.,w

This proves the result. U



Distance on Tamarkin’s category and displacement energy 637

Proposition 4.15. Let I be an open interval containing the closed inter-
val [0,1] and H € D{T>0}(M x R x I). Assume that there exist continuous
functions f,g: I — R>q satisfying

(4.32) SS(H) C T*M x {(t,s;7,0) | —f(s) -7 <0o<g(s) T}

Then (H|M><]R><{O}v 7'[|MxRx{1}> is (fo s)ds + ¢, fo s)ds + 5) -interleaved
for any € € Ryg.

Proof. Set A" :={(t,s;7,0) | —f(s) - 7<0<g(s)-7}. Let s1 < sg be in [0,1]
and ¢’ € R-g be an arbitrary positive number. Then there is r € Rs( such
that

/ /

(4.33) f(s) < max f(s)+ ° and g(s) < max g(s)+ =
S€[s1,82] 2 S€[s1,82] 2

for any s € (s — r, so + r), which implies

(4.34) NNa Y {MxRx(s;—rs9+7)) CT*Mx (Rx1I)x~y e
with a = max,¢(,, s,) f(5) and b = max,e[s, 4,1 9(5). Let ¢ : M xRXT— M x
R be the projection. By Proposition Rax(Harxrxs,s,)) 18 (a(s2 — s1) +
¢')-torsion and Rqu(Hprxrx(s,,s:]) 15 (b(s2 — s1) 4 €')-torsion. Hence, by
Lemmas [4.7] and and the distinguished triangles

1
Rq*(%MXRX(Sl,sz]) - Rq*(%MXRX[Sl,Sg]) - H|M><]R><{sl} ES

RQ*(HMXRX[Sl,SQ)) — RQ*(HMXRX[Sl,SQ]) — H|M><1R><{32}

(4.35) +1

we find that (H\MxRX{Sl},H|MxRX{52}) is (b(s2 — s1) + €', a(s2 — s1) +¢€')-
interleaved. Thus, by Lemma again, (H\MX]RX{O},”H\MX]RX“}) is (b +
€/2, a, + €/2)-interleaved for any n € Z~, where a,, and b,, are the Riemann
sums

n—1 n—1
(4.36) an = Z L max _f(s) and b, = Z % - max _g(s).

k:()n se[’“ k+1] o se[k k+1]

Since f and g are continuous on I, there is a sufficiently large n € Z~g such
that

1 1
(4.37) an < / f(s)ds + g and by, < / g(s)ds + g,
0 0

which completes the proof. ]
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Now, let us consider the distance between Hamiltonian isotopic objects in
D(M). Using sheaf quantization of Hamiltonian isotopies (Theorem [3.6]), we
can define Hamiltonian deformations in D(M ). From now on, until the end
of this section, we assume moreover that the dimension of M is greater than
0 and fix an open interval I containing [0, 1]. For a compactly supported
Hamiltonian function H = (Hg)s: T*M x I — R, following Hofer [Hof90],
we define

1 1
E.(H) = / max H(p)ds, E_(H) := —/ min H(p)ds,
(4.38) o 7 0 £

Il = Boti) + - (11) ~ [ 1 (e H.(0) i 1, (9)) .

Theorem 4.16. Let H = (Hy)s: T*M x I — R be a compactly supported
Hamiltonian function and denote by ¢* the Hamiltonian isotopy generated
by H. Let K € DP(M xR x M x R x I) be the sheaf quantization associ-
ated with ™. Moreover, let G € D(M), and set G' :== K o G € DP(M x R x
I) and Gs:= G'|yrxrxisy € D(M) for s € I. Then (Go,G1) is (E-(H)+
g, B (H) + ¢)-interleaved for any € € Rxo. In particular, dp)(Go,G1) <
1.

Proof. By Proposition and (3.19), we get
(4.39)

SS(G") Cc T*M x {(t,S;T, o)

—max Hg(p) - 7 < 0 < —min Hy(p) -T}.
P P

Thus the result follows from Proposition O

4.3. Displacement energy

In this subsection, we prove a quantitative version of Tamarkin’s non-
displaceability theorem, which gives a lower bound of the displacement en-
ergy.

For compact subsets A and B of T* M, their displacement energy e(A, B)
is defined by

(4.40) e(A, B) = inf {HHy

H:T"M x I — R with compact support,
Anef'(B) =0 |

For a compact subset A of T*M, set e(A) = e(A, A).
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We give a sheaf-theoretic lower bound of e(A4, B). For that purpose, we
make the following definition.

Definition 4.17. For F,G € D(M), one defines

(4.41) epm)(F, G) = dp(pt)(Rar. Hom™(F, G),0)
= inf{c € R>¢ | Rqr, Hom*(F, Q) is c-torsion}.

Note that by Proposition for F,G € D(M) we have

(4.42) €D(M) (F, G) > inf{c S RZO ‘ HomD(M) (F, G)
— Homp ) (F, T, G) is zero}.

Theorem 4.18. Let A and B be compact subsets of T*M. Then, for any
F € Dp(M) and G € Dp(M), one has

(4.43) e(A, B) > epn) (F, G).
In particular, for any F € Do(M) and G € Dp(M),

(4.44) e(A, B) > inf{c € R>g | Homp(p) (F, G)
— Homppp (F, Te,G) is zero}.

Proof. Suppose that a compactly supported Hamiltonian function H :
T*M x I — R satisfies AN¢H(B)=0. Let K € D"(M x Rx M x R x I)
be the sheaf quantization associated with ¢ and define G’ := K oG €
D"(M x R x I) and Gy := G'|yrxrxys) € D(M) for s € I asin Theorem
Since Gy € Dyu(p)(M), Tamarkin’s separation theorem (Theorem im-
plies Rqgr, Hom*(F,G1) ~ 0. On the other hand, by Theorem we have
dpmy(Go, G1) < ||H||. Hence, by Proposition we obtain

(4.45) eD(M) (F,G) = dp(pt) (Rqr, Hom™(F,Gy),0)
< dpny(Hom™(F, Go), Hom*(F, G1))
< dpn)(Go, G1) < [|H|,

which proves the theorem. O

We list some properties of ep(ys).-

Proposition 4.19. Let F,G € D(M).
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(i) epon)(F,G) < epny(F, F) and epry(F, G) < epar) (G, G).

(ii) Assume that F' and G are cohomologically constructible as objects in

DY (M x R) C D’(M x R). Then

(4.46) ep)(F, G) = epan) (1D xr G, 1Dy F).

(iii) Assume that there exist compact subsets A and B of T*M such that
F € DA(M) and G € Dg(M). Let ¢ : T*M x I — T*M be a Hamil-
tonian isotopy with compact support and K € DP(M x R x M x R x
I) be the sheaf quantization associated with ¢*. Set F' .= K o F,G' :=
K oG and Fy := FI‘MX]RX{S}vGS = G/’MXRX{S} for s € I. Then

(4.47) €ED(M) (F,G) = ED(M) (Fs,Gs)
for any s € I.

Proof. (i) First note that for any ¢ € R>o, we have the following commuta-
tive diagram:

Hom™(F,G)

(449 — | T

Hom(T—_. . F,G) —— T, Hom*(F, G) +—— Hom*(F, T..G).
Assume that the morphism

70,c(Rqr, Hom™(F, F')): Rqr, Hom*(F, F) — T.,Rqr, Hom™(F, F')
(4.49) ~ Rqp, Hom*(T_.,F,F)

is zero. Then the induced morphism Hompyp) (F, F') — Homppp (T-c, F, F)

is also zero by Proposition Thus 7_.o(F) = 0 as the image of idy under

the morphism. By the commutativity of (4.48), 79 .(Rgr, Hom*(F,G)) is

zero. This proves the first inequality. The proof for the second one is similar.

(ii) First, we show that i,Dyxr: DP(M x R) — DP(M x R) induces a

iun(;tor D(M) ~ LD'ETSO}(M x R) — DI{; <oy(M % R)L ~ D(M). Let F €
D

{T<O}<M x R) and S € Dl{)r<0}(M x R). Then we have

(4.50) Home(MxR) (S, i*DMXRF) ~ Home(MxR) (’L*S, RHom(F, waR))
~ HOHlDb(MX]R) (Z*S ® F, WMX]R)
~ Hompps (pxr) (F, RHom(isS, wyrxr))-
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By Theorem [2.5/and Proposition 2.6, RHom(i+S, wyrxr) € D?TSO}(M x R).
Hence Hompy (a7xg) (S, «Darxr F) =~ 0, which implies

(4.51) D F € DY gy (M x R)*.

Now, assume that F, G € LD]‘?T <0} (M xR) are cohomologically construct-
ible. Then we have

(4.52) Hom*(F,G) ~ Rs, RHom(§; 'i "' F, §;G)
~ Rs, RHom(DarxrGi G, Darxrds i ' F)
~ Rs, RHom(q; 'DarxrG, Gbi ' DarxpF)
~ Hom™(ixDarxrG, ixDarxr F),

which proves the equality.

(iii) It is enough to show that Rgr, Hom*(F,G) ~ Rqr, Hom*(Fs,G;) for
any s € I. For a compact subset C of T*M, define Coney(C) C T*(M x
I) xR by

(4.53)

Coney (C) := {(fﬂ’,S;E’, —7 - Hy(2';¢'/7),7)

(2’3 ¢ /1) = ¢ (2:¢/7)

Denote by 7: T*(M x I x R) ~T*(M x I) x T*R — T*(M x I) x R the
projection. Then, by Proposition and (3.19)), we have

(4.54) SS(F') ¢ #~!(Coneg(A)), SS(G') C # ! (Coneg(B)).

T>0,(x;¢/7) € C, }

Moreover, let grxr: M x I x R — I x R be the projection. Note that qrxgr
is proper on Supp(Hom*(F’,G’)), where Hom* denotes the internal Hom
functor on D(M x I). Then, by [GS14, Proposition 4.13 and Lemma 4.7]
and Theorem we obtain

(4.55) SS(Rqrxr, Hom*(F',G")) C {(s,t;0,7) | 7> 0} C T*(I x R).
Since I is contractible, there exists S € DP(R) such that
(4.56) Rqrxr, Hom*(F',G") ~ ¢'718,

where ¢': I x R — R is the projection. Finally, by [GS14, Corollary 4.15],
for any s € I, we have

(457) RQIXR* Hom*(F/, G/)’{S}XR = RQR* Hom*(FS7 GS)7
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which completes the proof. O

Remark 4.20. Assume that F,G € D(M) ~ LD?Tq)}(]\f x R) are con-
structible and have compact support. Then Rqg, Hom™(F,G) is also con-
structible object with compact support and SS(Rgg, Hom™(F,G)) C {1 >
0}. By the decomposition result for constructible sheaves on R due to Guiller-
mou |Guil6bl Corollary 7.3] (see also [KS18, Subsection 1.4]), there exist a
finite family of half-closed intervals {[b;, d;)}icr and n; € Z (¢ € I) such that

(4.58) Rqg, Hom*(F,G) ~ P ky, a, [nil-
el

Using this decomposition, we find that ep)(F,G) = max;er(d; — b;) is
the length of the longest barcodes of Rgr, Hom™(F,G) in the sense of
Kashiwara—Schapira [KS18].

Remark 4.21. Let F,G € D(M). As remarked by Tamarkin [Tam18, Sec-
tion 1], we can associate a module H (F, G) over a Novikov ring Ag nov(k) as
follows. We define

(4.59)

[e%¢)
AO,nov(k) = {Z CiTAi
=1

We also define a submodule H(F,G) of [[.cp Hompap (F, T.G) b
(4.60)

Ciek,)\iGRzo,)\l <Ag < - ,'lim )\i:—l—oo}.
i—00

()2  CR g <eca< - ,ilggloci:—f—oo

¢ € [ [ Homp(ay (F, T0..G)

o0
R such that h, = 0 for any ¢ ¢ U{Cl}

i=1

For ¢ € R and A € R, there is the canonical morphism
(4.61) Teetr: Hompay) (F, TexG) — Homp(ap) (F, Te42,.G)

induced by ¢ ¢4 (G): TexG — Teq,G. Using this morphism, we can equip
H(F,G) with an action of T* by T - (h¢)c := (Tecra(he))e. We thus find
that the Novikov ring Ag nov(k) acts on H(F,G).

(i) Using the Agnov(k)-module H(F,G), we can express in Theo-
rem 418 as

(4.62) e(A, B) > inf{c € R>o | H(F, Q) is T*-torsion}
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for any F' € Dy(M) and G € Dg(M). This inequality seems to be related
to the estimate of the displacement energy by Fukaya—Oh—Ohta—Ono
[FOO009a, FOOO09D, Theorem J] and [FOOO13, Theorem 6.1].

(ii) We denote by Anov(k) the fraction field of Agnov(k). Then, for any
F,G € D(M), we have

(463) H(F7 G) ®Ag_]r,m,(k) Anov(k) = Hom’T(M) (F7 G) Xk Anov(k)

See Remark [4.5((ii) for the category T (M). Note also that 7 (M) is invariant
under Hamiltonian deformations by Theorem and Remark [4.5((ii).

4.4. Examples and applications

In this subsection, we give some examples to which Theorem [4.18|is appli-
cable.

The first two examples, Example and Example treat exact
Lagrangian immersions.

Example 4.22. Consider T*R™ ~ R?™ and denote by (x;¢) the homoge-
neous symplectic coordinate system. Let L=S"={(z,y) ER™ xR |||z|*+
y? = 1} and consider the exact Lagrangian immersion

(4.64) v L — T"R™,  (z,y) — (2;y7).

Setting f: L — R, f(z,y) := —%y?’, we have df = t*ap-rn. We define a lo-
cally closed subset Z of R™ x R by
(4.65)

1 3
Z = {(x,t) eR™ xR ’ x| < 1,—5(1 —lz|?): <t <

(- o)t

W =

and F :=kyz € D’(R™ x R).

3 t

Figure 4.1: «(L) in the case m = 1.  Figure 4.2: Z in the case m = 1.
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The object F is in LD}{DT<0} (R™ x R) and can be regarded as an object in
D,1y(R™). For this object F, we find that

k (0<c<3)
(4.66) HOmD(Rm)(F, TC*F) ~ HOme(Rme)(F, TC*F) ~ 0

(

and the induced morphism Hompgm)(F, F') — Hompgm)(F, Te. F') is the
identity for any 0 < ¢ < 2/3. Hence, we obtain e(.(L)) > epmwm)(F, F') > 2/3
by Theorem This is the same estimate as that of Akaho [Akalb|]. If
m = 1, it is known that e(¢(L)) = 4/3 by the use of Hofer-Zehnder capacity.

0<c<
c>3)

Using the example above, we can recover the following result of
Polterovich [Pol93], for subsets of cotangent bundles.

Proposition 4.23 ([Pol93, Corollary 1.6, see also the first remark in
p. 360]). Let A be a compact subset of T* M whose interior is non-empty.
Then its displacement enerqy is positive: e(A) > 0.

Proof. Take a symplectic diffeomorphism : T*M — T*M such that
Ty M NInt(y(A)) # 0. Since e(y(A)) =e(A), we may assume T35, M N
Int(A) # 0 from the beginning. Take a point zo € Ty, M N Int(A) and a local
coordinate system x = (x1,...,Ty,) on M around xg. Denote by (z;&) the
associated local homogeneous symplectic coordinate system on T%M. Using
the coordinates, for ¢ € Rsg we define t.: S™ — T*M by (z,y) — (ex,eyx)
as in Example Then, there is a sufficiently small € € Ry such that
the image ¢.(S™) is contained in Int(A). As in Example we define
F .= kZE S DLE(SW)(Rm)7 where

(4.67)

1 3 1 3
Zoi= {20 R xR | ol < 20—~ 7 <0< (2 - 1?3

Moreover we define GG € D, (gm)(M) as the zero extension of F' to M x
R. By monotonicity of the displacement energy and a similar argument to

Example we have

(4.68) e(A) > e(te(S™)) = epan) (G, G) > 2>0.

CO\[\D

O

For the next explicit example, our estimate is better than Akaho’s esti-
mate [Akal5].
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Example 4.24. Let ¢: [0,1] — (0, 1] be a C*°-function satisfying the fol-
lowing two conditions: (1) ¢ =1 near 0, (2) ¢(r) =r on [1/2,1]. Set S™ =
{(z,y) € R™ xR | ||z]|> + y*> = 1} and consider the exact Lagrangian im-
mersion

469) 5" = TR, (@) (o (llely - Z0R) o).

Setting f: S™ = R, f(z,y) == —5¢(||z]))y®, we have df = t*ap-pm. We de-
fine a locally closed subset Z of R™ x R by

(4.70) Z:= {(a:,t) e R™ xR

ol < 1,
— gl (1 = 1) < ¢ < ezl lal)?

and F := kyz € D’(R™ x R). Using the object F, one can show e(:(S™)) >
epmn)(F, F) > 2/3 as in Example On the other hand, the estimate by
Akaho [Akal5] only gives e(¢(S™)) > minre[o’%]{%(l —12)3 - (r)}, which is
less than /3/8.

Our theorem is also applicable to non-exact Lagrangian submanifolds.
We focus on graphs of closed 1-forms here.

Example 4.25. Let M be a compact manifold and n;: M — T*M a closed
1-form for ¢ =1,2. Set L; :=1',, C T*M the graph of n; for i = 1,2, and
assume that L; and Lo intersect transversally. We consider the displace-
ment energy e(Lj, La). The symplectic diffeomorphism 1 on T*M defined
by ¥(x;&) := (x;§ — n1(x)) sends Ly to the zero-section M and La to Iy, ;.
Thus we assume Ly = M and Ly = I';), where 7 is a closed Morse 1-form from
the beginning. Let p: M — M be the abelian covering of M corresponding
to the kernel of the pairing with 7. Then there exists a function f: M — R
such that p*n = df. By assumption, f is a Morse function on M. Define a
closed subset Z of M x R by

(4.71) Z:={(z,t) e M xR | f(z)+1t >0}
Then we have
(4.72)
F = R(p X idR)*kZ S DL(M) and e(Ll,Lg) > GD(M)(kMX[O,—i-oo)vF)

by Theorem [4.18
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Let us consider the estimate for ep(ar) (Karx[0,400), F)- First, we have

(4.73) RHom(kMx[O,—i-oo)v TC*F) ~ RHOHl(kMX[—c,—i—oo)’ kz)
~ R, oy (M X RiK7) .

Define U, := {z € M | f(x) > ¢} for ¢ € R. Then the cohomology of the last

o0 (]T/f x R; kZ> is isomorphic to H*(M, U.) and for ¢ <
d, T.,q is the canonical morphism induced by the map (M yUd) — ,@Z ,Ue) of
the pairs. Hence this persistence module is isomorphic to (H*(M,U.))cer
and it is the dual of the persistence module (H. (M, U.))ccr- The persistence
module (H.(M,U,))ccr can be studied by Morse homology theory of —f
or Morse-Novikov theory of —n. Let v be a vector field on M which is
a (—n)-gradient and satisfies the transversality condition in the sense of
Pajitnov [Paj06, Chapter 3 and Chapter 4]. The existence and denseness of
such vector fields hold (see Pajitnov [Paj06, Chapter 4]). Moreover let v be
the lift of v to M. The Morse-Novikov complex C' := C(—n, v) with respect
to v has the filtration (C<.)ccr defined by the values of —f. Here we regard
C as a finitely generated free module over the Novikov field

complex RI [

00 ciEk,)\i:/nfor some v € Hy{(M;7Z),
(4.74) > T 5
i=1 )\1</\2<---,llim)\i:+oo
1— 00

The persistence module (H,(C/C<.))cer is isomorphic to (H*(M, Ue))cer
by usual Morse theoretic arguments. Each critical point generates or kills
rank 1 subspace of the persistent homology. Hence one can prove that our
estimate is greater than or equal to

p,q € Crit(—f), |ind(p) — ind(q)| = 1, }

P q there is a flow of ¥ connecting p and ¢

(4.75) maxmin {!f(p) - /()

where Crit(—f) is the set of the critical points of — f and ind(p) is the Morse
index of p € Crit(—f).

The persistence module (H,(C/C<.))ccr is not finitely generated in the
usual sense of persistent homology theory. However we can apply the theory
of Usher-Zhang [UZ16] to C. Their result describes the “barcodes” of the
persistence module (H,(C<.)). and one can check that our estimate in this
case coincides with the length of the longest concise barcodes for C'(—n,v)
defined in [UZ16].
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In the last example below, our estimate determines the displacement
energy.

Example 4.26 (Special case of Example @ . Let L=T, C T*S!
be the graph of a non-exact 1-form n: S' — T*S'. Assume that L and
the zero-section S' intersect transversally at only two points. We estimate
the displacement energy e(S!,L). Let p: R — S' be the universal cover-
ing and take a function f on R such that df = p*n. Define F := R(p x
1dR )« K{ ()R xR|f(z)+t>0} € Dr(SY). Then a similar argument to Example
shows that ep(g1)(Kgix[0,400); F') is equal to the smaller area enclosed
by S' and L. One can check that e(S!, L) is equal to the area.
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