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Volume of small balls and sub-Riemannian

curvature in 3D contact manifolds

Davide Barilari, Ivan Beschastnyi, and Antonio Lerario

We compute the asymptotic expansion of the volume of small sub-
Riemannian balls in a contact 3-dimensional manifold, and we ex-
press the first meaningful geometric coefficients in terms of geo-
metric invariants of the sub-Riemannian structure.

1. Introduction

Let M be an n-dimensional Riemannian manifold and for p ∈ M and ε > 0
let us denote by B(p, ε) the Riemannian ball of radius ε centered at p, i.e.,
the set of points in M at distance at most ε from p. A classical result allows
to write the asymptotic expansion of the Riemannian volume of B(p, ε) in
terms of the volume βn of the unit ball in Rn and the scalar curvature s(p)
of M at the point p:

(1) vol(B(p, ε)) = βn ε
n


1 −

s(p)

6(n+ 2)
ε2 +O(ε3)


.

This formula says that to the leading order the volume of B(p, ε) coincides
with the volume of the ε-ball in the model space Rn and the first correction
term (which is quadratic in ε) depends on the curvature of M at p. The
purpose of this paper is to derive an analogue formula in the case of a 3-
dimensional contact sub-Riemannian manifold.

To be more specific, let M be a 3-dimensional manifold, D ⊂ TM be a
contact distribution and g be a metric on D. For p ∈ M and ε > 0 let us
denote by B(p, ε) the sub-Riemannian ε-ball centered at p, i.e., the set of
points in M reached by a horizontal curve starting from p and of length at
most ε. The model space for M is the 3-dimensional Heisenberg group H3.

In this framework one can consider a natural volume form on M , called
the Popp volume, which is defined as follows. First, we write D = ker(ω)
for a one-form ω normalized such that dω♣D coincides with the area form
of g. If X0 denotes the Reeb vector field of ω and ¶X1, X2♢ is an oriented
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orthonormal basis for D, the Popp volume form is the unique 3-form µ such
that µ(X1, X2, X0) = 1. Notice that µ = ω ∧ dω. We denote by vol(A) =

∫
A µ.

In the sub-Riemannian context, we obtain an expansion completely anal-
ogous to (1), where now the Riemannian scalar curvature is replaced by a
sub-Riemannian curvature term. On a 3-dimensional contact sub-Riemannian
manifold one can introduce two curvature functions denoted χ and κ (see
Section 2). Observe that only the latter appears in the first terms of the
asymptotics of the volume of small balls.

Theorem 1. Let (M,D, g) be a 3-dimensional, contact sub-Riemannian
manifold and p ∈ M . As ε → 0 the Popp volume of the sub-Riemannian ε-ball
centered at p has the following asymptotics:

(2) vol(B(p, ε)) = c0 ε
4

1 − c1κ(p)ε2 +O(ε3)


,

where c0 is the volume of the unit ball in the Heisenberg group H3. Explicitly

c0 =
1

12
(1 + 2πSi(2π)) and c1 =

1

c0160


2 + 4πSi(2π) −

1

π2


> 0

where Si(x) =
∫ x

0
sin t

t dt denotes the sine integral function.

A numerical estimate of the constant appearing in the statement is given
by c0 ≈ 0.826 and c1 ≈ 0.149.

The expansion (2) can be used as a definition of scalar curvature for a 3D
contact sub-Riemannian structure (see Section 1.3 below).

1.1. Connection with small time heat kernel asymptotics

It is interesting to observe that the behavior of the volume of small balls
is strictly related to the small time asymptotics of the heat kernel on the
manifold. It is well-known, in fact, that for the heat kernel e(t, x, y) associated
with the sub-Riemannian Laplacian, the following estimate holds for t > 0
small enough

(3)
C1

vol(B(p, t1/2))
≤ e(t, p, p) ≤

C2

vol(B(p, t1/2))
.

This estimate follows from more general off-diagonal Gaussian estimates on
the heat kernel, investigated first in the sub-Riemannian setting in [24, 25, 27]
and then refined in several subsequent papers in the literature. The estimate
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(3) roughly says that the main order term of the expansion of vol(B(p, t1/2))−1

and e(t, p, p) for small t is the same.
Actually, in the Riemannian case, one can observe a stronger relationship

between the two asymptotics, since the following expansion holds for t → 0

(4) e(t, p, p) =
1

(4πt)n/2


1 +

s(p)

6
t+O(t2)


.

This shows that even in the first order correction term the expansions (1) and
(4) contain the same geometric invariant.

Theorem 1 compared with the results obtained in [10] confirms that the
same analogies remain true in the sub-Riemannian setting, at least for 3D
contact structures.

Concerning higher-dimensional structures, only partial results are known
even the contact case: the small time heat kernel asymptotics for contact
structures with symmetries have been obtained in [19, 28] and the first coef-
ficient has been related to the scalar Tanaka-Webster curvature. See also [17,
18, 30] for a recent account on heat kernel asymptotics on higher-dimensional
sub-Riemannian model spaces.

1.2. On the strategy of the proof

Even if the question of computing the asymptotics of the volume of small
sub-Riemannian balls seems very natural, this is the first paper where this
question is investigated in the literature. This is related to the fact that the
classical ingredients are not available in sub-Riemannian geometry, as we now
explain.

A first obstruction is that the sub-Riemannian exponential map,
parametrizing arclength geodesics, is defined on a non-compact set (home-
omorphic to a cylinder) and is never a local diffeomorphism at zero. As a
consequence, balls are not smooth, even for small radii, preventing a uniform
description of the injectivity domain for the exponential map in the cotangent
space. In other terms, an information on the cut locus starting from a point
(that is always adjacent to the point itself) is necessary to have a correct
description of balls through the exponential map.

Another obstacle in the computation of the asymptotic expansion above
is that balls are not geodesically homogeneous in sub-Riemannian geometry:
if one shrinks a balls to its center along geodesics, one does not obtain a ball
of the corresponding radius. More precisely, defining Φp,t the maps that sends
x ∈ M to the point at time t along the unique geodesic joining p with x in
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time 1 (this map is well defined for a.e. x ∈ M on a contact sub-Riemannian
manifold) one has that Φp,t(B(p, r)) ⊊ B(p, tr), with strict inclusion. It is pos-
sible actually to show that, on every 3-dimensional contact sub-Riemannian
manifold, when t → 0 the quantity vol(Φp,t(B(p, r)) goes to zero as t5, while
vol(B(p, tr)) tends to zero as t4. Hence, even if curvature-like invariants can be
extracted by looking at the variation of a smooth volume under the geodesic
flow (see [8]), this does not permits to get the volume of small balls.

To overcome these problems we use a perturbative approach: i.e., we
describe the original contact structure around a fixed point p ∈ M as the
perturbation of the Heisenberg sub-Riemannian structure, that is the met-
ric tangent structure at a fixed point. This procedure relies on the so called
nilpotent approximation of the sub-Riemannian structure and the use of a
version of normal coordinates for the three dimensional exponential map de-
veloped in [7, 9, 21]. This permits us to compute the asymptotic expansion
of all ingredients that are involved in the computation of the volume of the
ball (the exponential map, the cut time for geodesics, the Popp volume) and
obtain Theorem 1 without explicit computations of the cut locus.

1.3. The notion of sub-Riemannian curvature and related work

In the general case, it is not straightforward to define a notion of scalar
curvature associated with a given sub-Riemannian structure. A general ap-
proach to curvature for general sub-Riemannian strutures has been developed
in [4, 5, 12, 13]. Here a notion of generalized sectional curvature is obtained
through horizontal derivatives of the distance functions and a scalar curvature
can be built by considering the trace of its horizontal part. In some specific
cases, when a canonical connection (in general with non-zero torsion) associ-
ated with the metric is available, one can also introduce curvature through
this connection, as done for instance in [15, 16, 22, 23]. In the 3D contact
case discussed in this paper, all these approaches coincide, and define the
same scalar curvature invariant κ (up to a constant). We relate our invari-
ants to Hughen’s ones in Proposition 15 and to Falbel-Gorodski’s ones in
Remark 6 below. In particular we observe that using the results of [23] it is
possible to give an alternative derivation of the asymptotic expansion of the
Popp volume in exponential coordinates (see Remark 5 below).
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2. Technical ingredients

A sub-Riemannian structure on a manifold M is a pair (D, g) where D is a
vector distribution, i.e., a subbundle of the tangent bundle TM , and g is a
smooth metric defined on D. It is required that D is bracket generating, i.e.,
Lie brackets of vector fields tangent to D span the full tangent space to M
at every point.

Under this assumptions there is a well-defined sub-Riemannian (or
Carnot-Carathéodory) distance d, namely d(p, q) is the infimum of the length
of Lipschitz curves joining two points p and q and that are tangent to D

(also called horizontal curves). Here the length of the curve is computed with
respect to the metric g. We refer to [3] for a comprehensive presentation.

We will also say that the triplet (M,D, g) is a sub-Riemannian manifold,
when (D, g) is a sub-Riemannian structure on a smooth manifold M .

2.1. Contact sub-Riemannian manifold

Let M be a 3-dimensional manifold. A sub-Riemannian structure (D, g) on
M is said to be contact if D is a contact distribution, i.e., D = kerω, where
ω ∈ Λ1(M) satisfies dω ∧ ω ̸= 0.

A contact distribution is bracket generating and endows M with a canoni-
cal orientation. In what follows, if (D, g) is a given sub-Riemannian structure
on M , we always normalize the contact form ω in such a way that dω

∣∣
D

coincides with the Euclidean volume defined on D by g.

Remark 1. It is not restrictive to fix a sub-Riemannian contact struc-
ture by a pair of everywhere linearly independent vector fields X1, X2 such
that X1, X2, [X1, X2] is a basis of the tangent space at every point, and
declaring X1, X2 to be an orthonormal frame for g on the distribution D =
span¶X1, X2♢.

The Reeb vector field associated with the contact structure is the unique
vector field X0 satisfying

(5) X0 ∈ ker dω, ω(X0) = 1.
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The Reeb vector field depends only on the sub-Riemannian structure, and its
orientation.

Given an orthonormal frame X1, X2 for the sub-Riemannian structure
(D, g) there exists smooth functions ck

ij defined on M such that

[X1, X0] = c1
01X1 + c2

01X2,

[X2, X0] = c1
02X1 + c2

02X2,(6)

[X2, X1] = c1
12X1 + c2

12X2 +X0,

The particular structure of the equations (6) are obtained from the properties
(5) of the Reeb vector field by applying Cartan formula. In particular one can
prove from etX0

∗ D = D that c1
01 + c2

02 = 0.

Definition 2. We define the following quantities in terms of the structural
equations (6) of the orthonormal frame

(a) the invariant χ defined by

(7) χ =

√
(c2

01 + c1
02)2

4
+ (c1

01)2,

(b) the invariant κ defined by

(8) κ = X2(c1
12) −X1(c2

12) − (c1
12)2 − (c2

12)2 +
c2

01 − c1
02

2
.

Notice that χ and κ are smooth functions defined on M .

Remark 2. We list here some properties of the coefficients just introduced.
More details are provided in [3] and [5, Section 7.5] (cf. also [1, 7] and refer-
ences below)

(i) These coefficients have been first introduced in [6, 7]. A direct calcu-
lation shows that χ and κ are independent of the orthonormal frame
X1, X2 on the distribution and are hence local metric invariants. Indeed,
Theorem 1 also shows independently that κ is a metric invariant.

(ii) It is possible to introduce a canonical connection ∇ on a 3-dimensional
contact manifold. The functions χ and κ are expressed in terms of ∇
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as follows:

(9) χ =
√

−detT∇(X0, ·), κ = R∇(X1, X2, X2, X1),

where T∇ and R∇ respresents the torsion and the curvature tensor as-
sociated with ∇, respectively. More details on the canonical connection
are provided in Appendix A.

(iii) One can show that χ ≥ 0, and χ vanishes everywhere if and only if the
flow of the Reeb vector field X0 is a flow of sub-Riemannian isometries
for M . When χ = 0 identically, the sub-Riemannian structure can be
represented as an isoperimetric problem on a two-dimensional Rieman-
nian manifold N , and κ represents the Gaussian curvature on N .

(iv) The functions χ and κ are invariant by local isometries and they are
constant functions for left-invariant structures on Lie groups. In par-
ticular if χ = κ = 0 the structure is local isometric to the Heisenberg
group. See [1, 22] for the classification of left-invariant structures in
terms of these invariants.

2.2. Normal coordinates

The basic example of contact sub-Riemannian structure in dimension three
is the Heisenberg group: this is the sub-Riemannian structure defined by the
orthonormal frame in R3

(10) X̂1 = ∂x −
y

2
∂z, X̂2 = ∂y +

x

2
∂z.

Notice that the normalized contact form and the corresponding Reeb vector
field for this structure are

(11) ω̂ = −dz −
y

2
dx+

x

2
dy, X̂0 = −∂z.

For a general 3-dimensional contact sub-Riemannian structure, there ex-
ists a smooth normal form of the sub-Riemannian structure (i.e., of its or-
thonormal frame) which is the analogue of normal coordinates in Riemannian
geometry. In this coordinates a general 3-dimensional contact sub-Riemannian
structure is presented as a perturbation of the Heisenberg group.

Theorem 3 ([9, 21]). Let M be a 3-dimensional contact sub-Riemannian
manifold and X1, X2 a local orthonormal frame. Fix p ∈ M . Then there exists
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a smooth coordinate system (x, y, z) around p such that p = (0, 0, 0) and

X1 =


∂x −

y

2
∂z


+ βy(y∂x − x∂y) − γ

y

2
∂z,(12)

X2 =


∂y +

x

2
∂z


− βx(y∂x − x∂y) + γ

x

2
∂z,(13)

where β = β(x, y, z) and γ = γ(x, y, z) are smooth functions satisfying the
following boundary conditions

(14) β(0, 0, z) = γ(0, 0, z) =
∂γ

∂x
(0, 0, z) =

∂γ

∂y
(0, 0, z) = 0.

Notice that, when β = γ = 0, one recovers formulas (10). In the same
spirit as Riemannian normal coordinates, the coordinates given by Theorem 3
normalize the zero-order term of the metric and have no first order correction
term. For this statement to be formalized, let us introduce the notion of
nilpotent approximation.

2.3. Nilpotent approximation

In normal coordinates we introduce the family of dilations δε : R3 → R3, for
every ε > 0, by

(15) δε(x, y, z) = (εx, εy, ε2z).

For i = 1, 2 we denote by Xε
i the vector fields in R3

(16) Xε
i := ε(δ 1

ε
)∗Xi.

For ε > 0, we consider the distribution Dε = span¶Xε
1 , X

ε
2♢; we put a

metric gε on this distribution by declaring ¶Xε
1 , X

ε
2♢ an orthonormal basis.

Observe that (R3, D0, g0) with this metric is the Heisenberg group H3. We
denote by Bε(1) the unit ball centered at the origin for the sub-Riemannian
manifold (R3, Dε, gε) and by B(ε) ⊂ R3 the image of B(p, ε) under the normal
coordinates map.

Lemma 4. For every ε > 0 small enough we have B(ε) = δε(B
ε(1)).

Proof. It is sufficient to prove that γ : I → R3 is a horizontal curve for
(R3, D1, g1) with length ℓ(γ) if and only if γε = δ1/ε ◦ γ is a horizontal curve
for (R3, Dε, gε) with length ε−1ℓ(γ). This is immediate from the definition (16).

□
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Next lemma expresses the vector fields Xε
i as perturbations of the vector

fields X̂i defining the Heisenberg structure and follows from a direct compu-
tation.

Given a smooth function F (x, y, z) of three variables, we denote by
F [2](x, y, z) the second order homogeneous part of its Taylor polynomial at
zero. Moreover we set F [2](x, y) := F [2](x, y, 0).

Lemma 5. The following asymptotic expansion holds for ε → 0

Xε
1 =


∂x −

y

2
∂z


− ε2 y

2
γ[2](x, y)∂z +O(ε3),

Xε
2 =


∂y +

x

2
∂z


+ ε2x

2
γ[2](x, y)∂z +O(ε3),

Moreover, denoting by Xε
0 := ε2(δ 1

ε
)∗X0 and (ck

ij)
ε the structure constant sat-

isfying

[Xε
j , X

ε
i ] =

2∑

k=0

(ck
ij)

εXε
k, i, j = 0, 1, 2,

we have

(c1
12)ε = 2ε2∂yγ +O(ε3), (c2

12)ε = −2ε2∂xγ +O(ε3)(17)

(c1
01)ε = −2ε2∂2

xyγ +O(ε3) (c2
01)ε = 2ε2∂2

xγ +O(ε3)(18)

(c1
02)ε = −2ε2∂2

yγ +O(ε3) (c2
02)ε = 2ε2∂2

xyγ +O(ε3).(19)

where γ is as in Theorem 3 and the partial derivatives of γ are computed at
zero.

Proof. The expansion of Xε
i follows directly from the definitions of the vector

fields and their explicit form in normal coordinates (12) and (14).
To prove the asymptotics of the structure constants, we note first that

the vector fields Xε
1 , X

ε
2 for each ε ≥ 0 define a contact structure with Xε

0 as
the Reeb field. Indeed, it is easy to verify using the definitions that

ωε =
1

ε2
δ∗

εω

is the one-form defining the distribution. This means that Xε
i satisfy the

structure equations (6) with (ck
ij)

ε as structure constants, for i, j, k = 0, 1, 2.
Knowing explicitly the Reeb field Xε

0 , one could expand Xε
i and (ck

ij)
ε into

power series of ε and solve recursively for coefficients of (ck
ij)

ε remembering
that for the Heisenberg structure c0

12 = −c0
21 = 1 and ck

ij = 0 otherwise.
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To avoid explicit computations, we proceed in a slightly different manner.
Instead of considering our original contact structure defined by Xi, we look
at different structure defined by X̃i, such that the asymptotic expansions of
vector fields Xε

i and X̃ε
i agree up to a certain order of ε. Then by repeating the

previous argument we obtain an asymptotic expansion for (c̃k
ij)

ε that agrees
with asymptotic expansion for (ck

ij)
ε up to the same order.

To prove our claim we need the asymptotic expansion up to order two.
This can be achieved by considering vector fields

X̃1 = ∂x −
y(1 + ε2γ[2](x, y))

2
∂z,

X̃2 = ∂y +
x(1 + ε2γ[2](x, y))

2
∂z,

which is just a truncation of the original vector fields. In [10] explicit ex-
pressions for the corresponding one-form ω̃, the Reeb vector field X̃0 and the
structure constants (c̃k

ij) we found. In particular

(c̃1
12)ε =

2∂yγ

1 + 2γ
, (c̃2

12)ε = −
2∂xγ

1 + 2γ
(20)

(c̃1
01)ε = −

2((1 + 2γ)∂xyγ − 2∂yγ∂xγ)

(1 + 2γ)2

(c̃2
01)ε =

2((1 + 2γ)∂xxγ − 2(∂yγ)2)

(1 + 2γ)2

(21)

(c̃1
02)ε = −

2((1 + 2γ)∂yyγ + 2(∂xγ)2)

(1 + 2γ)2

(c̃2
02)ε =

2((1 + 2γ)∂xyγ + 2∂yγ∂xγ)

(1 + 2γ)2
.

(22)

Lemma 5 now is a direct consequence of the following homogeneity property.
If ck

ij are the structure constants associated with the vector fields Xi, then

(23) (ck
ij)

ε = εdi+dj−dk(ck
ij ◦ δε)

where we set d1 = d2 = 1 and d0 = 2. □

2.4. Exponential map

In order to describe a geodesic ball, we need a good description of geodesics.
As in Riemannian geometry, one can define an analogue of the exponential
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map. But unlike the Riemannian case, it is defined as a map from the cotan-
gent bundle to the manifold using Hamiltonian dynamics.

We start by defining the basis Hamiltonian hi : T ∗M → M as linear on
fibers functions

hi(λ) = ⟨λ,Xi⟩, λ ∈ T ∗M, i = 0, 1, 2.

We are going to use hi(λ) as coordinate functions on fibers of T ∗M and
therefore from now on we do not indicate explicitly the dependence on λ.

It is well known that geodesics on a rank 2 sub-Riemannian manifold are
projections of solutions of a Hamiltonian system with a quadratic Hamilto-
nian [3]

(24) H =
1

2
(h2

1 + h2
2)

So we can define the exponential map exp : T ∗M → M associated to the
Hamiltonian H as:

(25) exp(λ) = π(e
−→
H (λ)),

where H⃗ is the corresponding Hamiltonian vector field. So if we wish to
restrict only to geodesics that go out from a point p ∈ M , we have to consider
λ ∈ T ∗

pM , and we define the map expp : T ∗
pM → M as a restriction

expp = exp ♣T ∗

p M .

Since we are interested only in the behaviour of small balls around p,
one can use the usual Darboux coordinates on the cotangent bundle and the
standard Poisson bracket to write down explicitly the Hamiltonian system.
But it is better to take a slightly more invariant approach and consider the Lie-
Poisson bracket on T ∗M . The Lie-Poisson bracket of two basis Hamiltonians
hi, hj is defined as

¶hj , hi♢(λ) = ⟨λ, [Xj , Xi]⟩ =
2∑

k=0

ck
ijhk(λ).

A bracket of any two smooth functions on the fibers of T ∗M can be defined
via linearity and Leibnitz rule. Then our Hamiltonian system can be written
as

(26)

{
ṗ = h1X1(p) + h2X2(p)

ḣi = ¶H, hi♢
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Remark 3. It is interesting that the invariant χ can be obtained directly
from the Hamiltonian system. If we denote by

¶H, h0♢ = c1
01h

2
1 + (c2

01 + c1
02)h1h2 + c2

02h
2
2

the corresponding quadratic form in h1, h2, then trace ¶H, h0♢ = 0 since
etX0

∗ D = D. The other invariant

√
− det¶H, h0♢ ≥ 0

is exactly χ and it is zero when (etX0)∗g = g.

It is well known that solutions of a Hamiltonian system lie on a level set
of the corresponding Hamiltonian. In our case the projections of the level sets
to fibers of T ∗M are cylinders. So we can introduce cylindrical coordinates
(ρ, θ, w) on T ∗

pM as

h1 = ρ cos θ

h2 = ρ sin θ(27)

h0 = −w

It follows immediately that ρ is constant along solutions of (26) and it is
equal to the speed of the corresponding geodesics.

We are interested in the study of small balls B(ε). Lemma 4 gives an
explicit relation between B(ε) and the unit ball Bε(1) of the dilated system.
We can describe the ball Bε(1) and its volume using the exponential map of
the dilated system, that we denote by expε

p. We also have a different set of
cylindrical coordinates, but they are related as can be seen from the following
lemma.

Lemma 6. For every ε > 0 let τε : T ∗
pM → T ∗

pM be the map defined in cylin-
drical coordinates by τε(ρ, θ, w) = (ρε, θ, w) . Then for every ε > 0 the follow-
ing diagram is commutative:

(28) R3

T ∗
pM T ∗

pM

R3

expp expε
p

τ 1

ε

δ 1

ε
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Here we identify R3 with an open neighborhood of p on which normal coordi-
nates are defined.

Proof. Since both δε and τε are diffeomorphisms, we prove the equivalent
statement:

(29) δε ◦ expε
p = expp ◦ τε.

We start by recalling the definition of expε
p = π ◦ e

−→
Hε

, where Hε : T ∗M → R

is the Hamiltonian:

(30) Hε =
1

2


(hε

1)2 + (hε
2)2

.

By definition the hamiltonians hε
i are given by:

hε
i (λ) =

〈
λ, ε(δ1/ε)∗Xi

〉
= ε

〈
(δ1/ε)

∗λ,Xi

〉
= εhi(αε(λ)),(31)

where we have defined the diffeomorphisms αε
.
= (δ1/ε)

∗ : T ∗M → T ∗M . No-
tice that αε lifts δε : M → M , hence it is a symplectomorphisms. As a con-
sequence Hε = ε2H ◦ αε. In particular we can write (we use simple identities
that can be easily verified by the reader, referring for example to [3] for a
detailed proof):

δε ◦ expε = δε ◦ π ◦ eε2
−−−→
H◦αε(32)

= δε ◦ π ◦ eε2(α−1

ε )∗

−→
H (by [3, Proposition 4.52])

= δε ◦ π ◦ α−1
ε ◦ eε2

−→
H ◦ αε (by [3, Lemma 2.20])

= π ◦ eε2
−→
H ◦ αε (because α−1

ε lifts δ 1

ε
)

= π ◦ ε−2 ◦ e
−→
H ◦ ε2 ◦ αε (by [3, Lemma 8.33])

= π ◦ e
−→
H ◦ ε2 ◦ αε (because ε−2 preserves the fibers of π).

It remains to verify that ε2 ◦ αε♣T ∗pM = τε. Recalling the definition of αε =
(δ1/ε)

∗ we see that αε♣T ∗

q M is given in cylindrical coordinates by:

(33) αε(ρ, θ, w) =


ρ

ε
, θ,

w

ε2


,

and consequently ε2 ◦ αε(ρ, θ, w) = (ερ, θ, w) = τε(ρ, θ, w). This concludes the
proof. □
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The next proposition gives the necessary asymptotics of the Jacobian of
the exponential maps expε

p.

Proposition 7. The Jacobians det(J expε) of the family of exponential maps
expε

p have the following expansion in cylindrical coordinates (ρ, θ, w) as ε → 0:

(34) det(J expε
p) = det(J exp0

p) + v2(ρ, θ, w)ε2 +O(ε3),

where exp0
p : R3 → R3 is the exponential map for the Heisenberg group and

(35) v2(ρ, θ, w) = ρ5


κ(p)

2
g0(w) + gc(w) cos 2θ + gs(w) sin 2θ



with g0(w), gc(w), gs(w) smooth functions of w variable only. Moreover the
functions det(J exp0

p) and g0 have the following expression:

det(J exp0
p)(ρ, θ, w) = ρ3 (2 − 2 cosw − w sinw)

w4
(36)

g0(w) =
(16 − 3w2) cosw + 2 cos 2w + 13w sinw + w sin 2w − 18

w6
.(37)

Remark 4. We observe that the crucial information contained in Proposi-
tion 7 that we use later is

(38) v2(ρ, θ, w) = κ(p) f1(ρ, w) + f2(ρ, θ, w) with

∫ 2π

0
f2(ρ, θ, w)dθ = 0.

Remark 5. As pointed out by the anonymous referee, the expansion of the
Jacobian of the exponential map can also be derived from the proof of [23,
Proposition 3.6], which uses similar methods.

Proof. We start by writing the Hamiltonian system for the dilated structure.
The Hamiltonian Hε is given by (30) and we can write the Hamiltonian
system (26) explicitly using the Lie-Poisson bracket. We get

(39)





ṗ = hε
1X1(p) + hε

2X2(p)

ḣε
1 = ¶Hε, hε

1♢ = ¶hε
2, h

ε
1♢hε

2

ḣε
2 = ¶Hε, hε

2♢ = ¶hε
1, h

ε
2♢hε

1

ḣε
0 = ¶Hε, hε

0♢ = ¶hε
1, h

ε
0♢hε

1 + ¶hε
2, h

ε
0♢hε

2
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To rewrite our system in cylindrical coordinates, we make a change of variables
on the fibers of T ∗M

hε
1 = ρ cos θ

hε
2 = ρ sin θ

hε
0 = −w

We also introduce the following functions

aε(θ) =
1

ρ2
¶Hε, hε

0♢ = (c1
01)ε cos(θ)2 + ((c2

01)ε + (c1
02)ε) cos(θ) sin(θ)

+ (c2
02)ε sin(θ)2,

bε(θ) = −
1

ρ
(¶hε

1, h
ε
2♢ + hε

0) = (c1
12)ε cos θ + (c2

12)ε sin θ.

Then, after various simplifications, we obtain the Hamiltonian system

(40)





ṗ = ρ cos(θ)Xε
1(p) + ρ sin(θ)Xε

2(p)

ρ̇ = 0

θ̇ = w − ρbε(θ)

ẇ = −ρ2aε(θ).

Now we expand the right-hand side and the phase variables in series of
powers of ε. This will give us a number of ordinary differential equations on
the coefficients, that we are going to solve. Since the Hamiltonian system (39)
is smooth, depends smoothly on ε, and we are interested only in the behaviour
for small ε, the resulting asymptotics is going to be uniform.

We fix normal coordinates (x, y, z) around p ∈ M . In this coordinates
p = (0, 0, 0). Then we fix an initial covector (ρ̄, θ̄, w̄) and look at how the
corresponding geodesic changes as ε goes to zero. Thus our asymptotic ex-
pansions are





x(t) = x0(t) + x1(t)ε+ x2(t) ε2

2 +O(ε3)

y(t) = y0(t) + y1(t)ε+ y2(t) ε2

2 +O(ε3)

z(t) = z0(t) + z1(t)ε+ z2(t) ε2

2 +O(ε3)

(41)




w(t) = w0(t) + w1(t)ε+ w2(t) ε2

2 +O(ε3)

θ(t) = θ0(t) + θ1(t)ε+ θ2(t) ε2

2 +O(ε3)
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Since the initial covector (ρ̄, θ̄, w̄) is independent of ε, we have the following
boundary conditions

xi(0) = yi(0) = zi(0) = 0, ∀i ∈ N0(42)

θi(0) = wi(0) = 0, ∀i ∈ N(43)

θ0(0) = θ̄, w0(0) = w̄.(44)

Let us look at the principal and first order terms of the asymptotics. First of
all we note that from Lemma 5 it follows that all the structure constants are
O(ε2). Thus functions aε and bε are O(ε2) as well. Using the asymptotics of
Xε

i from the same lemma, we then obtain a system for the zero-order term





ẋ0 = ρ̄ cos θ0

ẏ0 = ρ̄ sin θ0

ż0 = ρ̄
2(x0 sin θ0 − y0 cos θ0)

{
θ̇0 = w0

ẇ0 = 0

But this is nothing but the geodesic equations on the Heisenberg group whose
solutions are explicit

(45)





x0(t) = ρ̄(sin(w̄t+θ̄)−sin θ̄)
w̄

y0(t) = − ρ̄(cos(w̄t+θ̄)−cos θ̄)
w̄

z0(t) = ρ̄2(w̄t−sin tw̄)
2w̄2

{
θ0(t) = w̄t+ θ̄

w0(t) = w̄

Thus we see that as ε → 0 geodesics of the dilated system converge to the
geodesics of the Heisenberg group as expected. Moreover, setting t = 1 in (45)
and differentitating with respect to (ρ̄, θ̄, w̄) we immediately obtain (36).

Next we write the system of order one. We obtain





ẋ1 = −ρ̄θ1 sin θ0

ẏ1 = ρ̄θ1 cos θ0

ż1 = ρ̄
2(−y1 cos θ0 + x1 sin θ0 + x0θ1 cos θ0 + y0θ1 sin θ0)

{
θ̇1 = w1

ẇ1 = 0

Using the zero boundary conditions we get

w1(t) = θ1(t) = x1(t) = y1(t) = z1(t) = 0, ∀t.

From here it immediately follows that the zero-order term in the expression
is the Heisenberg term and the first order term is identically zero.

We continue this procedure. At each next step we integrate expression
involving only terms from the previous steps. Then we can plug all asymptotic
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expansions into the Jacobian and after various simplifications, we obtain the
result. The second order term in the asymptotics of the exponential map is
a result of similar but rather long computations. The simplification of the
expression for the Jacobian becomes a tedious exercise after applying various
trigonometric identities. □

2.5. The Popp volume and curvature invariants in normal
coordinates

On a contact sub-Riemannian manifold it is possible to define a canonical vol-
ume that depends only on the sub-Riemannian structure, called Popp volume.
Here we recall its construction only in the 3-dimensional case, the interested
reader is referred to [26] and [11] for the general construction and its explicit
expression in terms of an adapted frame.

Given an orthonormal frame X1, X2 for the sub-Riemannian structure
and the corresponding Reeb vector field X0, let us denote by ν1, ν2, ν0 the
dual basis of 1-forms. The Popp volume µ is defined as the three-form µ =
±ν1 ∧ ν2 ∧ ν0. The sign is chosen in such a way that the volume is positive.

Recall that we denote by F [2](x, y, z) the second order homogeneous part
of a smooth function F (x, y, z) of three variables and F [2](x, y) := F [2](x, y, 0).

Lemma 8. Using normal coordinates (introduced in Section 2.2) the Popp
volume form can be written as µ = ψ dx ∧ dy ∧ dz, where ψ : R3 → R is a
smooth function such that:

(46) ψ(x, y, z) = 1 − 2γ[2](x, y) +O

∥(x, y, z)∥3


.

where

(47) γ[2](x, y) = x2∂2
xγ + 2xy∂2

xyγ + y2∂2
yγ

where the partial derivatives of γ in (47) are computed at zero.

Proof. For notational convenience, let us introduce X3 := [X2, X1] and denote
by (x1, x2, x3) the coordinates (x, y, z). Let ν1, ν2, ν3 be the dual basis of
1-forms to X1, X2, X3. Notice that the Popp volume µ is written as µ =
ν1 ∧ ν2 ∧ ν3 (up to the choice of positive sign), as a consequence of the relation
[X2, X1] = X0 mod D (cf. (6)). Considering the coordinate expression of the
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vector fields and the basis of 1-forms

Xi =
3∑

j=1

aij∂j , i = 1, 2, 3, and νk =
3∑

l=1

bkldxl, k = 1, 2, 3,

for some smooth functions aij , bkl. Then the matrices A = (aij) and B = (bkl)
satisfy the relation B = (AT )−1. In particular

(48) µ = ♣ det(B)♣dx ∧ dy ∧ dz = ♣ det(A)♣−1dx ∧ dy ∧ dz.

From the explicit expression of the vector fields (12)–(13) and boundary con-
ditions (14), it is easy to check that every coefficient of the vector fields
containing β gives a contribution of order at least three in the expansion of
the determinant. Hence, to compute the expansion of (48) up to second or-
der, it is not restrictive to assume that β = 0. Under this assumption, one
computes

(49) [X1, X2] =


1 + γ +

1

2
(x∂xγ + y∂yγ)


∂z,

which implies

♣ det(A)♣ = 1 + γ(x, y, z) +
1

2
(x∂xγ(x, y, z) + y∂yγ(x, y, z)) +O


∥(x, y, z)∥3



= 1 + 2γ[2](x, y) +O

∥(x, y, z)∥3


,

where in the last equality we used the boundary conditions (14). Taking the
inverse and combining with (48), the proof is completed. □

Along the same lines of the proof of Lemma 8 one obtains the following
result. A proof is contained in [10, Lemma 4].

Lemma 9. In normal coordinates (introduced in Section 2.2) writing

γ[2](x, y) = ax2 + 2bxy + cy2,

we have the following expression for the curvature-like invariants at the origin

(50) κ(p) = 2(a+ c), χ(p) = 2
√
b2 + (c− a)2.
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2.6. Cut-time asymptotic

Let γ : [0, T ] → M be a horizontal curve. We say that γ is a length-minimizer
if d(γ(0), γ(T )) = ℓ(γ). Notice that this notion is independent on the paramet-
rization of the curve.

Fix now a horizontal curve γ : [0, T ] → M parametrized by arc-length.
Then we define

(51) tcut(γ) = sup¶t > 0 : γ♣[0,t] is a length-minimizer♢.

If γ is a geodesic parametrized by arclength on a 3-dimensional contact man-
ifold, then it is well-known that tcut(γ) > 0. This is related with the fact that
there are no abnormal minimizers, see for instance [3, Chapter 8] and [14,
Appendix].

Parametrizing geodesics as in Section 2.4 with covectors in cylindrical
coordinates (ρ, θ, w) we have a well-defined cut time associated with every
initial covector with ρ = 1.

We give here the asymptotic expansion for the cut time of geodesics. This
result is obtained combining [7, Theorem 4.2] and [7, Theorem 5.2], covering
the case χ(p) ̸= 0 and χ(p) = 0, respectively.1

Proposition 10. We have the following asymptotic expansion for the cut
time from p ∈ M .

(52) tcut(1, θ, w) =
2π

♣w♣
−
π(κ(p) + 2χ(p) sin2 θ)

♣w♣3
+O


1

♣w♣4


, w → ±∞.

Thanks to this result we get an asymptotic description of the set of initial
parameters mapped on the ball of radius ε through the exponential map.

Corollary 11. For ε > 0 small enough there exists a set Ω(ε) ⊂ T ∗
pM , whose

description in cylindrical coordinates is given by

(53) Ω(ε) =
{

♣ρ♣ ≤ ε, θ ∈ [0, 2π],

w ∈ [−2π + ρ2f(θ) +O(ρ3), 2π − ρ2f(θ) +O(ρ3)]
}
,

where f(θ) is a smooth function of θ. Moreover the following properties holds:

1A note on the reference: to recover the cut time, denoted ℓ∗(θ; ν) in [7, Theo-
rem 5.2], one needs the formula of ℓ1(θ; ν) of [7, Theorem 5.1], whose expression
contains a typo. Indeed the second summand of its expression is −πκ(q0)ν−3 (and
not −πκ(q0)ν−2) as it can be directly checked from the proof.
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Figure 1: A picture of the region Ω(ε).

(i) B(p, ε) = exp(Ω(ε));

(ii) exp ♣int(Ω(ε)\¶ρ=0♢) is injective with injective differential;

(iii) exp(int(Ω(ε)\¶ρ = 0♢)) has full measure in B(p, ε).

We observe that the existence of a set Ω(ε) satisfying conditions (i)–
(iii) above is true as soon as the sub-Riemannian structure does not contain
non-trivial abnormal minimizers. This condition is, in particular, satisfied for
contact sub-Riemannian manifolds. A sample image of Ω(ε) is presented in
Figure 2.6. The crucial fact in Corollary 11 is the asymptotic description given
in (53).

Proof. First we discuss the existence of the set Ω(ε) satisfying properties
(i)–(iii). For ε > 0 small enough, the closure of the ball B(p, ε) is compact,
hence for every point x ∈ B(p, ε) there exists a length-minimizer γλ : [0, 1] →
M , associated with initial covector λ = (ρ, θ, w) ∈ T ∗

pM joining p with x.
Recall that contact sub-Riemannian structures have no non-trivial abnormal
minimizers, thus γλ does not contain any abnormal segment and cannot be
minimizing after its first conjugate time. Moreover, under the assumption that
there are no non-trivial abnormal minimizers, a cut time is either the first
conjugate time or a point where two optimal geodesics intersect. For a proof
of these statements one can see [3, Chapter 3, Chapter 8] or [14, Appendix A].

For every unit initial covector λ = (1, θ, w) we have

γλ(t) = expp(t(1, θ, w)) = expp(t, θ, tw)

and this trajectory is by definition a length-minimizer up to the corresponding
cut time tcut(1, θ, w). Notice that expp(0, θ, w) = p for every θ, w. We stress
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that for every s ∈]0, tcut(λ)[, the restriction γλ♣[0,s] is a length-minimizer hence
does not contain neither cut points (by construction), nor conjugate points
(by length-minimality).

Let us introduce the star-shaped set in T ∗
pM

A = ¶(s, θ, sw) ∈ T ∗
pM ♣ θ ∈ [0, 2π], w ∈ R, 0 ≤ s ≤ tcut(1, θ, w)♢,

and set Ω(ε) := A ∩ ¶0 ≤ ρ ≤ ε♢. It follows by construction that expp : Ω(ε) →
B(p, ε) is onto. Moreover

expp(int(Ω(ε) \ ¶ρ = 0♢)) = B(p, ε) \ Cut(p),

which has full measure in B(p, ε). The fact that expp is injective with injective
differential on the open set int(Ω(ε) \ ¶ρ = 0♢), is a consequence of the fact
that length minimizers do not contain neither cut nor conjugate points.

To complete the proof of the statement, we compute the asymptotic de-
scription of the set Ω(ε) in the cotangent space T ∗

pM . Let us rewrite the set
A as follows, in cylindrical coordinates2

(54) A = ¶(ρ, θ, w) ∈ T ∗
pM ♣ θ ∈ [0, 2π], ρ ≥ 0, ♣w♣ ≤ ρt−1

cut(1, θ, ρ)♢,

where t−1
cut(1, θ, ·) means the inverse function of the map w 7→ tcut(1, θ, w), for

a fixed θ ∈ [0, 2π]. Notice that the function tcut(1, θ̄, ·) is smooth at infin-
ity, for fixed θ̄ ∈ [0, 2π], with derivative approaching a positive constant, and
therefore it is invertible close to infinity.

The expansion of t−1
cut(1, θ, ·) at zero is then obtained from the one of

tcut(1, θ, ·) at infinity (52) as follows

(55) t−1
cut(1, θ, ρ) =

2π

ρ
−

(κ+ 2χ sin2 θ)

4π
ρ+O(ρ2), ρ → 0.

Multiplying (55) by ρ and combining with (54), one gets the statement by
setting

(56) f(θ) =
κ+ 2χ sin2 θ

4π □

2One can use the following identity, for φ : [0, +∞) → [0, +∞) an invertible func-
tion

¶(s, sw) ∈ R2 ♣ w ∈ R, 0 ≤ s ≤ φ(♣w♣)♢ = ¶(x, y) ∈ R2 ♣ x ≥ 0, ♣y♣ ≤ xφ−1(x)♢.
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3. Proof of main theorem

We compute the volume of the ball B(p, ε) in normal coordinates. Recall that
in this coordinate chart the ball is denoted simply B(ε) and the Popp volume
writes µ = ψ dx dy dz. We have

vol(B(p, ε)) =

∫

B(ε)
ψ(x, y, z) dx dy dz(57)

= ε4
∫

Bε(1)
ψ(εx, εy, ε2z) dx dy dz (using Lemma 4)

= ε4

∫

Bε(1)
(1 − 2ε2γ[2](x, y, z)) dx dy dz +O(ε3)


(using Lemma 8)

Using again Lemma 4, we can write

Bε(1) = δ 1

ε
(B(ε))(58)

= δ 1

ε
(exp(Ω(ε)) (by property (i) from Corollary 11)

= expε(τ 1

ε
(Ω(ε))) (by Lemma 6)

Observe also that Ωε(1)
.
= τ 1

ε
(Ω(ε)) has the following description in cylindrical

coordinates:

(59) τ 1

ε
(Ω(ε)) = ¶♣ρ♣ < 1, θ ∈ [0, 2π],

w ∈ [−2π + ε2ρ2f(θ) +O(ε3), 2π − ε2ρ2f(θ) +O(ε3)]♢.

In particular we can write:

vol(B(p, ε)) = ε4

∫

expε(Ωε(1))
(1 − 2ε2γ[2](x, y, z)) dx dy dz +O(ε3)


.(60)

Observe now that properties (ii) and (iii) from Corollary 11 remains true if we
compose the various maps with a diffeomorphim, after considering the images
of the corresponding sets under the diffeomorphism itself. In particular, since
both δ 1

ε
and τ 1

ε
are diffeomorphisms, we can apply the change of variable

formula and compute the integral in (60) as:

vol(B(p, ε)) = ε4

∫ 1

0

∫ 2π

0

∫ 2π−ε2ρ2f(θ)+O(ε3)

−2π+ε2ρ2f(θ)+O(ε3)
u(ρ, θ, w) dw dθ dρ+O(ε3)


,

(61)
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where

(62) u(ρ, θ, w) = (1 − 2ε2γ[2](expε(ρ, θ, w))♣ det(J expε)(ρ, θ, w)♣.

We compute now the expansion in ε of the various terms involved. Let us
start with u, which using the expansion expε

p = exp0
p +O(ε) and (34) we can

write as

u(ρ, θ, w) = det(J exp0
p)(ρ, θ, w)(63)

+ ε2

−2γ[2](exp0

p(ρ, θ, w)) det(J exp0
p)(ρ, θ, w) + v2(ρ, θ, w)



+O(ε3)

= u0(ρ, θ, w) + ε2u2(ρ, θ, w) +O(ε3)

Observe now also that:

∫ 2π−ε2ρ2f(θ)+O(ε3)

−2π+ε2ρ2f(θ)+O(ε3)
u(ρ, θ, w)dw(64)

=

∫ 2π−ε2ρ2f(θ)+O(ε3)

−2π+ε2ρ2f(θ)+O(ε3)
u0(ρ, θ, w) + ε2u2(ρ, θ, w)dw +O(ε3)

=

∫ 2π

−2π
u0(ρ, θ, w) + ε2u2(ρ, θ, w)dw

− 2ε2ρ2f(θ) (u0(ρ, θ,−2π) + u0(ρ, θ, 2π)) +O(ε3)

=

∫ 2π

−2π
u0(ρ, θ, w)dw + ε2

∫ 2π

−2π
u2(ρ, θ, w)dw +O(ε3),

where in the last line we have used the crucial fact that u0(ρ, θ, 2π) =
u0(ρ, θ,−2π) = 0, as it can be immediately verified from (36). Recall that
u0 = det(J exp0

p) is the Jacobian determinant in the Heisenberg group. In
more geometric terms, the last equality is saying that the cut time coincides
also with the first conjugate time in the Heisenberg group.

Consider now the fixed domain Ω = ¶♣ρ♣ ≤ 1, θ ∈ [0, 2π], w ∈ [−2π, 2π]♢.
Plugging (64) into (61), we obtain:

(65) vol(B(p, ε)) = ε4

∫

Ω
u0 + ε2

∫

Ω
u2 +O(ε3)


.

From the definition of u0 = det(J exp0
p), we immediately recognize

(66) c0 :=

∫

Ω
u0 = volume of the unit ball in the Heisenberg group.
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For the integral of u2, we proceed analyzing the various functions appearing
in its definition

u2 = −2γ[2](exp0
p(ρ, θ, w)) det(J exp0

p)(ρ, θ, w) + v2(ρ, θ, w).(67)

Writing γ[2](x, y, z) = ax2 + 2bxy + cy2 as in (46) and using (45), we have:

− 2γ[2](exp0
p) det(J exp0

p)(68)

= 4(a+ c)
ρ5 sin

(
w
2

)2
(2 cosw + w sinw − 2)

w6
+

−
4ρ2 sin

(
w
2

)2
((a− c) cos(2θ + w) + b sin(2θ + w))

w2
det(J exp0

p)

= 2κ(p)
ρ5 sin

(
w
2

)2
(2 cosw + w sinw − 2)

w6
+

+ cos(2θ + w)g1(ρ, w) + sin(2θ + w)g2(ρ, w),

where in the last line we have used the fact that 2(a+ c) = κ(p) and that
det(J exp0

p) only depends on (ρ, w) (see the explicit expression (36)). Note in
particular that, exchanging the order of integration and using the fact that for
every fixed w ∈ [0, 2π] the integrals

∫ 2π
0 cos(2θ + w)dθ and

∫ 2π
0 sin(2θ + w)dθ

vanish, (68) implies:

∫

Ω
−2γ[2](exp0

p) det(J exp0
p)(69)

= 2κ(p)

∫ 1

0

∫ 2π

−2π
2π
ρ5 sin

(
w
2

)2
(2 cosw + w sinw − 2)

w6
dw dρ

= κ(p)

∫ 2π

−2π

2π

3

sin
(

w
2

)2
(2 cosw + w sinw − 2)

w6
dw.

Let us look now at the integral of the function v2. Using its explicit expression
and integrating the θ-variable first, we obtain:

∫

Ω
v2 =

∫

Ω
ρ5


κ(p)

g0(w)

2
+ gc(w) cos 2θ + gs(w) sin 2θ


dw dθ dρ(70)

= κ(p)

∫ 1

0

∫ 2π

−2π
ρ52π

g0(w)

2
dwdρ

= κ(p)

∫ 2π

−2π

π

6
g0(w)dw.
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Combining (69) and (70) we obtain:

∫

Ω
u2 = κ(p)

∫ 2π

−2π


2π

3

sin
(

w
2

)2
(2 cosw + w sinw − 2)

w6
+
π

6
g0(w)


dw(71)

= κ(p)

∫ 2π

−2π

π

2

(5w sinw − (w2 − 8) cosw − 8)

w6
dw

= κ(p)
1

160


1

π2
− 2 − 4πSi(2π)


.

Together with (65) this finally gives:

(72) vol(B(p, ε)) = ε4c0


1 − κ(p)c1ε

2 +O(ε3)

,

where:

(73) c1 =
1

c0160


2 + 4πSi(2π) −

1

π2


> 0 and c0 =

1

12
(1 + 2πSi(2π)).

The explicit formula of c0, which is the volume of the unit ball in the Heisen-
berg group, coincides witht the one obtained in [2, Remark 39].

Appendix A. Remarks on curvature coefficients

The study of complete sets of invariants, connected with the problem of equiv-
alence of 3D sub-Riemannian contact structures, has been previously consid-
ered in the literature in different context and with different languages, as for
instance in [23] and [22].

In this appendix we recall the relation of the geometric invariants χ and
κ defined in Section 2.1, with invariants derived in [22, 23].

A.1. Invariants of a canonical connection

We extend the sub-Riemannian metric g on D to a global Riemannian struc-
ture (that we denote with the same symbol g) by promoting X0 to an unit
vector orthogonal to D.

We define the contact endomorphism J : TM → TM by:

(A.1) g(X, JY ) = dω(X, Y ), ∀X, Y ∈ Γ(TM).

Clearly J is skew-symmetric w.r.t. to g. In the 3-dimensional case, the previ-
ous condition forces J2 = −I on D and J(X0) = 0.
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Theorem 12 (canonical connection, [20, 22, 29]). There exists a unique
linear connection ∇ on (M,ω, g, J) such that

(i) ∇ω = 0,

(ii) ∇X0 = 0,

(iii) ∇g = 0,

(iv) T (X, Y ) = dω(X, Y )X0 for any X, Y ∈ Γ(D),

(v) T (X0, JX) = −JT (X0, X) for any vector field X ∈ Γ(TM),

where T is the torsion tensor of ∇.

If X is a horizontal vector field, so is T (X0, X). As a consequence, if we
define τ(X) = T (X0, X), τ is a symmetric horizontal endomorphism which
satisfies τ ◦ J + J ◦ τ = 0, by property (v). Notice that trace(τ) = 0 and
det(τ) ≤ 0.

A standard computation gives the following result.

Lemma 13. Let R∇ be the curvature associated with the connection ∇. Then

(A.2) κ = R∇(X1, X2, X2, X1), χ =
√

−det(τ).

Notice that a contact structure is K-type if and only if X0 is a Killing
vector field or, equivalently, if and only if τ = 0.

A.2. Relation with other invariants in the literature

Let us denote by g the Riemannian metric on M obtained by declaring the
Reeb vector field X0 to be orthogonal to the distribution and of unit norm
and denote by ∇ the Levi-Civita connection associated with the Riemannian

metric g. The Christoffel symbols Γ
k
ij of this connections are defined by

(A.3) ∇Xi
Xj = Γ

k
ijXk, ∀′, i, j = 0, 1, 2,

and related with the structural functions of the frame by the following for-
mulae:

(A.4) Γ
k
ij = −

1

2
(ck

ij − ci
jk + c

j
ki).

Let us denote by Sec(Πx) the sectional curvature with respect to ∇ of the
plane Πx generated by two vectors v, w ∈ TxM .
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Proposition 14. The sectional curvature of the plane Πx = Dx is

(A.5) Sec(Dx) = κ+ χ2 −
3

4
.

Proof. It is a long but straightforward computation, using the explicit ex-
pression of the covariant derivatives (A.3). In terms of an orthonormal frame
X1, X2 for the distribution Dx we have

Sec(Dx) = g(∇X1
∇X2

X2 − ∇X2
∇X1

X2 − ∇[X1,X2]X2, X1)

= −X1(c2
12) +X2(c1

12) − (c1
12)2 − (c2

12)2

+
1

2
(c2

01 − c1
02) + (c1

01)2 +
1

4
(c1

02 + c2
01)2 −

3

4
,

and (A.5) follows from the explicit expressions (7) and (8) of χ and κ. □

In [23], using the Cartan’s moving frame method, Hughen introduces the
generating set of invariants a1, a2, K, that are a priori functions on a circle
bundle over M (denoted B2 in [23, Sect. 2.2]). It turns out that K and a2

1 + a2
2

are pullback of well-defined functions on M [23, Prop. 2.1].

Proposition 15 (Relation with invariants defined by Hughen). We
have the following identity

(A.6) κ = K, χ =
√
a2

1 + a2
2.

Proof. The author in [23, p.15] proves that K = 4W , where W is the Tanaka-
Webster curvature of the CR structure associated with the sub-Riemannian
one. Notice that also that κ = 4W from Lemma 13, hence κ = K. Moreover
one has [23, p.15]

(A.7) Sec(Dx) = K + a2
1 + a2

2 −
3

4
.

This, together with Proposition 14, gives the other relation χ2 = a2
1 + a2

2. □

Remark 6 (Relation with invariants defined by Falbel-Gorodski).
In [22], the authors introduce a family of generating invariants K, τ0,W1,W2,
associated with this connection. It follows directly from Lemma 13 that κ = K

and χ = 2τ0 (notice that in [22] the authors use a different normalization on
the contact structure).
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