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K-theoretic invariants of Hamiltonian

fibrations

Yasha Savelyev and Egor Shelukhin

We introduce new invariants of Hamiltonian fibrations with values
in the suitably twisted K-theory of the base. Inspired by techniques
of geometric quantization, our invariants arise from the family an-
alytic index of a family of natural Spinc-Dirac operators. As an
application we give new examples of non-trivial Hamiltonian fibra-
tions, that have not been previously detected by other methods.
As one crucial ingredient we construct a potentially new homotopy
equivalence map, with a certain naturality property, from BU to
the space of index 0 Fredholm operators on a Hilbert space, using
elements of modern theory of homotopy colimits.
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1. Introduction and main results

Since they were introduced in [18], Hamiltonian fibrations have been the
subject of active research in symplectic topology in the last few decades, see
e.g. [18, 22, 23, 28, 29, 36, 41, 45, 47–49] and [38]. A Hamiltonian fibration
is a topological fiber bundle M over a base space1 B, with fiber given by
a symplectic manifold (M,ω), and structure group reduced to the group
Ham(M,ω) of Hamiltonian diffeomorphisms of (M,ω).

One of the most basic examples of a Hamiltonian fibration is given by
the projectivization P(E)→ B of a complex vector bundle E → B of rank
r over B. Of course if P(E) is non-trivial as a complex projective-linear
bundle, it is not immediate that it is non-trivial as a Hamiltonian fibration.
Reznikov showed essentially the following by a suitable infinite-dimensional
Chern-Weil theory in [45] (since then a simpler, but ultimately equivalent,
proof was found using characteristic classes of Hamiltonian fibrations — see
[37, Section 2.3]).

Theorem 1.1. Let E be a complex vector bundle on a topological space B.
If for each complex line bundle U on B,

ch(E ⊗ U) 6= ch(Cr),

where Cr denotes the trivial vector bundle of the same rank as E, and ch
denotes the Chern character, then P(E) is non-trivial as a Hamiltonian
fibration.

In this paper we study Hamiltonian fibrations further, developing new
invariants and obtaining new results, inspired by geometric quantization. In
particular, our construction yields the following lift of Reznikov’s result to
K-theory, providing new examples of non-trivial Hamiltonian fibrations.

Theorem 1.2. Let E be a complex vector bundle on a topological space B.
If for each complex line bundle U on B, E ⊗ U is not stably trivial, then
P(E) is non-trivial as a Hamiltonian fibration.

1In this work a topological space will always be a paracompact Hausdorff topo-
logical space, with the associated category denoted by Top.
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This result is stronger than Theorem 1.1, since the condition here can
be rewritten as

[E ⊗ U ] 6= [Cr]
in K0(B), for all U ∈ H2(M,Z), and the Chern character provides an iso-
morphism between the rational K-theory and the rational cohomology of B.
This result is strictly stronger, as follows rather quickly from the fact that
there exist complex vector bundles E that are not stably trivial, and yet
all their Chern classes vanish. See specific examples in Section 5. Finally,
to draw a classical analogy to this result, the projectivization of a complex
vector bundle is trivial as a PU(r)-bundle if and only if the vector bundle is
the twist by a line bundle of a trivial vector bundle. This is immediate from
the central extension

0→ S1 → U(r)→ PU(r)→ 1.

Our new invariants of Hamiltonian fibrations are based on the observa-
tion that the theory of geometric quantization, when applicable, provides for
each k ∈ Z>0 a homotopy-canonical (twisted, in general) family of elliptic
differential operators on certain natural Hilbert bundles over B. The ana-
lytic family index of this elliptic family furnishes the required invariants with
values in the K-theory of the base. The family being homotopy-canonical fol-
lows from the contractibility of the space of ω-compatible almost complex
structures on M, a fact that is well-known, yet crucial, also in the theory of
pseudo-holomorphic curves.

To describe these invariants in more detail we recall a few facts about
geometric quantization. First of all, the basic object that we work with is a
prequantization space, which can be described as a 4-tuple M̂ = (M,L,∇, ω)
for L a complex Hermitian line bundle over a symplectic manifold (M,ω)
with a unitary connection ∇ having curvature2 R(∇) = −iω. Note that in
order for such (L,∇) to exist on a symplectic manifold (M,ω), the coho-
mology class of the symplectic form must be representable by a class with

2This sign convention, while common in the quantization literature, is opposite
to the one that is standard in the symplectic topology literature. In particular,
the dual tautological line bundle O(1)→ CP r with its canonical Chern connection,
determined by the standard holomorphic and Hermitian structures, is a prequanti-
zation ĈP r of CP r with the standard Fubini-Study symplectic form ωFS . To make
this sign convention compatible with the usual statements on Hamiltonians and
the automorphism group of the prequantization, one should use the sign conven-
tion ιXω = dH, for the Hamiltonian vector field X of the Hamiltonian function H
on M.
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integer coefficients. We call such symplectic manifolds quantizable and shall
restrict our consideration to this class.

In this setting one constructs for each ω-compatible almost complex
structure J, and k ∈ Z>0 a certain first order elliptic differential operator
on the spaces of L⊗k-valued (0, ∗)-differential forms on M , called the Spinc

Dirac operator Dk. We write Dk
+ for the restriction of D to differential

forms with even degree. Considering the formal difference of vector spaces,
the index of Dk

+ can be thought to be a Z≥0-graded, virtual ”Hilbert space”

Hk(M̂) = [kerDk
+]− [cokerDk

+].

This is what we mean by quantization in this paper, and the idea for this
K-theoretic version of quantization is usually attributed to Bott (cf. [8]). Al-
though we note that there are more detailed versions of quantization having
various nice properties (cf. [31] and the references therein).

The main setup for family quantization in this paper is that of a contin-
uous family of prequantization spaces parametrized by a topological space
B, or more specifically, that of prequantum fibrations: structure group Q(M̂)

fibrations, where Q(M̂) denotes the automorphism group of the prequanti-
zation space (not necessarily id on the base). Each prequantum fibration is
a line bundle over a unique Hamiltonian fibration. For example a suitable
fiberwise blowup of a complex vector bundle furnishes its projectivization
with a lift to a prequantum fibration.

Our invariants are defined as follows. Given k ∈ Z>0, a (homotopy-
canonical) choice of a continuous family of ω-compatible almost complex
structures on the fibers of the Hamiltonian fibration canonically determines
a family of Spinc Dirac operators, as above. The analytic index of this fam-
ily of elliptic operators, as defined and studied by Atiyah-Singer in their
celebrated series [5], gives a K-theory class on the base B. For each k ∈ Z>0,
this class generalizes Bott’s ”virtual Hilbert space”, does not depend on the
choice of almost complex structures, and is consequently shown to be an
invariant of the isomorphism class of the prequantum fibration.

These K-theory invariants turn out to be rather powerful. In particular
considering only the H1 spaces (corresponding to k = 1), we prove Theo-
rem 1.2, and produce new examples of non-trivial prequantum and Hamil-
tonian fibrations. These invariants can also be used to prove that various
other prequantum and Hamiltonian fibrations are non-trivial, for example
those with fibers given by coadjoint orbits, but we defer these computations
to further publications.
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We deduce Theorem 1.2 from the following stronger result on the level

of classifying spaces, that is proven in Section 4. Set Q(r) = Q(ĈP
r−1

) for

the group of automorphisms of the natural prequantization ĈP
r−1

of CPr−1

(see Footnote 2). Let BQ(r) be the classifying space in the category Top of
paracompact Hausdorff topological spaces for the group Q(r), given by the
Milnor construction [40]. Let H be a separable infinite-dimensional Hilbert
space, and for r ∈ Z let Fredr(H) be the space of Fredholm operators on H
of Fredholm index r.

Theorem 1.3. There are natural maps e, q,Wr, with e, q forming the se-
quence

BU(r)
e−→ BQ(r)

q−→ Fredr(H),

with Wr a weak equivalence and a homotopy commutative diagram:

BU(r)

ir
��

e // BQ(r)

q

��

BU
Wr // Fredr(H).

The map e above is induced by the canonical homomorphism U(r)→
Q(r), and the map ir : BU(r)→ BU is the natural inclusion, and the weak
equivalence Wr is constructed in Section 8, as part of a proof of Theo-
rem 2.10. This theorem is a strengthening of the Atiyah-Jänich theorem,
that is a key component in the proof of Theorem 1.3. Theorem 1.3 implies
additional results including the following (see Corollary 4.1).

Theorem 1.4. The map in complex K-theory induced by the natural inclu-

sion map BU(r)→ BQ(r) ≡ BQ(ĈP
r−1

), is surjective on K-theory.

This strengthens a theorem of Spacil [52], based on Reznikov-type [45]
characteristic classes obtained by infinite-dimensional Chern-Weil theory for
the strict contactomorphism group, that

e∗ : H∗(BQ(r);R)→ H∗(BU(r);R)

is a surjection.
In general, a Hamiltonian fibrationM need not admit a lift to a prequan-

tum fibration. This is measured by a class ηM ∈ H3(B,Z) in the cohomology
of the base B, called the Dixmier-Douady class. Therefore, when this class
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does not vanish, a certain twisting for this class becomes necessary to de-
fine our K-theoretic invariants of Hamiltonian fibrations (in fact even in the
case of vanishing Dixmier-Douady class, the twisted invariant gives a more
conceptual picture). Indeed, we are able to produce a canonical invariant of
M with values in twisted K-theory, and prove Theorem 6.1, that is a partial
analogue of Theorem 1.3 in the twisted setting.

In Section 7 we prove Proposition 7.3, inspired by family quantization
and the family Atiyah-Singer theorem, that the Calabi-Weinstein invariant
[55] of loops of automorphisms of prequantization spaces has image in 1

n+1Z,
an integrality statement that was open since the work of Banyaga and Do-
nato [7]. Consequently, we show in Proposition 2.4 that the Dixmier-Douady
class of a Hamiltonian fibration (with quantizable fibers) is always (n+ 1)-
torsion.

Push-forward in complex K-theory. In the case of smooth fibrations,
one can interpret our construction as the push-forward of a natural (twisted
in general) line bundle over the total space M of a Hamiltonian fibration
corresponding to a (perhaps defined only locally in B) prequantum fibration
over M . In the case when the prequantum fibration is defined globally,
and hence the line bundle is not twisted, the push-forward (also known
as fiber-integration, Umkehr, or Gysin) map in complex K-theory can be
defined by classical topology using the Thom isomorphism, Bott periodicity,
and embedding techniques (see e.g. [21, Chapters IV,V]). For the recently
studied push-forward in twisted K-theory we refer to [10]. We note that the
computation of our invariants seems to require the analytic definition which
we present in full detail in this paper, and does not seem to be evident from
the classical construction of the push-forward.

As a remark on the literature, we note that family Spinc quantiza-
tion was considered for different purposes by Zhang [57], and deformation-
quantization of symplectic fibrations was studied in [26]. Examples of the
relation between quantization and symplectic topology appear in [13, 43, 44].

Organization of the paper. In Section 2 we recall the preliminary mate-
rial necessary for our arguments and constructions: prequantum fibrations in
Section 2.1, Spinc-Dirac operators in Section 2.2, and analytic family index
in Section 2.3. Section 3 introduces our main K-theoretic invariants. Sec-
tion 4 proves Theorem 1.3. Section 5 discusses new examples of non-trivial
Hamiltonian and prequantum fibrations. Section 6 introduces a twisted ver-
sion of our invariants and proves Theorem 6.1. Section 7 discusses topics re-
lated to quantization of prequantum fibrations, and proves Proposition 7.3
and Proposition 2.4. Finally, Section 8 proves Theorem 2.10, which is an
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indispensable step in the proof of Theorems 1.3 and 6.1, by means of the
theory of infinity categories.

2. Preliminaries

2.1. Prequantum fibrations

To set up geometric quantization on a symplectic manifold (M0, ω0) one re-
quires that there be a complex Hermitian line bundle (L0, h0) over M0 with a
unitary connection∇0 having curvature R(∇0) = −iω0. This is equivalent to
the vanishing of the image of the class of the symplectic form inH2(M0,R/Z)
[56, Proposition 8.3.1]. We call such symplectic manifolds quantizable, and
the symplectic manifolds we consider in this paper are all of this kind. A
given prequantization of (M0, ω0) will be denoted by M̂0. Let p̂ : L0 →M0

be the projection. The group of automorphisms Q(M̂0) of M̂0 is defined to
be the identity component of the subgroup of those diffeomorphisms φ̂ of
the total space of L0 that are bundle maps, that is p̂ ◦ φ̂ = φ ◦ p̂ for a diffeo-
morphism φ of M0, restrict to unitary maps on the fibers of L0 →M0, and
preserve the connection ∇0:

φ∗∇0 = ∇0.

In an alternative equivalent description, one requires that there be a prin-
cipal S1-bundle P0 over M0 with connection one-form α0 with curvature
dα0 = −ω̃0, where ω̃0 is the lift of ω0 to P0 by the projection map p : P0 →
M0 coming from the bundle structure. In this description, the automor-
phism group is given by Q(P0) = Cont0(P0, α0), the identity component of
the group of strict contactomorphisms of (P0, α0), those diffeomorphisms of

P0 that preserve the form α0. Note thatQ(P0) ∼= Aut0(L0, h0,∇0) ∼= Q(M̂0).
It is standard (see [25, Section 1.13], and [6]) that Q(P0) is a central S1-
extension of Ham(M0, ω0) :

(2.1) 1→ S1 → Q(P0)
pr−→ Ham(M0, ω0)→ 1.

Here the projection pr(φ) ∈ Ham(M0, ω0) of φ ∈ Q(P0) is given by pr(φ) :
M0 →M0, x 7→ p ◦ φ(y) for any y ∈ p−1(x).

We would like to consider the same situation of prequantization in fam-
ilies — hence we would like a notion of prequantization of a Hamiltonian
fibration (cf. [18]). We recall one of the several equivalent definitions of a
Hamiltonian fibration.
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Definition 2.2 (Hamiltonian fibration). A Hamiltonian fibration is a
fiber bundle M ↪→M

π−→ B, where B ∈ Top and (M,ω) is a symplectic man-
ifold, with structure group reduced to Ham(M,ω).

Definition 2.3 (Prequantum fibration). For a Hamiltonian fibration
π : M → B, with fiber (M,ω), ({ωb}b∈B) denoting the fiberwise symplec-
tic structure, a prequantum lift is a Hermitian line bundle L→M , with a
continuous choice of unitary connection ∇b on each fiber Lb →Mb over
b ∈ B with curvature R(∇b) ∈ Ω2(Mb, iR) equal to −iωb, and moreover

the structure group of L→ B is Q(M̂), for a given fixed prequantization

M̂ = (L,∇,M, ω) of (M,ω), compatible with the natural homomorphism

Q(M̂)→ Ham(M,ω). A Hamiltonian fibration with a given prequantum lift
will be called a prequantum fibration, and a given prequantum lift ofM → B
will be denoted by M̂ .

Alternatively, a prequantum fibration is a bundle with model fiber p :
P0 →M0, a prequantization (principal S1-bundle) of a symplectic manifold,
with structure group Q(P0) = Cont0(P0, α0).

Given a Hamiltonian fibration M → B with model fiber (M0, ω0) that
has a prequantization (L0, h0,∇0) (that is [ω0] = 0 in H2(M0,R/Z)), the

existence of a prequantum lift M̂ of M is controlled by a certain class
in H2(B,R/Z) ∼= H3(B,Z) (see [9, Chapter 4] for a detailed discussion,
and further references). This class is called the Dixmier-Douady class of
the fibration M → B. Briefly, it is given as the image under the connect-
ing map H2(M0,R/Z)→ H3(M0,Z) (associated to the coefficient exact se-
quence 0→ Z→ R→ R/Z→ 0) of a class in H2(M0,R/Z) represented by
the following S1-valued Čech 2-cocycle. Let U = {Ua} a cover of B. Con-
sider cijk = ĝij ĝjkĝki where ĝab is an arbitrary lift of the structure map
gab : Ua ∩ Ub → Ham(M0, ω0) ofM → B with respect to a trivialization over

U to a map ĝab : Ua ∩ Ub → Q(M̂0). Note that since pr(cijk) = gijgjkgki = 1,
by central extension (2.1), cijk defines an S1-valued 2-cochain, which is
rather easily checked to be a cocycle. In Section 7 we prove the following
statement which appears to be new.

Proposition 2.4. The Dixmier-Douady class of any Hamiltonian fibration
with quantizable fibers is torsion.
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2.2. The Spinc-Dirac operator

We briefly recall the construction and main properties of the Spinc Dirac op-
erator. For more details see e.g. [14, 19, 31, 32]. Given a symplectic manifold
(M,ω), let L be a Hermitian line bundle over M with a Hermitian connec-
tion ∇L. We later consider the case when (L,∇L) is a prequantization of
(M,ω).

Then a choice of an ω-compatible almost complex structure J on M
canonically determines the Spinc-Dirac operator as follows. Consider
(TM, J) as a complex vector bundle with Hermitian structure given by (ω, J)
- in particular we consider the J-invariant Riemannian metric gJ(·, ·) =
ω(·, J ·). We remark that (TM, J) ∼= TM (1,0), the

√
−1-eigenbundle of J ⊗ 1

acting on the complexification TM ⊗R C, and TM (0,1) ∼= TM
(1,0)

is the
(−
√
−1)-eigenbundle of this action. Then TM ⊗R C ∼= TM (1,0) ⊕ TM (0,1)

Similarly we define T ∗M (1,0), T ∗M (0,1). This Hermitian vector bundle car-
ries a canonical Hermitian connection ∇Ch, which is uniquely characterized

by the properties ∇Chω = 0,∇ChJ = 0, and T
(1,1)
∇Ch = 0. This induces a con-

nection ∇Ch,n on K = T ∗M (n,0). Denote

E = E(TM,J) = Λ(T ∗M (0,1)) =
⊕

0≤q≤n
Λ(0,q)(T ∗M).

Remark 2.5. In general any other J-invariant Riemannian metric g on M,
and any Hermitian connection on K would define a Spinc-Dirac operator.
However, in what follows we use the above specific metric gJ and Hermi-
tian connection ∇Ch,n, because they are determined canonically by the pair
(ω, J).

Given the connections ∇L and ∇Ch we construct the Spinc-Dirac oper-
ator

D1(L, J) : Γ(L⊗ E;M)→ Γ(L⊗ E;M)

acting on the smooth sections of L⊗ E over M as follows.
One first shows that E and hence L⊗ E is a Clifford module over the

bundle of complexified Clifford algebras C(TM)⊗R C. The Clifford action
of v ∈ T (1,0)M,v ∈ T (0,1)M on E is

c(v) =
√

2 · v∗∧,
c(v) = −

√
2 · ιv,

where v∗ ∈ T ∗M (0,1) is the metric dual of v.
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One further shows that ∇Ch,n,∇L and the Levi-Civita connection of
gJ give a connection ∇Cl on L⊗ E compatible with the Clifford module
structure (a Clifford connection). Then for η ∈ Γ(L⊗ E) and x ∈M we
define

D1(L, J)(η)x =

2n∑
j=1

ej · ∇Clej (η)x,

where (ej)
2n
j=1 is an orthonormal local frame in TMx and for e ∈ TMx,

e· = c(e) denotes the Clifford module action. The operator D1(L, J) is an
elliptic first order operator that is self-adjoint with respect to a natural inner
product on Γ(L⊗ E). Put

Eq = Λ(0,q)(T ∗M).

Then under the splitting E = E− ⊕ E+, of E into

E+ =
⊕
q even

Eq

and

E− =
⊕
q odd

Eq,

the operator D1(L, J) splits as

D1(L, J) =

(
0 D1

+(L, J)
D1
−(L, J) 0

)
,

for operators

D1
+(L, J) : Γ(L⊗ E+)→ Γ(L⊗ E−),

D1
−(L, J) : Γ(L⊗ E−)→ Γ(L⊗ E+).

For an integer k ≥ 1 put

Dk(L, J) = D1(Lk, J),

Dk
±(L, J) = D1

±(Lk, J),

where Lk is endowed with the Hermitian structure and connection induced
from those on L. When considering a specific prequantization M̂ = (L,∇,
M, ω) of (M,ω), we use the notation Dk(M̂, J), Dk

±(M̂, J) for Dk(L, J),
Dk
±(L, J).
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We require the following calculation of this operator for Kähler mani-
folds. Given a holomorphic Hermitian line bundle L over a Kähler manifold
M, consider the Chern connection ∇L on L, and the Kähler structure (ω, J)
onM. Then there is a natural ∂-operator ∂L⊗E : Γ(L⊗ E)→ Γ(L⊗ E). The
inner product on Γ(L⊗ E) induces the adjoint operator ∂

∗
L⊗E : Γ(L⊗ E)→

Γ(L⊗ E). The sum

∂L⊗E + ∂
∗
L⊗E : Γ(L⊗ E)→ Γ(L⊗ E)

is sometimes called the Dolbeault-Dirac operator. Then we have the follow-
ing identity for the Spinc-Dirac operator (see [32, Theorem 1.4.5], observing
that the relevant torsion tensor vanishes in the Kähler case).

Proposition 2.6.

D1(L, J) =
√

2(∂L⊗E + ∂
∗
L⊗E).

Therefore

kerD1(L, J) ∼= H∗(M ;O(L)),

the cohomology of the sheaf O(L) of holomorphic sections of L. In fact

kerD1(L, J)|Γ(L⊗Eq)
∼= Hq(M ;O(L)).

Corollary 2.7. When M = P(V ) for a Hermitian complex vector space
V with the standard Kähler structure and L = O(1), the dual tautological
bundle, endowed as above with the Chern connection,

kerD1
−(L, J) ∼= cokerD1

+(L, J) = 0

and

kerD1
+(M̂, J) = kerD1

+(M̂, J) ∼= V ∗,

where the isomorphism is canonical.

Proof. All the non-zero sheaf cohomology of O(1) vanishes (cf. [24, Corol-
lary 9.1.2], [15, p. 156]). On the other hand H0(M,O(L)) is the space of
global holomorphic sections of L, which by elementary algebraic geometry
is canonically identified with the dual space of V . �

Remark 2.8. If we replace L by Lk = O(k) in Corollary 2.7, then the
conclusion is the same with the sole difference that

kerDk
+(L, J) = kerD1

+(Lk, J) ∼= Symk V ∗.
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2.3. The family analytic index

Let M → B, be a locally trivial fibration whose fibers are smooth mani-
folds, and whose structure group is reduced to the diffeomorphism group
of the general fiber. Let E ,F →M be two complex vector bundles, whose
restrictions to the fibers of M → B are smooth complex vector bundles.
For each b ∈ B, let Db : Γ(Eb;Mb)→ Γ(Fb;Mb) be an order 1 elliptic oper-
ator between the smooth sections of the two vector bundles over the mani-
fold Mb. The family D ≡ {Db} is required to be continuous with respect to
the natural Frechet topology induced by the C∞ topology on the bundles
Γ(E ;M), Γ(F ;M), with corresponding fibers over b: Γ(Eb;Mb), Γ(Fb;Mb),
see Atiyah-Singer [5]. We shall call this family D = D(E ,F) of operators an
Atiyah-Singer family.

We show how to associate to this situation an index in K0(B) :=
[B,Fred(H)], where Fred(H) ' BU × Z denotes the space of Fredholm op-
erators on a separable infinite-dimensional Hilbert space3. Assume that the
fibration M is endowed with a fiber-wise smooth measure, and the bundles
E →M and F →M are Hermitian vector bundles. This endows the fiber-
wise smooth section bundles Γ(E ;M), Γ(F ;M), with a natural fiber-wise
inner product.

Indeed consider the bundles of Hilbert spaces H1 = L2
1(E ;B) and H0 =

L2(F ;B) over B given by the completion of the corresponding fiber-wise
section spaces. The family D of elliptic operators induces a Fredholm map

[D] : H1 → H0

of Hilbert-bundles over B. Since by Kuiper’s theorem [27] the unitary group
of a Hilbert space is contractible, the Hilbert bundles H1 and H0 can be
trivialized, and moreover these trivializations are homotopy canonical, which
means, throughout the paper, that the space of choices (in this case of triv-
ializations) is contractible. Choose unitary trivializations

Φ1 : H1 → H×B, Φ0 : H0 → H×B.

Then

Φ0 ◦ [D] ◦ (Φ1)−1 : H×B → H×B
is a Fredholm bundle-map from the trivial H-bundle over B to itself, and
hence gives a map

fΦ0◦[D]◦Φ1
: B → Fred(H).

3This is what we call a Hilbert space in this paper.
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Define the family analytic index of the family D as the homotopy class

[fΦ0◦[D]◦Φ1
] ∈ [B,Fred(H)]

which is well-defined, because the trivializations were homotopically canon-
ical.

As mentioned above Fred(H) is well known to be weakly equivalent to
BU × Z. We shall require a stronger version of this statement, where we
ask that the weak equivalence homotopically commute with certain natu-
ral maps pr : BU(r)→ Fred0(H) = ind−1(0) (for the Fredholm index map
ind : Fred(H)→ Z), and the natural maps ir : BU(r)→ BU. Consider the
model of BU(r) as the Grassmannian Gr(r,H) of r-planes in a fixed infinite-
dimensional separable Hilbert space H. This gives us the map p̃r : BU(r)→
Fredr(H) = ind−1(r) as follows. To an r-plane H ⊂ H we associate a Fred-
holm operator p̃r(H) : H → H sending H to 0, and the orthogonal comple-
ment H⊥ of H isometrically onto H. The choice of the latter isometry is
determined by a section of the bundle of unitary maps U(τ⊥,H) from the
orthogonal complement τ⊥ of the tautological bundle τ over Gr(r,H) (in
the trivial H-bundle H), to the trivial bundle H. This section exists and is
homotopically-canonical, since by Kuiper’s theorem the fiber of U(τ⊥,H) is
contractible. We also have index shift maps

(2.9) sr : Fredr(H)→ Fred0(H),

defined by sending an operator O to the operator

H O⊕0−−−→ H⊕ Cr isor−−→ H,

with the second map a fixed isometry. Define

pr = sr ◦ p̃r.

An important technical role in this paper is played by the following
strengthening of the Atiyah-Jänich theorem, that we prove in Section 8.

Theorem 2.10. There exists a weak equivalence W : BU → Fred0(H) such
that W ◦ ir ' pr.

The shift maps sr are homotopy equivalences, whose homotopy inverses
s−1
r can be constructed by hand. In fact these maps are just representatives

of the canonical shift maps in π0. That is π0(Fred(H)) = Z as a group, with
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with the isomorphism given by the index map. In particular fixing an element
er ∈ Fred(H) with index −r, we have homotopy equivalences:

sr : Fredr(H)→ Fred0(H)

sr(O) = O · er,

with · the multiplication in the H-space Fred(H). The homotopy inverse is
given by multiplication with the adjoint operator of er. The maps sr are
easily seen to be homotopy equivalent to sr, using Kuiper’s theorem. We
define

(2.11) Wr = s−1
r ◦W.

Then it is an easy consequence of Theorem 2.10 that

(2.12) Wr ◦ ir ' p̃r.

3. Quantization of prequantum fibrations

In [8] Bott has suggested to use the index virtual space [kerD+(M̂, J)]−
[cokerD+(M̂, J)] as the quantization for the symplectic manifold (M,ω) (cf.
[31]). The main tool of this paper is a family version of such quantization,
which becomes naturally K-theory valued.

Let there be given a Hamiltonian fibration M → B with a prequantum
lift M̂ = (M ,L,∇, {ωb}b∈B) (recall Definition 2.3). Consider the associ-
ated bundle JM → B with structure group Ham(M), whose fiber (JM )b
over b ∈ B is the space JMb

of ωMb
-compatible almost complex structures

on Mb. This bundle has contractible fibers and therefore has global sec-
tions. Pick a global section {Jb} ∈ Γ(JM ;B). Denote by T vertM the verti-
cal tangent bundle to the fibration M → B, consider it as a complex vec-
tor bundle using {Jb}, and let (T ∗)vertM be its dual bundle. Denote by
E the corresponding exterior algebra bundle Λ((T ∗)vertM (0,1)), and put
E+ = Λeven((T ∗)vertM (0,1))), E− = Λodd((T ∗)vertM (0,1))). To the data

(M̂ → B, {Jb}, k), k ∈ Z>0

there corresponds a natural Atiyah-Singer family Dk
+(M̂ , {Jb}), that is the

family of operators:

(3.1) Dk
+(M̂b, {Jb}) : Γ(E+

b )→ Γ(E−b )

where E+ = Lk ⊗ E+, and E− = Lk ⊗ E−.
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Proposition 3.2. The family analytic index

Hk(M̂) = [ind(Dk
+(M̂ , {Jb}))] ∈ K0(B)

of the elliptic Atiyah-Singer family, with ind(Dk
+(M̂ , {Jb})) denoting the

(homotopy-canonically defined) induced map from B to Fred(H), does not
depend on the choice of the family {Jb}, and moreover is invariant under
isomorphisms of prequantum fibrations.

Proof. The proof of this claim follows directly from the homotopy invari-
ance of the analytic family index, and the observation that if Φ : M̂ → M̂ ′

is an isomorphism of prequantum fibrations lifting an isomorphism φ : M →
M ′ of Hamiltonian fibrations, then Φ∗Dk

+(M̂ ′, {Jb}) = Dk
+(M̂ , φ∗{Jb}) and

hence the isomorphism invariance follows from the independence on the fam-
ily of almost complex structures.

4. Application to Cont0(S
2r−1, αstd)

Consider Cr with its standard complex structure and Hermitian metric.
Note that the unitary group U(r) of this Hermitian structure embeds into

Q(r) ≡ Q(ĈP
r
). This follows for example from the fact that the Chern con-

nection on O(−1)→ CP r−1 = P(Cr) is invariant under the action of U(r)
on the total space Cr \ {0} of O(−1), and hence the same statement is true
about the induced action on O(1)→ CP r−1. This implies that by extend-
ing the structure group, every complex (Hermitian) vector bundle V over
B can be considered as a prequantum fibration. Specifically, we associate
to V the prequantum fibration O(1)P(V )

π−→ P(V )→ B, where over a point
b ∈ B, the corresponding projection πb : O(1)P(Vb) → P(Vb) is isomorphic to
the dual tautological line bundle O(1)→ CP r−1, that is the complex line
bundle associated by the 1-dimensional C∗-representation z 7→ z−1 to the
principal C∗-bundle Cr \ {0} → CP r−1 sending a point to the line it spans.
The connection on each fiber is the Chern connection. This determines a
prequantum lift P̂(V ) of the Hamiltonian fibration P(V )→ B.

Given a finite-rank complex vector bundle E over B, we consider the

prequantum fibration P̂(E∗). We denote LE = O(1)P(E∗) and ME = P(E∗).
We claim that the quantization procedure E → H1(LE) recovers the class of
E in the K-theory of B. We prove Theorem 1.3 directly, since the prequan-
tum analogue of Theorem 1.2 is an immediate special case, while the proof
is nearly identical. Moreover Theorem 1.2 is a quick corollary, as explained
in Section 5.
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Proof of Theorem 1.3. The map e is the map induced by the canonical
homomorphism U(r)→ Q(r). The map Wr is as in (2.11). The map q :
BQ(r)→ Fred(H) is the (homotopically-canonically defined) index map

ind(D1
+(P̂BQ(r), {Jb})), where P̂BQ(r) denotes the universal ĈP

r−1
fibration

over BQ(r) and {Jb}b∈BQ(r) is a section of the bundle of compatible almost
complex structures on the fibers of the corresponding Hamiltonian CP r−1

fibration. We now show that q ◦ e and Wr ◦ ir are homotopy equivalent. Let
E → BU(r) denote the tautological rank r Hermitian vector bundle (recall
that BU(r) for us is the space of r-planes in H). We note that the corre-
sponding prequantum fibration LE →ME → BU(r) comes equipped with
an almost complex structure {jx} ∈ JME

such that on each fiber over a point
x ∈ BU(r), jx is a standard complex structure onME = P(E∗) coming from
a standard complex structure on E∗. Note that in this case

kerD1
+(ĈP

r−1

x , jx)− cokerD1
+(ĈP

r−1

x , jx) = H0(P(E∗x);O(1)P(E∗
x)) = Ex,

where the isomorphisms are canonical, by Corollary 2.7, and there is no
cokernel hence the proof is finished by Kuiper’s theorem. More specifically
we may conclude by Kuiper’s theorem that the fibration E → BU(r), with
fiber the space of Fredholm operators on H with vanishing cokernel and
kernel E, has contractible fibers. Next we observe that q ◦ e and p̃r 'Wr ◦ ιr
are both sections of this fibration, and so must be homotopic. �

We immediately obtain the following consequence.

Corollary 4.1. For each contravariant functor F for which F (ιr) :
F (BU × Z)→ F (BU(r)) is a surjection, F (e) : F (BQ(r))→ F (BU(r)) is
an injection, and for each covariant functor G for which G(ιr) : G(BU(r))→
G(BU × Z) is an injection, G(e) : G(BU(r))→ G(BQ(r)) is an injection.

Remark 4.2. Examples of such contravariant functors are given by B 7→
H∗(B;Z) [53, Theorem 16.10, Corollary 16.11] or B 7→ K∗(B) [53, Theo-
rem 16.32], [1, Lemma 4.3], and examples of such covariant functors are
given by B 7→ H∗(B;Z) [53, Proof of Theorem 16.17] or B 7→ πk(B)⊗Q,
[16, Section 14.7].

Remark 4.3. This generalizes a theorem of Spacil [52], based on Reznikov-
type [45] characteristic classes obtained by infinite-dimensional Chern-Weil
theory for the strict contactomorphism group, stating that e∗ : H∗(BQ(r);R)
→ H∗(BU(r);R) is a surjection.
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We note that Theorem 1.3 may be interpreted as saying that the map
e “almost” admits a weak retraction (i.e. a left inverse in the homotopy
category). We therefore end this section with the following question, which
we find interesting.

Question 1. Does the map e : BU(r)→ BQ(r) admit a weak retraction?

Finally, we deduce Theorem 1.2 from Theorem 1.3.

Proof of Theorem 1.2. First of all Theorem 1.3 immediately implies that if

a complex vector bundle E is not stably trivial, then P̂(E) is non-trivial as
a prequantum fibration.

The case of P(E) as a Hamiltonian fibration is similar, with the difference
that a Hamiltonian fibration with vanishing Dixmier-Douady class is trivial
if and only if any of its prequantum lifts is obtained from a line bundle over
the base of the fibration (and hence every such lift is obtained from a line
bundle). This is a direct consequence of the central extension

0→ S1 → Q(r)→ Ham(CP r−1)→ 1.

This shows that Theorem 1.2 follows from Theorem 1.3. �

Remark 4.4. Theorem 1.2 is also a direct consquence of Theorem 6.1.

5. Examples of non-trivial fibrations

Recall that Q(r) = Q(ĈP
r−1

). Using Theorem 1.2, and its analogue for pre-
quantum fibrations (that are special cases of Theorem 1.3 and Theorem 6.1)
we provide a new example of a non-trivial U(r) vector bundle that remains
non-trivial as a Q(r)-fibration, and a new example of a vector bundle with
non-trivial projectivization that remains non-trivial as a Hamiltonian fibra-
tion. These examples are not detected by Reznikov-type classes, vertical
Chern classes or the coupling class (see e.g. [37, Section 2.3]).

These examples come from the fact that there are stably non-trivial
complex vector bundles all of whose Chern classes vanish. Hence their non-
triviality is detected by their class in K-theory, which by Theorem 1.3 per-
sists when passing to their isomorphism class as prequantum fibrations, while
it is not detected by characteristic classes. For instance, we present the fol-
lowing two concrete examples.

Example 1. Let X = RP 6 or RP 7. Let τR be the tautological real line bun-
dle over B = X. Let L = τR ⊗R C be the complexification of τR. Note that
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c := c1(L) is the non-trivial element in H2(B) ∼= Z/2Z. Put H = L− 1 in
complex K-theory. It is a well-known computation [21, Corollary 6.47] that
the reduced K-theory K̃0(B) ∼= Z/8Z, with generator H. Hence the rank
4 complex vector bundle E = L⊗ C4 over B is stably non-trivial. Hence
this provides an example of a non-trivial Q(r)-fibration. One the other
hand, c(E) = (1 + c)4 = 1 + 4c+ 6c2 + 4c3 + c4 = 1 + c4 = 1, since 2c = 0
and H8(B) = 0. Therefore this example is new. Note that P(E) = P(C4)
is trivial, by definition of E.

Example 2. For the case of a non-trivial Ham(CP r−1)-fibration we modify
the first example as follows. Let the base be B = X ×X. Denote E1 = π∗1E,
E2 = π∗2E, L1 = π∗1L, L2 = π∗2L. Let the vector bundle be E = E1 ⊕ E2.
We claim that the projectivization P(E) of E is non-trivial. The group
Pic(B) ∼= H2(B,Z) of isomorphism classes of line bundles on B is isomor-
phic to Z/2Z× Z/2Z with generators L1, L2. It is easy to verify that U ⊗ E
is stably non-trivial for all U ∈ Pic(B), whence the class of U ⊗ [E]− 8
in reduced K-theory is non-zero for all U ∈ Pic(B). By Theorem 6.1 this
implies that P(E) is non-trivial as a Ham(CP 7)-fibration.

Finally, the definition of Chern classes via the Leray-Hirsch theorem (cf.
[53, Proof of Theorem 16.2]) going back to Grothendieck [17] rests on the
fact that, denoting by u = c1(T ∗) the first Chern class of the dual tautolog-
ical line bundle T ∗ = O(1)P(E) over P(E), we have ur + c1(Ẽ)ur−1 + · · ·+
cr−1(Ẽ)u+ cr(Ẽ) = 0. Here Ẽ = π∗BE for the projection P(E)

πB−−→ B. Hence
ur = 0, and moreover u restricts to the class of the symplectic form on the
fibers of P(E)

πB−−→ B. Hence it is the coupling class of the Hamiltonian fi-
bration. Moreover, we note that the vertical tangent bundle T vertP(E) of
the fibration P(E)

πB−−→ B is isomorphic to Hom(T, Ẽ/T ) ∼= T ∗ ⊗ Ẽ/T and
hence its Chern classes are calculated via u and c(E) = 1. Therefore, the
non-triviality of this fibration is not detected via (fiber-integrals) of polyno-
mials in the vertical Chern and coupling classes.

6. Super twisted K-theory and topology of BHam(CPr−1, ω)

In this section we develop invariants of Hamiltonian fibrations that have
values in twisted K-theory, and show that the natural map k : BU(r)→
BHam(CPr−1, ω), obtained by projectivizing the dual bundle, is injective
on homotopy groups in the “stable range”. This is originially proved for ra-
tional homology (and rational homotopy) by Reznikov in [45] using infinite
dimensional Chern-Weil theory. It also has a proof via Gromov-Witten the-
ory, see first author’s [48]. We now give a proof via the techniques of this
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paper. We remark that the injection holds still for all k > 1, by the work
of Casals-Spacil. We outline the implication of their work in the end of this
section.

6.1. The super twisted Dirac K-theory class

In the previous sections we constructed a natural Atiyah-Singer family over
BQ(M̂). We show that there is likewise a twisted or projective Atiyah-Singer

family overBHam(M,ω), whenM has a prequantum lift M̂ = (M,L,∇L, ω).
We associate to this family a super twisted K-theory class — the Dirac class,
which we then show to be a meaningful new invariant. We refer to [2, 3]
for more information about twisted K-theory. The super analogue here is
a certain simple graded variant of this construction, which is completely
geometrically natural from our setup. While this is not necessary for our
applications, we then show that in the particular setup of this paper, this
super twisted K-theory and the Dirac class we define can be described using
classical twisted K-theory, a more classical invariant.

Using the super twisted K-theory version of our quantization method
we then obtain the following variant of the main theorem for the group
Ham(CPr−1, ω).

Theorem 6.1. Let k : BU(n)→ BHam(CPr−1, ω) be given by the natural
map U(n)→ Ham(CPr−1, ω), and k∗ : [B,BU(n)]→ [B,BHam(CPr−1, ω)]
be the induced map, for a topological space B. Consider

image k∗ ⊂ [B,BHam(CPr−1, ω)].

There is a “twisted quantization” map twq and a commutative diagram:

[B,BU(r)]/P ic(B)
(Wr◦ir)∗

**

// image k∗

twq

��

[B,Fredr(H)]/P ic(B)

,

where the notation [B,BU(r)]/P ic(B), means the quotient of [B,BU(r)] as
a set by the (natural) action of the topological Picard group Pic(B) of B.

Remark 6.2. Note that [B,BU(r)]/P ic(B) ∼= [B,BPU(r)]η=0, the set of
isomorphism classes of PU(r)-bundles with vanishing Dixmier-Douady class.
Guided by this observation and Proposition 2.4, it would be interesting to
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formulate and prove an extension of Theorem 6.1 to the case of non-trivial
Dixmier-Douady classes.

Corollary 6.3. The map k : BU(r)→ BHam(CPr−1, ω) is injective on πn
in the range, 2 < n ≤ 2r.

Proof. Suppose the class of f : Sn → BU(r) is non-trivial in homotopy. For
n > 2 the Picard group of Sn is trivial. Consequently twq(k∗[f ]) is non-
trivial if (Wr ◦ ir)∗[f ] is non-trivial, but this is the case since we are in the
stable range n ≤ 2r. Recall that the stable range is characterized by the
condition that the natural map πnBU(r)→ πnBU is an isomorphism. This
can be seen to hold true whenever n ≤ 2r by [39, Lemma 23.4], and the
natural isomorphism πnBU(r) ∼= πn−1U(r) (for n > 1). �

Remark 6.4. We note that our method does not give injectivity on πn
outside the stable range n ≤ 2r, since for example π4r+1(BU(r)) ∼= Z/(r!)Z,
whereas π4r+1(BU) ∼= K̃0(S4r+1) = 0. However, this injectivity holds for all
n, as can be seen from [11], by a brief diagram chase from the pair of com-
patible group extensions (as locally trivial fibrations)

0→ S1 → Q(r)→ Ham(CPr−1, ω)→ 1,

and

0→ S1 → U(r)→ PU(r)→ 1.

Observe that by (2.1) each element φ ∈ Ham(M,ω) can be lifted to an
automorphism φ̂ of (L,∇L) and this lift is unique up to the action of S1. Let
Hgr(J) denote the Z2 graded Hilbert space given by the direct sum of ap-
propriate completions of the Frechet smooth section spaces Γ(L⊗ E±,M).
Then φ induces a well defined element

(6.5) isoφ ∈ PUgr(Hgr(J),Hgr(φ∗J)),

the projectivization of the space of graded unitary isomorphisms. Indeed,
this action is induced by the unitary bundle automorphism Dφ : (TM, J)→
(TM,φ∗J) (not over id, but over φ), and the (well-defined up to the S1-
action) map of sections Γ(L)→ Γ(L) given by s 7→ φ̂ ◦ s ◦ φ−1.

Let EHam(M,ω) be the universal principal Ham(M,ω) bundle over
BHam(M,ω). Note that a Ham(M,ω) equivariant map EHam(M,ω)→ J
is equivalent to a family {Jb} of almost complex structures, Jb an almost
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complex structure on Mb. Since J is contractible, the bundle

EHam(M,ω)×Ham(M,ω) J

has contractible fibers and therefore has a global section. Let

m : EHam(M,ω)→ J

be the correspoding equivariant map. Denote m(φb) by Jφb
.

We define Hilbert space bundles H̃± over EHam(M,ω), with fiber over
φb: H±(Jφb

), defined analogously to H±(J). In other words denoting by H±

the Hilbert bundles over J with fiber H±(J) over J,

(6.6) H̃± = m∗H±.

Note that we have a corresponding family of Dirac operators
{Dir1(M̂, Jφb

)}, which we abbreviate by {Dir1(H̃b)}. Set Ẽ to be the graded

projective frame bundle of H̃gr = H̃+ ⊕ H̃−, that is the fiber of Ẽ over φb
is the projectivization

PUgr(Hgr, H̃gr
b ),

of the space of graded unitary isomorphisms, where Hgr is a fixed Z2-
graded, infinite-dimensional separable Hilbert space (without loss of gen-
erality we assume Hgr = H+ ⊕H−, with H+ = H− = H a fixed separable
infinite-dimensional Hilbert space).

We define a PUgr(Hgr) equivariant map:

D̃ir : Ẽ → Fred−(Hgr),

the latter denoting the space of odd Fredholm operators on Hgr, by

D̃ir(eφb
) = êφb

−1Dir1(H̃b)êφb
,

with êφb
denoting any chosen lift of eφb

to a graded unitary isomorphism,
and where the PUgr(Hgr) action on Fred−(Hgr) is the action:

P · g = ĝ−1 ◦ P ◦ ĝ,

for any chosen lift ĝ of an element of PUgr(Hgr), to a graded Hilbert space
isomorphism.
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Now we note that Ham(M,ω) freely acts on Ẽ on the left by PUgr(Hgr)
principal bundle automorphisms (not necessarily over 1). Explicitly for each
g ∈ Ham(M,ω) we have a graded Hilbert space map

H̃gr
φb

= Hgr(Jφb
)→ H̃gr

φb·g−1 = Hgr((g−1)∗Jφb
)

well defined up to the action of S1, that is a well defined graded projective
Hilbert space map. And moreover D̃ir is invariant under this action. Pass-
ing to the quotient we get an induced principal PUgr(Hgr) bundle P over
BHam(M,ω) and a PUgr(Hgr)-equivariant map:

mDir : P → Fred−(Hgr).

It is equivalent to a section

Dir ∈ Γ(P ×PUgr(Hgr) Fred−(Hgr)).

The homotopy class [Dir] is our super twisted Dirac K-theory class.

6.2. The splitting isomorphism

While this is not strictly necessary for subsequent applications, we show
here that the above invariant with values in super twisted K-theory can be
fully interpreted in terms of classical twisted K-theory. Recall the bundles
H̃+, H̃− over EHam(M,ω) from (6.6).

Proposition 6.7. There is a homotopy-canonical isomorphism

s : Γ(P ×PUgr(Hgr) Fred−(Hgr))→ Γ(P+ ×PU(H+) Fred(H+))

× Γ(P− ×PU(H−) Fred(H−)),

where P+ and P− are the quotients by the Ham(M,ω)-action of the pro-
jective frame bundles PU(H+, H̃+) and PU(H−, H̃−), and P is the quo-
tient by the Ham(M,ω)-action of the graded projective frame bundle Ẽ =
PU(Hgr, H̃gr). Moreover, there is a homotopy-canonical isomorphism
P(iso) : P+ → P− under which s(Dir) = (Dir+, Dir−) takes the adjoint-
diagonal form, that is (Dir−)∗ = P(iso)∗Dir

+.

We start with a key technical statement. First we note that Ham(M,ω)
acts on the bundle U(H̃+, H̃−) over EHam(M,ω) of unitary bundle-maps
H̃+ → H̃−. This induces a Ham(M,ω)-action on the space Γ(U(H̃+, H̃−))
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of sections of U(H̃+, H̃−). Indeed Q(M̂) acts on both H̃+ and H̃− and
the S1-ambiguity in the lift disappears once we act on such unitary maps,
whence the action descends to Ham(M,ω). We say that an isomorphism
iso : H̃+ → H̃− is Ham(M,ω)-equivariant if the corresponding section iso ∈
Γ(U(H̃+, H̃−)) is invariant under the Ham(M,ω)-action.

Lemma 6.8. There is a homotopy-canonical Ham(M,ω)-equivariant iso-
morphism iso : H̃+ → H̃−.

Proof. First note that U = U(H̃+, H̃−)/Ham(M,ω) is a fibration over
BHam(M,ω) with fiber homeomorphic to U(H), which by Kuiper’s the-
orem is contractible. Indeed the restriction to each fiber U(H̃+, H̃−)e of
U(H̃+, H̃−) over e ∈ EHam(M,ω) of the projection map

P : U(H̃+, H̃−)→ U(H̃+, H̃−)/Ham(M,ω)

covering the projection p : EHam(M,ω)→ BHam(M,ω) is a homeomor-
phism

Pe : U(H̃+, H̃−)e → Up(e).

Choose a section iso of U, which is homotopy-canonical, because the fiber
of U is contractible. Then we define a Ham(M,ω)-invariant section iso of
U(H̃+, H̃−) by

iso(e) = (Pe)
−1iso(p(e)). �

Consider the fibrations

(6.9) Fred−(H̃gr, H̃gr), Fred(H̃+, H̃+), Fred(H̃−, H̃−)

over EHam(M,ω). Their quotients by Ham(M,ω) are fibrations over
BHam(M,ω) that are in fact isomorphic to

P ×PUgr(Hgr) Fred−(Hgr), P+ ×PU(H+) Fred(H+), P− ×PU(H−) Fred(H−)

respectively. By the same argument as in the proof of Lemma 6.8 the
spaces of global sections of these quotients are isomorphic to the spaces of
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Ham(M,ω)-equivariant sections of the fibrations (6.9). Finally, a Ham(M,ω)-
equivariant bundle isomorphism

s̃ : Fred−(H̃gr, H̃gr)→ Fred(H̃+, H̃+)× Fred(H̃−, H̃−)

is given by post-composition by(
0 iso−1

iso 0

)
.

The map s̃ induces the isomorphism s. Finally, the isomorphism P(iso)
is induced immediately by iso, and the adjoint-diagonality, as in the formu-
lation of Proposition 6.7, is a direct consequence of the Dirac operator being
self-adjoint.

6.3. The twisted version of Theorem 1.3

Let us now consider the special case (M,ω) = (CPr−1, ω). For k : BU(r)→
BHam(CPr−1, ω), and f : B → BU(r) we would like to understand the su-
per twisted Dirac K-theory class of the pullback by k ◦ f of the universal
Ham(CPr−1, ω) fibration over BHam(CPr−1, ω). Call this pullback by Pk◦f ,
abreviated by P where convenient.

Lemma 6.10. The super twisted K-theory corresponding to a trivializable
principal PUgr(Hgr) bundle P → B, is isomorphic to the group of homotopy
classes of maps X → Fred−(Hgr), we shall call this SK(B).

Unlike (seemingly) the twisted variant, SK(B) is not any more interest-
ing than usual K-theory, as there is a canonical isomorphism s : SK(B)→
K(B)×K(B), this is obtained as follows. Fix an isomorphism iso : H+ →
H−, then for [σ] ∈ SK(B), define

s([σ]) = ([iso−1 ◦ σ|H+ ], [iso ◦ σ|H− ]).

Let us denote by s+ the first component of s.

Proof of Lemma 6.10. A principal PUgr(Hgr) bundle P0 is trivializable if
and only if its structure group can be lifted to Ugr(Hgr), since the obstruc-
tion to such a lift is given by the Dixmier-Douady class in H3(B,Z) classi-
fying P0 as a PUgr(Hgr) bundle. To lift means to construct an epimorphism
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of principal bundles:

mor : P̃0 → P0,

with the structure group of P̃0: Ugr(Hgr). In other words a bundle map
mor satisfying the equivariance condition mor(p · g) = mor(p) · cov(g), for
cov : Ugr(Hgr)→ PUgr(Hgr), the canonical map.

Such a lift canonically determines a lift of a section of

P0 ×PUgr(Hgr) Fred−(Hgr),

to a section of

P̃0 ×Ugr(Hgr) Fred−(Hgr),

and since P̃0 is homotopy canonically trivializable (by Kuiper’s theorem),
this determines a well defined class in SK(B). �

By construction the structure group of P has a reduction to the subgroup
k(U(r)) ' PU(r) for k : U(r)→ Ham(CPr−1, ω) the natural homomorphism.
We denote the principal Ham(CPr−1, ω) bundle associated to P by EP. So
reduction of structure group means that we have a morphism (which is an
embedding) of principal bundles:

emb : EP → EP,

with EP a principal PU(r) bundle, with respect to the natural homomor-
phism PU(r)→ Ham(CPr−1, ω). Since we have an equivariant map EP →
J , given by the constant map to J0 the standard integrable PU(r) invariant
complex structure, on CPr−1, this may be extended (uniquely by equivari-
ance) to a map m : EP → J , so that its restriction to image of EP is the
constant map to J0.

We identify for convenience Hgr with Hgr(J0). So

Pf ≡ (k ◦ f)∗P ' (emb∗(k ◦ f)∗Ẽ)/PU(r),

which has obvious lifts to Ugr(Hgr) bundles determined by lifts of EP to
U(r) bundles. The simplest way to see this is to note that Pf is exactly
the principal PUgr(Hgr) bundle associated to EP , and the natural ho-
momorphism hom : PU(r)→ PUgr(Hgr), and since the latter is covered

by h̃om : U(r)→ Ugr(Hgr), we get that for an equivariant bundle map

ÊP → EP , with ÊP a U(r) bundle, the Ugr(Hgr) bundle associated to

ÊP and the homomorphism h̃om, covers Pf .
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In general there is an action of the automorphism group of the trival
PUgr(Hgr) bundle over B, Aut(PUgr(Hgr)×B), on the set of possible lifts.
And π0Aut(PU

gr(Hgr)×B) ' Pic(B), the Picard group of B. While this
is not crucial, in our particular case, it is possible to see the action of the
Picard group more directly, simply because the Picard group of B acts on
the set of lifts of EP to U(r) bundles by tensoring with the line bundles.

Recall that we denote the univeral ĈP
r−1

bundle over BQ by P̂BQ.
It follows by a straightforward calculation from the above discussion that
s+([Dir(k ◦ f)]), for [Dir(k ◦ f)] the pullback of super twisted Dirac K-
theory class of PBHam(CPr−1,ω) by k ◦ f , can be naturally identified with the

class H1(P̂e◦f ) of P̂e◦f = (e ◦ f)∗P̂BQ, up to the action of the Picard group

of B, on K-theory. And by Theorem 1.3 H1(P̂e◦f ) is just the K-theory class
of the vector bundle Ef , classified by f .

Proof of Thereom 6.1. Set twq to be the map taking [k ◦ f ] to s+([Dir(k ◦
f)]), then our theorem follows immediately by the discussion above. �

7. Discussion

It would be very interesting to generalize the K-theory quantization to strict
contactomorphism groups Cont0(N,α) where the Reeb field R = Rα defined
by ιRdα = 0, ιRα = 1 no longer generates a free S1-action, that is when
(N,α) is not a prequantization space. Moreover, Casals-Spacil show that for
the standard contact sphere (S2r−1, ξst), there is an injection of homotopy
groups π∗(U(r))→ π∗(Cont0(S2r−1, ξst)), of the homotopy of U(n) to the
homotopy of the full contactomorphism group Cont0(S2r−1, ξst). Hence it
would be very interesting to try extending the K-theory quantization to full
contactomorphism groups and showing an analogue of Theorem 1.3 for this
case. To this end, and in its own right, it would be interesting to see how
the constructions of this paper can be cast in terms of operator algebras —
cf. [33–35] and [12].

Remark 7.1. It was shown by Ma-Marinescu that

ker(Dk
−)Jx

∼= coker(Dk
+)Jx

= 0

for all k > C(Jx), where the function C of the almost complex structure is
continuous in the C∞-topology. This implies that whenever the base B is
compact, for all k large enough, the class Hk in K-theory is in fact rep-
resented by a genuine vector bundle V k over B with fiber ker(Dk

+)Jx
over

x ∈ B.
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Remark 7.2. In fact, whenever B is a closed smooth manifold, given a
choice of a smooth section J ∈ Γ(JM , B), a prequantum connection A on
a prequantum fibration4 P over B, namely one with parallel transport pre-
serving the contact one-forms on the fibers of P → B, is expected to induce
a sequence of unitary connections Ak on the vector bundles V k. Moreover,
using the theory of Fourier integral operators of Hermite type, one expects
to prove the correspondence principles of the following type. The authors
plan to carry this out in detail elsewhere.

1) 1
k ||R(Ak)||∞ → ||R(A)||∞ as k →∞, where R denotes the curvature,
and the norms are supremum norms over T 1B × T 1B (the square
of the unit tangent bundle of B with respect to an auxiliary Rie-
mannian metric on B) of natural conjugation invariant norms on the
Lie algebra — the operator norm on Lie(U(n)) and the C0-norm on
Lie(Cont(Px, αx)) ∼= C∞(Mx,R).

2)
[
trace(etR(Ak)/(k rankV k))

]
m
→ [
∫
fiber(e

tR(A)/ vol(M,ω))]m, as k →∞,
where m denotes the coefficient of tm in the power series, which is
a 2m-form on B that is closed by Chern-Weil theory (cf. [52] for the
appropriate infinite-dimensional setting).

In particular we obtain the convergence of certain expressions in the
real (and hence rational) Chern classes of V k → B to the Reznikov-Spacil
classes of P → B. We note that using the Atiyah-Singer index theorem for
families, one can compute the Chern character of V k, and taking limits as
k →∞ obtain new expressions for the Reznikov-Spacil classes. In the special
case when B = S2, isomorphism classes of prequantum fibrations with fiber
(P, α) over B correspond to free homotopy classes of loops in Cont(P, α),
which in turn correspond to π1Cont(P, α), because this fundamental group
is abelian, and the Reznikov-Spacil class

∫
R(A)/ vol(M,ω) corresponds to

the Calabi-Weinstein invariant [55], defined as

cw(γ) =

∫ 1

0
dt

∫
M
Htω

n,

where Ht is a contact Hamiltonian of a smooth loop in Cont(P, α) represent-
ing γ. This suggests the following statement, which was not known to the
authors, and to the best of their knowledge does not appear in the literature
(save for the special case of prequantizations of CPn [50]).

4Here we use the alternative description using principal S1-bundles and connec-
tion forms.
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Proposition 7.3. The Calabi-Weinstein invariant cw : π1Cont(P, α)→ R
satisfies

cw(γ)/ vol(M,ω) =
1

n+ 1

∫
M
cn+1,

where M is the Hamiltonian fibration underlying any prequantum fibration
P → S2 corresponding to γ, and c is the first Chern class of the complex
line bundle L→M . In particular, if vol(M,ω) = 1, then cw takes values in

1
n+1Z.

This fact has a short proof using the usual finite-dimensional Chern-Weil
theory for L→M . Indeed, one can construct P by the clutching construc-
tion from two copies P × D−, P × D+ of the trivial fibration P × D over the
standard disc D, where a choice of a connection form on P →M (or a uni-
tary connection form on L→M) is constructed from α and the 1-periodic
contact Hamiltonian Ht of a loop in Cont(P, α) representing γ as follows
(see e.g. [42]). On P × D− →M × D− take the connection form α, and on
P × D+ →M × D+ take α+ d(ρ(r)Ht) ∧ dt, where r is the radial coordi-
nate on the disc, t ∈ S1 is the angular coordinate, and ρ : [0, 1]→ [0, 1] is a
smooth function with ρ(r) ≡ 0 for r < ε, and ρ(r) ≡ 1 for r > 1− ε, where
ε is a very small number. Since by Chern-Weil theory this connection form
represents c, the calculation is now immediate.

Proof of Proposition 2.4. Using Proposition 7.3, we construct a central ex-
tension

1→ µN(P,α) → Ĥam(M,ω)→ Ham(M,ω)→ 1,

with Ĥam(M,ω) a subgroup of Q(P, α), where µN(P,α)
∼= Z/N(P, α)Z is the

group of roots of unity of order N(P, α) ∈ Z>0, a divisor of n+ 1. Moreover,

this extension commutes with the inclusions µN(P,α) → S1, Ĥam(M,ω)→
Q(P, α), and the extension (2.1). From this point the proof is immediate
(cf. [2, Proof of Propostion 2.1 (iv)]). Essentially, the S1-valued cocycle
cijk defining the Dixmier-Douady class can, by means of the new central
extension, be chosen to be 1

N(P,α)Z/Z-valued, hence being (n+ 1)-torsion,

and the same is true for its image under the connecting map H2(B,S1)→
H3(B,Z).

To construct Ĥam(M,ω), first note that the natural Lie algebra mor-
phism LieHam(M,ω) ∼= C∞0 (M,R)→ C∞(M,R) ∼= LieQ(P, α) induces a
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section i :H̃am(M,ω)→Q̃(P, α) to the universal cover level of extension (2.1):

0→ R→ Q̃(P, α)→ H̃am(M,ω)→ 0.

Define Ĥam(M,ω) as the image of π ◦ i where π : Q̃(P, α)→ Q(P, α) is the
canonical endpoint-projection homomorphism.

It remains to show that the natural surjection Ĥam(M,ω)
pr−→ Ham(M,ω)

has finite kernel. Put cw = cw/ vol(M,ω). We construct an injection 0→
ker(pr)

κ−→ 1
n+1Z/Z = µn+1. Indeed let φ̂ ∈ ker(pr). Then there exists a lift˜̂

φ = i(γ) ∈ Q̃(P, α) where γ ∈ π1(Ham(M,ω)). In particular cw(
˜̂
φ) = 0. On

the other hand, since pr(φ̂) = 1, φ̂ = φθR, the Reeb flow for certain time θ ∈
R. Catenating the inverse of the path representing

˜̂
φ with the path {φtθR}1t=0

we obtain a class a in π1Q(P, α), with cw(a) = θ. However by Proposition 7.3
this implies that θ ∈ 1

n+1Z. It is now immediate to see that the class κ(φ̂) =

[θ] ∈ 1
n+1Z/Z gives a well-defined homomorphism ker(pr)→ 1

n+1Z/Z, which
is moreover an injection. �

8. Methods of infinity-categories

In this section we prove Theorem 2.10, using methods of infinity-categories
to take a suitable homotopy colimit of the maps pr : BU(r)→ Fred0, along
the natural maps BU(r)→ BU(r′) for r ≤ r′.

8.1. Homotopy colimits

For a nice succinct overview of the theory of homotopy (co)limits and model
categories see Riehl [46]. We shall avoid generalities of model categories and
deal purely with Top: the category of paracompact Hausdorff topological
spaces. This theory in effect attempts to solve a pair of not obviously related
problems. First for D a small diagram category, and

colim : TopD → Top,

the colimit functor, one would like to have a left total derived functor

hocolim : ho(TopD)→ hoTop

for ho(TopD) (not to be confused with (hoTop)D) the homotopy category
of TopD: it is just the localization of TopD with respect to the class of
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morphisms (here just natural transformations) which are object wise weak
equivalences. Very briefly, as our readers may not be familiar with these
notions, hocolim is the right Kan extension of δ ◦ colim along γ for γ :
TopD → hoTopD, δ : Top→ hoTop the localization functors, which in turn
means an arrow R in the diagram:

TopD

γ

��

colim // Top

δ

��

ho(TopD)
R // hoTop

,

together with a distinguished natural transformation from R ◦ γ to δ ◦ colim,
which is co-universal in the natural sense, see also [51, Section 2].

In this paper our category D will have as objects the natural numbers,
with a unique morphism [i, j] from [i] to [j] if j > i. Again without going
into generalities we point out that if F ∈ TopD takes all morphisms in D to
cofibrations in Top, then

hocolimF = colimF,

(for our specific D). The specific property of F which ensures this is being
Reedy cofibrant, see Hirschhorn [20, Chapter 15].

For the example of this paper, let

(8.1) F : D → Top

be the functor F ([r]) = BU(r), which takes the morphism [r, r + 1] : [r]→
[r + 1] to the map BU(r)→ BU(r + 1), which is defined by sending a sub-
space H to the subspace H ⊕ C · vH , for C · vH denoting the subspace gener-
ated by vH , where {vH} is a chosen continuous family of non-zero elements
of H, s.t. each vH is orthogonal to H. Such a family exists since it can be
obtained as a section of a fibration over BU(r), with fiber over H the space
of unit vectors in H orthogonal to H. The fiber is contractible so a section
exists.

The maps F ([r, r + 1]) are cofibrations and so in this case

hocolimF = BU,

as explained above.
The above describes the so called global point of view of the homotopy

colimit, and the output in our specific example. However we may also want a
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notion of homotopy colimits, characterized via a homotopical version of the
universal property characterizing the usual colimits, indeed this is what is
really needed in our paper. This is sometimes also called the local description
of the homotopy colimit. In the context of Top the necessary notion is given
by Vogt [54], in terms of homotopy coherent diagrams. The main point is
that these notions of homotopy colimits coincide in our setting, so that we
may compute the local homotopy colimit via the global one. We shall not
state the theorems that imply this claim in absolute generality, and instead
refer the reader to Shulman, [51, Sections 8, 10].

While fairly elementary, Vogt’s construction is better understood and
presented via the modern theory of quasi-categories particularly after Joyal
and Lurie, simply because it fits nicely with classical intuition on categories
and spaces. This theory is also is beautifully documented: all of what we
need is contained in the beginning sections of Lurie’s [30]. Extremely briefly
(without definitions, for which we refer the reader to the last reference):
an ∞-category C is Lurie’s abbreviation for an (∞, 1)-category, or more
simply a quasi-category, i.e. a simplicial set satisfying a relaxation of the Kan
condition. From now on calligraphic letters like C denote quasi-categories.
For D an ordinary small category by a D shaped diagram in C we mean a
simplicial map:

F : N(D)→ C,

where N(D) denotes the simplicial set: nerve of D. The topological category
Top gives rise to a simplicially enriched category Top∆ with morphism ob-
jects homTop∆(a, b) = Sing(homTop(a, b)) for Sing the singular set functor
from the category of spaces to the category of simplicial sets, and where
homTop(a, b) is the space of maps with the compact open topology.

The simplicial nerve of Top∆, see [30, Section 1.1.5], is a quasi-category
we call T . For example its 2-simplices consist of: topological spaces T0, T1, T2,
maps mi,j : Ti → Tj , 0 ≤ i < j ≤ 2 and a chosen homotopy from m1,2 ◦m0,1

→ m0,2, and so on. A co-cone on a D shaped diagram in C is a simplicial
map:

CR(N(D))→ C,

naturally extending F , where CR(N(D)) denotes the right cone on the sim-
plicial set N(D), i.e. the natural analogue of a topological cone, where there
is a 1-edge from each vertex of N(D) to the cone vertex. See Lurie [30, Sec-
tion 1.2.8] for more details. The colimit of F : N(D)→ C can be interpreted
as the universal co-cone, note however that “the” is a little misleading since
colimits form a natural contractible space, rather than being unique.
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8.2. Proof of Theorem 2.10

Given the setup of the previous section, our strategy is then the following.
For D and F : D → Top as in (8.1), we shall first construct a certain co-
cone on NF : N(D)→ T with cone vertex c mapping to Fred0(H), and
then use that there is a map to this co-cone from the universal co-cone with
cone vertex c mapping to BU , to deduce our claim. The fact that for the
universal co-cone, the vertex c maps to BU follows by [30, Theorem 4.2.4.1]
as it is the (local) homotopy colimit of F , and so must coincide with (global)
homotopy colimit of F obtained from the left derived functor, as previously
outlined.

For a vertex [r] ∈ N(D) we map the unique edge mr : [r]→ c to the edge
in T (for T the quasi-category associated to Top as above) corresponding to
the map pr : BU(r)→ Fred0(H). Then we claim that there is an extension
of this to a map

LFred0(H) : CR(N(D))→ T .
Let us consider 2-simplices of CR(N(D)) two of whose edges are mr,mr+1.
To extend our map to such a 2-simplex we need to prescribe a homotopy
from

pr+1 ◦ F ([r, r + 1]) : BU(r)→ Fred0(H)

to pr : BU(r)→ Fred0(H). For H ∈ BU(r), let Ot(H) ∈ Fred0(H) be de-
fined as follows. For vH ∈ H as in the definition of F ([r, r + 1]) the opera-
tor Ot(H) ∈ Fred0(H) is defined to coincide with pr+1 ◦ F ([r, r + 1])(H) on
the orthogonal complement in H to vH and taking vH to the image under
isor+1 : H⊕ Cr+1 → H of

t · (0, er) ∈ H ⊕ Cr+1,

for er any fixed non zero vector in Cr. Clearly

O0(H) = pr+1 ◦ F ([r, r + 1])(H),

and O1(H) has the same kernel as pr(H), and naturally isometric image.
Specifically we may find an isometry

Ir : H → H

so that Ir ◦O1(H) has the same image as pr(H) for every H. We then define
a homotopy

htt = Ir,t ◦Ot
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where {Ir,t}, 0 ≤ t ≤ 1 is any homotopy from id to Ir. Then ht1(H) has the
same kernel and image as pr(H). (By Kuiper’s theorem the space of such
homotopies is non-empty and contractible.) Next set h̃tt to be any correction
continuous in H of the homotopy htt so that

h̃t0 = pr+1 ◦ F ([r, r + 1])

and so that

h̃t1 = pr.

Such a correction exists since by Kuiper’s theorem the space of Fredholm
operators with the same kernel and image are contractible, and hence the
corresponding bundle over BU(r) has contractible fibers. Using Kuiper’s
theorem and the fact that the spaces of frames in H are contractible we
may then similarly extend our map to the higher simplices of CR(N(D)), to
obtain a map

LFred0(H) : CR(N(D))→ T .

Passing to the homotopy categories (of the simplicial sets, as defined in
[30, Section 1.2.3]) this induces a co-cone that we denote by hoLFred0(H) on

hoF : D → ho T = hoTop

with vertex Fred0(H), (this is just the classical co-cone, i.e. a natural trans-
formation in hoTop to the constant functor). We also have “the” universal
co-cone

LBU : CR(N(D))→ T ,

with the associated classical co-cone hoLBU on D → hoTop.
Now by definition of colimit as outlined in the previous section and maps

of co-cones, (see [30, Section 1.2.9]) there is a morphism (again in the obvious
classical sense)

hoLBU → hoLFred0(H),

which in particular induces a map

W : BU → Fred0(H).

We need to check that it is a weak equivalence. It can be readily shown
as for example in Atiyah’s book [4, Proposition A.5] that for any f : B →
Fred0(H), with B compact there is a homotopy representative f ′ so that the
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kernel spaces {ker f ′(s)} form a family of subspaces of H of the same dimen-
sion, and so that the cokernels of {f ′(s)} are a fixed subspace of H. Then by
construction it readily follows that W is a isomorphism on homotopy groups
of Fred0(H). �
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