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We exhibit a distinctly low-dimensional dynamical obstruction to
the existence of Liouville cobordisms: for any contact 3-manifold
admitting an exact symplectic cobordism to the tight 3-sphere,
every nondegenerate contact form admits an embedded Reeb or-
bit that is unknotted and has self-linking number −1. The same
is true moreover for any contact structure on a closed 3-manifold
that is reducible. Our results generalize an earlier theorem of Hofer-
Wysocki-Zehnder for the 3-sphere, but use somewhat newer tech-
niques: the main idea is to exploit the intersection theory of punc-
tured holomorphic curves in order to understand the compactifica-
tion of the space of so-called “nicely embedded” curves in symplec-
tic cobordisms. In the process, we prove a local adjunction formula
for holomorphic annuli breaking along a Reeb orbit, which may be
of independent interest.
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1. Introduction

1.1. Statement of the main results

Contact structures arise in the context of Hamiltonian dynamics via the
notion of convexity : a convex hypersurface in a symplectic manifold nat-
urally inherits a contact structure, and the orbits of its Reeb vector field
then match the Hamiltonian orbits defined by any Hamiltonian function
that has the hypersurface as a regular level set. In this paper, we consider
contact structures that are induced on convex and concave boundaries of
symplectic manifolds, i.e. symplectic cobordisms. Our main theorem relates
the existence of exact symplectic cobordisms between given contact mani-
folds to a dynamical condition on their Reeb vector fields. In particular, we
will restrict attention to dimension three and discuss the existence of closed
Reeb orbits γ : S1 → M that are not only contractible but also unknotted,
meaning

γ = f |∂D2 for some embedding f : D2 →֒ M,

where D2 ⊂ C denotes the closed unit disk. All definitions relevant to the
following statements may be found in §2.1, but let us stress the following
convention from the start since it sometimes causes confusion:

Convention. In this paper, the words “symplectic cobordism from (M1, ξ1)
to (M2, ξ2)” always mean that (M1, ξ1) is the concave boundary and (M2, ξ2)
the convex boundary of the cobordism (cf. §2.1). This usage is standard, and
is natural from the perspective of contact surgery, but a few other authors
(especially e.g. in the literature on embedded contact homology) sometimes
interchange the order of “convex” and “concave,” which would make our
results false.

Theorem 1.1. Assume (M, ξ) is a closed contact 3-manifold that admits
a Liouville cobordism to the standard contact 3-sphere (S3, ξstd). Then for
every nondegenerate contact form α on (M, ξ), the Reeb vector field Rα

admits a simple closed orbit γ whose image is the boundary of an embedded
disk D ⊂ M . Moreover, the Conley-Zehnder index and self-linking number
of γ with respect to D satisfy

µCZ(γ;D) ∈ {2, 3} and sl(γ;D) = −1.

A minor variation on the same techniques in the spirit of [22] will also
imply the following:
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Theorem 1.2. Assume (M, ξ) is a closed contact 3-manifold and that ei-
ther of the following is true:

1) M is reducible, i.e. it contains an embedded 2-sphere that does not
bound an embedded ball;

2) (M, ξ) admits a Liouville cobordism to an overtwisted contact mani-
fold.

Then for every nondegenerate contact form α on (M, ξ), the Reeb vector
field Rα admits a simple closed orbit γ whose image is the boundary of an
embedded disk D ⊂ M such that

µCZ(γ;D) = 2 and sl(γ;D) = −1.

Recall that an oriented 3-manifold is reducible if and only if it is either
S1 × S2 or M1#M2 for a pair of closed oriented 3-manifolds that are not
spheres. This condition is now known to be equivalent to the hypothesis
π2(M) 6= 0 used in [22]: in one direction this follows from the sphere theorem
for 3-manifolds, and in the other, from [21, Prop. 3.10] and the Poincaré
conjecture. Note that both of the above theorems require nondegeneracy of
the contact form α, but it is possible for the sake of applications to weaken
this condition; see Theorem 1.12 below.

1.2. Context

The prototype for Theorems 1.1 and 1.2 is a 20-year-old result of Hofer-
Wysocki-Zehnder [26], which amounts to the case (M, ξ) = (S3, ξstd) of The-
orem 1.1. The result in [26] was in some sense far ahead of its time, as it
required ideas from both the compactness theory [3] and the intersection
theory [41] of punctured holomorphic curves, but it appeared several years
before either of those theories were developed in earnest. In the mean time
the available techniques have improved, and our proofs will make use of
those improvements.

A weaker version of Theorem 1.1 can be shown to hold in all dimensions,
namely:

Theorem 1.3. If (M, ξ) is a closed (2n− 1)-dimensional contact manifold
admitting a Liouville cobordism to a standard contact sphere (S2n−1, ξstd),
then every contact form for (M, ξ) admits a contractible closed Reeb orbit.



✐

✐

“2-Wendl” — 2020/3/21 — 1:21 — page 60 — #4
✐

✐

✐

✐

✐

✐

60 A. Cioba and C. Wendl

This result can largely be attributed to Hofer, as most of the ideas needed
for its proof are present in [22]. We will sketch a proof in §1.4 which is sim-
ilar in spirit to one that has previously appeared in the work of Geiges and
Zehmisch [15, Corollary 3.3] (see also [16, 17]); there is also an alternative
proof via symplectic homology by Albers, Cieliebak and Oancea (see the ap-
pendix of [5]). Analogous results that may be viewed as higher-dimensional
versions of Theorem 1.2 have appeared in [1, 18, 19, 39]. The conclusions of
our main results however are stronger and uniquely low dimensional: for in-
stance in §1.3 below, we will see examples of contact 3-manifolds that always
admit contractible but not necessarily unknotted Reeb orbits. Theorem 1.1
thus gives a new means of proving that these examples cannot be exactly
cobordant to the standard 3-sphere.

We are aware of three general classes of contact 3-manifolds that satisfy
the hypothesis of Theorem 1.1.

Example 1.4. If ξ is overtwisted, then a theorem of Etnyre and Honda
[11] provides Stein cobordisms from (M, ξ) to any other contact 3-manifold,
so in particular to (S3, ξstd). Of course, in this case Theorem 1.2 also applies
and gives a slightly stronger result.

Example 1.5. Suppose (M, ξ) is subcritically Stein fillable, or equivalently,
that it can be obtained by performing contact connected sums on copies of
the tight S3 and S1 × S2. In this case, (M, ξ) is the convex boundary of a
Weinstein domain W constructed by attaching 1-handles to a ball, and these
1-handles can then be cancelled by attaching suitable Weinstein 2-handles.
This procedure embedsW into the standard 4-ball as a Weinstein subdomain
and thus produces a Weinstein cobordism from (M, ξ) to (S3, ξstd). Note that
Theorem 1.2 also applies in this case unless M = S3.

The third class of examples was brought to our attention by Emmy
Murphy.

Example 1.6. Suppose L ⊂ [1,∞)× S3 is an exact Lagrangian cap for
some Legendrian knot Λ in (S3, ξstd), i.e. L is a compact Lagrangian sub-
manifold properly embedded in the top half of the symplectization R× S3,
such that ∂L = {1} × Λ, L is tangent near its boundary to a globally de-
fined Liouville vector field pointing transversely inward at {1} × S3, and
the restriction of the corresponding Liouville form to L is exact. A result of
Francesco Lin [31] guarantees that such caps always exist after stabilizing
Λ sufficiently many times. Now suppose UL is an open neighbourhood of L
in [1,∞)× S3, where the latter is viewed as sitting on top of the standard
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Weinstein filling B4 of (S3, ξstd). This neighbourhood can be choosen such
that, after smoothing corners, B4 ∪ UL is a Weinstein filling of some contact
3-manifold (M, ξ), and

(
[1, T ]× S3

)
\ UL for suitable T > 1 defines a Liou-

ville cobordism W+ from (M, ξ) to (S3, ξstd), see Figure 1. Using a Morse
function on L that has one index 2 critical point and an inward gradient
at ∂L, one can find a Weinstein handle decomposition of B4 ∪ UL having
exactly one 2-handle (see Remark A.2), thus B4 ∪ UL is not subcritical, and
it follows from the uniqueness of Stein fillings in the subcritical case [4, The-
orem 16.9(c)] that (M, ξ) is not subcritically fillable. For more details on
this construction, see Appendix A.

One can now use a well-known result of Eliashberg [4, 8] to extract from
this example contact 3-manifolds other than (S3, ξstd) to which Theorem 1.1
applies but Theorem 1.2 does not. Indeed, while (M, ξ) = ∂(B4 ∪ UL) could
be reducible, it is Stein fillable and therefore tight, so Colin [6] (see also [14,
§4.12]) provides a prime decomposition

(M, ξ) = (M1, ξ1)# · · ·#(Mk, ξk),

and Eliashberg’s theorem implies that B4 ∪ UL must be Weinstein defor-
mation equivalent to a domain obtained by attaching Weinstein 1-handles
to Weinstein fillings of the summands. But the summands cannot all be
S1 × S2 since (M, ξ) is not subcritically fillable, so at least one of them is
an irreducible tight contact 3-manifold admitting a Liouville cobordism to
(S3, ξstd).

Corollary 1.7. The contact 3-manifolds (M, ξ) described in Example 1.6
and their prime summands all admit unknotted Reeb orbits with Conley-
Zehnder index 2 or 3 and self-linking number −1 for every choice of nonde-
generate contact form.

The construction outlined in Example 1.6 also works in higher dimen-
sions using the exact Lagrangian caps of Eliashberg-Murphy [10], cf. Ap-
pendix A. In this case it produces Weinstein subdomains of the standard
ball which are presumably flexible in the sense of [4]. Recently, Murphy and
Siegel [35] have also found examples of nonflexible Weinstein subdomains in
the standard ball, whose boundaries therefore also satisfy the hypothesis of
Theorem 1.3.

Remark 1.8. It is not known whether any contact 3-manifolds satisfy the
hypothesis of Theorem 1.2(2) without being overtwisted, though AndyWand
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B4

[0, 1]× S3

L

UL

Λ

W+

Figure 1: An exact Lagrangian cap for a Legendrian in (S3, ξstd) produces
a Liouville cobordism W+ from (M, ξ) to (S3, ξstd), where (M, ξ) := ∂(B4 ∪
UL) is not subcritically fillable.

[42] has proved that the answer is no under the stronger condition that the
cobordism is Stein. Theorem 1.2(2) may thus be interpreted as a small mea-
sure of support for the conjecture that Wand’s theorem extends to Liou-
ville cobordisms (cf. [47, Question 5]): that is, Theorem 1.2(2) provides a
mechanism for detecting tightness, but it cannot detect the (conjecturally
nonexistent) distinction between an overtwisted contact manifold and one
that is only Liouville cobordant to something overtwisted.
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We remark that the word “Liouville” definitely cannot be dropped from
the statements of any of the above theorems: for instance, any Lagrangian
torus in the standard symplectic R2n gives rise to a strong symplectic cobor-
dism from the unit cotangent bundle of the torus to (S2n−1, ξstd), but one can
easily find contact forms on the former that have no contractible Reeb orbits,
corresponding to metrics on the torus with no contractible geodesics. The
cobordism of course cannot be Liouville because, by a well-known theorem of
Gromov [20], the Lagrangian torus cannot be exact. Similarly, [13] and [46]
show that every contact 3-manifold with positive Giroux torsion is strongly
symplectically cobordant to something overtwisted, including e.g. the non-
fillable tight 3-tori, which admit contact forms without contractible orbits.

1.3. Applications

Here is a specific situation in which Theorem 1.1 can be used to rule out
the existence of exact symplectic cobordisms. Good candidates for mani-
folds that fail to satisfy the conclusion of the theorem are furnished by the
universally tight lens spaces L(p, q) for p 6= 1. Recall that L(p, q) is defined
as the quotient

L(p, q) = S3
/
Gp,q,

where Gp,q ⊂ U(2) denotes the cyclic group of matrices

(
e2πik/p 0

0 e2πikq/p

)

for k ∈ Zp, acting on the unit sphere S3 ⊂ C2 by unitary transformations.
This action preserves the standard contact form αstd = 1

2

∑2
j=1(xj dyj −

yj dxj) on S3, written here in coordinates (z1, z2) = (x1 + iy1, x2 + iy2), so
the standard contact structure ξstd on L(p, q) is defined via this quotient.

Proposition 1.9. For every relatively prime pair of integers p > q ≥ 1,
L(p, q) admits a nondegenerate contact form with only two simple closed
Reeb orbits, both of them nondegenerate and noncontractible.

Proof. We present (L(p, q), ξstd) as a quotient of the so-called irrational el-
lipsoid. Let αH := 1

Hαstd on S3, where H is the restriction to the unit sphere
S3 ⊂ C2 of the function

H(z1, z2) =
|z1|

2

a2
+

|z2|
2

b2

for some a, b > 0. The closed orbits for the Reeb flow on S3 determined by αH

are then in bijective correspondence with the closed orbits on the ellipsoid
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H−1(1) ⊂ C2 for the Hamiltonian flow of H on the standard symplectic C2.
In particular, if a/b is irrational, then the only simple closed orbits of this
flow are (up to parametrization) the embedded loops γ1, γ2 : S

1 → S3 ⊂ C2

defined by

γ1(t) = (e2πit, 0), γ2(t) = (0, e2πit)

for t ∈ S1 = R/Z, and moreover, these orbits and their multiple covers are
all nondegenerate. Now since αstd and H are both invariant under the action
of U(1)×U(1) ⊂ U(2), which contains Gp,q, αH descends to a well-defined
contact form on L(p, q), and this contact form is nondegenerate. But the
orbits γ1 and γ2 project to orbits in L(p, q) that are p-fold covered, so their
underlying simple orbits lift to the universal cover S3 → L(p, q) as non-closed
paths since p > 1, hence they are noncontractible. �

Corollary 1.10. For every pair of relatively prime integers p > q ≥ 1,
(L(p, q), ξstd) admits no exact cobordism to (S3, ξstd).

Remark 1.11. The Reeb flow on any universally tight L(p, q) admits a
contractible Reeb orbit since π1(L(p, q)) is torsion, so previously known cri-
teria for excluding such cobordisms do not apply.

While the lens space example is relatively easy to work with, the non-
degeneracy of a contact form is usually a rather difficult condition to check,
and for this reason one might sometimes want to have the following technical
enhancement of Theorems 1.1 and 1.2. It will be an immediate consequence
of our proofs, requiring only that one pay closer attention to the relationship
between periods of orbits and energies of holomorphic curves.

Theorem 1.12. Assume (M, ξ) satisfies the hypotheses of either Theo-
rem 1.1 or Theorem 1.2, and fix a contact form α0 for (M, ξ). There exists
a constant T > 0, dependent on α0, such that the following holds: suppose
α = fα0 is a contact form on (M, ξ) such that

1) f : M → (0,∞) satisfies f < T , and

2) All closed Reeb orbits for α with period less than T are nondegenerate.

Then the Reeb flow of α satisfies the conclusions of Theorems 1.1 or 1.2 re-
spectively, and the unknotted orbit can be assumed to have period less than T .

One could apply this in practice if e.g. α0 is Morse-Bott and admits no
unknotted Reeb orbits, as then one can define perturbations of α0 as in [2]
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whose orbits up to some arbitrarily large period are nondegenerate and still
knotted—the topology of orbits with large period may be harder to control,
but for Theorem 1.12 this does not matter.

Remark 1.13. We have chosen to adopt a mainly contact topological
perspective on the main theorems of this paper, but for other purposes
(e.g. quantitative Reeb dynamics, cf. [16, §3.23]), one could also state more
quantitatively precise versions of Theorem 1.12.

Note that no such enhancement is necessary for Theorem 1.3, which does
not require nondegeneracy, see Remark 1.15.

1.4. Outline of proofs, part 1: seed curves and compactness

All proofs of theorems in this paper follow a similar scheme, which in the
case of Theorems 1.1 and 1.3 can be described as follows. Suppose (W,dλ) is
a Liouville cobordism from (M, ξ) to a standard contact sphere (S2n−1, ξstd),
and let (W,dλ) denote the completion obtained by attaching cylindrical ends
in the standard way (see §2.3). Then the positive end of W can be assumed
to match the top half of the symplectization

(1.1)
(
R× S2n−1, d(erαstd)

)
,

where αstd is the standard contact form, defined by restricting the Liou-
ville form λstd :=

∑n
j=1(xj dyj − yj dxj) to the unit sphere. We will assume

also that the negative end matches ((−∞, 0]×M,d(erα)) where α is (after
a positive rescaling) an arbitrary nondegenerate contact form for (M, ξ).
(The nondegeneracy assumption was not included in Theorem 1.3, but this
assumption will be easy to remove in the final step, see Remark 1.15 below.)

The first step in the proof is then to choose a suitable almost complex
structure J on the symplectization (1.1) that admits a foliation by a (2n−
2)-dimensional family of J-holomorphic planes, so-called “seed curves,”
which are asymptotic to a fixed Reeb orbit γ for αstd that has the smallest
possible period. We will be able to verify explicitly that these planes are
Fredholm regular for the moduli problem with fixed asymptotic orbit, hence
the moduli space is cut out transversely, and moreover, there exist no other
curves in R× S2n−1 with a single positive end approaching γ. Once these
curves are understood, we can regard them as living in the cylindrical end
[0,∞)× S2n−1 ⊂ W , so after extending J to a compatible almost complex
structure on the rest of (W,dλ), they generate a nonempty moduli space
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M(J) of unparametrized J-holomorphic planes in W , all asymptotic to the
same simply covered Reeb orbit in the sphere, and this moduli space is a
smooth (2n− 2)-dimensional manifold for generic extensions of J since all
curves in M(J) are somewhere injective. Our main task is then to under-
stand the natural compactification M(J) of M(J), that is to say, the closure
of M(J) in the space of stable J-holomorphic buildings in the sense of [3].
Recall that a J-holomorphic building in a cobordism may have multiple
levels, including one main level which is a (possibly empty) curve in the
completed cobordism, and arbitrary finite numbers of upper levels living
in the symplectization of the convex boundary and lower levels living in
the symplectization of the concave boundary. The uniqueness of the seed
curves in the positive end implies the following:

Lemma 1.14. If u ∈ M(J) is a stable holomorphic building with a non-
trivial upper level, then it has exactly one upper level, which consists of one
of the seed curves in R× S2n−1, and all its other levels are empty.

The lemma means that the only way for a sequence of planes in M(J)
to “degenerate” with something nontrivial happening at the positive end is
if the planes simply escape into the positive end and become seed curves; in
particular, this cannot happen to any sequence of planes that have points
falling into the negative end. Theorem 1.3 can now be proved as follows.
Let M1(J) denote the smooth 2n-dimensional moduli space consisting of
curves in M(J) with the additional data of a marked point, hence there is
a well-defined evaluation map

ev : M1(J) → W.

Choose a smooth properly embedded 1-dimensional submanifold ℓ ⊂ W with
one end in [0,∞)× S2n−1 and the other in (−∞, 0]×M , and perturb it to
be transverse to the evaluation map. Then

Mℓ(J) := ev−1(ℓ)

is a smooth 1-dimensional manifold, and it has a unique connected compo-
nent M0

ℓ(J) ⊂ Mℓ(J) that contains seed curves in the positive end. This
component has a noncompact end consisting of a family of seed curves that
escape to +∞, thus it is manifestly noncompact and therefore diffeomorphic
to R. We claim now that M0

ℓ (J) must also contain curves with points that
descend arbitrarily far into the negative end. Indeed, the SFT compactness
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W
W

uk

S2n−1

u∞

M

ℓ ℓ

R×M

R×M

Figure 2: When holomorphic planes in an exact cobordism converge to a
holomorphic building with nontrivial lower levels, at least one of them must
include a plane.

theorem would otherwise imply that every sequence in M0
ℓ(J) has a subse-

quence convergent to either an element of M0
ℓ (J) or a holomorphic building

of the type described in Lemma 1.14. But the latter can only happen if the
sequence escapes through the neighbourhood of +∞ in which all curves are
seed curves. In particular, we obtain a contradiction by considering a non-
compact sequence escaping to the opposite end of M0

ℓ(J)
∼= R from the one

consisting of seed curves, and this proves the claim. It follows that one can
find a sequence uk ∈ Mℓ(J) of curves converging to a holomorphic building
u∞ ∈ M(J) with a nontrivial lower level (see Figure 2). Since the cobordism
is exact, every component curve in u∞ must have exactly one positive end,
and it follows that at least one of the curves in a lower level of u∞ is a
plane, whose asymptotic orbit is the contractible Reeb orbit promised by
Theorem 1.3.

Remark 1.15. To remove the nondegeneracy assumption from Thm. 1.3,
one can take advantage of the fact that due to the exactness of the cobor-
dism, the contractible orbit found in the above argument comes with an a
priori bound on its period. Then if α is a degenerate contact form on (M, ξ)
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approximated by a sequence αk of nondegenerate contact forms, the above
argument gives a sequence γk of contractible Reeb orbits with respect to
αk whose periods are uniformly bounded, so by Arzelà-Ascoli, these have
a subsequence convergent to a contractible Reeb orbit with respect to α.
Note that if the orbits γk are also unknotted, it is not so clear whether the
limiting orbit will also be unknotted, hence the need for the more technical
Theorem 1.12.

1.5. Outline of proofs, part 2: intersections

The argument described thus far is quite standard and, as mentioned earlier,
is largely attributable to Hofer [22] (though the use of the path ℓ ⊂ W to
define a 1-dimensional submanifold of the moduli space is borrowed from
Niederkrüger [38]). The arguments required for finding an orbit that is
not only contractible but also unknotted are significantly subtler, and here
we must make liberal use of Siefring’s intersection theory [41] in the low-
dimensional setting.

To explain the idea, we briefly recall the notion of nicely embedded
holomorphic curves, introduced by the second author in [43, 44]. The pre-
cise definition will be reviewed in §2.4.5, but in essence, a holomorphic curve
u : Σ̇ → W in a completed 4-dimensional symplectic cobordism W is nicely
embedded if it has the necessary intersection-theoretic properties to guaran-
tee that it does not intersect its neighbors in the moduli space. This condition
implies that the moduli space near u can be at most 2-dimensional, and in
the 2-dimensional case the curves near u form the leaves of a foliation on a
neighbourhood of u(Σ̇) in W . If W is a symplectization R×M or the image
of u is confined to a cylindrical end, then being nicely embedded has the
additional implication that u projects to an embedding into M , i.e. u can
be written as

u = (uR, uM ) : Σ̇ → R×M,

where the map uM : Σ̇ → M is also an embedding. It is easy to show that the
seed curves we find in the symplectization of (S3, ξstd) are nicely embedded,
and the homotopy invariance of the intersection theory then implies that
the same is true for all curves in M(J).

The fundamental principle behind the proof of Theorems 1.1 and 1.2
is then the notion that “nice curves degenerate nicely,” i.e. if a sequence
uk ∈ M(J) converges to a holomorphic building u∞ ∈ M(J), then we should
expect the component curves in levels of u∞ to be nicely embedded. This
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statement as such is false in full generality (see [44, Example 4.22 and Re-
mark 4.23] for counterexamples), but we will show that it is true in the
present situation. As a consequence, the plane we find in a lower level of u∞
has the form (uR, uM ) : C → R×M , where uM : C → M is an embedding
asymptotic to a contractible Reeb orbit.

There remains one complication: the fact that u : C → R×M is nicely
embedded does not guarantee that its asymptotic orbit must be simply cov-
ered, i.e. the image of uM : C → M might look like an immersed disk that
is embedded on the interior but multiply covered on its boundary. We will
show in fact that this can happen, but only in very specific ways, and to
prove it, we develop a “local adjunction formula” for holomorphic annuli
breaking along a Reeb orbit.

1.6. Local adjunction

We now briefly interrupt the outline of the proof to describe a tool of more
general applicability. To set the stage, suppose that αk → α∞ is a C∞-
convergent sequence of contact forms on a 3-manifold M , and Jk → J∞
is a corresponding sequence with each Jk belonging to the usual space (see
§2.1) of admissible translation-invariant almost complex structures on the
symplectization (R×M,d(erαk)). Assume then that

uk : ([−k, k]× S1, i) → (R×M,Jk)

is a sequence of pseudoholomorphic annuli which are converging in the sense
of SFT compactness to a broken J∞-holomorphic curve

uk → (u+∞|u−∞),

where u+∞ is the top level with a negative puncture, and u−∞ is the bottom
level with a positive puncture, both asymptotic to the same nondegenerate
Reeb orbit γ with covering multiplicitym(γ). It is natural to choose holomor-
phic cylindrical coordinates around these punctures and thus parametrize
the two levels in the form

u+∞ : ((−∞, 0]× S1, i) → (R×M,J∞),

u−∞ : ([0,∞)× S1, i) → (R×M,J∞),

so that the two half-cylinders together can be regarded as a broken holo-
morphic annulus arising as a limit of the finite (but increasingly long) holo-
morphic annuli uk; see Figure 3. This is intended as a local picture of the
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neighbourhood of a breaking orbit as a sequence of smooth finite energy
curves converges to a holomorphic building as in [3].

Recall from [40] that for any finite energy punctured holomorphic curve
that is not a multiple cover, sufficiently small neighbourhoods of each punc-
ture are always embedded, hence if u+∞ and u−∞ are not multiply covered then
we are free to assume without loss of generality that both are embedded.
This implies that each uk is also embedded near the boundary of [−k, k]× S1

for sufficiently large k, but if m(γ) > 1, then uk can have finitely many dou-
ble points and critical points that “disappear into the breaking orbit” in the
limit. See §2.4.5 for precise definitions of each of the quantities discussed
below. We let

δ(uk) ≥ 0

denote the algebraic count of double points and critical points of uk: this is
a nonnegative integer that equals zero if and only if uk is embedded. The
half-cylinders u±∞ are embedded by assumption, but if m(γ) > 1, then they
may have “hidden double points at infinity” in the sense of [41], i.e. double
points that must emerge from infinity under generic perturbations of the
curves. We denote the algebraic counts of these hidden double points by

δ∞(u±∞) ≥ 0;

they are nonnegative integers that vanish if and only if generic perturbations
of u±∞ remain embedded. We denote by

σ̄±(γ) ≥ 1

the so-called spectral covering numbers of γ as in [41]: these are covering
multiplicities of certain asymptotic eigenfunctions of γ, and are thus positive
integers that equal 1 if and only if those eigenfunctions are simply covered
(which is always the case e.g. if m(γ) = 1). For one last piece of notation,
we let

p(γ) ∈ {0, 1}

denote the parity of γ, i.e. its Conley-Zehnder index modulo 2. The result
we will prove in §4 can now be stated as follows.

Theorem 1.16 (local adjunction). In the setting described above, as-
sume uk → (u+∞|u−∞) is a sequence of holomorphic annuli in R×M converg-
ing to a broken pair of half-cylinders, where u+∞ and u−∞ are both embedded
and asymptotic to a nondegenerate Reeb orbit γ with covering multiplicity
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uk

u+∞

u−∞

γ

γ

Figure 3: A sequence of pseudoholomorphic annuli uk converging to a bro-
ken annulus consisting of embedded half-cylinders u±∞ asymptotic to a dou-
bly covered breaking orbit γ. In this case, uk can have double points that
disappear in the limit.

m(γ), parity p(γ) and spectral covering numbers σ̄±(γ). Then for all k suf-
ficiently large,

2δ(uk) = 2[δ∞(u+∞) + δ∞(u−∞)] + [σ̄+(γ)− 1]

+ [σ̄−(γ)− 1] + [m(γ)− 1] p(γ).

The usefulness of this theorem lies in the fact that every bracketed term
on the right hand side of the formula is known a priori to be nonnegative,
so if we also know that the annuli uk are embedded, then all these terms
must vanish. In that case, we will easily be able to deduce the following
consequence:

Corollary 1.17. In the setting of Theorem 1.16, if uk is embedded for
every k, then one of the following is true:

• γ is a simply covered orbit;
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• γ is a double cover of a simply covered orbit γ′ such that p(γ′) = 1
and p(γ) = 0, and both of the half-cylinders u±∞ have no hidden double
points at infinity.

1.7. Outline of proofs, conclusion

In the situation at hand, our degenerating curves are all embedded, so Corol-
lary 1.17 applies and we conclude that the breaking orbit is always either
simply covered or a double cover of a negative hyperbolic orbit, what is
known in the SFT literature (cf. [9]) as a bad orbit. In the first case we are
done, and in the second, we will show that degenerations of this form can
always be glued back together so that they are interpreted as interior points
of the compactified moduli space, and the moduli space must therefore have
additional degenerations besides this. In other words, breaking along bad or-
bits can happen, but it cannot be the only type of breaking that happens, so
there is still guaranteed to be some breaking along a simple orbit somewhere,
producing a nicely embedded curve asymptotic to an unknotted orbit. The
resulting constraints on the Conley-Zehnder index and self-linking number
of the orbit then follow by a straightforward and essentially standard topo-
logical computation.

The major differences between the above summary and the proof of
Theorem 1.2 are as follows. For the first statement in the theorem, the sym-
plectic cobordism W is taken to be symplectically trivial, i.e. its completion
has the form (R×M,dλ), where λ is a Liouville form matching erα± near
{±∞} ×M , and α± are two nondegenerate contact forms for (M, ξ), of
which α− is given but α+ is carefully chosen. The assumptions of the theo-
rem then allow us to choose α+ and a compatible almost complex structure
J+ near +∞ so that we find a smooth 1-dimensional moduli space of seed
curves. Since this moduli space is only 1- and not 2-dimensional, it does not
form a foliation, but the curves are still nicely embedded and the same prin-
ciples therefore apply: a variation on the same argument described above
leads to a nicely embedded plane asymptotic to a simple Reeb orbit for α−.

Here is an outline of the remainder of the paper. In §2, we clarify the
essential definitions and review the necessary facts about punctured holo-
morphic curves and their intersection theory in dimension four. The purpose
of §3 is then to specify the data at the positive ends of our symplectic cobor-
disms, construct the seed curves and prove that they are Fredholm regular
and nicely embedded. Theorem 1.16 and Corollary 1.17 on local adjunction
for breaking holomorphic annuli are proved in §4. Finally, §5 carries out
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the main compactness arguments, and §6 completes the proofs of the main
theorems.
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2. Preparation

The purpose of this section is to fix definitions and review some known
results that will be needed in the rest of the paper.

2.1. Contact manifolds and symplectic cobordisms

We begin by reviewing some basic definitions from contact geometry and the
precise way in which contact manifolds arise as hypersurfaces or boundary
components of symplectic manifolds.

Suppose (W,ω) is a 2n-dimensional symplectic manifold, and M ⊂ W is
a smooth oriented hypersurface. We say that M is convex if there exists a
Liouville vector field near M that is positively transverse to M : here a vector
field V is called Liouville if its flow dilates the symplectic form, meaning
LV ω = ω. This is equivalent to the condition that the dual 1-form λ :=
ω(V, ·) satisfies dλ = ω, and being positively transverse to M then means
that the restriction α := λ|TM satisfies

α ∧ (dα)n−1 > 0.

This makes α a (positive) contact form on M , and the induced (positive
and co-oriented) contact structure is the co-oriented hyperplane field ξ :=
kerα ⊂ TM . It follows from Gray’s stability theorem that if V is replaced
with any other Liouville vector field positively transverse to M , then the
induced contact structure is isotopic to ξ, hence the contact form can be
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regarded as an auxiliary choice, but the contact structure is canonical up to
isotopy.

Remark 2.1. In this paper, every contact structure is assumed to be
co-oriented and positive (with respect to a given orientation of the man-
ifold), and contact forms are always assumed compatible with the given
co-orientation.

Example 2.2. We denote by ξstd ⊂ TS2n−1 the standard contact struc-
ture on the sphere, which arises as the convex boundary of the standard
symplectic unit ball with a Liouville vector field pointing radially outward. In
coordinates (x1, y1, . . . , xn, yn) ∈ R2n, the standard contact form αstd is
the restriction to S2n−1 ⊂ R2n of the Liouville form 1

2

∑n
j=1(xj dyj − yj dxj).

Any choice of contact form α determines a Reeb vector field Rα on
M via the conditions

dα(Rα, ·) ≡ 0, α(Rα) ≡ 1.

If M is a convex hypersurface in a symplectic manifold (W,ω), then the
orbits of Rα are precisely the orbits on M of any Hamiltonian vector field
defined by a Hamiltonian function on (W,ω) with M as a regular level set;
moreover, convexity implies that a neighbourhood of M is foliated by other
convex hypersurfaces that have the same Reeb orbits up to parametrization.
See [14] for more on contact structures, and [29] for more on the convexity
condition in Hamiltonian dynamics.

Given two closed contact manifolds (M−, ξ−) and (M+, ξ+), a strong
symplectic cobordism from (M−, ξ−) to (M+, ξ+) is a compact symplec-
tic manifold (W,ω) whose boundary can be identified with −M− ⊔M+ such
that M− and M+ are both convex hypersurfaces and the contact structures
they inherit are isotopic to ξ− and ξ+ respectively. Note that the orientation
reversal for M− means that the Liouville vector field points inward at M−

(for this reason we sometimes call M− the concave boundary component),
whereas it points outward at M+. Additionally, (W,ω) is called a Liou-
ville (or exact symplectic) cobordism from (M−, ξ−) to (M+, ξ+) if the
transverse Liouville vector field defined near ∂W can be assumed to extend
to a global Liouville vector field. This is equivalent to requiring ω = dλ for
some 1-form λ that restricts to the boundary as contact forms α± := λ|TM±

for ξ±.
The symplectization of a contact manifold (M, ξ = kerα) is the open

symplectic manifold (R×M,d(erα)), where r denotes the coordinate on R.
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Its symplectic structure is independent of the choice of α up to isotopy, but
α determines a special class of compatible almost complex structures J (α)
on (R×M,d(erα)) such that J ∈ J (α) if and only if:

• J is R-invariant (i.e. invariant under the flow of ∂r);

• J∂r = Rα;

• J(ξ) = ξ;

• dα(·, J ·)|ξ is a bundle metric on ξ.

Given a symplectic cobordism (W,ω) from (M−, ξ−) to (M+, ξ+) with in-
duced contact forms α± at M±, the corresponding Liouville vector fields
defined near M+ and M− determine collar neighbourhoods (−ǫ, 0]×M+

and [0, ǫ)×M− respectively in which ω = d(erα±). One then defines the
symplectic completion

W = ((−∞, 0]×M−) ∪M−
W ∪M+

([0,∞)×M+)

by extending ω over the cylindrical ends as d(erα±). We shall denote by

J (W,ω, α+, α−)

the (nonempty and contractible) space of almost complex structures on W
that are ω-compatible on W and restrict to the cylindrical ends as elements
of J (α±). Almost complex structures of this type will be referred to simply
as admissible whenever the corresponding symplectic and contact data is
fixed.

2.2. Reeb orbits and the Conley-Zehnder index

Given a contact form α on a contact manifold (M, ξ) of dimension 2n− 1,
a closed Reeb orbit can be regarded as a smooth map

γ : S1 := R/Z → M

satisfying γ̇ = TRα(γ) for some T > 0, which is the orbit’s period. Indeed,
setting x(t) := γ(t/T ), such a map is equivalent to a path x : R → M that
satisfies ẋ = Rα(x) and x(t+ T ) = x(t) for all t. The number T need not
generally be the minimal period, hence γ may be a multiple cover γ(t) =
γ0(kt) of another closed Reeb orbit γ0 for some integer k ≥ 2; when this
is not the case, we say γ is simple, and the map γ : S1 → M is then an
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embedding. When γ is simple and dimM = 3, it makes sense to ask whether
γ is unknotted, meaning it is the boundary of an embedded disk, or more
explicitly there exists an embedding

u : D2 →֒ M

whose restriction to the boundary coincides with the Reeb orbit:

u|∂D2 = γ.

To every closed Reeb orbit one can associate an integer-valued invariant,
the Conley-Zehnder index, which depends on a trivialization of the contact
structure along the orbit. We will recall the definition of this invariant by
way of a theorem regarding asymptotic operators.

Fix J ∈ J (α) and suppose γ : S1 → M is a closed orbit of Rα with
period T . Given any symmetric connection ∇ on M , define Aγ : C∞(γ∗ξ) →
C∞(γ∗ξ) by

(2.1) Aγη = −J(∇tη − T∇ηRα).

This operator is well defined and independent of the choice of connection ∇
(see e.g. [51, §3.3]), and it is symmetric with respect to the inner product
on C∞(γ∗ξ) defined by

〈η, ζ〉 =

∫

S1

ωγ(t)

(
η(t), J(γ(t))ζ(t)

)
dt.

It also extends to an unbounded self-adjoint operator on L2(γ∗ξ) with do-
main W 1,2(γ∗ξ), referred to as the asymptotic operator associated to γ.
Its spectral properties have been described in [23].

Proposition 2.3 ([23]). With the notation above, let σ(Aγ) ⊂ R denote
the spectrum of Aγ, and for any λ ∈ σ(Aγ), denote the corresponding eigen-
space by Eλ. Then:

1) 0 ∈ σ(Aγ) if and only if γ is degenerate;

2) σ(Aγ) is a discrete subset;

3) For each λ ∈ σ(Aγ), 1 ≤ dimEλ ≤ 2(n− 1);

4) All nontrivial eigenfunctions of Aγ are everywhere nonzero.
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If dimM = 3, then the last statement implies that one can define winding
numbers windΦ(η) ∈ Z of nontrivial eigenfunctions η relative to any fixed
unitary trivialization Φ of γ∗ξ. The following statements then also hold:

5) If η, ζ ∈ Eλ are two nontrivial elements of the same eigenspace, then
windΦ(η) = windΦ(ζ), hence we can sensibly denote both by windΦ(λ).

6) The map σ(Aγ) → Z : λ 7→ windΦ(λ) is 2-to-1 (counting multiplicity
of eigenvalues) and increasing. Hence if two distinct eigenvalues have
the same winding, they are consecutive and their eigenspaces are 1-
dimensional.

It follows that one can speak of the largest negative eigenvalue and the
smallest positive eigenvalue associated to the asymptotic operator, and when
dimM = 3, their winding numbers relative to a chosen trivialization Φ are
denoted by

αΦ
−(γ), αΦ

+(γ) ∈ Z

respectively. Proposition 2.3 implies that these two numbers differ by either
0 or 1 if γ is nondegenerate, and in this case, the Conley-Zehnder index
relative to the trivialization Φ of γ∗ξ can be characterized (according to a
theorem in [23]) via the relation

(2.2) µΦ
CZ(γ) = αΦ

−(γ) + αΦ
+(γ) ∈ Z,

and its parity (which does not depend on Φ) by

(2.3) p(γ) = αΦ
+(γ)− αΦ

−(γ) ∈ {0, 1}.

As these formulas indicate, µΦ
CZ(γ) depends only on the asymptotic operator

and can thus sensibly be written as

µΦ
CZ(Aγ) = µΦ

CZ(γ).

With this in mind, (2.2) can also be used to compute Conley-Zehnder indices
in higher dimensions, via the relation

(2.4) µΦ1⊕···⊕Φm

CZ (A1 ⊕ · · · ⊕Am) = µΦ1

CZ(A1) + · · ·+ µΦm

CZ(Am),

which holds for any collection of asymptotic operators Aj with trivial kernels
on Hermitian line bundles trivialized by Φj for j = 1, . . . ,m. We will use this
to compute the indices of higher-dimensional seed curves in §3.1.
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While µΦ
CZ(γ) depends generally on the choice of trivialization Φ, in

certain situations one can make natural choices to remove this ambiguity.
If γ is nullhomologous and forms the boundary of an immersed surface D
in M , we define

µCZ(γ;D) ∈ Z

as µΦ
CZ(γ) with Φ required to admit an extension to a unitary trivialization of

ξ along D. The index in this case still depends on the choice of surface D, but
this ambiguity also disappears if c1(ξ) = 0, which is true e.g. on (S3, ξstd).

We require the following standard lemma on the behaviour of the index
for multiply covered orbits in dimension three. Let

γk : S1 → M : t 7→ γ(kt)

denote the k-fold cover of the orbit γ : S1 → M for k ∈ N, and note that
any trivialization Φ of γ∗ξ induces a trivialization Φk of (γk)∗ξ.

Lemma 2.4. Suppose dimM = 3, and that γ and all its multiple covers
are nondegenerate. Then for any unitary trivialization Φ of γ∗ξ,

(2.5) µΦk

CZ(γ
k) =

{
k · µΦ

CZ(γ) if γ is hyperbolic

2⌊kθ⌋+ 1 if γ is elliptic

for every k ∈ N, where in the elliptic case, θ ∈ R is an irrational number
determined by γ and Φ.

We will occasionally also need to deal with Reeb orbits γ that are degen-
erate but belong to Morse-Bott families, in which case the following defini-
tion will be convenient. If γ is degenerate, then 0 ∈ σ(Aγ) but one can find
ǫ > 0 such that (−ǫ, 0) ∩ σ(Aγ) = ∅. It follows that for any ǫ > 0 sufficiently
small, Aγ + ǫ is the asymptotic operator of a perturbed nondegenerate orbit,
whose index we will denote by

(2.6) µΦ
CZ(γ + ǫ) := µΦ

CZ(Aγ + ǫ).

This is independent of the choice as long as ǫ > 0 is sufficiently small, and
this perturbed Conley-Zehnder index gives a sharp lower bound on the
indices of possible nondegenerate perturbations of γ. The winding numbers
αΦ
±(γ + ǫ) ∈ Z are defined similarly after replacing Aγ by Aγ + ǫ, and they

are then related to µΦ
CZ(γ + ǫ) by the obvious analogue of (2.2). Notice that

αΦ
−(γ + ǫ) = αΦ

−(γ), but α
Φ
+(γ + ǫ) and αΦ

+(γ) may differ if γ is degenerate.
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Finally, here is a definition that will be needed for intersection theory
when dimM = 3. Observe that for any Reeb orbit γ0 and integers k ≥ 2,
every eigenfunction in the λ-eigenspace of Aγ0

has a k-fold cover that belongs
to the kλ-eigenspace of Aγk

0
. In the three-dimensional case, one can use

Proposition 2.3 to show that the covering multiplicity of an eigenfunction
depends only on its winding number, thus all elements of the same eigenspace
have the same covering multiplicity. The (positive and negative) spectral
covering numbers

σ̄±(γ) ∈ N

are defined as the covering multiplicity of the eigenspace that has wind-
ing αΦ

±(γ). Note that this is only interesting when γ = γk0 for some other
orbit γ0 and k ≥ 2; if γ is simple then σ̄±(γ) = 1 always.

2.3. Holomorphic curves in completed symplectic cobordisms

In this subsection, fix a 2n-dimensional symplectic cobordism (W,ω) with
completionW and admissible almost complex structure J ∈J (W,ω, α+, α−),
with the restrictions of J to the cylindrical ends denoted by J± ∈ J (α±).

2.3.1. Asymptotics. We will consider asymptotically cylindrical pseudo-
holomorphic curves u : (Σ̇, j) → (W,J), where

Σ̇ = Σ \ Γ

is the result of removing finitely many punctures Γ ⊂ Σ from a closed Rie-
mann surface (Σ, j). The set of punctures is partitioned into sets of positive
and negative punctures Γ+ and Γ− respectively, where z ∈ Γ± means that
one can find a biholomorphic identification of a punctured neighbourhood of
z with [0,∞)× S1 or (−∞, 0]× S1 respectively such that for |s| sufficiently
large, u in these coordinates takes the form

u(s, t) = exp(Ts,γ(t)) h(s, t) ∈ [0,∞)×M+ or (−∞, 0]×M−

for some closed Reeb orbit γ : S1 → M± with period T > 0, where the ex-
ponential map is defined with respect to any choice of translation-invariant
metric on the cylindrical ends, and h(s, t) is a vector field along the trivial
cylinder which satisfies |h(s, t)| → 0 as s → ±∞. We say in this case that u
is (positively or negatively) asymptotic to γ at z, and h(s, t) is called the
asymptotic representative of u at z. The asymptotic behaviour of h(s, t)
is described by a formula proved in [24, 25, 34, 40]: namely if the orbit γ
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is nondegenerate or Morse-Bott, then for |s| sufficiently large, h is either
identically zero or satisfies

(2.7) h(s, t) = eλs(e1(t) + r(s, t)),

where r(s, t) → 0 uniformly in all derivatives as s → ±∞, λ ∈ σ(Aγ) is an
eigenvalue of the asymptotic operator of γ with ±λ < 0, and e1 ∈ C∞(γ∗ξ±)
is a nontrivial element of the corresponding eigenspace.

2.3.2. Moduli spaces and compactness. It is a standard fact that ev-
ery asymptotically cylindrical J-holomorphic curve u : (Σ̇, j) → (W,J) ei-
ther is somewhere injective or is a multiple cover of a somewhere injective
asymptotically cylindrical curve, and moreover, the set of injective points
of a somewhere injective curve is open and dense. A complete proof of
this statement may be found in [37], using asymptotic results of Siefring
[40]. Recall that z ∈ Σ̇ is called an injective point of u if u−1(u(z)) = {z}
and du(z) 6= 0, and we call u a k-fold multiple cover of another curve
v : (Σ̇′ = Σ′ \ Γ′, j′) → (W,J) if

u = v ◦ φ

for some holomorphic map φ : (Σ, j) → (Σ′, j′) of degree k.
Fix finite ordered tuples of Reeb orbits γ

+ = (γ+1 , . . . , γ
+
k+
) and γ

− =

(γ−1 , . . . , γ
−
k−
) in M+ and M− respectively (the case k± = 0 is allowed), as-

suming that all of them are either nondegenerate or belong to Morse-Bott
families. For an integer m ≥ 0, the moduli space

Mm(J,γ+,γ−)

of unparametrized J-holomorphic spheres asymptotic to γ
+ and

γ
− with m marked points is defined as the set of equivalence classes of

tuples (Σ, j,Γ+,Γ−, u, (ζ1, . . . , ζm)) where (Σ, j) is a closed Riemann surface
of genus zero, Γ+,Γ− ⊂ Σ are disjoint finite sets, each equipped with an or-
dering, the marked points ζ1, . . . , ζm ∈ Σ̇ := Σ \ (Γ+ ∪ Γ−) are all distinct,
and

u : (Σ̇, j) → (W,J)

is an asymptotically cylindrical J-holomorphic curve with positive punctures
Γ+ and negative punctures Γ−, such that u is asymptotic at the ith punc-
ture in Γ± to γ±i for i = 1, . . . , k±. Two such tuples are considered equivalent
if one can be written as a reparametrization of the other via a biholomor-
phic diffeomorphism of their domains that maps marked points to marked
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points and punctures to punctures, with signs and orderings preserved. The
topology of Mm(J,γ+,γ−) can be characterized by saying that a sequence
converges if it has representatives with a fixed domain Σ and fixed sets of
punctures and marked points such that the conformal structures converge
in C∞(Σ) while the maps to W converge in C∞

loc(Σ̇) and also in C0 up to in-
finity (with respect to translation-invariant metrics on the cylindrical ends).
We shall often abuse notation by referring to the entire equivalence class of
tuples [(Σ, j,Γ+,Γ−, u, (ζ1, . . . , ζm))] forming an element of Mm(J,γ+,γ−)
simply as u. In this paper we will only consider the cases m = 0, 1, abbrevi-
ating the former by

M(J,γ+,γ−) := M0(J,γ
+,γ−).

For m > 0, the evaluation map

ev : Mm(J,γ+,γ−) → W
m

[(Σ, j,Γ+,Γ−, u, (ζ1, . . . , ζm))] 7→ (u(ζ1), . . . , u(ζm))

is well defined and continuous by construction.
Recall that neighbourhoods in Mm(J,γ+,γ−) can be described as zero-

sets of smooth Fredholm sections in suitable Banach space bundles (see
e.g. [44]). A curve u is called Fredholm regular whenever it forms a trans-
verse intersection of such a Fredholm section with the zero-section. The
virtual dimension of Mm(J,γ+,γ−) at u is given by the Fredholm index
of the linearized section at u minus the dimension of the group of automor-
phisms of the domain, and in the case m = 0 is also called the index of u.
If the orbits are all nondegenerate, it is given by the formula

ind(u) = (n− 3)χ(Σ̇) + 2cΦ1 (u
∗TW )(2.8)

+

k+∑

i=1

µΦ
CZ(γ

+
i )−

k−∑

i=1

µΦ
CZ(γ

−
i ).

Here Φ is an arbitrary choice of unitary trivializations of ξ± along each of the
asymptotic orbits, which naturally induce asymptotic trivializations of the
complex vector bundle u∗TW → Σ̇, and cΦ1 (u

∗TW ) ∈ Z then denotes the
relative first Chern number of u∗TW with respect to these asymptotic
trivializations. This term ensures that the total expression is independent
of the choice Φ. We will also need a special case of the index formula under
Morse-Bott assumptions: if all positive asymptotic orbits are Morse-Bott
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(but possibly degenerate) and all negative orbits are nondegenerate, then

ind(u) = (n− 3)χ(Σ̇) + 2cΦ1 (u
∗TW )(2.9)

+

k+∑

i=1

µΦ
CZ(γ

+
i + ǫ)−

k−∑

i=1

µ,
CZ(γ

−
i )

where ǫ > 0 is assumed sufficiently small (see (2.6)). Note that this is the
virtual dimension of the moduli space of curves near u with fixed asymptotic
orbits, i.e. the orbits are not allowed to move continuously in their respective
Morse-Bott families. The index without this constraint would be larger; see
[44] for an explanation of (2.9) and the constrained/unconstrained distinc-
tion. Adding a marked point generally increases the virtual dimension by 2,
so Mm(J,γ+,γ−) has virtual dimension ind(u) + 2m on any component
that includes the curve u ∈ M(J,γ+,γ−).

A standard application of the implicit function theorem implies that
the open subset consisting of Fredholm regular curves in Mm(J,γ+,γ−)
admits the structure of a smooth finite-dimensional orbifold whose dimen-
sion locally equals its virtual dimension, and it is a manifold near any curve
that is somewhere injective. Moreover, a standard argument via the Sard-
Smale theorem (see [32] or [49]) shows that after perturbing J generically in
J (W,ω, α+, α−) on some open subset U ⊂ W with compact closure, one can
assume that all somewhere injective curves passing through U are Fredholm
regular. Similarly, Dragnev [7] (see also [48]) has shown that on a symplecti-
zation (R×M,d(erα)), generic perturbations within J (α±) suffice to make
all somewhere injective curves regular, and this result can also be applied
to any curves in the cobordism W that are contained in a cylindrical end.

If the Reeb flows on M+ and M− are both globally nondegenerate or
Morse-Bott, then Mm(J,γ+,γ−) has a natural compactification

Mm(J,γ+,γ−)

defined in [3], consisting of stable holomorphic buildings of arithmetic
genus zero with m marked points. An example of a holomorphic building
(with higher arithmetic genus) is shown in Figure 4. We shall write holo-
morphic buildings using the notation

(v+N+
| · · · |v+1 |v0|v

−
1 | · · · |v

−
N−

),
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where N+, N− ≥ 0 are integers, v±1 , . . . , v
±
N±

are each (possibly disconnected
and/or nodal) J±-holomorphic curves in the symplectizations R×M±, form-
ing the upper and lower levels respectively, and v0 is a (possibly discon-
nected and/or nodal) J-holomorphic curve in W , the main level. Note that
by convention, the main level is allowed to be empty (i.e. v0 is a curve with
domain the empty set) if N+ or N− is nonzero. Each upper or level is de-
fined only up to R-translation, and the same is true of all levels when W
is a symplectization, in which case there is no distinguished “main” level
or distinction between “upper” and “lower” levels. The evaluation map ex-
tends continuously over Mm(J,γ+,γ−) if we also compactify W by adding
{±∞} ×M± to the top and bottom of the cylindrical ends, i.e. marked
points in upper or lower levels are mapped to {∞} ×M+ or {−∞} ×M−

respectively.
Our notation for buildings is convenient but suppresses an additional de-

tail that will sometimes be quite important: the data also includes a one-to-
one corresondence between the positive punctures of each level (other than
the topmost) and the negative punctures of the level above it, such that cor-
responding punctures have matching asymptotic orbits, the so-called break-
ing orbits. Additionally, each pair of corresponding punctures is equipped
with a choice of a rotation angle for gluing the corresponding positive and
negative ends along the breaking orbit—this choice is unique if the orbit
is simple, but in general there are m ∈ N distinct choices if the orbit has
covering multiplicity m. All of this data together is called a decoration of
the building. Different choices of decoration often produce buildings that
are biholomorphically inequivalent to each other and thus represent distinct
elements of Mm(J,γ+,γ−).

Whenever (W,ω) is a Liouville cobordism (and in particular if W is a
symplectization), Stokes’ theorem prevents the existence of curves with no
positive ends, sometimes referred to as holomorphic caps. The following
standard result is then immediate from the definition of convergence in [3].

Proposition 2.5. Suppose W is either a symplectization or the comple-
tion of a Liouville cobordism, and uk ∈ Mm(J, γ, ∅) is a sequence of J-
holomorphic planes converging to a holomorphic building. Then the limiting
building has the following properties:

• Each connected component of each level is a punctured sphere with
precisely one positive puncture.

• The lowest level has no negative punctures (so it is a disjoint union of
planes).
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M−

M+

WW

R×M+

R×M−

R×M−

R×M−

v0

v−1

v−2

v−3

v+1

γ+1

γ+1

γ−1

γ−1

γ−2

γ−2

uk

Figure 4: The picture shows the degeneration of a sequence of punctured
curves of genus 2 into a building with a main level, one upper level and three
lower levels. We label the building as (v+1 |v0|v

−
1 |v

−
2 |v

−
3 ), where each v±i is in

general a disconnected nodal curve in a single level. The arithmetic genus of
the building is still 2, and the levels match along their respective asymptotic
orbits.

• The top level is connected.

• There are no nodes.

We shall refer to the components without negative ends in the above
lemma as capping planes; they are not to be confused with “holomorphic
caps,” which have only negative ends.

The converse of compactness is gluing, as discussed e.g. in [36, Chap-
ter 7]. We will only need the following special case.

Proposition 2.6. Assume γ∞ is a Morse-Bott Reeb orbit in M+, γ is a
nondegenerate orbit in M−, m ≥ 0 is an integer, and (v0|v

−
1 ) ∈ Mm(J, γ∞, ∅)
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is a (decorated) stable J-holomorphic building such that v0 ∈ Mm(J, γ∞, γ)
and v−1 ∈ M(J−, γ, ∅)/R are both somewhere injective and Fredholm regular.
Then there exist neighborhoods

v0 ∈ U0 ⊂ Mm(J, γ∞, γ)

v−1 ∈ U− ⊂ M(J−, γ, ∅)/R

and a smooth embedding

Ψ : [0,∞)× U0 × U− →֒ Mm(J, γ∞, ∅)

such that for any sequences [0,∞) ∋ rk → +∞, uk → u∞ ∈ U0 and u−k →
u−∞ ∈ U−,

Ψ(rk, uk, u
−
k ) → (u∞|u−∞) ∈ Mm(J, γ∞, ∅)

in the SFT topology. Moreover, every smooth curve in Mm(J, γ∞, ∅) suffi-
ciently close to (v0|v

−
1 ) in the SFT topology is in the image of Ψ.

Remark 2.7. The notation for buildings used in Proposition 2.6 implicitly
assumes that if multiple buildings can be constructed out of u∞ and u−∞ via
different choices of decoration, then (u∞|u−∞) is the unique choice that is
close to (v0|v

−
1 ) in the SFT topology.

2.4. The low-dimensional case

We now specialize to the case where the cobordism (W,ω) is 4-dimensional,
so all contact manifolds under consideration will be 3-dimensional.

2.4.1. Indices of covers. We begin with a pair of convenient numerical
observations. The first is borrowed (along with its proof) from [30].

Proposition 2.8. Suppose J ∈J (α) for a contact 3-manifold (M, ξ=kerα),
and u : (Σ̇, j) → (R×M,J) is a J-holomorphic branched cover of a triv-
ial cylinder over a Reeb orbit whose covers are all nondegenerate. Then
ind(u) ≥ 0, and equality can hold only when the cover is unbranched or the
orbit is elliptic.

Proof. If the underlying orbit γ is hyperbolic, then the index formula gives
ind(u) = −χ(Σ̇) ≥ 0 due to Lemma 2.4, which is an equality if and only if
Σ̇ is the cylinder, in which case the Riemann-Hurwitz formula implies that
the cover is unbranched. If the orbit is instead elliptic, we can make our
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lives slightly easier with the observation that u has the same index as that
of some holomorphic building whose connected components are all thrice-
punctured spheres that are also branched covers of the same trivial cylinder.
It therefore suffices to prove that the inequality holds for thrice-punctured
spheres. If for instance u has two positive punctures at γk and γℓ and a
negative puncture at γk+ℓ, then Lemma 2.4 gives

ind(u) = −χ(Σ̇) + (2⌊kθ⌋+ 1) + (2⌊ℓθ⌋+ 1)− (2⌊(k + ℓ)θ⌋+ 1) ,

where χ(Σ̇) = −1, and the index is thus nonnegative due to the relation
⌊a+ b⌋ ≤ ⌊a⌋+ ⌊b⌋+ 1. In the inverse case with one positive puncture and
two negative, we get the same result using ⌊a⌋+ ⌊b⌋ ≤ ⌊a+ b⌋. �

Proposition 2.9. Suppose dimW = 4 and u = v ◦ φ : (Σ̇, j) → (W,J) is
a k-fold cover of a somewhere injective J-holomorphic curve v : (Σ̇′, j′) →
(W,J) whose asymptotic orbits are all nondegenerate and hyperbolic. Then

ind(u) ≥ k ind(v),

with equality if and only if the cover φ : (Σ̇, j) → (Σ̇′, j′) has no branch points
in the punctured surface Σ̇.

Proof. This is a direct consequence of the index formula (2.8) together with
Lemma 2.4 and the Riemann-Hurwitz formula Z(dφ) = −χ(Σ̇) + kχ(Σ̇′),
where Z(dφ) ≥ 0 denotes the algebraic count of zeroes of the holomorphic
section dφ ∈ Γ(HomC(T Σ̇, φ

∗T Σ̇′)), and thus vanishes if and only if the cover
is unbranched. �

2.4.2. Asymptotic defect. Suppose u : Σ̇ → W is asymptotic at z ∈ Γ±

to a T -periodic orbit γ : S1 → M± and has an asymptotic representative
h(s, t) at this puncture that is not identically zero. Then the asymptotic
formula (2.7) provides a nonzero eigenfunction e1 ∈ C∞(γ∗ξ±), and given a
trivialization Φ of γ∗ξ±, one can define

windΦξ (u; z) := windΦ(e1) ∈ Z.

If z ∈ Γ+, then αΦ
−(γ) is the winding of the greatest negative eigenvalue of

Aγ , thus wind
Φ
ξ (u; z) ≤ αΦ

−(γ), and similarly, windΦξ (u; z) ≥ αΦ
+(γ) if z ∈ Γ−.

The difference αΦ
−(γ)− windΦξ (u; z) or windΦξ (u; z)− αΦ

+(γ) for a positive
or negative puncture respectively is denoted d0(u; z) ≥ 0 and called the
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asymptotic defect of u at z ∈ Γ. Notice that it does not depend on the
trivialization. The total asymptotic defect of u is then a nonnegative integer

d0(u) =
∑

z∈Γ

d0(u; z).

This is well defined for any curve u that is not identical to a trivial cylinder
in some neighbourhood of any of its punctures; in particular, if W is a
symplectization (R×M,d(erα)) with J ∈ J (α), then d0(u) is well defined
for every curve other than covers of trivial cylinders.

2.4.3. The normal Chern number and windπ(u). The normal
Chern number of a curve u ∈ M(J,γ+,γ−) with all asymptotic orbits
nondegenerate is defined by

cN (u) = cΦ1 (u
∗TW )− χ(Σ̇) +

k+∑

i=1

αΦ
−(γ

+
i )−

k−∑

i=1

αΦ
+(γ

−
i ),

where Φ is again an arbitrary choice of unitary trivializations of ξ± along
the asymptotic orbits, and the sum does not depend on this choice. The
index formula and relations between Conley-Zehnder indices and winding
numbers imply

(2.10) 2cN (u) = ind(u)− 2 + 2g +#Γ0,

where g ≥ 0 is the genus of the domain (zero in our case) and Γ0 ⊂ Γ denotes
the set of punctures of u that have even parity. In the Morse-Bott setting of
(2.9), the definition of cN (u) given above remains valid, and so does (2.10)
after interpreting Γ0 as the set of punctures for which the perturbed Conley-
Zehnder index (see (2.6)) is even. One can interpret cN (u) as “c1 of the
normal bundle” when u is immersed; in particular, cN (u) then predicts the
number of zeroes for a generic section in the kernel of the linearized normal
deformation operator at u, see e.g. [44].

For curves in the symplectization R×M of a contact manifold (M, ξ =
kerα), there is a further invariant related to cN (u) and the asymptotic defect.
Let π : TM → ξ denote the fibrewise linear projection along the Reeb vec-
tor field. Then the nonlinear Cauchy-Riemann equation for u : Σ̇ → R×M
implies that π ◦ du ∈ C∞(HomC(T Σ̇, u

∗ξ)) locally satisfies a linear Cauchy-
Riemann type equation, so zeroes of π ◦ du are isolated and positive by the
similarity principle unless π ◦ du ≡ 0. The latter is the case if and only if u



✐

✐

“2-Wendl” — 2020/3/21 — 1:21 — page 88 — #32
✐

✐

✐

✐

✐

✐

88 A. Cioba and C. Wendl

is a cover of a trivial cylinder, and otherwise, we define

windπ(u) ≥ 0

to be the algebraic count of zeroes of π ◦ du. The asymptotic formula (2.7)
implies that zeroes of π ◦ du cannot accumulate near infinity, so windπ(u) is
always finite. It equals 0 if and only if u = (uR, uM ) : Σ̇ → R×M has the
property that uM : Σ̇ → M is an immersion transverse to the Reeb vector
field. From [23, Prop. 5.6], we have

(2.11) cN (u) = windπ(u) + d0(u).

In particular, this implies

(2.12) cN (u) ≥ d0(u) ≥ 0 and cN (u) ≥ windπ(u) ≥ 0

for any curve that is not a cover of a trivial cylinder, so cN (u) = 0 gives a
homotopy-invariant sufficient condition for both the asymptotic defect and
windπ(u) to vanish.

2.4.4. Self-linking numbers. Let γ be a nullhomologous transverse knot
in a closed contact 3-manifold (M, ξ), let Σ ⊂ M be a Seifert surface and X
a framing of γ, i.e. a non-zero section of γ∗ξ. The self-linking number of
γ with respect to X is then the algebraic count of intersections between Σ
and a generic push-off of γ in the direction of X:

sl(γ,X) = (expγ X) · Σ ∈ Z.

Note that this depends on X up to homotopy, but not on Σ, as a different
choice of Seifert surface changes sl(γ,X) by the homological intersection
number of γ with a closed 2-cycle, which vanishes since γ is nullhomologous.
Replacing X with another framing changes sl(γ,X) by the relative winding
of the two framings,

(2.13) sl(γ,X1)− sl(γ,X2) = wind(X1, X2),

where wind(X1, X2) ∈ Z denotes the winding number of the sectionX1 along
γ in the trivialization induced by X2. Note that the Seifert surface deter-
mines a canonical homotopy class of framings XΣ via the condition that XΣ

should extend to a trivialization of ξ along Σ, so with this choice we shall
denote

sl(γ; Σ) := sl(γ,XΣ).

This depends on Σ since XΣ does, but the dependence vanishes if c1(ξ) = 0.
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With this definition in mind, suppose γ is an unknotted Reeb orbit and
u = (uR, uM ) : C → R×M is a J-holomorphic plane asymptotic to γ for
which uM : C → M is embedded. The closure of uM (C) is then a Seifert
disk D ⊂ M for γ, and we claim

(2.14) sl(γ;D) = wind(XD, e1(u)),

where XD is the canonical framing determined by D as discussed above,
and e1(u) is the nonzero eigenfunction appearing in the asymptotic formula
(2.7) for the approach of u to γ. Indeed, e1(u) gives the direction of the
approach of u to γ and is thus homotopic to the Seifert framing of γ, implying
sl(γ, e1(u)) = 0, so

sl(γ;D) = sl(γ,XD) = sl(γ, e1(u)) + wind(XD, e1(u)) = wind(XD, e1(u)).

2.4.5. Siefring intersection theory. We recall here some useful prop-
erties of the intersection product on classes of J-holomorphic curves in al-
most complex manifolds with cylindrical ends. In [41], Siefring associates to
any pair of (not necessarily J-holomorphic) asymptotically cylindrical maps
u1 : Σ̇1 → W and u2 : Σ̇2 → W with nondegenerate or Morse-Bott asymp-
totic orbits an integer

u1 ∗ u2 ∈ Z,

which matches the homological intersection number [u1] · [u2] if both curves
have no punctures, and in general has the following properties. First, the
pairing is symmetric

u1 ∗ u2 = u2 ∗ u1,

and it is invariant under homotopies of asymptotically cylindrical maps with
fixed asymptotic orbits; in fact, u1 ∗ u2 depends only on the asymptotic
orbits of u1 and u2 and their relative homology classes. If both maps are J-
holomorphic and their images are non-identical, then the relative asymptotic
results of [40] imply that all intersections between u1 and u2 are isolated and
contained in a compact subset, so by positivity of intersections, the algebraic
count of intersections u1 · u2 is finite and satisfies

u1 · u2 ≥
∣∣∣
{
(z1, z2) ∈ Σ̇1 × Σ̇2

∣∣∣ u1(z1) = u2(z2)
}∣∣∣ ,

with equality if and only if all intersections are transverse. This is then
related to u1 ∗ u2 by

u1 ∗ u2 ≥ u1 · u2,
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so the condition u1 ∗ u2 = 0 gives a homotopy-invariant sufficient condition
for u1 and u2 to be disjoint. The following computation is an easy conse-
quence of the definition (cf. [41, Prop. 5.6]):

Proposition 2.10. Suppose J ∈ J (α) for a contact 3-manifold (M, ξ =
kerα), and u and v are both J-holomorphic covers of the same trivial cylin-
der in (R×M,J) over a nondegenerate Reeb orbit with even parity. Then
u ∗ v = 0.

The intersection product also has a natural extension to holomorphic
buildings such that homotopy invariance holds for all continuous deforma-
tions in the SFT topology. We will need a particular result about this ex-
tension:

Proposition 2.11. If v = (v+N+
| · · · |v+1 |v0|v

−
1 | · · · |v

−
N−

) is a holomorphic
building in a 4-dimensional completed symplectic cobordism, we have

v ∗ v ≥

N+∑

j=1

v+j ∗ v+j + v0 ∗ v0 +

N−∑

j=1

v−j ∗ v−j +
∑

γ

m(γ)p(γ),

where the last sum is over all orbits γ that occur as breaking orbits in v,
with covering multiplicities denoted by m(γ) ∈ N.

Proof. The existence of a formula

v ∗ v =

N+∑

j=1

v+j ∗ v+j + v0 ∗ v0 +

N−∑

j=1

v−j ∗ v−j +Q

with some error term Q ≥ 0 is stated in [41, Prop. 4.3(4)], and our lower
bound on the error term can be extracted from the proof of that result. The
point is the following. Using notation from [50], the pairing u ∗ w can be
written in general as

u ∗ w = u •Φ w −
∑

(z,ζ)

ΩΦ
+(γz, γζ)−

∑

(z,ζ)

ΩΦ
−(γz, γζ),

where u •Φ w ∈ Z denotes the relative intersection number of u and w with
respect to an arbitrarily chosen asymptotic trivialization Φ, the two sums
are over all pairs of positive resp. negative punctures z of u and ζ of w, γz
and γζ are the corresponding asymptotic orbits, and ΩΦ

±(γz, γζ) are integers
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determined by the winding numbers αΦ
∓(γz) and αΦ

∓(γζ) (see [50, §4.2] for a
precise formula). The same formula for u ∗ w is valid if u and w are buildings,
and the relative intersection numbers are additive across levels. The differ-
ence between v ∗ v and the sum of the invariant self-intersection numbers of
its levels is therefore a sum of terms of the form ΩΦ

+(γ, γ
′) + ΩΦ

−(γ, γ
′) where

γ and γ′ are pairs of breaking orbits of v. All of these terms are nonnega-
tive, and in particular whenever γm is a breaking orbit (with γ denoting the
underlying simply covered orbit), they include

ΩΦ
+(γ

m, γm) + ΩΦ
−(γ

m, γm) = mαΦ
+(γ

m)−mαΦ
−(γ

m) = mp(γm).
�

If u : Σ̇ → W is somewhere injective and J-holomorphic, then the rela-
tive asymptotic results of [40] also imply that it is embedded outside a com-
pact subset, so there is a finite singularity count δ(u) ∈ Z, defined as the alge-
braic count of double points {(z1, z2) ∈ Σ̇× Σ̇ | u(z1) = u(z2) and z1 6= z2}
after perturbing u in a compact subset to make it immersed. Standard local
results due to Micallef and White [33] imply that δ(u) ≥ 0 with equality if
and only if u is embedded, but in contrast to the closed case, δ(u) is not
generally homotopy invariant. Instead, it satisfies the generalized adjunction
formula

(2.15) u ∗ u = 2δtotal(u) + cN (u) + [σ̄(u)−#Γ] ,

where

δtotal(u) = δ(u) + δ∞(u)

includes an additional contribution δ∞(u) ≥ 0 counting “hidden” double
points that can emerge from infinity under generic perturbations, and the
term σ̄(u) ∈ N is a sum of the spectral covering numbers (see §2.2) of all
asymptotic orbits, hence σ̄(u)−#Γ is also nonnegative. The formula im-
plies that δtotal(u) is homotopy invariant, and since δ∞(u) ≥ 0, the condi-
tion δtotal(u) = 0 then suffices to ensure that all somewhere injective curves
homotopic to u are embedded. The converse is false in general: a curve can
still be embedded with δtotal(u) > 0 due to hidden intersections, which can
emerge from infinity under perturbations—but this can only happen if u
has at least one multiply covered asymptotic orbit or at least two punctures
of the same sign that approach covers of the same orbit, thus giving the
following useful criterion:

Lemma 2.12. If u is a somewhere injective curve whose asymptotic orbits
are all distinct and simple, then δ∞(u) = σ̄(u)−#Γ = 0.
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The following is a minor improvement on a definition originating in
[43, 44].

Definition 2.13. An asymptotically cylindrical J-holomorphic curve u :
Σ̇ → W is called nicely embedded if it is somewhere injective and satisfies
u ∗ u ≤ 0 and δtotal(u) = 0.

It is clear from the above discussion that if u is nicely embedded, then
so is any other somewhere injective curve u′ in the same component of
the moduli space, and moreover, u and u′ must then be disjoint. Nicely
embedded curves arise naturally in the study of finite energy foliations,
initiated in [28]. Their most important properties for our purposes are the
following.

Lemma 2.14. If u ∈ M(J,γ+,γ−) is nicely embedded then cN (u) ≤ 0 and
ind(u) ≤ 2.

Proof. The first inequality follows directly from the definition and the ad-
junction formula (2.15), and this implies the second via (2.10). �

Proposition 2.15. If u ∈ M(J,γ+,γ−) is a nicely embedded curve with
ind(u) ∈ {1, 2}, then u is Fredholm regular.

Proof. Since u is immersed by assumption and, by Lemma 2.14, satisfies
cN (u) ≤ 0, it satisfies the criterion ind(u) > cN (u) for automatic transver-
sality given in [44]. �

Proposition 2.16. Suppose Mnice ⊂ M1(J,γ
+,γ−) is an open and closed

subset of the space of nicely embedded index 2 curves, equipped with the
extra data of a marked point, such that all curves in Mnice represent the
same relative homology class. Then Mnice is a smooth 4-manifold, and the
evaluation map

ev : Mnice → W

is an embedding onto an open subset of W .

Proof. This is a mild generalization of a similar result proved in [27] for
planes with simply covered asymptotic orbits. We know every u ∈ Mnice

is Fredholm regular by Proposition 2.15, and cN (u) = 0 due to (2.10) and
Lemma 2.14. It follows thatMnice is smooth and has dimension ind(u) + 2 =
4, and since u ∗ u ≤ 0 (which becomes u ∗ u = 0 when cN (u) = 0), invari-
ance of the intersection number implies that no two curves in Mnice can
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intersect, hence ev : Mnice → W is injective. To see that it is also an immer-
sion, observe that for a given curve u0 : Σ̇ → W and marked point ζ0 ∈ Σ̇
with the pair (u0, ζ0) representing an element of Mnice, the tangent space
T(u0,ζ0)M

nice is naturally identified with the direct sum of Tζ0Σ̇ and the ker-
nel of the linearized Cauchy-Riemann operator acting on the normal bundle
of u0. The condition cN (u0) = 0 then implies via [44, Equation (2.7)] that
sections in this kernel are nowhere zero, hence the derivative of the evalua-
tion map ev(u, ζ) = u(ζ) at (u0, ζ0) is injective. �

Proposition 2.17. Suppose W is a symplectization (R×M,d(erα)) and
J ∈ J (α). Then for any nicely embedded J-holomorphic curve u = (uR, uM ) :
Σ̇ → R×M that is not a trivial cylinder, the map uM : Σ̇ → M is embedded.

Proof. Since cN (u) ≤ 0 by Lemma 2.14, windπ(u) = 0 due to (2.11) and
uM is therefore immersed and transverse to the Reeb vector field. To show
that uM is injective, observe that any double point uM (z1) = uM (z2) can be
interpreted as an intersection of u with one of its R-translations uc := (uR +
c, uM ) for some c ∈ R, and c must be nonzero since δtotal(u) = 0 implies that
u itself is embedded. By homotopy invariance of the intersection product,
u ∗ u = u ∗ uc ≤ 0, so such an intersection is possible only if u and uc are
the same curve up to parametrization. But this would imply that u is also
equivalent to ukc for every k ∈ N, so taking k → ∞, we conclude from the
asymptotically cylindrical behaviour of u that its image lies in an arbitrarily
small neighbourhood of a collection of trivial cylinders. This can only happen
if u itself is a trivial cylinder, so we have a contradiction. �

Lemma 2.18. Under the assumptions of Prop. 2.17, suppose u = (uR, uM ) :
C → R×M is a nicely embedded plane asymptotic to a simply covered or-
bit γ and ind(u) ∈ {1, 2}. Then if D ⊂ M denotes the Seifert surface with
interior uM (C), we have

µCZ(γ;D) =

{
2 if ind(u) = 1,

3 if ind(u) = 2,

and in both cases sl(γ;D) = −1.

Proof. If Φ is the trivialization of γ∗ξ that extends over D, then the relative
c1 term in the index formula vanishes and gives the stated relation between
ind(u) and µΦ

CZ(γ). By (2.2) and (2.3), this implies αΦ
−(γ) = 1. Moreover,

cN (u) ≤ 0 by Lemma 2.14, thus (2.12) implies that u has zero asymptotic
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defect, so the nonzero eigenfunction e1(u) appearing in the asymptotic for-
mula (2.7) satisfies

windΦ(e1(u)) = αΦ
−(γ) = 1.

Now by (2.14),

sl(γ;D) = −windΦ(e1(u)) = −1.
�

3. Seed curves in the positive end

In this section we describe the seed curves that will generate the moduli
spaces required for proving Theorems 1.1, 1.2 and 1.3.

3.1. The standard sphere

The following construction is for the proofs of Theorems 1.1 and 1.3.
Regarding S2n−1 as the unit sphere in Cn, fix the standard contact form

αstd described in Example 2.2, along with the unique admissible complex
structure Jstd ∈ J (αstd) on R× S2n−1 that restricts to ξstd ⊂ TS2n−1 ⊂ Cn

as the standard complex structure i. Recall that the diffeomorphism

(3.1) (R× S2n−1, Jstd) → (Cn \ {0}, i) : (r, x) 7→ e2rx

is then biholomorphic, so we can regard holomorphic curves in Cn \ {0} as
Jstd-holomorphic curves in the symplectization of (S2n−1, ξstd). With this
understood, define for each w ∈ Cn−1 \ {0} the holomorphic plane

uw : (C, i) → (Cn \ {0}, i) : z 7→ (z, w).

As a curve in R× S2n−1, each uw is asymptotic at ∞ to the same closed
Reeb orbit in (S2n−1, αstd), namely

γ∞ : S1 → S2n−1 : t 7→ (e2πit, 0, . . . , 0).

This orbit belongs to a (2n− 2)-dimensional Morse-Bott family of closed
embedded Reeb orbits with period π, which foliate S2n−1; indeed, they form
the fibres of the Hopf fibration S1 →֒ S2n−1 → CPn−1.

Lemma 3.1. For each w ∈ Cn−1 \ {0}, ind(uw) = 2n− 2.

Proof. Abbreviate W = R× S2n−1. The fibres of the contact bundle along
γ∞ are naturally identified with {0} ⊕ Cn−1 ⊂ TS2n−1 ⊂ Cn, so γ∗∞ξstd has
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a natural trivialization, which we will denote by Φ, and it extends to a nat-
ural trivialization of the normal bundle Nuw

→ C of uw. The latter implies
cΦ1 (Nuw

) = 0, so writing u∗wTW = TC⊕Nuw
gives

cΦ1 (u
∗
wTW ) = χ(C) + cΦ1 (Nuw

) = 1.

To compute µΦ
CZ(γ∞ + ǫ), we observe that the asymptotic operator Aγ∞

splits with respect to the obvious decomposition

γ∗∞ξstd = S1 × C
n−1 = L2 ⊕ · · · ⊕ Ln

into trivial complex line bundles, so we can write Aγ∞
= A2 ⊕ · · · ⊕Am, and

the trivialization Φ is now also a direct sum Φ2 ⊕ · · · ⊕ Φm of trivializations
of these line bundles. The kernel of Aγ∞

is a complex (n− 1)-dimensional
space of sections along γ∞ that point in the directions of other Hopf fibres,
and its intersection with each of the summands Lj for j = 2, . . . , n is a
complex 1-dimensional space spanned by a section of the form

ηj : S
1 → Lj : t 7→ (0, . . . , 0, e2πit, 0, . . . , 0).

We thus have windΦj (ηj) = 1, and Aj + ǫ therefore has a real 2-dimensional
eigenspace with the smallest positive eigenvalue ǫ and winding 1. By Propo-
sition 2.3, the largest negative eigenvalue Aj + ǫ must then have winding 0,
so by (2.2),

µ
Φj

CZ(Aj + ǫ) = 1,

and (2.4) then implies

µΦ
CZ(γ∞ + ǫ) =

n∑

j=2

µ
Φj

CZ(Aj + ǫ) = n− 1.

Finally, (2.9) gives

ind(uw) = (n− 3)χ(C) + 2cΦ1 (u
∗
wTW ) + µΦ

CZ(γ∞ + ǫ)

= (n− 3) + 2 + (n− 1) = 2n− 2.
�

Lemma 3.2. The Jstd-holomorphic planes uw are all Fredholm regular.

Proof. Note that the standard genericity arguments do not apply here since
Jstd is very far from being generic. But in this case we can check regular-
ity explicitly. Recall that by [44, Theorem 3], it suffices to check that the
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linearized normal operator

DN
uw

: W 1,p,δ(Nuw
) → Lp,δ(HomC(TC, Nuw

))

is surjective, where ind(DN
uw

) = ind(uw). Here p ∈ (2,∞), and δ > 0 is a
small exponential weight, meaning that if sections η : C → Nuw

in the do-
main of DN

uw
are written near ∞ in cylindrical coordinates (s, t) ∈ [0,∞)×

S1 corresponding to z = e2π(s+it) ∈ C, then the section eδsη(s, t) must be
of class W 1,p on [0,∞)× S1. This definition also assumes a translation-
invariant metric on R× S2n−1 for computing Lp-norms of sections along uw.
Note that since p > 2, sections of class W 1,p are continuous, and we can
therefore assume

(3.2) η(s, t) → 0 as s → ∞

for η ∈ W 1,p,δ(Nuw
).

From a different perspective, however, DN
uw

is an extremely simple oper-
ator: sections η of the normal bundle to uw : C → Cn \ {0} can be identified
canonically with functions η̃ : C → Cn−1 using the obvious trivialization of
Nuw

, and since DN
uw

is the linearization of the standard (and thus already
linear) Cauchy-Riemann operator ∂̄, η ∈ kerDN

uw
implies that η̃ is a Cn−1-

valued holomorphic function. Under the transformation (3.1), the condition
(3.2) then implies

|η̃(z)|

|z|
→ 0 as z → ∞,

so the growth of η̃ at infinity is strictly smaller than that of an affine function.
Complex analysis then implies that the singularity of η̃ at ∞ is removable,
so η̃ is constant, proving

dimC kerDN
uw

= n− 1.

The real dimension of the kernel of DN
uw

is thus equal to its index according
to Lemma 3.1, so DN

uw
has trivial cokernel. �

Lemma 3.3. Up to parametrization, every asymptotically cylindrical Jstd-
holomorphic curve in R× S2n−1 with a single positive puncture asymptotic
to γ∞ and arbitrary negative punctures is either the trivial cylinder over γ∞
or one of the planes uw.

Proof. Since no Reeb orbit in (S3, αstd) has period smaller than that of γ∞,
any curve u : Σ̇ → R× S2n−1 of the specified type with a nonempty set of
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negative punctures would satisfy
∫
Σ̇ u∗αstd = 0 by Stokes’ theorem, and since

the positive asymptotic orbit is simple, u in this case could only be a trivial
cylinder. If u has no negative punctures, then it defines via (3.1) a proper
holomorphic map u = (u1, . . . , un) : Σ̇ → Cn such that u2, . . . , un : Σ̇ → C

are all bounded holomorphic functions that decay to 0 at the unique punc-
ture, so these all extend to holomorphic functions on the compact domain
Σ and are therefore constant. The remaining function u1 : Σ̇ → C has a pole
of order 1 at its unique puncture, thus it extends to a nonconstant holomor-
phic map Σ → S2 of degree 1, implying that Σ = S2 and, after a suitable
reparametrization, Σ̇ = C with u1 : C → C an affine map. �

Lemma 3.4. In the case dimM = 3, the planes uw satisfy cN (uw) = 0 and
are nicely embedded.

Proof. We saw in the proof of Lemma 3.1 that µΦ
CZ(γ∞ + ǫ) is odd and

ind(uw) = 2, so (2.10) implies cN (uw) = 0. Since uw is embedded and has
only a single simple asymptotic orbit, δtotal(uw) = σ̄(uw)− 1 = 0 by Lemma
2.12. Thus by Siefring’s adjunction formula (2.15),

uw ∗ uw = 2δtotal(uw) + cN (uw) + [σ̄(uw)− 1] = 0.
�

3.2. Reducible tight contact 3-manifolds

We now describe the seed curves for the first case of Theorem 1.2. As-
sume M is a reducible closed oriented 3-manifold with a contact struc-
ture ξ; we are free to assume ξ is tight since the overtwisted case will be
dealt with separately in §3.3 below. The reducibility hypothesis means that
M is either S1 × S2 or a nontrivial connected sum M1#M2, and in the
latter case, tightness of ξ implies via Colin’s connected sum theorem [6]
that (M, ξ) = (M1, ξ1)#(M2, ξ2) for some tight contact structures ξi on Mi,
i = 1, 2. The case S1 × S2 can also be understood via connected sums since
the unique tight contact structure on S1 × S2 is the one that is obtained
from (S3, ξstd) by attaching two disjoint neighborhoods in S3 to each other
via a self-connected sum. In either case, (M, ξ) contains a special embedded
2-sphere

S2 ∼= S ⊂ M,

the belt sphere of the connected sum, and ξ takes a certain standard form in
a neighbourhood of S. Moreover, S represents a nontrivial element of π2(M):
this follows from the Poincaré conjecture after applying [21, Prop. 3.1] to
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deduce that [S] ∈ π2(M) can be trivial only if S bounds a contractible sub-
manifold in M .

The desired J-holomorphic curves in R×M can now be borrowed whole-
sale from a construction of Fish and Siefring [12]. Specifically, Theorem 5.1
in their paper provides a nondegenerate contact form α+ on (M, ξ) and
an almost complex structure J+ ∈ J (α+), which may be assumed generic
outside a neighborhood of R× S, such that there exists a nondegenerate
embedded Reeb orbit

γ∞ : S1 → M

with even Conley-Zehnder index and with image in S. This orbit splits S
into two hemispheres S+ and S−, and there exists a pair of nicely embedded
and Fredholm regular J+-holomorphic planes

u± = (u±
R
, u±M ) : C → R×M

with index 1, both asymptotic to γ∞, such that u±M (C) is the interior of S±.
They satisfy

cN (u±) = u± ∗ u± = u+ ∗ u− = 0,

and they approach γ∞ “from opposite sides” in the sense that after suitable
R-translations, one can arrange

e1(u
+) = −e1(u

−),

where e1(u
±) denotes the nontrivial asymptotic eigenfunction appearing in

the asymptotic formula (2.7) for u±.

Lemma 3.5. Up to parametrization and R-translation, every asymptoti-
cally cylindrical J+-holomorphic curve in R×M with a single positive punc-
ture asymptotic to γ∞ and arbitrary negative punctures is either the trivial
cylinder over γ∞ or one of the planes u±.

Proof. We use Siefring’s intersection theory. Fix a trivialization Φ of ξ
along γ∞. The first observation is that since d0(u

±) ≤ cN (u±) = 0, the eigen-
functions e1(u

±) both have maximal winding αΦ
−(γ∞). Since µΦ

CZ(γ∞) is
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even, Proposition 2.3 implies that there is only a 1-dimensional eigenspace

Eλ ⊂ C∞(γ∗∞ξ)

of Aγ∞
with negative eigenvalue and winding αΦ

−(γ∞), and e1(u
±) ∈ Eλ.

Denoting the trivial cylinder over γ∞ by R× γ∞, this implies

u± ∗ (R× γ∞) = 0.

Indeed, there are no geometric intersections between u± and R× γ∞ since
u±M (C) is the interior of S±, but one must still rule out asymptotic con-
tributions, i.e. “hidden” intersections at infinity. These are characterized in
[41] in terms of relative winding numbers, and in the present situation, the
asymptotic contribution to u± ∗ (R× γ∞) vanishes if and only if the asymp-
totic representative describing the approach of u± to R× γ∞ at infinity has
maximal winding. This is true since windΦ(e1(u

±)) = αΦ
−(γ∞).

Now suppose u : Σ̇ → R×M is a J+-holomorphic curve with the speci-
fied properties. We claim

(3.3) u ∗ u± = 0.

To see this, first use R-translation to move u± until its image is contained
in [0,∞)×M , which is possible since u± has no negative punctures. Then
notice that since u has only one positive puncture and it is asymptotic
to γ∞, u admits a homotopy through asymptotically cylindrical (but not
necessarily J+-holomorphic) maps to a map whose intersection with [0,∞)×
M is identical to the top half of the trivial cylinder R× γ∞. Using the
homotopy invariance of the intersection product, it follows that u ∗ u± =
u± ∗ (R× γ∞) = 0.

Finally, let e1(u) denote the nontrivial asymptotic eigenfunction in (2.7)
that controls the approach of u to γ∞ at its positive puncture. If e1(u) 6∈ Eλ,
then windΦ(e1(u)) < αΦ

−(γ∞) = windΦ(e1(u
±)). In this case the projections

of u and u± toM obviously intersect each other near γ∞, implying that some
R-translation of u intersects u±, but this is impossible by (3.3). We therefore
have e1(u) ∈ Eλ. But observe now that applying R-translations to u modi-
fies e1(u) by multiplication with a positive constant, so since dimEλ = 1 and
e1(u

+) and e1(u
−) have opposite signs, there exists a unique R-translation

for which e1(u) precisely matches either e1(u
+) or e1(u

−). For concreteness,
suppose e1(u) = e1(u

+). Then the main results of [40] imply that unless
u = u+ up to parametrization, there is a nontrivial asymptotic eigenfunc-
tion controlling the approach of u to u+ at their positive ends, and it lies in
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a different eigenspace, with winding strictly less than αΦ
−(γ∞). The charac-

terization of asymptotic contributions in [41] then implies that u ∗ u+ > 0,
again contradicting (3.3). �

Remark 3.6. The above lemma does not specifically require the mani-
fold M to be reducible: it only requires the existence of a simple Reeb
orbit γ∞ spanned by two disjoint embedded index 1 holomorphic planes
u± that approach γ∞ “from opposite sides” in the sense described above.
The conditions cN (u±) = u± ∗ u± = u+ ∗ u− = 0 follow automatically from
these assumptions via (2.10) and Siefring’s adjunction formula (2.15).

3.3. Overtwisted contact 3-manifolds

If (M, ξ) is overtwisted, then Eliashberg’s appendix to [52] uses the following
geometric picture to prove vanishing of contact homology. There is a non-
degenerate contact form α+ and an almost complex structure J+ ∈ J (α+)
admitting an embedded Fredholm regular J+-holomorphic plane

u∞ = (u∞R , u∞M ) : C → R×M

with index 1, asymptotic to a simple Reeb orbit

γ∞ : S1 → M

with even Conley-Zehnder index, such that u∞ is (up to parametrization
and R-translation) the only nontrivial J+-holomorphic curve in R×M with
one positive puncture asymptotic to γ∞ (and arbitrary negative punctures).
A more detailed version of this construction can be extracted as a special
case from [45], using intersection-theoretic arguments similar to those of
§3.2 above. Since u∞ is asymptotic to a simple orbit, Lemma 2.12 implies
δ∞(u∞) = σ̄(u∞)− 1 = 0, and since it is also embedded, δtotal(u

∞) = 0.
Moreover, by (2.10), cN (u∞) = 0, so the adjunction formula (2.15) now gives

u∞ ∗ u∞ = 2δtotal(u
∞) + cN (u∞) + [σ̄(u∞)− 1] = 0,

implying that u∞ is nicely embedded.
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4. A local adjunction formula for breaking

holomorphic annuli

The aim of this section is to prove Theorem 1.16 and derive Corollary 1.17.
We assume throughout that M is a 3-manifold endowed with C∞-converging
sequences of contact forms αk → α∞ and admissible almost complex struc-
tures Jk ∈ J (αk), k ≤ ∞. Fix a nondegenerate closed Reeb orbit γ : S1 →
M for α∞ with covering multiplicity m ∈ N, period T > 0 and parity p(γ) ∈
{0, 1}. We consider a sequence of Jk-holomorphic annuli

uk : ([−Rk, R
′
k]× S1, i) → (R×M,Jk),

where Rk, R
′
k → ∞ and uk converges in the SFT topology to a broken J∞-

holomorphic annulus

uk → (u+∞|u−∞)

in which both levels are embedded and γ is the breaking orbit. More pre-
cisely, u±∞ are embedded J∞-holomorphic half-cylinders

u−∞ : [0,∞)× S1 → R×M, u+∞ : (−∞, 0]× S1 → R×M

with

u±∞(s, t) = exp(Ts,γ(t)) h±(s, t)

for some translation-invariant metric on R×M and asymptotic represen-
tatives satisfying h±(s, ·) → 0 with all derivatives as s → ∓∞. To say what
the convergence uk → (u+∞|u−∞) means, denote the R-translation action on
R×M by

τc : R×M → R×M : (r, x) 7→ (r + c, x)

for c ∈ R. Then we require

τrk ◦ uk(·+R′
k, ·) → u+∞ in C∞

loc((−∞, 0]× S1,R×M)

for some sequence rk → −∞, while

τrk ◦ uk(· −Rk, ·) → u−∞ in C∞
loc([0,∞)× S1,R×M)

for some sequence rk → +∞. Additionally, choose diffeomorphisms ϕ− :
[−1, 0) → [0,∞) and ϕ+ : (0, 1] → (−∞, 0], let πM : R×M → M denote the
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natural projection, and define the continuous map

ūM∞ : [−1, 1]× S1 → M : (s, t) 7→





πM ◦ u+∞(ϕ+(s), t) if s > 0,

γ(t) if s = 0,

πM ◦ u−∞(ϕ−(s), t) if s < 0.

We then also require the existence of a sequence of diffeomorphisms ϕk :
[−1, 1]× S1 → [−Rk, R

′
k]× S1 such that

πM ◦ uk ◦ ϕk → ūM∞ in C0([−1, 1]× S1,M).

With these hypotheses understood, the statement of Theorem 1.16 is that
for all k sufficiently large,

2δ(uk) = 2[δ∞(u+∞) + δ∞(u−∞)] + [σ̄+(γ)− 1] + [σ̄−(γ)− 1] + (m− 1)p(γ).

The proof is based on a relative adjunction formula in the style of Hutch-
ings [30]. Since u+∞ and u−∞ are embedded, we are free to assume uk is embed-
ded near the boundary of its domain for sufficiently large k; moreover, if we
reparametrize u±∞ by suitable shifts to focus only on neighborhoods of ±∞,
the corresponding adjustments in uk can be arranged so that its tangent
spaces are close to those of a trivial cylinder for large k. This means replac-
ing the domains [−Rk, R

′
k]× S1 of uk with smaller domains that nonetheless

still expand to infinite length, and we do not lose any singularities this way
since u±∞ are both embedded on the corresponding portions of their domains
that are being discarded. With this understood, if we choose a trivialization
Φ of ξ = kerα∞ along γ, this determines a trivialization of the normal bun-
dle of uk along its boundary uniquely up to homotopy for large k. Define
the relative self-intersection number of uk,

uk •Φ uk ∈ Z

as the algebraic count of intersections between uk and a generic perturbation
of uk that is pushed in the direction of Φ near the boundary. This number
depends on Φ up to homotopy. We can similarly define u±∞ •Φ u±∞ with the
condition that the second copy of u±∞ is pushed by some small but nonzero
amount in the direction of Φ both near its boundary and near infinity. The
convergence uk → (u+∞|u−∞) then implies

(4.1) uk •Φ uk = u+∞ •Φ u+∞ + u−∞ •Φ u−∞
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for sufficiently large k. The relative adjunction formula relates these self-
intersection numbers to the count of double points and corresponding rela-
tive first Chern numbers

cΦ1 (u
∗
kT (R×M)), cΦ1 ((u

±
∞)∗T (R×M)) ∈ Z,

defined by regarding Φ as a trivialization of the normal bundle of uk or u±∞
over the boundary and/or near infinity—this sums with the canonical par-
allelization of the domains (annuli and half-cylinders) to give trivializations
of the pulled back tangent bundle on these regions. Appealing again to the
convergence uk → (u+∞|u−∞), we have

(4.2) cΦ1 (u
∗
kT (R×M)) = cΦ1 ((u

+
∞)∗T (R×M)) + cΦ1 ((u

−
∞)∗T (R×M))

for large k. Note that if uk is immersed with normal bundle Nuk
, then

cΦ1 (u
∗
kT (R×M)) = cΦ1 (Nuk

) since the domains have vanishing Euler charac-
teristic. If uk is not immersed, one can perturb it to an immersion without
changing cΦ1 (u

∗
kT (R×M)), so the same argument used to prove the adjunc-

tion formula for closed holomorphic curves gives the relative formula

uk •Φ uk = 2δ(uk) + cΦ1 (u
∗
kT (R×M)).

This makes crucial use of the fact that uk is embedded near the boundary
for large k, so pushing it in normal directions determined by Φ does not
produce any intersections near the boundary.

The analogous story for u±∞ is slightly more complicated if γ has covering
multiplicity m > 1, because new intersections can appear near infinity after
pushing off via Φ. This phenomenon was observed in [30, §3.2] and quantified
in terms of the writhe of a braid determined by the asymptotic behaviour
of u±∞. Using notation adapted from [41, §3.2] (see also [50, §4.3]), we denote
by

iΦ∞(u±∞) ∈ Z

the algebraic count of intersections near infinity between u±∞ and a small
perturbation of itself via Φ. This number matches the writhe described in
[30] up to a sign. It is only nonzero if m ≥ 2, and in that case it depends
on Φ up to homotopy; in [41] it is expressed as a sum of winding numbers
of asymptotic eigenfunctions that control the relative approach of differ-
ent parametrizations of u±∞ near the orbit. The bounds on these winding
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numbers coming from Proposition 2.3 lead to the bound

(4.3) iΦ∞(u±∞) ≥ ΩΦ
∓(γ) := ±(m− 1)αΦ

±(γ) + [σ̄±(γ)− 1] ,

which furnishes the definition of the number δ∞(u±∞) counting “hidden”
double points at infinity:

(4.4) δ∞(u±∞) =
1

2

[
iΦ∞(u±∞)− ΩΦ

∓(γ)
]
≥ 0.

Including the contribution from intersections near infinity, the relative ad-
junction formula for u±∞ takes the form

u±∞ •Φ u±∞ = 2δ(u±∞) + cΦ1 ((u
±
∞)∗T (R×M)) + iΦ∞(u±∞).

We are now ready to prove both the theorem and the corollary.

Proof of Theorem 1.16. We can use the various relative adjunction formulas
to rewrite both the left and right hand sides of (4.1), thus

2δ(uk) + cΦ1 (u
∗
kT (R×M)) = 2δ(u+∞) + cΦ1 ((u

+
∞)∗T (R×M)) + iΦ∞(u+∞)

+ 2δ(u−∞) + cΦ1 ((u
−
∞)∗T (R×M)) + iΦ∞(u−∞).

The terms δ(u±∞) vanish since u+∞ and u−∞ are embedded, and combining
this with (4.2) gives

2δ(uk) = iΦ∞(u+∞) + iΦ∞(u−∞).

Now plugging in (4.4) and p(γ) = αΦ
+(γ)− αΦ

−(γ) gives the stated formula.
�

Proof of Corollary 1.17. The local adjunction formula implies that if δ(uk) =
0, then

1) δ∞(u+∞) = δ∞(u−∞) = 0,

2) σ̄+(γ) = σ̄−(γ) = 1, and

3) γ is either simply covered or has even parity.

In the case with even parity, we can derive further constraints on the mul-
tiplicity m from the condition on the spectral covering numbers: recalling
Proposition 2.3, the extremal winding numbers αΦ

±(γ) for positive and nega-
tive eigenvalues match, and σ̄±(γ) = 1 means that any nontrivial eigenfunc-
tion in the corresponding eigenspaces E± is simply covered. Both of these
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eigenspaces are also 1-dimensional, and since γ has multiplicity m, there is a
linear Zm-action on each E± generated by the map that sends an eigenfunc-
tion e ∈ E± to e(·+ 1/m). This defines a real 1-dimensional representation
of Zm, and the representation must be faithful since E± contains simply
covered eigenfunctions. Real 1-dimensional representations of finite groups
can act only by ±1, so the only possibility for m > 1 is that m = 2 and the
generator of Z2 acts by −1. We claim finally that in this case, the underlying
simple orbit has odd parity. Indeed, Proposition 2.3 implies that it would
otherwise have two eigenfunctions with the same winding but eigenvalues
of opposite sign, and E± would then have to consist of the double covers of
those eigenfunctions, which is a contradiction. �

5. Compactness for nicely embedded planes in cobordisms

In this section we fix the following assumptions. Let (W,dλ) denote a 4-
dimensional Liouville cobordism with concave boundary (M−, ξ− = kerα−)
and convex boundary (M+, ξ+ = kerα+), where λ|TM±

= α±, with α− as-
sumed nondegenerate and α+ Morse-Bott. The symplectic completion of W
will be denoted as usual by W , and we choose J ∈ J (W,ω, α+, α−) to be
generic in the interior of W such that its restriction J− to the negative end is
also generic; in particular, this means that all simple J-holomorphic curves
in W that pass through the interior of W have nonnegative index, and all
simple J−-holomorphic curves in R×M− other than trivial cylinders have
index at least 1. Fix a simply covered Reeb orbit

γ∞ : S1 → M+.

The main objective of this section is the following theorem, which char-
acterizes the closure in the SFT compactification of the set of planes in
M(J, γ∞, ∅) that are nicely embedded in the sense of Definition 2.13. For
application to our main theorems, the results of §3 permit us to ignore holo-
morphic buildings with nontrivial upper levels.

Theorem 5.1. Suppose uk ∈ M(J, γ∞, ∅) is a sequence of nicely embed-
ded planes converging in the sense of [3] to a holomorphic building u∞ ∈
M(J, γ∞, ∅) with no nontrivial upper levels but at least one nontrivial lower
level. Then all components of the levels of u∞ other than trivial cylinders
are nicely embedded, all breaking orbits are either simply covered or are dou-
bly covered bad orbits, and u∞ fits one of the following descriptions (see
Figure 5):



✐

✐

“2-Wendl” — 2020/3/21 — 1:21 — page 106 — #50
✐

✐

✐

✐

✐

✐

106 A. Cioba and C. Wendl

• Type (I): (v0|v
−
1 ), where v0 is an index 0 cylinder, v−1 is an index 1

plane, and the breaking orbit has even parity.

• Type (II): (v0|v
−
1 ), where v0 is an index 0 cylinder, v−1 is an index 2

plane, and the breaking orbit has odd parity.

• Type (III): (v0|v
−
1 ), where v0 is an index 1 cylinder, v−1 is an index 1

plane, and the breaking orbit has even parity.

• Type (IV): (v0|v
−
1 ), where v0 has index 0 and two negative punctures,

v−1 is a disjoint union of two index 1 planes, and both breaking orbits
have even parity.

• Type (V): (v0|v
−
1 |v

−
2 ), where v0 has index 0 and two negative punctures,

v−1 is the disjoint union of a trivial cylinder with an index 1 plane, and
v−2 is an additional index 1 plane, with all breaking orbits having even
parity.

• Type (VI): (v0|v
−
1 |v

−
2 ), where v0 is an index 0 cylinder, v−1 is an index 1

cylinder and v−2 is an index 1 plane, the breaking orbit between v0 and
v−1 has odd parity, and the breaking orbit between v−1 and v−2 has even
parity.

We begin with a few preliminary observations that will be used repeat-
edly in the proof. Recall that by Prop. 2.5, u∞ must have the structure of
a tree, with all connected components having exactly one positive puncture
and the bottom level being a disjoint union of capping planes. The top of
this tree is the main level, which will always be somewhere injective since
γ∞ is a simply covered orbit. Moreover, since J is generic, Equation 2.10 and
Lemma 2.14 imply that the curves uk in our sequence can be assumed to sat-
isfy either ind(uk) ∈ {1, 2} and cN (uk) = 0 or ind(uk) = 0 and cN (uk) = −1.
Note that all the building types in the above theorem have total index 2 ex-
cept for Type (I), which occurs in the index 1 case. We shall denote

u∞ = (v0|v
−
1 | · · · |v

−
N )

where by assumption N ≥ 1, and each v−j is in general a disjoint union of
mj ≥ 1 connected curves

v−j,1, . . . , v
−
j,mj

,

each having exactly one positive puncture. The definition of the normal
Chern number, together with the relation (2.3) between parities and winding
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Figure 5: The six types of holomorphic buildings in Theorem 5.1.

numbers, implies the formula

0 ≥ cN (uk) = cN (v0) +

N∑

j=1

mj∑

i=1

cN (v−j,i) +

N∑

j=1

mj∑

i=1

p(γj,i),

where γj,i denotes the asymptotic orbit at the unique positive puncture of
v−j,i, i.e. the γj,i are all the breaking orbits of u∞. Since u∞ has no negative
punctures in its lowest level, we can conveniently repackage this formula as

(5.1) 0 ≥ cN (uk) = ĉN (v0) +

N∑

j=1

mj∑

i=1

ĉN (v−j,i),

where for any punctured holomorphic curve w, we define ĉN (w) to be the
sum of cN (w) with the parities of the asymptotic orbits at all its negative
punctures.
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Lemma 5.2. All the components v−j,i in lower levels have cN (v−j,i) = 0, and
one of the following holds:

1) All breaking orbits in u∞ have even parity and the main level v0 sat-
isfies cN (v0) = 0, or

2) The main level v0 is a cylinder with cN (v0) = −1 whose negative asymp-
totic orbit has odd parity, and all other breaking orbits have even parity.

Proof. Genericity implies ind(v0) ≥ 0, so by (2.10), cN (v0) ≥ −1 with equal-
ity if and only if all the asymptotic orbits of v0 have odd parity, hence
ĉN (v0) ≥ 0. For components v−j,i in lower levels, (2.12) implies cN (v−j,i) ≥ 0

unless v−j,i is a cover of a trivial cylinder. If on the other hand v−j,i covers a

trivial cylinder over some orbit γ, Proposition 2.8 gives ind(v−j,i) ≥ 0, with
strict inequality unless γ is elliptic or the cover is unbranched. Strict in-
equality would imply cN (v−j,i) ≥ 0 due to (2.10). The scenario cN (v−j,i) < 0

can thus happen only if γ is elliptic and ind(v−j,i) = 0, in which case (2.10)
gives cN (vi,j) = −1 and thus ĉN (vi,j) ≥ 0, with strict inequality if vi,j has
more than one negative puncture. Using (5.1), we conclude that ĉ(v0) = 0
and ĉ(v−j,i) = 0 for every i, j, which implies that all components in u∞ having
negative normal Chern number have exactly one negative puncture, i.e. they
are cylinders. For components in lower levels, this means they are trivial
cylinders over elliptic Reeb orbits, and no other lower level components can
have any negative asymptotic orbits with odd parity since this would imply
ĉN (v−j,i) > 0. Note that since u∞ is assumed to be stable in the sense of [3],
it does not have any levels consisting only of trivial cylinders. It follows that
if u∞ has any odd breaking orbits at all, then v0 is an index 0 cylinder with
cN (v0) = −1 and a negative orbit with odd parity, but all other breaking
orbits in the building are even. �

Proof of Theorem 5.1. Consider first the case where all breaking orbits have
even parity. We know that v0 is somewhere injective since γ∞ is a simple
orbit, but each lower level component v−j,i could be a multiple cover, say a
kj,i-fold cover of a somewhere injective curve wj,i. Each wj,i that is not a
trivial cylinder satisfies ind(wj,i) ≥ 1 due to genericity, so by Proposition 2.9,

ind(v−j,i) ≥ kj,i · ind(wj,i) ≥ kj,i,

with strict inequality unless the cover is unbranched. Thus if any kj,i is
greater than 1, the fact that ind(uk) ≤ 2 then implies ind(v−j,i) = kj,i = 2,

v−j,i is an unbranched double cover of wj,i, and all other components in the
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building must have index 0. Note that if this happens, v−j,i cannot be a
plane, as wj,i would then also be a plane and the Riemann-Hurwitz formula
precludes the existence of an unbranched cover C → C. But u∞ definitely
also has components that are capping planes, which also must have positive
index, so this gives a contradiction, proving that every v−j,i is either some-
where injective or is a trivial cylinder over an orbit with even parity. Since
the curves uk converging to u∞ are all embedded, Corollary 1.17 now implies
that all breaking orbits are either simple or doubly covered bad orbits. To
see that all components are also nicely embedded, we use Proposition 2.11
to write

0 ≥ uk ∗ uk ≥ v0 ∗ v0 +
N∑

j=1

mj∑

i,ℓ=1

v−j,i ∗ v
−
j,ℓ.

Positivity of intersections together with Prop. 2.10 implies that all terms on
the right hand side are nonnegative, hence all of them vanish, including each
v−j,i ∗ v

−
j,i. Since cN (v−j,i) = cN (v0) = 0, the adjunction formula (2.15) then

gives δtotal(v
−
j,u) = δtotal(v0) = 0, hence all components are nicely embedded.

By Lemma 5.2, we must also consider the case where v0 is a cylinder with
cN (v0) = −1 whose asymptotic orbits are both odd, while all other break-
ing orbits are even and all lower level components satisfy cN (v−j,i) = 0. The
adjunction formula (2.15) implies v0 ∗ v0 ≥ −1. For any pair of components
v−j,i and v−j,ℓ that are not both trivial cylinders, positivity of intersections

gives v−j,i ∗ v
−
j,ℓ ≥ 0; note that this is guaranteed even if they are (covers of)

the same curve since R-invariance allows us to push one of them so that
they have only isolated intersections. This trick only fails if both are covers
of the same trivial cylinder, but in that case, we know that the underlying
Reeb orbit cannot have odd parity, hence Prop. 2.10 applies again to give
v−j,i ∗ v

−
j,ℓ ≥ 0. Now Proposition 2.11 implies

0 ≥ uk ∗ uk ≥ −1 +m(γ),

where γ is the odd breaking orbit between v0 and v−1,1 and m(γ) ∈ N denotes
its covering multiplicity; we conclude that this orbit must be simply covered.
It follows that v−1,1 is a somewhere injective curve and thus has ind(v−1,1) ≥ 1.
For all curves in levels below this, the absence of odd orbits means that we
can again use the arguments of the previous paragraph to rule out multiple
covers, and we conclude again that all components in u∞ are somewhere
injective except possibly for trivial cylinders. The constraints on multiplici-
ties of the breaking orbits and the conclusion that all nontrivial components
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are nicely embedded now follow from the same arguments using the local
adjunction formula and Proposition 2.11.

To obtain the classification of buildings stated in the theorem, it remains
only to add up Fredholm indices, using the fact that ind(v0) ≥ 0 and all
nontrivial components in lower levels have index at least 1. The conclusions
about parities of Reeb orbits then follow directly from the index formula. �

6. Proofs of the main theorems

We shall now prove Theorems 1.1 and 1.2 in reverse order.

Proof of Theorem 1.2(2). Assume (W,dλ) is a 4-dimensional Liouville co-
bordism from (M, ξ) to (M+, ξ+), where (M+, ξ+) is overtwisted, and α is
a nondegenerate contact form for ξ. After possibly rescaling α by a positive
constant, we can arrange λ|TM = α and λ|TM+

= α+, where α+ is the partic-
ular nondegenerate contact form described in §3.3. Arguing by contradiction,
assume α does not admit any unknotted Reeb orbit with Conley-Zehnder
index 2 and self-intersection number −1. By Lemma 2.18, this means that
nicely embedded planes with index 2 and simply covered asymptotic orbits
cannot exist in (R×M,J−) for any J− ∈ J (α); we will use this to exclude
some of the possible buildings listed in Theorem 5.1 and thus derive a con-
tradiction.

Choose J ∈ J (W,dλ, α+, α) to be generic in the interior of W such that
its restriction to the negative cylindrical end is a generic element J− ∈ J (α)
and its restriction to the positive end matches J+ ∈ J (α+) from §3.3. Then
the nicely embedded plane u∞ ∈ M(J+, γ∞, ∅) constructed in that section
gives rise to a 1-parameter family of nicely embedded curves in M(J, γ∞, ∅),
living in the cylindrical end [0,∞)×M+ ⊂ W ; we shall refer to these hence-
forth as the seed curves in W . They are Fredholm regular by Prop. 2.15.
Let

Mnice(J) ⊂ M(J, γ∞, ∅)

denote the set of all nicely embedded planes in M(J, γ∞, ∅) that belong to
the same relative homology class as the seed curves. These all have index 1,
and the uniqueness of curves in (R×M+, J+) implies that all of them other
than the seed curves intersect the region where J is generic, thus Mnice(J)
is a smooth 1-manifold. Its closure

M
nice

(J) ⊂ M(J, γ∞, ∅)
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in the SFT compactification can now be described as follows. If uk∈Mnice(J)
is a sequence converging to a building with a nontrivial upper level, then the
uniqueness of curves in (R×M+, J+) implies that this building is (u∞| ∅),
where u∞ here is an upper level and the main level is empty. This can
only be the limit if uk consists of seed curves for sufficiently large k, so a

neighborhood of (u∞| ∅) inM
nice

(J) is homeomorphic to the interval (−1, 0],
with (u∞| ∅) as the boundary point. If the limit is any building with trivial
upper levels but a nontrivial lower level, then it is described by Theorem 5.1,
and must in fact be a building of Type (I) since all the others in the list have
total index 2. We can thus write the limit as (v0|v

−
1 ) for an index 0 cylinder

v0 in (W,J) and an index 1 plane v−1 in (R×M,J−), both nicely embedded.
The breaking orbit between these must be a doubly covered bad orbit due
to the assumption excluding unknotted orbits. Proposition 2.6 on gluing

implies that a neighborhood of (v0|v
−
1 ) in M

nice
(J) is also homeomorphic

to (−1, 0], with the building forming the boundary point. We’ve thus shown

that each connected component of M
nice

(J) has the topology of a compact
connected 1-manifold with boundary, so either a circle or a closed interval,
and at least one component is of the latter type, namely the one containing

the seed curves. We claim in fact that M
nice

(J) itself is compact. In light of

the above description, this can only fail to be true if M
nice

(J) has infinitely
many connected components, in which case we can find a sequence of nicely
embedded curves uk ∈ Mnice(J) all belonging to separate components. But
these curves are all homologous and thus satisfy a uniform energy bound, so

they have an SFT-convergent subsequence by [3], whose limit is in M
nice

(J)

by definition. We conclude that M
nice

(J) is a compact 1-manifold with
boundary.

The crucial observation is now that since the breaking orbit in (v0|v
−
1 )

is doubly covered, there are always exactly two choices of decoration which
give two distinct elements of M(J, γ∞, ∅) having the same curves as their
main and lower levels. Indeed, these cannot represent equivalent elements of
M(J, γ∞, ∅) since the levels are both somewhere injective and thus admit no
automorphisms that could change the decoration. Moreover, both buildings
can be glued via Prop. 2.6 to produce smooth 1-parameter families of some-
where injective planes in M(J, γ∞, ∅), which will be nicely embedded since
they are homologous to the seed curves, thus both buildings also belong

to M
nice

(J). With this understood, let

M̂nice(J) = M
nice

(J)
/
∼,
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where the equivalence relation identifies any two buildings that have match-
ing levels but different decorations. Topologically, M̂nice(J) is formed by

gluing components of M
nice

(J) together along boundary points of the form

(v0|v
−
1 ), all of which become interior points in M̂nice(J). But exactly one

boundary point of M
nice

(J) does not belong to a matching pair, namely

(u∞| ∅), thus M̂nice(J) is homeomorphic to a compact 1-manifold with one
boundary point, giving a contradiction. �

Proof of Theorem 1.2(1). Assume (M, ξ) is a reducible tight contact 3-mani-
fold, and fix the contact form α+ and almost complex structure J+ ∈ J (α+)
described in §3.2, so there is a homotopically nontrivial 2-sphere S ⊂ M
containing a simple nondegenerate Reeb orbit γ∞ : S1 → M that divides
S into hemispheres S± = u±M (C) that are each images of nicely embedded
J+-holomorphic index 1 planes

u± = (u±
R
, u±M ) : C → R×M.

By Lemma 3.5, these are the only J+-holomorphic curves up to parametriza-
tion and R-translation that have a single positive puncture asymptotic to
γ∞ (and arbitrary negative punctures).

Now pick an arbitrary nondegenerate contact form α on (M, ξ), and
suppose it admits no unknotted Reeb orbit with Conley-Zehnder index 2
and self-linking number −1. We are free to rescale α+ so that α+ = efα for
some f : M → (0,∞) without loss of generality. There is then a Liouville
cobordism (W,dλ) with

W =
{
(r, x) ∈ R×M

∣∣ 0 ≤ r ≤ f(x), x ∈ M
}
, λ = erα,

which inherits the contact form α on its concave boundary M− := {0} ×M
and α+ on its convex boundaryM+ := {(f(x), x) | x ∈ M}. Choose a generic
J ∈ J (W,dλ, α+, α) that matches J+ in the positive end and has a generic
restriction J− ∈ J (α) to the negative end. The R-translations of u+ and u−

then give rise to a disjoint pair of 1-parameter families of nicely embedded
seed curves in the completion W , living in the positive cylindrical end.

As in the overtwisted case, we consider the spaceMnice(J) ⊂ M(J, γ∞, ∅)
of nicely embedded planes that are in the same relative homology class with

either family of seed curves, and its closure M
nice

(J) in the SFT compacti-

fication. Then M
nice

(J) contains the two elements (u±| ∅) with empty main
levels, plus (by Theorem 5.1) buildings of the form (v0|v

−
1 ) with a nicely

embedded index 1 plane v−1 in the lower level and breaking orbits that are
doubly covered. The same argument as in the overtwisted case proves that
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M
nice

(J) has the topology of a compact 1-manifold with boundary, where
boundary points of the form (v0|v

−
1 ) come in matching pairs with the same

levels but different decorations due to the doubly covered breaking orbit.
The space

M̂nice(J) = M
nice

(J)
/
∼

defined by identifying matching pairs is thus a compact 1-manifold with
exactly two boundary points, the two buildings (u+| ∅) and (u−| ∅). It
follows that these two buildings belong to the same connected component
in M̂nice(J), and the images of the curves or buildings in this component
under the projection R×M → M then give a continuous 1-parameter family
of disks with fixed boundary γ∞ forming a homotopy from S+ to S− in M .
This is a contradiction since [S] 6= 0 ∈ π2(M). �

Proof of Theorem 1.1. Recall from §3.1 the definitions of the standard con-
tact form αstd and the almost complex structure Jstd ∈ J (αstd). Given a
Liouville cobordism (W,dλ) from some contact manifold (M, ξ) to (S3, ξstd)
with λ|TS3 = αstd and a nondegenerate contact form λ|TM = α on (M, ξ),
one can choose a generic J ∈ J (W,dλ, αstd, α) that matches Jstd in the pos-
itive cylindrical end and has a generic restriction J− ∈ J (α) to the negative
cylindrical end. The seed curves uw constructed in §3.1 that are contained
in [0,∞)× S3 can then equally well be regarded as nicely embedded J-
holomorphic planes in the completed cobordism W with images in the pos-
itive cylindrical end. Recall that by Lemma 3.3, every curve in R× S3 with
one positive puncture asymptotic to the particular orbit γ∞ (and arbitrary
negative punctures) is one of these planes.

LetMnice
1 (J) ⊂ M1(J, γ∞, ∅) denote the set of all nicely embedded planes

in the same relative homology class as the seed curves, carrying the extra
data of one marked point, and denote its closure in the SFT compactifica-

tion by M
nice
1 (J) ⊂ M1(J, γ∞, ∅). All curves in Mnice

1 (J) have index 2 and
are Fredholm regular, so Mnice

1 (J) is a smooth 4-dimensional manifold. As a

consequence of Lemma 3.3, all buildings in M
nice
1 (J) with nontrivial upper

levels are of the form (uw| ∅) with uw a seed curve and the main level empty.

All other buildings in M
nice

(J) are described by Theorem 5.1.
We will now show that if α admits no unknotted Reeb orbits with self-

linking number −1 and Conley-Zehnder index 2, then it must admit one with
Conley-Zehnder index 3. To this end, choose points p+ ∈ S3 and p− ∈ M ,
and a 1-dimensional submanifold

ℓ(R) ⊂ W
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defined via a smooth proper embedding ℓ : R →֒ W such that ℓ(t) = (t, p+) ∈
[0,∞)× S3 for all t > 0 sufficiently large and ℓ(t) = (t, f(t)) ∈ (−∞, 0]×M
for t < 0 sufficiently small, with limt→−∞ f(t) = p−. After generic perturba-
tions of both p− and ℓ away from +∞, we are free to assume:

1) ℓ is transverse to the evaluation map on the moduli space of all some-
where injective J-holomorphic curves inW that are not fully contained
in the positive end;

2) p− is not contained in any closed Reeb orbit;

3) R× {p−} is transverse to the evaluation map on the moduli space of
all somewhere injective J−-holomorphic curves in R×M .

Now consider the 1-dimensional submanifold

Mnice
ℓ (J) = ev−1(ℓ(R)) ⊂ Mnice

1 (J),

and for convenience define

M
nice
ℓ (J) ⊂ M

nice
1 (J)

to be the set of all buildings in its SFT-closure that have the marked point
in the main level. The evaluation map then restricts to

M
nice
ℓ (J)

ev
−→ ℓ(R),

and the image of this map clearly contains an interval of the form ℓ([t0,∞))
due to the seed curves. The goal of the next two paragraphs is to show that
this map is in fact surjective onto ℓ(R).

Observe first that the restriction of ev to Mnice
ℓ (J) is an open map

due to Prop. 2.16. We claim moreover that any building u ∈ M
nice
ℓ (J) with

ev(u) = ℓ(t0) has a neighborhood in M
nice
ℓ (J) whose image under ev con-

tains ℓ([t0, t0 + ǫ)) or ℓ((t0 − ǫ, t0]) for sufficiently small ǫ > 0. To see this,
note first that unless u is a smooth curve, it is necessarily one of Types (II)
though (VI) on the list in Theorem 5.1, but our genericity assumptions im-
pose further restrictions: since ℓ intersects the evaluation map transversely,
the main level of the building must have index at least 1, excluding all
options other than Type (III). We can thus write u = (v0|v

−
1 ) for an in-

dex 1 cylinder v0 ∈ M1(J, γ∞, γ) with a marked point, and an index 1 plane
v−1 ∈ M(J−, γ, ∅), both nicely embedded. Here the lower level v−1 repre-
sents an isolated element in M(J−, γ, ∅)/R, while v0 has a neighborhood
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V0 ⊂ M1(J, γ∞, γ) that is a smooth 3-manifold, and by choosing this neigh-
borhood sufficiently small, we can assume that

(6.1) V0
ev
−→ W

has only one intersection with ℓ(R), namely at v0, and it is transverse. Propo-
sition 2.6 now gives a smooth gluing map

Ψ : [0,∞)× V0 →֒ M1(J, γ, ∅)

whose image contains all smooth curves close to (v0|v
−
1 ) in the SFT topology,

and all of these belong to Mnice
1 (J). The maps

{R} × V0 → W : v 7→ ev(Ψ(R, v))

can then be assumed to converge uniformly to (6.1) as R → ∞, implying that
their algebraic count of intersections with ℓ(R) is 1 for all R > 0 sufficiently
large. Choosing R0 > 0 large and generic, the subset

Uℓ :=
{
(R, v) ∈ [R0,∞)× V0

∣∣ ev(Ψ(R, v)) ∈ ℓ(R)
}

is then a smooth and properly embedded 1-manifold that intersects {R0} ×
V0 transversely at its boundary ∂Uℓ, which is a finite set of points. This
1-manifold must have at least one noncompact component, otherwise the
algebraic count of points in ∂Uℓ could not be 1, hence there exists a smooth
path U0

ℓ ⊂ [R0,∞)× V0 whose image under Ψ is a smooth family of curves
ut ∈ Mnice

ℓ (J) with t ∈ [0,∞) such that

ut → (v0|v
−
1 ) as t → ∞.

The image of this path under ev necessarily contains ℓ((t0, t0 + ǫ)) or ℓ((t0 −
ǫ, t0)) as claimed.

Now, given the lack of unknotted orbits with Conley-Zehnder index 2,
the breaking orbit in the building (v0|v

−
1 ) of the previous paragraph must

be doubly covered, so that building has a twin obtained by keeping the
same levels but changing the decoration, and the fact that both levels are
somewhere injective implies that the two buildings are not equivalent in
M1(J, γ∞, ∅). Thus the twin building can also be glued using Prop. 2.6
and produces a nearby family of curves in Mnice

1 (J), some of which satisfy
ev(u) ∈ ℓ(R) and whose images under ev again cover an interval of the form
ℓ((t0, t0 + ǫ)) or ℓ((t0 − ǫ, t0)). But since no two curves in Mnice

1 (J) can
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intersect, the curves in Mnice
ℓ (J) obtained by gluing the same curves v0 and

v−1 with two distinct decorations necessarily cover two disjoint intervals, so

that the entirety of ℓ((t0 − ǫ, t0 + ǫ)) is necessarily in the image of M
nice
ℓ (J)

for sufficiently small ǫ > 0. This proves that that image is an open subset of
ℓ(R), hence it is all of ℓ(R).

With this established, we can now find a sequence uk ∈ Mnice
ℓ (J) with

ev(uk) = ℓ(tk) for some sequence tk → −∞, and a subsequence of uk must
again converge to one of the buildings listed in Theorem 5.1, but this time
with the marked point ending up in a lower level and mapping to R× {p−}.
Since p− is not in the image of any Reeb orbit, the marked point in the
limit does not lie on a trivial cylinder. Transversality of R× {p−} to the
evaluation map thus implies that the component with the marked point
must have index at least 2, which rules out all options in the list other than
Type (II): uk has a subsequence covergent to (v0|v

−
1 ) where v−1 is a nicely

embedded plane in (R×M,J) with index 2 and an asymptotic orbit with
odd parity, which is therefore simply covered. This is the promised unknotted
orbit with self-linking number −1 and Conley-Zehnder index 3. �

Appendix A. Liouville cobordisms from exact

Lagrangian caps

In this appendix, we provide the details behind Example 1.6, using a general
construction that was explained to us by Emmy Murphy.

Proposition A.1. Suppose (M, ξ) is a closed contact manifold of dimen-
sion 2n− 1 ≥ 3, Λ ⊂ M is a closed Legendrian submanifold and L ⊂ [1,∞)×
M is an exact Lagrangian cap for Λ. Then L has an open neighbourhood
UL ⊂ [1,∞)×M such that, after smoothing corners,

W− := ([0, 1]×M) ∪ UL

admits the structure of a Weinstein cobordism from (M, ξ) to some contact
manifold (M ′, ξ′), and for suitably large constants T > 1,

W+ := ([1, T ]×M) \ UL

is a Liouville cobordism from (M ′, ξ′) to (M, ξ).
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Proof. Being an exact Lagrangian cap means that for some choice of contact
form α on (M, ξ) and some constant T > 1, the trivial Liouville cobordism

(Z, dλ) := ([1, T ]×M,d(erα))

contains L as a compact and properly embedded Lagrangian submanifold
with ∂L = {1} × Λ, such that the Liouville vector field ∂t is tangent to L
near ∂L and

λ|TL = dg

for some smooth function g : L → R. Note that since Λ is Legendrian and
λ annihilates its dual Liouville vector field, g must be constant near ∂L; we
shall assume without loss of generality that it vanishes there. By a combi-
nation of the Lagrangian and Legendrian neighbourhood theorems, L has a
symplectic neighbourhood (UL, dλ) whose closure UL is symplectomorphic
to the unit disk bundle in DT ∗L ⊂ T ∗L for some choice of Riemannian met-
ric on L. Note that this disk bundle has boundary and corners, its boundary
consisting of two smooth faces,

∂−UL := DT ∗L|∂L and ∂+UL := ST ∗L,

where ST ∗L is the unit cotangent bundle. We shall write points in T ∗L as
(q, p) for q ∈ L and p ∈ T ∗

q L, and use the metric and its induced Levi-Civita
connection to identify T(q,p)(T

∗L) with TqL⊕ T ∗
q L = TqL⊕ TqL, where the

first splitting comes from the horizontal-vertical decomposition given by the
connection, and the second uses the isomorphism TqL = T ∗

q L determined by
the metric. The canonical Liouville form λ0 on T ∗L can then be written as

λ0 = −dF0 ◦ J,

where F0(q, p) =
1
2 |p|

2 and J is the compatible almost complex structure on

T ∗L that acts on T(q,p)(T
∗L) = TqL⊕ TqL as

(
0 1

−1 0

)
. In particular, F0

is a J-convex function, and therefore so is

Fǫ(q, p) := ǫf(q) +
1

2
|p|2

for any smooth function f : L → R if ǫ > 0 is sufficiently small. Setting
λǫ := −dFǫ ◦ J , dλǫ is then a symplectic form isotopic to dλ0 on a suit-
able neighbourhood of the zero-section L, and since the antipodal map
(q, p) 7→ (q,−p) is J-antiholomorphic but preserves Fǫ, it also preserves the
Liouville vector field Vǫ dual to λǫ, proving that Vǫ is tangent to L.
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Now choose f : L → R in this construction to be a Morse function that is
constant with inward-pointing gradient along ∂L. After possibly shrinking
the neighbourhood UL

∼= DT ∗L of L, we can then assume that Vǫ points
transversely inward at ∂−UL and transversely outward at ∂+UL. Since the
Liouville field of (Z, dλ) is also tangent to L near ∂L and points inward at
{1} ×M ⊂ ∂Z (see Figure 1), we can now assume after an isotopy of UL that
the two Liouville fields match near ∂−UL, meaning λ = λǫ on that region.
We can therefore use λǫ to extend λ from [0, 1]×M over W− so that the
dual Liouville vector field remains gradient like, making W− a Weinstein
cobordism from (M, ξ) to the new contact manifold (M ′, ξ′), obtained by
removing a neighbourhood of Λ from {1} ×M and replacing it with ST ∗L.

It is also immediate from the above construction that W+ is a strong
symplectic cobordism from (M ′, ξ′) to (M, ξ), and the exactness of the
cobordism follows from the fact that L is an exact Lagrangian. Indeed, let
ŮL := UL \ ∂−UL

∼= DT ∗L|L̊. Since λ and λǫ match near ∂−UL and are both
primitives of the same symplectic form, λ− λǫ represents an element of the
compactly supported de Rham cohomology H1

c (ŮL), which is isomorphic to
H1

c (L̊). But under restriction to L, λǫ vanishes and λ is exact, so this coho-
mology class is zero, implying λ = λǫ + dh on UL for some smooth function
h : UL → R that vanishes near ∂−UL. By multiplying h with a suitable cutoff
function, we can then find a Liouville form on W+ that matches λǫ near L
and matches λ outside a neighbourhood of L. �

Remark A.2. If W is a subcritical Weinstein filling of (M, ξ), then the
Weinstein filling of (M ′, ξ′) obtained by stacking W− on top of W is never
subcritical. To see this, note that the Morse function f : L → R in the above
proof can always be chosen to have exactly one critical point of index n,
in which case Fǫ also has exactly one critical point of index n. If W is
subcritical, this produces a handle decomposition ofW ∪M W− that includes
exactly one critical handle, so Hn(W ∪M W−) 6= 0.
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