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Bohr-Sommerfeld Lagrangian submanifolds

as minima of convex functions

Alexandre Vérine

We prove more convexity properties for Lagrangian submanifolds
in symplectic and Kähler manifolds. Namely, every closed Bohr-
Sommerfeld Lagrangian submanifold Q of a symplectic/Kähler
manifold X can be realised as a Morse-Bott minimum for some
‘convex’ exhausting function defined in the complement of a sym-
plectic/complex hyperplane section Y . In the Kähler case, ‘convex’
means strictly plurisubharmonic while, in the symplectic case, it
refers to the existence of a Liouville pseudogradient. In particu-
lar, Q ⊂ X \ Y is a regular Lagrangian submanifold in the sense of
Eliashberg-Ganatra-Lazarev.

1. Introduction

Rational convexity properties of Lagrangian submanifolds were first discov-
ered in C2 by Duval and then investigated further by Duval-Sibony, Gayet
and Guedj. In particular, generalising a result established by Duval-Sibony
[DS95] in Cn, Guedj [Gue99] obtained the following theorem: in a complex
projective manifold X, every closed Lagrangian submanifold Q is rationally
convex, which means that X \Q is filled up with smooth complex hypersur-
faces. More precisely, these complex hypersurfaces Y are very ample divisors
of arbitrarily large degrees, so their complements are affine manifolds and
possess exhausting C-convex functions f : X \ Y → R. In this work, which
was motivated by the study of vanishing cycles in global Picard-Lefschetz
theory, we give a necessary and sufficient condition for the existence of such
a function f admitting Q as a Morse-Bott (i.e. transversally non-degenerate)
minimum. This condition refers to a Kähler class and can be more generally
stated as follows in the symplectic setting:

Definition 1. Let (X,ω) be an integral symplectic manifold, meaning that
X is a closed manifold and ω a symplectic form with integral periods. We say
that a Lagrangian submanifold Q satisfies the Bohr-Sommerfeld condition
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334 Alexandre Vérine

— or simply is Bohr-Sommerfeld — if the homomorphism H2(X,Q,Z)→ R
defined by integration of ω takes its values in Z.

In the Kähler setting, our main result is:

Theorem 2. Let (X,ω) be a closed integral Kähler manifold and Q a closed
Lagrangian submanifold satisfying the Bohr-Sommerfeld condition. Then,
for every sufficiently large integer k, there exist a complex hyperplane section
Y of degree k in X avoiding Q and an exhausting C-convex function f :
X \ Y → R that has a Morse-Bott minimum at Q and is Morse away from
Q with finitely many critical points.

To be more explicit, there exists a holomorphic line bundle L→ X with
first Chern class ω such that the complex hypersurface Y is the zero-set of
a holomorphic section of some large tensor power of L.

In [AGM01], Auroux-Gayet-Mohsen reproved Guedj’s above theorem
and extended it to the symplectic setting using the ideas and techniques de-
veloped by Donaldson in [Don96]. Theorem 2 also has a symplectic version,
whose statement below appeals to the following terminology:

• A symplectic hyperplane section of degree k in a closed integral sym-
plectic manifold (X,ω) is a symplectic submanifold Y of codimension
2 that is Poincaré dual to kω.

• A function f : X \ Y → R is ω-convex if it admits a pseudogradient
that is a Liouville (i.e. ω-dual to some primitive of ω) vector field.

With this wording, Donaldson’s main theorem in [Don96] is that every closed
integral symplectic manifold contains symplectic hyperplane sections of all
sufficiently large degrees. Furthermore, according to Auroux-Gayet-Mohsen
[AGM01], such symplectic hyperplane sections can be constructed away
from any given closed Lagrangian submanifold. On the other hand, Giroux
showed in [Gir18] that, for all sufficiently large degrees, the complements
of Donaldson’s symplectic hyperplane sections admit exhausting ω-convex
functions (and hence are Weinstein manifolds). Mixing these ingredients, we
obtain:

Theorem 3. Let (X,ω) be a closed integral symplectic manifold and Q
a closed Bohr-Sommerfeld Lagragian submanifold of X. Then, for every
sufficiently large integer k, there exist a symplectic hyperplane section Y of
degree k in X avoiding Q and an exhausting ω-convex function f : X \ Y →
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R that has a Morse-Bott minimum at Q and is Morse away from Q with
finitely many critical points.

In [EGL15], Eliashberg-Ganatra-Lazarev introduced the following defi-
nition: a Lagrangian submanifold Q in a Weinstein manifold (W,ω) is ‘reg-
ular’ if there exists a Liouville pseudogradient on W that is tangent to Q
(or equivalently there exists a primitive of ω vanishing on Q). This prop-
erty, which implies that Q is an exact Lagrangian submanifold, is known for
quite a long time to be a strong constraint. For instance, it is elementary
to see (without any holomorphic curve theory) that a closed Lagrangian
submanifold in Cn cannot be regular. In the same time, though we do not
have any example of a non-regular closed exact Lagrangian submanifold in a
Weinstein manifold, we do not know any general method to prove that exact
Lagrangian submanifolds should a priori be regular. Theorems 2 and 3 show
that, in the complement of the complex and symplectic hyperplane sections
constructed, the Bohr-Sommerfeld Lagrangian submanifold Q is included in
the zero-set of a Liouville pseudogradient and is therefore regular.

In Section 2 we explain why the Bohr-Sommerfeld condition is necessary
for our purposes and describe some of properties of Bohr-Sommerfeld La-
grangians. In Section 3 we prove Theorem 3, applying the main technical re-
sult from [Gir18]. In Section 4 we prove Theorem 2 and a complex-geometric
analogue, using techniques that go back to [DS95].

Acknowledgements. This work is part of my Ph.D. prepared at ÉNS de
Lyon under the supervision of Emmanuel Giroux. I warmly thank him for
his help and support and Jean-Paul Mohsen for his comments on a draft
of this paper. This work was supported by the LABEX MILYON (ANR-
10-LABX-0070) of Université de Lyon, within the program “Investissements
d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research
Agency (ANR), and by the UMI 3457 of CNRS-CRM.

2. Bohr-Sommerfeld Lagrangian submanifolds

Let us first remark that Cieliebak-Mohnke proved, in [CM17, Thm. 8.3], a
version of the main theorem of [AGM01] that is specific to Bohr-Sommerfeld
Lagrangian submanifolds.

The Bohr-Sommerfeld condition in Theorems 2 and 3 is necessary, in-
deed:
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336 Alexandre Vérine

Lemma 4. Let (X,ω) be a closed symplectic manifold and Q a Lagrangian
submanifold. Suppose that there exist a closed submanifold Y ⊂ X Poincaré-
dual to ω avoiding Q and λ a primitive of ω over X \ Y such that λ|Q is
exact. Then Q is a Bohr-Sommerfeld Lagrangian submanifold of (X,ω).

Proof. It suffices to prove the following (well-known) claim: Let X be a
closed connected oriented manifold, Y ⊂ X a closed codimension 2 sub-
manifold and ω a non-exact closed 2-form on X that is Poincaré-dual to Y .
Then, for every compact surface Σ ⊂ X with boundary disjoint from Y and
primitive λ of ω on X \ Y whose restriction to the submanifold Q is exact,∫

Σ
ω = Σ.Y .

We first suppose that Y is connected. For any embedded 2-disc D
intersecting Y transversely at one point, with sign ε(D) = ±1, set r :=
ε(D)(

∫
D ω −

∫
∂D λ). The ‘residue’ r does not depend on the disc D. To

see this we will prove that, for two such discs D and D′,

ε(D′)

∫
∂D′

λ− ε(D)

∫
∂D

λ =

∫
C
ω = ε(D′)

∫
D′
ω − ε(D)

∫
D
ω.

Connectedness of Y gives an oriented cylinder C in X \ Y bounding
−ε(D′)∂D′ and ε(D)∂D. On the one hand, by Stokes theorem,∫

C
ω = ε(D′)

∫
∂D′

λ− ε(D)

∫
∂D

λ.

On the other hand, the capped cylinder C + ε(D)D − ε(D′)D′ is a boundary
in X and ω is closed so∫

C
ω + ε(D)

∫
D
ω − ε(D′)

∫
D′
ω = 0.

Finally, the ’residue’ r is independent of D.
Let Σ ⊂ X be a compact surface intersecting Y away from ∂Σ. By a

general position argument we may suppose the intersection is transverse.
For each point pi ∈ Σ ∩ Y , take a disc Di ⊂ Σ that intersects Y only at pi.
Stokes theorem gives

∫
Σ\∪iDi

ω = −
∑

i

∫
∂Di

λ, then:∫
Σ
ω = Σ.Y r .(1)
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Since ω is not exact, we can apply (1) to some closed surface Σ0 with
Σ0.Y =

∫
Σ0
ω 6= 0. This gives r = 1; so (1) proves the claim.

Suppose Y is not connected. If dimX ≥ 3, the cycle [Y ] may be repre-
sented by a closed connected submanifold, namely an embedded (away from
∂Σ0) connected sum of the connected components of Y . If dimX = 2, we
may represent [Y ] by some integral multiple of any point. Consequently, we
reduce to the previous case. �

Meanwhile, the Bohr-Sommerfeld condition can be easily obtained after
a modification of the symplectic form:

Lemma 5 (Approximation and rescaling). Let (X,ω) be a closed sym-
plectic manifold and Q a closed Lagrangian submanifold. Then there exists
a small closed 2-form ε and an integer k such that Q is a Bohr-Sommerfeld
Lagrangian submanifold of (X, k(ω + ε)).

Proof. We argue as in [AGM01]: the 2-form ω vanishes on Q so, in view
of the exact sequence · · · → H2(X,Q; R)→ H2(X; R)→ H2(Q; R)→ · · · ,
it is the image of a relative class c ∈ H2(X,Q; R). We approximate c by
some r ∈ H2(X,Q; Q) and take a small closed form ε vanishing on Q that
represents c− r. Then the closed form ω − ε is symplectic, vanishes on Q
and its relative periods — given by evaluation of r — are rational. �

We now give the characterisation of Bohr-Sommerfeld Lagrangian sub-
manifolds that we will use to prove Theorems 2 and 3.

Lemma 6 (Hermitian flat line bundles). Let (X,ω) be an integral
symplectic manifold and Q a submanifold. Then Q is a Bohr-Sommerfeld
Lagrangian submanifold if and only if there exist a Hermitian line bundle
L→ X and a unitary connection ∇ of curvature −2iπω such that (L,∇)|Q is
a trivial flat bundle. If Q is a Bohr-Sommerfeld Lagrangian and, in addition,
(X,ω) is Kähler, then one can take for (L,∇) a holomorphic Hermitian line
bundle with its Chern connection.

Proof. Suppose that Q is a Bohr-Sommerfeld Lagrangian submanifold. Since
ω has integral periods, we may fix a lift c of its cohomology class to H2(X,Z).
We take a Hermitian line bundle L0 → X with first Chern class c and a uni-
tary connection ∇0 of curvature −2iπω. The submanifold Q is Lagrangian
so the restriction (L0,∇0)|Q is a flat Hermitian bundle.

We will construct a flat Hermitian line bundle (L1,∇1)→ X whose re-
striction to Q is isomorphic to (L0,∇0)|Q. Then the desired line bundle will
be L0 ⊗ L−1

1 .
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Recall that flat Hermitian line bundles over a manifold Y are classified
up to isomorphism by their holonomy representation H1(Y,Z)→ U(1) (cf.
proposition 3.6.15 in [Thu97]). To construct the flat bundle (L1,∇1) it suf-
fices to extend the holonomy representation ρ : H1(Q,Z)→ U(1) of the flat
bundle (L0,∇0)|Q to a homomorphism H1(X,Z)→ U(1).

We first show that ρ is trivial on the kernel of the group homomorphism
i : H1(Q,Z)→ H1(X,Z) induced by inclusion. Consider the exact sequence
of the pair (X,Q):

· · · → H2(X,Q; Z)
∂−→ H1(Q,Z)

i−→ H1(X,Z)→ · · ·

where ∂ is the homomorphism given by the boundary of chains. It suffices
to show that ρ ◦ ∂ = 0. Every a ∈ H2(X,Q; Z) can be represented by an
embedded surface Σ ⊂ X whose (possibly empty) boundary is included in
Q. It then follows from (well-known) lemma 7 that:

ρ(∂a) = exp

(
2iπ

∫
a
ω

)
.(2)

Since the Lagrangian submanifold Q is Bohr-Sommerfeld, ρ(∂a) = 1.
Thus ρ factors through a homomorphism ρ̃ : H1(Q,Z)/ ker i→ U(1)

where H1(Q,Z)/ ker i injects into H1(X,Z). Now U(1) is a divisible abelian
group so it is an injective Z-module (see for instance [Wei95, Corollary
2.3.2]). Hence ρ̃ extends to H1(X,Z).

In the case where (X,ω) is Kähler, the above Hermitian line bundle
(L0,∇0) can be chosen holomorphic with its Chern connection (see, e.g.,
[Dem12, Theorem 13.9.b]). On the other hand the flat line bundle (L1,∇1)
is isomorphic to the quotient of the trivial flat bundle X̃ ×C by the diago-
nal action of the fundamental group, acting on its universal cover X̃ by deck
transformations and on C by the holonomy representation H1(X,Z)→ U(1)
(cf. proposition 3.6.15 in [Thu97]). Therefore the trivial holomorphic struc-
ture and the trivial connection on X̃ ×C respectively induce a holomor-
phic structure and the Chern connection on L1. Consequently, the bundle
L0 ⊗ L−1

1 has the desired properties.
Conversely, let (X,ω) be a symplectic manifold and a Hermitian line

bundle L→ X with a unitary connexion of curvature −2iπω such that
(L,∇)|Q is a trivial flat bundle. Then the (trivial) holonomy representa-
tion ρ of (L,∇)|Q satisfies (2); so Q is a Bohr-Sommerfeld Lagrangian. �

Lemma 7 (Gauss-Bonnet). Let X be a manifold and L→ X a Her-
mitian line bundle with a unitary connection ∇ whose curvature 2-form
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is written −2iπω. Let Σ be a connected oriented surface with non-empty
boundary and f : Σ→ X a map. The holonomy of ∇ along the loop f |∂Σ is
exp(2iπ

∫
Σ f

?ω) ∈ U(1).

Proof. We may assume X = Σ and f = IdΣ by pulling back the line bundle
L by f . There is a unit section s : Σ→ L. In the trivialisation of L given by
s there is a primitive α of ω such that the connection ∇ reads d− 2iπα. By
Stokes theorem ∫

Σ
ω =

∫
∂Σ
α .

We may assume that ∂Σ is connected. Take β : [0, 1]→ ∂Σ a parametrisa-
tion of ∂Σ. For every unit parallel lift γ : [0, 1]→ L of β and for all t ∈ [0, 1],
γ′(t) = 2iπγ(t) (β?α)t(∂t) hence

2iπ

∫
∂Σ
α =

∫
[0,1]

γ′(t)

γ(t)
dt = log

γ(1)

γ(0)
.

An exponentiation gives the result. �

3. As minima of ω-convex functions

In this section we prove Theorem 3 so Q is a closed Bohr-Sommerfeld La-
grangian submanifold in a closed integral symplectic manifold (X,ω). We
will adopt the following notation:

• J : a fixed ω-compatible almost complex structure on X;

• g = ω(·, J ·): the corresponding Riemannian metric;

• λ0: the Liouville form on T ?Q;

• f0 : p ∈ T ?Q 7→ π|p|2 ∈ R where | · | is the norm on each fibre of T ?Q→
Q induced by the restriction of the metric g to Q.

Using Weinstein’s normal form theorem, we identify a neighbourhood N of
Q ⊂ (X,ω) with a tube {f0 < c} around the zero section Q in (T ?Q,dλ0)
in such a way that, for all q ∈ Q, the subspaces TqQ,T

?
qQ ⊂ Tq(T ?Q) are

g-orthogonal.
Using Lemma 6, we fix a Hermitian line bundle L→ X with a unitary

connection ∇ of curvature −2πiω and a unit parallel section s0 of the flat
bundle (L,∇)|Q.
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The main characters of the next lemmata are the two following sections
of L|N :

• s : N → L|N : the extension of the section s0 by parallel transport by
∇ along the rays in the fibres of T ?Q;

• s0 := e−f0s : N → L|N (which is well-defined since f0|Q = 0).

For any positive integer k, we denote by Lk the k-th tensor power of
the line bundle L, whose induced connection has curvature −2kπiω, and
we set gk := kg the rescaled metric. For any integer r ≥ 0, we endow the
vector bundle

⊗r T ?X ⊗ Lk with the connection induced by the Levi-Civita
connection for the metric gk and our connection on Lk; we still write this
connection ∇. We define the Cr norm of a section u : X → Lk by ‖u‖Cr,gk :=
sup |u|+ sup |∇u|gk + · · ·+ sup |∇ru|gk . The J-linear and −J-linear parts of
the connection ∇ are written ∇′ and ∇′′.

For any 1-form λ on X, we will denote by
−→
λ the vector field that is

ω-dual to λ.

Lemma 8. There exists a constant C > 0 such that, for every integer k ≥
1, the function f0 and the section sk0 satisfy the following bounds on N :

−→
λ0.(kf0) ≥ C−1(|

−→
λ0|2gk + |d(kf0)|2gk), C−1(kf0)1/2 ≤ |d(kf0)|gk ≤ C(kf0)1/2,

|∇sk0|gk ≤ C(kf0)1/2e−kf0 , ‖∇2sk0‖C0,gk ≤ C and ‖∇′′sk0‖C1,gk ≤ Ck−1/2.

Proof. By rescaling, it suffices to establish the first two bounds of the state-

ment for k = 1. The function f0 is Lyapounov for the vector field
−→
λ0. This

implies the first bound. The submanifold Q is a Morse-Bott minimum for
f0, hence the second bound.

Since s0 = e−f0s with s parallel,

∇s0 = −df0e
−f0s+ e−f0∇s = −(df0 + 2πiλ0)s0.

Therefore, ∇s0 vanishes identically on the zero section. Hence, there exists

a constant C > 0 such that |∇s0|g ≤ Cf1/2
0 . Moreover, the 1-jet of ∇′′s0

vanishes at each point of Q. Indeed, by the identity λ0 = −ω(·,
−→
λ0) (here

k = 1) and by J-linearity of the 1-form g(·,
−→
λ0)− iω(·,

−→
λ0),

∇′′s0 = −2π
(

df0
2π + iλ0

)′′
s0 = −2π(df0

2π − g(·,
−→
λ0))′′s0,

so it suffices to show that the 1-jet of the 1-form df0
2π − g(·,

−→
λ0) vanishes iden-

tically along Q. Its 0-jet clearly vanishes, and, for each vector v = (v1, v2)
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in the g-orthogonal sum T (T ?Q)|Q = TQ⊕ T ?Q,

d(g(·,
−→
λ0))(v, v) = g(v, v.

−→
λ0) = g(v, v2) = g(v2, v2) = (d2f0)(v, v)/(2π),

hence its 1-jet vanishes too. Consequently, there exists a constant C > 0

such that |∇∇′′s0|g ≤ Cf1/2
0 and |∇′′s0|g ≤ Cf0. Therefore, by the Leibniz

rule, we obtain the desired bounds on ∇sk0 and ∇2sk0, and the two bounds

|∇′′sk0|gk ≤ Ck1/2f0e
−kf0 , |∇∇′′sk0|gk ≤ (kf

3/2
0 + f

1/2
0 )Ce−kf0 . The two latter

real-valued Gaussian functions of f0 both reach their global maximum at
Constant× k−1 so we obtain the last bound of the statement. �

In particular, our sections sk0 are asymptotically holomorphic in the fol-
lowing sense:

Definition 9 (Donaldson, Auroux). Sections sk : X → Lk are called
asymptotically holomorphic if there exists a constant C > 0 such that for
every positive integer k, ‖∇′′sk‖C1,gk ≤ Ck−1/2 and ‖sk‖C2,gk ≤ C.

The following result was already observed in Auroux-Gayet-Mohsen
[AGM01, Remark p.746]. Recall that our neighbourhood N of Q is iden-
tified with the cotangent tube {f0 < c}.

Lemma 10. Let β : N → [0, 1] be a compactly supported function (indepen-
dent of k) with β = 1 on a tube {f0 < b}. Then, the sections s0,k := βsk0 :
X → Lk are asymptotically holomorphic.

Proof of lemma 10. The sections sk0 satisfy the estimates of lemma 8 on N .
Then, there exists a constant C > 0 such that:

‖∇′′s0,k‖C0,gk ≤ ‖dβ‖C0,gk sup
{f0>b}

|sk0|+ ‖∇′′sk0‖C0,gk

≤ Ck−1/2e−bk + Ck−1/2.

Similarly:

‖∇∇′′s0,k‖C0,gk ≤ ‖d2β‖C0,gk sup
{f0>b}

|sk0|

+ 2‖dβ‖C0,gk sup
{f0>b}

|∇sk0|gk + ‖∇∇′′sk0‖C0,gk

≤ Ck−1e−bk + 2Ck−1/2(Ck1/2c1/2e−bk) + Ck−1/2.

Hence, there exists a constant C > 0 such that, for all k, ‖∇′′s0,k‖C1,gk ≤
Ck−1/2. In the same way, we obtain the bound ‖s0,k‖C2,gk ≤ C. �
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Giroux’s theorem below provides transverse perturbations of our sec-
tions s0,k with the following property.

Definition 11 (Giroux). Let κ ∈ (0, 1). A section s : X → Lk is called
κ-quasiholomorphic if |∇′′s| ≤ κ|∇′s| at each point of X.

Theorem 12 ([Gir18, Proposition 13]). Let ε > 0, κ ∈ (0, 1) and s0,k :
X → Lk asymptotically holomorphic sections. Then, for any sufficiently large
integer k, there exists a section s1,k : X → Lk with the following properties:

• s1,k vanishes transversally;

• s1,k is κ-quasiholomorphic;

• ‖s1,k − s0,k‖C1,gk < ε ;

• − log |s1,k| : {p ∈ X, s1,k(p) 6= 0} → R is a Morse function.

Let us now bring the previous facts together to prove Theorem 3.

Proof of Theorem 3. Using lemma 10, we fix sections s0,k : X → Lk with
s0,k = sk0 on a tube {f0 < b}. We then fix ε ∈ (0, 1) and take sections s1,k :
X → Lk provided by Theorem 12. The subset Y := {s1,k = 0} ⊂ (X,ω) is
a symplectic hyperplane section of degree k (because of the first two prop-
erties of Theorem 12, see for instance proposition 3 in [Don96]) avoiding
the submanifold Q (because |s0| = 1 on Q and by the third property of
Theorem 12).

It remains to construct an ω-convex exhaustion f : X \ Y → R that has
a Morse-Bott minimum at Q and is Morse away from Q with finitely many
critical points. In order to do so, we will glue the function f0,k := kf0 : N →
R, which clearly has a Morse-Bott minimum at Q, with the exhaustive func-
tion f1,k := − log |s1,k|, which is Morse (by the last property of Theorem 12)
and has finitely many critical points (because s1,k vanishes transversally).

Before gluing, let us note that, by lemma 8, f0,k is Lyapounov for the

Liouville vector field
−→
λ0 with Lyapounov constant in the metric gk that is

independent of k. On the other hand, a Liouville pseudogradient for f1,k

is provided by Giroux’s following lemma. In order to state it, we set λ1,k

the real 1-form such that, in the unitary trivialisation of Lk|X\Y given by
s1,k/|s1,k|, the connection ∇ reads d− 2kπiλ1,k. We also recall that the

notation
−→
λ stands for the ω-dual vector field to a given 1-form λ.
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Lemma 13 ([Gir18, Lemma 12]). Let κ ∈ (0, 1) and s1,k : X → Lk a
κ-quasiholomorphic section. Then

−−→
λ1,k.f1,k ≥ 1

2

1− κ2

1 + κ2

(
|df1,k|2gk + |

−−→
λ1,k|2gk

)
.

Hence the function f1,k is Lyapounov for the Liouville vector field
−−→
λ1,k, with

a uniform Lyapounov constant in the metric gk.
Finally, the desired function f is constructed in the following lemma, by

gluing, on an annular region {a < f0,k < b} about Q, the standard (Morse-

Bott) Weinstein structure (
−→
λ0, f0,k) on T ?Q with the Weinstein structure

(
−−→
λ1,k, f1,k) given by Giroux’s above theorem and lemma. �

In the following lemma, the number c still refers to the size of our cotan-
gent tube {f0 < c} about Q.

Lemma 14. Let κ ∈ (0, 1) and a, b ∈ (0, c) with a < b. Then, for every suf-
ficiently small ε ∈ (0, 1) and for every k ≥ k0(ε) sufficiently large, there exist

a Liouville vector field
−→
λ on X \ Y and a Lyapounov function f : X \ Y →

R for
−→
λ such that (

−→
λ , f) = (

−→
λ0, f0,k) on {f0,k ≤ a}, (

−→
λ , f) = (

−−→
λ1,k, f1,k)

away from {f0,k < b} and f has no critical point on {a ≤ f0,k ≤ b}.

Proof. We will omit the indices k in the proof.
For now, we admit the following two facts: there exists a constant C > 0

(independent of k, ε) such that

‖f0 − f1‖C1(N),gk ≤ Cε(3)

and, for sufficiently small ε > 0, the form λ1 − λ0 is exact on N .
We will glue the Weinstein structures in two steps. Let us fix two num-

bers a < a+ < b− < b. For ε < min(a+−a
2C , b−b−2C ), the annular region {a <

f0 < b} contains the level sets {f1 = a−} and {f1 = b+} (by the bound (3)).
First, let us glue the functions in the inner collar {f0 ≥ a} ∩ {f1 ≤ a−};

more precisely, let us construct a Lyapounov function f : X → R for the

vector field
−→
λ0 with f = f0 on {f0 ≤ a} and f = f1 away from {f1 < a+}.

It suffices to show that
−→
λ0 is transverse to the level sets of f0 and f1 in

this inner collar; indeed, increasing from a to b along each trajectory of
−→
λ0

gives a function f transverse to the level sets of f0 and f1. There exists a
constant C ′ > 0 such that ‖df0‖gk ≥ C ′ (by lemma 8). By the latter bound
and (3), ‖df1‖gk ≥ C ′ − Cε. So, by the Lyapounov conditions, there exists

a constant C ′ > 0 such that
−→
λ0.f0 ≥ C ′ (in particular

−→
λ0 is transverse to the
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level sets of f0) and
−→
λ1.f1 ≥ C ′. By the latter bound and again (3),

−→
λ0 is

transverse to the level sets of f1.
Second, we glue the Liouville vector fields in the outer collar {a− < f1 <

b+} (where f = f1); more precisely we construct a Liouville vector field
−→
λ

which is transverse to the level sets of the function f in the outer collar and
coincides with

−→
λ0 on {f1 < a−} and with

−→
λ1 outside {f1 ≤ b+}. The 1-form

λ1 − λ0 is exact (by our initial claim) so we have a function H such that−→
λ1 −

−→
λ0 =

−→
dH. Let us fix a cutoff function β : R→ [0, 1] such that β = 0 near

R≤(b−a)/2 and β = 1 near R≥b and set β1 := β ◦ f1. Then the vector field
−→
λ :=

−→
λ0 +

−−−−−→
d(β1H) is Liouville and satisfies the desired boundary conditions.

Moreover,
−→
β1 is tangent to the level sets of f1 and, by the above paragraph,−→

λ0 and
−→
λ1 are positively transverse to these, so

−→
λ = (1− β1)

−→
λ0 + β1

−→
λ1 +−→

β1H is transverse to these too.
It remains to prove the two initial claims. On the one hand, f0 − f1 =

Re log(s1s
−1
0 ) and, since uj := sj/|sj | satisfies ∇uj = −2kπiλjuj ,

λ1 − λ0 = 1
2kπi

(
u−1

0 ∇u0 − u−1
1 ∇u1

)
= 1

2kπid log(u0u
−1
1 ) = 1

2kπd arg(s1s
−1
0 ).

On the other hand, ‖ log(s1s
−1
0 )‖C1,gk ≤ Cε; this is a consequence of the

three bounds ‖s1 − s0‖C1,gk < ε, inf |s0| > e−c, and ‖∇s0‖C0,gk ≤ Constant
(from lemma 8). In particular we obtain the bound (3) and for ε sufficiently
small, ‖ arg(s1s

−1
0 )‖C0 < π/3 so λ1 − λ0 is exact. �

Remark 15 (An alternative proof of the regularity of Q ⊂ X \ Y ).
For sufficiently large k, it is possible to choose our κ-quasiholomorphic per-
turbation s1,k : X → Lk (vanishing transversally and away from Q) of s0,k in
such a way that the quotient function (s1,k/s0,k)|Q is real-valued. The latter
property, which can be achieved by implementing techniques from Auroux-
Munoz-Presas’ [AMP05] in the proof of [Gir18, Proposition 13], implies that

the Liouville pseudogradient
−−→
λ1,k of the function − log |s1,k| is tangent to Q.

4. As minima of C-convex functions

This section deals with the proof of Theorem 2, so Q is a closed Bohr-
Sommerfeld Lagrangian submanifold in a closed integral Kähler manifold
(X,ω). Using Lemma 6, we fix a holomorphic Hermitian line bundle L→ X
with Chern curvature −2πiω and a parallel unit section s0 : Q→ L|Q. We
denote by ∇ the Chern connection. Let k be a positive integer. We will use
the following notation:
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• gk = kω(·, i·): the rescaled metric ;

• dk: the distance function to Q in the metric gk ;

• Bk(Q, c) = {dk < c}.

We recall that we endow the vector bundle
⊗r T ?X ⊗ Lk with the con-

nection induced by the Levi-Civita connection for the metric gk and the
connection on Lk — we still write this connection ∇. We define the Cr norm
of a section u : X → Lk by ‖u‖Cr,gk := sup |u|+

∑r
j=1 sup |∇ju|gk .

Since Q is a totally real submanifold, there are many C-convex functions
on a neighbourhood of Q having a Morse-Bott minimum at Q (namely the
squared distance function d2

1). In the next two lemmas construct such a
function under the form f0 = − log |s0|, where s0 is a section of L over a
neighbourhood of Q whose powers are asymptotically holomorphic (in a
sense made precise in lemma 18) and will be later modified into genuine
global holomorphic sections of Lk (see proposition 19).

Lemma 16. There exists a number c > 0 such that the restriction of the
line bundle L to N := B1(Q, c) admits a non-vanishing holomorphic sec-
tion s : N → L|N . Furthermore, given any integer r ≥ 1, the complex-valued
function s0/(s|Q) extends to a smooth function F : N → C such that the
form d′′F vanishes identically along Q together with its r-jet.

We will eventually choose r = n, the complex dimension of the mani-
fold X.

Proof. Since Q is a totally real submanifold of X, it has a neighbourhood
on which the squared distance function d2

1 is C-convex (see for instance
Proposition 2.15 in [CE12]), for sufficiently small c > 0, the neighbourhood
N is a Stein manifold. So the first assertion follows from results of Oka
[Oka39] and Grauert [Gra58].

For any positive integer r, [CE12, Proposition 5.55] shows that the
complex-valued function s0/(s|Q) extends to a smooth function F : N → C
such that, at each point of Q, d′′F vanishes together with its r-jet. �

The desired local section and local function are respectively:

• s0 := Fs : N → L|N , extending the section s0 : Q→ L|Q;

• f0 := − log |s0| : N → R.

Remark 17 (The real-analytic case). If the submanifold Q is real-
analytic, then one can take for s0 : N → L|N a holomorphic section. Indeed,
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one may ensure that the connection ∇ on the bundle L provided by Lemma
6 is real-analytic. In that case, the section s0 : Q→ L|Q is real-analytic and
can be complexified.

Lemma 18. Suppose that r ≥ 1. Then, the submanifold Q is a Morse-
Bott minimum for the function f0. Besides, there exists a constant C > 0
such that, for every integer k ≥ 1, the section sk0 : N → Lk|N satisfies the
following bounds on N :

|2πkω − ddc log |sk0||gk ≤ Ck−1/2dk,

e−Cd
2
k ≤ |sk0| ≤ e−d

2
k/C ,

|∇sk0|gk ≤ Cdke−d
2
k/C , ‖∇′′sk0‖C1,gk ≤ Ck−r/2.

Proof. We first observe that ∇s0 vanishes at every point p ∈ Q. Indeed,
TpX = TpQ⊕ i TpQ (becauseQ is totally real of middle dimension),∇s0(p) =
∇′s0(p) (because ∇′′s0(p) vanishes) and ∇s0(p) vanishes on TpQ (because
s0|Q is parallel). Thus, there exists a constant C > 0 such that |∇s0| ≤ Cd1.
Similarly, since the r-jet of ∇′′s0 vanishes identically on Q, there exists a
constant C > 0 such that |∇′′s0|g1 ≤ Cdr+1

1 and |∇∇′′s0|g1 ≤ Cdr1.
The function f0 = − log |s0| vanishes together with its 1-jet at p; indeed,

f0(p) = 0 and

df0(p) = 1
2d log(|s0|2) = 1

2 |s0|−2 d(|s0|2) = |s0|−2 Re〈∇s0, s0〉 = 0.

Moreover,

2πωp + (ddcf0)p = ddc log

∣∣∣∣ ss0

∣∣∣∣ = −id′d′′ log

∣∣∣∣ ss0

∣∣∣∣2 = −(id′d′′ log |F |2)p = 0

because the 1-jet of the form d′′F vanishes at p. Therefore, there exists
a constant C > 0 such that |2πω + ddcf0|g ≤ Cd1. Multiplicating this by
k gives the first bound of the statement. On the other hand, the Hessian
quadratic form (d2f0)p : TpX → R vanishes on TpQ and satisfies, for every
vector v ∈ TpX,

(d2f0)(v, v) + (d2f0)(iv, iv) = −(ddcf0)(v, iv) = 2πω(v, iv) = 2πg(v, v).

Hence, (d2f0)p is positive definite on i TpQ and Q is a Morse-Bott minimum
for f0. Since Q is compact, one can find a constant C > 0 such that, on
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some neighbourhood of Q for the metric g1:

C−1d2
1 ≤ f0 ≤ Cd2

1.

In other words, e−Cd
2
1 ≤ |s| ≤ e−d21/C . We obtain the second bound of the

statement by taking the k-th power. The third bound and the bounds

|∇′′sk0|g ≤ Ckdr+1
1 e−kd

2
1/C , |∇∇′′sk0|g ≤ Ckdr1(1 + kd2

1)e−kd
2
1/C

follow from this bound and the bounds on ∇s0, ∇′′s0 and ∇∇′′s0 by the
Leibniz rule applied to sk0. The two latter real-valued Gaussian functions of
d1 both reach their global maximum at Constant× k−1/2. By expressing
these bounds in the rescaled metric gk, we obtain the last bound of the
statement. �

The following is the main result of this section. Recall that the number
c is the size of the tube N = B1(Q,C).

Proposition 19. Let ρ ∈ (0, c). There exist holomorphic sections sk : X →
Lk such that, for every ε > 0 and for k ≥ k0(ε) sufficiently large, sk vanishes
transversally and ‖sk − sk0‖C1,gk < ε on B1(Q, ρ), the ρ-neighbourhood of Q
in the metric g.

We postpone the proof of proposition 19 and first explain how it implies
Theorem 2.

Proof of Theorem 2. We fix a radius ρ ∈ (0, c) and, by proposition 19, holo-
morphic sections sk : X → Lk: for every ε > 0 and for k ≥ k1(ε) sufficiently
large, the zero-set Y := s−1

k (0) is a (smooth) complex hyperplane section
and ‖sk − sk0‖C1,gk < ε on B1(Q, ρ). By the second and third inequalities in
lemma 18, there exists a constant C > 0 (independent of k and ε) such that,
for ε > 0 sufficiently small, on Bk(Q, ρ), the functions f1 := − log |sk| and
f0 = − log |sk0| satisfy

‖f1 − f0‖C1,gk < Cε.

Take a cutoff function βk : X → [0, 1] supported in Bk(Q, ρ), with βk = 1
on Bk(Q, ρ/2) and ‖βk‖C2,gk ≤ C ′ for some constant C ′ > 0 (independent of
k). The function f := βkf0 + (1− βk)f1 : X \ Y → R is exhausting, reaches
a Morse-Bott minimum at Q and its critical points remain in a compact sub-
set. (We remark that, for sufficiently small ε, this minimum is global. Indeed,
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on {βk = 1}, f = f0, and on {βk < 1}, f1 ≥ − log(|s0|+ ε) ≥ − log(e−ρ
2/C +

ε) > 0.)
Let us show that f is C-convex. First, since sk is holomorphic, −ddcf1 =

2kπω. Then, by the first bound of lemma 18, there exists a constant C ′′ > 0
such that ‖ddc(f0 − f1)‖C0,gk ≤ C ′′k−1/2. Hence,

‖2kπω + ddcf‖C0,gk = ‖ddc(βk(f0 − f1))‖C0,gk(4)

≤ ‖βk‖C ′′k−1/2 + ‖(f0 − f1)ddcβk‖
+ ‖d(f0 − f1) ∧ dcβk‖+ ‖dc(f1 − f0) ∧ dβk‖
≤ C ′′k−1/2 + 3(Cε)C ′.

Consequently, for every ε > 0 sufficiently small and for every k ≥ k0(ε) suf-
ficiently large, ‖2kπω + ddcf‖C0,gk < 2π. This inequality ensures that the
function f is C-convex. A C2-small perturbation of the function f with sup-
port in a compact subset of Y \Q is Morse away from Q and satisfies the
properties of Theorem 2. �

Our next aim is to prove proposition 19. The following lemma defines
global smooth sections of Lk which will be later modified into genuine holo-
morphic sections. The L2-norm of a section s : X →

⊗r T ?X ⊗ Lk for the
rescaled metric gk is defined by

‖s‖L2,gk :=

(∫
X
|s|2gk

(kω)n

n!

)1/2

.

Lemma 20. Let β : X → [0, 1] a function supported in N with β = 1 on a
tube B(Q, ρ). There exists a constant C > 0 such that the sections s0,k :=
βsk0 : X → Lk satisfy the following bounds:

‖∇′′s0,k‖C1,gk ≤ Ck−r/2, ‖∇′′s0,k‖L2,gk ≤ Ck(n−r)/2

Proof. The sections sk0 satisfy the bounds of Lemma 18 on N . Then, there
exists a constant C > 0 such that:

‖∇′′s0,k‖C0,g ≤ ‖dβ‖C0,g sup
{d1>ρ}

|sk0|+ sup
B(Q,2ρ)

|∇′′sk0|g

≤ C(e−k/C + k−(r−1)/2).
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In the same way:

‖∇∇′′s0,k‖C0,g ≤ ‖d2β‖C0,g sup
{d1>ρ}

|sk0|

+ 2‖dβ‖C0,g sup
{d1>ρ}

|∇sk0|g + sup
B(Q,2ρ)

|∇∇′′sk0|g

≤ Ce−k/C + Ce−k/C + Ck−(r−2)/2.

Since

‖∇′′s0,k‖L2,gk ≤ Ckn/2‖∇′′s0,k‖C0,gk ,

the C1 and the L2 norms, in the metric gk, satisfy the bounds of the state-
ment. �

We now use the following version of Hörmander’s L2-estimates:

Theorem 21 (cf. [Dem12, Theorem VIII.6.5] and the discussion
thereafter). Let (X,ω) be a closed integral Kähler manifold and L→ X a
holomorphic Hermitian line bundle with Chern curvature −2πiω. Set C :=
sup |Ricci(ω)

2π |g. Then, for every k > C and for every smooth section u : X →∧1,0 T ?X ⊗ Lk such that ∇′′u = 0, there exists a smooth section t : X → Lk

satisfying:

∇′′t = u and ‖t‖2L2 ≤
1

n(k − C)
‖u‖2L2 .

Applying this theorem to the sections s0,k of lemma 20, we obtain
smooth sections tk : X → Lk satisfying ‖tk‖L2,gk ≤ Ck(n−r−1)/2, and, for k
sufficiently large, ∇′′(s0,k − tk) = 0. The following lemma converts our L2-
estimates to C1-estimates.

Lemma 22. Let (X,ω) be a closed integral Kähler manifold, L→ X a
holomorphic Hermitian line bundle with Chern curvature −2πiω. There ex-
ists a constant C > 0 such that for every integer k and for every section
t : X → Lk:

‖t‖C1,gk ≤ C(‖∇′′t‖C1,gk + ‖t‖L2,gk).

Proof. The desired bound is local. At a given point p ∈ X, we will obtain it
on a gk-ball of uniform radius about p — where, for sufficiently large k, the
geometry of Lk compares with the trivial line bundle over the unit ball of
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euclidean space (Cn, g0). There exist constants R,C > 0 and a family (in-
dexed by p ∈ X, k ≥ 1) of holomorphic charts zkp : Bk(p,R)→ Cn centered
at p such that,

‖(zkp)?gk − g0‖C1,g0 ≤ Ck−1/2 over (zkp)(Bk(p,R)).(5)

We first explain this when k = 1. There exist constants R,C0 > 0 and
a family of holomorphic charts zp : B1(p,R)→ Cn centered at p with
||∇(z?pg)||C0 < C0, where the covariant derivative and the norm are taken
for the flat metric. Furthermore, after post-composing each chart by and
element of GL(n,C), we may assume that (z?pg)(p) = g0. Then, the family
zp satisfies the bound (5) with C = C0(1 +R). In the general case k ≥ 1, to

get the desired charts zkp, it suffices to post-compose each chart zp by the

centered dilation Cn → Cn of ratio k1/2.
Let us take a Hörmander holomorphic peak section at p (see for instance

[Don96, Proposition 34]): for sufficiently large k, there exists a holomorphic
section sp : X → Lk satisfying the bounds:

|sp(p)| = 1, inf
Bk(p,R)

|sp| ≥ C−1 and ‖sp‖C1,gk ≤ C,

for some constant C > 0 independent of p and k.
Let t be a section of Lk and p ∈ X. We set f := t

sp
. In view of the

identities ∇t = df sp + f∇sp, ∇∇t = d2f sp + 2df ⊗∇sp + f∇∇sp, and
the bounds on the peak sections, it suffices to show that for sufficiently
large k,

‖f‖C1(Bk(p,R/6)),gk ≤ C‖d
′′f‖C1(Bk(p,R)),gk + C‖f‖L2(Bk(p,R)),gk .

In the following, we will identify the domain of the chart zkp with its image
in Cn. We denote by B0(q,R) the ball of radius R at a point q in Cn and by
µ the Euclidean volume form on Cn. Let us prove the (standard) following
bound:

‖f‖C1(B0(0,R/5)),g0 ≤ C‖d
′′f‖C1(B0(0,R/2)),g0 + C‖f‖L2(B0(0,R/2)),g0 .

This will end the proof because, in view of the comparison (5) of the rescaled
metric gk with the flat metric g0, for sufficiently large k, we have the inclu-
sions Bk(p,R/6) ⊂ B0(0, R/5) and B0(0, R/2) ⊂ Bk(p,R), and there exists
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a constant C > 0 (independent on k and p) such that, over B0(0, R/2),

µ ≤ (1 + Ck−n/2) (kω)n

n! and (1− Ck−1/2)| · |g0 ≤ | · |gk ≤ (1 + Ck−1/2)| · |g0 .

On the one hand, [HW68, Lemma 4.4] gives:

‖f‖C0(B0(0,R/4)) ≤ C‖d′′f‖C0(B0(0,R/2)) + C‖f‖L2(B0(0,R/2)),g0 .

On the other hand, we have the following standard bound (cf. [CE12, Lemma
8.37] for instance):

‖f‖C1(B0(0,R/5)),g0 ≤ C‖d
′′f‖C1(B0(0,R/4)),g0 + C‖f‖C0(B0(0,R/4)).

In the two above estimates the constants depend only on R and n. Therefore
we obtain the desired bound. �

By lemmas 22 and 20, and using r = n, we obtain the following estimate:
for every ε > 0, for k ≥ k1(ε) sufficiently large,

‖tk‖C1,gk ≤ C(‖∇′′s0,k‖C1,gk + k−1/2‖s0,k‖L2,gk) ≤ Ck(n−r−1)/2 < ε/2.

On the other hand, by Bertini theorem, for sufficiently large k there exists
a holomorphic section sk : X → Lk vanishing transversally with

‖sk − (s0,k − tk)‖C1,gk < ε/2.

Therefore the sections sk satisfy the conclusions of proposition 19. This ends
the proof of Theorem 2.

Let us finish with a complex-geometric variant of Theorem 2:

Theorem 23. Let X be a closed complex manifold, a a Kähler class and
Q a closed submanifold. Suppose that Q is a Bohr-Sommerfeld Lagrangian
submanifold for some Kähler form in a. Then, there exists a holomorphic
line bundle L→ X with first Chern class a, and, for every sufficiently large
k, there exist a Hermitian metric hk on Lk with positive Chern curvature
and a holomorphic section sk : X → Lk vanishing transversally such that
the function − log |sk|hk

: X \ s−1
k (0)→ R has a Morse-Bott minimum at Q

and is Morse elsewhere.

Proof of Theorem 23. We fix a Kähler form ω ∈ a with ω|Q = 0 as well as
a Hermitian holomorphic line bundle L→ X with Chern curvature −2iπω
whose restriction to Q is a trivial flat bundle (by lemma 6). We fix ε, ρ > 0
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and repeat the construction of section 4 to obtain sections sk0, sk : X → Lk

with the properties stated in lemma 18 and proposition 19. We keep the
notation f0 = − log |sk0| and f1 = − log |sk|.

To construct the desired Hermitian metric on Lk, we will proceed as
in the final step of the proof of Theorem 2 but we will modify the initial
Hermitian metric hk of Lk instead of the function f1. Take a cutoff function
βk : X → [0, 1] with support in Bk(Q, ρ) with βk = 1 on Bk(Q, ρ/2) and such
that ‖dβk‖C1,gk < C ′, for some constant C ′ > 0 independent of k. We define
a new Hermitian metric on Lk by:

h′k = e2βk(f1−f0)hk.

The exhaustion function− log |sk|h′k : {sk 6= 0} → R equals f0 onBk(Q, ρ/2)
hence has a Morse-Bott local minimum at Q. Furthermore,

2kπω − ddc log |sk|h′k = −ddc(βk(f1 − f0)).

Therefore, by repeating the estimation (4), for every ε < ε0 sufficiently small
and for k ≥ k0(ε) sufficiently large, ‖2kπω − ddc log |sk|h′k‖C0,gk < 2π. This
inequality ensures that the function − log |sk|h′k is C-convex. Finally, there
exists a C2-small function ηk : X \ Y → R with compact support away
from Q such that, setting the Hermitian metric h′′k := e−2ηkh′k, the func-
tion − log |sk|h′′k = − log |sk|h′ + ηk is Morse away from Q.

In conclusion, the Hermitian metric h′′k and the sections sk : X → Lk

have the desired properties. �
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