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In this paper we study the interplay between Lagrangian cobor-
disms and stability conditions. We show that any stability con-
dition on the derived Fukaya category DFuk(M) of a symplec-
tic manifold (M,ω) induces a stability condition on the derived
Fukaya category of Lagrangian cobordisms DFuk(C×M). In ad-
dition, using stability conditions, we provide general conditions un-
der which the homomorphism Θ : ΩLag(M) −→ K0(DFuk(M)),
introduced by Biran and Cornea [6, 7], is an isomorphism. This
yields a better understanding of how stability conditions affect Θ
and it allows us to elucidate Haug’s result, that the Lagrangian
cobordism group of T 2 is isomorphic to K0(DFuk(T 2)) [23].
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1. Introduction

The notion of stable vector bundles was first introduced by Mumford in [38]
and was extensively studied and further developed by many people since
then. Building on advances in the study of Dirichlet branes in string theory,
and in particular on the work of Douglas [13], Bridgeland [11] generalised
this notion of stability to the setting of triangulated categories by intro-
ducing so called stability conditions on triangulated categories. Bridgeland
[11] further shows that the set of stability conditions on a triangulated cat-
egory has a natural topology and hence gives rise to an invariant of the
triangulated category. This makes stability conditions a useful tool in the
study of triangulated categories. Turning to more specific terms, a stabil-
ity condition on a triangulated category D is a pair (Z,P) consisting of a
slicing P = {P(ϕ)}ϕ∈R where each P(ϕ) is the subcategory of semistable ob-
jects of phase ϕ and Z : K0(D) → C is a compatible central charge function.
The pair (Z,P) has to satisfy a number of axioms (see [11], resp. Def. 4.1
below). One important axiom is that each non-zero object of D admits a
unique Harder-Narasimhan filtration. That is, an iterated cone decomposi-
tion over semistable objects, which are unique up to isomorphism, of strictly
decreasing phases (see Def. 4.1, (A4) below). In particular, the semistable
objects (resp. stable objects) generate D as a triangulated category.

In recent years, stability conditions gained much popularity and gen-
erated many advances, most prominently in the study of bounded derived
categories of coherent sheaves DbCoh(X). In general it is difficult to con-
struct, or establish the existence of, a stability condition on DbCoh(X).
In [11, 12] Bridgeland constructs stability conditions on DbCoh(X) for the
cases when X is an elliptic curve or an algebraic K3-surface. There are more
results in dimensions 2 and 3, some of which can be found in [10, 35, 36].

On the other hand, the derived Fukaya category is a central object of
study in symplectic geometry. The derived Fukaya category DFuk(M) of a
symplectic manifold (M,ω) is a triangulated category which encodes infor-
mation on the Lagrangian submanifolds ofM . So it is natural to ask whether
the concept of stability conditions may be used to facilitate a better under-
standing of DFuk(M). Inspired by Thomas [45] and Thomas and Yau [46]
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and by earlier insights from string theory, Joyce [28] formulates a conjecture
on the existence of a stability condition on DFuk(M) for a Calabi-Yau man-
ifold M , where special Lagrangians are expected to be semistable objects.

In 1994 Kontsevich [29] formulated the homological mirror symmetry
conjecture which states that there should be a triangulated equivalence be-
tween the split-closed derived Fukaya category of a Calabi-Yau manifold and
the bounded derived category of coherent sheaves of its mirror manifold, that
is

DπFuk(X) ≃ DbCoh(X∨).

This conjecture has been proven in some cases, including the tori T 2 by
Polishchuk-Zaslow [39] and T 4 by Abouzaid-Smith [1], the genus two curve
and the quartic surface in CP 3 by Seidel and for Calabi-Yau hypersurfaces
(of dimension ≥ 3) of projective spaces by Sheridan [42].

On the B-side, DbCoh(X) is the derived category of the abelian category
of coherent sheaves in the ordinary sense. Stability conditions are better
understood in this setting than on the A-side where the derived Fukaya
category is not the derived category of any abelian category but arises from
the A∞-category Fuk(M). In cases where the mirror symmetry conjecture
holds and it is known that stability conditions on the B-side exist, one can
obtain stability conditions on the A-side by the equivalence of the respective
derived categories. For example, stability conditions on the bounded derived
category of coherent sheaves over an elliptic curve are well understood (see
also Appendix B) and so by mirror symmetry one gets stability conditions
on the derived Fukaya category of the torus T 2.

Biran and Cornea developed a theory of Lagrangian cobordism in [6–8],
where they constructed the Fukaya category of cobordisms and established
links between some of the algebraic relations in the derived Fukaya cate-
gory of the underlying symplectic manifold and the geometry of Lagrangian
cobordisms. In particular, one may express a Lagrangian over a horizontal
end of a cobordism as an iterated cone, in the derived Fukaya category, of the
Lagrangians occurring over the remaining ends of the cobordism, c.f. Theo-
rem 2.2.1 in [6] (see also (11)).

Both stability conditions and the theory of Lagrangian cobordism are
useful tools to understand relations in the derived Fukaya category from the
algebraic and geometric viewpoint. So it is natural to ask in what way these
concepts are related. In this paper we are working with a restricted class
of symplectic manifolds and Lagrangian cobordisms. The precise setting is
defined in Section 2 (roughly speaking we are working with graded, weakly
exact Lagrangian submanifolds of Calabi-Yau manifolds). The main result
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we prove in this paper is the following (see Theorem 4.13 for a more precise
statement):

Theorem (A). A stability condition on the derived Fukaya category
DFuk(M) of a symplectic manifold (M,ω) induces a stability condition
on the derived Fukaya category of cobordisms DFuk(C×M).

In the above theorem, DFuk(C×M) denotes the derived category asso-
ciated to the Fukaya category Fuk(C×M) of positively ended Lagrangian
cobordisms. The objects of the category Fuk(C×M) are Lagrangian cobor-
disms (with additional structures) without any negative ends (see Section 3.1
for the definition).

Since a triangulated category that admits a stability condition is neces-
sarily split-closed (see [27, Prop. 2.4] and [32]) we get the following corollary
(see Corollary 4.16):

Corollary. If DFuk(M) admits a stability condition, then DFuk(C×M)
is split-closed.

In particular, as indicated above, the derived Fukaya category of the
torus T 2 (as defined in [23]) admits a stability condition and hence the de-
rived Fukaya category of cobordisms on T 2 is split-closed (cf. Example 4.17).

1.1. The relation of ΩLag(M) and K0(DFuk(M))

In [7] Biran and Cornea defined the Lagrangian cobordism group ΩLag(M) of
a symplectic manifold (M,ω) (see also Definition 6.1 below). They observed
(see [7, 23]) that there is a natural surjective group homomorphism

Θ : ΩLag(M) −→ K0(DFuk(M))

from the Lagrangian cobordism group to the Grothendieck group of the
derived Fukaya category of M (see Appendix A for the definition of the
Grothendieck group). It is an interesting question to understand when Θ is
an isomorphism or, more generally, to understand the kernel of Θ. Haug [23]
used homological mirror symmetry to show that Θ is an isomorphism in the
case of the torus T 2. In Section 6.1 we explain the role of stability conditions
in Θ being an isomorphism and we bring Haug’s result into the perspective
of stability conditions. Moreover, we will establish a general criterion under
which Θ is an isomorphism (see Corollary 6.7).
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1.2. Strategy of the proof of Theorem A

In [8] Biran and Cornea show that the derived Fukaya category of cobor-
disms is generated by (the image under the Yoneda-embedding of) Lagran-
gian cobordisms of the form γj × L ⊂ C×M , where L ⊂M is a Lagrangian
submanifold and γj is a curve in C ∼= R

2 with horizontal ends at heights
1 and j. In particular, any Lagrangian cobordism V with positive ends
(L1, . . . , Ls) and without any negative ends (see Section 3) is isomorphic
in DFuk(C×M) to an iterated cone (γhs × Ls → · · · → γh2 × L2) where
hs > · · · > h2 > h1 = 1 are integers indicating the heights of the cylindri-
cal ends of V (see Prop. 5.1). So, given a stability condition (ZM ,PM ) on
DFuk(M) we define a candidate stability condition (Z,P) on DFuk(C×
M) (cf. (6)). Given our setup the definition of (Z,P) is relatively straight-
forward. Roughly speaking, objects of the form γj × L are semistable if
L ∈ Ob(DFuk(M)) is semistable with respect to (ZM ,PM ). We then check
that the candidate (Z,P) satisfies axioms (A1)–(A4) of Definition 4.1,
which is more involved. It is important to note that semistable objects inM
are not necessarily geometric, that is they are not necessarily isomorphic to
the image of an honest Lagrangian under the Yoneda-embedding.

The most intricate axiom to check is axiom (A4), i.e. the existence of
a Harder-Narasimhan filtration. A Lagrangian cobordism V with positive
ends (L1, . . . , Ls) and without any negative ends can be viewed, via the
Yoneda-embedding, as a geometric object of DFuk(C×M). We now use
Biran and Cornea’s iterated cone decomposition of V as a starting point
to construct the HN-filtration. However, the Lagrangians (L1, . . . , Ls) are
possibly not semistable in DFuk(M). So we need to use the HN-filtration
of each of these Lagrangians with respect to (ZM ,PM ) in order to refine
the iterated cone decomposition. This relies on the fact that there are inclu-
sion and restriction functors between the derived categories DFuk(M) and
DFuk(C×M) (cf. (3) and (5)). After such a refinement we have an iter-
ated cone decomposition of V over semistable objects. However, the phases
of these semistable objects do not necessarily form a strictly decreasing se-
quence. By algebraic arguments we may adapt this cone decomposition by,
for example, switching the order of adjacent objects. After finitely many
steps we arrive at the desired HN-filtration.

The case where we consider a general object W of DFuk(C×M) is
more delicate. In this case we first decompose W into an iterated cone over
geometric objects. Then we have to reshuffle the factors of the HN-filtrations
of the individual geometric objects in order to obtain the HN-filtration of
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W itself. Compared to the previous case there is an additional complica-
tion here, arising from the fact that reordering the brackets in an iterated
cone decomposition comes along with shifts in the triangulated category
(cf. Remark A.3).

1.3. Organization of the paper

The definition of the Fukaya category and related concepts will be reviewed
in Section 2. Section 3 is dedicated to Lagrangian cobordisms and inclu-
sion respectively restriction functors between the categories DFuk(M) and
DFuk(C×M). In Section 4 we will introduce the notion of stability con-
dition, state the main result and discuss an important example. Section 5
deals with the cone decomposition induced by Lagrangian cobordisms and
contains some algebraic remarks on A∞-modules. In Section 7 we will prove
the main result, Theorem 4.13. In Section 6 we will investigate a relation
between the Lagrangian cobordism group and stability conditions on the
derived Fukaya category and discuss the case of the torus T 2. Appendix A
deals with iterated cone decompositions in triangulated categories. In Ap-
pendix B we will discuss an example of a stability condition on the bounded
derived category of coherent sheaves on elliptic curves.

Acknowledgement. I would like to express my gratitude to my advisor
Paul Biran for numerous suggestions, patient explanations, and for gener-
ously sharing his insights with me during many long discussions. I also thank
Octav Cornea and Luis Haug for helpful comments and their interest in my
work.

2. Preliminaries on the Fukaya category

In this section we will outline the setup of Lagrangian Floer theory and the
Fukaya category and we will define the setting of the paper. For a more
detailed and in depth treatment of these subjects we refer the reader to
[6, 7, 15, 16, 28, 40, 41]. Experts on Lagrangian Floer theory may want to
skip this section.

2.1. The Fukaya category

The Fukaya category Fuk(M) of a symplectic manifold (M,ω) is an A∞-
category over some ground field K. To be more precise one should write
Fuk(C), where C is an admissible class of Lagrangians inM . There are many



✐

✐

“4-Hensel” — 2020/5/14 — 15:47 — page 469 — #7
✐

✐

✐

✐

✐

✐

Stability conditions and Lagrangian cobordisms 469

different versions of the Fukaya category. For us it doesn’t really matter
which class C of objects we are working with, as long as the Fukaya category
Fuk(C) can be set up properly and Z-gradings are incorporated. For this
reason we will often just write Fuk(M) for the Fukaya category without
specifying the class C of admissible objects.

2.1.1. Objects. The objects of Fuk(C) are Lagrangian branes. These are
triples (L, θ, P ) where L ⊂M is a Lagrangian in M of a certain class C, θ is
a Z-grading on L and P is a Pin-structure on L. Usually the Pin-structure
will be omitted from the notation of Lagrangian branes and sometimes we
will also omit the grading. We will explain more about the grading later on
in this section, for the definition and more details on Pin-structures we refer
to [34] and [41, (11i)].

There are different possible choices for the class C of admissible Lagran-
gians. For instance one may take C to be contained in one of the following
classes of Lagrangians.

• Exact Lagrangians in M . In this case one may take C as the ground
field.

• Weakly exact Lagrangians in M , i.e. Lagrangians such that ω vanishes
on π2(M,L). In this case it is necessary to work over the Novikov-field

Λ :=

{
∞∑

i=0

ciT
ai
∣∣∣ ci ∈ C, ai ∈ R, ai < ai+1, lim

i→∞
ai = ∞

}
.(1)

2.1.2. Grading. In this section we collect some remarks about graded
Lagrangian submanifolds following the references [28, 40, 41]. By grading
we will always mean Z-grading from now on.

Suppose that (M2n, ω) is a symplectic manifold with a compatible almost
complex structure J and Riemannian metric g, induced by ω and J . There is
a natural fibre bundle LM →M associated to M with fibre LMx the Lagran-
gian Grassmannian of (TxM,ωx). If 2c1(M) = 0 ∈ H2(M ;Z) then the line
bundle K⊗2

M is trivial, where KM :=
∧n,0(T ∗M,J) is the canonical line bun-

dle over M . Fix a non-vanishing section Θ :M → K⊗2
M , which determines a

non-vanishing complex-linear n-form on M up to sign. Such a section exists
since K⊗2

M is trivial. This induces a well-defined map

αΘ : LM −→ S1; (x,Λx) 7−→
Θx((v1 ∧ · · · ∧ vn)⊗ (v1 ∧ · · · ∧ vn))
|Θx((v1 ∧ · · · ∧ vn)⊗ (v1 ∧ · · · ∧ vn))|
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where v1, . . . , vn is any basis of the Lagrangian subspace Λx ⊂ TxM . To any
Lagrangian submanifold L ⊂M we can associate a Lagrangian subbundle
TL ⊂ TM or equivalently a section sL : L→ LM |L, given by its Gauss-map.

Definition 2.1. A grading (or Z-grading) of an oriented Lagrangian L ⊂
M is a lift θ of the map αΘ ◦ sL : L→ S1 to R.

R

e2πi•

��

L

θ

>>

αΘ◦sL
// S1

The tuple (L, θ) consisting of an oriented Lagrangian together with a grading
is called a graded Lagrangian. A graded Lagrangian (L, θ) is said to be special
if θ is constant.

A grading on L does not always exist; such a lift exists if and only if
(αΘ ◦ sL)#(π1(L)) = 0 ⊂ π1(S

1) ∼= Z, i.e. if the Maslov-class of L vanishes.
If L is connected and a grading exists, then it is unique up to adding integers.

Definition 2.2. A Calabi-Yau manifold of dimension n is a quadruple
(M,J, g,Ω) consisting of a complex manifold (M,J) of complex dimension
n together with a Kähler metric g, Kähler form ω and a holomorphic (n, 0)-
form Ω on (M,J) satisfying

ωn/n! = (−1)n(n−1)/2(i/2)nΩ ∧ Ω̄.

Example 2.3. The simplest example of a Calabi-Yau manifold is the stan-
dard complex space Cn with coordinates (z1, . . . , zn) endowed with the stan-
dard complex structure J , symplectic form ωstd, standard Kähler metric gstd
and holomorphic n-form Ωstd given by

ωstd =
i

2

n∑

j=1

dzj ∧ dz̄j and Ωstd = dz1 ∧ · · · ∧ dzn.

If (M2n, J, g,Ω) is a Calabi-Yau manifold then we can set Θ := Ω⊗2

and apply the above construction. Let (L1, θ1), (L2, θ2) be two graded La-
grangians in M , intersecting transversely at a point p ∈M . We can choose
an isomorphism (TpM,Jp, gp,Ωp) ∼= (Cn, Jstd, gstd,Ωstd) (see [14] and [28,
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Def. 2.20]) under which TpL1 is identified with R
n ⊂ C

n and TpL2 is iden-
tified with the plane {eiϕ1x1, . . . , e

iϕnxn |xj ∈ R} ⊂ C
n. For a fixed Kähler

structure, the Kähler angles ϕ1, . . . , ϕn ∈ (0, π) are unique up to ordering.

Definition 2.4. The degree degp(L1, L2) of the intersection point p ∈ L1 ⋔

L2 is defined by

degp(L1, L2) = n+ θ2(p)− θ1(p)−
1

π

n∑

j=1

ϕj .

Remark 2.5. Note that degp(L1, L2) is an integer since θ2(p) = θ1(p) +
1
π

∑n
j=1 ϕj mod Z.
Changing the order of L1 and L2 has the effect of replacing the Kähler

angles ϕ1, . . . , ϕn by π − ϕ1, . . . , π − ϕn and therefore we get the relation

degp(L1, L2) + degp(L2, L1) = n.

Moreover, since the Kähler angles all lie in the open interval (0, π) we have
that

θ2(p)− θ1(p) < degp(L1, L2) < θ2(p)− θ1(p) + n.

Definition 2.6. For σ ∈ Z there is a σ-fold shift operator on graded La-
grangians given by subtracting σ from the grading

Sσ(L, θ) := (L, θ − σ)

and changing the orientation on L if σ is odd. We also write (L, θ)[σ] :=
Sσ(L, θ).

Remark 2.7. The shift operator also has an effect on the Pin-structure,
for this and details on Pin-structures we refer to Seidel [41, (11i),(11k)].

2.1.3. Morphisms and the Floer-complex. Let C be a class of admis-
sible Lagrangians, we take the Novikov-field Λ (see (1)) as our ground field.
Let Li := (Li, θi, Pi), i = 0, 1 be two Lagrangian branes such that L0 and L1

intersect transversely. The Floer-cochain complex CF (L0, L1) is the graded



✐

✐

“4-Hensel” — 2020/5/14 — 15:47 — page 472 — #10
✐

✐

✐

✐

✐

✐

472 Felix Hensel

Λ-vector space whose degree k-part is given by

CF k(L0, L1) =
⊕

p∈L0∩L1

degp(L0,L1)=k

Λ · p.

We will now briefly describe the Floer-differential. Let Z := R× [0, 1] be the
strip with coordinates (s, t) and standard complex structure jZ and let J
be a generic 1-parametric family of complex structures on M depending on
t ∈ [0, 1]. Given p, q ∈ L0 ∩ L1 we denote by M0(p, q) the zero-dimensional
component (which is a finite set if degp(L0, L1) = degq(L0, L1) + 1) of all
maps u : Z →M that satisfy

∂su+ J(t, u)∂tu = 0(2)

and the asymptotic conditions

u(s, 0) ∈ L0, u(s, 1) ∈ L1, lim
s→−∞

u(s, ·) = p, lim
s→∞

u(s, ·) = q

modulo the R-action coming from translation in the s-direction. On gener-
ators q ∈ L0 ∩ L1 of degree k (i.e. degq(L0, L1) = k), the Floer-differential
∂ : CF k(L0, L1) → CF k+1(L0, L1) is given by

∂q = (−1)k
∑

p∈L0∩L1

degp(L0,L1)=k+1

∑

u∈M0(p,q)

sign(u)T ω(u) · p.

For details on the sign of u, sign(u) ∈ {±1}, and how it is determined, we
refer to [41, (12f)].

In the general case, that is when L0 and L1 do not intersect transversely,
one has to incorporate Hamiltonian perturbations as follows. To each pair
(L0, L1) one associates a Floer datum (H, J) consisting of a Hamiltonian
function H with Hamiltonian flow ϕHt and a generic almost complex struc-
ture J such that ϕH1 (L0) intersects L1 transversely. One then considers the
following perturbed version of equation (2)

∂su+ J(t, u)(∂tu−XH(t, u)) = 0,

where XH is the Hamiltonian vector field of H, and proceeds as before.
Note that it is slightly imprecise to write CF (L0, L1), one should write
CF (L0, L1;H, J) since the cochain complex depends on the choice of Floer
datum. However, it can be shown that the Floer cohomology HF ∗((L1, θ1),
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(L2, θ2)), which is the cohomology of this cochain complex, doesn’t depend
on the choice of Floer datum up to isomorphism.

Remark 2.8. One can also endow the Lagrangians with local systems, in
which case one has to incorporate the parallel transport along the boundary
of u : Z →M in the definition of the differential (see e.g. [23]). Note that
local systems are needed in Section 6 for the case of T 2.

The space of morphisms in the Fukaya category Fuk(M) from L0 to L1

is given by the graded vector space

hom(L0, L1) = CF (L0, L1).

Remark 2.9. The shift operator (see Definition 2.6) has the following prop-
erties (cf. [40]):

CF ∗((L1, θ1)[σ], (L2, θ2)[τ ]) = CF ∗−σ+τ ((L1, θ1), (L2, θ2))

HF ∗((L1, θ1)[σ], (L2, θ2)[τ ]) ∼= HF ∗−σ+τ ((L1, θ1), (L2, θ2)).

2.1.4. A∞-operations. The A∞-operations of Fuk(M) are maps

µd : hom(Ld−1, Ld)⊗ · · · ⊗ hom(L0, L1) → hom(L0, Ld)[2− d], d ≥ 1.

As before we will only briefly describe these maps in the situation where
all subsequent Lagrangians intersect transversely, that is we assume that
L0 ⋔ Ld and Li−1 ⋔ Li for 1 ≤ i ≤ d (cf. [3, 23]). For more details and the
proof that Fuk(M) is actually an A∞-category, we refer to [41].

Let S be the unit disk with one incoming boundary puncture z0 and d
outgoing boundary punctures z1, . . . , zd, lying in counterclockwise order on
the unit circle and let p0, p1, . . . , pd ∈M be such that p0 ∈ L0 ∩ Ld and pi ∈
Li−1 ∩ Li for 1 ≤ i ≤ d. We denote by M(p0; p1, . . . , pk; [u], J) the moduli
space of maps u : S →M in the homotopy class [u], extending continuously
to the unit disc and mapping the arcs from zi to zi+1 (resp. from zd to z0)
to Li satisfying

Du(z) + J(z, u) ◦Du(z) ◦ jS = 0

up to the reparametrization action by automorphisms of the unit disk. Here,
J is a generic ω-compatible almost complex structure depending on z ∈ S.
Under the transversality assumption the expected dimension of the moduli
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space is (see e.g. [41, (12f)])

dim(M(p0; p1, . . . , pk; [u], J)) = d− 2 + degp0(L0, Ld)−
d∑

i=1

degpi(Li−1, Li)

and in this case we define the (Λ-linear) maps

µd : hom(Ld−1, Ld)⊗ · · · ⊗ hom(L0, L1) → hom(L0, Ld)[2− d], d ≥ 1,

by

µd(pd, . . . , p1) =
∑

p0∈L0∩Ld

dim(M(p0;p1,...,pk;[u],J))=0

∑

u∈M(p0;p1,...,pk;[u],J)

(−1)†sign(u) · T ω([u])p0,

where † =∑d
i=1 i · degpi(Li−1, Li). In the general case, one has to consis-

tently choose perturbation data associated to each tuple of Lagrangians,
and perturb the Cauchy-Riemann equation for the curves u : S →M . For
an extensive treatment of these issues we refer to Seidel [41].

Remark 2.10. Note that µ1 coincides with the Floer-differential up to a
sign, i.e. µ1(p) = (−1)|p|∂(p), where |p| denotes the degree of p in the graded
vector space CF (L0, L1).

2.1.5. The derived Fukaya category. The derived Fukaya category
DFuk(M) is constructed from the Fukaya category Fuk(M) by first com-
pleting it to a triangulated A∞-category (i.e. taking a triangulated envelope
[41, (3j)]) and then taking its degree zero cohomology. There are various
realization of the derived Fukaya category, we will briefly describe one pos-
sibility via the Yoneda-embedding and refer to Seidel [41, (3j)] for another
construction, yielding an equivalent category, via twisted complexes.

Recall that the Yoneda-embedding Y : Fuk(M) → mod(Fuk(M)) is a
cohomologically full and faithful embedding of Fuk(M) into the triangulated
A∞-category mod(Fuk(M)) of A∞-modules over itself. On objects it acts
as Y((L, θ)) = CF (−, (L, θ)). The derived Fukaya-category DFuk(M) is,
up to equivalence, the degree 0 cohomology of the triangulated completion
Y(Fuk(M))∧ of the image of the Yoneda-embedding inside mod(Fuk(M)),
i.e.

DFuk(M) = H0(Y(Fuk(M))∧).

The shift functor descends to an autoequivalence of the derived Fukaya
category DFuk(M). We will call an object of DFuk(M) geometric, if it
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isomorphic to a shift of an object in the image of the Yoneda-embedding.
The geometric objects generate the derived Fukaya category in the sense that
each object of DFuk(M) is isomorphic to an iterated cone over geometric
objects.

Remark 2.11. Let F : A → B be an A∞-functor between two A∞-
categories A and B. Then ([41, (1k)]) F induces a pullback functor F∗ :
mod(B) → mod(A), so we may pull back A∞-modules over B to A∞-
modules over A via F . Such modules cannot be pushed forward in general.
If F∗ has the property that it sends Yoneda-modules over B to Yoneda-
modules over A, then it induces a triangulated functor on the derived level
D(B) → D(A). On the other hand, F also induces an A∞-functor TwF :
TwA → TwB ([41, Lemma 3.23]) between the A∞-categories of twisted
complexes over A and B ([41, (3l)]). This in turn induces a triangulated
functor H0(TwF) : H0(TwA) → H0(TwB), that is a triangulated functor
on the derived level F̃ : D(A) → D(B) ([41, Lemma 3.30]). The derived cat-
egory of an A∞-category is only defined up to equivalence, depending on the
choice of triangulated envelope. Twisted complexes TwA and the triangu-
lated completion of the Yoneda-embedding in the category of A∞-modules
over A both form triangulated envelopes of A. We now fix triangulated
equivalences H0(TwA)

ηA−→ H0(Y(A)∧) and H0(TwB) ηB−→ H0(Y(B)∧). Re-
call that Y(A)∧ denotes the triangulated completion of Y(A) in mod(A),
similarly for B. Given an object M in H0(Y(A)∧), i.e. an A∞-module M
in the triangulated completion Y(A)∧, let C be an object of H0(TwA) such
that ηA(C) is isomorphic to M in H0(Y(A)∧). Then there exists an A∞-
module N in Y(B)∧ which is isomorphic to ηB(F̃C) in H0(Y(B)∧).

3. Lagrangian Cobordisms

3.1. Graded Lagrangian Cobordisms and the induced grading on
the ends

In [6–8] Biran and Cornea developed a theory of Lagrangian cobordism. Our
setting will be very similar to the one employed in [8] and we will make
use of the machinery and notation that Biran and Cornea established. The
difference is that we will consider graded Lagrangian cobordism and we will
work in a cohomological rather than a homological setting.

Let (M,ω) be a symplectic manifold. We denote by M̃ the symplectic
manifold C×M endowed with the symplectic form ω̃ = ωstd ⊕ ω and by
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π : M̃ → C the projection to the complex plane. For subsets X ⊂ M̃ and
S ⊂ C we write X|S := X ∩ π−1(S).

Definition 3.1 (cf. [6]). Given two families (L′
k)1≤k≤s− and (Lj)1≤j≤s+

of closed Lagrangians in M , a Lagrangian cobordism V between these two
families is a Lagrangian submanifold V ⊂ M̃ such that for some R > 0 we
have that π(V ) ∩ [−R,R]× R ⊂ C is compact and

V |(−∞,−R]×R =
⊔

k

((−∞,−R]× {h′k})× L′
k

V |[R,∞)×R =
⊔

j

([R,∞)× {hj})× Lj ,

where we have identified C ∼= R
2 via (x+ iy) ↔ (x, y). Moreover h1 < · · · <

hs+ and h′1 < · · · < h′s− are integers and hk is called the height of the hori-
zontal end Lk in the Lagrangian cobordism V . Such a Lagrangian cobordism
is denoted by V : (Lj)1≤j≤s+ ❀ (L′

k)1≤k≤s− .

Remark 3.2. Note that either of the families (L′
k)1≤k≤s− respectively

(Lj)1≤j≤s+ may be empty, in which case we have

V |(−∞,−R]×R = ∅ respectively V |[R,∞)×R = ∅.

Lagrangian cobordisms of the type V : (Lj)1≤j≤s+ ❀ ∅ respectively V : ∅ ❀

(L′
k)1≤k≤s− are called positively ended (see Figure 3.1) respectively negatively

ended.

Ls+

L2

L1

hs+

h2

h1

π(V )

Figure 1: Projection to C of a positively ended Lagrangian cobordism.

Let now (M2n, J, g,Ω) be a Calabi-Yau manifold. In their work Biran
and Cornea constructed the Fukaya category of cobordisms Fuk(C×M).
In our setting all the cobordisms will be graded. That is, the objects of
the Fukaya category Fuk(C×M) of graded, positively ended Lagrangian
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cobordisms are graded Lagrangian cobordisms (V, θV ) : (L1, . . . , Lm) ❀ ∅ in
(C×M, J̃, g̃, Ω̃) that are cylindrical in the complement ofK ×M and whose
cylindrical ends are on heights h1 < · · · < hm in Z≥1. Here K ⊂ C is a fixed
compact subset and L1, . . . , Lm are gradeable Lagrangians inM . In addition,
to simplify the notation, we always assume that the height h1 of the lowest
cylindrical end [R,∞)× {h1} × L1 is 1, i.e. h1 = 1. If necessary we will set
L1 = ∅.

Moreover, ω̃ := ωstd ⊕ ω and Ω̃ is a holomorphic (n+ 1)-form on M̃ :=

C×M . In the complement ofK ×M the additional structure on M̃ satisfies:

J̃ = i⊕ J, g̃ = gstd ⊕ g, and Ω̃ = π∗
Cdz ∧ π∗

MΩ

where M̃
πC−→ C and M̃

πM−→M are the respective projections.
In [8] Biran and Cornea consider only negatively ended cobordisms (for

notational convenience) and in the setup of the Floer-complex CF (V,W )
of two cobordisms, they choose the perturbation datum in such a way that
the horizontal ends of the second cobordismW are slightly perturbed down-
wards, i.e. in the −i direction in C. The only change we are making to Biran
and Cornea’s setup is that we are working with positively ended cobordisms.
And we will still choose the perturbation datum in such a way that the hor-
izontal ends of the second cobordism W are slightly perturbed downwards.
The reason for this change is that we are working in a cohomological and not
in a homological setting. This adaptation will ensure that the inclusion func-
tor ι(β,ρ), which will be defined in Section 3.2, will indeed be an A∞-functor
and respect the degrees of morphisms correctly (cf. [23, Section 4]). All the
relevant constructions and results from [6–8] carry over to this setting.

Remark 3.3. We could have just as well worked with negatively ended
cobordisms while choosing the opposite perturbation datum. However, this
is not convenient for notational purposes.

Remark 3.4. In addition to a grading we may also endow our Lagrangians
with other additional data, such as local systems or Pin-structures. Given
Lagrangians (L1, . . . , Lm) equipped with such extra data, a cobordism V :
(L1, . . . , Lm) ❀ ∅ is a cobordism of the underlying Lagrangians, which is
itself endowed with the same types of extra data. The restriction of the extra
data on V to the ends (provided one can suitably define the restriction of
the additional structure to the ends) should coincide with the given data on
the ends.
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Remark 3.5. Note also that local systems on Lagrangians in M are often
necessary in order to define a stability condition on DFuk(M). In the case
of T 2 for example, local systems are needed in order to get a split closed
derived Fukaya category (see [23]), which is a necessary condition for the
existence of a stability condition. However, in order to construct a stability
condition on DFuk(C×M) from a given one on DFuk(M), we do not need
to make explicit use of local systems. They will be implicitly carried along
in case they are required in DFuk(M).

Notation. From now on, whenever convenient, we will omit the grading
from the notation, i.e. we will simply write L or V instead of (L, θL) or
(V, θV ). We will sometimes also just write (V, θV ) (resp. (L, θL)) for the
Yoneda-module Y(V, θV ) ∈ DFuk(C×M) (resp. Y(L, θL) ∈ DFuk(M)). It
should be clear from the context which is meant.

Let (V, θV ) be a graded Lagrangian cobordism with

V |[R,∞)×{hj} = [R,∞)× {hj} × Lj

for some Lagrangians Lj ⊂M and 1 ≤ j ≤ s and some R > 0. For x ∈
[R,∞), p ∈ Lj the tangent space of V at ((x, hj), p) splits as a direct sum

T((x,hj),p)V
∼= TxR⊕ TpLj ⊂ T(x,hj)C⊕ TpM ∼= T((x,hj),p)M̃.

The part of this Lagrangian subspace that lies in TC is independent of
x ∈ [R,∞) and hence the same is true for the grading θV . Therefore, the
grading θV on the cobordism induces a grading θV,j on each of its ends Lj
by

θV,j : Lj −→ R; θV,j(p) := θV ((x0, hj), p)

for any fixed choice of x0 ∈ [R,∞).

Remark 3.6. Notice that for any p ∈ Li and q ∈ Lj , the difference θi(p)−
θj(q) of the induced gradings on two ends Li, Lj of the cobordism (V, θV )
remains unchanged after a grading shift of V . That is, we have that (V, θV )[σ]
induces gradings θi−σ, θj−σ and indeed (θi(p)−σ)−(θj(q)−σ) = θi(p)−
θj(q).

3.2. Inclusion and restriction functors

Let β : R → C be an embedded graded smooth curve with grading ρ :
im(β) → R and such that β((−∞,−R′]) = [R,∞)× {c+} and β([R′,∞)) =
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[R,∞)× {c−} for some positive constants R,R′ and integers 0 < c− < c+.
If β satisfies these conditions we say that it is a graded curve with positive
horizontal ends and by abuse of notation we sometimes write β ⊂ C for the
image im(β) ⊂ C of the curve.

Each such curve induces an A∞-inclusion functor (see [7, Section 4.2]
and [23, Section 4] for the graded and cohomological version)

ι(β,ρ) : Fuk(M) −→ Fuk(C×M)

which acts on objects by

(L, θ) 7−→ (β × L, ρ⊕ θ).

This functor induces a triangulated functor on the derived level (see [41,
Lemma 3.30])

(3) I(β,ρ) : DFuk(M) −→ DFuk(C×M).

The grading on such a curve (β, ρ) is completely determined by its value
on the top horizontal end, that is by its constant value ρ|[R,∞)×{c+}. For
r ∈ R we denote by (β, r) the graded curve where the grading is the unique
grading ρr on β such that its value on the top horizontal end is equal to r. If
r = 0 we will simply write ιβ (resp. Iβ) for the inclusion ι(β,0) (resp. I(β,0)).

As in [8] we will fix two distinguished collections of smooth embedded
curves in C:

• For j ∈ Z≥1, γj is the curve with horizontal ends on the heights 1 and
j. More precisely

γj(R) ⊂ (R,∞)×
[
1

2
,∞
)
, γj(−1, 1) ⊂ [R+ 1, R+ 2]× [1, j]

and

γj((−∞,−1]) = [R+ 2,∞)× {j}, γj([1,∞)) = [R+ 2,∞)× {1}

where the constant R ∈ R is chosen in such a way that γj completely
lies in the region of C over which the symplectic and complex structure
on C×M are of split type.

• For j ∈ Z≥1, ηj is the curve which looks exactly like γj except that it
has horizontal ends on heights j + 1

2 and j − 1
2 .
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γj

j

1

Figure 2: The image of the curve γj with horizontal ends on heights 1 and j.

Notation. As we will mostly consider the inclusion functor along the dis-
tinguished curves γj , we abbreviate the notation and write

ιj := ιγj : Fuk(M) −→ Fuk(C×M) and

Ij := Iγj : DFuk(M) −→ DFuk(C×M)

for the respective inclusion functors. We say that an object ofDFuk(C×M)
is of height j, if it is isomorphic to an object in the image of Ij .

Recall from [8] that there is a full and faithful embedding e :
Fuk(C×M) → Fuk 1

2
(C×M) where Fuk 1

2
(C×M) is the same category

as Fuk(C×M) except that cobordisms are also allowed to have horizon-
tal ends on heights in 1

2Z. There is a corresponding Yoneda-embedding
Y 1

2
: Fuk 1

2
(C×M) → mod(Fuk 1

2
(C×M)) and by Y ′ : Fuk(C×M) →

mod(Fuk 1

2
(C×M)) we will denote the composition Y ′ = Y 1

2
◦ e. More-

over, H0(Y ′(Fuk(C×M))∧) is equivalent to the derived Fukaya category
DFuk(C×M).

Remark 3.7. In the complement ofK ×M ⊂ M̃ , i.e. in the region where Ω̃

is of the form π∗
C
dz ∧ π∗

MΩ, the map αΩ̃⊗2 : LM̃ → S1 is equal to the product
αdz⊗2 · αΩ⊗2 of the maps αdz⊗2 : LC → S1 and αΩ⊗2 : LM → S1. Hence, in
this region, the grading θL̃ on a product Lagrangian L̃ = β × L ⊂ M̃ may
be written as a sum θL̃ = θβ + θL where θβ respectively θL are gradings of
the curve β ⊂ C respectively the Lagrangian L ⊂M .

Remark 3.8. The tangent space of the curve γj at a point t is given by
Rγ′j(t) and

αdz⊗2(Rγ′j(t)) =
γ′j(t)

2

∥γ′j(t)∥2
.

As t goes from −∞ to ∞,
γ′j(t)

2

∥γ′j(t)∥
2 makes a full counterclockwise turn on S1

from 1 to 1. Therefore the lift of αdz⊗2 ◦ sγj increases by exactly one. This
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means that the value of the grading of (γj , r) on the bottom horizontal end
is given by r + 1. In particular, the difference between the grading on the
bottom and top end is always 1.

Similarly, if we consider the curves (ηj , r) and the horizontal curve (λj :=
R× {j}, ρ′) with the constant grading ρ′ ≡ s ∈ R, we get that the degree
at the unique intersection point y ∈ C is degy(ηj , λj) = 1 + s− (r + 1

2)−
1
π (

π
2 ) = s− r. This is because the Kähler angle between the curves ηj and

λj is
π
2 and the grading of ηj at the point y is given by r + 1

2 .
Combining these two observations leads to degz((γj , r), (γk, s)) = s− r,

for j ≥ k and where z ∈ C is the unique intersection point of γj with a
slightly downward perturbed copy of γk.

Let M′
V,θV

= Y ′(V, θV ) be the Yoneda-module associated to an object
(V, θV ) ∈ Fuk(C×M). The pullback module (ιηj ,r)∗(M′

V,θV
) is exactly the

Yoneda-module of the j-th end of V , shifted by r. More precisely, if Lj is
the j-th end of the cobordism V and (L, θ) any object of Fuk(M), then

(ιηhj
,r)∗(M′

V,θV )(L, θ) = CF ∗((L, θ + r), (Lj , θV,j))

= CF ∗((L, θ)[−r], (Lj , θV,j))
= CF ∗((L, θ), (Lj , θV,j)[r])

= Y(Lj , θV,j)[r](L, θ)

and therefore

(4) (ιηhj
,r)∗(M′

V,θV ) = Y(Sr(Lj , θV,j)) = Y(Lj , θV,j)[r].

Hence (ιηhj
,r)∗ takes Yoneda-modules to Yoneda-modules, and since the

category H0(Y ′(Fuk(C×M))) is equivalent to the derived Fukaya category
DFuk(C×M) it induces a triangulated functor on the derived level

(5) Rr
hj : DFuk(C×M) −→ DFuk(M),

which we will call the r-restriction to the j-th end. The 0-restriction R0
hj

will also be denoted by Rhj .

Remark 3.9. In particular, for (L, θ) ∈ Fuk(M) we have

Rr
j ◦ Y(ιj(L, θ)) = Y(L, θιj(L,θ),2)[r] = Y(L, θ)[r],

and similarly

Rr
1 ◦ Y(ιj(L, θ)) = Y(L, θιj(L,θ),1)[r] = Y(L, θ + 1)[r] = Y(L, θ)[r − 1].
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To summarize, by Remark 3.8, and for given objects (L, θ) in Fuk(M)
and M in DFuk(M) we have the following relations:

Rj ◦ Y(ιj(L, θ)) ∼= Y(L, θ), Rj ◦ Ij(M) ∼= M
R1 ◦ Y(ιj(L, θ)) ∼= Y(L, θ)[−1], R1 ◦ Ij(M) ∼= M[−1]

R1 ◦ Y(ι(j,−1)(L, θ)) ∼= Y(L, θ), R1 ◦ I(j,−1)(M) ∼= M.

4. A Stability Condition on DFuk(C × M).

In this section we will give the definition of a stability condition on a triangu-
lated category. Moreover will define a candidate for a stability condition on
DFuk(C×M) under the assumption that there exists a stability condition
on DFuk(M), state the main result, and discuss an example.

4.1. Stability conditions and related notions

We will now give the definition of stability condition and discuss some related
concepts. The definition of the Grothendieck group K0(D) of a triangulated
category D, as well as some properties of exact triangles can be found in
Appendix A.

Definition 4.1 (Stability condition [11]). A stability condition on a
triangulated category D is a pair (Z,P) consisting of an additive group ho-
momorphism Z : K0(D) → C and a collection of full additive subcategories
P(ϕ) ⊂ D for each ϕ ∈ R, satisfying the following axioms:

(A1) if E ∈ P(ϕ) then Z([E]) = m(E) exp(iπϕ) for some m(E) ∈ R>0,

(A2) for all ϕ ∈ R, P(ϕ+ 1) = P(ϕ)[1],

(A3) if ϕ1 > ϕ2 and Aj ∈ P(ϕj) for j = 1, 2 then HomD(A1, A2) = 0,

(A4) for each nonzero object E ∈ D there is a finite sequence of real numbers

ϕ1 > ϕ2 > · · · > ϕn

and a collection of exact triangles

0 = E0
// E1

��

// E2

��

// · · · // En−1
// En = E

||

A1

aa

A2

]]

An

``



✐

✐

“4-Hensel” — 2020/5/14 — 15:47 — page 483 — #21
✐

✐

✐

✐

✐

✐

Stability conditions and Lagrangian cobordisms 483

with Aj ∈ P(ϕj) for all j. The dotted arrows represent morphisms of
degree 1.

A collection P of full and additive subcategories P(ϕ) ⊂ D for each ϕ ∈ R

satisfying (A2)–(A4) is called a slicing of D. The objects E ∈ P(ϕ) are
called semistable objects of phase ϕ. An additive group homomorphism Z :
K0(D) → C satisfying (A1) is called central charge.

The decomposition in (A4) is called Harder-Narasimhan filtration or
HN-filtration, it is unique (up to isomorphism of the objects Aj ∈ P(ϕj))
as a consequence of the axioms. A proof of this fact can be found in [24,
App. B].

Notation. The phase of a semistable object E is denoted by ϕ(E), i.e.
E ∈ P(ϕ(E)).

We would like to mention the following useful lemma whose proof can
be found in [11, Lemma 5.2].

Lemma 4.2. If (Z,P) is a stability condition on a triangulated category
D, then, for each ϕ ∈ R, the subcategory P(ϕ) ⊂ D is abelian.

Definition 4.3. (i) Let (Z,P) be a stability condition on a triangulated
category D. The simple objects (i.e. the objects without any proper
subobjects or quotients) of the abelian category P(ϕ) are called stable
objects of phase ϕ.

(ii) An abelian category E is of finite length if every object E ∈ E admits
a Jordan-Hölder filtration, namely a finite sequence of subobjects

0 = E0 ⊂ E1 ⊂ · · ·En−1 ⊂ En = E

such that each quotient Ej/Ej−1 is a stable object.

(iii) A stability condition (Z,P) on D is discrete if the image of the central
charge Z : K0(D) → C is a discrete subgroup of C.

(iv) We say that the object Y is an extension of Z by X if there exists
an exact triangle X → Y → Z → X[1] in D. A subcategory D′ of a
triangulated category D is extension-closed, if for each exact triangle
X → Y → Z → X[1] with X and Z in D′, we also have that Y is in
D′ (see also [4, 1.2.6]).
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(v) For each interval I ⊂ R, P(I) ⊂ D is defined to be the extension-closed
subcategory generated by the family of subcategories P(ϕ), ϕ ∈ I.

Remark 4.4. For any ϕ ∈ R, the two extension closed subcategories
P((ϕ, ϕ+ 1]) and P([ϕ, ϕ+ 1)) of D are abelian. This follows from the fact
that a slicing P on a triangulated category D gives rise to t-structures (for
more on t-structures see e.g. [4, Sect. 1.3] or [27]) which have the two sub-
categories mentioned above as their hearts (see [4, Def. 1.3.1]) and the heart
of a t-structure is always an abelian subcategory (see [4, Thm. 1.3.6]).

The proof of the following auxiliary lemma is given in [11, Lemma 4.3],
it allows us to define the notion of a locally-finite slicing [11, Def. 5.7] which
will be of relevance in what follows. The notion of quasi-abelian category is
not of prime importance for us, its definition together with a few facts can
be found in [24, App. C]. For us, the only important fact about quasi-abelian
categories is that one can define the notion of strict subobjects and strict
quotients which allows us to make sense of the notion of finite-length in a
quasi-abelian category.

Lemma 4.5. Let P be a slicing on a triangulated category D and I ⊂ R any
interval of length < 1. Then, the full subcategory P(I) ⊂ D is quasi-abelian
and the strict short exact sequences in P(I) are in one-to-one correspon-
dence with those exact triangles in D for which all vertices are objects of
P(I).

Definition 4.6. A slicing P of a triangulated category D is locally-finite
if there exists η ∈ (0, 12) such that for each ϕ ∈ R, the quasi-abelian subcat-
egory P((ϕ− η, ϕ+ η)) ⊂ D is of finite length. A stability condition (Z,P)
on D is said to be locally-finite if the slicing P is locally-finite.

Remark 4.7. (i) If E,F ∈ D are stable with ϕ(E) ≥ ϕ(F ), then they are
either isomorphic or HomD(E,F ) = 0. This follows from the definitions
and Lemma 4.2.

(ii) Let (Z,P) be a stability condition on a triangulated category D and
let E → F → C → E[1] be an exact triangle with E ∈ P(ϕ1) and F ∈
P(ϕ2). Suppose that ϕ2 ≤ ϕ1 + 1. By rotating the triangle we get an
exact triangle F → C → E[1] → F [1] with F,E[1] ∈ P([ϕ2, ϕ1 + 1]).
Since P([ϕ2, ϕ1 + 1]) is extension-closed by definition, it follows that
C ∈ P([ϕ2, ϕ1 + 1]) as well. A similar result holds if we assume that
ϕ2 ≥ ϕ1 + 1.
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(iii) An abelian category is of finite length if and only if it is artinian and
noetherian (see e.g. [30, Ex. 8.20]).

(iv) If (Z,P) is a locally-finite stability condition on D, the HN-filtration
of a non-zero object E ∈ D has a (finite) refinement where all the
semistable factors Ai are in fact stable and ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕn. This
refinement is the Jordan-Hölder filtration, it does not contradict the
uniqueness of the HN-filtration since the phases are not strictly de-
creasing. The Jordan-Hölder filtration is in general not unique, the
stable factors Ai of E are unique only up to permutation. If E is
semistable, then all the stable factors of E have the same phase ϕ(E).
In particular, if the stability condition is locally-finite, then each P(ϕ)
is a subcategory of finite length and each semistable object has a
Jordan-Hölder filtration into stable factors of the same phase.

Note. For the following lemma, recall that (E → F ) stands for the cone
(see Appendix A).

Lemma 4.8. Let (Z,P) be a locally-finite stability condition on a triangu-
lated category D. For each ϕ ∈ R the subcategory P(ϕ) is extension-closed,
that is, if E,F ∈ P(ϕ) and E → C → F → E[1] is an exact triangle, then
C ∈ P(ϕ) as well.

Proof. Since the stability condition is locally-finite, we may write

E ∼= (Er[−1] → · · · → E1[−1] → 0)

and F ∼= (Fs[−1] → · · · → F1[−1] → 0)

where Ei, for 1 ≤ i ≤ r, and Fj , for 1 ≤ j ≤ s, are the stable factors of
the respective Jordan-Hölder filtrations of E and F . These stable factors
are all of phase ϕ. By rotating the triangle E → C → F → E[1] we get
C ∼= (F [−1]

α→ E). If α is an isomorphism or the zero-morphism, there is
nothing to show since P(ϕ) is an additive subcategory. So, suppose that
α ̸= 0 is not an isomorphism. We can express C as

C ∼= ((Fs[−2] → · · · → F1[−2] → 0) → (Er[−1] → · · · → E1[−1] → 0))
∼= (Fs[−1] → · · · → F1[−1] → Er[−1] → · · · → E1[−1] → 0)

and hence Fj , 1 ≤ j ≤ s, and Ei, 1 ≤ i ≤ r, are the stable factors of the
Jordan-Hölder filtration of C. The stable factors of C are unique up to
permutation and they are all of phase ϕ. The Jordan-Hölder filtration is a
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refinement of the unique Harder-Narasimhan filtration, and hence we con-
clude that C is indeed semistable of phase ϕ. □

The following lemma, proven by Bridgeland in [12], contains a sufficient
condition for a stability condition to be locally-finite.

Lemma 4.9 (see [12, Lemma 4.4]). Suppose that (Z,P) is a discrete
stability condition on D, and let 0 < ϵ < 1

2 . Then for every ϕ ∈ R, the sub-
category P((ϕ− ϵ, ϕ+ ϵ)) is of finite length. In particular, the stability con-
dition is locally-finite.

4.2. Construction of the stability condition on DFuk(C × M)

Suppose now that (ZM ,PM ) is a given stability condition on the derived
Fukaya category DFuk(M) of M . Given any κ ∈ 2 · Z>1 (i.e. κ ≥ 4 is an
even integer), we define the slicing Pκ on DFuk(C×M) as follows:

for each ϕ ∈ R, Pκ(ϕ) is the full additive subcategory generated
by the objects

(6) {IhX[r] | r ∈ Z, h ∈ Z>1, X ∈ PM (ϕ− r + κh)}.

Notation. From now on we will fix κ ∈ 2 · Z>1 and simply write P for Pκ,
leaving the dependency on κ implicit.

Remark 4.10. The reason why we choose κ ∈ 2 · Z>1 will be made clear
in the proof of Theorem 4.13.

The class of Yoneda-modules generates K0(DFuk(C×M)). Therefore,
in order to define the central charge it is enough to define it on Yoneda-
modules, and show that we can extend it linearly. Recall that the Yoneda-
embedding is cohomologically full and faithful and we will sometimes, by
abuse of notation, write (V, θV ) both for the corresponding object of
Fuk(C×M) as well as for its Yoneda-module Y(V, θV ). From the context
it should be clear what is meant.

Remark 4.11. It is worth pointing out the relation of the phases of semi-
stable objects of DFuk(M) and of DFuk(C×M) more explicitly. To this
end we will denote the collections of all semistable objects in the respective
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derived categories by

PM
tot :=

⋃

ϕ∈R

PM (ϕ) ⊂ DFuk(M),

and Ptot :=
⋃

ϕ∈R

P(ϕ) ⊂ DFuk(C×M)

and the maps that associate to each semistable object its phase by

ΦM : PM
tot → R : X 7→ ϕ(X) and ΦC×M : Ptot → R : E 7→ ϕ(E).

Then, for any semistable object X of DFuk(M) and any h ∈ Z>1, we get
the relation

ΦC×M (IhX) = ΦM (X)− κh.(7)

In particular, note that if (L, θ) ∈ PM (ϕ) then Ih(L, θ) ∈ P(ϕ− κh).

Remark 4.12. Recall that the direct sum E ⊕ F (i.e. the cone over the
zero morphism) of two semistable objects E,F ∈ P(ϕ) is again semistable
of phase ϕ, since P(ϕ) is an additive subcategory.

Define the central charge on Yoneda-modules as follows:

Z : K0(DFuk(C×M)) −→ C ;

[V, θV ]K0
7−→

∑

j≥2

−ZM ([Rhj (V, θV )[−1]]K0
),

and extend it linearly. The motivation for this definition comes from the
cone decomposition (9) which we will discuss in Section 5.1. In the proof of
Theorem 4.13 we will see that Z is well-defined (see Sec. 7).

Notice that (L, θ) ∼= ((L, θ)[−1] → 0), hence in the Grothendieck group
we have that [L, θ]K0

= −[(L, θ)[−1]]K0
and therefore we can rewrite

Z([V, θV ]K0
) =

∑

j≥2

ZM ([Rhj (V, θV )]K0
).(8)

We now state the main theorem whose proof is deferred to Section 7.

Theorem 4.13. If (ZM ,PM ) is a stability condition on DFuk(M) and κ ∈
2 · Z>1, then (Z,Pκ), as defined above, is a stability condition on DFuk(C×
M). Additionally, if (ZM ,PM ) is locally-finite, then (Z,Pκ) is locally-finite
as well.
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Remark 4.14. Theorem 4.13 extends to the case when we incorporate
local systems of Λ-vector spaces. The proof is almost identical, except with
more complicated notation.

Remark 4.15. A priori it looks like Theorem 4.13 can be iterated in order
to obtain a stability condition on the “derived Fukaya category DFuk(C2 ×
M) of Lagrangian 2-cobordisms” (i.e. of Lagrangian cobordisms of Lagran-
gian cobordisms) and iterating further to DFuk(Cn ×M). However this
seems to be more involved than one might think at first glance, as it is
not even straightforward to define a suitable notion of such Lagrangian 2-
cobordisms.

4.3. A consequence and an example

In [32] Le and Chen show that if a triangulated category D admits a bounded
t-structure, then it is split-closed (or Karoubian). Moreover, the existence
of a stability condition on a triangulated category implies the existence of a
bounded t-structure on it (see [27, Prop. 2.4]). Combining these results with
Theorem 4.13 we get the following corollary.

Corollary 4.16. If DFuk(M) admits a locally-finite stability condition,
then the derived Fukaya category of cobordisms DFuk(C×M) is split-
closed.

Example 4.17. By homological mirror symmetry for the 2-torus T 2 there
is an equivalence of triangulated categories (see [1])

DbCoh(X) ≃ DπFuk♯(T 2).

Here X denotes the Tate curve which is an elliptic curve over the Novikov
field Λ (cf. [1]) and DπFuk♯(T 2) is the split-closure of the derived Fukaya-
category. The ♯ signifies that we take extra data, comprised of certain local
systems and Pin-structures, into account (cf. Remark 3.4). For more details
we refer to Haug [23]. Haug has shown that the inclusion DFuk♯(T 2) →֒
DπFuk♯(T 2) is an equivalence ([23, Cor. 7.5]) and hence we obtain a tri-
angulated equivalence DbCoh(X) ≃ DFuk♯(T 2). In Appendix B we discuss
that the bounded derived category DbCoh(X) of coherent sheaves over the
elliptic curve X admits a locally-finite stability condition. Thus, by the
above equivalence, DFuk♯(T 2) admits a locally-finite stability condition as
well. Theorem 4.13 implies that the derived Fukaya category of cobordisms
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DFuk♯(C× T 2) admits a locally-finite stability condition, and moreover by
Corollary 4.16 it is split-closed.

5. Iterated cone decompositions induced by Lagrangian
cobordisms

Before we can begin with the proof of Theorem 4.13 we need another ingre-
dient. Namely the fact that a Lagrangian cobordism gives rise to an iterated
cone decomposition in the derived Fukaya category of cobordisms. This was
shown by Biran and Cornea in [8, Prop. 4.3.1] in the ungraded setting and
over the coefficient field Z/2Z. We will explain the main idea of the proof of
this result and discuss some remarks on iterated cone decompositions.

5.1. Iterated cone decompositions in DFuk(C × M) via
Lagrangian cobordisms

We will now adapt Proposition 4.3.1 of [8] to our setting. Haug [23, Section 4]
adapted an analogous iterated cone decomposition of [6] to the oriented
and graded setting. Incorporating Haug’s results, the proof of the following
proposition is very similar to the original proof by Biran and Cornea in
[8]. We will explain the main idea in Section 5.2.2. The notation regarding
iterated cone decompositions can be found in Appendix A.

Proposition 5.1. Let (V, θV ) be an object of Fuk(C×M) with Lagran-
gian Lj ⊂M over the horizontal end on height hj ∈ Z≥1 for 1 ≤ j ≤ s and
with 1 = h1 < · · · < hs. Then the Yoneda-module MV,θV = Y(V, θV ) admits
a cone decomposition in DFuk(C×M) of the form:

MV,θV
∼= (Ihs ◦ Rhs(MV,θV )[−1] → Ihs−1 ◦ Rhs−1

(MV,θV )[−1] → · · ·(9)

· · · → Ih3 ◦ Rh3(MV,θV )[−1] → Ih2 ◦ Rh2(MV,θV )).

Remark 5.2. (i) In the above proposition, we assume that V has h1 =
1. If this is not the case we artificially set L1 = ∅ with h1 = 1. Note
that, even though this is a cohomological version of the proposition,
the arrows are not reversed with respect to the setting in [8]. This is
because of the way we have chosen the perturbation datum and since
we are considering positively ended cobordisms.
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(ii) Proposition 5.1 extends to the case where local systems of Λ-vector
spaces are incorporated. One has to keep track of these local systems
throughout the proof.

This cone decomposition can also be written as

MV,θV
∼= (Ihs ◦ Rhs(MV,θV )[−1] → Ihs−1 ◦ Rhs−1

(MV,θV )[−1] → · · ·
→ Ih3 ◦ Rh3(MV,θV )[−1] → Ih2 ◦ Rh2(MV,θV )[−1] → 0)

and, by (4), as

MV,θV
∼= (L̃s[−1] → L̃s−1[−1] → · · · → L̃3[−1] → L̃2[−1] → 0),(10)

where L̃j is isomorphic to Ihj ◦ Rhj (MV,θV ) = IhjY(Lj , θV,j), for 2 ≤
j ≤ s.

Moreover, if we apply the restriction R1 to both sides of this decom-
position, we obtain the following iterated cone decomposition in DFuk(M)
(cf. [6])

Y(L1, θV,1) ∼= (Y(Ls, θV,s)[−2] → · · · → Y(L2, θV,2)[−2] → 0),(11)

since R1L̃j ∼= R1 ◦ IhjY(Lj , θV,j) ∼= Y(Lj , θV,j)[−1] = Rhj (MV,θV )[−1] for
2 ≤ j.

Remark 5.3. Recall that the central charge on Yoneda-modules is given
by (8). Decomposition (11) and Remark A.2 allows us to further rewrite (8)
as

Z([V, θV ]K0
) = ZM


∑

j≥2

[Rhj (V, θV )]K0


 = −ZM [R1(V, θV )]K0

.

In particular, this means that Z([V, θV ]K0
) = 0, whenever the cobordism V

does not have a horizontal end at height 1 (i.e. L1 = ∅).

Remark 5.4. Proposition 5.1 provides us with a cone decomposition of
the Yoneda-module (V, θV ) which, together with Remark A.2, implies the
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following equality in the Grothendieck group:

[V, θV ]K0
=

s∑

j=2

−[Ihj ◦ Rhj (V, θV )[−1]]K0

=

s∑

j=2

[Ihj ◦ Rhj (V, θV )]K0
=

s∑

j=2

[L̃j ]K0
,

where s ∈ Z is the number of horizontal ends of V and L̃j := Ihj ◦ Rhj (V, θV ).
This leads to:

Z




s∑

j=2

[Ihj ◦ Rhj (V, θV )]K0


 =

s∑

j=2

Z[Ihj ◦ Rhj (V, θV )]K0

=

s∑

j=2

∑

k≥2

ZM [Rk ◦ Ihj ◦ Rhj (V, θV )]K0

=

s∑

j=2

ZM [Rhj (V, θV )]K0

= Z[V, θV ]K0
.

In the second line of the above equation the restriction functor Rk oc-
curs and is applied to the Yoneda-module Ihj ◦ Rhj (V, θV ) = Ihj (Lj , θV,j) =
Y(ιhj (Lj , θV,j)) of the cobordism ιhj (Lj , θV,j) with exactly 2 horizontal ends.
The third equality follows from Remark 3.9. Moreover, the term in the sum
running over the index k is non-zero only if k = hj .

5.2. Algebraic preliminaries and the main idea of the proof of
Proposition 5.1

Following [8], we will briefly recall the main idea of the proof along with
some algebraic remarks on A∞-modules.

5.2.1. A∞-submodules induce exact triangles. This section closely
follows the remarks by Biran and Cornea [8].

Let A be an A∞-category, we will denote by Q := mod(A) the A∞-
category of A∞-modules over A. For the definition of A∞-modules and A∞-
module homomorphisms see [41, Sect. (1j)].

Now, let N and M be two A∞-modules over A. An A∞-module ho-
momorphism i : N → M is called an inclusion, if i1 : N (X) → M(X) is
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injective for every object X of A and all the higher components ik, k ≥ 2,
vanish. If there exists an inclusion i : N → M, the module N is said to be
a submodule of M. The structural maps of N are given by restriction of the
structural maps of M. Moreover, if N is a submodule of M, the quotient
moduleM/N over A is defined byM/N (X) = M(X)/N (X) together with
structural maps induced by those of M. For an element b ∈ M(X), we will
denote its equivalence class by b ∈ M(X)/N (X). One can form the cone
C := cone(i) over i which is the A∞-module (see [41, Sect. (3s)])

C(X) = N (X)[1]⊕M(X)

µ1
C(b0, b1) = (µ1

N (b0), µ
1
M(b1) + i1(b0))

µdC((b0, b1), ad−1, . . . , a1)

= (µdN (b0, ad−1, . . . , a1), µ
d
M(b1, ad−1, . . . , a1)), if d ≥ 2.

The cone comes along with canonical A∞-module homomorphisms
(cf. [41, Sect. (3f)]) ι ∈ hom0

Q(M, C) and π ∈ hom1
Q(C,N ) given by

ι1(b1) = (0, (−1)|b1|b1), π1(b0, b1) = (−1)|b0|−1b0

and vanishing higher order terms. Here | · | denotes the degree in the graded
vector space. In addition, we have the following A∞-module homomorphisms

idM ∈ hom0
Q(M,M),(12)

given by id1M(b) = (−1)|b|b, iddM = 0, d ≥ 2,

q ∈ hom0
Q(M,M/N ),(13)

given by q1(b) = (−1)|b|b, qd = 0, d ≥ 2,

φ ∈ hom0
Q(C,M/N ),(14)

given by φ1(b0, b1) = (−1)|(b0,b1)|b1, φd = 0, d ≥ 2.

Notice that |(b0, b1)| = |b1| = |b0| − 1. The signs occurring in these defini-
tions are needed in order to ensure that these morphisms are actual A∞-
module homomorphisms and not just pre-module homomorphisms (i.e. to
ensure that µ1

Q(idM), µ1
Q(q) and µ

1
Q(φ) vanish).

Recall that any A∞-module M ∈ Q gives rise to a H(A)-module H(M)
by taking, for each X ∈ A, the cohomology of M(X) with respect to
the differential ∂M(b) = (−1)|b|µ1

M(b), and module structure induced by
b · a = (−1)|a|µ2

M(b, a). Furthermore, any A∞-module homomorphism t ∈
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hom(N ,M) induces a module homomorphism

H(t) : H(N ) → H(M); [b] 7→ [(−1)|b|t1(b)]

on the cohomological level.
Note that the signs introduced in (12)–(14) cancel on the cohomological

level. In particular H(idM) : H(M) → H(M) : [b] 7→ [(−1)|b| id1M(b)] = [b]
is the usual identity morphism of modules. Now, we have the following com-
mutative diagram in Q:

N i // M q
// M/N

N i //

idN

OO

M ι //

idM

OO

C

φ

OO
(15)

With this preparation we will now prove the following lemma:

Lemma 5.5. An inclusion i : N → M of A∞-modules induces an exact
triangle

N [i]
// M

[q]{{

M/N
[j]

bb

in H0(Q), where q ∈ hom0
Q(M,M/N ) is given as above.

Proof. By [41, Lemma 3.35]

N [i]
// M

[ι]
~~

C
[π]

__(16)

is an exact triangle in H0(Q). Hence, since the higher order terms of the
occuring A∞-module homomorphisms vanish, we get for each object X in
A the following short exact sequences of cochain complexes

0 −→ N (X)
i−→ M(X)

q−→ M/N (X) −→ 0

0 −→ M(X)
ι−→ C(X)

π−→ N [1](X) −→ 0

which induce long exact sequences on cohomology
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· · · // Hk(N (X))
Hk(i)

// Hk(M(X))
Hk(q)

// Hk(M/N (X))
δ // Hk+1(N (X)) // · · ·

· · · // Hk(N (X))
Hk(i)

//

Hk(idN ) ∼=

OO

Hk(M(X))
Hk(ι)

//

Hk(idM) ∼=

OO

Hk(C(X))
Hk(π)

//

Hk(φ)

OO

Hk+1(N (X)) //

Hk+1(idN ) ∼=

OO

· · ·

(17)

Here δ is (up to sign) the connecting homomorphism given by

δ[m] =
[
−(i1|im(i1))

−1 ◦ ∂M(−1)|m|m
]
,

where (−1)|m|m is any lift ofm with respect to q1. Note that if (n,m) ∈ C(X)
is a cocycle, i.e. if ∂C(n,m) = 0, we have that µ1

M (m) = −i1(n) and therefore

δ ◦Hk(φ)[(n,m)] = δ[m]

=
[
−(i1|im(i1))

−1 ◦ ∂M(−1)|m|m
]

=
[
−(i1|im(i1))

−1 ◦ µ1
Mm

]

=
[
−(i1|im(i1))

−1 ◦ i1(−n)
]

= [n]

and

Hk+1(idN ) ◦Hk(π)[(n,m)] = Hk+1(idN )[n] = [n].

This together with the commutativity of (15) implies that (17) is a commu-
tative diagram. By the 5-Lemma we conclude that φ is a quasi-isomorphism.
Since φ is a quasi-isomorphism of A∞-modules it induces an isomorphism in
the cohomological categoryH0(Q) (this is non-trivial, see [41, Lemma 1.16]).
Therefore, if we define [j] ∈ homH0(Q)(M/N ,N [1]) by

[j] = [idN ] ◦ [π] ◦ [φ]−1,

we obtain the following commutative diagram in H0(Q)

· · · // N [i]
// M [q]

// M/N [j]
// N [1] // · · ·

· · · // N [i]
//

[idN ]∼=

OO

M [ι]
//

[idM]∼=

OO

C [π]
//

[φ]∼=

OO

N [1] //

[idN ]∼=

OO

· · ·

(18)

Hence we get the desired exact triangle in H0(Q). □



✐

✐

“4-Hensel” — 2020/5/14 — 15:47 — page 495 — #33
✐

✐

✐

✐

✐

✐

Stability conditions and Lagrangian cobordisms 495

5.2.2. The main idea of the proof of Proposition 5.1. Here we will
outline the main idea of the proof of Proposition 5.1. For more details and
the full argument we refer to [8, Prop. 4.3.1].

Let (V, θV ) : (L1, . . . , Ls) ❀ ∅ be an object of Fuk(C×M). For 1 ≤ j ≤
s, let Mj be the submodule of the Yoneda-module Y(V, θV ) in DFuk(C×
M) such that for any object X of Fuk(C×M), Mj(X) is generated only
by the intersections of X with the lowest j horizontal ends of V , i.e. with
the horizontal ends of V on heights h1 = 1, h2, . . . , hj . The structural maps
of Mj are induced by those of Y(V, θV ). The fact that each Mj is an A∞-
module over Fuk(C×M) is a consequence of how the Fukaya category of
cobordisms is set up and moreover we have a sequence of successive A∞-
submodules (see Step 3 in the proof of [8, Prop. 4.3.1])

0 = M1 ⊂ · · · ⊂ Ms−1 ⊂ Ms = Y(V, θV ).

In addition, for 2 ≤ j ≤ s, the quotient L̃j := Mj/Mj−1 is isomorphic to

IhjRhj (MV,θV ) = IhjY(Lj , θV,j)

in H0(Fuk(C×M)) (cf. [8] and [23, Section 4]). By Lemma 5.5, we obtain
the following exact triangles in H0(mod(Fuk(C×M)))

L̃j [−1] −→ Mj−1 −→ Mj −→ L̃j

for 2 ≤ j ≤ s. Rotating these triangles yields

(19) 0 = M1
// M2

��

// M3

��

// · · · // Ms−1
// Ms

∼= V

||

L̃2

[1]

aa

L̃3

[1]

]]

L̃s
[1]

__

Note that (19) is an equivalent way of writing the iterated cone decomposi-
tion (9) from Proposition 5.1. Moreover, notice that for 2 ≤ j ≤ s, L̃j is an
object of DFuk(C×M), so it follows inductively that each of the modules
Mj is an object of the derived Fukaya category DFuk(C×M) as well.

6. The Lagrangian cobordism group and K0(DFuk(M))

This section is independent of the discussion of stability conditions on
DFuk(C×M) and Theorem 4.13.
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6.1. Stability conditions and the relation between ΩLag(M) and
K0(DFuk(M))

A central question related to Lagrangian cobordisms and the derived
Fukaya category is the following: To which extent can algebraic relations
in K0(DFuk(M)) be understood geometrically via Lagrangian cobordisms?
In this section we will derive formal conditions under which the Lagran-
gian cobordism group ΩLag(M) is isomorphic to the Grothendieck group
K0(DFuk(M)). This is an attempt to demonstrate a link between stability
conditions and the Lagrangian cobordism group and in particular to obtain
an understanding of how stability conditions affect the homomorphism
Θ defined in Corollary 6.3. In practice it might not be feasible to check
these conditions in many examples. In Section 6.2 we will show that these
conditions are satisfied in the particular case of the 2-torus T 2. So the
present section provides a general context under which Haug’s result on T 2

[23, Thm. 1.1] can be understood and possibly extended to other examples.

As before, let (M2n, J, g,Ω) be a Calabi-Yau manifold. Recall from Ap-
pendix A that the Grothendieck group (or K-group) K0(DFuk(M)) of
the derived Fukaya category of M is defined as the free abelian group
⟨DFuk(M)⟩ generated by the objects of DFuk(M) modulo the subgroup
R ⊂ ⟨DFuk(M)⟩ generated by expressions of the type X − Y + Z for every
exact triangle in DFuk(M) of the form X → Y → Z → X[1]:

K0(DFuk(M)) := ⟨DFuk(M)⟩/R.

In this section we are required to endow our Lagrangians with local sys-
tems, as otherwise the derived Fukaya category of T 2 is not split-closed.
Recall that (see e.g. [23]) a local-system of Λ-vector spaces EL on L ⊂M
assigns to each point p ∈ L a Λ-vector space Ep. Furthermore, it associates
to each homotopy class γ : [0, 1] → L of paths, with fixed endpoints, an iso-
morphism πγ : Eγ(0) → Eγ(1), and this assignment is compatible with con-
catenations of paths.

We denote by L be the set of all Lagrangian branes (L, θL, EL) in M
equipped with local systems and by ⟨L⟩ the free abelian group generated by
L. Let RL ⊂ ⟨L⟩ be the subgroup generated by expressions of the following
two types

(i)
∑s

j=1(Lj , θj , Ej) ∈ ⟨L⟩ whenever there exists a graded Lagrangian
cobordism with local system
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(V, θV , EV ) : ((L1, θ1, E1), . . . , (Ls, θs, Es)) ❀ ∅

such that the grading θV and the local system EV restricts to the
respective ones on the horizontal ends.

(ii) (L, θL, E
′)− (L, θL, E) + (L, θL, E

′′) ∈ ⟨L⟩ whenever there exists a
short exact sequence of local systems 0 → E′ → E → E′′ → 0 on (L, θL).

Definition 6.1. The Lagrangian cobordism group of M , denoted by
ΩLag(M), is defined as the quotient of the free abelian group ⟨L⟩ modulo
the subgroup RL, that is:

ΩLag(M) := ⟨L⟩/RL.

Note that if (V, θV , EV ) : ((L1, θV,1, EV,1), . . . , (Ls, θV,s, EV,s)) ❀ ∅ is a
graded Lagrangian cobordism equipped with local system EV and such that
L1 is on height h1 = 1, then, by (11) and Remark A.2, the following relation
is satisfied in the Grothendieck group K0(DFuk(M)):

[(L1, θV,1, EV,1)]K0
= −

s∑

j=2

[(Lj , θV,j , EV,j)]K0

⇐⇒
s∑

j=1

[(Lj , θV,j , EV,j)]K0
= 0.

Remark 6.2. Given (L, θL, EL) ∈ L and j ∈ Z>1 we can form the cobor-
dism V := ιj(L, θL − 1, EL) : ((L, θL, EL), (L, θL − 1, EL)) ❀ ∅ from which
we obtain the following relations:

[(L, θL, EL)]K0
+ [(L, θL, EL)[1]]K0

= 0 in K0(DFuk(M)), and

[(L, θL, EL)]Lag + [(L, θL, EL)[1]]Lag = 0 in ΩLag(M).

Moreover, if 0 → E′ → E → E′′ → 0 is a short exact sequence of local
systems on (L, θL), then, by [23, Prop. 10.1], there exists an exact triangle
(L, θL, E

′) → (L, θL, E) → (L, θL, E
′′) → (L, θL, E

′)[1] in DFuk(M).
This implies, as Biran and Cornea noticed in [7], that there is a well

defined surjective homomorphism from the Lagrangian cobordism group to
the Grothendieck group of the derived Fukaya category.
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Corollary 6.3 ([7, Cor. 1.2.1]). The map ⟨L⟩ → K0(DFuk(M)) given
by (L, θL, EL) 7→ [(L, θL, EL)]K0

induces a well-defined surjective group ho-
momorphism

Θ : ΩLag(M) −→ K0(DFuk(M)).

Note that we identify (L, θL, EL) with its image under the Yoneda-em-
bedding when viewing it as an object of DFuk(M). For the rest of this
section we will sometimes suppress the grading and the local system from
the notation and simply write L for the Lagrangian brane (L, θL, EL).

We now want to find certain assumptions under which we can con-
struct a well-defined inverse to the group homomorphism Θ : ΩLag(M) →
K0(DFuk(M)). Recall that an object of DFuk(M) is called geometric if it
is isomorphic to a shift of an object in the image of the Yoneda-embedding.

Assumption. (S1) Suppose that there exists a locally-finite stability con-
dition (ZM ,PM ) on DFuk(M) such that all stable objects are geo-
metric.

Remark 6.4. In a similar setting Joyce [28] conjectures the existence of a
stability condition on the derived Fukaya category of compact (or suitably
convex at infinity) Calabi-Yau manifolds with geometric stable objects.

With the above assumption in place, we can obtain a (finite) Jordan-
Hölder filtration (see Remark 4.3) of every object of DFuk(M) which
is unique up to permutation of stable factors of the same phase. There-
fore, denoting the collection of all stable objects by S, the inclusion ⟨S⟩ →
⟨DFuk(M)⟩ of free abelian groups descends to a surjective homomorphism
⟨S⟩ → K0(DFuk(M)). Put differently, the set S ⊂ Ob(DFuk(M)) gener-
ates K0(DFuk(M)). Denoting by RS ⊂ ⟨S⟩ the kernel of this surjective
group homomorphism, we get an isomorphism of groups

φ : ⟨S⟩/RS
∼=−→ K0(DFuk(M)).(20)

The inverse φ−1 is induced by the surjective homomorphism ⟨DFuk(M)⟩ →
⟨S⟩, that sends a generator X ∈ Ob(DFuk(M)) to the sum

∑r
i=1 S

X
i of

its Jordan-Hölder factors {SXi }ri=1. Composing Θ with the inverse of the
isomorphism φ yields a surjective group homomorphism

Θ̂ : ΩLag(M) −→ ⟨S⟩/RS
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ΩLag(M)
Θ̂ //

Θ
((

⟨S⟩/RS

⟨DFuk(M)⟩/R

∼=

φ−1

77

We will need the following two additional assumptions.

Assumptions. (S2) Every element in RS ⊂ ⟨S⟩ induces a relation in
ΩLag(M). That is, if

∑r
i=1 Si ∈ RS , then

∑r
i=1 Si ∈ RL as well, where

Si ∈ L are stable objects for 1 ≤ i ≤ r.

(S3) For every element L ∈ L we have the relation

[L]Lag =
s∑

j=1

[SLj ]Lag

in ΩLag(M), where SL1 , . . . , S
L
s are the stable factors occurring in the

Jordan-Hölder filtration of L ∈ Ob(DFuk(M)).

Remark 6.5. (i) Assumptions (S2) and (S3) look rather technical. How-
ever, their advantage is that one only has to check something on the
class of stable objects. The stability condition of (S1) will take care of
the rest as we will see below.

(ii) The geometric meaning of (S3) is that the Jordan-Hölder filtration of
a Lagrangian is realizable by Lagrangian cobordisms.

Proposition 6.6. Under the assumptions (S1) and (S2), the map ⟨S⟩ →
⟨L⟩ given by S 7→ S induces a well-defined group homomorphism

Ψ̂ : ⟨S⟩/RS → ΩLag(M),

which is a right-inverse of Θ̂, i.e. Θ̂ ◦ Ψ̂ = id⟨S⟩/RS
.

If in addition we assume (S3), then Ψ̂ is also a left-inverse of Θ̂ and
hence

Θ̂ : ΩLag(M) −→ ⟨S⟩/RS

is an isomorphism of groups with inverse Ψ̂.

Proof. Well-definedness and the fact that Ψ̂ is a right-inverse of Θ̂ follows
directly from the definition of the maps together with assumptions (S1)
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and (S2). Assumption (S3) implies that Ψ̂ is surjective and hence also a
left-inverse of Θ̂. □

Since φ : ⟨S⟩/RS
∼=−→ K0(DFuk(M)) is a group isomorphism, we get the

following corollary.

Corollary 6.7. Assuming (S1) and (S2), the homomorphism

Ψ := Ψ̂ ◦ φ−1 : K0(DFuk(M)) → ΩLag(M)

is a right-inverse of Θ.
If we assume (S3) as well, then Ψ is also a left-inverse of Θ and there-

fore

Θ : ΩLag(M) −→ K0(DFuk(M))

is a group isomorphism.

6.2. The case of the torus T 2

In this section we will take a closer look at the case of the 2-torus T 2. In [23]
Haug proves that the Lagrangian cobordism group ΩLag(T

2) of the torus T 2

is isomorphic to K0(DFuk(T 2)). We bring Haug’s result into the context
of stability conditions and give some alternative arguments of parts of the
proof (see [23, Sec. 7 and 8]).

Notation. We start by recalling some notation from [23]. The objects of
Fuk♯(T 2) are Lagrangian branes, i.e. tuples (L, θ, P,E) consisting of a non-
contractible Lagrangian equipped with a grading θ, Pin-structure P and
local system E of Λ-vector spaces (we will usually omit the Pin-structure
from the notation). For more details, see [23, Sec. 3]. Let (m,n) be a pair of
coprime integers. If (m,n) ̸= (±1, 0), we denote by

L(m,n),x ⊂ T 2

the straight oriented curve of slope (m,n) ∈ Z
2 ∼= H1(T

2;Z), where x ∈ R/Z
is the smallest number such that L(m,n),x passes through (x, 0) ∈ T 2. If
(m,n) = (±1, 0) we denote by L(±1,0),x the straight oriented horizontal curve
in T 2, passing through (0, x) ∈ T 2, and oriented such that it represents
(±1, 0) ∈ H1(T

2;Z). To abbreviate the notation we write L(m,n) := L(m,n),0.
The Lagrangians L(m,n),x can be viewed as objects of Fuk♯(T 2) by equip-
ping them with their standard brane structure (see [23]). Note also that
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every non-contractible closed curve on T 2 is Hamiltonian-isotopic to one of
the curves L(m,n),x.

One of the starting points of Haug’s considerations is the following homo-
logical mirror symmetry statement, which was proven by Abouzaid-Smith
[1] building on previous work by Polishchuk-Zaslow [39] and inspired by
Kontsevich [29]. In the next theorem X stands for the Tate curve which
is a specific elliptic curve over Λ (see [1]) and P0 ∈ X is a base point. The
statement can be found in the following form in [23, Thm. 7.1].

Theorem 6.8. There is an equivalence of triangulated categories

(21) Φ : DbCoh(X)
≃−→ DπFuk♯(T 2)

taking O(nP0) to L(1,−n) for every n ∈ Z and the skyscraper sheaf Λ(P0) to
L(0,−1), 1

2
.

Haug remarks [23] that the Tate curve X can be studied via its analyti-
fication

Xan = Λ∗/{T k | k ∈ Z} ∼= S1Λ× R/Z(22)

and in what follows we will not further distinguish between X and Xan (see
[19, 43] for more on rigid-analytic geometry and on the Tate curve). Here
S1Λ ⊂ Λ consists of the elements of the Novikov-field of norm 1 with respect
to the non-Archimedean norm

∣∣∣∣∣

∞∑

i=0

ciT
ai

∣∣∣∣∣ := e−a0 ,

and Λ∗ = Λ \ {0}.

Remark 6.9. Note that the Novikov-field Λ over the complex numbers is
algebraically closed. A proof of this fact can be found in [17, App. A].

Next Haug proceeds to partially recover how the functor Φ acts on cer-
tain objects. We will give an alternative proof of Haug’s description as fol-
lows.

Proposition 6.10. (i) The image under Φ of a skyscraper sheaf Λ(Q)
supported at any point Q ∈ X is isomorphic to a Lagrangian of slope
(0,−1) ∈ H1(T

2;Z), equipped with a rank 1 local system.
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(ii) The image under Φ of a stable sheaf of rank r and degree d is iso-
morphic to a Lagrangian of slope (r,−d) ∈ H1(T

2;Z), equipped with a
rank 1 local system.

Proof. First recall from Theorem B.4 that the stable coherent sheaves are
precisely the indecomposable coherent sheaves of rank r and degree d with
gcd(r, d) = 1. And these are parametrized by (r, d) ∈ Z

2 and a point P ∈ X
on the curve, so for each coprime pair (r, d) ∈ Z

2 the curve X ∼= S1Λ×
R/Z parametrizes the isomorphism classes of stable sheaves of rank r and
degree d. The equivalence Φ allows us to endow DπFuk♯(T 2) with a stability
condition (c.f Appendix B). Note that

EndDFuk(T 2)((L(m,n),x, θ, EM )) ∼= Λ

since on the chain level, the degree 0 morphisms are generated by a single
element which is in the kernel of the differential (i.e. induces a morphism
on the cohomology level). Here EM denotes the rank 1 local system with
monodromy M ∈ S1Λ. By Theorems B.1 and 6.8 this implies that for every
(m,n) ∈ Z

2 with gcd(m,n) = 1, every x ∈ R/Z and every M ∈ S1Λ, the
object

(L(m,n),x, θ, EM ) ∈ DFuk♯(T 2) ⊂ DπFuk♯(T 2)

is stable. Also, note that

HomDπFuk(T 2)((L(m,n),x, θ, EM ), (L(m,n),x, θ, EM ′)) = 0

if the monodromies M,M ′ ∈ S1Λ of the rank 1 local systems EM and EM ′

differ, since then the generator of the degree zero morphisms on the chain
level does not survive to the cohomology level because the monodromies do
not cancel each other; for the precise definition of the morphisms with local
systems see [23, Sect. 3.2]. Clearly we also have that

HomDπFuk(T 2)((L(m,n),x, θ, EM ), (L(m,n),x′ , θ, EM ′)) = 0

for x ̸= x′ ∈ R/Z, since there are no intersection points. Therefore we have
shown that

all stable objects of DπFuk♯(T 2) are shifts of objects
of the form (L(m,n),x, θ, EM )

with coprime (m,n) ∈ Z
2, x ∈ R/Z and EM of rank 1 with monodromyM ∈

S1Λ (recall that the grading θ accounts for shifts, i.e. (L(m,n),x, θ, EM )[1] =
(L(−m,−n),x, θ − 1, EM ); see Def. 2.6).
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Next, let (r,−d) ∈ Z
2 be a fixed pair of coprime integers with r > 0 (by

shifting [·] it is sufficient to consider the case r > 0). We can then iteratively
form the Lagrangian surgery (see [23, Sec. 5]) of L(1,−d) with L(1,0) and
obtain, by Corollary 6.3, the following equation in K0(D

πFuk♯(T 2)):

[L(r,−d),x]K0
= [L(1,−d)]K0

+ (r − 1)[L(1,0)]K0
,

where L(r,−d),x is equipped with the standard brane structure. Therefore,
under the equivalence Φ, the object L(r,−d),x corresponds, up to isomorphism,
to an indecomposable object F ∈ DbCoh(X) satisfying

[F ]K0
= [O(dP0)]K0

+ (r − 1)[OX ]K0
.

By forming the iterated cone over O(dP0) and (r − 1)-copies of OX (corre-
sponding to the sequence of Lagrangian surgeries under Φ) we obtain a co-
herent sheaf F ′ of rank r and degree d with gcd(r, d) = 1 and [F ′]K0

= [F ]K0
.

Hence F ′ is stable and since stable sheaves generate the K0-group we must
have that F ′ ∼= F [2k] for some integer k. However, since we already know
that Φ(O(dP0)) ∼= L(1,−d) and Φ(OX) ∼= L(1,0) and since the equivalence Φ
is an equivalence of triangulated categories, it follows that k = 0 and hence
F ∼= F ′. That is, we have shown that up to isomorphism L(r,−d),x corresponds
to a stable sheaf F of rank r and degree d under the equivalence Φ.

Next, note that if F ∈ Coh(X) is a stable coherent sheaf not isomorphic
to the skyscraper sheaf Λ(Q), for some Q ∈ X, then we have

(23) dimHomDbCoh(X)(F,Λ(Q)) = rk(F )

and in particular HomDbCoh(X)(Λ(P0),Λ(Q)) = 0 for Q ∈ X \ {P0}. Recall
from Theorem B.3 that there is a surjective homomorphism

ζ : Aut(DbCoh(X)) → SL(2,Z).

The kernel of this homomorphism is generated by Pic0(X), Aut(X) and
even shifts, that is by taking the tensor product with degree 0 line bundles,
pulling back along automorphisms of the curve X and taking even shifts
(see [9]). Every element of ker(ζ) preserves the rank and degree of coherent
sheaves and the group of automorphisms Aut(X) of X acts transitively on
X (see [22, Chap. IV, Cor. 4.3]). Therefore, given any point Q ∈ X there
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exists ψQ ∈ ker(ζ) such that ψQ(Λ(P0)) = Λ(Q). Furthermore, any auto-
equivalence ψ ∈ Aut(DbCoh(X)) satisfies

HomDbCoh(X)(A,B) ∼= HomDbCoh(X)(ψ(A), ψ(B))

for any pair of objects A,B of DbCoh(X).
Given any two connected special Lagrangian branes

(L(m,n),x, θ, EM ) and (L(m′,n′),x′ , θ
′, EM ′)

of different slopes (m,n) ̸= (m′, n′) and with rank 1 local systems, all their
intersection points are of the same index. Therefore, if (m,n) ̸= (m′, n′) and
if the degree of their intersection points is 0, we have

dimHomDFuk(T 2)((L(m,n),x, θ, EM ), (L(m′,n′),x′ , θ
′, EM ′)) = |mn′ − nm′|

i.e. (the absolute value of) their homological intersection number and

HomDFuk(T 2)((L(m,n),x, θ, EM ), (L(m′,n′),x′ , θ
′, EM ′)) = 0

otherwise (this depends on the difference in their gradings θ, θ′). Hence,
by (23) and Theorem 6.8 we conclude that ψQ(Λ(P0)) = Λ(Q) corresponds,
up to isomorphism, to a Lagrangian of the form (L(0,−1),x, θ, EM ), for some
x ∈ R/Z, equipped with its standard grading and a local system of rank 1
and monodromy M ∈ S1Λ. This shows the first part of the proposition.

As we have seen above, L(r,−d),x corresponds, up to isomorphism, to a
stable sheaf F of rank r and degree d under the equivalence Φ. Hence, the
second part follows from the first part together with Theorem B.4.

□

Remark 6.11. Recall that DbCoh(X) admits a locally-finite stability con-
dition (see Appendix B) and hence, we obtain a locally-finite stability con-
dition (ZT

2

,PT 2

) on DπFuk♯(T 2) via the equivalence Φ. As we can see from
Proposition 6.10, all the stable objects are geometric and therefore Assump-
tion (S1) is satisfied.

Remark 6.12. By Proposition 6.10 all the stable objects of DπFuk♯(T 2)
are in fact objects of DFuk♯(T 2). Therefore DFuk♯(T 2) admits a stability
condition itself and hence is split closed (cf. Section 4.3) and equivalent to
DπFuk♯(T 2). This allows us to simply write DFuk♯(T 2) for DπFuk♯(T 2)
from now on.
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As we have seen in Theorem B.1, all the Jordan-Hölder factors of an inde-
composable semistable object are isomorphic. Translating this toDFuk(T 2),
this means that all the indecomposable semistable objects are non-trivial ex-
tensions of the local systems on stable objects (L(m,n),x, θ, EM ). This leads
to the following corollary (cf. [23, Prop. 7.3]).

Corollary 6.13. (i) The image under Φ of an indecomposable coherent
torsion sheaf on X of degree d is isomorphic to a Lagrangian of slope
(0,−1) ∈ H1(T

2;Z), equipped with an indecomposable local system of
rank d.

(ii) The image under Φ of an indecomposable, coherent sheaf of rank r >
0 and degree d is isomorphic to a Lagrangian of slope 1

h(r,−d) ∈
H1(T

2;Z), equipped with an indecomposable local system of rank h,
where h := gcd(r, d).

Remark 6.14. Short exact sequences of local systems on the same un-
derlying Lagrangian induce relations in the Lagrangian cobordism group
(cf. Def. 6.1). Therefore, for every Lagrangian brane (L(m,n),x, θ, E) with
local system of rank h we have the relation

[(L(m,n),x, θ, E)]Lag =

h∑

j=1

[(L(m,n),x, θ, EMj
)]Lag

in ΩLag(M), where (L(m,n),x, θ, EMj
) are the stable factors equipped with

local systems of rank 1 with possibly different monodromiesMj ∈ S1Λ. This
means that (ZT

2

,PT 2

) also satisfies Assumption (S3).

Remark 6.15. We will use a slightly different definition of the standard
grading than Haug [23, Sec. 3.1.1], the difference is just a factor of 1

2 . The
standard grading of a Lagrangian in T 2 of slope (m,n) ∈ H1(T

2;Z) is defined
as the unique number θ ∈ [−1

2 ,
1
2) satisfying

e2πiθ =
m+ in√
m2 + n2

.

Note that, as discussed in Appendix B,

Z : K0(D
bCoh(X)) −→ C
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is given by Z(F ) = − deg(F ) + i · rk(F ) for a coherent sheaf F on X. Hence,
by Corollary 6.13 we can see that

ZT
2

: K0(DFuk♯(T 2)) −→ C

is given by

ZT
2

(L(m,n),x, θ, E) = rk(E) · (n+ i ·m)

for Lagrangian branes (L(m,n),x, θ, E) equipped with their standard grading.
Therefore, we get the following relation between the phase and the standard
grading

ϕ((L(m,n),x, θ, E)) =
1

2
− θ ∈ (0, 1].

This also fits with the relation

(L(m,n),x, θ, E)[1] = (L(−m,−n),x, θ − 1, E) ∈ PT 2

((L(m,n),x, θ, E))[1].

That is, if the grading decreases by 1, then the phase increases by 1 as
expected (cf. Def. 2.6), and vice versa.

Haug proceeds to show that all the K0-relations among indecomposable
coherent sheaves, are induced by relations in the cobordism group ΩLag(T

2)
under the equivalence Φ (for more details, see [23, Sect. 8.1.1]). In order
to show this, Haug uses the following classification result of Atiyah, see [2,
Thm. 3] and [23, Thm. 11.1] for this particular formulation:

Theorem 6.16. There exists an integer N(r, d) such that for every n ≥
N(r, d), every indecomposable sheaf E of rank r > 0 and degree d fits, up to
isomorphism, into the short exact sequence

0 −→
(
O⊕r−1
X

)
(−n) −→ E −→ (detE)((r − 1)n) −→ 0.

In the above theorem ·(n) denotes tensoring by the nth power of a hyperplane
bundle. A hyperplane bundle is a line bundle corresponding to a hyperplane
section (see [2]).

More precisely, Haug proves the following (see [23, Prop. 8.1])

Proposition 6.17. The set RXS of all K0-relations among stable coherent
sheaves on X is generated by short exact sequences of the form

(i) 0 → F → E → 0 with F,E ∈ Coh(X) both stable,

(ii) 0 → O(D −Q) → O(D) → Λ(Q) → 0 with D a divisor and Q ∈ X,
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(iii) 0 →
(
O⊕r−1
X

)
(−n) → E → (detE)((r − 1)n) → 0, with a stable sheaf

E ∈ Coh(X) of rank r > 0 and n ∈ Z as in Theorem 6.16.

For a proof of this proposition see [23, Sect. 8.1.1], an important ingre-
dient is the fact that

(det, rk) : K0(X) −→ Pic(X)⊕ Z(24)

is an isomorphism (see [22] or [33, p.34]). In fact Haug proves a slightly
stronger result involving all relations among indecomposable coherent
sheaves. However, by (20) it suffices to consider the relations among sta-
ble coherent sheaves. Haug then shows that the relations of the three types
in Proposition 6.17 are induced by relations in the Lagrangian cobordism
group. The relations of type (i) identify isomorphic stable sheaves which cor-
respond to Hamiltonian isotopic Lagrangian branes which, by Lagrangian
suspension, are cobordant. IfD is a divisor of degree d, then O(D −Q), resp.
Λ(Q) correspond under (21) to Lagrangian branes of slopes (1,−(d− 1))
resp. (0,−1). One can perform Lagrangian surgery of these two Lagran-
gians and obtain a cobordism between them and a Lagrangian brane of
slope (1,−d). As dimExt1(Λ(Q),O(D −Q)) = 1, O(D) must correspond
via (21) to the Lagrangian brane of slope (1,−d) obtained in this way. This
shows that the relations of type (ii) are induced by Lagrangian cobordisms
(see also [23, Sec. 7.5]). For the relations of type (iii), one can construct a
relation in ΩLag(T

2) by iteratively surgering the Lagrangian brane of slope
(1,−d− 3n(r − 1)), corresponding to the line bundle (detE)((r − 1)n), with
(r − 1)-copies of the Lagrangian brane of slope (1, 3n), corresponding to
OX(−n). Using (24) Haug [23, Sect. 7.5] then shows that the Lagrangian
obtained after these surgeries corresponds to E under (21). Therefore, rela-
tions of type (iii) are induced by relations in ΩLag(T

2) as well. Moreover, by
Remark 6.2, relations in the K0-group coming from shifts are also induced
by relations in ΩLag(T

2).
This implies that all theK0-relations between stable objects ofDbCoh(X)

are induced by relations in ΩLag(T
2) and therefore Assumption (S2) is sat-

isfied as well.
In conclusion, combining this observation with Remarks 6.11, 6.14 and

Corollary 6.7 we obtain the following result (cf. [23, Thm. 1.3]).

Theorem 6.18. DFuk♯(T 2) admits a locally-finite stability condition sat-
isfying Assumptions (S1), (S2) and (S3), and

Θ : ΩLag(T
2) −→ K0(DFuk♯(T 2))



✐

✐

“4-Hensel” — 2020/5/14 — 15:47 — page 508 — #46
✐

✐

✐

✐

✐

✐

508 Felix Hensel

is a group isomorphism.

In some sense Corollary 6.7 demystifies the connection between the La-
grangian cobordism group and the K0-group. Theorem 6.18 yields a new
perspective on Haug’s result and hints at a deeper reason behind why Haug’s
arguments worked.

In order to describe the Lagrangian cobordism group of T 2 explicitly we
include the following corollary.

Corollary 6.19. ΩLag(T
2) ∼= (S1Λ× R/Z)⊕ Z

2.

Proof. By Theorems 6.18 and 6.8 we have isomorphisms

ΩLag(T
2) ∼= K0(DFuk♯(T 2)) ∼= K0(D

bCoh(X)).

We can view Coh(X) as the subcategory of DbCoh(X) given by complexes
concentrated in degree 0 and we denote the inclusion by ι : Coh(X) →֒
DbCoh(X). Short exact sequences 0 → A→ B → C → 0 in Coh(X) are
in one to one correspondence with exact triangles A→ B → C → A[1] in
DbCoh(X) with A,B,C ∈ Coh(X) ⊂ DbCoh(X) (this is true in general if
Coh(X) is replaced by any abelian category; see [26, Ex. 2.27]). Denote by
K0(X) the Grothendieck group of Coh(X), which is the free abelian group
generated by objects of Coh(X) modulo the relations [B] = [A] + [C] for ev-
ery short exact sequence 0 → A→ B → C → 0 in Coh(X). Note that every
exact triangle A• → B• → C• → A•[1] in DbCoh(X) induces a long exact
sequence in cohomology (see [21, IV.1.6])

· · · → H i(A•) → H i(B•) → H i(C•) → H i+1(A•) → · · · .

This, together with (B.2), yields a well defined group homomorphism

h : K0(D
bCoh(X)) → K0(X); [E•] 7→

∑

i∈Z

(−1)i[H i(E•)].

The inclusion by ι : Coh(X) →֒ DbCoh(X) induces a homomorphism

k : K0(X) → K0(D
bCoh(X)); [E] 7→ [ι(E)].

We clearly have h ◦ k = idK0(X). By (B.3) it also follows that k ◦ h =
idK0(DbCoh(X)). Therefore we have shown that we have an isomorphism

K0(D
bCoh(X)) ∼= K0(X).
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Recall from (24) that there is an isomorphism K0(X) ∼= Pic(X)⊕ Z.

In addition we have a short exact sequence 0 → Pic0(X) → Pic(X)
deg→

Z → 0 (see [43, Prop. 2.6]) and an isomorphism Pic0(X) ∼= X (see [44,
III. Prop.3.4]). Recalling from (22) that X ∼= S1Λ× R/Z, and putting ev-
erything together, we conclude that

ΩLag(T
2) ∼= K0(X) ∼= Pic(X)⊕ Z ∼= (S1Λ× R/Z)⊕ Z

2

holds. □

Remark 6.20. Note that K0(D
bCoh(X)) ∼= K0(X) also follows from the

general fact that K0(D) ∼= K0(A), whenever A is the heart of a bounded
t-structure on a triangulated category D (see [27, Sect. 2.2]).

7. Proof of Theorem 4.13

With our preparations in place we may now proceed with the proof of Theo-
rem 4.13. We will show that the central charge Z : K0(DFuk(C×M) → C

as in (8) is a well defined homomorphism and that (Z,P) satisfies all the
axioms of Definition 4.1 and is locally-finite.

Proof of Theorem 4.13. First, we will show that Z is a well-defined group
homomorphism.

Suppose that V →W → U is an exact triangle in DFuk(C×M) and
hence [V ]K0

− [W ]K0
+ [U ]K0

= 0 in K0(DFuk(C×M)). We need to check
that

Z[V ]K0
− Z[W ]K0

+ Z[U ]K0
= 0

is satisfied.
Recall that for each j ∈ Z≥1 we have a triangulated restriction functor

Rj : DFuk(C×M) → DFuk(M).

Therefore, for each j ∈ Z≥1, we get the relation [RjV ]K0
− [RjW ]K0

+
[RjU ]K0

= 0 in K0(DFuk(M)) which implies the following:

Z[V ]K0
− Z[W ]K0

+ Z[U ]K0

=
∑

j≥2

ZM [RjV ]K0
− ZM [RjW ]K0

+ ZM [RjU ]K0

=
∑

j≥2

ZM ([RjV ]K0
− [RjW ]K0

+ [RjU ]K0
)

= 0.
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Therefore the central charge Z is a well-defined homomorphism.
It remains to check that (Z,P) satisfies (A1)–(A4) in Definition 4.1.

(A1) Let IhX[r] ∈ P(ϕ) with X ∈ PM (ϕ− r + κh). Then, by Remark 3.9

Z[IhX[r]]K0
= ZM [RhIhX[r]]K0

= ZM [X[r]]K0

= m(X)︸ ︷︷ ︸
>0

exp(iπ(ϕ+ κh))

= m(X) exp(iπϕ),

since κ is even and X[r] ∈ PM (ϕ− r + κh)[r] = PM (ϕ+ κh).

(A2)

P(ϕ)[1] =
〈
{IhX[r + 1] | r ∈ Z, h ∈ Z>1, X ∈ PM (ϕ− r + κh)}

〉

=
〈
{IhX[r] | r ∈ Z, h ∈ Z>1, X ∈ PM (ϕ+ 1− r + κh)}

〉

= P(ϕ+ 1).

Here, the brackets ⟨. . .⟩ signify that we take the additive closure in
DFuk(C×M).

(A3) In order to show axiom (A3), we will prove the following lemma.

Lemma 7.1. Given h, h′ ∈ Z and any two objects X,X ′ of DFuk(M)
we have

HomDFuk(C×M)(Ih
′

X ′, IhX) ∼=
{
HomDFuk(M)(X

′, X), if h′ ≥ h

0, if h′ < h,

where the isomorphism is induced by the restriction R1.

Before proving Lemma 7.1, we will deduce (A3) from it.
Suppose that ϕ′ > ϕ, Ih′X ′[r′] ∈ P(ϕ′) and IhX[r] ∈ P(ϕ).

a) If h′ < h, then HomDFuk(C×M)(Ih
′

X ′[r′], IhX[r]) = 0 by Lemma 7.1.
b) If h′ ≥ h, then

HomDFuk(C×M)(Ih
′

X ′[r′], IhX[r]) ∼= HomDFuk(M)(X
′[r′], X[r]) = 0

since (ZM ,PM ) satisfies (A3) and X ′[r′] ∈ PM (ϕ′ + κh′), X[r] ∈
PM (ϕ+ κh) where ϕ′ + κh′ > ϕ+ κh.

Thus (Z,P) satisfies (A3) as well.
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Proof of Lemma 7.1. Step 1: Suppose that X and X ′ are geomet-
ric objects, i.e. X ∼= L[r] and X ′ ∼= L′[r′] where L,L′ ∈ Fuk(M) are
graded Lagrangians in M .

In the setup of the Floer complex CF (V,W ) of two cobordisms, the
perturbation datum is chosen in such a way that the horizontal ends of
the second cobordism V will be slightly perturbed downwards, i.e. in
the −i direction in C. In particular, this means that if h′ < h, we get
that HF (Ih′L′[r′], IhL[r]) = 0 since after a Hamiltonian isotopy that
preserves horizontal ends, the projections of Ih′L′ and IhL to C will
be disjoint. Therefore, in this case there are no non-trivial morphisms,
i.e. HomDFuk(C×M)(Ih

′

X ′, IhX) = 0.
Suppose now that h′ ≥ h. In this case, instead of having disjoint

projections to C, we can arrange that after suitable Hamiltonian per-
turbation, the projections of Ih′L′ and IhL to C intersect in exactly
one point z ∈ C (see Figure 3).

γh′ × L′

h′

1z

h
γh × L

Figure 3: The projections of IhL after a slight downward perturbation and
Ih′L′ to C, in the case h′ ≥ h.

Thus, all the intersection points of Ih′L′ ⋔ IhL are of the form ξ =
(z, p) ∈ C×M for some p ∈ L′ ⋔ L. Using the observation of Remark
3.8, and denoting by ϕ′1, . . . , ϕ

′
n the Kähler angles between L′ and L,

we calculate the degree of ξ:

degξ(Ih
′

L′[r′], IhL[r])

= (n+ 1) +

(
θL − r +

1

2

)
− (θL′ − r′ + 1)− 1

π

(
π

2
+

n∑

i=1

ϕ′i

)

= n+ θL − θL′ + r′ − r − 1

π

n∑

i=1

ϕ′i

= degz(γh′ , γh)︸ ︷︷ ︸
=0

+degp((L
′, θL′)[r′], (L, θL)[r])

= degp((L
′, θL′)[r′], (L, θL)[r]).
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Hence, we get HomDFuk(C×M)(Ih
′

X ′, IhX) ∼= HomDFuk(M)(L
′[r′], L[r]).

Step 2: Let Q be the collection of pairs of objects of DFuk(M)
which satisfy the conclusion of the lemma. Note that by Step 1 every
pair of geometric objects lies in Q.

Suppose now that (X ′, X) ∈ Q and (X ′, Y ) ∈ Q and let C be an

object in the isomorphism class of the cone (X
φ→ Y ) over some mor-

phism φ ∈ HomDFuk(M)(X,Y ). We want to show that the pair (X ′, C)
lies in Q as well.

Recall that the restriction functor at height 1 is a triangulated
functor R1 : DFuk(C×M) → DFuk(M) which satisfies R1IhM =
M[−1] for M ∈ DFuk(M). We have the following commutative (up
to signs) diagram of exact triangles:

· · · // IhX Ihφ
//

R1

��

IhY //

R1

��

IhC //

R1

��

IhX[1] //

R1

��

· · ·

· · · // X[−1]
−φ[−1]

// Y [−1] // C[−1] // X // · · ·

Given any object X̃ ′ ∈ DFuk(C×M) we apply the cohomological

functor HomDFuk(C×M)(X̃ ′, · ) (see [47, Chap. 2 Prop. 1.2.1]) to the
above diagram in order to obtain a commutative (up to signs) diagram
of long exact sequences.

// Hom(X̃ ′, IhX) //

R1

��

Hom(X̃ ′, IhY ) //

R1

��

Hom(X̃ ′, IhC) //

R1

��

Hom(X̃ ′, IhX[1]) //

R1

��

// Hom(R1X̃ ′, X[−1]) // Hom(R1X̃ ′, Y [−1]) // Hom(R1X̃ ′, C[−1]) // Hom(R1X̃ ′, X) //

Specializing to X̃ ′ := Ih′X ′ yields

// Hom(Ih′X ′, IhX) //

R1

��

Hom(Ih′X ′, IhY ) //

R1

��

Hom(Ih′X ′, IhC) //

R1

��

Hom(Ih′X ′, IhX[1]) //

R1

��

// Hom(X ′[−1], X[−1]) // Hom(X ′[−1], Y [−1]) // Hom(X ′[−1], C[−1]) // Hom(X ′[−1], X) //

a) If h′ < h, then the top long exact sequence takes the form

· · · 0 −→ 0 −→ Hom(Ih′X ′, IhC) → 0 −→ · · ·
and hence Hom(Ih′X ′, IhC) = 0.
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b) If h′ ≥ h, then

// Hom(Ih′X ′, IhX) //

R1
∼=

��

Hom(Ih′X ′, IhY ) //

R1
∼=

��

Hom(Ih′X ′, IhC) //

R1

��

Hom(Ih′X ′, IhX[1]) //

R1
∼=

��

// Hom(X ′[−1], X[−1])
∼=Hom(X′,X)

// Hom(X ′[−1], Y [−1])
∼=Hom(X′,Y )

// Hom(X ′[−1], C[−1])
∼=Hom(X′,C)

// Hom(X ′[−1], X)
∼=Hom(X′,X)[1]

//

and by the 5-Lemma we get Hom(Ih′X ′, IhC) ∼= Hom(X ′, C).
Therefore the pair (X ′, C) lies in Q as well.

With a similar argument, using instead the cohomological functor

HomDFuk(C×M)( · , X̃),

one can show that if (X ′, X) ∈ Q and (Y ′, X) ∈ Q, then (C ′, X) ∈ Q
as well, where C ′ := (X ′ φ

′

→ Y ′).
To conclude the proof of the lemma we note that any object of

DFuk(M) is isomorphic to an iterated cone over geometric objects,
and hence the lemma holds for every pair of objects. □

(A4) Step 1: We will first check (A4) of Definition 4.1 for Yoneda-modules
(V, θV ) ∈ DFuk(C×M).

Let (V, θV ) : (L1, . . . , Ls) ❀ ∅ be an object of Fuk(C×M). Recall
the iterated cone decomposition of (V, θV ) from Proposition 5.1 in its
particular form (19)

0 = M1
// M2

��

// M3

��

// · · · // Ms−1
// Ms

∼= V

||

L̃2

[1]

aa

L̃3

[1]

]]

L̃s
[1]

__

For 2 ≤ j ≤ s we write the HN-filtration of

Rhj L̃j
∼= RhjIhj (Lj , θV,j) ∼= (Lj , θV,j)

in DFuk(M) as

(25) Rhj L̃j
∼= (Xj,ℓ(j)[−1] → · · · → Xj,1[−1] → 0)

whereXj,k ∈ PM (ϕMj,k) is semistable of phase ϕMj,k for each 1 ≤ k ≤ ℓ(j).

Note that if L̃j is semistable to begin with, then ℓ(j) = 1 and Xj,1
∼=
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(Lj , θV,j). By applying the inclusion functor Ihj to the HN-filtration

of Rhj L̃j we obtain the following iterated cone decomposition of L̃j :

(26) L̃j ∼= (X̃j,ℓ(j)[−1] → · · · → X̃j,1[−1] → 0),

where X̃j,k := IhjXj,k for 1 ≤ k ≤ ℓ(j) and X̃j,k is of height hj . As

Xj,k ∈ PM (ϕMj,k), it follows from (7) that X̃j,k is semistable of phase

ϕj,k := ϕ(X̃j,k) = ϕMj,k − κhj .

By Remark A.4 and (26) the cone decomposition (10) admits the re-
finement

(27) V ∼=(X̃s,ℓ(s)[−1]→· · ·→X̃3,1[−1]→X̃2,ℓ(2)[−1]→· · ·→X̃2,1[−1]→0)

In an effort to render the notation more transparent we will relabel
the factors of (27) as X̃q := X̃j,k (resp. Xq := Xj,k) where 2 ≤ j ≤ s,
1 ≤ k ≤ ℓ(j) and q := k +

∑j−1
i=2 ℓ(i). We also relabel the phases in the

same fashion. After this relabeling (27) takes the form

(28) V ∼= (X̃s′ [−1] → · · · → X̃1[−1] → 0)

where s′ =
∑s

i=2 ℓ(i),

(29) Xj ∈ PM (ϕMj ), X̃j ∈ P(ϕj), ϕj = ϕMj − κh̃j

and h̃j denotes the height of X̃j . Notice also that if
∑j−1

i=2 ℓ(i) < p, q ≤∑j
i=2 ℓ(i), then X̃p and X̃q are on the same height

h̃p = h̃q = hj

for 2 ≤ j ≤ s. Conversely, if X̃p respectively X̃q are semistable objects

occurring in the iterated cone decomposition of L̃j respectively L̃i, with

i ̸= j, then their heights are different, i.e. h̃p = hj ̸= hi = h̃q.
We need to check that the phases in the iterated cone decomposi-

tion are descending, i.e. that ϕ2 > · · · > ϕs′ is satisfied. By (29) this
amounts to checking that ϕM2 − κh̃2 > · · · > ϕMs′ − κh̃s′ holds.

First note that if h̃j = h̃j+1, that is if we are within the cone de-
composition (26), then we know by the HN-filtration (25) that the in-
equality ϕMj > ϕMj+1 holds and hence the desired inequality ϕj > ϕj+1

follows in these cases.
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It remains to check the cases where h̃j < h̃j+1 holds. In this case we

are at the passage from L̃j+1 to L̃j in the cone decomposition.
By (11), the triangulated restriction functor R1 applied to (28)

yields the following iterated cone in DFuk(M):

(30) (L1, θV,1) ∼= (Xs′ [−2] → · · · → X1[−2] → 0).

Now, let 1 ≤ j ≤ s′ − 1 be an index such that h̃j < h̃j+1.
Using Remark A.3 we may reorder the brackets in (28) and (30) as

follows

(X̃s′ [−1] → · · · → (X̃j+1[−2]
α̃j→ X̃j [−1]) → · · · → 0) and(31)

(Xs′ [−2] → · · · → (Xj+1[−3]
αj→ Xj [−2]) → · · · → 0),(32)

where αj := R1α̃j . There are two cases to examine.

Case 1: If α̃j is not the zero-morphism.

By Lemma 7.1 we obtain

HomDFuk(C×M)(X̃j+1[−2], X̃j [−1])

∼=HomDFuk(M)(R1X̃j+1[−2],R1X̃j [−1])
∼=HomDFuk(M)(Xj+1[−3], Xj [−2]).

Under this identification, α̃j corresponds to αj . Therefore, if α̃j ̸= 0,
then αj ̸= 0 as well. Thus, by Definition 4.1 (A3) and the decomposi-
tion (32), we have the phase inequality

ϕMj+1 − 1 ≤ ϕMj

which, since κ > 2 and h̃j < h̃j+1, implies that

ϕj+1 = ϕMj+1 − κh̃j+1 ≤ ϕMj + 1− κh̃j+1(33)

< ϕMj − κh̃j − 1 = ϕj − 1 < ϕj

is indeed satisfied.

Case 2: Suppose that the morphism α̃j is the zero-morphism and
that the phase inequality is unfavorable, i.e. ϕj ≤ ϕj+1.
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(i) If ϕj = ϕj+1:

In this case we have that cone(α̃j) ∼= X̃j+1[−1]⊕ X̃j [−1] ∈ P(ϕj −
1) is itself semistable of phase ϕj − 1 since by definition P(ϕj − 1)
is additive. So we may rewrite (28) as

V ∼= (X̃s′ [−1] → · · · → X̃j+1[−1] → cone(α̃j)

→ X̃j−1[−1] → · · · → X̃1[−1] → 0).

(ii) If ϕj < ϕj+1:
In this case, by Remark A.1, we have

(X̃j+1[−2]
0→ X̃j [−1]) ∼= (X̃j [−2]

0→ X̃j+1[−1])

and so we may switch these two objects in the iterated cone to get
the desired phase inequality

(X̃s[−1] → · · · (X̃j+1[−2]
α̃j=0−→ X̃j [−1]) → · · · → 0)

∼= (X̃s′ [−1] → · · · (X̃j [−2]
0→ X̃j+1[−1]) → · · · → 0)

∼= (X̃s′ [−1] → · · · X̃j [−1] → X̃j+1[−1] → · · · → X̃2[−1] → 0).

Switching these objects may create problems with the phase in-
equalities of the adjacent objects, so we iteratively repeat this switch
until we end up with

V ∼= (X̃s′ [−1] → · · · → X̃k+1[−1] → X̃j [−1] → X̃k[−1] → · · ·(34)

→ X̃r[−1] → X̃j+1[−1] → X̃r−1[−1] → · · ·
→ X̃1[−1] → 0),

where j + 1 ≤ k ≤ s′ and 1 ≤ r ≤ j are such that

ϕk > ϕj , ϕk+1 ≤ ϕj

and ϕr < ϕj+1, ϕr−1 ≥ ϕj+1.

We now iteratively repeat the argument of Case 2 (i) and (ii) for
(34) until, after finitely many steps, we end up with the desired HN-
filtration of V . This shows that Yoneda-modules (V, θV ) ∈ DFuk(C×
M) satisfy (A4) of Definition 4.1.

Step 2: It remains to check (A4) for general modules.
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We will first check that any cone W := ((U, θU ) → (V, θV )) over two
Yoneda-modules (U, θU ), (V, θV ) ∈ DFuk(C×M) satisfies (A4).

By Step 1, we know that both U and V admit a HN-filtration

(35) 0 = MU
1

// MU
2

��

// MU
3

��

// · · · // MU
r−1

// MU
r
∼= U,

||

X̃1

[1]

aa

X̃3

[1]

]]

X̃r

[1]

__

with ϕU1 > · · · > ϕUr , where ϕ
U
j := ϕ(X̃j), and

(36) 0 = MV
1

// MV
2

��

// MV
3

��

// · · · // MV
s−1

// MV
s
∼= V,

||

Ỹ1
[1]

aa

Ỹ3

[1]

]]

Ỹs
[1]

^^

with ϕV1 > · · · > ϕVs , where ϕ
V
i := ϕ(Ỹi).

Remark 7.2. We will assume for now, that each semistable factor
X̃j (resp. Ỹi) is isomorphic to an object in the image of some inclusion
functor Ihj as opposed to a direct sum of such object of equal phase
(cf. Step 1, Case 2 (i)). Below we will see that this assumption can be
made without loss of generality.

With this assumption in place, each semistable factor X̃j (resp. Ỹi)
has a well defined height which we will denote by hUj (resp. hVi ). More

precisely, from Step 1 we know that X̃j
∼= IhUj Xj and Ỹi ∼= IhVi Yi,

where Xj ∈ PM (ϕM,U
j ) and Yi ∈ PM (ϕM,V

i ). Moreover, as in (29), the
phases satisfy the following relations

(37) ϕUj = ϕM,U
j − κhUj and ϕVi = ϕM,V

i − κhVi .

We may rewrite (35) and (36) as

U ∼= (X̃r[−1] → · · · X̃1[−1] → 0) and V ∼= (Ỹs[−1] → · · · Ỹ1[−1] → 0)

and hence

W ∼= ((X̃r[−1] → · · · → X̃1[−1] → 0) → (Ỹs[−1] → · · · → Ỹ1[−1] → 0))

∼= (X̃r → · · · → X̃1 → Ỹs[−1] → · · · → Ỹ1[−1] → 0)(38)

∼= (X̃r → · · · → (X̃1[−1]
β−→ Ỹs[−1]) → · · · → Ỹ1[−1] → 0)(39)



✐

✐

“4-Hensel” — 2020/5/14 — 15:47 — page 518 — #56
✐

✐

✐

✐

✐

✐

518 Felix Hensel

If ϕVs − 1 > ϕU1 then there is nothing to show. So we assume that
ϕVs − 1 ≤ ϕU1 holds. Moreover, we will also assume that β is not an
isomorphism, as otherwise the cone over β is the zero-object.

Case 1: φV
s < φU

1
.

In this case, by (A3), β = 0 and therefore

(X̃1[−1]
0−→ Ỹs[−1]) ∼= (Ỹs[−2]

0−→ X̃1)

which leads to

W ∼= (X̃r → · · · → (Ỹs[−2]
0−→ X̃1) → · · · → Ỹ1[−1] → 0)

∼= (X̃r → · · · → Ỹs[−1] → X̃1 → · · · → Ỹ1[−1] → 0)

where ϕVs − 1 < ϕU1 . Let 1 ≤ j ≤ r and 1 ≤ i ≤ s be such that

ϕVs < ϕUj , ϕVs ≥ ϕUj+1

and ϕVi < ϕU1 , ϕVi−1 ≥ ϕU1

are satisfied. Then, by the above argument we may rewrite (38) as

W ∼= (X̃r →· · · → X̃j+1 → Ỹs[−1] → X̃j → · · · → X̃2 → Ỹs−1[−1] → · · ·
· · · → Ỹi[−1] → X̃1 → Ỹi−1[−1] → · · · → Ỹ1[−1] → 0).

If ϕVs−1 < ϕU2 , we repeat the above argument again and again, until,
after a finite number of iterations, we arrive at an iterated cone de-
composition of W in which the X̃j ’s and Ỹi’s have been reshuffled
(maintaining their internal order) in such a way that at every occur-
rence of

(40) · · · → X̃j → Ỹi[−1] → · · ·

we have ϕUj ≤ ϕVi , i.e. Case 1 does not occur anymore. Thus, at each
occurrence (40) in this reshuffled cone decomposition, the phase in-
equality is either correct already (i.e. ϕUj < ϕVi − 1), in which case we
don’t do anything, or we have ϕUj − 1 ≤ ϕVi − 1 ≤ ϕUj , in which case we
proceed with Case 2 at this point in the iterated cone decomposition.

In what follows we only exemplify Case 2 at the occurrence of · · · →
X̃1 → Ỹs[−1] → · · · in the original iterated cone decomposition (38),
if however, reshuffling as described above is required, one has to apply
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Case 2 a finite number of times. Namely at each occurrence (40) in
the reshuffled iterated cone decomposition where the phase inequality
ϕUj − 1 ≤ ϕVi − 1 ≤ ϕUj holds.

Case 2: φU
1
− 1 ≤ φV

s − 1 ≤ φU
1
.

We will first discuss the cases β ̸= 0 and hU1 ≥ hVs in (i) and (ii). In
(iii) we will deal with the case β = 0. Note that if hU1 < hVs , then, as
we have seen in Lemma 7.1, β = 0 and hence we are in a situation that
will be addressed in (iii).
(i) Suppose that β ̸= 0 and hU1 > hVs .

We apply the restriction functorR1 to the decomposition (39). Note
that

R1X̃1[−1] ∼= X1[−2] and R1Ỹs[−1] ∼= Ys[−2].

By Lemma 7.1 we obtain the identification

HomDFuk(C×M)(X̃1[−1], Ỹs[−1])

∼= HomDFuk(M)(R1X̃1[−1],R1Ỹs[−1])
∼= HomDFuk(M)(X1[−2], Ys[−2])

under which β corresponds to R1β. The assumption β ̸= 0 thus
implies that R1β ̸= 0 as well.
By (37) we have ϕM,U

1 := ϕ(X1) = ϕU1 + κhU1 and ϕM,V
s := ϕ(Ys) =

ϕVs + κhVs . Since R1β ̸= 0 we get the phase inequality ϕM,U
1 ≤ ϕM,V

s

and hence (since hU1 > hVs and κ > 2)

ϕU1 = ϕM,U
1 − κhU1 ≤ ϕM,V

s − κhU1︸︷︷︸
>κhVs +1

< ϕM,V
s − κhVs − 1 = ϕVs − 1(41)

which contradicts our assumption ϕVs − 1 ≤ ϕU1 .
(ii) Suppose that β ̸= 0 and h := hU1 = hVs .

Recall that we are still assuming that

ϕU1 − 1 ≤ ϕVs − 1 ≤ ϕU1(42)

holds.
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Let i ∈ {1, . . . , r} and j ∈ {1, . . . , s} be such that

ϕU1 − 1 ≤ φV
s − 1 ≤ φU

i ≤ ϕU1 and ϕVs − 1 ≤ φV
j − 1 ≤ φV

s(43)

h = hU1 = hU2 = · · · = hUi and h = hVs = hVs−1 = · · · = hVj(44)

ϕUi+1 < ϕVs − 1 and ϕVs < ϕVj−1 − 1.(45)

Note that the inequalities ϕUi ≤ ϕU1 respectively ϕVs − 1 ≤ ϕVj − 1 in
(43) are in fact strict inequalities whenever i ̸= 1 respectively j ̸= s.
We denote by

ψUk := ϕ(RhX̃k) = ϕM,U
k = ϕUk + κh for 1 ≤ k ≤ i, and

ψVn := ϕ(RhỸn) = ϕM,V
n = ϕVn + κh for j ≤ n ≤ s

the phases of the semistable objects in DFuk(M) obtained by ap-
plying the restriction functor Rh. Note that we have ψ

U
i < · · · < ψU1

and ψVs < · · · < ψVj and moreover analogues of (42) and (43) also
hold for these phases. Remark A.4 allows us to rewrite W as

W ∼= (X̃r → · · · → X̃i+1

→ (X̃i[−1] → · · · → X̃1[−1] → Ỹs[−2] → · · · → Ỹj+1[−2] → Ỹj [−1])︸ ︷︷ ︸
=: Z̃

→ Ỹj−1[−1] → · · · → Ỹ1[−1] → 0).

By the above inequalities and by repeatedly applying Remark 4.7 (ii)
we can determine the range of phases of the semistable factors of
the restriction RhZ̃:

C1 := (RhỸj+1[−2]︸ ︷︷ ︸
∈PM (ψV

j+1
−2)

→ RhỸj [−1]︸ ︷︷ ︸
∈PM (ψV

j −1)

) =⇒ C1 ∈ PM ([ψVj+1 − 1, ψVj − 1])

ψVs − 1 < ψVj+1 − 1 < ψVj − 1 ≤ ψVs =⇒ C1 ∈ PM ([ψVs − 1, ψVs ])
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C2 := (RhỸj+2[−2]︸ ︷︷ ︸
∈PM (ψV

j+2
−2)

→ C1︸︷︷︸
∈PM ([ψV

s −1,ψV
s ])

) =⇒ C2 ∈ PM ([ψVs − 1, ψVs ])

...

Cs−j := (RhỸs[−2]︸ ︷︷ ︸
∈PM (ψV

s −2)

→ Cs−(j+1)︸ ︷︷ ︸
∈PM ([ψV

s −1,ψV
s ])

) =⇒ Cs−j ∈ PM ([ψVs − 1, ψVs ])

Cs−j+1 := (RhX̃1[−1]︸ ︷︷ ︸
∈PM (ψU

1 −1)

→ Cs−j︸︷︷︸
∈PM ([ψV

s −1,ψV
s ])

)
(42)
=⇒ Cs−j+1 ∈ PM ([ψVs − 1, ψVs ])

Cs−j+2 := (RhX̃2[−1]︸ ︷︷ ︸
∈PM (ψU

2 −1)

→ Cs−j+1︸ ︷︷ ︸
∈PM ([ψV

s −1,ψV
s ])

)
(43)
=⇒ Cs−j+2 ∈ PM ([ψVs − 1, ψVs ])

...

Cs−j+i := (RhX̃i[−1]︸ ︷︷ ︸
∈PM (ψU

i −1)

→ Cs−j+i−1︸ ︷︷ ︸
∈PM ([ψV

s −1,ψV
s ])

)
(43)
=⇒ Cs−j+i ∈ PM ([ψVs − 1, ψVs ]).

In conclusion, we get

RhZ̃ ∼= Cs−j+i ∈ PM ([ψVs − 1, ψVs ]),

which allows us to express RhZ̃ as

RhZ̃ ∼= (Em[−1] → Em−1[−1] → · · · → E1[−1] → 0)(46)

where Eℓ ∈ PM (ψEℓ
), for 1 ≤ ℓ ≤ m, are the semistable factors

whose phases satisfy

ψVs − 1 ≤ ψEm
< ψEm−1

< · · · < ψE1
≤ ψVs .

Applying the height h inclusion functor Ih to (46), and setting
Ẽℓ := IhEℓ and ϕẼℓ

:= ψEℓ
− κh, we obtain the following iterated

cone decomposition of Z̃ in DFuk(C×M)

Z̃ ∼= IhRhZ̃ ∼= (Ẽm[−1] → Ẽm−1[−1] → · · · → Ẽ1[−1] → 0)

where Ẽℓ ∈ P(ϕẼℓ
) and the phases satisfy

ϕVs − 1 ≤ ϕẼm
< ϕẼm−1

< · · · < ϕẼ1
≤ ϕVs .
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Now, applying Remark A.4 again, we replace Z̃ in the iterated cone
decomposition of W as follows

W ∼= (X̃r →· · · → X̃i+1 → Ẽm → · · ·(47)

· · · → Ẽ1 → Ỹj−1[−1] → · · · → Ỹ1[−1] → 0).

Here, the phases satisfy the following inequalities:

ϕUr + 1 < · · · < ϕUi+1 + 1,

ϕVs ≤ ϕẼm
+ 1 < ϕẼm−1

+ 1 < · · · < ϕẼ1
+ 1 ≤ ϕVs + 1,

ϕVj−1 < · · · < ϕV1 ,

and moreover by (45)

ϕUi+1 + 1 < ϕVs and ϕVs + 1 < ϕVj−1

holds. The upshot is, that ϕUi+1 + 1 < ϕVs ≤ ϕẼm
+ 1 and ϕẼ1

+ 1 ≤
ϕVs + 1 < ϕVj−1 are indeed satisfied.

(iii) If β = 0 and ϕVs − 1 < ϕU1 we may go back to the argument of the
first case, which we iteratively repeat a finite number of times as in
Step 1 Case 2 (ii).

If β = 0 and ϕVs − 1 = ϕU1 we replace (X̃1[−1]
0−→ Ỹs[−1]) by X̃1 ⊕

Ỹs[−1], which is itself an object in the additive subcategory P(ϕU1 ),
in the iterated cone decomposition of W .

In Remark 7.2 we made the assumption that each semistable factor
X̃j (resp. Ỹi) is isomorphic to an object in the image of some inclusion
functor. We will now see that this can be done without loss of gen-
erality. If we omit this assumption, then X̃j may be isomorphic to a

finite direct sum of the form X̃j
∼=
⊕

k IhkXj,k, where each summand

is semistable of phase ϕUj (similarly for each Ỹi). Therefore we may
refine the above HN-filtration of U (35) (resp. of V (35)) to a longer
cone decomposition in which each semistable factor is isomorphic to an
object in the image of some inclusion functor Ihj , at the expense that
the inequality of phases may only be descending and not necessarily
strictly descending anymore. However, the arguments of Step 2 work in
the same way for this refined cone decomposition, with the exception
that some of the strict inequalities might become non-strict. Hence, we
end up with a decomposition as (47) in which some consecutive factors
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may have the same phase. If this is the case, we can reverse the pre-
vious refinement and replace these consecutive factors by their direct
sum, as in Step 1 Case 2 (i) (i.e. by reversing how they were originally
obtained). After this process we end up with an iterated cone decom-
position with strictly decreasing phases, i.e. with the HN-filtration of
W .

So far we have shown that every cone W ∼= (U → V ) over two
Yoneda-modules admits a HN-filtration. The same argument shows
that any cone (Q→W ) respectively (W → Q), where Q is a Yoneda-
module, admits a HN-filtration as well. Hence, by iteration, it follows
that any iterated cone over Yoneda-modules admits an HN-filtration.
SinceDFuk(C×M) is generated by Yoneda-modules this implies that
P satisfies (A4).

This concludes the proof that P is a slicing on DFuk(C×M). It re-
mains to check that the slicing P is locally-finite. See [24, App. C] for some
information on quasi-abelian categories.

Claim 7.3. If (ZM ,PM ) is a locally-finite stability condition, then (Z,P)
is locally-finite as well.

Proof. Suppose that (ZM ,PM ) is locally-finite with parameter η ∈ (0, 12)
and let ϕ ∈ R.

First note that, for any ϕ′ ∈ (ϕ− η, ϕ+ η), each object X̃ := IhX[r] ∈
P(ϕ′) is isomorphic to Ih(C′), where C′ is a finite cone decomposition coming
from a finite Jordan-Hölder filtration of RhX̃, which exists as (ZM ,PM ) is
locally-finite.

Every object of P((ϕ− η, ϕ+ η)) is isomorphic to a finite extension by
objects of the subcategories P(ϕ′) with ϕ′ ∈ (ϕ− η, ϕ+ η). We will first
check that any cone (X̃ → Ỹ ), with

X̃ ∼= Ih′X[r] ∈ P(ϕ′ − 1) and Ỹ ∼= Ih′′Y [t] ∈ P(ϕ′′)

and ϕ′, ϕ′′ ∈ (ϕ− η, ϕ+ η) admits a finite Jordan-Hölder filtration.
Let ϵ ∈ (−η, η) be such that ϕ′ + ϵ = ϕ′′. Note that |ϵ| < 1 and

X ∈ PM (ϕ′ − 1− r + κh′) and Y ∈ PM (ϕ′′ − t+ κh′′).

Since (ZM ,PM ) is locally finite, there are finite Jordan-Hölder filtrations
of X and Y :

X ∼= (Ek[−1] → · · · → E1[−1] → 0) and Y ∼= (Fn[−1] → · · · → F1[−1] → 0)
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with stable factors Ej ∈ PM (ϕ′ − 1− r + κh′) for 1 ≤ j ≤ k respectively

Fℓ ∈ PM (ϕ′′ − t+ κh′′) for 1 ≤ ℓ ≤ n. Setting Ẽj := Ih′Ej [r] ∈ P(ϕ′ − 1)

and F̃ℓ := Ih′′Fj [t] ∈ P(ϕ′′) we get the following JH-filtrations of X̃ and

Ỹ :

X̃ ∼= (Ẽk[−1] → · · · → Ẽ1[−1] → 0) and Ỹ ∼= (F̃n[−1] → · · · → F̃1[−1] → 0).

By Remark A.3 we obtain the following iterated cone decomposition

(X̃ → Ỹ ) ∼= ((Ẽk[−1] → · · · → Ẽ1[−1] → 0)(48)

→ (F̃n[−1] → · · · → F̃1[−1] → 0))

∼= (Ẽk → · · · → Ẽ1 → F̃n[−1] → · · · → F̃1[−1] → 0)

∼= (Ẽk → · · · → (Ẽ1[−1]
α→ F̃n[−1]) → · · · → F̃1[−1] → 0).

• If h′ < h′′, then by Lemma 7.1 it follows that α = 0.
If ϕ′ ≤ ϕ′′, then (48) is already the desired JH-filtration of (X̃ → Ỹ ).

If ϕ′ > ϕ′′, then, using Remark A.1, we may reorder the factors of (48)
to obtain the following JH-filtration of (X̃ → Ỹ )

(X̃ → Ỹ ) ∼= (F̃n[−1] → · · · → F̃1[−1] → Ẽk → · · · → Ẽ1 → 0).

• If h′ > h′′, then by Lemma 7.1, we have that

HomDFuk(C×M)(Ẽ1[−1], F̃n[−1]) ∼= HomDFuk(M)(E1[r − 1], Fn[t− 1]).

But we also get the following inequality of phases:

ϕ(E1[r − 1]) = ϕ′ − 1 + κh′ − 1

= ϕ′′ − (1 + ϵ)︸ ︷︷ ︸
<2<κ

+κh′ − 1

> ϕ′′ + κ (h′ − 1)︸ ︷︷ ︸
≥h′′

−1

≥ ϕ′′ + κh′′ − 1

= ϕ(Fn[t− 1])

Therefore, by (A3), α = 0 in this case as well and we may conclude
as in the previous case.
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• If h′ = h′′, then X̃ and Ỹ are on the same height h. Any cone (X̃ → Ỹ )
is isomorphic to Ih(C), where C denotes a finite iterated cone decom-
position of C := (RhX̃ → RhỸ ) in DFuk(M), coming from a Jordan-
Hölder filtration of C. A finite Jordan-Hölder filtration of C exists,
since (ZM ,PM ) is locally-finite. Note that this argument also works
for longer iterated cones, all of whose objects are on the same height.

As noted above, every object of P((ϕ− η, ϕ+ η)) is isomorphic to a finite
extension by objects of the subcategories P(ϕ′) with ϕ′ ∈ (ϕ− η, ϕ+ η).
Thus, by similar arguments as above we can obtain a finite JH-filtration of
any object of P((ϕ− η, ϕ+ η)). In conclusion, each object of P(ϕ− η, ϕ+ η)
has a finite Jordan-Hölder decomposition and hence is of finite length. □

This completes the proof of Theorem 4.13 and shows that (Z,Pκ) is a
locally-finite stability condition on DFuk(C×M) for every κ ∈ 2 · Z>1. □

Appendix A. Exact triangles and iterated cone
decompositions in a triangulated category

We collect some remarks about iterated cones in a triangulated category
D. There are many references on triangulated categories, some of which are
[4, 47, 48].

In a triangulated category D every morphism α ∈ HomD(X,Y ) can be
embedded in an exact triangle X

α−→ Y −→ Z −→ X[1]. The object Z (or,
by abuse of notation, any object isomorphic to Z) is said to be the cone
over the morphism α and we will denote it by cone(α) or by (X

α→ Y ). In
case the morphism over which we take the cone is not specified we will just
write (X → Y ) for the cone.

Recall that theGrothendieck group (orK-group)K0(D) of a triangulated
category D is the free abelian group generated by the objects of D modulo
the following relations: X − Y + Z = 0 whenever there is an exact triangle
X → Y → Z → X[1] in D.

Remark A.1. (i) The cone over any isomorphism is the zero object,

that is:(X
∼=→ Y ) ∼= 0 or put differently,X

∼=→ Y → 0 → X[1] is an exact
triangle.

(ii) The cone over the zero morphism is isomorphic to the direct sum (see
[47, Cor. II.1.2.6]). More precisely, we have

(X
0→ Y ) ∼= X[1]⊕ Y ∼= Y ⊕X[1] ∼= (Y [−1]

0→ X[1]).



✐

✐

“4-Hensel” — 2020/5/14 — 15:47 — page 526 — #64
✐

✐

✐

✐

✐

✐

526 Felix Hensel

Remark A.2. If an object X ∈ D admits an iterated cone decomposition
of the form

X ∼= (X1 → (X2 → (X3 → (· · · → (Xm−1 → Xm) · · · )

then the relation

[X] = [Xm]−
m−1∑

i=1

[Xi]

is satisfied in the K-group. In particular, note that [X[1]] = −[X].
We will simply write (X1 → X2 → · · · → Xm−1 → Xm) for iterated cone

decompositions as above.

Remark A.3. Using the Octahedral-Axiom (see [48, Def. 10.2.1]) one can
show that

(X → (Y → Z)) ∼= ((X[−1] → Y ) → Z),

where the morphisms will not be further specified. This allows us to reorder
the brackets in an iterated cone decomposition. In particular, we can write

(X1 → X2 → · · · → Xm−1 → Xm)
∼=(X1 → X2 → · · · (Xj [−1] → Xj+1) → · · · → Xm−1 → Xm).

with the convention of the previous remark.

Remark A.4. Nested iterated cone decompositions behave well in the fol-
lowing sense (cf. [23, Lemma 9.3]). Suppose that an object X ∈ D admits
an iterated cone decomposition of the form

X ∼= (X1 → X2 → · · · → Xm−1 → Xm)

and that one of the objects Xj admits a cone decomposition (note that, by
shifting the last object by −1, we can always arrange for such an iterated
cone decomposition to end in 0)

Xj
∼= (X1

j → X2
j → · · · → Xk−1

j → Xk
j → 0).

Then X admits the following iterated cone decomposition

X ∼= (X1 → · · · → Xj−1 → X1
j [1] → · · ·

→ Xk−1
j [1] → Xk

j [1] → Xj+1 → · · · → Xm).

This follows by reordering the brackets as in the previous remark.
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Appendix B. Stability condition on the bounded derived
category of coherent sheaves on elliptic curves

In this appendix we discuss a well known example of a stability condition on
the bounded derived category of coherent sheaves over a smooth projective
curve. We will focus on the case of elliptic curves, since this is the situation
that will be of use in Section 6.2. For more details see also [11, 27].

Let C be an elliptic curve over a (not necessarily algebraically closed)
field k. By Coh(C) we denote the category of coherent sheaves over C and
DbCoh(C) denotes the bounded derived category of coherent sheaves over
C. If E ∈ Coh(C), then the cohomology groups Hq(C,E) are finite dimen-
sional vector spaces ([33, Thm. 2.3.1]), so we may define the Euler-Poincaré
characteristic of E as

χ(E) =
∑

q

(−1)q dimHq(C,E) = dimH0(C,E)− dimH1(C,E).

Moreover, there is an open and dense subset U ⊂ C over which E|U is a
locally freeO(U)-module ([33, Lemma 2.6.1]). The rank rk(E) of E is defined
as the rank of the locally free sheaf E|U . Now, the degree of a rank r coherent
sheaf E on C is defined as (see [33, Sect. 2.6])

deg(E) := χ(E)− rχ(OC).(B.1)

Since C is an elliptic curve we have that deg(E) = χ(E). This follows from
the fact that χ(OC) =

1
2χ(C) = 1− g(C) = 0, which is a consequence of the

Hodge decomposition (cf. [20]) and Serre duality.
We define Z ′ : Coh(C) \ {0} → {z ∈ C | Im(z) > 0} ∪ R<0 ⊂ C by

Z ′(E) := − deg(E) + i · rk(E)

for each non-zero coherent sheaf E on C. The phase ϕ(E) ∈ (0, 1] of a non-
zero sheaf E is determined by

Z ′(E) ∈ exp(iπϕ(E)) · R>0.

Moreover we set the phase of its shifts E[k] ∈ DbCoh(C) to

ϕ(E[k]) := ϕ(E) + k

for k ∈ Z.
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By definition, a coherent sheaf E ̸= 0 on C is semistable (resp. stable)
if for every proper subsheaf 0 ̸= F ⊂ E, the phase inequality ϕ(F ) ≤ ϕ(E)
(resp. ϕ(F ) < ϕ(E)) is satisfied. It is well known that if E and F are two
semistable sheaves with ϕ(E) > ϕ(F ), then Hom(E,F ) = 0 (see e.g. [27,
33]).

By a result of Harder and Narasimhan [25], every coherent sheaf 0 ̸= E
on C admits a unique finite (Harder-Narasimhan-) filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E,

such that the quotients Aj := Ej/Ej−1 are semistable of descending phases,
i.e. the inequalities ϕ(A1) > · · · > ϕ(An) hold. In addition, by a classical
result (see for example [26, Cor. 3.15]), every object of DbCoh(C) is isomor-
phic to a direct sum of shifted coherent sheaves over the smooth projective
curve C, where Coh(C) is identified with its image under the full and faith-
ful embedding into DbCoh(C). This follows from the fact that Coh(C) is
a hereditary (i.e. Exti(·, ·) = 0 for i /∈ {0, 1}) abelian category (see e.g. [26,
Prop. 3.13]). More precisely, any object E• of DbCoh(C) (i.e. a complex of
coherent sheaves) is isomorphic to the direct sum of its shifted cohomology
objects, that is

E• ∼=
⊕

i∈Z

H i(E•)[−i],(B.2)

where H i(E•) ∈ Coh(C) for i ∈ Z. Moreover, if we consider the truncation
of a complex E• given by

τ≤i(E
•) := (· · · → Ei−2 δi−2

→ Ei−1 δi−1

→ ker(δi) → 0 → · · · ),

there are exact triangles

τ≤i−1(E
•) → τ≤i(E

•) → H i(E•)[−i] → τ≤i−1(E
•)[1].(B.3)

As any object E•of DbCoh(C) is a bounded complex, it admits, by succes-
sively truncating, a finite filtration whose factors are shifts of the cohomology
objects.

A non-zero object of DbCoh(C) is semistable if it is isomorphic to a shift
of a semistable sheaf.

From these observations, together with the fact that each non-zero coher-
ent sheaf admits a Harder-Narasimhan filtration, we deduce that each non-
zero object of DbCoh(C) admits a unique filtration by semistable objects
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of strictly descending phases as well (i.e. a Harder-Narasimhan filtration).
Also, the map Z ′ induces a well-defined additive homomorphism

Z : K0(D
bCoh(C)) −→ C.

In conclusion, we have obtained a stability condition on the bounded
derived category DbCoh(C) of coherent sheaves over a smooth projective
curve.

One can say more about this stability condition. Namely, since the image
of the homomorphism Z : K0(D

bCoh(C)) −→ C is a discrete subgroup of C,
it follows from Lemma 4.9 that the stability condition is in fact locally-finite.
Alternatively, this also follows from Theorem B.1 below.

In order to make this example more transparent we will collect some
well known facts about (semi)stable sheaves on an elliptic curve, following
[5] for the most part.

Historically, Atiyah [2] classified vector bundles over elliptic curves before
the notion of (semi)stable sheaves was introduced by Mumford [38]. Many
of the results that follow have their roots in Atiyah’s work but they are cast
in a more up to date framework. A modern proof of the following result can
be found in [5, Thm. 10].

Theorem B.1. If C is an elliptic curve over a field k, then

(i) Any indecomposable coherent sheaf E ∈ Coh(C) is semistable.

(ii) If E ∈ Coh(C) is semistable and indecomposable then all its Jordan-
Hölder factors are isomorphic.

(iii) A coherent sheaf E is stable if and only if End(E) = K for some finite
field extension k ⊂ K.

We will, from now on, assume that k is algebraically closed so that
K = k.

Recall that, given a point p ∈ C, we can form the following short exact
sequence of sheaves

0 −→ O(−p) −→ OC −→ k(p) −→ 0,

where k(p) is the so called skyscraper sheaf supported at p. The skyscraper
sheaf is of rank 0 and the stalk of k(p) at p is isomorphic to k since the
stalk mp = O(−p)p is precisely the maximal ideal in the local ring OC,p.
Therefore, as a consequence of Theorem B.1, the skyscraper sheaves k(p)
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are stable. Since for every point p ∈ C, the stalk OC,p is a local principal ideal
domain it follows from the classification of finitely generated torsion modules
over principal ideal domains (see e.g. [31, Thm. 7.5]) that indecomposable
coherent torsion sheaves on C are parametrized by points p ∈ C and positive
integers ℓ ∈ Z>0 and are of the form k(ℓ · p), where

0 −→ O(−ℓ · p) −→ OC −→ k(ℓ · p) −→ 0.

By Theorem B.1 the only stable torsion sheaves are the skyscraper sheaves
k(p).

For two coherent sheaves E,F on C we define the anti symmetric bilinear
Euler form by

⟨E,F ⟩ := rk(E) deg(F )− rk(F ) deg(E).

Since the rank and the degree are both additive they are well defined on
K0(Coh(C)). Moreover, by (B.2), (B.3) and Remark A.2 the Euler form in-
duces a well defined form on K0(D

bCoh(C)). Note also that the action of the
group of triangulated auto-equivalences Aut(DbCoh(C)) on K0(D

bCoh(C))
preserves the Euler form (this follows from Remark B.2). Since Z([OC ]) = i
and Z([k(p)]) = −1, we get that the homomorphism

Z : K0(D
bCoh(C)) −→ C

maps onto Z⊕ i · Z ⊂ C. The pullback of the non-degenerate anti-symmetric
bilinear form on Z⊕ i · Z, which is induced by the restriction of the volume
form i

2dz ∧ dz̄ on C, coincides with the Euler form. Hence the radical

rad⟨·, ·⟩ = {E• ∈ DbCoh(C) | ⟨E•, ·⟩ = 0}

coincides with the kernel of Z. Therefore we obtain an isomorphism

K0(D
bCoh(C))/rad⟨·, ·⟩ ∼= Z

2

and a group homomorphism Aut(DbCoh(C)) → SL(2,Z).

Remark B.2. The induced Euler form onK0(D
bCoh(C)) can be expressed

as follows:

⟨E•, F •⟩ = dimExt0(E•, F •)− dimExt1(E•, F •).

In order to see this, it is enough to check it on generators of the K0-group,
e.g. on locally free sheaves (see also [33, Prop. 2.6.6]). Let E,F be locally
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free sheaves and E∨ the dual of E. Then we have the following:

dimExt0(E,F )− dimExt1(E,F )

= dimExt0(OC , E
∨⊗F )− dimExt1(OC , E

∨⊗F )
= χ(E∨⊗F )
= deg(E∨⊗F )
= rk(E) deg(F )− rk(F ) deg(E).

The third equality follows from (B.1) and the last equality follows for exam-
ple by using the properties of the Chern character (see e.g. [18, Ex. 3.2.3]).

Using the concept of Fourier-Mukai-transforms one can show the fol-
lowing result, see Mukai [37] and [5] for a proof.

Theorem B.3. The group homomorphism Aut(DbCoh(C)) → SL(2,Z) is
surjective.

Now, let ϕ ∈ (0, 1) be any phase, such that P(ϕ) ⊂ Coh(C) is non-empty.
Pick r, d ∈ Z coprime, satisfying r > 0 and −d+ i · r ∈ eiπϕ · R>0 (such r
and d exist by definition of the phase ϕ). We can then find an element
A ∈ SL(2,Z) which satisfies A · (−dr ) =

(
−1
0

)
, and by the previous theorem

a lift Ψ ∈ Aut(DbCoh(C)) of A. For any indecomposable sheaf E ∈ P(ϕ),
Ψ(E) is an indecomposable object ofDbCoh(C) with Z(Ψ(E)) ∈ eiπ · R∗ and
therefore it is a shift, say by k ∈ Z, of an indecomposable torsion sheaf. As Ψ
is a triangulated auto-equivalence, the composition of Ψ with the shift by −k
yields an equivalence of P(ϕ) ≃ P(1). Recall also that P(ϕ+ 1) = P(ϕ)[1].
Combining this we have shown the following theorem (cf. [5]).

Theorem B.4. For any ϕ ∈ R such that P(ϕ) ⊂ DbCoh(C) is non-empty,
there is a triangulated auto-equivalence of DbCoh(C) inducing an equiva-
lence of categories P(ϕ) ≃ P(1). In particular, an indecomposable coherent
sheaf of rank r and degree d is stable if and only if gcd(r, d) = 1. Moreover,
indecomposable semistable coherent sheaves are parametrized by their rank
r and degree d and a point on the curve, i.e. by (r, d) ∈ Z

2 and p ∈ C.

This together with the classification of indecomposable torsion sheaves
provides us with a good understanding of what the (semi)stable objects of
DbCoh(C) are.
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