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On the Stein framing number of a knot

Thomas E. Mark, Lisa Piccirillo, and Faramarz Vafaee

For an integer n, write Xn(K) for the 4-manifold obtained by
attaching a 2-handle to the 4-ball along the knot K ⊂ S3 with
framing n. It is known that if n < tb(K), then Xn(K) admits the
structure of a Stein domain, and moreover the adjunction inequal-
ity implies there is an upper bound on the value of n such that
Xn(K) is Stein. We provide examples of knots K and integers
n ≥ tb(K) for which Xn(K) is Stein, answering an open question
in the field. In fact, our family of examples shows that the largest
framing such that the manifold Xn(K) admits a Stein structure
can be arbitrarily larger than tb(K). We also provide an upper
bound on the Stein framings for K that is typically stronger than
that coming from the adjunction inequality.

1. Introduction

A differential topological characterization of smooth manifolds that admit
the structure of Stein manifolds has been known for many years, dating to
the seminal work of Eliashberg [Eli90]. For a (real) four-dimensional man-
ifold X, there is a Stein structure on X if and only if X admits a han-
dle decomposition containing only handles of index 0, 1, and 2, such that
the attaching circles of the 2-handles satisfy a framing condition. Here, and
throughout, we consider compact X and by “Stein structure” on X we mean
the structure of a Stein domain as described in [OS04, Chapter 8], for ex-
ample. To describe the framing condition, note that the 1-skeleton of such
X is diffeomorphic to a boundary sum of copies of S1 ×D3, which admits
a unique Stein structure. In particular the boundary of the 1-skeleton is
a connected sum of copies of S1 × S2 with the contact structure induced
by the Stein structure (consisting of the field of complex lines in the tan-
gent bundle). In the case that there are no 1-handles we mean the “empty”
connected sum: S3, bounding the Stein 0-handle D4. The condition on the
2-handles of X is that they be attached along Legendrian curves (i.e., curves
everywhere tangent to the contact structure), with framing differing from
that induced by the contact structure by a single negative twist.
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If one is given a handle decomposition on a smooth 4-manifold X, it is
not always a simple matter to decide if the handle decomposition can be
modified to fit Eliashberg’s criteria. Our aim here is to illustrate this point
in one of the homotopically simplest cases: that of a smooth 4-manifold ob-
tained by attaching a single 2-handle along a knot K ⊂ S3. Recall that a
framing of a knot in S3 can be invariantly described by an integer repre-
senting the difference between the given framing and the framing induced
by a Seifert surface; if L is a Legendrian then the contact framing is usu-
ally called the Thurston-Bennequin number of L, written tb(L) ∈ Z. Any
smooth knot is isotopic to many Legendrian knots, with varying contact
framings, but a basic result of Bennequin [Ben83] implies that for a given
smooth knot K, there is an upper bound for tb(L) for any Legendrian L
isotopic to K. We write the maximum Thurston-Bennequin number of all
Legendrian representatives of K as tb(K).

For an integer n, write Xn(K) for the 4-manifold obtained by attaching
a 2-handle to the 4-ball along K with framing n. From Eliashberg’s criterion,
if n < tb(K), then Xn(K) admits the structure of a Stein domain (indeed,
for any t ≤ tb(K), there is a Legendrian representative of K with Thurston-
Bennequin number t). The question we will address, stated explicitly in
[Yas17] for example, is whether Xn(K) admits a Stein structure only when
n < tb(K). We introduce the following terminology.

Definition 1.1. For a smooth knot K ⊂ S3, the Stein framing number of
K, written Sf(K), is the largest framing n such that the manifold Xn(K)
admits a Stein structure.

By the remarks above, one knows tb(K)− 1 ≤ Sf(K). In the other di-
rection, the adjunction inequality for Stein manifolds [LM97, FS95, OS00]
shows that Sf(K) ≤ 2g∗(K)− 2 where g∗(K) is the minimal genus of a
proper smoothly embedded orientable surface in D4 with boundary K. In
some cases these inequalities determine Sf(K): as mentioned in [Yas17],
there are many knots—such as positive torus knots—that admit Legendrian
representatives whose Thurston-Bennequin number equals 2g∗ − 1, proving
that for these examples Sf = tb− 1.

Our main results provide on the one hand a more refined upper bound for
Sf(K), and on the other hand a family of examples demonstrating that the
Stein framing number can be arbitrarily larger than the maximum Thurston-
Bennequin number. These are the first examples of knots K for which Xn(K)
is shown to be Stein for some n ≥ tb(K); in particular we answer Problem 1.3
of [Yas17] negatively:
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Theorem 1.2. For any integer m ≥ 0, there exists a knot Jm ⊂ S3 such
that Sf(Jm) ≥ tb(Jm) +m.

To state the upper bound for Sf, letK be a knot in S3 and [Σ] a generator
of H2(Xn(K);Z), for example the generator obtained by capping off a Seifert
surface for K. Let

c(K) = max{|〈c1(J), [Σ]〉|, J a Stein structure on Xn(K) with n = Sf(K)}.

Theorem 1.3. For a knot K ⊂ S3, the Stein framing number satisfies

(1) Sf(K) + c(K) ≤ 2τ(K),

where τ(K) ∈ Z is the concordance invariant arising from knot Floer homol-
ogy defined by Ozsváth-Szabó [OS03] and Rasmussen [Ras03]. If ε(K) = 1,
where ε ∈ {−1, 0, 1} is the invariant defined by Hom in [Hom14], then

(2) Sf(K) + c(K) ≤ 2τ(K)− 2.

The ideas for the proofs are as follows. For Theorem 1.2, we make
use of work of Osoinach [Oso06], extended by Abe-Jong-Luecke-Osoinach
[AJLO15], which gives a method to produce, for m ∈ N, pairs of distinct
knots Pm, Qm such that X−m(Pm) ∼= X−m(Qm). If X−m denotes this com-
mon 4-manifold, then X−m is Stein whenever −m is less than the maximal
Thurston-Bennequin number of either Pm or Qm. The main work in the
proof of Theorem 1.2 is in estimating these maximal Thurston-Bennequin
numbers, and in particular we show that for our examples tb(Pm) = −m+ 1
while tb(Qm) ≤ −2m+ 3. It follows that X−m is Stein, but the framing
coefficient −m can be made arbitrarily larger than tb(Qm). The required
estimates on tb are derived from Khovanov homology, using in particular a
theorem of Ng [Ng05]. This proof occupies Section 2.

Theorem 1.3 follows from observing that a Stein cobordism between 3-
manifolds induces a nontrivial homomorphism in Heegaard Floer homology,
and using the techniques available from knot Floer theory to constrain the
framings for which such a homomorphism is possible. The details are carried
out in Section 3.

Further remarks and questions

The proof of Theorem 1.2 gives examples of knots J and an individual
framing m′ � tb(J) such that Xm′(J) is Stein. As remarked previously, it is
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also true that Xn(J) is Stein for any n < tb(J). It is not obvious, however,
whether Xn(J) is Stein when tb(J) ≤ n < m′. For a given knot K one might
ask whether the set of framings n such that Xn(K) is Stein can contain
“gaps” of this sort, or whether Xn(K) is Stein for every n ≤ Sf(K).

One might also ask whether the stronger bound (2) in Theorem 1.3
always holds, or whether there exist examples of knots realizing equality in
(1). Work of Plamenevskaya [Pla04] shows that for any Legendrian knot K in
S3 one knows tb(K) + | rot(K)| ≤ 2τ(K)− 1. Since tb(K)− 1 is a framing
for which the trace of the (tb(K)− 1)-surgery admits a Stein structure, and
in this cobordism the corresponding Chern number is exactly rot(K), we
see that for the extreme case Sf(K) = tb(K)− 1, the inequality (2) is true
without the assumption on ε(K). However, with our methods the two cases
in the theorem cannot be avoided, in the sense that for knots with ε = 0 or
−1 one can always find a framing and a spinc structure on the corresponding
surgery cobordism inducing a nontrivial map in Floer homology, such that
the sum of the framing and the Chern number is equal to 2τ .

Finally, we remark that in many cases Theorem 1.3 refines the upper
bound on Sf(K) given by the adjunction inequality for Stein manifolds. The
adjunction inequality implies that if Xn(K) is Stein with first Chern class c,
then n+ |〈c, [Σ]〉| ≤ 2g∗(K)− 2. When ε(K) = 1 it is clear that Theorem 1.3
improves on this from the fact that |τ(K)| ≤ g∗(K) [OS03, Corollary 1.3]
(strictly, the improvement comes via Theorem 3.1 and Corollary 3.2 below,
applied to the given n and c). If ε(K) = −1 and τ(K) < 0, then g∗(K) > 0,
so the right-hand side of (1) is negative but the adjunction inequality gives
a nonnegative bound for Sf(K). If ε(K) = −1 and τ(K) ≥ 0, then Corollary
4 of [Hom14] shows τ(K) ≤ g∗(K)− 1, so that (1) is at least as strong as
the adjunction bound. If ε(K) = 0 then τ(K) = 0 (c.f. [Hom14]), so (1) is
at least as good as adjunction unless g∗(K) = 0, i.e., unless K is slice.
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2. Proof of Theorem 1.2

Consider the knots Kn and Ks
n,t as in Figure 2 for n, t, s ∈ Z, where labeled

boxes represent (signed) half twists, as illustrated in Figure 1, and t is even.

1=

Figure 1: In all the knot diagrams throughout the paper, labeled boxes
represent (signed) half twists. Here, an example is depicted.

n n

−2

t

s

Figure 2: The knots Kn (left) and Ks
n,t (right).

The essential point in the proof is that Xt/2(Kn) is diffeomorphic to
Xt/2(K

0
n,t). To see this, observe that in the terminology of [AJLO15] the

diagram on the left of Figure 2 is a simple annulus presentation for Kn. (See
also Figure 1 of [AJLO15].) Further, the knot K0

n,t is obtained from Kn by
(∗ t2)-twisting, which is defined by [AJLO15] and is a natural modification of
the annulus twisting defined by [Oso06]. (We remark that, in the notation
of [AJLO15], here we have ε = +1.) Therefore Theorem 3.10 of [AJLO15]
implies that Xt/2(Kn) ∼= Xt/2(K

0
n,t).
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In the notation of the introduction, we take Pm = Km−3 and Qm =
K0
m−3,−2m so we have X−m(Pm) ∼= X−m(Qm). The main work toward The-

orem 1.2 is contained in the following estimates on the Thurston-Bennequin
numbers of Kn and Ks

n,t.

Lemma 2.1. For n ≥ 0, tb(Kn) = −2− n.

Theorem 2.2. For n ≥ 0, tb(K0
n,2(−3−n)) ≤ −3− 2n.

With these results and the preceding remarks, the proof of Theorem 1.2
is done:

Proof of Theorem 1.2. For m ≥ 3, let Qm = K0
m−3,−2m, and Pm = Km−3.

Then, by Lemma 2.1 and Theorem 2.2, we have

tb(Pm) = −m+ 1 and tb(Qm) ≤ −2m+ 3.

Since −m < tb(Pm), the common 2-handlebody X−m(Pm) ∼= X−m(Qm) is
Stein. Therefore Sf(Qm) ≥ −m, hence

Sf(Qm)− tb(Qm) ≥ −m− (−2m+ 3) = m− 3.

Take Jm = Qm+3. �

Theorem 2.2 is the main technical result; Subsection 2.2 is dedicated to its
proof.

2.1. Input from Khovanov homology

In this subsection we briefly recall the background we need to prove Theo-
rem 2.2. We mainly use the notation of [Ng05].

Khovanov homology is an invariant of oriented links in S3 which asso-
ciates to a link L a bigraded abelian group HKhi,j(L) [Kho00]. We will
be concerned in particular with Khovanov homology collapsed to a single
grading v = i− j, which we will denote HKh∗(L). It will be convenient to
take the tensor product HKh∗(L)⊗Q. We still denote the tensor product
by HKh∗(L).

Recall that an oriented Legendrian link L in S3 equipped with the stan-
dard contact structure admits a front projection to the xz plane with sin-
gularities consisting of only double points and cusps, and without vertical
tangencies [Ś92]. The Legendrian condition means that at a double point
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On the Stein framing number of a knot 197

the strand with the lower slope passes in front of the other strand, recover-
ing crossing information at the double points and yielding an oriented link
diagram with cusps and no vertical tangencies, denoted F . Let w(F ) be the
writhe of F (the signed number of crossings) and let c(F ) be half the number
of cusps of F . If L has a single component, then the Thurston-Bennequin
number of L agrees with w(F )− c(F ). See, for instance, [Etn03].

In [Ng05], Ng gives an upper bound for tb(K) in terms of data provided
by the Khovanov homology of K ⊂ S3.

Definition 2.3. For an oriented link L in S3, define

κ(L) := min{v|HKhv(L) 6= 0}.

Theorem 2.4 (Corollary 2 of [Ng05]). For a knot K ⊂ S3,

tb(K) ≤ κ(K).

One method for calculating κ(L) is to resolve the link L into simpler
links and use a long exact sequence. Figure 3 depicts two resolutions of a
crossing c of a diagram D of L; we denote the resolutions by Res0(D, c) and
Res1(D, c). We drop (D, c) from the notation when the diagram D and the
specified crossing c are understood from context.

Figure 3: The crossing c in a diagram D with 0 and 1 resolutions, respec-
tively.

The following, after taking a certain shift in grading into consideration,
is immediate from Lemma 6 of [Ng05].

Lemma 2.5. There is a long exact sequence of the form

(3) HKh∗(Res0(D))
(r) // HKh∗(Res1(D))

(p)vv
HKh∗(D),

(q)

hh

with grading shifts q = w(Res0(D))− w(D), p = w(D)− w(Res1(D)), and
r = −1− p− q.
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Remark 2.6. These resolutions will not necessarily induce a well-defined
orientation on Res0 and Res1. On those components of Res0 (respectively
Res1) that do not inherit a well-defined orientation, we may choose any
arbitrary orientation. Although the shifts p, q, r in the sequence depend on
the chosen orientations, the gradings on HKh of these resolutions also depend
on these orientations in a corresponding way. As such, the conclusions one
draws about HKh∗(D) from the sequence are independent of the choice of
orientation on the resolutions.

We will prove Theorem 2.2 by computing κ(K0
n,2(−3−n)) and applying

Theorem 2.4. The calculation proceeds inductively using Lemma 2.5, but we
will also employ Dror Bar-Natan’s Fast KH routines (available at [KAT]) to
compute κ for some small examples. We will say “via computer” throughout
the paper to indicate when κ was computed with these routines.

Remark 2.7. In using Lemma 2.5, we often get a Hopf link after resolving
a crossing in our examples. Define H+ and H− to be the oriented Hopf links
as in Figure 4. It is easy to compute directly, or see [BN04] or [KAT], that
κ(H+) = 0 and κ(H−) = −4.

Figure 4: H+ and H− respectively.

2.2. Computing a Thurston-Bennequin upper bound

This section is devoted to proving Theorem 2.2 by computing κ(K0
n,t). In

fact, Theorem 2.2 follows immediately by taking t = 2(−3− n) in the fol-
lowing theorem, and applying Theorem 2.4.

Theorem 2.8. For any n ≥ 0 and any even t ≤ 2, we have κ(K0
n,t) = −3−

2n.

The overall structure of the proof of Theorem 2.8 is a decreasing induc-
tion on t for even t ≤ 2. We will also need to see that κ(K0

n,4) = −2− n;
both this and the base case t = 2 of Theorem 2.8 are proved by induction on
n. At several points in the proof the knots Ks

n,t with s = 4 will arise, so we
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begin with the following lemma relating the values of κ(K4
n,t) and κ(K0

n,t).
The structure of the argument serves as a model for many similar proofs to
follow.

Lemma 2.9. If κ(K0
n,t) ≤ −3, then κ(K4

n,t) = κ(K0
n,t)− 4. If κ(K4

n,t) ≤
−3, then κ(K0

n,t) = κ(K4
n,t) + 4.

Proof. We will prove the first assertion of the lemma explicitly. The second
follows similarly and we leave the proof to the reader. We claim that when
s is even there is a long exact sequence of the form

(4) HKh∗(H+)
(−5) // HKh∗(Ks+1

n,t )

(5)vv
HKh∗(Ks

n,t),

(−1)

gg

and when s is odd there is a long exact sequence of the form

(5) HKh∗(H−)
(3) // HKh∗(Ks+1

n,t )

(−3)vv
HKh∗(Ks

n,t).

(−1)

gg

Indeed, these are the long exact sequences associated to the crossing c
indicated in the diagram for Ks

n,t of Figure 2; we merely must check details.
Assume s is even: then by comparing signs of crossings in the diagram before
and after resolving c, we find that in notation of Lemma 2.5, we have p = 5
and q = −1. It is also easy to see by inspecting the diagram that Res0 '
H+ and Res1 ' Ks+1

n,t , where ' denotes isotopy. The sequence (4) follows;
sequence (5) is similar.

Now the proof proceeds by appealing to the sequences above four times.
Take s = 0 in (4), and recall that from Remark 2.7 we have HKhu(H+) = 0
for all u ≤ −1. Hence for u ≤ −1,

HKhu−5(K1
n,t)
∼= HKhu(K0

n,t).

Using the hypothesis that κ(K0
n,t) ≤ −3, this implies

(6) κ(K1
n,t) = κ(K0

n,t)− 5.
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Now using (5) and Remark 2.7, we get that for u ≤ −5

HKhu+3(K2
n,t)
∼= HKhu(K1

n,t).

Hence

κ(K2
n,t) = κ(K1

n,t) + 3,

since the hypothesis implies κ(K1
n,t) ≤ −8 (in fact, we need only κ(K1

n,t) ≤
−6). Combining this with (6) we see that

κ(K2
n,t) = κ(K0

n,t)− 2.

Note that in particular κ(K2
n,t) ≤ −3, so the same argument can be repeated

starting with s = 2, and the result follows. �

Now we begin our inductive calculation of κ(K0
n,t). The first, special,

case is t = 4, and here there is a simplification: we have that K0
n,4 is isotopic

to the knot Kn on the left of Figure 2. The isotopy is indicated in Figure 15.

Lemma 2.10. κ(Kn) = −2− n.

Proof. We proceed by induction on n. The base case n = 0 follows by the
observation that K0 is the mirror of the knot 820 in Rolfsen’s table, whose
maximum Thurston-Bennequin number and also κ-invariant are equal to
−2 (see [Ng05] and [Ng01], or one can check by computer). Observe that

n− 1

Figure 5: A diagram of the knot Kn−1.

a sequence of isotopies (specifically, flypes) brings the diagram of Kn−1 to
the one in Figure 5, and let c be the indicated crossing of this diagram of
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Kn−1. In the associated long exact sequence (3), we find p = 1, q = −1 and
Res1 ' Kn. The 0 resolution Res0 is isotopic to a twisted Whitehead link,
independent of n: a bit of additional work with (3) or a computer calculation
shows that κ(Res0) = 0. Therefore, when u ≤ −1 we have that,

HKhu−1(Kn) ∼= HKhu(Kn−1).

Using the induction hypothesis we infer κ(Kn) = κ(Kn−1)− 1, from which
the lemma follows. �

n

Figure 6: A Legendrian diagram of Kn. Note that tb = −2− n.

We pause to observe that the preceding lemma easily gives Lemma 2.1
calculating the maximum Thurston-Bennequin number of Kn:

Proof of Lemma 2.1. The diagram of Figure 5 (replacing n− 1 by n) can
easily be turned into the Legendrian diagram of Figure 6. Since the Legen-
drian in that diagram has Thurston-Bennequin number −2− n, the result
follows from Lemma 2.10 and Theorem 2.4. �

We now turn our attention to calculating κ(K0
n,2), for which the argu-

ment is a bit more involved. First we leave it as an exercise for the reader to
check that Figure 7 is a diagram for K0

n,2 (the reader who would like a hint
can consider the related isotopy in Figure 11). Our argument proceeds by
applying the long exact sequence (3) to the crossing indicated in Figure 7.
Now, the 1 resolution of that crossing yields a link isotopic to the negative
torus link T (−4, 2), independent of n. On the other hand, Res0 ' Rn, where
Rn is depicted in Figure 8.

Taking resolutions of the crossing indicated in Figure 8, we find that
the 1 resolution gives a link Qn as in Figure 9, while the 0 resolution is
isotopic to K4

n−1,2 (this isotopy is indicated in Figure 11). Our strategy for
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n+ 1

−4

Figure 7: A diagram of the knot K0
n,2.

n+ 1

−4

Figure 8: A diagram of the knot Rn.

calculating κ(K0
n,2) is summarized in the resolution tree shown in Figure 10.
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−2

n+ 1

Figure 9: A diagram of the link Qn.

K0
n,2

0 1

Rn T (−4, 2)

K4
n−1,2 Qn

0 1

Figure 10: Resolution tree yielding the calculation of κ(K0
n,2).

We begin at the bottom of the resolution tree.

Lemma 2.11. κ(Qn) = −8− n.

Proof. We will prove this by induction on n, and check the case n = 0 via
computer.

Apply the long exact sequence of (3) to the crossing indicated in Figure 9:
we find that p = −1, q = 1 and Res0 ' Qn−1. The 1 resolution gives a 3-
component link independent of n, and we check via computer that κ(Res1) =
−7. See Remark 2.6.
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(a) (b)

(c) (d)

n+ 1

n− 1

4

n− 1

2

n− 1

2

Figure 11: The series of isotopies needed to go from the 0 resolution of Rn
to K4

n−1,2. We leave it to the reader to check that the diagram obtained
from the 0 resolution of the marked crossing in Figure 8 is isotopic to the
first picture (top left), also that the last picture (bottom right) is isotopic
to K4

n−1,2.

Hence when r ≤ −8 we get that

HKhr−1(Qn) ∼= HKhr(Qn−1),
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which, with the induction hypothesis, gives us that

κ(Qn) = κ(Qn−1)− 1 = −8− n. �

K0
n,t

0 1

KH
n,t K4

n,t−4

K4
n,t−2 K0

n,t−2

0 1

Figure 12: The series of resolutions done to K0
n,t in the proof of Theorem 2.2.

This allows calculation of κ(K4
n,t−4) from κ of K0

n,t, K
0
n,t−2, and K4

n,t−2.

The other terms in the resolution tree are either straightforward (for
T (−4, 2)) or rely on the induction hypothesis (for K4

n−1,2, and therefore Rn
as well). We therefore give the remainder of the proof all at once.

Lemma 2.12. κ(K0
n,2) = −2n− 3.

Proof. As before we check the base case n = 0 via computer. In the long
exact sequence associated to the crossing indicated in Figure 7, we find that
the writhe differences are p = −1 and q = −7. For the torus link T (−4, 2)
it is not hard to check directly (or one can verify by computer) that κ = 0,
and therefore the long exact sequence shows

HKhu(K0
n,2)
∼= HKhu−7(Rn)

for u ≤ −2. In particular, so long as κ(Rn) ≤ −9, we have

(7) κ(K0
n,2) = κ(Rn) + 7.

Now consider the long exact sequence arising from the crossing of Rn indi-
cated in Figure 8. This time we have p = −1 and q = 5. From the fact that
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κ(Qn) = −8− n, we know that for u < −8− n,

HKhu−1(Rn) ∼= HKhu+4(K4
n−1,2).

n
t− 4

−2

Figure 13: A diagram of the knot K0
n,t.

n t− 4

−2

4

Figure 14: A diagram of the knot KH
n,t.
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It follows that so long as κ(K4
n−1,2) ≤ −5− n we get

(8) κ(Rn) = κ(K4
n,2)− 5.

We recall from Lemma 2.9 that if κ(K0
n,2) ≤ −3 then κ(K4

n,2) = κ(K0
n,2)−

4, and with this we can give the induction.
Suppose that the lemma is proved for K0

n−1,2 for some n ≥ 1, so that
κ(K0

n−1,2) = −2n− 1 ≤ −3. Then from Lemma 2.9 we have κ(K4
n−1,2) =

−2n− 5, and in particular this says κ(K4
n−1,2) ≤ −5− n. Hence from (8)

we have κ(Rn) = −2n− 10.
Then in particular we have κ(Rn) ≤ −9, so from (7) we get κ(K0

n,2) =
κ(Rn) + 7 = −2n− 3 as desired. �

We can now give the proof of Theorem 2.8. We use the diagram for
K0
n,t in Figure 13, and note that the 1 resolution of the crossing specified

in that figure changes K0
n,t into a knot isotopic to K4

n,t−4. The 0 resolution

gives us the link in Figure 14, denoted KH
n,t. Resolving the crossing specified

in Figure 14 will either give K0
n,t−2 or K4

n,t−2. Figure 12 illustrates this
resolution tree.

Proof of Theorem 2.8. We wish to prove that κ(K0
n,t) = −3− 2n, for all

even integers t with t ≤ 2. To do so, we use strong decreasing induction on
t. The base case, κ(K0

n,2), is checked in Lemma 2.12. Using the observation
that Kn ' K0

n,4, Lemma 2.10 shows that κ(K0
n,4) = −2− n ≥ −3− 2n.

For the inductive step, assume the result for K0
n,t and K0

n,t−2, for some
t ≤ 4, and we will prove it for K0

n,t−4 (there will be a minor modification in
the case t = 4). In the exact sequence associated to the crossing of K0

n,t

in Figure 13, we have that p = 1 and q = −1; as noted before we have
Res1 ' K4

n,t−4 and Res0 ' KH
n,t. Then by the induction hypothesis we have

κ(K0
n,t) = −2n− 3, and therefore for u ≤ −2n− 4 we have

(9) HKhu−1(KH
n,t)
∼= HKhu−2(K4

n,t−4).

Observe that in the case t = 4 we have instead κ(K0
n,4) = −n− 2 ≥ −2n− 3,

which suffices to infer (9) for the same range of u, and more, in this case as
well.
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n

2

n

n n

n n

n n

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15: The series of isotopies needed to go from K0
n,4 to Kn. We leave

it to the reader to check that K0
n,4 is isotopic to the first picture (top left),

also that the last picture (bottom right) is isotopic to Kn.
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Claim. κ(KH
n,t) = −2n− 6.

Proof of Claim. This time the exact sequence associated to the crossing in-
dicated in Figure 14 has p = q = −1. We have Res0 ' K4

n,t−2 and Res1 '
K0
n,t−2, and therefore the inductive hypothesis and the sequence in (3) give

us that for u ≤ −2n− 4,

HKhu−1(KH
n,t)
∼= HKhu−2(K4

n,t−2).

By the inductive hypothesis and Lemma 2.9 we have that

κ(K4
n,t−2) = −2n− 7,

and the claim follows. �

The claim combined with Equation (9) imply that κ(K4
n,t−4) = −2n− 7.

Lemma 2.9 gives us that κ(K0
n,t−4) = −2n− 3, as desired. This concludes

the proof of Theorem 2.8, and hence also that of Theorem 2.2. �

3. Proof of Theorem 1.3

The proof follows the general outline of Plamenevskaya’s proof [Pla04] that
for a Legendrian knot L in the standard contact 3-sphere with Thurston-
Bennequin number tb(L) and rotation number rot(L), we have tb(L) +
rot(L) ≤ 2τ(L)− 1. The key point is that if W : (Y1, ξ1)→ (Y2, ξ2) is a
Stein cobordism, where ξi are the contact structures induced by the Stein
structure, then the induced homomorphism in Heegaard Floer homology
ĤF (−Y2)→ ĤF (−Y1) carries the contact invariant c(ξ2) to c(ξ1). More
particularly, it is known that if J is the given Stein structure on W , with
associated spinc structure sJ , then the map induced by sJ in ĤF has the
stated property (this follows from [Ghi06, Lemma 2.11], for example). If
Y1 is the standard 3-sphere then c(ξstd) is nonzero, so in particular (W, sJ)
induces a nontrivial homomorphism in Floer homology. Since the two ho-
momorphism ĤF (Y1)→ ĤF (Y2) and ĤF (−Y2)→ ĤF (−Y1), induced by
considering W as a cobordism in each direction, are transposes, the map
induced by (W, s) from ĤF (S3) to ĤF (Y2, s|Y2

) is nontrivial when s = sJ
for a Stein structure J on W .

In light of these remarks, inequality (1) of Theorem 1.3 is a consequence
of the following fact about homomorphisms induced by 2-handle additions.
Here we always consider Floer homology groups with coefficients in the field
F = Z/2Z.
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Theorem 3.1. Let W = Wn(K) : S3 → S3
n(K) be the cobordism obtained

by adding a 2-handle with framing n along a knot K ⊂ S3. If s is a spinc

structure on W such that (W, s) induces a nontrivial homomorphism

ĤF (S3)→ ĤF (S3
n(K)), then

|〈c1(s), [Σ]〉|+ n ≤ 2τ(K),

where [Σ] is a generator of H2(W ;Z).

Proof. If n is sufficiently large, this follows from Proposition 3.1 of [OS03].
For general n, recall that the homomorphism induced by (Wn(K), s) can
be understood in terms of the chain complex computing knot Floer homol-
ogy, by a recipe described by Ozsváth and Szabó in [OS08]. Following this
recipe, to a knot K ⊂ S3 we associate a certain sequence of chain complexes
{As}s∈Z, well-defined up to chain homotopy equivalence, to which we add
the collection {Bs}s∈Z where each Bs is (chain homotopy equivalent to) the

complex ĈF (S3). For each s there are chain maps vs, hs : As → ĈF (S3) that
we consider as homomorphisms vs : As → Bs and hs : As → Bs+n. These
complexes and chain maps enjoy various properties:

• For each s, As is quasi-isomorphic to A−s.

• For s� 0, vs is a quasi-isomorphism while v−s is zero.

• The induced homomorphism (vs)∗ : H∗(As)→ H∗(Bs) is nontrivial if
and only if the homomorphism (h−s)∗ : H∗(A−s)→ H∗(B−s+n) is non-
trivial.

• For s� 0, hs is a quasi-isomorphism while h−s is zero.

Now assemble the As and Bs into a chain complex Xn as follows. Define
a chain map Dn :

⊕
As →

⊕
Bs by declaring the s-th entry of the image

under Dn of a vector (. . . , a`, . . .) to be the element vs(as) + hs−n(as−n).
Then Xn is the mapping cone of Dn: its chain group is the direct sum of all
As and Bs (for s ∈ Z), while the differential is the sum of the differentials
on each As and Bs and the chain map Dn.

The main results of [OS08] include the following:

1) The homology of Xn is isomorphic to the Heegaard Floer homology

ĤF (S3
n(K)), where S3

n(K) denotes the result of n-framed surgery
along K.
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2) If Wn(K) : S3 → S3
n(K) is the trace of the surgery, and s is a spinc

structure on Wn(K), then the homomorphism

ĤF (S3)→ ĤF (S3
n(K); s)

induced by s corresponds under the isomorphism above to the map in
homology induced by the inclusion of the subcomplex Bs = ĈF (S3)
in Xn, where s ∈ Z is characterized by the equation

〈c1(s), [Σ]〉+ n = 2s.

Note that while the last equation depends on an orientation of Σ, a surface
representing the generator of second homology of Wn(K), this technicality is
unimportant since Floer homology (and homomorphisms induced by cobor-
dism) is invariant under replacement of a spinc structure by its conjugate.
Since this operation has the effect of replacing c1(s) by its negative, there
is no harm in fixing the sign of [Σ] arbitrarily (strictly, the construction of
the As depends on an orientation of K, and this choice ultimately fixes all
such signs).

Combining the facts above, we see that to prove the theorem it suffices to
constrain the values of s for which the inclusion Bs → Xn induces a nonzero
map in homology: in particular, it will suffice to show that if s > τ(K), then
the resulting map is trivial.

To understand this argument, it will be helpful to recall some of the
structure of the complexes As and Bs and the maps between them. The
constructions in [OS04] show that a knot K ⊂ S3 gives rise to a bigrading
on the chain group CF∞(S3), meaning a Z⊕ Z-valued function on the gen-
erators, with the property that the boundary operator is non-increasing in
both gradings. In this context the endomorphism U of CF∞ has bidegree
(−1,−1), while the subcomplex CF− is the span of those generators hav-

ing bidegree (i, j) with i < 0. The complex ĈF is then a sub-quotient of
CF∞ and corresponds to the span of those generators with i = 0; thus j
gives rise to a filtration on ĈF , and the homology of the associated graded
complex corresponding to a fixed value of j is the knot Floer homology
ĤFK(S3,K, j).

The invariant τ(K) is defined in terms of this filtration of ĈF as follows:

if Fs denotes the subcomplex of ĈF spanned by generators with bigrading
(0, j) for j ≤ s, we let

τ(K) = min{s | inclusion induces a surjection H∗(Fs)→ ĤF (S3) = F}.
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Note that H∗(Fs)→ ĤF (S3) is surjective for any s ≥ τ(K), by factoring
the inclusion of Fτ(K) through Fs.

The complexes As are also subquotients of CFK∞ (which is the notation
for CF∞ when the latter is considered with the Z⊕ Z bigrading as above):
precisely, As is spanned by those generators of CFK∞ in bigrading (i, j),
where max(i, j − s) = 0. Thus, picturing the bigraded summands of CFK∞

as lying at lattice points in the (i, j) plane, As corresponds to the portion of
the axis i = 0 at or below coordinate s, together with the horizontal strip at
vertical coordinate s and with nonpositive i-coordinate. Following [OS04],
we write sub-quotient complexes obtained in this manner using notation
such as As = C{max(i, j − s) = 0}. The differential in As is induced from
that of CFK∞, so in particular As contains a subcomplex C{i = 0 and j ≤
s− 1} = Fs−1.

The chain maps vs and hs are defined as follows. First, vs : As → Bs =
ĈF (S3) is the natural quotient As → C{i = 0 and j ≤ s} = Fs, followed by

the inclusion Fs → ĈF (S3). For hs we recall that there is a chain homotopy

equivalence C{j = 0} → C{i = 0} = ĈF (S3), and that the action of U on
CFK∞ induces a chain isomorphism C{j = s} → C{j = 0} for any s. Then
hs is the composition of the quotient As → C{i ≤ 0 and j = s} ⊂ C{j = s}
with these two quasi-isomorphisms.

Consider these maps in the case s ≥ τ(K) + 1. By definition, the sub-
complex Fs−1 of As contains a cycle x whose image under the inclusion
Fs−1 → ĈF (S3) generates ĤF (S3). Therefore (vs)∗([x]) is the generator of

H∗(Bs) = ĤF (S3). On the other hand, since x clearly lies in the kernel of
the quotient As → C{j = s}, we have that (hs)∗([x]) = 0.

Thus, for any s ≥ τ(K) + 1, the generator [ys] of the homology of H∗(Bs)
is the image of [x] under the map induced by Dn, and in particular [ys] = 0
in H∗(Xn). This proves that whenever s ≥ τ(K) + 1 the inclusion Bs → Xn
is trivial in homology, as desired.

Finally, the absolute values appearing in the statement of the theorem
may be added by the conjugation invariance of maps induced by cobordisms.

�

We remark that under certain circumstances the proof above proves a
little more. Namely, observe that Aτ(K) maps onto Fτ(K), and the latter con-

tains a class generating ĤF (S3). If this class can be represented by a cycle
x ∈ Aτ(K) whose image under (hτ(K))∗ is trivial, then the same argument
goes through to show that the inclusion of Bs → Xn is trivial in homology
for all s ≥ τ(K).
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Assume, then, that vτ(K) is surjective in homology. Comparing with
Hom [Hom15, section 2.2], this assumption is equivalent to the statement
that ε(K) is either 0 or 1 (here ε(K) ∈ {1, 0,−1} is the concordance invariant
defined by Hom in [Hom14]). The assumption that (hτ(K))∗([x]) = 0 is then
equivalent to saying that vτ(K) and hτ(K) induce distinct maps in homology:
the “only if” part is clear; for “if” observe that if (hτ(K))∗ is not the zero
map then we can replace [x] by [x] + c for some class c ∈ ker((vτ(K))∗) \
ker((hτ(K))∗).

Now recall Lemma 4.2 of [MT15], which asserts that a knot K ⊂ S3 has
ε(K) = 0 if and only if vτ(K) and hτ(K) induce the same nonzero map in
homology. We conclude that if ε(K) = 1 the two maps are different and the
desired class [x] exists. Therefore:

Corollary 3.2 (of the proof). If K ⊂ S3 is a knot with ε(K) = 1, then
for s a spinc structure on Wn(K) inducing a nontrivial map in homology we
have

|〈c1(s), [Σ]〉|+ n ≤ 2τ(K)− 2.

In particular for such K we have

Sf(K) + c(K) ≤ 2τ(K)− 2.

This, together with Theorem 3.1, proves Theorem 1.3.
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invariants, Adv. Math. 186 (2004), no. 1, 58–116.
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