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Bohr-Sommerfeld Lagrangian submanifolds
as minima of convex functions

ALEXANDRE VERINE

We prove more convexity properties for Lagrangian submanifolds
in symplectic and Kéhler manifolds. Namely, every closed Bohr-
Sommerfeld Lagrangian submanifold @ of a symplectic/Kihler
manifold X can be realised as a Morse-Bott minimum for some
‘convex’ exhausting function defined in the complement of a sym-
plectic/complex hyperplane section Y. In the Kéhler case, ‘convex’
means strictly plurisubharmonic while, in the symplectic case, it
refers to the existence of a Liouville pseudogradient. In particu-
lar, @ C X \ 'Y is a regular Lagrangian submanifold in the sense of
Eliashberg-Ganatra-Lazarev.

1. Introduction

Rational convexity properties of Lagrangian submanifolds were first discov-
ered in C? by Duval and then investigated further by Duval-Sibony, Gayet
and Guedj. In particular, generalising a result established by Duval-Sibony
[DS95] in C", Guedj [Gue99] obtained the following theorem: in a complex
projective manifold X, every closed Lagrangian submanifold @Q is rationally
convex, which means that X \ @ is filled up with smooth complex hypersur-
faces. More precisely, these complex hypersurfaces Y are very ample divisors
of arbitrarily large degrees, so their complements are affine manifolds and
possess exhausting C-convex functions f : X \ Y — R. In this work, which
was motivated by the study of vanishing cycles in global Picard-Lefschetz
theory, we give a necessary and sufficient condition for the existence of such
a function f admitting @) as a Morse-Bott (i.e. transversally non-degenerate)
minimum. This condition refers to a Kéahler class and can be more generally
stated as follows in the symplectic setting:

Definition 1. Let (X, w) be an integral symplectic manifold, meaning that
X is a closed manifold and w a symplectic form with integral periods. We say
that a Lagrangian submanifold @ satisfies the Bohr-Sommerfeld condition
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334 Alexandre Vérine

— or simply is Bohr-Sommerfeld — if the homomorphism Ha (X, Q,Z) — R
defined by integration of w takes its values in Z.

In the Ké&hler setting, our main result is:

Theorem 2. Let (X,w) be a closed integral Kdhler manifold and Q a closed
Lagrangian submanifold satisfying the Bohr-Sommerfeld condition. Then,
for every sufficiently large integer k, there exist a complex hyperplane section
Y of degree k in X avoiding Q and an exhausting C-convexr function f :
X\ Y — R that has a Morse-Bott minimum at QQ and is Morse away from
Q with finitely many critical points.

To be more explicit, there exists a holomorphic line bundle L — X with
first Chern class w such that the complex hypersurface Y is the zero-set of
a holomorphic section of some large tensor power of L.

In [AGMO1], Auroux-Gayet-Mohsen reproved Guedj’s above theorem
and extended it to the symplectic setting using the ideas and techniques de-
veloped by Donaldson in [Don96]. Theorem [2| also has a symplectic version,
whose statement below appeals to the following terminology:

o A symplectic hyperplane section of degree k in a closed integral sym-
plectic manifold (X, w) is a symplectic submanifold Y of codimension
2 that is Poincaré dual to kw.

e A function f: X \Y — R is w-convez if it admits a pseudogradient
that is a Liouville (i.e. w-dual to some primitive of w) vector field.

With this wording, Donaldson’s main theorem in [Don96] is that every closed
integral symplectic manifold contains symplectic hyperplane sections of all
sufficiently large degrees. Furthermore, according to Auroux-Gayet-Mohsen
[AGMOI1], such symplectic hyperplane sections can be constructed away
from any given closed Lagrangian submanifold. On the other hand, Giroux
showed in [Girl8] that, for all sufficiently large degrees, the complements
of Donaldson’s symplectic hyperplane sections admit exhausting w-convex
functions (and hence are Weinstein manifolds). Mixing these ingredients, we
obtain:

Theorem 3. Let (X,w) be a closed integral symplectic manifold and Q
a closed Bohr-Sommerfeld Lagragian submanifold of X. Then, for every
sufficiently large integer k, there exist a symplectic hyperplane section Y of
degree k in X avoiding Q and an exhausting w-convex function f : X \'Y —



Bohr-Sommerfeld Lagrangian submanifolds 335

R that has a Morse-Bott minimum at QQ and is Morse away from Q) with
finitely many critical points.

In [EGLIH], Eliashberg-Ganatra-Lazarev introduced the following defi-
nition: a Lagrangian submanifold @ in a Weinstein manifold (W, w) is ‘reg-
ular’ if there exists a Liouville pseudogradient on W that is tangent to @
(or equivalently there exists a primitive of w vanishing on ). This prop-
erty, which implies that @) is an exact Lagrangian submanifold, is known for
quite a long time to be a strong constraint. For instance, it is elementary
to see (without any holomorphic curve theory) that a closed Lagrangian
submanifold in C™ cannot be regular. In the same time, though we do not
have any example of a non-regular closed exact Lagrangian submanifold in a
Weinstein manifold, we do not know any general method to prove that exact
Lagrangian submanifolds should a prior: be regular. Theorems [2]and [3]show
that, in the complement of the complex and symplectic hyperplane sections
constructed, the Bohr-Sommerfeld Lagrangian submanifold @ is included in
the zero-set of a Liouville pseudogradient and is therefore regular.

In Section [2] we explain why the Bohr-Sommerfeld condition is necessary
for our purposes and describe some of properties of Bohr-Sommerfeld La-
grangians. In Section [3| we prove Theorem 3], applying the main technical re-
sult from [Gir18]. In Section [4] we prove Theorem [2]and a complex-geometric
analogue, using techniques that go back to [DS95].
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Lyon under the supervision of Emmanuel Giroux. I warmly thank him for
his help and support and Jean-Paul Mohsen for his comments on a draft
of this paper. This work was supported by the LABEX MILYON (ANR-
10-LABX-0070) of Université de Lyon, within the program “Investissements
d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research
Agency (ANR), and by the UMI 3457 of CNRS-CRM.

2. Bohr-Sommerfeld Lagrangian submanifolds

Let us first remark that Cieliebak-Mohnke proved, in [CM17, Thm. 8.3], a
version of the main theorem of [AGMOI] that is specific to Bohr-Sommerfeld
Lagrangian submanifolds.

The Bohr-Sommerfeld condition in Theorems ] and [3] is necessary, in-
deed:
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Lemma 4. Let (X,w) be a closed symplectic manifold and Q a Lagrangian
submanifold. Suppose that there exist a closed submanifold Y C X Poincaré-
dual to w avoiding QQ and X a primitive of w over X \'Y such that X|qg is
exact. Then @Q is a Bohr-Sommerfeld Lagrangian submanifold of (X,w).

Proof. Tt suffices to prove the following (well-known) claim: Let X be a
closed connected oriented manifold, ¥ C X a closed codimension 2 sub-
manifold and w a non-exact closed 2-form on X that is Poincaré-dual to Y.
Then, for every compact surface 3 C X with boundary disjoint from Y and
primitive A of w on X \ Y whose restriction to the submanifold @ is exact,

/w:E.Y.
)

We first suppose that Y is connected. For any embedded 2-disc D
intersecting Y transversely at one point, with sign ¢(D) = %1, set r:=
e(D)(Jpw— [3pA). The ‘residue’ r does not depend on the disc D. To
see this we will prove that, for two such discs D and D',

e(D’)/aD/)\—e(D)/aD)\:/Cw:e(D’)/D/w—e(D)/Dw.

Connectedness of Y gives an oriented cylinder C' in X \'Y bounding
—e(D")OD" and €(D)dD. On the one hand, by Stokes theorem,

On the other hand, the capped cylinder C 4 ¢(D)D — e(D’)D’ is a boundary
in X and w is closed so

JoreD) [w=eo) [ o=

Finally, the 'residue’ r is independent of D.

Let ¥ C X be a compact surface intersecting Y away from 0. By a
general position argument we may suppose the intersection is transverse.
For each point p; € X NY, take a disc D; C X that intersects Y only at p;.
Stokes theorem gives fz\u,v,D,v, w=-> faD,-, A, then:

(1) /Ew:E.YT‘.
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Since w is not exact, we can apply to some closed surface ¥y with
0.Y = on w # 0. This gives r = 1; so proves the claim.

Suppose Y is not connected. If dim X > 3, the cycle [Y] may be repre-
sented by a closed connected submanifold, namely an embedded (away from
0%) connected sum of the connected components of Y. If dim X = 2, we
may represent Y] by some integral multiple of any point. Consequently, we
reduce to the previous case. ]

Meanwhile, the Bohr-Sommerfeld condition can be easily obtained after
a modification of the symplectic form:

Lemma 5 (Approximation and rescaling). Let (X,w) be a closed sym-
plectic manifold and Q a closed Lagrangian submanifold. Then there exists
a small closed 2-form € and an integer k such that Q is a Bohr-Sommerfeld
Lagrangian submanifold of (X, k(w + ¢€)).

Proof. We argue as in [AGMO1]: the 2-form w vanishes on @ so, in view
of the exact sequence --- — H?(X,Q;R) — H*(X;R) — H?*(Q;R) — ---,
it is the image of a relative class ¢ € H?(X,Q;R). We approximate ¢ by
some 7 € H?(X,Q; Q) and take a small closed form e vanishing on Q that
represents ¢ — r. Then the closed form w — € is symplectic, vanishes on Q
and its relative periods — given by evaluation of r — are rational. O

We now give the characterisation of Bohr-Sommerfeld Lagrangian sub-
manifolds that we will use to prove Theorems [2] and

Lemma 6 (Hermitian flat line bundles). Let (X,w) be an integral
symplectic manifold and @ a submanifold. Then @ is a Bohr-Sommerfeld
Lagrangian submanifold if and only if there exist a Hermitian line bundle
L — X and a unitary connection V of curvature —2inw such that (L, V)|q is
a trivial flat bundle. If Q is a Bohr-Sommerfeld Lagrangian and, in addition,
(X,w) is Kdhler, then one can take for (L, V) a holomorphic Hermitian line
bundle with its Chern connection.

Proof. Suppose that @ is a Bohr-Sommerfeld Lagrangian submanifold. Since
w has integral periods, we may fix a lift ¢ of its cohomology class to H?(X, Z).
We take a Hermitian line bundle Ly — X with first Chern class ¢ and a uni-
tary connection Vg of curvature —2imw. The submanifold ) is Lagrangian
so the restriction (Lo, Vo)|q is a flat Hermitian bundle.

We will construct a flat Hermitian line bundle (L, Vi) — X whose re-
striction to @ is isomorphic to (Lg, Vo)|g. Then the desired line bundle will
be Lo ® Ly
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Recall that flat Hermitian line bundles over a manifold Y are classified
up to isomorphism by their holonomy representation H; (Y, Z) — U(1) (cf.
proposition 3.6.15 in [Thu97]). To construct the flat bundle (L, V1) it suf-
fices to extend the holonomy representation p : Hi(Q,Z) — U(1) of the flat
bundle (Lo, Vo)|g to a homomorphism H;(X,Z) — U(1).

We first show that p is trivial on the kernel of the group homomorphism
i:H1(Q,Z) — H;(X,Z) induced by inclusion. Consider the exact sequence
of the pair (X, Q):

S (X, Q:2) S H(Q,2) S H(X,Z) = - -

where 0 is the homomorphism given by the boundary of chains. It suffices
to show that pod = 0. Every a € Hy(X,Q;Z) can be represented by an
embedded surface ¥ C X whose (possibly empty) boundary is included in
Q. It then follows from (well-known) lemma |7| that:

@) p(9a) = exp <2m / w) .

Since the Lagrangian submanifold @ is Bohr-Sommerfeld, p(da) = 1.

Thus p factors through a homomorphism p: Hi(Q,Z)/keri — U(1)
where H;(Q, Z)/ keri injects into Hy (X, Z). Now U(1) is a divisible abelian
group so it is an injective Z-module (see for instance [Wei95, Corollary
2.3.2]). Hence p extends to H(X,Z).

In the case where (X,w) is Ké&hler, the above Hermitian line bundle
(Lo, Vo) can be chosen holomorphic with its Chern connection (see, e.g.,
[DemI2, Theorem 13.9.b]). On the other hand the flat line bundle (L;, V)
is isomorphic to the quotient of the trivial flat bundle X x C by the diago-
nal action of the fundamental group, acting on its universal cover X by deck
transformations and on C by the holonomy representation H; (X, Z) — U(1)
(cf. proposition 3.6.15 in [Thu97]). Therefore the trivial holomorphic struc-
ture and the trivial connection on X x C respectively induce a holomor-
phic structure and the Chern connection on L;. Consequently, the bundle
Ly® Lfl has the desired properties.

Conversely, let (X,w) be a symplectic manifold and a Hermitian line
bundle L — X with a unitary connexion of curvature —2imw such that
(L,V)|q is a trivial flat bundle. Then the (trivial) holonomy representa-
tion p of (L, V)|q satisfies (2)); so Q is a Bohr-Sommerfeld Lagrangian. [

Lemma 7 (Gauss-Bonnet). Let X be a manifold and L — X a Her-
matian line bundle with a unitary connection V whose curvature 2-form
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is written —2imw. Let ¥ be a connected oriented surface with non-empty
boundary and f : ¥ — X a map. The holonomy of V along the loop f|ox is

exp(2im [y f*w) € U(1).

Proof. We may assume X = 3 and f = Idy, by pulling back the line bundle
L by f. There is a unit section s : ¥ — L. In the trivialisation of L given by
s there is a primitive « of w such that the connection V reads d — 2iwra. By

Stokes theorem
/ we / o
> B)>

We may assume that 9% is connected. Take 3 : [0,1] — JX a parametrisa-
tion of 9X. For every unit parallel lift v : [0,1] — L of 5 and for all ¢ € [0, 1],

Y (t) = 2imy(t) (8*a)¢(0¢) hence

. - VO gy joe 7L
2 /82 = /[0,1] ) T80y

An exponentiation gives the result. O

3. As minima of w-convex functions

In this section we prove Theorem [3[so @ is a closed Bohr-Sommerfeld La-
grangian submanifold in a closed integral symplectic manifold (X,w). We
will adopt the following notation:

e J: a fixed w-compatible almost complex structure on X;

g = w(+,J+): the corresponding Riemannian metric;

Ao: the Liouville form on T7Q);

fo:p €T*Q + m|p|?> € R where | - | is the norm on each fibre of T*Q —
() induced by the restriction of the metric g to Q.

Using Weinstein’s normal form theorem, we identify a neighbourhood N of
Q C (X,w) with a tube {fp < ¢} around the zero section @ in (7*Q,d\o)
in such a way that, for all ¢ € @, the subspaces T;,Q,T;Q C T,(T*Q) are
g-orthogonal.

Using Lemma [6 we fix a Hermitian line bundle L — X with a unitary
connection V of curvature —27iw and a unit parallel section sy of the flat
bundle (L, V)|q.



340 Alexandre Vérine

The main characters of the next lemmata are the two following sections
of L‘ N-

e s: N — L|y: the extension of the section sy by parallel transport by
V along the rays in the fibres of T*Q;

e s0:=e fos: N — L|y (which is well-defined since fy|g = 0).

For any positive integer k, we denote by LF the k-th tensor power of
the line bundle L, whose induced connection has curvature —2kmiw, and
we set gr := kg the rescaled metric. For any integer r > 0, we endow the
vector bundle @" T*X ® L* with the connection induced by the Levi-Civita
connection for the metric g, and our connection on L¥; we still write this
connection V. We define the C” norm of a section u : X — L* by |ul¢r g, =
sup |u| +sup |Vulg, + - -+ +sup |V ulg, . The J-linear and —J-linear parts of
the connection V are written V’ and V”. .

For any 1-form A on X, we will denote by A the vector field that is
w-dual to A.

Lemma 8. There exists a constant C > 0 such that, for every integer k >
1, the function fo and the section sk satisfy the following bounds on N :

= =
Xo-(kfo) = CH(Xol2 + |d(kfo)l2), C7H(kfo)? < |d(kfo)lg, < Clkfo)'?,
Vstlg < Clkfo)/2e ™o, |V258lcog, < C and ||V"sf||c1q, < Ck™V2

Proof. By rescaling, it suffices to establish the first two bounds of the state-
ment for k£ = 1. The function fj is Lyapounov for the vector field Ag. This
implies the first bound. The submanifold @ is a Morse-Bott minimum for
fo, hence the second bound.

Since sg = e fos with s parallel,

Vs = —dfoeffgs 4 e fovyyg = —(df() + 27ri)\0)80

Therefore, Vs vanishes identically on the zero section. Hence, there exists
a constant C' > 0 such that |Vsp|y < Cfo . Moreover, the 1—Jet_(>)f Vs
vanishes at each point of ). Indeed, by the identity AQ = —w(, Ag) (here
k = 1) and by J-linearity of the 1-form g(-, \g) — iw(-, Ag),

V'sg = =27 (dfo + MO) so = —2m($ — g(., 20)) 50,

%
so it suffices to show that the 1-jet of the 1-form d—fo — ¢g(+, A\o) vanishes iden-
tically along Q. Its O-jet clearly vanishes, and, for each vector v = (v1,v2)
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in the g-orthogonal sum T(T*Q)|g = TQ & T*Q,

d(g(-, 20))(v,0) = g(v,v.20) = g(v,v2) = g(va, v3) = (d2fo) (v, v) /(27),

hence its 1-jet vanishes too. Consequently, there exists a constant C' > 0
such that |[VV"sglg < C’fg/2 and |V"sgly < C fo. Therefore, by the Leibniz
rule, we obtain the desired bounds on Vsk and V2sk, and the two bounds
V5|50 < CKV2 foe™kFo VIV sk, < (lcfo?’/2 + fol/Q)C’e*kf“. The two latter

real-valued Gaussian functions of fy both reach their global maximum at
Constant x k! so we obtain the last bound of the statement. 0

In particular, our sections slg are asymptotically holomorphic in the fol-

lowing sense:

Definition 9 (Donaldson, Auroux). Sections s;: X — L* are called
asymptotically holomorphic if there exists a constant C' > 0 such that for
every positive integer k, | V"sglc1g < CEk™Y2 and ||sp|cz 4 < C.

The following result was already observed in Auroux-Gayet-Mohsen
[AGMO1, Remark p.746]. Recall that our neighbourhood N of @ is iden-
tified with the cotangent tube {fy < c}.

Lemma 10. Let3: N — [0,1] be a compactly supported function (indepen-
dent of k) with 8 =1 on a tube {fo < b}. Then, the sections sq ) := Bsk :
X — L* are asymptotically holomorphic.

Proof of lemma[10 The sections slg satisfy the estimates of lemma |8 on V.
Then, there exists a constant C' > 0 such that:

IV"s0,kllco,g. < lldBlico.g, o |56] + 11V s5 llco .
0>

< Ck Y27tk 4 oK1,
Similarly:

IVV”sokllcog, < 1d%Bllcog, sup |sg]
fo>b

+2[|dBllcog, sup |Vsglg, + [IVV"s6llco g
{fo>b}
< Ck~le b 4 20k~ V2 (CKV2M e bR) 4 Ck 12,

Hence, there exists a constant C' > 0 such that, for all k, ||V"sqx|lc1,g. <

Ck~1'/2. In the same way, we obtain the bound [|so||cz,4 < C. O
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Giroux’s theorem below provides transverse perturbations of our sec-
tions sg , with the following property.

Definition 11 (Giroux). Let x € (0,1). A section s: X — L¥ is called
k-quasiholomorphic if |V”s| < k|V’s| at each point of X.

Theorem 12 ([Girl8, Proposition 13]). Lete >0, x € (0,1) and soy :
X — LF asymptotically holomorphic sections. Then, for any sufficiently large
integer k, there exists a section sy : X — LF with the following properties:

e 51 vanishes transversally;
® 511 15 K-quastholomorphic;

® [Isik—sokllcrg <€

o —loglsikl: {pe€ X, sik(p) #0} = R is a Morse function.
Let us now bring the previous facts together to prove Theorem [3]

Proof of Theorem[3 Using lemma we fix sections sgj : X — LF with
sok = 5§ on a tube {fo < b}. We then fix € € (0,1) and take sections sy, :
X — L* provided by Theorem The subset Y := {51, =0} C (X,w) is
a symplectic hyperplane section of degree k (because of the first two prop-
erties of Theorem see for instance proposition 3 in [Don96]) avoiding
the submanifold @ (because |[sp] =1 on @ and by the third property of
Theorem .

It remains to construct an w-convex exhaustion f: X \ Y — R that has
a Morse-Bott minimum at @ and is Morse away from ) with finitely many
critical points. In order to do so, we will glue the function fo := kfo: N —
R, which clearly has a Morse-Bott minimum at ), with the exhaustive func-
tion f1 1 := —log|s1 x|, which is Morse (by the last property of Theorem
and has finitely many critical points (because s j, vanishes transversally).

Before gluing, let us note that, by lemma |8, fo 1 is Lyapounov for the
Liouville vector field /\_0> with Lyapounov constant in the metric g; that is
independent of k. On the other hand, a Liouville pseudogradient for fi
is provided by Giroux’s following lemma. In order to state it, we set Aq
the real 1-form such that, in the unitary trivialisation of L*| x\y given by
s1,k/|s1,k|, the connection V reads d — 2kmiA; . We also recall that the

notation A stands for the w-dual vector field to a given 1-form .
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Lemma 13 ([Girl8, Lemma 12]). Let s € (0,1) and s;5: X — LF a

k-quasiholomorphic section. Then

1— k2
2

—
/\1,k‘f1,k > %ﬁ

—
(Iaf1al, + A0l )

Hence the function f; j is Lyapounov for the Liouville vector field )\—1,_;:, with
a uniform Lyapounov constant in the metric g.

Finally, the desired function f is constructed in the following lemma, by
gluing, on an annular region {a < fo; < b} about @, the standard (Morse-
Bott) Weinstein structure (Ao, fox) on 7*Q with the Weinstein structure
(A1 ks f1,k) given by Giroux’s above theorem and lemma. O

In the following lemma, the number ¢ still refers to the size of our cotan-
gent tube {fy < ¢} about Q.

Lemma 14. Letk € (0,1) and a,b € (0,¢) with a < b. Then, for every suf-
ficiently small e € (0,1) and for every k > ko(e) sufficiently large, there exist

a Liouville vector field A on X;Y and a Lyapounov fmgtzon f ﬂ Y —

- —
R for X such that (X, f) = (Ao, fox) on {for <a}, (A, f)= Ak fre)
away from {for < b} and f has no critical point on {a < fo < b}.

Proof. We will omit the indices k£ in the proof.
For now, we admit the following two facts: there exists a constant C' > 0
(independent of k, €) such that

(3) 1 fo — filler(ny,g, < Ce

and, for sufficiently small € > 0, the form A; — Ag is exact on N.

We will glue the Weinstein structures in two steps. Let us fix two num-
bers a < ay < b_ <b. For e < min(%z%, %), the annular region {a <
fo < b} contains the level sets {f; = a_} and {f; = b1} (by the bound (3)).

First, let us glue the functions in the inner collar {fy > a} N{f1 < a_};
more precisell, let us construct a Lyapounov function f: X — R for the
vector field A\g with f = ﬁ; on {fo <a} and f = fi away from {f; < ay}.
It suffices to show that Ag is transverse to the level sets of fy and f; £>1
this inner collar; indeed, increasing from a to b along each trajectory of Ag
gives a function f transverse to the level sets of fy and fi. There exists a
constant C’ > 0 such that ||dfoll4, > C’ (by lemma. By the latter bound
and , ldfillg, > C" — Ce._S>o, by the Lyapounov cogditions, there exists

a constant C’ > 0 such that \g.fo > C’ (in particular )\ is transverse to the
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level sets of fy) and )T1>.f1 > ('. By the latter bound and again , /\_0> is
transverse to the level sets of fj.

Second, we glue the Liouville vector fields in the outer collar {a_ < f1 <
bt} (where f = f1); more precisely we construct a Liouville vector field A
which is transvg)se to the level sets of the imction f in the outer collar and
coincides with A\g on {f1 < a_} and with A\; outside {f1 < by }. The 1-form
)3 — )3 is exact (by our initial claim) so we have a function H such that
A1 — Ao = dH. Let us fix a cutoff function 8 : R — [0, 1] such that 8 = 0 near
R<(p—q)/2 and B =1 near Ry; and set 81 := o fi. Then the vector field

A=)+ i(BIH is Liouville and satisfies the desired boundary conditions.
1\_/I>oreove5 B is tangent to the level sets of f; and,_l;y the above jaragrﬂ)h,
’\i and \Aj are positively transverse to these, so A = (1 — 81)\o + S1A1 +
(1 H is transverse to these too.

It remains to prove the two initial claims. On the one hand, fo — f1 =
Relog(s1sy ') and, since u; := s;/|s;| satisfies Vu; = —2kmiju;,
Al — X = ﬁ (u61Vu0 — uf1Vu1) = ﬁdlog(uoufl) = %darg(slsal).
On the other hand, ||log(s1sy%)|lc1e < Ce; this is a consequence of the
three bounds |[s1 — sollc1,g, < €, inf [so| > e, and ||Vsgl/co g, < Constant
(from lemma [§]). In particular we obtain the bound and for e sufficiently
small, || arg(s155")|lco < 7/3 s0 A1 — Ag is exact. O

Remark 15 (An alternative proof of the regularity of Q C X \Y).
For sufficiently large k, it is possible to choose our k-quasiholomorphic per-
turbation sy 5 : X — LF (vanishing transversally and away from Q) of 50,k in
such a way that the quotient function (s x/sox)|q is real-valued. The latter
property, which can be achieved by implementing techniques from Auroux-
Munoz-Presas’ [AMPO05] in thﬂ%roof of [Gir18), Proposition 13], implies that
the Liouville pseudogradient A; j of the function —log|s; | is tangent to Q.

4. As minima of C-convex functions

This section deals with the proof of Theorem 2] so @ is a closed Bohr-
Sommerfeld Lagrangian submanifold in a closed integral Kéhler manifold
(X,w). Using Lemmal6] we fix a holomorphic Hermitian line bundle L — X
with Chern curvature —27iw and a parallel unit section s : Q@ — L|g. We
denote by V the Chern connection. Let k be a positive integer. We will use
the following notation:
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e gr = kw(-,i-): the rescaled metric ;
e dj: the distance function to @ in the metric g ;
e Bi(Q,c) ={dr < c}.

We recall that we endow the vector bundle " T*X ® L* with the con-
nection induced by the Levi-Civita connection for the metric g; and the
connection on L* — we still write this connection V. We define the C" norm
of a section u : X — L¥ by |jullcr g, = sup |u| + D j—15Up |Viulg, .

Since @ is a totally real submanifold, there are many C-convex functions
on a neighbourhood of @ having a Morse-Bott minimum at @ (namely the
squared distance function d?). In the next two lemmas construct such a
function under the form fy = —log|sg|, where sg is a section of L over a
neighbourhood of @ whose powers are asymptotically holomorphic (in a
sense made precise in lemma and will be later modified into genuine
global holomorphic sections of L* (see proposition .

Lemma 16. There exists a number ¢ > 0 such that the restriction of the
line bundle L to N := B1(Q,c) admits a non-vanishing holomorphic sec-
tion s : N — L|n. Furthermore, given any integer r > 1, the complez-valued
function so/(s|g) extends to a smooth function F': N — C such that the
form A" F wvanishes identically along Q) together with its r-jet.

We will eventually choose r = n, the complex dimension of the mani-
fold X.

Proof. Since @ is a totally real submanifold of X, it has a neighbourhood
on which the squared distance function d? is C-convex (see for instance
Proposition 2.15 in [CE12]), for sufficiently small ¢ > 0, the neighbourhood
N is a Stein manifold. So the first assertion follows from results of Oka
[Oka39] and Grauert [Grab§].

For any positive integer r, [CEI2, Proposition 5.55] shows that the
complex-valued function so/(s|qg) extends to a smooth function F': N — C
such that, at each point of @), d”F vanishes together with its r-jet. O

The desired local section and local function are respectively:
e s0:=Fs: N — L|y, extending the section sp : Q — L|g;

o fo:=—loglso|: N — R.

Remark 17 (The real-analytic case). If the submanifold @ is real-
analytic, then one can take for so : N — L|y a holomorphic section. Indeed,
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one may ensure that the connection V on the bundle L provided by Lemma
|§| is real-analytic. In that case, the section sg : ) — L|g is real-analytic and
can be complexified.

Lemma 18. Suppose that r > 1. Then, the submanifold Q is a Morse-
Bott minimum for the function fy. Besides, there exists a constant C > 0
such that, for every integer k > 1, the section slg : N — L¥|x satisfies the
following bounds on N :

2kw — dd®log |sk ||, < Ck™Y2dy,
e—Cdi S ‘Sloi” S e—di/C’,

Vshlg, < Cdpe™ %O ||V skl g, < CET2.

Proof. We first observe that Vsg vanishes at every point p € Q. Indeed,
T,X =T,Q & iT,Q (because Q is totally real of middle dimension), Vso(p) =
V'so(p) (because V"sg(p) vanishes) and Vso(p) vanishes on T,Q (because
s0|g is parallel). Thus, there exists a constant C' > 0 such that |Vsg| < Cd;.
Similarly, since the r-jet of V”sy vanishes identically on @, there exists a
constant C' > 0 such that |[V"sg|,, < Cdjt and |[VV”sg|, < Cdj.

The function fy = —log |sp| vanishes together with its 1-jet at p; indeed,
fo(p) =0 and

dfo(p) = 3dlog(lsol*) = 3ls0/7* d([s0[*) = |so| > Re(Vso, 50) = 0.

Moreover,

2

i = —(id'd" log | F|?), = 0

271wy, + (dd€ fy), = ddlog
S0

= —id'd" log

S
S

because the 1-jet of the form d”F vanishes at p. Therefore, there exists
a constant C' > 0 such that |2rw + dd€fy|, < Cdy. Multiplicating this by
k gives the first bound of the statement. On the other hand, the Hessian
quadratic form (d2fp), : T,X — R vanishes on T,Q and satisfies, for every
vector v € Tp X,

(A% fo)(v,v) + (d%fo)(iv, iv) = —(dd°fo) (v, iv) = 2mw(v,iv) = 2mg(v,v).

Hence, (d%f), is positive definite on i 7,Q and @Q is a Morse-Bott minimum
for fp. Since @) is compact, one can find a constant C' > 0 such that, on
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some neighbourhood of @ for the metric g;:
Cld? < fy < Cds.

In other words, e~C% < |s| < e~9/C. We obtain the second bound of the
statement by taking the k-th power. The third bound and the bounds

IV"sly < Ckd e ™4/ |V st|, < Chd] (1 + kd3)e /¢

follow from this bound and the bounds on Vsg, V”sq and VV”sq by the
Leibniz rule applied to sk. The two latter real-valued Gaussian functions of
dy both reach their global maximum at Constant x k~'/2. By expressing
these bounds in the rescaled metric g;, we obtain the last bound of the
statement. 0

The following is the main result of this section. Recall that the number
¢ is the size of the tube N = B1(Q, C).

Proposition 19. Let p € (0,c). There exist holomorphic sections sy, : X —
LF such that, for every e > 0 and for k > ko(€) sufficiently large, sy vanishes
transversally and ||sk — s§|lc1 g, < € on B1(Q,p), the p-neighbourhood of Q
in the metric g.

We postpone the proof of proposition [I9)and first explain how it implies
Theorem [21

Proof of Theorem[3. We fix a radius p € (0, ¢) and, by proposition holo-
morphic sections s : X — L¥: for every € > 0 and for k > k; (¢) sufficiently
large, the zero-set Y := s,;l(O) is a (smooth) complex hyperplane section
and ||s — s§llc1 g, < € on B1(Q, p). By the second and third inequalities in
lemma [18] there exists a constant C' > 0 (independent of k and €) such that,
for € > 0 sufficiently small, on B(Q, p), the functions f; := —log |si| and
fo = —log |sk| satisfy

v = foller g < Ce.

Take a cutoff function gy : X — [0, 1] supported in By (Q, p), with S = 1
on Bi(Q, p/2) and ||Bx|lc2,g, < C’ for some constant C’ > 0 (independent of
k). The function f := Brfo+ (1 — Bk)f1 : X \ Y — R is exhausting, reaches
a Morse-Bott minimum at () and its critical points remain in a compact sub-
set. (We remark that, for sufficiently small e, this minimum is global. Indeed,
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on By = 1}, f = fo, and on {B, <1}, fi = —log(|so| +€) > —log(e "/ +
€)>0.)

Let us show that f is C-convex. First, since si, is holomorphic, —dd€f; =
2kmw. Then, by the first bound of lemma/[L8] there exists a constant C” > 0
such that ||dd®(fo — f1)|lcog. < C"k1/2. Hence,

(4)  |2k7w + dd°fleo g, = 1dd°(Br(fo — f1))llco g,
< 1BllC"E2 + [|(fo — f1)dd Bk |
+ 1 d(fo — f1) Ad°Bll + 1d°(f1 — fo) A dBgl|
< C"ETY2 £ 3(Ce)C.

Consequently, for every e > 0 sufficiently small and for every k > ko (e) suf-
ficiently large, |[2kmw + dd®f||cog, < 2m. This inequality ensures that the
function f is C-convex. A C?-small perturbation of the function f with sup-
port in a compact subset of Y \ @ is Morse away from @ and satisfies the
properties of Theorem O

Our next aim is to prove proposition The following lemma defines
global smooth sections of L*¥ which will be later modified into genuine holo-
morphic sections. The L2-norm of a section s : X — ®" T*X ® L* for the
rescaled metric g is defined by

(k; ) 1/2
slliege = ( A ) .
X

Lemma 20. Let 5: X — [0,1] a function supported in N with 3 =1 on a
tube B(Q,p). There exists a constant C > 0 such that the sections sgj, :=
Bsk : X — LF satisfy the following bounds:

19" s0ller g0 < CR/2, V" s0llieg, < CHO/

Proof. The sections sk satisfy the bounds of Lemma [L§ on N. Then, there
exists a constant C' > 0 such that:

IV s0.kllcog < [[dBlleog sup [s§l+ sup [V”sfl,
{di>p} B(Q,2p)

< C(efk/C + kf(rfl)/2).
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In the same way:

IVY”s0,kllcog < [[d*Blleog sup |[sg]
di>p}
+2[[dB]co,y sup |v'9}(§|97L sup |vv”3§g
di>p} B(Q,2p)

< Ce */C 4 Ce*/C 4 o)~ (=22,
Since
V" s0,k L2 g < Ck?n/2||v”307k“c°:9k’

the C! and the L? norms, in the metric gy, satisfy the bounds of the state-
ment. U

We now use the following version of Hérmander’s L2-estimates:

Theorem 21 (cf. [Deml12, Theorem VIII.6.5] and the discussion
thereafter). Let (X,w) be a closed integral Kihler manifold and L — X a
holomorphic Hermitian line bundle with Chern curvature —2miw. Set C :=
sup ]Rm;i;r(w)b. Then, for every k > C and for every smooth section u : X —
A T*X @ L* such that V"u = 0, there exists a smooth section t : X — L
satisfying:

V't =uand [t} < - [JullF- -

E-0)
Applying this theorem to the sections sgj of lemma we obtain
smooth sections t : X — L¥ satisfying ||tx||r2 o, < Ck™7~U72 and, for k
sufficiently large, V”(sox — tx) = 0. The following lemma converts our L%
estimates to Cl-estimates.

Lemma 22. Let (X,w) be a closed integral Kdihler manifold, L — X a
holomorphic Hermitian line bundle with Chern curvature —2miw. There ex-

ists a constant C > 0 such that for every integer k and for every section
t: X — LF:

[tllerg < CUIV tler g, + tlL2,g,)-
Proof. The desired bound is local. At a given point p € X, we will obtain it

on a gx-ball of uniform radius about p — where, for sufficiently large k, the
geometry of L¥ compares with the trivial line bundle over the unit ball of
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euclidean space (C", gp). There exist constants R,C' > 0 and a family (in-
dexed by p € X,k > 1) of holomorphic charts g’; : Bi(p, R) — C" centered
at p such that,

(5) 1(zp)+95 = gollergo < CE™'/2 over (z3)(By(p, R)).

We first explain this when k = 1. There exist constants R,Cy > 0 and
a family of holomorphic charts z,: Bi(p, R) — C" centered at p with
[V (259)|lco < Co, where the covariant derivative and the norm are taken
for the flat metric. Furthermore, after post-composing each chart by and
element of GL(n, C), we may assume that (z;9)(p) = go- Then, the family
2, satisfies the bound (5) with C' = Cp(1 + R). In the general case k > 1, to
get the desired charts zp, it suffices to post-compose each chart z, by the
centered dilation C" — C" of ratio k!/2.

Let us take a Hormander holomorphic peak section at p (see for instance
[Don96l, Proposition 34]): for sufficiently large k, there exists a holomorphic
section s, : X — L* satisfying the bounds:

S =1, inf |s,|>C7and ||s,|cr, < C,
|sp(P)] Bk(p,R)‘ pl = [[spller g

for some constant C' > 0 independent of p and k.

Let ¢t be a section of L¥ and p € X. We set f:= é In view of the
identities Vt = df s, + fVs,, VVt =d%f s, +2df ® Vs, + fVVs,, and
the bounds on the peak sections, it suffices to show that for sufficiently
large k,

I fller (B v.r/6)),0 < CIA" fller (B v,r))ge + CIFIL2(Bo 0, R)) g1

In the following, we will identify the domain of the chart g’; with its image
in C™. We denote by By(q, R) the ball of radius R at a point ¢ in C™ and by
u the Euclidean volume form on C™. Let us prove the (standard) following
bound:

[ fller(Bo0,r/5)).90 < CNA” fller(Bo(0,7/2)),90 + CllFIL2(Bo0,7/2)).60-

This will end the proof because, in view of the comparison of the rescaled
metric g; with the flat metric gg, for sufficiently large k£, we have the inclu-
sions By(p, R/6) C By(0,R/5) and By(0, R/2) C Bi(p, R), and there exists
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a constant C' > 0 (independent on k and p) such that, over By(0, R/2),

0°

p<(1+ Ckinﬂ)% and (1 — Ck71/2)| oo Lol (1 + Ck71/2)| “|g
On the one hand, [HW68, Lemma 4.4] gives:

I flleo(Bo(0,2/4y) < CNA” fllco(y0,r/2)) + Cllf Iz (Bo(0,7/2)).00

On the other hand, we have the following standard bound (cf. [CE12, Lemma
8.37] for instance):

1 fller(Bo0,8/5)).90 < CNA" Fller (Bo0,7/4)),90 + CllF lco(so(0,7/4))-

In the two above estimates the constants depend only on R and n. Therefore
we obtain the desired bound. 0

By lemmas 22| and 20 and using r = n, we obtain the following estimate:
for every € > 0, for k > ki (e) sufficiently large,

ltrllerge < CUV"sokllcr g + k2 llsopllieg) < CRT D2 < /2.

On the other hand, by Bertini theorem, for sufficiently large k there exists
a holomorphic section sj : X — L* vanishing transversally with

st — (sok — tr)ller,g. < €/2.

Therefore the sections s satisfy the conclusions of proposition This ends
the proof of Theorem
Let us finish with a complex-geometric variant of Theorem

Theorem 23. Let X be a closed complex manifold, a a Kdhler class and
Q@ a closed submanifold. Suppose that Q) is a Bohr-Sommerfeld Lagrangian
submanifold for some Kdhler form in a. Then, there exists a holomorphic
line bundle L — X with first Chern class a, and, for every sufficiently large
k, there exist a Hermitian metric hy on LF with positive Chern curvature
and a holomorphic section s : X — L* wanishing transversally such that
the function —log|sk|n, : X \ s, (0) — R has a Morse-Bott minimum at Q
and is Morse elsewhere.

Proof of Theorem [23 We fix a Kihler form w € a with w|g = 0 as well as
a Hermitian holomorphic line bundle L — X with Chern curvature —2imw
whose restriction to @ is a trivial flat bundle (by lemma @ We fix e,p >0
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and repeat the construction of section [4| to obtain sections 3’5 sk X — LF
with the properties stated in lemma [I§ and proposition We keep the
notation fo = —log |sk| and f; = — log|sy|.

To construct the desired Hermitian metric on L*, we will proceed as
in the final step of the proof of Theorem [2| but we will modify the initial
Hermitian metric h* of L* instead of the function f;. Take a cutoff function
Bk : X — [0, 1] with support in B(Q, p) with 8 = 1 on B (@, p/2) and such
that [|dSgllc1 g, < C’, for some constant C’ > 0 independent of k. We define
a new Hermitian metric on L* by:

h?{ — 2Be(fi=fo) k.

The exhaustion function —log |sg[n; : {sk # 0} — R equals fo on B(Q, p/2)
hence has a Morse-Bott local minimum at @). Furthermore,

2knw — dd®log |s|n, = —dd°(Be(f1 — fo))-

Therefore, by repeating the estimation , for every € < ¢q sufficiently small
and for k > ko(e) sufficiently large, ||2knw — dd®log [sg|n [lco.g, < 27. This
inequality ensures that the function —log|[sy|n; is C-convex. Finally, there
exists a C2-small function 7 : X \ Y — R with compact support away
from @ such that, setting the Hermitian metric h} := e~2"h}, the func-

tion —log |sg|ny = —log |sk|n + mx is Morse away from Q.
In conclusion, the Hermitian metric k] and the sections s, : X — LF
have the desired properties. O
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