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We obtain upper and lower bounds for the relative Gromov width
of Lagrangian cobordisms between Legendrian submanifolds. Up-
per bounds arise from the existence of J-holomorphic disks with
boundary on the Lagrangian cobordism that pass through the cen-
ter of a given symplectically embedded ball. The areas of these
disks — and hence the sizes of these balls — are controlled by a
real-valued fundamental capacity, a quantity derived from the alge-
braic structure of filtered linearized Legendrian Contact Homology
of the Legendrian at the top of the cobordism. Lower bounds come
from explicit constructions that use neighborhoods of Reeb chords
in the Legendrian ends. We also study relationships between the
relative Gromov width and another quantitative measurement, the
length of a cobordism between two Legendrian submanifolds.
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1. Introduction

1.1. Quantitative study of Lagrangian cobordisms

In [37], the authors inaugurated the study of quantitative questions about
Lagrangian cobordisms between Legendrian submanifolds by defining and
investigating the lengths of such cobordisms. We continue the investigation
of quantitative features of Lagrangian cobordisms through the study of rela-
tive Gromov widths, a relative version of a classical symplectic measurement.
The key results in this paper encompass upper bounds on relative Gromov
widths derived from Floer-theoretic techniques, lower bounds arising from
constructions, and relationships between the quantitative measures of length
and width.

The background for these questions and results begins with Gromov’s
seminal non-squeezing theorem. Gromov’s proof in [27] relies on the non-
triviality of the Gromov width of a symplectic manifold (X,ω). The width
of a symplectic manifold (X,ω) is the supremum of the quantities πr2 taken
over all symplectic embeddings of closed balls of radius r into (X,ω). In
the presence of a Lagrangian submanifold L ⊂ X, Barraud and Cornea [4]
defined the relative Gromov width to be the supremum of the quan-
tities πr2 taken over all symplectic embeddings (of a ball) relative
to L, i.e., symplectic embeddings ψ : (B2n(r), ω0) ↪→ (X,ω) with the prop-
erty that ψ−1(L) = B2n(r) ∩ Rn, where Rn denotes a Lagrangian plane in
R2n. The notation ψ : B2n(r) ↪→ (X,L) will be used to denote a symplectic
embedding relative to L.

Though interesting in its own right, the relative Gromov width has also
played a role in detecting other symplectic phenomena. In recent work of
Cornea and Shelukhin [14], for example, the relative Gromov width of a
pair of Lagrangians in (M,ω) is used to show that the “shadow” measure
of Lagrangian cobordisms between Lagrangians in (C×M,ω0 ⊕ ω) defines
a metric and pseudo-metric on appropriate spaces of Lagrangians in M .

Known upper bounds on the relative Gromov width come from finding a
J-holomorphic curve of bounded area passing through the center of a given
embedded ball. For closed Lagrangians, such disks are known to exist when
the Lagrangian is monotone [4, 5, 11], is an orientable surface [12], or admits
a metric of non-positive sectional curvature [6]; see also [2, 15]. Finding
appropriate J-holomorphic curves is also the key technique in the proof
that the shadow of a Lagrangian cobordism between Lagrangians is an upper
bound for the relative Gromov width [14]. As shown in [16, 31], however,
such disks do not always exist for closed Lagrangians in symplectizations,
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and the relative Gromov width may be infinite. Constructions leading to
sharp lower bounds on the relative Gromov width are more rare: see, for
example, [8].

The goal of this paper is to extend the calculation of the relative Gro-
mov width to exact Lagrangian cobordisms between Legendrian
submanifolds. We always consider closed Legendrians in the contactiza-
tion of a Liouville manifold, (C(P ), kerα), and cobordisms are always ori-
entable, Maslov zero, exact Lagrangian submanifolds of the symplectization
(R× C(P ), d(esα)) that coincide with cylinders over Legendrians Λ± in the
complement of [s−, s+]× C(P ). Formal definitions can be found in Section 2.
We denote by Lba the portion of a Lagrangian cobordism L whose symplec-
tization coordinate lies between a and b:

Lba = L ∩ ((a, b)× C(P )) .

The relative (Gromov) width of Lba is then defined in terms of finding
relative symplectic embeddings:

w
(
Lba

)
= sup

{
πr2 | ∃ψ : B2n(r) ↪→

(
(a, b)× C(P ), Lba

)}
.

Since the relative Gromov width of the “top half” L∞a of any Lagrangian
cobordism L is infinite (see Lemma 3.2), we focus attention on the relative
Gromov width of the “bottom half” L0

−∞, where L is cylindrical outside of
[s, 0], for s < 0.

1.2. Upper bounds

Our derivation of an upper bound on the relative Gromov width of a La-
grangian cobordism L from Λ− to Λ+ will follow the now-standard approach
of finding a J-holomorphic curve of controlled area through the center of a
given relative symplectic embedding of a ball. To guarantee the existence of
an appropriate J-holomorphic curve, we will assume that Λ+ is connected,
Λ− and Λ+ are horizontally displaceable, and Λ− admits an augmentation
ε−; we term such a cobordism a fundamental cobordism and define it of-
ficially in Definition 5.7. Note that a “horizontally displaceable” Legendrian
Λ ⊂ C(P ) is one whose Lagrangian projection of Λ to P is displaceable by a
Hamiltonian isotopy [18]; in particular, any Λ ⊂ R2n+1 = J1Rn is horizon-
tally displaceable. Under these assumptions, we may relate the generator
of H0(L) with the fundamental class of Λ+ using the Generalized Duality
Long Exact Sequence of [10, Theorem 1.2]; see Theorem 5.5. An examina-
tion of this relationship at the chain level leads to the desired J-holomorphic
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curve; the area of the curve will be governed by the fundamental capacity
c(Λ+, ε+) of Λ+, where the augmentation ε+ of Λ+ is induced from ε− via L.

The upper bound on the width will be given in terms of the mini-
mal and maximal fundamental capacities of the Legendrian Λ+ with re-
spect to sets of augmentations. Let Aug(Λ+) be the set of all augmenta-
tions of the Legendrian contact homology differential graded algebra of Λ+

(see Section 5.2), and given a Lagrangian cobordism L from Λ− to Λ+,
let AugL(Λ+) ⊆ Aug(Λ+) be the set of augmentations of Λ+ induced from
augmentations of the Legendrian Λ−; see Remark 5.4. We now define the
the miniumum L-induced fundamental capacity and the maximum
fundamental capacity, respectively, as:

cL(Λ+) = min{c(Λ+, ε+) : ε+ ∈ AugL(Λ+)},
c(Λ+) = max{c(Λ+, ε+) : ε+ ∈ Aug(Λ+)}.

Observe that for all L, we have

cL(Λ+) ≤ c(Λ+).

In particular, if Un(r) denotes the standard n-dimensional Legendrian un-
knot in R2n+1 with a single Reeb chord of height r, then cL(Un(r)) =
c(Un(r)) = r. To the authors’ knowledge, there are no known examples
where the fundamental capacity depends on the augmentation, though such
examples are theoretically possible.

We are now ready to state our main theorem for an upper bound on the
relative Gromov width:

Theorem 1.1. If L ⊂ R× C(P ) is a fundamental cobordism, then

(1.1) w
(
L0
−∞
)
≤ 2cL(Λ+) ≤ 2c(Λ+).

1.3. Lower bounds

To complement the upper bounds on the relative Gromov width in Theo-
rem 1.1, we derive lower bounds through the construction of relative sym-
plectic embeddings. These embeddings are constructed in a neighborhood of
a Reeb chord of a Legendrian at an end of the Lagrangian cobordism. These
Reeb chords need to be sufficiently “extendable”: a Reeb chord γ of a Leg-
endrian Λ is frontwise doubly extendable if the front projection of the
upward (or downward) extension of the Reeb chord to twice its height only
intersects the front projection of the Legendrian at ∂γ; see Definition 4.1.
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Theorem 1.2. If Λ ⊂ J1M has a frontwise doubly extendable Reeb chord
of height h, then

2h ≤ w
(
(R× Λ)0

−∞
)
.

Additional lower bounds on the width of Lagrangian cobordisms come
from comparisons to the widths of the cylindrical ends.

Theorem 1.3. Suppose L ⊂ R× C(P ) is a Lagrangian cobordism from Λ−
to Λ+ that is cylindrical outside [s−, 0]. Then

(1.2) es−w
(

(R× Λ−)0
−∞

)
≤ w(L0

−∞).

If L is cylindrical outside [s−,−ε], for some ε > 0, then

(1.3) w
(
(R× Λ+)0

−∞
)
≤ w(L0

−∞).

Theorems 1.1, 1.2, and 1.3 combine to give precise calculations of some
fundamental cobordisms that are collared near the top.

Corollary 1.4. Suppose L ⊂ R× C(P ) is a fundamental cobordism that is
cylindrical outside [s−,−ε], for some ε > 0. If the longest Reeb chord of Λ+

has height r and is frontwise doubly extendable, then

w
(
L0
−∞
)

= 2cL(Λ+) = 2c(Λ+) = 2r.

Proof. Combining Theorem 1.2 and Equation (1.3) from Theorem 1.3, we
find that

2r ≤ w
(
(R× Λ+)0

−∞
)
≤ w

(
L0
−∞
)
.

By Theorem 1.1 and the fact that cL(Λ+) and c(Λ+) are always the height
of a Reeb chord, we find

w
(
L0
−∞
)
≤ 2cL(Λ+) ≤ 2c(Λ+) ≤ 2r. �

Example 1.5. Corollary 1.4 immediately implies the following calcula-
tions.

1) If Un(r) denotes the n-dimensional Legendrian unknot with precisely
one Reeb chord of height r, then

w
(

(R× Un(r))0
−∞

)
= 2r.
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2) If T 1(r) denotes the 1-dimensional Legendrian trefoil shown in Fig-
ure 1, then

w
((

R× T 1(r)
)0
−∞

)
= 2r.

3) More generally, let Λ ⊂ J1Rn be a connected Legendrian that admits
an augmentation. Suppose that the front of Λ is contained in a box of
height s, and let Λ#(r) be the Legendrian submanifold constructed as
a cusp connect sum of Λ and Un(r), with r > s, as shown in Figure 2;
this construction appears, for example, in [7], [17], and [20, §4]. As in
the examples above, we obtain:

w

((
R× Λ#(r)

)0

−∞

)
= 2r.

4) If L is a fundamental cobordism that is cylindrical outside [s−,−ε]
and has positive end equal to Un(r), T 1(r), or Λ#(r), then

w
(
L0
−∞
)

= 2r.

r

Figure 1: The Legendrian trefoil T 1(r).

Remark 1.6. Item (3) in Example 1.5 shows that any connected Leg-
endrian Λ ⊂ J1Rn that admits an augmentation is Legendrian isotopic a
Legendrian where the upper and lower bounds given by Theorem 1.1 and

Theorem 1.2 are sharp. Calculating w
(

(R× Λ)0
−∞

)
in general is more chal-

lenging. In particular, if none of the long Reeb chords of a Legendrian Λ are
frontwise doubly extendable, then there will be gaps between the upper and
lower bounds that we construct in this paper.
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s

r

Figure 2: The setup for forming the connect sum between an n-dimensional
Legendrian Λ at left and a standard n-dimensional unknot Un(r) at right.

1.4. Connections to the length of a cobordism

We finish our investigations by connecting the relative Gromov width to
the length between Legendrians studied in [37]. Given Legendrians Λ±, the
Lagrangian cobordism length `(Λ−,Λ+) is defined to be:

`(Λ−,Λ+) = inf{s+ − s− :∃ Lagrangian cobordism L from Λ− to Λ+

that is cylindrical outside [s−, s+]}.

If there does not exist a Lagrangian cobordism from Λ− to Λ+, then we
define `(Λ−,Λ+) to be +∞. Recall that the Lagrangian cobordisms under
consideration are exact and satisfy the other conditions of Definition 2.1.
One of the key observations of [37] was that the cobordism length exhibits
flexibility (resp. rigidity) when Λ+ is, in a sense, larger (resp. smaller) than
Λ−. The final main result of this paper is that the length of a fundamental
cobordism is bounded below by a ratio of relative widths.

Theorem 1.7. If L is a fundamental cobordism from Λ− to Λ+ that is
cylindrical outside of [−s, 0], then

(1.4) ln

(
w
(
(R× Λ−)0

−∞
)

2c(Λ+)

)
≤ s.
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If, in addition, the upper bound on w
(
(R× Λ+)0

−∞
)

given by Theorem 1.1
is realized, then

(1.5) ln

(
w
(
(R× Λ−)0

−∞
)

w
(
(R× Λ+)0

−∞
)) ≤ s.

Proof. Suppose that L is a fundamental Lagrangian cobordism from Λ−
to Λ+ that is cylindrical outside [−s, 0]. Then Lemma 3.4, the fact that
(R× Λ−)−s−∞ ⊂ L0

−∞, and Theorem 1.1 imply

e−sw((R× Λ−)0
−∞) = w((R× Λ−)−s−∞) ≤ w(L0

−∞) ≤ 2cL(Λ+) ≤ 2c(Λ+),

and the result follows. �

We can apply this to get lower bounds to cobordism lengths between
particular Legendrians. The corollary below follows immediately from Ex-
ample 1.5(1) and Theorem 1.7.

Corollary 1.8. 1) If Un(r±) ⊂ J1Rn is the n-dimensional Legendrian
unknots described in Example 1.5(1), then

ln

(
r−
r+

)
≤ ` (Un(r−), Un(r+)) .

2) Given Λ± ⊂ J1Rn, where Λ+ is connected and each component of
Λ− admits an augmentation, construct Λ#

±(r±) from Λ± as in Ex-
ample 1.5(3). The bound above generalizes to:

ln

(
r−
r+

)
≤ `

(
Λ#
−(r−),Λ#

+(r+)
)
.

Remark 1.9. Statement (1) appears as the upper bound in [37, Theo-
rem 1.1]; Statement (2) strengthens the lower bound given in [37, Proposi-
tion 6.1].

1.5. Outline of the paper

The remainder of the paper is organized as follows. After recalling back-
ground notions and setting precise definitions in Section 2, we set down
some basic facts about relative Gromov widths of cobordisms in Section 3;
this section includes a proof of Theorem 1.3. We describe the constructions



i
i

“6-Sabloff” — 2020/3/23 — 17:39 — page 225 — #9 i
i

i
i

i
i

Relative Gromov width of Lagrangian cobordisms 225

necessary to prove Theorem 1.2 in Section 4. Section 5 provides the back-
ground necessary to understand the J-holomorphic curves used in the proof
of Theorem 1.1, while Section 6 contains the definition of the fundamental
capacity. Knowledge of those J-holomorphic curves and the fundamental
capacity is put to use in Section 7, where we prove Theorem 1.1.
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2. Background notions

In this section, we recall the definitions of our main objects of study: Leg-
endrian submanifolds and Lagrangian cobordisms between Legendrian sub-
manifolds. We assume basic familiarity with these notions; see, for example,
Etnyre’s survey on Legendrian submanifolds [24] and Audin, Lalonde, and
Polterovich [3] on Lagrangian submanifolds.

2.1. Legendrian submanifolds

A Legendrian submanifold Λ of a contact (2n+ 1)-manifold (Y, kerα)
is an n-dimensional submanifold whose tangent spaces lie in the contact
hyperplanes kerα. A Reeb chord of Λ is an integral curve of the Reeb
vector field of α whose endpoints both lie on Λ. Let the collection of Reeb
chords of Λ be denoted by RΛ. The height of a Reeb chord γ is simply

(2.1) h(γ) =

∫
γ
α.

We work with closed Legendrian submanifolds in the contactization of
a Liouville manifold. Specifically, let P be a Liouville manifold: P is an
open, even-dimensional manifold with a 1-form λ such that dλ is symplectic.
We construct the contactization C(P ) = P × R with the contact form α =
dz − λ. The Reeb flow is parallel to the R coordinate of C(P ), and Reeb
chords are in bijective correspondence with double points of the projection
of Λ to P . A Legendrian submanifold is chord generic if those double
points are transverse.
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A special case of the contactization of a Liouville manifold is the 1-jet
space of a smooth manifold M , namely J1M = T ∗M × R with the canonical
contact form dz − λcan. We denote the projections to the base and to the
z direction by πx : J1M →M and πz : J1M → R, respectively. The front
projection is the projection πxz : J1M →M × R.

2.2. Lagrangian cobordisms

The Lagrangians we consider live in the symplectization (R×C(P ), d(esα)).

Definition 2.1. Given closed Legendrians Λ± ⊂ C(P ), a Lagrangian
cobordism from Λ− to Λ+ is an orientable, Maslov zero, exact Lagrangian
submanifold L ⊂ (R× C(P ), d(esα)) such that there exist real numbers s− ≤
s+ satisfying:

1) L ∩ ([s−, s+]× C(P )) is compact,

2) L ∩ ((−∞, s−]× C(P )) = (−∞, s−]× Λ−,

3) L ∩ ([s+,∞)× C(P )) = [s+,∞)× Λ+, and

4) There exists a function f and a constant C+ such that esα|L = df
where on (−∞, s−]× Λ−, f ≡ 0 while on [s+,∞]× Λ+, f = C+.

We say that L is cylindrical outside of [s−, s+].

3. First results about the width of cobordisms

In this section, we collect some foundational results about the relative Gro-
mov width of a Lagrangian cobordism. Theorem 1.3 is a special case of
Theorem 3.5.

The first lemma tells us that the relative Gromov width is non-zero.

Lemma 3.1. For any Lagrangian cobordism L ⊂ R× C(P ) and any p ∈ L,
there exists r > 0 and a relative symplectic embedding ψ : B2n(r) ↪→ (R×
C(P ), L) with ψ(0) = p.

Proof. The lemma essentially follows from Weinstein’s Lagrangian neighbor-
hood theorem, suitably adjusted to non-compact Lagrangian cobordisms.

�

The next lemma explains why we focus our study of relative Gromov
width to the lower halves of Lagrangian cobordisms.
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Lemma 3.2. For any Lagrangian cobordism L ⊂ R× C(P ) and any −∞ ≤
s0 <∞, we have w(L∞s0

) =∞.

Proof. Suppose that L is a Lagrangian cobordism from Λ− to Λ+ that is
cylindrical outside [s−, s+]. Choose p ∈ L ∩ (s+,∞)× C(P ). By Lemma 3.1,
there exists a r > 0 and a relative symplectic embedding

εr : B2n(r) ↪→ ((s+,∞)× C(P ), (s+,∞)× Λ+) .

Fix an arbitrary R > r. We will construct a relative symplectic embedding

ψ : B2n(R) ↪→ ((s+,∞)× C(P ), (s+,∞)× Λ+)

by precomposing and postcomposing εr with maps that are conformally
symplectic.

To define the first map, let λ = r/R and consider the scaling map κλ :
B2n(R)→ B2n(r) given by κλ(x,y) =

√
λ(x,y). Observe that κ∗λω0 = λω0,

and that κλ preserves the Lagrangian plane Rn ⊂ R2n.
For the second map, let u = − lnλ > 0 and consider the translation by

u of the positive end of the cobordism:

τu : (s+,∞)× C(P )→ (s+ + u,∞)× C(P )

(s, p) 7→ (s+ u, p).

Observe that τ∗uω = euω = 1
λω.

Putting the maps above together yields ψ = τ− lnλ ◦ εr ◦ κλ, the desired
relative symplectic embedding from B2n(R) to ((s+,∞)× C(P ), (s+,∞)×
Λ+). �

Remark 3.3. A similar style of argument appears in Dimitroglou Rizell’s
proof that if a closed Lagrangian in a symplectization has a neighborhood
that is equal to a cylinder over a Legendrian, then it has infinite relative
Gromov width [16]. Dimitroglou Rizell’s argument needed to be more com-
plicated since his Lagrangians were not cylindrical at infinity.

As a result of Lemma 3.2, we will restrict our attention to the relative
widths of negative ends of Lagrangian cobordisms, i.e. Lagrangians of the
form Lb−∞, where s+ ≤ b.

For the special case where L is cylindrical over a Legendrian, the follow-
ing lemma shows that it suffices to understand the width of L0

−∞. The proof
is analogous to that of Lemma 3.2.
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Lemma 3.4. For any Legendrian Λ ⊂ C(P ),

w((R× Λ)b−∞) = ebw((R× Λ)0
−∞).

The next argument shows that regions of a Lagrangian cobordism that
are cylindrical over a Legendrian Λ can be stretched downward, which allows
us to get a lower bound for the relative width of a Lagrangian cobordism
from the width of (R× Λ)0

∞.

Theorem 3.5. Suppose L ⊂ R× C(P ) is a Lagrangian cobordism that is
cylindrical outside [s−, 0]. Suppose for a < b ≤ 0, there exists a Legendrian
Λ ⊂ C(P ) so that

L ∩ ([a, b]× C(P )) = [a, b]× Λ.

Then

w
(

(R× Λ)b−∞

)
≤ w

(
L0
−∞
)
.

Proof. We will show that if there exists a relative symplectic embedding ψ0 :
B2n(r) ↪→ ((−∞, b)× C(P ), (−∞, b)× Λ), then there also exists a relative
symplectic embedding ψ1 : B2n(r) ↪→ ((−∞, 0)× C(P ), L0

−∞).
Given the relative symplectic embedding ψ0, suppose that Imψ0 ⊂

(k, b)× C(P ) for some k < b. If a ≤ k, then we can take ψ1 = ψ0. If, on the
other hand, we have k < a, we stretch the cylinder as follows. Fix constants
u, v so that v < u < a < b, and let ρ(s) : R→ R be a smooth, non-positive,
compactly supported function with

ρ(s) =


0 s ≤ v
k − a s ∈ [u, a]

0 s ≥ b

By an appropriate choice of u, v, we can guarantee that ρ′(s) > −1, which
guarantees that for all t ∈ [0, 1], σt(s) := s+ ρ(s)t is an injective function.

Next, we consider the isotopy of L given by

φ : [0, 1]× L→ R× C(P )

(t, s, p) 7→ (σt(s), p).

We write φt : L→ R× C(P ) for the restriction of φ to {t} × L. It is easy to
verify that Lt = φt(L) is a 1-parameter family of exact Lagrangian subman-
ifolds with L0 = L and L1 ∩ ((k, b)× C(P )) = (k, b)× Λ. It is a well known
fact that exact Lagrangian isotopies of compact manifolds can be realized by
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Hamiltonian isotopies; see, for example, [3, §2.3] or [32, §3.6]. Even though L
is not compact, φt is a compactly supported, and so the proofs in the compact
setting imply that there exists a Hamiltonian isotopy ht of R× C(P ) such
that ht(L) = Lt and ht = id when s ≤ v or s ≥ b. The map ψ1 = h−1

1 ◦ ψ0 is
our desired relative symplectic embedding. �

Observe that Theorem 1.3 follows immediately from Lemma 3.4 and
Theorem 3.5.

4. Constructing embeddings near extendable Reeb chords

The goal of this section is to prove the lower bound on the relative Gromov
width given in Theorem 1.2 by constructing relative symplectic embeddings
in a neighborhood of a suitably extendable Reeb chord. The Reeb chords we
are interested in are characterized as follows.

Definition 4.1. Suppose γ is a Reeb chord of Λ ⊂ J1M whose endpoints
are disjoint from the preimages of all singularities of the front projection.
Let πx(γ) = x0 and πz(γ) = [z−, z+]. If h = z+ − z−, let Z+ and Z− denote
the forward and backward extensions of πz(γ) to intervals of height 2h:

Z− = [z− − h, z+], Z+ = [z−, z+ + h].

Then γ is frontwise doubly extendable if either

π−1
xz ({x0} × Z−) ∩ Λ = Λ ∩ ∂γ or π−1

xz ({x0} × Z+) ∩ Λ = Λ ∩ ∂γ.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let Λ ⊂ J1Mn be a Legendrian submanifold with a
frontwise doubly extendable Reeb chord γ of height h and endpoint heights
of z±. We want to prove that

2h ≤ w
(
(R× Λ)0

−∞
)
.

For any r such that πr2 < 2h, we will construct a relative symplectic embed-
ding τ : B2n+2(r) ↪→ ((R× J1M)0

−∞, (R× Λ)0
−∞). The construction of the

embedding will proceed in three steps: after setting notation more carefully,
we will change the target manifold from the symplectization to the (sym-
plectomorphic) cotangent bundle T ∗(R+ ×M), where certain computations
are easier. Next, we will embed a polydisk into a subset of T ∗(R+ ×M),
sending the real part of the polydisk to the zero section. Finally, we will
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adjust the embedding of the polydisk to match the Lagrangian R× Λ along
the real part; the desired embedding of a ball follows from restricting the
embedding from the polydisk to the round ball.

Before beginning the key steps in the proof, let us set notation more
precisely. Suppose γ is a frontwise doubly extendable Reeb chord of height
h in the downward direction, i.e. we are using the interval Z− in Defini-
tion 4.1; the proof for the upward direction is analogous. We begin by refin-
ing the neighborhood of the extended Reeb chord. By our assumption that
the endpoints of the Reeb chord are disjoint from preimages of singularities
of the front projection, there is a neighborhood V of x0 in M such that
in U = π−1

xz (V × Z−), Λ is a disjoint union of the 1-jets of two functions
f± : V → R with f+ > f− on V :

Λ ∩ U = j1(f+) ∪ j1(f−).

Fix an arbitrary ε1 satisfying 0 < ε1 < h/2. By shrinking the neighborhood
V of x0, we can assume that for all x ∈ V , we have

(4.1) f+(x)− f−(x) > h− ε1 and |f±(x)− z±| < ε1/2.

We will restrict attention in the target of the embedding to the symplecti-
zation of U relative to the symplectization of the image of j1(f−).

The first step in the proof is to transform the target of the embedding
into a subset of a cotangent bundle. Consider the symplectic diffeomorphism

Ψ : R× J1M → T ∗R+ × T ∗M
(s, x, y, z) 7→ (es, z, x, esy).

We may parameterize the image of the cylinder over Λ ∩ U in T ∗(R+ ×
M) as follows:

Ψ((−∞, 0)× j1(f−)) = {(t, f−(x), x, t df−(x))},(4.2)

Ψ((−∞, 0)× j1(f+)) = {(t, f+(x), x, t df+(x))}.(4.3)

Here t ∈ (0, 1) and x ∈ V .
Our goal now is to construct a symplectic embedding of B2n+2(r) into

Ψ((−∞, 0)× U) ⊂ T ∗R+ × T ∗M relative to Ψ((−∞, 0)× j1(f−)). To make
the capacity πr2 more concrete, we fix an arbitrary ε2 satisfying 0 < ε2 <
1, and let πr2 = 2(h− ε1)(1− ε2). Since the εi are arbitrary, we see that
the supremum of the capacities of the embeddings constructed here is,
indeed, 2h.
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The second major step is to construct a symplectic embedding σ :B2(r)×
B2n(r) ↪→ T ∗R+ × T ∗M that sends the (B2(r) ∩ R)× (B2n(r) ∩ Rn) to the
zero section of the cotangent bundle. To make the construction more precise,
construct sets A ⊂ R+, B ⊂ R, and C ⊂ V ⊂M . We want the embedding σ
to send B2(r)×B2n(r) into (A×B)× T ∗C. To define the first component
of σ, let A = [ ε2

2 , 1−
ε2

2 ] and B = [−h+ ε1, h− ε1]; observe that the area
of the rectangle A×B is πr2, and thus there exists a relative symplectic
embedding

σ1 : B2(r) ↪→ (A×B,A× {0}).

Next, for the domain V ⊂M of f±, choose a non-empty closed set C ⊂ V
that is diffeomorphic to Bn and contains a neighborhood of x0. Thus there
exists a symplectic diffeomorphism between T ∗Bn and T ∗C, and so there
exists a relative symplectic embedding

σ2 : B2n(r) ↪→ (T ∗C,C0),

where C0 denotes the zero section of T ∗C. Putting the foregoing construc-
tions together, we see that σ = σ1 × σ2 restricts to a define a relative sym-
plectic embedding σ : B2n+2(r)→ ((A×B)× T ∗C, (A× {0})× C0).

The final step is to adjust the embedding σ so that its real part lies in
Ψ((−∞, 0)× j1(f−)) rather than in the zero section of T ∗R+ × T ∗C. Let
W = T ∗R+ × T ∗V , and consider the symplectic embedding

φ : (W,ω0)→ (T ∗R+ × T ∗M,ω0)

φ(t, u, x, y) = (t, u+ f−(x), x, y + t df−(x)).

We finish the proof by defining the desired relative symplectic embedding
by τ = φ ◦ σ and verifying that it has the necessary properties. By construc-
tion, we have φ(A×B × T ∗C) ⊂ Ψ((−∞, 0)× U), and thus τ(B2n+2(r)) ⊂
Ψ((−∞, 0)× U). A straightforward verification shows that the image of
the real part of B2n+2(r) under τ is parametrized by points of the form
(a, f−(b), b, a df−(b)), which certainly lies within Ψ(j1(f−)) by Equation (4.2).
To show that no other points of τ(B2n+2(r)) are contained in Ψ((−∞, 0)×
(U ∩ Λ)), it suffices to show that there is no point in φ(A×B × T ∗C) of the
form (a, f+(c), c, a df+(c)). Equation (4.1) implies that, for any b ∈ B and
c ∈ V , we have b < h− ε1 and f+(c)− f−(c) > h− ε1. We then see that
b+ f−(c) < h− ε1 + f−(c) < f+(c). Thus φ(a, b, c, d) cannot be of the form
(a, f+(c), c, a df+(c)), as desired. �
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5. J-holomorphic curves and the fundamental class

In this section, we lay out the algebraic and analytic structures that we will
use to derive the upper bound in Theorem 1.1. Recall that the strategy for
the proof of Theorem 1.1 is to find a J-holomorphic curve of controlled area
through the center of the image of a given symplectic embedding of a ball.
In this section, we will prove the existence of appropriate J-holomorphic
curves in Corollary 5.10.

In Sections 5.1 and 5.2, we will recall the constructions underlying Floer
theory for Lagrangian cobordisms from [10] and Legendrian Contact Ho-
mology (LCH) from [21]. In Section 5.3, we outline the construction of the
fundamental class following [10] and examine how the fundamental class
implies the existence of J-holomorphic disks that will be used in Sections 6
and 7.

5.1. Moduli spaces of J-holomorphic disks

In this section, we define the moduli spaces of J-holomorphic disks that
will underlie the algebraic structures defined in later sections. We follow the
language of [10, §3]. The geometric background for the moduli spaces begins
with two chord-generic links Λ− ∪ Λ̃− and Λ+ ∪ Λ̃+ in C(P ). Next, consider
a pair of Lagrangian cobordisms L, L̃ in the symplectization R× C(P ) from
Λ− to Λ+ (resp. from Λ̃− to Λ̃+); see Definition 2.1 for the hypotheses
satisfied by these Lagrangian cobordisms.

To define the J-holomorphic disks themselves, we let Dk denote the
closed unit disk in C with k + 1 punctures z0, . . . , zk on its boundary. A disk
Dk will come with a distinguished puncture zj for j > 0, which splits ∂Dk

into two parts: one from z0 to zj (counterclockwise) called ∂−Dk, and one
from zj to z0 called ∂+Dk. Each of ∂±Dk will be labeled with a Lagrangian
cobordism L(±) as in [10, §3.2.1].

When defining moduli spaces of J-holomorphic disks, we use compatible
almost complex structures on the symplectization R× C(P ) satisfying dif-
ferent conditions, depending on whether or not the Lagrangian cobordism
is cylindrical and whether or not the boundary of the disk lies on a single
Lagrangian or “jumps” between different Lagrangians. We set notation for
these complex structures here and refer the reader to [10, §2.2] for further
details.

The spaces of complex structures we need are the following:
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• Almost complex structures that are cylindrical over the entire sym-
plectization will be denoted J cyl. In particular, these almost complex
structures are invariant under the conformal action of R on R× C(P ).
Further, such an almost complex structure maps the symplectization
direction to the Reeb direction, preserves the contact planes, and is
compatible with dλ|ξ on the contact planes. The subset of cylindri-
cal almost complex structures that come from lifting an admissible
almost complex structure on P is denoted J cylπ . This type of almost
complex structure will be used in defining “pure LCH moduli spaces”
in Definition 5.1.

• Almost complex structures that agree with those in J cylπ outside of
a compact set contained in [s−, s+]× C(P ) will be denoted J adm.
Domain-dependent almost complex structures are defined using a path
Jt ∈ J adm; these almost complex structures fit together to define a
map J on the Deligne-Mumford space of punctured disks. These maps
J arise in the construction of the “mixed LCH moduli space” (Defini-
tion 5.2) and the “Floer to LCH moduli space” (Definition 5.3).

Our next goal is to describe moduli spaces of J-holomorphic maps u :
Dk → R× C(P ) with specific behaviors along the boundary and near the
punctures as in [10, §3]. We are given a punctured disk with a Lagrangian
label L and an almost complex structure J on R× C(P ), possibly domain
dependent. We say that a map u : Dk → R× C(P ) is J-holomorphic with
Lagrangian boundary conditions if it satisfies:

(J1) du ◦ j = J ◦ du, and

(J2) u(∂±Dk) ⊂ L(±).

The relevant moduli spaces of J-holomorphic disks will differ in the
asymptotics of their maps near the boundary punctures. To specify those
conditions, we note that a neighborhood of a boundary puncture zi of Dk is
conformally equivalent to a strip S = (0,∞)× i[0, 1] ⊂ C, and we let (s, t)
denote the coordinates on S.

The first type of asymptotic condition involves a Reeb chord γ of Λ ∪ Λ̃
of length T . We say that a J-holomorphic map with Lagrangian bound-
ary conditions u = (a, v) : S → R× C(P ) is ±-asymptotic to γ at zi if it
satisfies the following conditions in local coordinates on the strip S:

(R1) lims→∞ a(s, t) = ±∞, and

(R2+) For +-asymptotic, lims→∞ v(s, t) = γ(Tt), or
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(R2−) For −-asymptotic, lims→∞ v(s, t) = γ(T (1− t)).

The second type of asymptotic condition involves an intersection point
m ∈ L ∩ L̃. We say that a J-holomorphic map with Lagrangian boundary
conditions u : Dk → R× C(P ) is asymptotic to m at zi if it satisfies the
following condition:

(I1) limz→zi u(z) = m.

We can now define a number of moduli spaces that will be used in later
arguments. The first moduli space is important for a single Legendrian.

Definition 5.1 (§3.1 in [10]). For a Reeb chord a of Λ, a word b =
b1 · · · bk of Reeb chords of Λ, and a J ∈ J cylπ , we define the pure LCH
moduli space MJ

Λ(a; b) to be the set of J-holomorphic maps with La-
grangian boundary conditions labeled by L = R× Λ that are +-asymptotic
to a at z0 and are −-asymptotic to the other Reeb chords at the corre-
sponding punctures, up to conformal reparametrization of the domain. Note
that the moduli space MJ

Λ(a; b) admits an R-action via translation in the
symplectization direction.

A similar moduli space is useful for a pair of Legendrians.

Definition 5.2 (§3.2 in [10]). The mixed LCH moduli space

MJ
Λ←Λ̃

(
←
a; b,

←
c , b̃

)
is defined similarly to the pure LCH moduli space, with J induced by a
path in J adm,

←
a and

←
c Reeb chords from Λ̃ to Λ, and b (resp. b̃) a word

of Reeb chords of Λ (resp. Λ̃). The Lagrangian boundary conditions have
labels L(−) = R× Λ and L(+) = R× Λ̃.

We quickly review the construction of Floer cohomology groups for La-
grangian cobordisms to fix notation. Given exact Lagrangian cobordisms L
and L̃ that intersect transversally and whose Legendrian ends are disjoint,
we may define the Floer cochain complex FC∗(L, L̃) to be generated
by the intersection points L ∩ L̃ over F2. We grade the chain complex us-
ing the Conley-Zehnder index as in [10, §3.3], and we define the differen-
tial d00 : FC∗(L, L̃)→ FC∗+1(L, L̃) of an intersection point x ∈ L ∩ L̃ by a
count of appropriate J-holomorphic curves that are schematically shown in
[10, Figure 3]; see also [10, §3.2.3]. The cohomology of this complex is the
Floer cohomology FH∗(L, L̃).
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The next moduli space we define deals with pairs of Lagrangian cobor-
disms.

Definition 5.3 (§3.2.5 in [10]). Suppose L (resp. L̃) is a Lagrangian
cobordism from Λ− to Λ+ (resp. Λ̃− to Λ̃+),

←
a is a Reeb chord from Λ̃+

to Λ+, m ∈ L ∩ L̃, b = b1 · · · bj−1 is a word of Reeb chords of Λ−, and b̃ =

b̃j+1 · · · b̃k is a word of Reeb chords of Λ̃−. Given a path J ∈ J adm, we define
the Floer to LCH moduli space

MJ
L←L̃(

←
a; b,m, b̃)

to be the set of J-holomorphic maps with Lagrangian boundary labels
L(−) = L and L(+) = L̃ that are +-asymptotic to a at z0 and are −-
asymptotic bi at zi, for i ∈ {1, . . . , j − 1}, to m at zj , and to b̃i at zi, for i ∈
{j + 1, . . . , k}. A schematic representation of a curve in MJ

L←L̃
(
←
a; b,m, b̃)

can be found in [10, Figure 5].

As shown by Proposition 3.2 in [10], among other sources, all of these
moduli spaces are transversally cut out, pre-compact manifolds for generic
J or J, and hence are finite sets when their dimension is 0.

5.2. The Chekanov-Eliashberg DGA and its linearizations

To define the differential graded algebra (DGA) underlying the Legendrian
contact homology (LCH) of a Legendrian submanifold, we begin with the
F2-vector space AΛ generated by the set of Reeb chords RΛ as in [19–21].
We then define AΛ to be the unital tensor algebra TAΛ =

⊕∞
i=0A

⊗i
Λ . The

generators of AΛ are graded by a Conley-Zehnder index, with the grading
extended to AΛ additively. The gradings are well-defined up to the Maslov
number of the Lagrangian projection of Λ to P .

The differential of a Reeb chord a ∈ RΛ counts 0-dimensional moduli
spaces from Definition 5.1:

(5.1) ∂Λ(a) =
∑

dimMJ
Λ(a;b)=1

#(MJ
Λ(a; b)/R) b.

The count is taken modulo 2. The differential extends to all of AΛ via
linearity and the Leibniz rule and has degree −1. Compactness and gluing
arguments show that (∂Λ)2 = 0 as in [19, 21].

It is notoriously difficult to extract computable invariants from the full
DGA. One way to render the theory more computable is to use Chekanov’s
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linearization technique [13]. Though it is not always possible to use this
technique [25, 26, 34], it is quite powerful when it applies.

The starting point for Chekanov’s linearization technique is an aug-
mentation, which is a degree 0 DGA map ε : (AΛ, ∂Λ)→ (F2, 0). After a
change of coordinates onAΛ defined by ηε(a) = a+ ε(a), the new differential
∂ε = ηε∂Λ(ηε)−1 has the property that its linear part ∂ε1 : AΛ → AΛ satis-
fies (∂ε1)2 = 0. We denote the linearized chain complex by LCC∗(Λ, ε) =
(AΛ, ∂

ε
1). The homology groups of LCC∗(Λ, ε) are denoted LCH∗(Λ, ε) and

are called the linearized Legendrian Contact Homology (of Λ with
respect to ε). One may similarly define the linearized cochain com-
plex LCC∗(Λ, ε) with linearized codifferential dε and cohomology groups
LCH∗(Λ, ε).

In the presence of a decomposition of the Legendrian submanifold into a
link Λ ∪ Λ̃, the Reeb chords can be partitioned into pure chords that begin
and end on the same component and mixed chords, with the Reeb chords
from Λ̃ to Λ denotedRΛ←Λ̃. In this setting, the linearized Legendrian contact
cohomology has additional structure [30]. We may form an augmentation ε∪
for AΛ∪Λ̃ by using augmentations ε and ε̃ for Λ and Λ̃, respectively, on pure
chords and then defining ε∪ to be zero on the remaining mixed chords. If we
let AΛ←Λ̃ ⊂ AΛ∪Λ̃ denote the F2 vector space generated by RΛ←Λ̃, then it
is not hard to see that the restriction of the linearized codifferential dε∪ to
AΛ←Λ̃ yields a subcomplex of LCC∗

(
Λ ∪ Λ̃, ε∪

)
, which we will denote by

LCC∗
(

(Λ, ε)← (Λ̃, ε̃)
)

. Alternatively, we may use the moduli space from

Definition 5.2 to directly define the codifferential of LCC∗
(

(Λ, ε)← (Λ̃, ε̃)
)

on a Reeb chord
←
c from Λ̃ to Λ by:

(5.2) dε,ε̃(
←
c ) =

∑
dimMJ

Λ,Λ̃
(
←
a ;b,

←
c ,b̃)=0

ε(b)=1=ε̃(b̃)

#MJ
Λ,Λ̃

(
←
a; b,

←
c , b̃)

←
a.

Remark 5.4. As shown in [22], given an exact Lagrangian cobordism L
from Λ− to Λ+, there is a DGA morphism ΦL : (A(Λ+), ∂+)→ (A(Λ−), ∂−).
As a consequence, an augmentation ε− of Λ− induces an augmentation ε+ =
ε+(L, ε−) of Λ+ by

(5.3) ε+ = ε− ◦ ΦL.
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5.3. The fundamental class

We now will explain some important long exact sequences that involve
LCH∗(Λ, ε) and how the constuction of maps in this sequence implies the
existence of particular J-holomorphic curves.

An important structural result for the linearized Legendrian Contact
Homology of a horizontally displaceable Legendrian is the duality long exact
sequence [18]:1

(5.4) · · · // LCHk(Λ, ε)
ρ∗ // Hk(Λ)

σ∗ // LCHn−k(Λ, ε) // · · ·

For a horizontally displaceable Legendrian Λ, we define the fundamental
class

(5.5) λ = λΛ,[m],ε := σ∗[m] ∈ LCHn(Λ, ε)

for [m] a generator of H0(Λ). It was shown in [18] that when Λ is connected,
the map σ∗ is injective on H0(Λ) and thus λ is non-zero. When one examines
the construction of σ∗ at the chain level, one sees that the non-triviality of
the fundamental class implies the existence of a J-holomorphic curve, for
J ∈ J cylπ , that passes through an arbitrary point m ∈ L = R× Λ.

For our ultimate goal of studying relative embeddings into Lagrangian
cobordisms, we will need to work in a more general setting. The long exact
sequence in (5.4) has been generalized to Lagrangian cobordisms:

Theorem 5.5 (Generalized Duality, Theorem 1.2 of [10]). Suppose L
is a Lagrangian cobordism from Λ− to Λ+, ε− is an augmentation of Λ− and
ε+ is the augmentation of Λ+ induced by L from ε−. If Λ− is horizontally
displaceable, there is a long exact sequence
(5.6)

· · · // LCHk(Λ−, ε−)
P∗ // Hk(L)

Σ∗ // LCHn−k(Λ+, ε+) // · · ·

The generalized fundamental class will be defined as Σ∗[m] for [m] a
generator of H0(L). The fact that the generalized fundamental class does
not vanish will imply the existence of a J-holomorphic curve passing through
an arbitrary point m ∈ L. To see why, we need to understand the chain-level
construction of the map Σ∗.

1See also [35] for a precursor in R3 and [7, 36] for a similar result for generating
family homology.
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The first step in describing the map Σ∗ is to specify the geometric setting,
which we take from [10, §7.2 and §8.4.2]. Given L as in the statement of
Theorem 5.5, we find a small perturbation L̃ of L as follows. We emphasize
that this perturbation depends on the point m ∈ L.

First let h : R→ R be a smooth function that satisfies:

1) h(s) = −es for s ≤ u− < s−,

2) h(s) = es − T for s ≥ u+ > s+ = 0 for some T > 0, and

3)
(
dh
ds

)−1
(0) is a connected interval containing [s−, s+].

A picture of such a function h appears in [10, Figure 12]. Let Lh be the image
of L under a time-1 Hamiltonian flow associated to εh, for a sufficiently small
ε, and let Λh± be the images of the Legendrians Λ±. Note that Λh± is simply
a small shift of Λ± in the ± Reeb direction, where ε is chosen so that the
shift is smaller than the shortest Reeb chord of Λ±. To obtain isolated Reeb
chords between the Legendrians at the ends and isolated intersection points
between the compact portions of the Lagrangians, we further modify Lh

to L̃ in two steps. For both perturbations, we use a particular Weinstein
neighborhood of Lh as constructed in [10, §7.2]: we symplectically identify
a neighborhood N of L with a neighborhood N0 of the 0-section in T ∗L in
such a way that when L coincides with the cylinders R× Λ±, N0 coincides
with a neighborhood of the 0-section in T ∗(R× Λ±), which in turn can be
identified with R× V where V is a neighborhood of the 0-jet in J1Λ±. With
this identification, we first construct Lh,f , a non-compact perturbation of
the cylindrical ends of Lh. Let f± : Λ± → (0, δ] be small, positive Morse
functions. These Morse functions may be used to construct perturbations of
Λ± by taking the 1-jets ±j1f± ⊂ J1Λ±. We construct Lh,f by cylindrically
extending Λh,f± . Finally, we construct L̃ from Lh,f by taking a particular

δ-small compactly supported perturbation of Lh,f so that L̃ is the graph of
dF for a Morse function F that has a unique local minimum at the point
m ∈ L ∩ L̃.

With the geometric background in place, we may make the following
identifications:

Proposition 5.6 ([10], Proposition 7.5 and Theorem 7.9). Given a
Lagrangian cobordism L and a Lagrangian cobordism L̃ constructed from L
using functions εh, f, F as above, we have:

1) LCH∗
(

(Λ+, ε+)← (Λh,f+ , ε+)
)
' LCH∗ (Λ+, ε+), and
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2) FH∗(L, L̃) 'MHn+1−∗(F ) ' Hn+1−∗(L).

In the first identification, we have identified augmentations on Λ+ and
Λh,f+ through a canonical bijection of Reeb chords as in [10, Remark 7.6]. In
the second identification, MH∗(F ) refers to the Morse homology.

It follows that we may construct Σ∗ : H0(L)→ LCHn(Λ+, ε+) on the
cochain level as a map

Σ = ΣL,ε− : FCn+1(L, L̃)→ LCCn
(

(Λ+, ε+)← (Λh,f+ , ε+)
)
.

Such a map is defined as the d+0 map in the Cthulu complex described in
[10, §4.1]: for m ∈ L ∩ L̃ corresponding to the unique local minimum of F ,
we define d+0 on the (n+ 1)-cochain m by using J and the Floer to LCH
moduli space of Definition 5.3:

d+0(m) :=
∑

dimMJ

L←L̃
(
←
a ;b,m,b̃)=0

ε−(b)=1=ε̃−(b̃)

#MJ
L←L̃(

←
a; b,m, b̃) · a,

where ε̃− is again the augmentation of Λ̃− induced by ε− as explained in
[10, Remark 7.6].

Following [10, §8.4], the fundamental class induced by L, [m] ∈ H0(L),
and the augmentation ε− of Λ− is defined to be the image

(5.7) λ = λL,[m],ε− := Σ∗([m]) ∈ LCHn(Λ+, ε+).

Under the assumption that L is connected, [10, Proposition 8.7] shows that
λ agrees with the fundamental class of the Legendrian at the positive end
given in Equation (5.5):

λL,ε− = λΛ+,ε+
∈ LCHn(Λ+, ε+).

We gather the conditions necessary for a nonvanishing fundamental class
in the following definition:

Definition 5.7. A Lagrangian cobordism L from Λ− to Λ+ (satisfying
conditions in Definition 2.1) is a fundamental cobordism if:

1) Λ− and Λ+ are both horizontally displaceable;

2) each component of Λ− admits an augmentation; and
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3) Λ+ is connected.

Observe that we also want L to be connected. This, however, is implied
by the other conditions:

Lemma 5.8. Any fundamental cobordism is connected.

Proof. Since Λ+ is connected, a non-connected Lagrangian cobordism would
only be possible if Λ∗− ⊂ Λ−, consisting of a component or a union of com-
ponents of Λ−, admits a Lagrangian cap, which is a Lagrangian cobordism
from Λ∗− to ∅. By a result of Dimitroglou-Rizell, [16, Corollary 1.9], the DGA
of Λ∗− would be acyclic, and from this it is easy to verify that Λ∗− cannot
admit an augmentation, contradicting the fact that each component of Λ−
admits an augmentation. �

The upshot of this discussion is the following lemma:

Lemma 5.9. If L is a fundamental cobordism, then λL,ε− 6= 0.

The nonvanishing of the fundamental class implies the following exis-
tence theorem of J-holomorphic curves:

Corollary 5.10. Suppose L is a fundamental cobordism, ε− is an augmen-
tation of Λ−, and ε+ is the augmentation of Λ+ induced by L. For any
m ∈ L and any generic path J, there exists:

1) a perturbation L̃ of L, as constructed above from functions εh, f±, and
F , with m ∈ L ∩ L̃,

2) a representative a1 + · · ·+ ak (depending on m,L, ε−) of the funda-
mental class λΛ+,ε+

that is defined using the perturbation L̃, and

3) for each summand ai, i ∈ {1, . . . , k}, of this representative of the fun-
damental class, a J-holomorphic curve u ∈MJ

L←L̃
(
←
ai; b,m, b̃) with

ε−(b) = 1 = ε̃−(b̃), where
←
ai ∈ RΛ+←Λh,f

+
is the Reeb chord correspond-

ing to ai ∈ RΛ+
.

6. The fundamental capacity

In this section, we will show that the areas of the J-holomorphic curves
whose existence is guaranteed by Corollary 5.10 are bounded above by the
“fundamental capacity” of the Legendrian submanifold. This capacity is a
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type of spectral invariant that was defined in [37, §4.3], inspired by Viterbo’s
work [38] on generating families and reminiscent of Hutchings’ Embedded
Contact Homology capacities [28].

6.1. Area and energy

Typically, a notion of energy for the J-holomorphic curves used to construct
the Legendrian Contact Homology is defined with an eye to proving that the
sum in Equation (5.1) is finite. To define such an energy in the setting of
a Lagrangian cobordism L that is cylindrical outside of [s−, s+]× C(P ), we
use a notion of “Lagrangian energy,” which is a close relative to an energy
introduced in [9]; we use the form specified in [10, §3.4].

Suppose that, for some small δ > 0, the cobordism L is cylindrical out-
side of [s− + δ, s+ − δ]. Next, consider a smooth, increasing function

ϕ(s) =


es− , s ≤ s−
es, s− + δ ≤ s ≤ s+ − δ
es+ , s ≥ s+.

Definition 6.1. Given a curve u ∈MJ
Λ(a; b) or u ∈MJ

L←L̃
(
←
a; b,m, b̃) and

a region Rdc = u−1
(
[c, d]× J1M

)
, we define the [c, d]-area of u by

Adc(u) =

∫
Rd

c

u∗d(esα)

and the L-energy of u by

Edc (u) =

∫
Rd

c

u∗d(ϕ(s)α).

In order to bound the area of a J-holomorphic curve in the symplecti-
zation by a quantity computable from a Legendrian at the positive end, we
introduce the actions of Reeb chords and intersection points. Suppose that L
and L̃ are Lagrangian cobordisms as constructed in Section 5.3 with positive
ends at the Legendrians Λ+ and Λ̃+, respectively. Let ρ and ρ̃ denote prim-
itives of the pullbacks of esα on L and L̃ with constant values, respectively,
C+ and C̃+ at the positive end (and constant values C− = 0 = C̃− at the
negative ends). Recall the height of a Reeb chord, h(a), from Equation (2.1).
We then define the following actions as in [10, Section 3.4]:

Definition 6.2. The action of
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1) a pure Reeb chord a ∈ RΛ± is

a(a) = es±h(a);

2) a mixed Reeb chord
←
a ∈ RΛ+←Λ̃+

is

a(
←
a) = es+h(

←
a) + (C̃+ − C+);

3) an intersection point m of L and L̃ (where the holomorphic curve
jumps from L to L̃) is

a(m) = ρ̃(m)− ρ(m).

We may control the actions of mixed Reeb chords and intersection points
between L and L̃ using the following lemma:

Lemma 6.3. Given an exact Lagrangian cobordism L from Λ− to Λ+ with
primitive ρ, m ∈ Ls+

s−, and an arbitrary δ > 0, it is possible to construct

an exact Lagrangian perturbation L̃ with primitive ρ̃ as in Section 5.3 that
satisfies the following conditions:

1) If
←
a ∈ RΛ+←Λh,f

+
and a ∈ RΛ+

are identified as in [10, Remark 7.6],

then

|a(
←
a)− a(a)| < δ.

2) At the intersection point m ∈ L ∩ L̃, we have:

|a(m)| < δ.

Proof. The construction of L̃ from L in Section 5.3 may be thought of as
finding a Hamiltonian isotopy τt that carries L to L̃ at time 1. The isotopy
is generated by a Hamiltonian Ht that is C1-small on (−∞, u+]× C(P );
to see this, note that since the C1 norm of the function h is bounded on
(−∞, u+]× C(P ), we have that εh is C1-small, and the functions f and F
were chosen to be C1-small from the beginning.

A direct calculation, see for example [29, Proposition 9.18], shows that

τ∗1 (esα)− esα = dG,

where

G =

∫ 1

0
(iXt

esα−Ht) ◦ τt dt.
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Since Ht is C1-small on (−∞, u+]× C(P ), we see that the function G has a
small C0 norm on that set after adjusting by a constant so that G ≡ 0 for
sufficiently small s. Another direct calculation shows that if ρ is a primitive
for esα along L, then (ρ+G) ◦ τ−1

1 is a primitive for esα along L̃. Since both
ρ and (ρ+G) ◦ τ−1

1 are constant for s ≥ u+, we see that the primitives of

esα along L and L̃ are C0 close. Thus, both claims in the lemma follow. �

We can bound the [c, d]-area of a curve u in terms of actions:

Proposition 6.4. Assume c<d≤s+. For any curve u∈MJ
L←L̃

(
←
a; b,m, b̃),

we have:

Adc(u) < a(
←
a)− a(m).

Proof. When s ≤ d ≤ s+, es ≤ ϕ(s), and thus we see Adc(u) ≤ Edc (u). By the
compatibility of J with d(esα) and the fact that d <∞, we see that

Edc (u) <

∫
Dk

u∗d(ϕ(s)α).

The strict inequality above comes from the fact that Rdc differs from Dk

by a set of positive measure on which the integrand is strictly positive. By
Stokes’ formula, for u ∈MJ

L←L̃
(
←
a; b,m, b̃), we compute:∫

Dk

u∗d(ϕ(s)α) = a(
←
a)− a(m)−

∑
bi

a(bi)−
∑
b̃i

a(b̃i) ≤ a(
←
a)− a(m).

The proposition follows. �

6.2. Filtrations and capacities

In order to apply the bound in Proposition 6.4 to the J-holomorphic curves
guaranteed by Corollary 5.10, we need to refine the Legendrian Contact
Homology framework using an energy filtration. In particular, we will define
the fundamental capacity as in [37]. We begin with a filtration on AΛ with
respect to the height of the generating Reeb chords: for any w ∈ R, define

RwΛ = {a ∈ RΛ : h(a) ≥ w} .

Let FwA∗Λ be the graded vector space generated by RwΛ ; energy considera-
tions show that it is, in fact, a subcomplex of (A∗Λ, d

ε). We then define the
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Filtered Linearized Legendrian Contact Cohomology LCH∗w(Λ, ε) to
be the homology groups of the quotient A∗Λ/F

wA∗Λ.
Let pw : LCH∗(Λ, ε)→ LCH∗w(Λ, ε) be the map induced by the projec-

tion from A∗Λ to A∗Λ/F
wA∗Λ. It is straightforward to check that for w close to

0, pw is the zero map, while for sufficiently large w, pw is an isomorphism.
Thus, we define:

Definition 6.5. Given a connected, horizontally displaceable Legendrian
submanifold Λ ⊂ C(P ), an augmentation ε, and its fundamental class λΛ,ε,
the fundamental capacity c(Λ, ε) is defined to be:

c(Λ, ε) = sup{w ∈ R : pw(λΛ,ε) = 0}.

We know that c(Λ, ε) is always the height of a Reeb chord of Λ [37,
Lemma 4.7]. Specifically, for each x ∈ AΛ that represents the fundamental
class with ax the Reeb chord of minimal height with nonzero coefficient in
x, then

(6.1) c(Λ, ε) = max{h(ax) | x represents λ}.

We use Equation (6.1), Lemma 6.3, and Proposition 6.4 to refine Corol-
lary 5.10 as follows:

Corollary 6.6. Let L be a fundamental cobordism, ε− an augmentation of
Λ−, and ε+ the induced augmentation of Λ+. For any ε > 0, m ∈ L, and
generic path J, there exists a perturbation L̃, a mixed chord

←
a corresponding

to the shortest chord in the corresponding representative of the fundamental
class, and a J-holomorphic curve u ∈MJ

L←L̃
(
←
a; b,m, b̃) with ε−(b) = 1 =

ε−(b̃) such that for any [c, d] ⊂ (−∞, s+], we have

Adc(u) ≤ es+c(Λ+, ε+) + ε.

We will call a curve u described by Corollary 6.6 a fundamental J-
holomorphic disk.

7. Upper bounds on the relative Gromov width

The goal of this section is to prove Theorem 1.1, which provides an upper
bound on the relative Gromov width. Following ideas from the classical ar-
gument of Gromov [27] that were adapted to the relative setting by Barraud
and Cornea [4], we use the J-holomorphic disks from Corollary 6.6 to obtain
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the desired upper bounds. More specifically, given an embedding of a ball,
we will pull back the J-holomorphic curve passing through the center of
the ball to a holomorphic (and hence minimal) surface in Cn. We will then
apply monotonicity of area for minimal surfaces to compare the area of the
holomorphic curve to the capacity of the ball.

7.1. Monotonicity

We will need a modification of the classical monotonicity property for mini-
mal surfaces with (carefully controlled) boundary, adapted from arguments
of Ekholm, White, and Wienholz [23]. The key quantity in monotonicity is
the density function Θ(t), which is the ratio of the areas of Σ, the image
of a holomorphic curve with boundary on a union of Lagrangian planes, to
those of a plane R2 inside the ball of radius t:

Θ(t) =
Area(Σ ∩B2n(t))

πt2
.

Theorem 7.1. Let P, P̃ ⊂ (R2n, ω0) denote transverse Lagrangian planes
that pass through the origin, and let Σ ⊂ R2n be the image of a proper J0-
holomorphic curve with 0 ∈ ∂Σ ⊂ P ∪ P̃ . Then Θ(t) is non-decreasing. In
particular, if we let Z = limt→0 Θ(t), then for any t > 0, we have

πt2 ≤ Area(Σ ∩B2n(t))

Z
.

Proof. By a result of Ahn [1, Proposition 3.1], we know that Σ′ := Σ \ (P ∩
P̃ ) is smooth. In particular, since Σ is the image of a proper map, the length
of ∂Σ′ ∩B2n(t) is finite for all t. Then, since Σ′ is a smooth, minimal 2-
manifold in R2n with boundary of finite length, the arguments in the proof
of [23, Theorem 9.1] show that

d

dt
Θ(t) =

d

dt

∫
Σ′∩B2n(t)

∣∣D⊥|x|∣∣2
|x|2

dA− 1

t3

∫
∂Σ′∩B2n(t)

x · nΣ′ ds,

where nΣ′ is the outward-pointing normal along ∂Σ′ and D⊥|x| denotes the
projection of the derivative of |x| to the orthogonal complement of TxΣ′.
Since Σ′ is the image of a J0-holomorphic curve and P, P̃ are Lagrangian, a
lemma of Ye [39, Lemma 2.1] shows that for all x ∈ ∂Σ′, nΣ′(x) ⊥ Tx(P ∪ P̃ ).
Further, as P, P̃ are Lagrangian planes through the origin, we have that x ∈
Tx(P ∪ P̃ ). Thus, our second integrand vanishes, and since the first integrand
is non-negative, we obtain d

dtΘ(t) ≥ 0. The theorem follows. �
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7.2. Upper bound

With the appropriate form of monotonicity in hand, we are ready to prove
Theorem 1.1.

Proof of Theorem 1.1. To set notation, let L be a fundamental cobordism-
from Λ− to Λ+, ε− an augmentation of Λ−, and ε+ the augmentation of
Λ+ induced by L. Suppose that we have a relative symplectic embedding
ψ : B2n(r) ↪→ ((−∞, 0]× C(P ), L0

−∞). It suffices to show that, for arbitrary
ε > 0, we have

(7.1) πr2 ≤ 2(c(Λ+, ε+) + ε).

Fix ε > 0. Observe that by carefully choosing the perturbation function
F near ψ(0), we can construct L̃ so that the pullback of L̃ to B2n(r) is the
Lagrangian plane P̃ given by the graph of the linear map δ · Id for some
small δ > 0.

Consider a domain dependent J induced by a path in J adm such that
each J in the path extends ψ∗J0. There is a sequence of generic domain de-
pendent complex structures Jk that converge to J. For each k, Corollary 6.6
yields a fundamental disk uk ∈MJk

L←L̃
(
←
ak; bk, ψ(0), b̃k). Since for all k, there

are only a finite number of options for
←
ak,bk and b̃k, by passing to a sub-

sequence, we can assume there exists a sequence uk ∈MJk

L←L̃
(
←
a; b, ψ(0), b̃),

i.e. the sequence lies in moduli spaces with fixed asymptotics. Corollary 6.6
and the fact that s+ = 0 show that

(7.2) A0
−∞(uk) ≤ c(Λ+, ε+) + ε.

Gromov compactness then yields a subsequence of the uk that converges to a
J-holomorphic map u ∈MJ

L←L̃
(
←
a; b, ψ(0), b̃); exactness and the usual SFT

compactness arguments imply that no bubbling can occur inside ψ(B2n(r)).
Thus, Equation (7.2) yields the bound

(7.3) A0
−∞(u) ≤ c(Λ+, ε+) + ε.

Let D̃ = u−1(Imψ) and ũ = ψ−1 ◦ u|D̃. Further, let Σ denote the im-

age of ũ. It is straightforward to see that ∂Σ ∩ IntB(r) ⊂ Rn ∪ P̃ , and that
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ũ(z1) = 0 ∈ Rn ∩ P̃ . Applying Theorem 7.1 and the bound on the area pro-
vided by Equation (7.3), we find that for all t < r,

(7.4) πt2 ≤ Area(Σ ∩B2n(t))

Z
≤ c(Λ+, ε+) + ε

Z
.

It remains to find Z, which, since 0 is not a smooth point of ∂Σ, will require
the asymptotic analysis in Robbin and Salamon [33].

We begin the computation of Z by setting notation. By a conformal
change of coordinates in a neighborhood U ⊂ D̃ of z1, we can describe points
in S := U \ {z1} by σ + iτ , with σ ∈ [0,∞), τ ∈ [0, 1]. Let ∂0S = [0,∞) and
∂1S = [0,∞) + i. The construction of ũ implies that ũ(∂0S) ⊂ Rn, while
ũ(∂1S) ⊂ P̃ . We next apply Theorem B (or, more accurately, a coordinate-
by-coordinate application of Theorem C) of [33] to get an asymptotic ex-
pression for ũ. In particular, since the counter-clockwise angle from Rn to P̃
in each coordinate is δ ∈ (0, π), we obtain a unique nonzero complex vector
v ∈ P̃ , a positive real number β = kπ − δ for some positive integer k, and a
γ > 0 such that

ũ(σ + iτ) = ve−β(σ+iτ) +O(e−(β+γ)σ).

Hence, as we let σ →∞— which is the same as letting t→ 0 — we see that
Σ asymptotically covers a fraction kπ−δ

2π of the area of tangent disk to Σ at
the origin. That is, we obtain

Z = lim
t→0

Θ(t) =
kπ − δ

2π
.

Equation (7.4) then implies that for all t < r,

πt2 ≤ 2π(c(Λ+, ε+) + ε)

kπ − δ
≤ 2π(c(Λ+, ε+) + ε)

π − δ
.

Since δ > 0 was arbitrary, we obtain the desired inequality in Equation (7.1).
Theorem 1.1 follows. �
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