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Cahen–Gutt moment map, closed Fedosov

star product and structure of the

automorphism group

Akito Futaki and Hajime Ono

We show that if a compact Kähler manifold M with non-negative
Ricci curvature admits closed Fedosov star product then the re-
duced Lie algebra of holomorphic vector fields on M is reductive.
This comes in pair with the obstruction previously found by La
Fuente-Gravy [20]. More generally we consider the squared norm of
Cahen–Gutt moment map as in the same spirit of Calabi functional
for the scalar curvature in cscK problem, and prove a Cahen–Gutt
version of Calabi’s theorem on the structure of the Lie algebra of
holomorphic vector fields for extremal Kähler manifolds.

1. Introduction.

A deformation quantization is a formal associative deformation of a Poisson
algebra (C∞(M), ·, {·, ·}) into the space C∞(M)[[ν]] of formal power series
in ν with a composition law ∗ called the star product with the following
property. The constant function 1 is a unit, and if we write for f, g ∈ C∞(M)

(1) f ∗ g =

∞∑
r=0

Cr(f, g)νr,

then ∗ is required to satisfy

(2) C0(f, g) = f · g, C1(f, g)− C1(g, f) = {f, g},

and Cr’s are required to be bidifferential operators. For symplectic mani-
folds, the existence of star products was shown by Dewilde and Lecompte
[6], Fedosov [8] and Omori, Maeda and Yoshioka [24]. For general Poisson
manifolds, the existence of star products was shown by Kontsevich [18]. A
star product on a compact symplectic manifold (M,ω) of dimension 2m is
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124 A. Futaki and H. Ono

called closed (in the sense of Connes-Flato-Sternheimer [5]) if

(3)

∫
M
F ∗H ωm =

∫
M
H ∗ F ωm

for all F, H ∈ C∞(M)[[ν]].
Let (M,ω) be a compact connected symplectic manifold of dimension

2m. In [3], Cahen and Gutt defined a moment map µ on the space of symplec-
tic connections for the action of the group of Hamiltonian diffeomorphisms.
In [19], La Fuente-Gravy showed that if the Fedosov star product ∗∇ is closed
for a symplectic connection ∇ then µ(∇) is constant. Assuming M is Kähler
and fixing a Kähler class, La Fuente-Gravy further defined in [20] a Lie alge-
bra character Fut : g→ R where g is the reduced Lie algebra of holomorphic
vector fields on M , and showed that if there exists a Kähler metric in the
fixed Kähler class such that µ(∇) is constant for the Levi-Civita connection
∇ then the character Fut vanishes. In particular, non-vanishing of the char-
acter Fut obstructs the existence of a Kähler metric in the fixed Kähler class
such that the Fedosov star product ∗∇ is closed. (Recall that, by definition,
the reduced Lie algebra g of holomorphic vector fields on a compact Kähler
manifold consists of holomorphic vector fields of the form grad′f for some
complex valued smooth function f (c.f. [17]). In fact, g does not depend on
the choice of the Kähler metric.) La Fuente-Gravy showed that, when the
fixed Kähler class is integral and equal to c1(L) for some ample line bundle
L, the character he defined is one of the obstructions for the polarized man-
ifold (M,L) to be asymptotically Chow semistable obtained in [12], see also
[15] for more applications.

In the problem of finding constant scalar curvature Kähler (cscK) met-
rics, Fujiki [10] and Donaldson [7] set up a moment map τ on the space of
complex structures compatible with a fixed symplectic form ω where τ(J)
at a complex structure J is the scalar curvature of the Kähler manifold
(M,ω, J). In this cscK problem, we also have the Lie algebra character
which obstructs the existence of cscK metrics ([11]). On the other hand,
we also have another obstruction which claims that the Lie algebra of all
holomorphic vector fields of a cscK manifold has to be reductive ([23], [22]).
This is further extended by Calabi [4] to a structure theorem of the Lie alge-
bra for compact extremal Kähler manifolds. As can be seen in other similar
problems (see e.g. [14], [16], [21], [1]), the two obstructions of the Lie algebra
character and the reductiveness come always in pair. The purpose of this
paper is to show that this is the case, namely the following is the main result
of this paper.
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Theorem 1.1. Let M be a compact Kähler manifold. If there exists a
Kähler metric with non-negative Ricci curvature such that µ(∇) is constant
for the Cahen–Gutt moment map µ and the Levi-Civita connection ∇ then
the reduced Lie algebra g of holomorphic vector fields is reductive. In partic-
ular, if g is not reductive then there is no Kähler metric with non-negative
Ricci curvature such that the Fedosov star product ∗∇ for the Levi-Civita
connection ∇ is closed.

To show this we define Cahen–Gutt version of extremal Kähler metrics
and prove a similar structure theorem as the Calabi extremal Kähler metrics.
The strategy of the proof of the structure theorem for Cahen–Gutt extremal
Kähler manifold is to use the formal finite dimensional argument for the
Hessian formula of the squared norm of the moment map given by Wang [25].
The merit of Wang’s argument is that once the suitable modification of the
Lichnerowicz operator is made we can apply his formal argument without
using the explicit expression of the modified Lichnerowicz operator. This
strategy has been used previously for perturbed extremal Kähler metrics in
[14] and for conformally Kähler, Einstein-Maxwell metrics in [16].

This paper is organized as follows. In section 2 we recall Cahen–Gutt
moment map. We show in Kähler situation an explicit expression of the
Lie derivative of the connection by a Hamiltonian vector field (Lemma 2.2).
From this lemma we see that the Lie derivative of the connection by a
Hamiltonian vector field vanishes if and only if the Hamiltonian vector field
is a holomorphic Killing vector field. Using the Cahen–Gutt moment map
formula we reprove the result of La Fuente-Gravy that the Lie algebra char-
acter is independent of the choice of Kähler metric in the fixed Kähler class.
But our set-up is ω-fixed and J-varying, and thus what we prove is indepen-
dence of the choice of J . In section 3 we give an alternate proof of Lemma
2.2. The computations in this section are used in section 4. In section 4 we
apply Wang’s formal argument to prove the structure theorem for Cahen–
Gutt extremal Kähler manifolds. As we will only use the fact that closedness
of the Fedosov star product ∗∇ implies that µ(∇) is constant, we will not
reproduce the detailed account on closedness of Fedosov star product. We
expect an interested reader will refer to La Fuente-Gravy’s articles [19], [20]
for it.

Acknowledgement. The authors are grateful to the referee for careful
reading and pointing out the necessity of the curvature condition for the
proof of reductiveness.
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2. Cahen–Gutt moment map.

Let (M,ω) be a symplectic manifold of dimension 2m. A symplectic connec-
tion ∇ is a torsion free affine connection such that ∇ω = 0. There always
exists a symplectic connection on any symplectic manifold, see e.g. [2], sec-
tion 2.1. Unlike the Levi-Civita connection on a Riemannian manifold, a
symplectic connection is not unique on a symplectic manifold. Given two
symplectic connections ∇ and ∇′, we write the difference by S:

∇XY −∇′XY = S(X,Y ).

Then ω(S(X,Y ), Z) is totally symmetric in X, Y and Z. Conversely, if ∇
is a symplectic connection and ω(S(X,Y ), Z) is totally symmetric, then
∇′ := ∇+ S is a symplectic connection, see [2], section 2.1. In the geometry
of symplectic connections, ω = ωijdx

i ∧ dxj and (ωij) = (ωij)
−1 are used to

raise and lower the indices, and we write

(4) S = Sijk dx
i ⊗ dxj ⊗ dxk

for

(5) S = Sij
k dxi ⊗ dxj ⊗ ∂

∂xk

with Sijk = Sij
`ω`k. With this notation, Sijk is symmetric in i, j and k.

Thus, on a symplectic manifold (M,ω), the space of symplectic connections,
denoted by E(M,ω), is an affine space modeled on the set of all smooth sec-
tions Γ(S3(T ∗M)) of symmetric covariant 3-tensors. Thus we may identify
E(M,ω) as

E(M,ω) ∼= ∇+ Γ(S3(T ∗M)).

From now on we assume M is a closed manifold. On E(M,ω) there is a
natural symplectic structure ΩE defined at ∇ given by

(6) ΩE∇(A,B) =

∫
M
ωi1j1ωi2j2ωi3j3Ai1i2i3 Bj1j2j3 ωm

for A, B ∈ T∇E(M,ω) ∼= Γ(S3(T ∗M)) where ωm := ωm

m! . Since ΩE∇ is inde-
pendent of ∇ we may omit ∇ and write ΩE . There is a natural action of the
group of symplectomorphisms (i.e. symplectic diffeomorphisms) of (M,ω)
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on E(M,ω), which is given for a symplectomorphism ϕ by

(ϕ(∇))XY = ϕ∗(∇ϕ−1
∗ Xϕ

−1
∗ Y )

for any ∇ ∈ E(M,ω) and any smooth vector fields X and Y on M . This
action preserves the symplectic structure ΩE on E(M,ω). In particular, the
group Ham(M,ω) of Hamiltonian diffeomorphisms acts on E(M,ω) as sym-
plectomorphisms. Let Xf be a Hamiltonian vector field on M for a smooth
function f on M , that is

(7) i(Xf )ω = df.

Then the induced infinitesimal action of −Xf on E(M,ω) is computed as

(LXf∇)Y Z = [Xf ,∇Y Z]−∇[Xf ,Y ]Z −∇Y [Xf , Z](8)

= R∇(Xf , Y )Z + (∇∇Xf )(Y,Z)

where R∇ is the curvature tensor of ∇, i.e. R∇(X,Y )Z = ∇X∇Y Z −
∇Y∇XZ −∇[X,Y ]Z, and (∇∇X)(Y,Z) = ∇Y∇ZX −∇∇Y ZX. For ∇ ∈
E(M,ω) we put

µ(∇) = ∇p∇qRic(∇)pq(9)

− 1

2
Ric(∇)pqRic(∇)pq +

1

4
R(∇, ω)pqrsR(∇, ω)pqrs

where

(10) R(∇, ω)(X,Y, Z,W ) = ω(R(X,Y )Z,W )

and

Ric(X,Y ) = −tr(Z 7→ R(X,Z)Y ).

Theorem 2.1 (Cahen–Gutt [3]). The functional µ on E(M,ω) gives a
moment map for the action of Ham(M,ω).

This follows from the formula

(11)
d

dt

∣∣∣∣
t=0

∫
M
µ(∇+ tA) f ωm = ΩE(LXf∇, A).

Note from (8) that

(12) LX∇ = (XsR(∇, ω)squt +∇q∇uXs ωst) dx
q ⊗ dxu ⊗ dxt.
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Now we assume that M is a compact Kähler manifold and that ω is a
fixed symplectic form. We set

J (M,ω) = {J integrable complex structure |
(M,ω, J) is a Kähler manifold.}

La Fuente-Gravy [19], [20] considered the Levi-Civita map lv : J (M,ω)→
E(M,ω) sending J to the Levi-Civita connection ∇J of the Kähler manifold
(M,ω, J). The following is a key lemma to this paper.

Lemma 2.2. If we choose local holomorphic coordinates z1, . . . , zm then
for any smooth function f we have

LXf∇J = fijkdz
i ⊗ dzj ⊗ dzk + fijkdz

i ⊗ dzj ⊗ dzk(13)

+ fijkdz
i ⊗ dzj ⊗ dzk + fijkdz

i ⊗ dzj ⊗ dzk

+ fikjdz
i ⊗ dzj ⊗ dzk + fikjdz

i ⊗ dzj ⊗ dzk

+ fjkidz
i ⊗ dzj ⊗ dzk + fjkidz

i ⊗ dzj ⊗ dzk

where the lower indices of f stand for the covariant derivatives, e.g. fijk =
∇k∇j∇if .

Proof. Write ∂i = ∂/∂zi, ∂i = ∂/∂zi for short. We use the standard tensor
calculus notations in Kähler geometry. Thus, RABCD denotes the Kählerian
curvature tensor with A, B, C,D running from 1, . . . ,m, 1̄, . . . , m̄ and we
use the metric tensor or its inverse to lower and raise indices. First of all,
from (7) we have

(14) Xf = −Jgradf = −
√
−1f `∂` +

√
−1f `∂`.

Secondly, from (10) we have

(15) R(∇, ω)ABij = −
√
−1RABij .

From (12), (14) and (15) we obtain

(16) LX∇(∂i, ∂j , ∂k) = fijk
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since RijCD = 0 on Kähler manifolds, and

LX∇(∂i, ∂j , ∂k) = −R`ikjf
` +∇i∇jfk(17)

= −Rki`jf
` +∇i∇kfj

= ∇k∇ifj = fjik = fijk.

Since we know LX∇ is totally symmetric, taking the complex conjugates of
(16) and (17) we obtain (13).

Alternatively, one may compute

R(−
√
−1f `∂` +

√
−1f `∂`, ∂i + ∂i)(∂j + ∂j)

+∇∂i+∂i ∇∂j+∂j (−
√
−1f `∂` +

√
−1f `∂`),

from which one obtains (13), and the result shows that LX∇ is totally
symmetric. �

An alternate proof of Lemma 2.2 is given in the next section, see (34),
where we use an explicit description of the differential lv∗ : TJJ (M,ω)→
T∇JE(M,ω), see Lemma 3.1.

If lv∗ΩE is non-degenerate, lv∗µ gives the moment map for the action
of Ham(M,ω) with respect to the symplectic structure lv∗ΩE . However the
nondegeneracy of lv∗ΩE is not obvious, and in [19], Proposition 17, a suffi-
cient condition for the non-degeneracy of lv∗ΩE is given (see also Lemma 4.9
and Remark 4.10 of the present paper). Disregarding this difficulty, notice
that this symplectic structure is different from the one used in Donaldson
[7] and Fujiki [10]. As we noted in the introduction, by choosing different
symplectic structures on J (M,ω), we obtain similar results for other non-
linear geometric problems just as the cscK problem, see [13], [14], [16]. Each
case of them should be studied in terms K-stability.

Proposition 2.3. For a real smooth function f , LXf∇J = 0 if and only if
LXfJ = 0. In this case, Xf is a holomorphic Killing vector field.

Proof. We write ∇ instead of ∇J for notational simplicity. By Lemma 2.2,
LXf∇ = 0 implies ∇′∇′′∇′′f = 0. By integration by parts, this shows∫

M
|∇′′∇′′f |2ωm = 0.
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This implies Xf is holomorphic, that is, LXfJ = 0 since for a smooth vector
field X = X ′ +X ′′ we have

(18) LXJ = 2
√
−1∇′′X ′ − 2

√
−1∇′X ′′,

as shown in Lemma 2.3 in [13]. Lemma 2.2 also shows, conversely if LXfJ = 0
then LXf∇ = 0. In this case, since Xf preserves ω it is a Killing vector field.
This completes the proof of Proposition 2.3. �

Lemma 2.2 gives an alternate proof of the following result of La Fuente-
Gravy. We consider gR consisting of grad′f ∈ g of some real smooth function.

Corollary 2.4 (La Fuente-Gravy [20]). Let (M,ω) be a compact Kähler
manifold, and gR be the real reduced Lie algebra of holomorphic vector fields.
We normalize the Hamiltonian functions f so that

∫
M f ωm = 0. Then

Fut(grad′f) :=

∫
M
µ(∇J) f ωm

is independent of the choice of J ∈ J (M,ω).

Proof. By the moment map formula (11), the derivative of Fut(grad′f) van-
ishes when LXf∇ = 0. But by Proposition 2.3, LXf∇ = 0 is equivalent to
LXfJ = 0. This completes the proof of Corollary 2.4 �

La Fuente-Gravy [20] shows that this is an obstruction to the existence of
an integrable complex structure J such that the Levi-Civita connection ∇J
gives rise to closed Fedosov star product. This follows from his observation
that the closedness of Fedosov star product implies µ(∇J) is constant. He
also observed the invariant Fut(grad′f) in Corollary 2.4 is one of the invari-
ants considered in [12]. The latter family of invariants includes the standard
obstruction to the existence of Kähler-Einstein metrics [11]. In the last sec-
tion of this paper we will obtain another obstruction for the Levi-Civita
connection ∇J to give rise to closed Fedosov star product.

3. An alternate proof of Lemma 2.2.

In this section we give an alternate proof of Lemma 2.2. The results in this
section are used in the next section. Let (M,ω) be a compact symplectic
manifold of dimension 2m with a fixed symplectic form ω. Let J (M,ω) be
the set of all ω-compatible integrable complex structures where J is said to
be ω-compatible if ω(JX, JY ) = ω(X,Y ) for all vector fields X and Y and
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ω(X, JX) > 0 for all non-zero X. Thus, for each J ∈ J (M,ω), the triple
(M,ω, J) determines a Kähler structure.

Consider J as acting on the cotangent bundle and decompose the com-
plexified cotangent bundle into holomorphic and anti-holomorphic parts, i.e.
±
√
−1-eigenspaces of J :

(19) T ∗M ⊗C = T ∗′J M ⊕ T ∗′′J M, T ∗′′J M = T ∗′J M.

Take arbitrary J ′ ∈ J (M,ω), then we also have the decomposition with
respect to J ′

(20) T ∗M ⊗C = T ∗′J ′M ⊕ T ∗′′J ′ M, T ∗′′J ′ M = T ∗′J ′M.

If J ′ is sufficiently close to J then T ∗′J ′M can be expressed as a graph over
T ∗′J M in the form

(21) T ∗′J ′M = { α+ µ(α) | α ∈ T ∗′J M }

for some endomorphism µ of T ∗′J M into T ∗′′J M . We use the identification of
T ∗′′J M with T ′JM by the Kähler metric defined by the pair (ω, J), and then
µ is regarded as

µ ∈ Γ(End(T ∗′J M,T ∗′′J M))(22)
∼= Γ(T ′JM ⊗ T ∗′′J M) ∼= Γ(T ′JM ⊗ T ′JM).

In the tensor calculus notations this is expressed as

µik 7→ gjkµik =: µij

where we chose a local holomorphic coordinate system (z1, . . . , zm) with
respect to J and wrote ω as ω =

√
−1 gijdz

i ∧ dzj . The following is known:

(23) µij = µji,

see the proof of Lemma 2.1 in [13].
If Jt is a smooth curve in J (M,ω) with J0 = J and µ(t) is the curve in

Γ(End(T ∗′J M,T ∗′′J M)) satisfying

Jt(α+ µ(t)α) =
√
−1(α+ µ(t)α)

with µ̇(0) = µ, then we have

(24) J̇ |t=0 = 2
√
−1µ− 2

√
−1µ,
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see [13], pp.353–354. Let gt be the Kähler metric of (ω, Jt), i.e. gt(·, ·) =
ω(·, Jt·). We write the Christoffel symbol in terms of real coordinates

Γit,kj =
1

2
gi`t

(
∂gt,`j
∂xk

+
∂gt,`k
∂xj

−
∂gt,jk
∂x`

)
,

take the derivative at t = 0 and express it in terms of normal coordinates to
obtain the derivative of the covariant derivative

(25) ∇̇ikjdxk = Γ̇ikjdx
k =

1

2
(ġij,k + ġik,j − ġjk,i)dxk

where i and j are respectively row and column indices. Note gt ij = ωikJ
k
t j

and that ω is fixed. Thus we have ġij = ωikJ̇
k
j .

In local complex coordinates z1, . . . , zm, z1, . . . , zm giving complex stru-
ture J we have ω =

√
−1gijdz

i ∧ dzj , ωji = −ωij = −
√
−1gij . It follows from

(24) that

ġi j = ωik2
√
−1µkj = 2µi j ,(26)

ġij = ωik(−2
√
−1)µkj = 2µij ,(27)

ġi j = 0, ġij = 0.(28)

The derivative ∇̇ of the connection is the section of End(TM)⊗ T ∗M ∼=
T ∗M ⊗ T ∗M ⊗ TM . Using ω a section A of End(TM)⊗ T ∗M ∼= T ∗M ⊗
T ∗M ⊗ TM can be identified with a section A of ⊗3T ∗M . For example, this
means

Aijk = Apjkωpi =
√
−1gpiA

p
jk, Aijk = Apjkωpi = −

√
−1gipA

p
jk.

Lemma 3.1. With the identification above, we have

−
√
−1∇̇ = µij,kdz

i ⊗ dzj ⊗ dzk − µij,kdz
i ⊗ dzj ⊗ dzk(29)

+ µij,kdz
i ⊗ dzj ⊗ dzk − µij,kdz

i ⊗ dzj ⊗ dzk

+ µik,jdz
i ⊗ dzj ⊗ dzk − µik,jdz

i ⊗ dzj ⊗ dzk

+ µjk,idz
i ⊗ dzj ⊗ dzk − µjk,idz

i ⊗ dzj ⊗ dzk

where the comma , denotes the covariant derivative. In particular, ∇̇ is to-
tally symmetric in terms of the three components.
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Proof. We lower the upper indices of (25) using ω, and then use (26), (27)
and (28) to obtain

−
√
−1∇̇ = −

√
−1Γ̇(30)

= µij,kdz
i ⊗ dzj ⊗ dzk + µij,kdz

i ⊗ dzj ⊗ dzk

− µij,kdz
i ⊗ dzj ⊗ dzk − µij,kdz

i ⊗ dzj ⊗ dzk

+ µik,jdz
i ⊗ dzj ⊗ dzk + µik,jdz

i ⊗ dzj ⊗ dzk

− µik,jdz
i ⊗ dzj ⊗ dzk − µik,jdz

i ⊗ dzj ⊗ dzk

− µjk,idzi ⊗ dzj ⊗ dzk + µjk,idz
i ⊗ dzj ⊗ dzk

− µjk,idz
i ⊗ dzj ⊗ dzk + µjk,idz

i ⊗ dzj ⊗ dzk.

By Proposition 11 in [19], we see that J((∇Xµ)Y )− (∇JXµ)Y is symmetric
in X and Y . Taking X = ∂j and Y = ∂k we see that 2

√
−1∇kµ

i
j is sym-

metric in j and k. By lowering the upper index i, we see ∇kµij is symmetric
in j and k. By (23), µij is symmetric in i and j. Thus ∇kµij is totally sym-
metric in i, j and k. Similarly ∇kµij is totally symmetric in i, j and k. It
follows that the right hand side of (30) is totally symmetric in i, j and k.
Further, using this symmetry, four terms in (30) cancel out, and we obtain
(29). Instead of Proposition 11 in [19], one can use the torsion-freeness of
the Levi-Civita connection for the Kähler metrics gt, see [2]. �

We apply Lemma 3.1 when the family Jt is induced by the flow generated
by a Hamiltonian vector field Xf of a smooth function f . Then by Lemma
2.3 in [13],

(31) LXfJ = 2
√
−1∇′′X ′f − 2

√
−1∇′X ′′f .

Thus we have

µ = ∇′′X ′f .

But Xf is given by (14), and thus

(32) µ = −
√
−1∇′′grad′f,

and

(33) LXfJ = 2∇′′grad′f + 2∇′grad′′f.
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Thus (29) becomes

−∇̇ = fijkdz
i ⊗ dzj ⊗ dzk + fijkdz

i ⊗ dzj ⊗ dzk(34)

+ fijkdz
i ⊗ dzj ⊗ dzk + fijkdz

i ⊗ dzj ⊗ dzk

+ fikjdz
i ⊗ dzj ⊗ dzk + fikjdz

i ⊗ dzj ⊗ dzk

+ fjkidz
i ⊗ dzj ⊗ dzk + fjkidz

i ⊗ dzj ⊗ dzk.

Since the flow generated by Xf induces the infinitesimal action −LXf∇ on
E(M,ω), the result of (34) coincides with Lemma 2.2.

4. Cahen–Gutt extremal Kähler metrics

We consider the following functional on J (M,ω) which is similar to the
Calabi functional [4]. For J ∈ J (M,ω) we consider the squared L2-norm Φ
of the moment map: Φ(J) :=

∫
M µ(∇J)2ωm.

Theorem 4.1. A complex structure J ∈ J (M,ω) is a critical point of Φ if
grad′µ(∇J) is a holomorphic vector field.

Proof. Let Jt be a smooth curve in J (M,ω) with J0 = J . Then by Theo-
rem 2.1, we have

d

dt

∣∣∣∣
t=0

∫
M
µ(∇Jt)2 ωm = 2

d

dt

∣∣∣∣
t=0

∫
M
µ(∇Jt)µ(∇J) ωm(35)

= 2ΩE
(
LXµ∇J ,

d

dt

∣∣∣∣
t=0

∇Jt
)

where we have put µ = µ(∇J). By Proposition 2.3, LXµ∇J = 0 if and only
if LXµJ = 0, that is, if grad′µ(∇J) is a holomorphic vector field. �

In this paper we call the Kähler metric g = ω(·, J ·) a Cahen–Gutt extremal
Kähler metric if grad′µ(∇J) is a holomorphic vector field. Note that this is
different from the critical metrics of Fox [9].

Now we follow the arguments of [14] and [16] to obtain a Hessian formula
of Φ, but we essentially follow the finite dimensional formal arguments of
Wang [25]. Here the Hessian is considered on the subspace of the tangent
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space of J (M,ω) at J consisting of the tangent vectors of the form

J̇ = 4<∇i∇j
√
−1f

∂

∂zi
⊗ dzj(36)

= LJXfJ

for a real smooth function f ∈ C∞(M).
Let (M,ω, J) be a compact Kähler manifold, and ∇ the Levi-Civita

connection. We define Lichnerowicz operator L of order 6 by

(h,Lf)L2 = 3(∇′∇′′∇′′h,∇′∇′′∇′′f)L2 − (∇′′∇′′∇′′h,∇′′∇′′∇′′f)L2

= 3

∫
M
∇i∇j∇kh∇i∇j∇kf ωm −

∫
M
∇i∇j∇kh∇i∇j∇kf ωm(37)

for any complex valued smooth functions f and h. This is a self-adjoint
elliptic differential operator of order 6. We further define the sixth order
self-adjoint elliptic differential operator L : C∞C (M)→ C∞C (M) by

(38) Lu = Lu.

Lemma 4.2. If J̇ = 4<∇i∇j
√
−1f ∂

∂zi ⊗ dzj for a real valued smooth func-
tion f ∈ C∞(M), we have

d

dt

∣∣∣∣
t=0

µ(∇J(t)) = Lf + Lf.

Proof. Note that

(39) J̇ = 2
√
−1∇j(−

√
−1(
√
−1f)i)− 2

√
−1∇j(−

√
−1(
√
−1f)i)

For any real smooth function h we obtain from Theorem 2.1, (39) and
Lemma 3.1 that

d

dt

∣∣∣∣
t=0

∫
M
hµ(∇J(t))ωm = ΩE(LXh∇J , A)

where

A =
√
−1fijkdz

i ⊗ dzj ⊗ dzk −
√
−1fijkdz

i ⊗ dzj ⊗ dzk

+
√
−1fijkdz

i ⊗ dzj ⊗ dzk −
√
−1fijkdz

i ⊗ dzj ⊗ dzk

+
√
−1fikjdz

i ⊗ dzj ⊗ dzk −
√
−1fikjdz

i ⊗ dzj ⊗ dzk

+
√
−1fjkidz

i ⊗ dzj ⊗ dzk −
√
−1fjkidz

i ⊗ dzj ⊗ dzk.
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Thus, we obtain

d

dt

∣∣∣∣
t=0

∫
M
hµ(∇J(t))ωm

= 2<(−(∇′′∇′′∇′′h,∇′′∇′′∇′′f)L2 + 3(∇′∇′′∇′′h,∇′∇′′∇′′f)L2)

= (h,Lf) + (h,Lf)

= (h,Lf) + (h,Lf) = (h,Lf + Lf).

This completes the proof. �

Recall that the Poisson bracket {h, f} of two real smooth functions h and f
is defined by

{h, f} := Xhf

where Xh is the Hamiltonian vector field of h, that is i(X)ω = dh. For a
Kähler form ω, the Poisson bracket is expressed in terms of local holomorphic
coordinates as

{h, f} = ω(Xh, Jgradf)

= dh(Jgradf)

=
√
−1fαhα −

√
−1fαh

α

Lemma 4.3. For real valued smooth functions f and h in C∞(M) we have

ΩE(LXh∇J , LXf∇J) = −
∫
M
{h, f}µ(∇J)ωm.

Proof. Let σt be the flow generated by the Hamiltonian vector field of
h ∈ C∞(M). Since µ(∇J) gives a Ham(M,ω)-equivariant moment map by
Proposition 2.1 we have

(40)

∫
M
f µ(σt(∇J))ωm =

∫
M
f ◦ σ−1t µ(∇J)ωm.

Taking the time differential of σt we obtain the lemma by (11). �

Lemma 4.4. For any smooth complex valued smooth function f ∈C∞(M)C
we have

(L − L)f =
√
−1{f, µ(∇J)} = fαµ(∇J)α − µ(∇J)αfα

where fα = gαβ∂f/∂zβ for local holomorphic coordinates z1, . . . , zm.
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Proof. It is sufficient to prove when f is real valued. For any real valued
smooth function h ∈ C∞(M) it follows from Lemma 4.3 that

(h,Lf − Lf)L2 = 3(∇′∇′′∇′′h,∇′∇′′∇′′f)L2 − (∇′′∇′′∇′′h,∇′′∇′′∇′′f)L2

− (3(∇′∇′′∇′′h,∇′∇′′∇′′f)L2

− (∇′′∇′′∇′′h,∇′′∇′′∇′′f)L2)

= −
√
−1ΩE(LXh∇J , LXf∇J)

= −
√
−1({f, h}, µ(∇J))L2

=
√
−1(h, {f, µ(∇J)})L2

= (h, µ(∇J)αf
α − µ(∇J)αfα)L2 .

This completes the proof of Lemma 4.4. �

Lemma 4.5. If f ∈ C∞(M) and J̇ = 4<∇i∇j
√
−1f ∂

∂zi ⊗ dzj, then

d

dt

∣∣∣∣
t=0

∫
M
µ(∇Jt)2ωm = 4(f,Lµ(∇J))L2(41)

= 4(f,Lµ(∇J))L2 .

Proof. In this proof we write ∇ instead of ∇J for notational simplicity. We
apply Theorem 2.1 and Lemma 4.2 to show that the left hand side of (41)
is equal to

2ΩE(LXµ(∇)
∇, ∇̇)

= 4<(−(∇′′∇′′∇′′µ(∇),∇′′∇′′∇′′f)L2 + 3(∇′∇′′∇′′µ(∇),∇′∇′′∇′′f)L2)

= 2(µ(∇),Lf)L2 + 2(µ(∇),Lf)L2

= 2(f,Lµ(∇) + Lµ(∇))L2 .

But Lemma 4.4 implies

Lµ(∇) = Lµ(∇).

Hence the left hand side of (41) is equal to

4(f,Lµ(∇))L2 = 4(f,Lµ(∇))L2 .
�
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Lemma 4.6. Suppose that (ω, J) gives a Cahen–Gutt extremal Kähler met-
ric so that Jgradµ(∇J) is a holomorphic vector field. If

J̇ = 4<∇i∇j
√
−1f

∂

∂zi
⊗ dzj

for some real smooth function f ∈ C∞(M) then we have(
d

dt

∣∣∣∣
t=0

L
)
µ(∇J) = −L(µ(∇J)αfα − fαµ(∇J)α)

= L(L − L)f

Proof. First note that if

i(Xf )ω = df

then

(42) LJXfω = 2i∂∂f.

Let {ϕs} be the flow generated by −JXf . Let S be a smooth function
on M such that gradS is a holomorphic vector field. We shall compute
d
ds

∣∣
s=0
L(ϕsJ, ω)S, and apply to S = µ(∇J), and obtain the conclusion of

Lemma 4.6. Let {Ss} be a family of smooth functions such that S0 = S, that

grad′s Ss = grad′ S,

where grads denotes the gradient with respect to ϕ∗−sω, and that∫
M
Ss(ϕ

∗
−sω)m =

∫
M
Sωm.

This implies

(43) L(ϕsJ, ω)ϕ∗sSs = ϕ∗s(L(J, ϕ∗−sω)Ss) = 0.

On the other hand, in general, if ϕ∗−sω = ω + i∂∂h then Ss = S + Sαhα.
Therefore, since LJXfω = 2i∂∂f by (42) we have

(44) Ss = S + 2sSα fα +O(s2).

Thus taking the derivative of (43), we obtain

(45)

(
d

ds
|s=0L

)
S + L(−(JXf )S + 2Sαfα) = 0.
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By an elementary computation we see

(JXf )S = g(JXf , gradS) = ω(Xf , gradS) = df(gradS)

= (∂f + ∂f)(grad′S + grad′′S) = fαS
α + fαSα.

Thus, from (45) and the above computation, we obtain(
d

ds
|s=0L

)
S = L((fαS

α + fαSα)− 2Sαfα) = 0

= L(fαSα − fαSα)

= L(L − L)f.

This completes the proof of Lemma 4.6. �

To express the Hessian formula of Φ, we consider its restriction to the
subspace consisting of tangent vectors of the form J̇ = 4<∇i∇j

√
−1f ∂

∂zi ⊗
dzj = LJXfJ for a real smooth function f ∈ C∞(M).

Theorem 4.7. Suppose that J gives a Cahen–Gutt extremal Kähler metric
so that J is a critical point of Φ. Let f and h be real smooth functions in
C∞(M). Then the Hessian Hess(Φ)J at J is given by

Hess(Φ)J(LJXfJ, LJXhJ) = 8(f,LLh)L2 = 8(f,LLh)L2 .

In particular, at any point J giving a Cahen–Gutt extremal Kähler metric,
we have LL = LL on the space C∞C (M) of smooth complex valued functions
since LL and LL are both C-linear.

Proof. Suppose J̇ = 4<∇i∇j
√
−1h ∂

∂zi ⊗ dzj . Then by Lemma 4.5, Lemma
4.6 and Lemma 4.2 we obtain

Hess(Φ)J(LJXfJ, LJXhJ) =
d

dt

∣∣∣∣
t=0

4(f,Lµ(∇J))L2

= 4

(
f,

(
d

dt

∣∣∣∣
t=0

L
)
µ(∇J) + L d

dt

∣∣∣∣
t=0

µ(∇Jt)
)
L2

= 4(f,L(L − L)h+ L(L+ L)h)L2

= 8(f,LLh)L2 .
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Similarly, we obtain

Hess(Φ)J(LJXfJ, LJXhJ) =
d

dt

∣∣∣∣
t=0

4(f,Lµ(∇J))L2

= 4

(
f,

(
d

dt

∣∣∣∣
t=0

L
)
µ(∇) + L d

dt

∣∣∣∣
t=0

µ(∇Jt)
)
L2

= 4(f,L(L − L)h+ L(L+ L)h)L2

= 8(f,LLh)L2 .

This completes the proof of Theorem 4.7. �

Let g = g0 +
∑

λ6=0 gλ be the eigenspace decomposition of the reduced
Lie algebra g of holomorphic vector fields with respect to the action of
ad(grad′µ(∇)), and e = e0 +

∑
λ6=0 eλ be the corresponding decomposition

of the space of complex valued potentials functions. Thus dim e = dim g + 1
because of the constant functions.

Theorem 4.8. Let g = ωJ be a Cahen–Gutt extremal Kähler metric on a
compact Kähler manifold. Then we have the following:

(a) The space e of potential functions of the reduced Lie algebra g is in-
cluded in kerL.

(b) L maps e into itself and coincides with the Poisson bracket with µ(∇).
In particular, the eigenspace decomposition of L : e→ e coincides with
the decomposition e = e0 +

∑
λ6=0 eλ.

(c) L and L coincide when restricted to e0, and are real operators on e0.

Proof. By the definition (37) of L it is clear that e is included in kerL. Thus
(a) follows. By Lemma 4.4, we have for f ∈ e

Lf = (L − L)f(46)

= µ(∇)αfα − fαµ(∇)α,

and the right hand side is the Poisson bracket {µ(∇), f} and belongs to e.
Further we have

grad′{µ(∇), f} = [grad′µ(∇), grad′f ].

Thus the eigenspace decompositions of L coincides with e = e0 +
∑

λ6=0 eλ.

This proves (b). The equality (46) shows L = L on e0. This proves (c). �
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Lemma 4.9. Let M be a compact Kähler manifold. If g = ωJ is a Cahen–
Gutt extremal Kähler metric with non-negative Ricci curvature then e =
kerL.

Proof. By (a) of Theorem 4.8 we have only to show kerL ⊂ e. Since

−∇i∇i∇j∇kf +∇i∇i∇j∇kf = 2R`j∇k∇`f

for any complex valued smooth function f we see using (37) that if the Ricci
curvature is non-negative

(47) (f,Lf)L2 ≥ 2(∇′∇′′∇′′f,∇′∇′′∇′′f)L2 .

Thus Lf = 0 implies ∇′∇′′∇′′f = 0. By integration by parts, this shows∫
M
|∇′′∇′′f |2ωm = 0.

This implies grad′f is holomorphic. This shows kerL ⊂ e. �

Remark 4.10. The condition of non-negative Ricci curvature coincides
with the non-degenracy condition of lv∗ΩE due to La Fuente-Gravy, Propo-
sition 17 in [19].

Now we show a Cahen–Gutt version of Calabi’s theorem [4] for extremal
Kähler metrics. Before stating it we remark that it is well-known that for a
Killing vector field X on a compact Kähler manifold M , the complex vector
field X − iJX is a holomorphic vector field. We identify the real Lie algebras
i(M) of all Killing vector fields on M with the real Lie subalgebra of the
complex Lie algebra of all holomorphic vector fields by the identification
X 7→ X − iJX.

Theorem 4.11. Let M be a compact Kähler manifold. If g = ωJ is a
Cahen–Gutt extremal Kähler metric with non-negative Ricci curvature then
the reduced Lie algebra g of holomorphic vector fields has the following struc-
ture:

(a) grad′µ(∇) = gij ∂µ(∇)
∂zj

∂
∂zi is in the center of g0.

(b) g = g0+
∑

λ>0 gλ where gλ is the λ-eigenspace of ad(grad′µ(∇)). More-
over, we have [gλ, gµ] ⊂ gλ+µ.
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(c) g0 is isomorphic to i(M)⊗C, and is the maximal reductive subalge-
bra of g where i(M) denotes the real Lie algebra of all Killing vector
fields. In particular g0 is reductive. Further, the identity component
of the isometry group is a maximal compact subgroup of the identity
component of the group of all biholomorphisms of M .

Proof. Since g0 is the 0-eigenspace with respect to the action of
ad(grad′µ(∇)), grad′µ(∇) is in the center of g0. This proves (a). By (47)
L is a non-negative operator the non-zero eigenvalues of L are positive.
Taking the complex-conjugate the same is true for L. Since by Theorem 4.8,
(b), the non-zero eigenvalues of L coincide with those of ad(grad′µ(∇)) we
have λ > 0 for all non-zero λ’s. This proves (b). From Theorem 4.8, (c), we
see f ∈ e0 satisfies both Lf = 0 and Lf = 0. Since Lf = 0 is equivalent to
Lf = 0, this implies L<f = 0 and L=f = 0. Hence by Lemma 4.9, both the
real and imaginary part of f are potential functions of holomorphic vector
fields. In general if grad′f is a holomorphic vector field for a real smooth
function f then Jgrad f is a Killing vector field. It is also well-known that
for a Killing vector field X on a compact Kähler manifold, X − iJX is a
holomorphic vector field. Hence we obtain g0 = i(M)⊗C. In particular g0 is
reductive. To show that this is a maximal reductive Lie algebra, suppose we
have a reductive Lie subalgebra l containing g0. If µ(∇) is constant we have
g = g0 and thus g0 is maximal. Thus we may assume µ(∇) is not constant.
Let X be an element of l in the form X = X0 +

∑
λXλ where X0 ∈ g0 and

Xλ ∈ gλ. Since

Ad(exp(t grad′µ(∇))X = X0 +
∑
λ>0

eλtXλ ∈ l

for any t ∈ R, by considering this for many values of t we have Xλ ∈ l for
each λ. If Xλ 6= 0 for some λ > 0 then grad′µ(∇) +Xλ generates a solvable
Lie subalgebra. This contradicts the reductiveness of l. Thus Xλ = 0 for all
λ > 0. Thus g0 is a maximal reductive Lie subalgebra. To show the last
statement let K be a compact connected Lie subgroup of the group of all
biholomorphisms of M including the identity component of the group of all
isometries of M , and k be its real Lie algebra. Since k⊗C is reductive and g0
is a maximal reductive Lie subalgebra we must have k⊗C = g0 = i(M)⊗C.
Thus any element of k can be written in the form Jgrad f + gradh for some
real potential functions f and h where Jgrad f and Jgradh are Killing
vector fields (by using the identification remarked before the statement of
Theorem 4.11). Since i(M) is a Lie subalgebra of k we have gradh ∈ k. If
gradh is non-zero it generates a non-compact group since h has at least two
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critical points and K can not be compact. Thus gradh has to be zero and
k = i(M). This proves (c). �

Proof of Theorem 1.1. As shown by La Fuente-Gravy [19], if lv(J) gives
rise to closed Fedosov star product then µ(∇) is constant and thus g = g0.
It follows from Theorem 4.11, (c), that g is reductive. This completes the
proof. �

Example 4.12. Let M be a one point blow-up of the complex projective
plane CP2. Since M is simply connected the reduced Lie algebra of holo-
morphic vector fields coincides with the Lie algebra of all holomorphic vec-
tor fields. The corresponding Lie group is the group of all biholomorphic
automorphisms. Any automorphism of M leaves the exceptional divisor in-
variant, and thus descends to an automorpism fixing the point where the
blow-up is performed. Thus the reduced Lie algebra is of the form

 ∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗


/

center

which is not reductive. Thus any Kähler metric with non-negative Ricci cur-
vature on M does not give closed Fedosov star product. This example is also
the simplest example of a compact Kähler manifold with no cscK metric.
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