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In this paper, we give the notion of a CLWX 2-algebroid and show
that a QP-structure (symplectic NQ structure) of degree 3 gives
rise to a CLWX 2-algebroid. This is the higher analogue of the result
that a QP-structure of degree 2 gives rise to a Courant algebroid. A
CLWX 2-algebroid can also be viewed as a categorified Courant al-
gebroid. We show that one can obtain a Lie 3-algebra from a CLWX
2-algebroid. Furthermore, CLWX 2-algebroids are constructed from
split Lie 2-algebroids and split Lie 2-bialgebroids.
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1. Introduction

This paper is motivated by the following questions:

• A QP-structure of degree 2 gives rise to a Courant algebroid. What is
the geometric structure underlying a QP-structure of degree 3?

• What is a categorified Courant algebroid? Or, equivalently, what is
the L∞-analogue of a Courant algebroid?

• Split Lie 2-algebroids have become a useful tool to study problems
related to NQ-manifolds. What is a split Lie 2-bialgebroid? What is
the double of a split Lie 2-bialgebroid?

The CLWX 2-algebroid that we introduce in this paper provides answers of
above questions.

A QP-manifold of degree n is a graded manifold equipped with a graded
symplectic structure of degree n and a degree n+ 1 function satisfying the
master equation. A QP-manifold is also called a symplectic NQ manifold
in some literature, e.g. [Roy02]. QP-manifolds are very important in the
topological field theory. Classical QP-manifolds of degree 1 are in one-to-
one correspondence with Poisson manifolds. The 2-dimensional topological
field theory constructed by AKSZ formulation [AKSZ] is the Poisson sigma
model. Classical QP-manifolds of degree 2 are in one-to-one correspondence
with Courant algebroids [Roy02]. Courant algebroids can be used as target
spaces for a general class of 3-dimensional topological field theory [Roy07B].
The notion of a Courant algebroid was introduced by Liu, Weinstein and
Xu in [LWX97] in the study of the double of a Lie bialgebroid [MX]. An
alternative definition was given in [Roy]. See the review article [KS] for
more information. Roughly speaking, a Courant algebroid is a vector bun-
dle, whose section space is a Leibniz algebra, together with an anchor map
and a nondegenerate symmetric bilinear form, such that some compatibil-
ity conditions are satisfied. If a skew-symmetric bracket is used, in [RW98],
the authors showed that the underlying algebraic structure of a Courant
algebroid is a Lie 2-algebra, which is the categorification of a Lie algebra
[BC, Roy07A].

In [IU], the authors studied QP-manifolds of degree 3 and derived a
new 4-dimensional topological field theory by the AKSZ construction. The
authors showed that a QP-manifold of degree 3 gives rise to a Lie algebroid
up to homotopy (Ikeda-Uchino algebroid), and analyzed its algebraic and
geometric structures.



i
i

“8-Sheng” — 2020/1/7 — 15:44 — page 1855 — #3 i
i

i
i

i
i

QP-structures of degree 3 and CLWX 2-algebroids 1855

In this paper, we restudy QP-manifolds of degree 3 and find that a QP-
manifold of degree 3 can give rise to a more fruitful geometric structure,
which we call a CLWX 2-algebroid. Roughly speaking, a CLWX 2-algebroid
is a graded vector bundle E = E0 ⊕ E−1 over M , whose section space is a
Leibniz 2-algebra, together with an anchor map ρ : E0 −→ TM and a nonde-
generate graded symmetric bilinear form of degree 1, such that some compat-
ibility conditions are satisfied. See Definition 3.1 for details. Since Leibniz
2-algebras are the categorification of Leibniz algebras, CLWX 2-algebroids
can be viewed as the categorification of Courant algebroids. This viewpoint
can also be justified by another fact: a Courant algebroid over a point is a
quadratic Lie algebra while a CLWX 2-algebroid over a point is a quadratic
Lie 2-algebra. Generalizing Li-Bland and Meinrenken’s construction of a
Courant algebroid from a coisotropic action of a quadratic Lie algebra on a
manifold [LM], we construct a CLWX 2-algebroid, called the transformation
CLWX 2-algebroid, using an action of a quadratic Lie 2-algebra on a mani-
fold. We show that we can obtain a Lie 3-algebra (3-term L∞-algebras) from
a CLWX 2-algebroid if we use the skew-symmetric bracket. This is a higher
analogue of Roytenberg and Weinstein’s result given in [RW98].

Usually an NQ-manifold of degree n is considered as a Lie n-algebroid
[Vor10]. In [SZ], the authors defined split Lie n-algebroids using graded vec-
tor bundles. The equivalence between the category of split Lie n-algebroids
and the category of NQ-manifolds of degree n is given in [BP]. The language
of split Lie n-algebroids has slowly become a useful tool to study problems
related to NQ-manifolds [Jot, Jot18, Jot19]. There is a Courant algebroid
structure on A⊕A∗ associated to any Lie algebroid A. Similarly, we con-
struct a CLWX 2-algebroid structure on A⊕A∗[1] associated to any split
Lie 2-algebroid (A = A0 ⊕A−1, l1, l2, l3, a). The notion of a Lie bialgebroid
was introduced in [MX] as the infinitesimal object of a Poisson groupoid.
Using the graded Poisson bracket on T ∗[3]E[1], where E = A0 ⊕A∗−1, we
introduce the notion of a split Lie 2-bialgebroid. Furthermore, we show that
there is a CLWX 2-algebroid structure on the double A⊕A∗[1] of a split
Lie 2-bialgebroid (A,A∗[1]), which is a higher analogue of the fact that
there is a Courant algebroid structure on the double A⊕A∗ of a Lie bial-
gebroid (A,A∗). Recently, the notion of an L∞-bialgebroid is introduced in
[BV], which is a natural generalization of the Kravchenko’s notion of an
L∞-bialgebra [Kra]. Even though the 2-term truncation of an L∞-algebroid
is a split Lie 2-algebroid, the 2-term truncation of an L∞-bialgebroid is not
a split Lie 2-bialgebroid.

The theory of Courant algebroids is very rich, and we can go on to
study analogously for CLWX 2-algebroids. In [LSh], we introduce the notion
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of a weak Dirac struture of a CLWX 2-algebroid and establish its relation
with Maurer-Cartan elements of certain homotopy Poisson algebra. In [She],
transitive CLWX 2-algebroids are studied in detail, and it is shown that a
quadratic Lie 2-algebroid admits a CLWX-extension if and only if its first
Pontryagin class, which is represented by a closed 5-form, is trivial.

The paper is organized as follows. In Section 2, we recall QP-manifolds,
Courant algebroids, Lie n-algebras, Leibniz 2-algebras and Lie 2-algebroids.
In Section 3, we give the definition of a CLWX 2-algebroid and analyze
its properties. We construct “transformation CLWX 2-algebroid” from a
quadratic Lie 2-algebra action on a manifold. We show that a CLWX 2-
algebroid gives rise to a Lie 3-algebra (Theorem 3.14). In Section 4, we
construct a CLWX 2-algebroid from a split Lie 2-algebroid directly (Theo-
rem 4.4). In Section 5, we show that the degree 3 QP-manifold T ∗[3]A[1]
gives rise to a CLWX 2-algebroid through the derived bracket (Theorem 5.1).
In Section 6, we give the definition of a split Lie 2-bialgebroid using the
canonical graded Poisson bracket on T ∗[3]A[1], where A = A0 ⊕A−1 is a
graded vector bundle. Then we show that the double A⊕A∗[1] of a split
Lie 2-bialgebroid (A,A∗[1]) is a CLWX 2-algebroid (Theorem 6.2).

Acknowledgements. We give our warmest thanks to Zhangju Liu, Alan
Weinstein, Xiaomeng Xu and Chenchang Zhu for very useful comments and
discussions. We also give our special thanks to the referee for very helpful
suggestions that improve the paper.

2. Preliminaries

2.1. QP-manifolds and Courant algebroids

Recall that a graded manifoldM is a sheaf of a graded commutative algebra
over an ordinary smooth manifold M . The structure sheaf of M is locally
isomorphic to a graded commutative algebra C∞(U)⊗ S(V ), where U is an
ordinary local chart of M , S(V ) is the polynomial algebra over V and where
V :=

∑
i≥1 Vi is a graded vector space such that the dimension of Vi is finite

for each i.

Definition 2.1. A graded manifoldM equipped with a graded symplectic
structure ω of degree n is called a P -manifold of degree n.
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The structure sheaf C∞(M) of a P -manifold becomes a graded Poisson
algebra. The graded Poisson bracket is defined by

(1) {f, g} = −ιXf ιXgω,

where f, g ∈ C∞(M) and Xf is the Hamiltonian vector field of f , i.e. ιXfω =
−df . We recall the basic properties of the graded Poisson bracket,

{f, g} = −(−1)(|f |−n)(|g|−n) {g, f} ,(2)

{f, gh} = {f, g}h+ (−1)(|f |−n)|g|g {f, h} ,(3)

{f, {g, h}} = {{f, g} , h}+ (−1)(|f |−n)(|g|−n) {g, {f, h}} ,(4)

where | f | is the degree of f and n is the degree of the symplectic structure.
The degree of the Poisson bracket is −n.

Definition 2.2. Let (M, ω) be a P -manifold of degree n. A function Θ ∈
C∞(M) of degree n+ 1 is called a Q-structure, if it is a solution of the
classical master equation

(5) {Θ,Θ} = 0.

The triple (M, ω,Θ) is called a QP -manifold.

It is well-known that QP-manifolds of degree 2 are in one-to-one corre-
spondence with Courant algebroids [Roy02, Theorem 4.5].

Definition 2.3. [LWX97] A Courant algebroid is a vector bundle E
together with a bundle map ρ : E −→ TM , a nondegenerate symmetric bi-
linear form S, and an operation � : Γ(E)× Γ(E) −→ Γ(E) such that for all
e1, e2, e3 ∈ Γ(E), the following axioms hold:

(i) (Γ(E), �) is a Leibniz algebra;

(ii) S(e1 � e1, e2) = 1
2ρ(e2)S(e1, e1);

(iii) ρ(e1)S(e2, e3) = S(e1 � e2, e3) + S(e2, e1 � e3).

Given a QP-manifold of degree 2, the Courant algebroid structure is
obtained by the derived bracket using the Q-structure Θ [Roy02]. See [Get,
Vor05] for more information about higher derived brackets.

For a vector bundle A, the graded manifold T ∗[2]A[1] is a P-manifold of
degree 2. Let (xi, ξa) be local coordinates on A[1], we denote by (xi, ξa, θa, pi)



i
i

“8-Sheng” — 2020/1/7 — 15:44 — page 1858 — #6 i
i

i
i

i
i

1858 J. Liu and Y. Sheng

the local coordinates on T ∗[2]A[1]. About their degrees, we have

degree(xi, ξa, θa, pi) = (0, 1, 1, 2).

The graded Poisson bracket satisfies

{xi, pj} = δij = −{pj , xi}, {ξa, θb} = δab = {θb, ξa}.

A Lie algebroid structure on A is equivalent to a degree 3 function µ =
ρibpiξ

b + 1
2µ

a
bcξ

bξcθa such that {µ, µ} = 0. A Lie bialgebroid structure on
A is given by a degree 3 function µ+ γ, which can be locally written as

µ = ρibpiξ
b +

1

2
µabcξ

bξcθa, γ = %ibpiθb +
1

2
γbca ξ

aθbθc,

and they satisfy

{µ+ γ, µ+ γ} = 0.

On A⊕A∗, there is a natural Courant algebroid structure, in which the
Q-structure Θ is exactly µ+ γ.

2.2. Lie n-algebras, Leibniz 2-algebras and Lie 2-algebroids

A Lie 2-algebra is a 2-vector space C equipped with a skew-symmetric bilin-
ear functor, such that the Jacobi identity is controlled by a natural isomor-
phism, which satisfies the coherence law of its own. It is well-known that
a Lie 2-algebra is equivalent to a 2-term L∞-algebra [BC]. L∞-algebras,
also called strongly homotopy Lie algebras, were introduced in [Sta]. See
[LM95, LS] for more details.

Definition 2.4. An L∞-algebra is a graded vector space g = ⊕i∈Zg−i
equipped with a system {lk| 1 ≤ k <∞} of linear maps lk : ∧kg −→ g with
degree deg(lk) = 2− k, where the exterior powers are interpreted in the
graded sense and the following relation with Koszul sign “Ksgn” is satisfied
for all n ≥ 0:

(6)
∑

i+j=n+1

(−1)i(j−1)
∑
σ

sgn(σ)Ksgn(σ)

× lj(li(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(n)) = 0.

Here the summation is taken over all (i, n− i)-unshuffles with i ≥ 1.
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People usually refer to an L∞-algebra with g−i = 0 for all i ≥ n and
i < 0 as an n-term L∞-algebra and we will call an n-term L∞-algebra a Lie
n-algebra.

As a model for “Leibniz algebras that satisfy Jacobi identity up to all
higher homotopies”, the notion of a strongly homotopy Leibniz algebra, or a
Lod∞-algebra was given in [Liv] by Livernet, which was further studied by
Ammar, Poncin and Uchino in [AP, Uch]. In [SL], the authors introduced
the notion of a Leibniz 2-algebra, which is the categorification of a Leibniz
algebra, and prove that the category of Leibniz 2-algebras and the category
of 2-term Lod∞-algebras are equivalent.

Definition 2.5. A Leibniz 2-algebra V consists of the following data:

• a complex of vector spaces V : V−1
d−→ V0,

• bilinear maps l2 : V−i × V−j −→ V−i−j , where 0 ≤ i+ j ≤ 1,

• a trilinear map l3 : V0 × V0 × V0 −→ V−1,

such that for all w, x, y, z ∈ V0 and m,n ∈ V−1, the following equalities are
satisfied:

(a) dl2(x,m) = l2(x,dm),

(b) dl2(m,x) = l2(dm,x),

(c) l2(dm,n) = l2(m,dn),

(d) dl3(x, y, z) = l2(x, l2(y, z))− l2(l2(x, y), z)− l2(y, l2(x, z)),

(e1) l3(x, y,dm) = l2(x, l2(y,m))− l2(l2(x, y),m)− l2(y, l2(x,m)),

(e2) l3(x,dm, y) = l2(x, l2(m, y))− l2(l2(x,m), y)− l2(m, l2(x, y)),

(e3) l3(dm,x, y) = l2(m, l2(x, y))− l2(l2(m,x), y)− l2(x, l2(m, y)),

(f) the Jacobiator identity:

l2(w, l3(x, y, z))− l2(x, l3(w, y, z)) + l2(y, l3(w, x, z)) + l2(l3(w, x, y), z)

− l3(l2(w, x), y, z)− l3(x, l2(w, y), z)− l3(x, y, l2(w, z))
+ l3(w, l2(x, y), z) + l3(w, y, l2(x, z))− l3(w, x, l2(y, z)) = 0.

We usually denote a Leibniz 2-algebra by (V−1, V0, d, l2, l3), or simply
by V.
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Definition 2.6. A split Lie 2-algebroid is a graded vector bundle A =
A0 ⊕A−1 over a manifoldM equipped with a bundle map (called the anchor)
a : A0 −→ TM , and brackets li : Γ(∧iA) −→ Γ(A) with degree 2− i for i =
1, 2, 3, such that

(i) (Γ(A), l1, l2, l3) is a Lie 2-algebra;

(ii) l2 satisfies the Leibniz rule with respect to the anchor a:

l2(X
0, fY ) = fl2(X

0, Y ) + a(X0)(f)Y,

for all X0 ∈ Γ(A0), f ∈ C∞(M), Y ∈ Γ(A);

(iii) l1 and l3 are C∞(M)-linear.

Denote a Lie 2-algebroid by (A, l1, l2, l3, a).

Remark 2.7. In our definition of a Lie n-algebroid, the section space is an
L∞-algebra. In [Bru], the author introduced a notion of an L∞-algebroid,
where the section space is a superized (Z2-graded) L∞-algebra.

Lemma 2.8. Let (A, l1, l2, l3, a) be a Lie 2-algebroid. Then we have

a ◦ l1 = 0,(7)

a(l2(X
0, Y 0)) = [a(X0), a(Y 0)], ∀X0, Y 0 ∈ Γ(A0).(8)

Proof. On one hand, for all X0 ∈ Γ(A0), X
1 ∈ Γ(A−1) and f ∈ C∞(M), we

have

l2(l1(X
1), fX0) = fl2(l1(X

1), X0) + a(l1(X
1))(f)X0.

On the other hand, since (Γ(A), l1, l2, l3) is a Lie 2-algebra, we have

l2(l1(X
1), fX0) = l1(l2(X

1, fX0)) = l1(fl2(X
1, X0)) = fl1(l2(X

1, X0)).

Therefore, we have a(l1(X
1))(f)X0 = 0, which implies that (7) holds.

For all X0, Y 0, Z0 ∈ Γ(A0) and f ∈ C∞(M), by

l2(l2(X
0, Y 0), fZ0) + l2(l2(Y

0, fZ0), X0) + l2(l2(fZ
0, X0), Y 0)

= −l3(X0, Y 0, fZ0) = −fl3(X0, Y 0, Z0),

we can deduce that (8) holds. �
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3. CLWX 2-algebroids and Lie 3-algebras

3.1. CLWX 2-algebroids

In this subsection, we introduce the notion of a CLWX 2-algebroid (named
after Courant-Liu-Weinstein-Xu) and analyze its properties.

Definition 3.1. A CLWX 2-algebroid is a graded vector bundle E =
E−1 ⊕ E0 over M equipped with a non-degenerate graded symmetric bilin-
ear form1 S on E , a bilinear operation � : Γ(E−i)× Γ(E−j) −→ Γ(E−(i+j)),
0 ≤ i+ j ≤ 1, which is skewsymmetric on Γ(E0)× Γ(E0), an E−1-valued 3-
form Ω on E0, two bundle maps ∂ : E−1 −→ E0 and ρ : E0 −→ TM , such
that E−1 and E0 are isotropic and the following axioms are satisfied:

(i) (Γ(E−1),Γ(E0), ∂, �,Ω) is a Leibniz 2-algebra;

(ii) for all e ∈ Γ(E), e � e = 1
2DS(e, e), where D : C∞(M) −→ Γ(E−1) is

defined by

(9) S(Df, e0) = ρ(e0)(f), ∀e0 ∈ Γ(E0);

(iii) for all e11, e
1
2 ∈ Γ(E−1), S(∂(e11), e

1
2) = S(e11, ∂(e12));

(iv) for all e1, e2, e3 ∈ Γ(E), ρ(e1)S(e2, e3) = S(e1 � e2, e3) + S(e2, e1 � e3);

(v) for all e01, e
0
2, e

0
3, e

0
4 ∈ Γ(E0), S(Ω(e01, e

0
2, e

0
3), e

0
4) = −S(e03,Ω(e01, e

0
2, e

0
4)).

Denote a CLWX 2-algebroid by (E−1, E0, ∂, ρ, S, �,Ω), or simply by E .
Since the section space of a CLWX 2-algebroid is a Leibniz 2-algebra, the
section space of a Courant algebroid is a Leibniz algebra and Leibniz 2-
algebras are the categorification of Leibniz algebras, we can view CLWX
2-algebroids as the categorification of Courant algebroids.

Remark 3.2. When M is a point, both E0 and E−1 are vector spaces and
the operatorsD and ρ vanish. In this case, the operation � is skew-symmetric.
It follows that (E−1, E0, ∂, �,Ω) is a Lie 2-algebra. Furthermore, S is a degree
1 pairing. Axioms (iii)-(iv) imply that S is invariant. Thus, what we obtain is
a metric (quadratic) Lie 2-algebra. This is a higher analogue of the fact
that a Courant algebroid over a point is a metric (quadratic) Lie algebra.

1Here graded symmetry means S(ei, hj) = (−1)ijS(hj , ei) for all ei ∈ Γ(E−i),
hj ∈ Γ(E−j).
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See [BSZ] and [Kra] for more information about general notion of an L∞-
algebra with a degree k nondegenerate graded symmetric invariant bilinear
form.

Remark 3.3. Note that via the nondegenerate bilinear form S, we obtain
that E−1 ∼= E∗0 . Comparing to the Lie algebroid up to homotopy introduced
in [IU], the main difference is that our bilinear operation � is defined from
Γ(E−i)× Γ(E−j) to Γ(E−(i+j)), 0 ≤ i+ j ≤ 1, while their bilinear operation
[·, ·] is only defined from Γ(E0) ∧ Γ(E0) to Γ(E0). Consequently, we have a
Leibniz 2-algebra underlying a CLWX 2-algebroid, which is the higher ana-
logue of the fact that there is a Leibniz algebra underlying a Courant alge-
broid. It turns out that the operation � : Γ(E−i)× Γ(E−j) −→ Γ(E−(i+j)),
i+ j = 1, behaves more like the Courant-Dorfman bracket in a Courant
algebroid. Thus, CLWX 2-algebroids are more fruitful structures than Lie
algebroids up to homotopy.

Remark 3.4. The standard Courant algebroid TM ⊕ T ∗M can be viewed
as a CLWX 2-algebroid (T ∗[1]M,TM, ∂ = 0, ρ = id, S, �,Ω = 0), where S is
the natural symmetric pairing between TM and T ∗M , and � is the standard
Dorfman bracket given by

(X + α) � (Y + β) = [X,Y ] + LXβ − ιY dα,(10)

for all X, Y ∈ X(M), α, β ∈ Ω1(M). Similarly, a Courant algebroid A⊕A∗,
in which A is a Lie algebroid and A∗ is abelian, can also be viewed as a
CLWX 2-algebroid. However, there is not a canonical way to obtain a CLWX
2-algebroid from an arbitrary Courant algebroid. See Remark 5.5 for an
interpretation from the viewpoint of QP-manifolds.

Example 3.5. Let H ∈ Ω4(M) be a closed 4-form, which can be viewed as
a bundle map from ∧3TM −→ T ∗M . Then (T ∗[1]M,TM, ∂ = 0, ρ = id, S, �,
Ω = H) is a CLWX 2-algebroid, where S and � are the same as the ones given
in the above remark.

Lemma 3.6. Let (E−1, E0, ∂, ρ, S, �,Ω) be a CLWX 2-algebroid. For all
e1, e2 ∈ Γ(E), e01, e

0
2 ∈ Γ(E0) and f ∈ C∞(M), we have

e1 � fe2 = f(e1 � e2) + ρ(e1)(f)e2,(11)

(fe1) � e2 = f(e1 � e2)− ρ(e2)(f)e1 + S(e1, e2)Df,(12)

ρ(e01 � e02) = [ρ(e01), ρ(e02)].(13)
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Proof. By axiom (iv) in Definition 3.1 and the nondegeneracy of S, we have

S(e1 � fe2, e3) = ρ(e1)S(fe2, e3)− S(fe2, e1 � e3)
= fρ(e1)S(e2, e3) + S(e2, e3)ρ(e1)(f)− fS(e2, e1 � e3)
= S(f(e1 � e2), e3) + S(ρ(e1)(f)e2, e3),

which implies that (11) holds.
By axiom (ii) in Definition 3.1, (12) follows immediately.
By (d) in Definition 2.5, for f ∈ C∞(M), we have

f∂Ω(e01, e
0
2, e

0
3) = e01 � (e02 � fe03)− (e01 � e02) � fe03 − e02 � (e01 � fe03)

= f
(
e01 � (e02 � e03)− (e01 � e02) � e03 − e02 � (e01 � e03)

)
+
(
ρ(e01)ρ(e02)(f)− ρ(e02)ρ(e01)(f)− ρ(e01 � e02)(f)

)
e03

= f∂Ω(e01, e
0
2, e

0
3) +

(
[ρ(e01), ρ(e02)](f)− ρ(e01 � e02)(f)

)
e03,

which implies that (13) holds. �

Lemma 3.7. Let (E−1, E0, ∂, ρ, S, �,Ω) be a CLWX 2-algebroid. For all e0 ∈
Γ(E0) and f ∈ C∞(M), we have

ρ ◦ ∂ = 0,(14)

∂ ◦ D = 0,(15)

e0 � Df = DS(e0,Df),(16)

Df � e0 = 0.(17)

Proof. By (c) in Definition 2.5 and (11), for all e11, e
1
2 ∈ Γ(E−1), we have

ρ(∂(e11))(f)e12 = (∂(e11)) � (fe12)− f∂(e11) � e12
= e11 � ∂(fe12)− f∂(e11) � e12 = 0,

which imply that (14) holds.
By axiom (iii) in Definition 3.1 and (14), (15) follows immediately.
Finally, for all h0 ∈ Γ(E0), by axiom (iv) in Definition 3.1 and (13), we

have

ρ(e0)ρ(h0)(f) = ρ(e0)S(Df, h0) = S(e0 � Df, h0) + S(Df, e0 � h0)
= S(e0 � Df, h0) + ρ(e0 � h0)(f)

= S(e0 � Df, h0) + ρ(e0)ρ(h0)(f)− ρ(h0)ρ(e0)(f).
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Hence,

S(e0 � Df, h0) = ρ(h0)ρ(e0)(f) = S(h0,DS(e0,Df)).

Since S is nondegenerate, we deduce that (16) holds.
By axiom (ii) in Definition 3.1, (17) follows immediately. �

3.2. Transformation CLWX 2-algebroids

One can obtain a transformation Courant algebroid from a coisotropic action
of a quadratic Lie algebra on a manifold, see [LM] for more details. The
notion of an L∞-algebra action on a graded manifold was given by Mehta
and Zambon in [MZ]. One can obtain a transformation L∞-algebroid from an
L∞-algebra action. Here we give explicit formulas of a Lie 2-algebra action
on a usual manifold and the corresponding transformation Lie 2-algebroid,
by which we construct a CLWX 2-algebroid, called the transformation CLWX
2-algebroid.

Definition 3.8. An action of a Lie 2-algebra g = (g−1, g0, l1, l2, l3) on a
manifold M is a linear map ρ : g0 −→ X(M) such that

ρ(l2(x
0, y0)) = [ρ(x0), ρ(y0)], ∀x0, y0 ∈ g0,(18)

ρ ◦ l1 = 0.(19)

Let ρ : g −→ X(M) be an action of a Lie 2-algebra g on a manifold M .
Then ρ induces a bundle map from M × g0 to TM , which we use the same
notation ρ. On the graded bundle (M × g−1)⊕ (M × g0), define l̄1 : M ×
g−1 −→M × g0, l̄2 : Γ(M × g−i)× Γ(M × g−j) −→ Γ(M × g−i−j), 0 ≤ i+
j ≤ 1, and l̄3 : ∧3(M × g0) −→M × g−1 by

(20)


l̄1(X

1) = l1(X
1),

l̄2(X
0, Y 0) = l2(X

0, Y 0) + Lρ(X0)Y
0 − Lρ(Y 0)X

0,

l̄2(X
0, Y 1) = −l̄2(Y 1, X0) = l2(X

0, Y 1) + Lρ(X0)Y
1,

l̄3(X
0, Y 0, Z0) = l3(X

0, Y 0, Z0).

Then (M × g−1,M × g0, ρ, l̄1, l̄2, l̄3) is a Lie 2-algebroid, called the trans-
formation Lie 2-algebroid. See [MZ] for the general case of transformation
L∞-algebroids.

Now let g = (g−1, g0, l1, l2, l3) be a quadratic Lie 2-algebra, i.e. there is
a degree 1 nondegenerate graded symmetric invariant bilinear form S on g.
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In this case g−1 is isomorphic to g∗0. More precisely, the invariant condition
reads

S(l1(x
1), y1) = S(x1, l1(y

1)),

S(l2(x
0, y0), z1) = −S(y0, l2(x

0, z1)),

S(l3(x
0, y0, z0), w0) = −S(z0, l3(x

0, y0, w0)),

for all x0, y0, z0, w0 ∈ g0 and x1, y1, z1 ∈ g−1. Let ρ : g −→ X(M) be an ac-
tion of g on M . With the same notations as above, on the graded bun-
dle (M × g−1)⊕ (M × g0), we define the operation � : Γ(M × g−i)× Γ(M ×
g−j) −→ Γ(M × g−i−j), 0 ≤ i+ j ≤ 1, by

(21)


X0 � Y 0 = l̄2(X

0, Y 0),

X0 � Y 1 = l̄2(X
0, Y 1) + ρ∗S(dX0, Y 1),

Y 1 �X0 = l̄2(Y
1, X0) + ρ∗S(dY 1, X0),

for all X0, Y 0 ∈ Γ(M × g0) and Y 1 ∈ Γ(M × g−1).

Theorem 3.9. Let g = (g−1, g0, l1, l2, l3) be a quadratic Lie 2-algebra with
a degree 1 nondegenerate graded symmetric invariant bilinear form S on g
and ρ : g0 −→ TM an action of g on M such that

(22) l1 ◦ ρ∗ = 0,

where ρ∗ : T ∗M −→M × g−1 is defined by

S(ρ∗(α), X0) = 〈α, ρ(X0)〉, ∀X0 ∈ Γ(M × g0), α ∈ Ω1(M).

Then (M × g−1,M × g0, ∂ = l̄1, ρ, S, �,Ω = l̄3) is a CLWX 2-algebroid, where
� is given by (21).

We call this CLWX 2-algebroid the transformation CLWX 2-algebroid.

Proof. Obviously, for all X0 ∈ Γ(M × g0) and Y 1 ∈ Γ(M × g1), we have

X0 � Y 1 + Y 1 �X0 = ρ∗(S(dX0, Y 1) + S(X0, dY 1)) = ρ∗dS(X0, Y 1),

which implies that axiom (ii) in Definition 3.1 holds.
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For all X0, Y 0 ∈ Γ(M × g0) and Z1 ∈ Γ(M × g1), since S is an invariant
bilinear form on g, we have

S(X0 � Y 0, Z1) + S(Y 0, X0 � Z1)

= S(l2(X
0, Y 0) + Lρ(X0)Y

0 − Lρ(Y 0)X
0, Z1)

+ S(Y 0, l2(X
0, Z1) + Lρ(X0)Z

1 + ρ∗S(dX0, Z1))

= S(Lρ(X0)Y
0, Z1) + S(Y 0, Lρ(X0)Z

1)

= ρ(X0)S(Y 0, Z1),

which implies that axiom (iv) in Definition 3.1 holds.
Also by the fact that S is an invariant bilinear form on g, axioms (iii)

and (v) in Definition 3.1 hold naturally.
Finally, we show that (Γ(M × g−1),Γ(M × g0), ∂ = l̄1, �,Ω = l̄3) is a

Leibniz 2-algebra. By (22), we have

∂(X0 �X1) = l̄1(l̄2(X
0, X1) + ρ∗S(dX0, X1))

= l̄1(l̄2(X
0, X1)) = l̄2(X

0, l̄1(X
1)) = X0 � ∂(X1),

which implies that Condition (a) in Definition 2.5 holds. Similarly, we can
deduce that Condition (b) holds. Since S is an invariant bilinear form on g,
we have

∂(X1) � Y 1 = l̄2(l̄1(X
1), Y 1) + ρ∗S(dl̄1(X

1), Y 1)

= l̄2(X
1, l̄1(Y

1)) + ρ∗S(dX1, l̄1(Y
1)) = X1 � ∂(Y 1),

which implies that Condition (c) in Definition 2.5 holds.
Since for all X0, Y 0 ∈ Γ(M × g0), we have X0 � Y 0 = l̄2(X

0, Y 0). Thus,
Condition (d) in Definition 2.5 holds naturally.

For all X0, Y 0 ∈ Γ(M × g0) and Z1 ∈ Γ(M × g−1), by axiom (iv) in Def-
inition 3.1 that we have proved above, we have

S
(
X0 � (Y 0 � Z1)− (X0 � Y 0) � Z1 − Y 0 � (X0 � Z1)

− Ω(X0, Y 0, ∂(Z1)), Z0
)

= S
(
X0 � (l̄2(Y

0, Z1) + ρ∗S(dY 0, Z1))− l̄2(X0, Y 0) � Z1

− Y 0 � (l̄2(X
0, Z1) + ρ∗S(dX0, Z1))− l̄3(X0, Y 0, l̄1(Z

1)), Z0
)
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= S
(
l̄2(X

0, l̄2(Y
0, Z1)) + ρ∗S(dX0, l̄2(Y

0, Z1)) +X0 � ρ∗S(dY 0, Z1)

− l̄2(l̄2(X0, Y 0), Z1)− ρ∗S(dl̄2(X
0, Y 0), Z1)− l̄2(Y 0, l̄2(X

0, Z1))

− ρ∗S(dY 0, l̄2(X
0, Z1))− Y 0 � ρ∗S(dX0, Z1)− l̄3(X0, Y 0, l̄1(Z

1)), Z0
)

= S
(
ρ∗S(dX0, l̄2(Y

0, Z1)) +X0 � ρ∗S(dY 0, Z1)− ρ∗S(dl̄2(X
0, Y 0), Z1)

− ρ∗S(dY 0, l̄2(X
0, Z1))− Y 0 � ρ∗S(dX0, Z1), Z0

)
= S(Lρ(Z0)X

0, Y 0 � Z1 − ρ∗S(dY 0, Z1)) + ρ(X0)S(Lρ(Z0)Y
0, Z1)

− S(L[ρ(X0),ρ(Z0)]Y
0, Z1)− S(Lρ(Z0) l̄2(X

0, Y 0), Z1)

− S(Lρ(Z0)Y
0, X0 � Z1 − ρ∗S(dX0, Z1))− ρ(Y 0)S(Lρ(Z0)X

0, Z1)

+ S(L[ρ(Y 0),ρ(Z0)]X
0, Z1)

= −S(l̄2(Y
0, Lρ(Z0)X

0), Z1)− S(Lρ(Lρ(Z0)X
0)Y

0, Z1)

− S(L[ρ(X0),ρ(Z0)]Y
0, Z1)− S(Lρ(Z0) l̄2(X

0, Y 0), Z1)

+ S(l̄2(X
0, Lρ(Z0)Y

0), Z1) + S(Lρ(Lρ(Z0)Y
0)X

0, Z1)

+ S(L[ρ(Y 0),ρ(Z0)]X
0, Z1)

= −S
(
Lρ(Z0) l̄2(X

0, Y 0)− l̄2(Lρ(Z0)X
0, Y 0)− l̄2(X0, Lρ(Z0)Y

0)

+ Lρ(Lρ(Z0)X
0)Y

0 − Lρ(Lρ(Z0)Y
0)X

0 + L[ρ(X0),ρ(Z0)]Y
0

− L[ρ(Y 0),ρ(Z0)]X
0, Z1

)
= 0.

The last equality is due to the following Lemma 3.10. Thus, Condition (e1)
in Definition 2.5 holds. Similarly we can show that Conditions (e2), (e3) and
(f) in Definition 2.5 hold. Thus, (Γ(M × g−1),Γ(M × g0), ∂ = l̄1, �,Ω = l̄3)
is a Leibniz 2-algebra. The proof is finished. �

Lemma 3.10. For all Z ∈ X(M) and X,Y ∈ Γ(M × g0), we have

(23) Zl̄2(X,Y )− l̄2(LZX,Y )− l̄2(X,LZY ) + Lρ(LZX)Y

− Lρ(LZY )X + L[ρ(X),Z]Y − L[ρ(Y ),Z]X = 0.

Proof. If X,Y ∈ g are constant sections, it is obvious that the above equality
holds. Generally, since Γ(M × g0) = C∞(M)⊗ g0, we can assume that X =
fu, Y = gv, where u, v ∈ g0 are constant sections and f, g ∈ C∞(M), then
it is straightforward to deduce the above equality. �
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3.3. Lie 3-algebras

In this subsection we prove that we can obtain a Lie 3-algebra from a CLWX
2-algebroid via skewsymmetrization.

We introduce a skew-symmetric bracket on Γ(E),

(24) Je1, e2K =
1

2
(e1 � e2 − e2 � e1), ∀ e1, e2 ∈ Γ(E),

which is the skew-symmetrization of �. By axiom (ii) in Definition 3.1, (24)
can be written by

(25) Je1, e2K = e1 � e2 −
1

2
DS(e1, e2).

Lemma 3.11. Let (E−1, E0, ∂, ρ, S, �,Ω) be a CLWX 2-algebroid. For all
e0 ∈ Γ(E0), e

1, e11, e
1
2 ∈ Γ(E−1) and f ∈ C∞(M), we have

∂
q
e0, e1

y
=

q
e0, ∂(e1)

y
,(26)

q
∂(e11), e

1
2

y
=

q
e11, ∂(e12)

y
,(27)

q
e0,Df

y
=

1

2
DS(e0,Df).(28)

Proof. By (a) in Definition 2.5 and (15), we have

∂
q
e0, e1

y
= ∂(e0 � e1)− 1

2
∂ ◦ DS(e0, e1) = e0 � ∂(e1),

which implies that (26) holds.
By (c) in Definition 2.5 and axiom (iii) in Definition 3.1, (27) follows

immediately.
By (16) and (17), (28) is obvious. �

For simplicity, for all ei ∈ Γ(E), i = 1, 2, 3, we let

K(e1, e2, e3) = e1 � (e2 � e3)− (e1 � e2) � e3 − e2 � (e1 � e3),(29)

J(e1, e2, e3) = JJe1, e2K , e3K + JJe2, e3K , e1K + JJe3, e1K , e2K .(30)

By (13) and (17), we can deduce that K is totally skew-symmetric.
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Lemma 3.12. Let (E−1, E0, ∂, ρ, S, �,Ω) be a CLWX 2-algebroid. For all
e0, e01, e

0
2, e

0
3 ∈ Γ(E0), e

1, e11, e
1
2 ∈ Γ(E−1), we have

J(e01, e
0
2, e

0
3) = −∂Ω(e01, e

0
2, e

0
3),(31)

J(e01, e
0
2, e

1) = DT (e01, e
0
2, e

1)− Ω(e01, e
0
2, ∂e

1),(32)

T (∂e11, e
0, e12) = −T (∂e12, e

0, e11),(33)

where the totally skew-symmetric T : Γ(E0)× Γ(E0)× Γ(E−1) −→ C∞(M)
is given by

(34) T (e01, e
0
2, e

1) =
1

6

(
S(e01,

q
e02, e

1
y
) + S(e1,

q
e01, e

0
2

y
) + S(e02,

q
e1, e01

y
)
)
.

Proof. It is obvious that J(e01, e
0
2, e

0
3) = −K(e01, e

0
2, e

0
3), which implies that

(31) holds.
By straightforward computations, we have

K(e01, e
0
2, e

1) = −J(e01, e
0
2, e

1) +R(e01, e
0
2, e

1),

where

R(e01, e
0
2, e

1) =
1

2

(
DS(e01,

q
e02, e

1
y
)−DS(e1,

q
e01, e

0
2

y
)−DS(e02,

q
e01, e

1
y
)

+DS(e01,DS(e1, e02))−DS(e02,DS(e1, e01))
)
.

Similarly, we have

K(e1, e01, e
0
2) = −J(e1, e01, e

0
2) +R(e1, e01, e

0
2),

where

R(e1, e01, e
0
2) =

1

2

(
DS(e02,

q
e01, e

1
y
) +DS(e1,

q
e01, e

0
2

y
)

+DS(e01,
q
e02, e

1
y
)−DS(e01,DS(e1, e02))

)
,

and

K(e02, e
1, e01) = −J(e02, e

1, e01) +R(e02, e
1, e01),

where

R(e02, e
1, e01) =

1

2

(
−DS(e02,

q
e01, e

1
y
)−DS(e01,

q
e02, e

1
y
)

+DS(e1,
q
e01, e

0
2

y
) +DS(e02,DS(e1, e01))

)
.



i
i

“8-Sheng” — 2020/1/7 — 15:44 — page 1870 — #18 i
i

i
i

i
i

1870 J. Liu and Y. Sheng

Since both J and K are completely skew-symmetric, we have

3K(e01, e
0
2, e

1) = −3J(e01, e
0
2, e

1) + 3DT (e01, e
0
2, e

1).

Then by axiom (e1) in Definition 2.5, we have

K(e01, e
0
2, e

1) = Ω(e01, e
0
2, ∂e

1),

which implies that (32) holds.
Finally, by axiom (iii) in the Definition 3.1, (26) and (27), we have

T (∂(e11), e
0, e12)

=
1

6

(
S(∂(e11),

q
e0, e12

y
) + S(e0,

q
e12, ∂(e11)

y
) + S(e12,

q
∂(e11), e

0
y
)
)

=
1

6

(
S(e11,

q
e0, ∂(e12)

y
) + S(e0,

q
∂(e12), e

1
1

y
) + S(∂(e12),

q
e11, e

0
y
)
)

= −T (∂e12, e
0, e11).

The proof is finished. �

Lemma 3.13. For all e1 ∈ Γ(E−1) and e01, e
0
2, e

0
3, e

0
4 ∈ Γ(E0), we have

Ω(
q
e01, e

0
2

y
, e03, e

0
4)− Ω(

q
e01, e

0
3

y
, e02, e

0
4) + Ω(

q
e01, e

0
4

y
, e02, e

0
3)

+ Ω(
q
e02, e

0
3

y
, e01, e

0
4)− Ω(

q
e02, e

0
4

y
, e01, e

0
3) + Ω(

q
e03, e

0
4

y
, e01, e

0
2)

−
q
Ω(e01, e

0
2, e

0
3), e

0
4

y
−

q
Ω(e01, e

0
3, e

0
4), e

0
2

y
+

q
Ω(e01, e

0
2, e

0
4), e

0
3

y

+
q
Ω(e02, e

0
3, e

0
4), e

0
1

y
+DS(Ω(e01, e

0
2, e

0
3), e

0
4) = 0,

and

2J + K = −S(Ω(∂e1, e02, e
0
3), e

0
4),

where

J = S(J(e1, e02, e
0
3), e

0
4)− S(J(e1, e02, e

0
4), e

0
3) + S(J(e1, e03, e

0
4), e

0
2)

+ 3S(Ω(∂e1, e02, e
0
3), e

0
4),

K = S(
q
e1, e02

y
,
q
e03, e

0
4

y
)− S(

q
e1, e03

y
,
q
e02, e

0
4

y
) + S(

q
e1, e04

y
,
q
e02, e

0
3

y
).
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Proof. By axiom (f) in Definition 2.5, axiom (v) in Definition 3.1 and (25),
we have

Ω(
q
e01, e

0
2

y
, e03, e

0
4)− Ω(

q
e01, e

0
3

y
, e02, e

0
4) + Ω(

q
e01, e

0
4

y
, e02, e

0
3)

+ Ω(
q
e02, e

0
3

y
, e01, e

0
4)− Ω(

q
e02, e

0
4

y
, e01, e

0
3) + Ω(

q
e03, e

0
4

y
, e01, e

0
2)

−
q
Ω(e01, e

0
2, e

0
3), e

0
4

y
−

q
Ω(e01, e

0
3, e

0
4), e

0
2

y
+

q
Ω(e01, e

0
2, e

0
4), e

0
3

y

+
q
Ω(e02, e

0
3, e

0
4), e

0
1

y
+DS(Ω(e01, e

0
2, e

0
3), e

0
4)

= Ω(e01 � e02, e03, e04)− Ω(e01 � e03, e02, e04) + Ω(e01 � e04, e02, e03) + Ω(e02 � e03, e01, e04)
− Ω(e02 � e04, e01, e03) + Ω(e03 � e04, e01, e02)− Ω(e01, e

0
2, e

0
3) � e04

+
1

2
DS(Ω(e01, e

0
2, e

0
3), e

0
4) + e02 � Ω(e01, e

0
3, e

0
4)−

1

2
DS(Ω(e01, e

0
3, e

0
4), e

0
2)

− e03 � Ω(e01, e
0
2, e

0
4) +

1

2
DS(Ω(e01, e

0
2, e

0
4), e

0
3)− e01 � Ω(e02, e

0
3, e

0
4)

+
1

2
DS(Ω(e02, e

0
3, e

0
4), e

0
1) +DS(Ω(e01, e

0
2, e

0
3), e

0
4)

=
1

2
DS(Ω(e01, e

0
2, e

0
3), e

0
4)−

1

2
DS(Ω(e01, e

0
3, e

0
4), e

0
2) +

1

2
DS(Ω(e01, e

0
2, e

0
4), e

0
3)

+
1

2
DS(Ω(e02, e

0
3, e

0
4), e

0
1) +DS(Ω(e01, e

0
2, e

0
3), e

0
4)

= −DS(Ω(e01, e
0
2, e

0
3), e

0
4) +DS(Ω(e01, e

0
2, e

0
3), e

0
4) = 0.

The second equality can be proved by the same method in the proof of
Lemma 2.5.2 in [Roy]. We omit the details. �

Let (E−1, E0, ∂, ρ, S, �,Ω) be a CLWX 2-algebroid. Consider the graded
vector space e = e−2 ⊕ e−1 ⊕ e0, where e0 = Γ(E0), e−1 = Γ(E−1) and e−2 =
C∞(M).

Theorem 3.14. A CLWX 2-algebroid (E−1, E0, ∂, ρ, S, �,Ω) gives rise to a
Lie 3-algebra (e, l1, l2, l3, l4), where li are given by the following formulas:

l1(f) = D(f), ∀ f ∈ C∞(M),

l1(e
1) = ∂(e1), ∀ e1 ∈ Γ(E−1),

l2(e
0
1 ∧ e02) =

q
e01, e

0
2

y
, ∀ e01, e02 ∈ Γ(E0),

l2(e
0 ∧ e1) =

q
e0, e1

y
, ∀ e0 ∈ Γ(E0), e

1 ∈ Γ(E−1),

l2(e
0 ∧ f) =

1

2
S(e0,Df), ∀ e0 ∈ Γ(E0), f ∈ C∞(M),

l2(e
1
1 ∨ e12) = 0, ∀ e11, e12 ∈ Γ(E−1),
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l3(e
0
1 ∧ e02 ∧ e03) = Ω(e01, e

0
2, e

0
3), ∀ e01, e02, e03 ∈ Γ(E0),

l3(e
0
1 ∧ e02 ∧ e1) = −T (e01, e

0
2, e

1), ∀ e01, e02 ∈ Γ(E0), e
1 ∈ Γ(E−1),

l4(e
0
1 ∧ e02 ∧ e03 ∧ e04) = Ω(e01, e

0
2, e

0
3, e

0
4), ∀ e01, e02, e03, e04 ∈ Γ(E0),

where Ω : ∧4Γ(E0) −→ C∞(M) is given by

Ω(e01, e
0
2, e

0
3, e

0
4) = S(Ω(e01, e

0
2, e

0
3), e

0
4).

Proof. We need to show that (6) holds for n = 1, 2, 3, 4, 5. For n = 1, we
need to show that l21 = 0, which follows from ∂ ◦ D = 0.

For n = 2, we need to verify that for all xi ∈ e,

− l2(l1(x1), x2) + (−1)|x1||x2|l2(l1(x2), x1) + l1l2(x1, x2) = 0.(35)

For x1 = e0 ∈ e0, x2 = f ∈ e−2, by (28), we have

l2(Df, e0) +Dl2(e0, f) = −
q
e0,Df

y
+

1

2
DS(e0,Df)

= −1

2
DS(e0,Df) +

1

2
DS(e0,Df)

= 0,

which implies that (35) holds for x1 ∈ e0 and x2 ∈ e−2. The other cases can
be proved similarly and we omit the details.

For n = 3, we need to prove that for all xi ∈ e,

l3(l1(x1), x2, x3)− (−1)|x1||x2|l3(l1(x2), x1, x3)(36)

+ (−1)|x3|(|x1|+|x2|)l3(l1(x3), x1, x2) + l2(l2(x1, x2), x3)

− (−1)|x2||x3|l2(l2(x1, x3), x2) + (−1)|x1|(|x2|+|x3|)l2(l2(x2, x3), x1)

+ l1l3(x1, x2, x3)

= 0.

By (31), we can deduce that (36) holds for x1, x2, x3 ∈ e0. By (32), we can
deduce that (36) holds for two elements in e0 and one element in e−1. By
(33), we can deduce that (36) holds for one element in e0 and two elements
in e−1. The other cases can be proved similarly and we omit the details.
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For n = 4, we need to verify the following equality:

− l4(l1(x1), x2, x3, x4) + (−1)|x1||x2|l4(l1(x2), x1, x3, x4)

− (−1)|x3|(|x1|+|x2|)l4(l1(x3), x1, x2, x4)

+ (−1)|x4|(|x1|+|x2|+|x3|)l4(l1(x4), x1, x2, x3)

− (−1)|x2||x3|l3(l2(x1, x3), x2, x4) + (−1)|x4|(|x3|+|x2|)l3(l2(x1, x4), x2, x3)

+ (−1)|x1|(|x3|+|x2|)l3(l2(x2, x3), x1, x4)

− (−1)|x1|(|x4|+|x2|)+|x3||x4|l3(l2(x2, x4), x1, x3)

+ (−1)(|x3|+|x4|)(|x1|+|x2|)l3(l2(x3, x4), x1, x2)− l2(l3(x1, x2, x3), x4)
− (−1)|x2|(|x3|+|x4|)l2(l3(x1, x3, x4), x2) + (−1)|x3||x4|l2(l3(x1, x2, x4), x3)

+ (−1)|x1|(|x2|+|x3|+|x4|)l2(l3(x2, x3, x4), x1) + l3(l2(x1, x2), x3, x4)

+ l1l4(x1, x2, x3, x4) = 0.

For x1 = e01, x2 = e02, x3 = e03, x4 = e04 ∈ e0, we need to prove that

Ω(
q
e01, e

0
2

y
, e03, e

0
4)− Ω(

q
e01, e

0
3

y
, e02, e

0
4) + Ω(

q
e01, e

0
4

y
, e02, e

0
3)

+Ω(
q
e02, e

0
3

y
, e01, e

0
4)− Ω(

q
e02, e

0
4

y
, e01, e

0
3) + Ω(

q
e03, e

0
4

y
, e01, e

0
2)

−
q
Ω(e01, e

0
2, e

0
3), e

0
4

y
−

q
Ω(e01, e

0
3, e

0
4), e

0
2

y
+

q
Ω(e01, e

0
2, e

0
4), e

0
3

y

+
q
Ω(e02, e

0
3, e

0
4), e

0
1

y
+DΩ(e01, e

0
2, e

0
3, e

0
4) = 0,

which holds by Lemma 3.13.
For x1 = e1 ∈ e−1, x2 = e02, x3 = e03, x4 = e04 ∈ e0, we need to prove that

−Ω(∂e1, e02, e
0
3, e

0
4)− T (

q
e1, e02

y
, e03, e

0
4) + T (

q
e1, e03

y
, e02, e

0
4)

−T (
q
e1, e04

y
, e02, e

0
3)− T (

q
e02, e

0
3

y
, e01, e

0
4) + T (

q
e02, e

0
4

y
, e01, e

0
3)

−T (
q
e03, e

0
4

y
, e1, e02) +

q
T (e1, e02, e

0
3), e

0
4

y
+

q
T (e1, e03, e

0
4), e

0
2

y

−
q
T (e02, e

0
3, e

0
4), e

1
y
−

q
T (e1, e02, e

0
4), e

0
3

y
= 0.

On one hand, by direct calculation, we have

q
T (e1, e02, e

0
3), e

0
4

y
+

q
T (e1, e03, e

0
4), e

0
2

y

−
q
T (e02, e

0
3, e

0
4), e

0
1

y
−

q
T (e1, e02, e

0
4), e

0
3

y
= −1

2
J.
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On the other hand, we have

−Ω(∂e1, e02, e
0
3, e

0
4)− T (

q
e1, e02

y
, e03, e

0
4) + T (

q
e1, e03

y
, e02, e

0
4)

−T (
q
e1, e04

y
, e02, e

0
3)− T (

q
e02, e

0
3

y
, e1, e04) + T (

q
e02, e

0
4

y
, e1, e03)

−T (
q
e03, e

0
4

y
, e1, e02) = −1

6
(J + 2K)− 1

3
Ω(∂e1, e02, e

0
3, e

0
4).

Therefore, by Lemma 3.13, we prove the equality above.
Finally, we can show that (6) holds for n = 5. We omit the details. The

proof is finished. �

Remark 3.15. In [Roy07A], Roytenberg showed that one can obtain a
semistrict Lie 2-algebra from a weak Lie 2-algebra via the skew-symmetri-
zation. For a CLWX 2-algebroid (E−1, E0, ∂, ρ, S, �,Ω), the Leibniz 2-algebra
(Γ(E−1),Γ(E0), ∂, �,Ω) is not necessarily a weak Lie 2-algebra. Thus, we ob-
tain a Lie 3-algebra rather than a Lie 2-algebra via the skew-symmetrization.

Remark 3.16. In this remark, we give a possible way to understand The-
orem 3.14 conceptually. In [Roy07A], Roytenberg introduced the notion of
a weak Lie 2-algebra and showed that via skew-symmetrization, one can
obtain a Lie 2-algebra. Assume that this result could be generalized to the
higher case: one can obtain a Lie n-algebra from a weak Lie n-algebra via
skew-symmetrization. Then hopefully our Leibniz 2-algebra in a CLWX 2-
algebroid can naturally be completed to a weak Lie 3-algebra and the Lie
3-algebra given in Theorem 3.14 is exactly its skew-symmetrization.

4. The CLWX 2-algebroid associated to a split Lie
2-algebroid

In this section, we first describe a split Lie 2-algebroid structure on a graded
vector bundle A−1 ⊕A0 using the graded Poisson bracket on T ∗[3](A0 ⊕
A∗−1)[1]. Then we construct a CLWX 2-algebroid A⊕A∗[1] from a split Lie
2-algebroid A with explicit formulas using the usual language of differential
calculus. In Section 6, we will generalize this result to the case of split Lie
2-bialgebroids using the tool of derived brackets and graded geometry.

Let A = A−1 ⊕A0 be a graded bundle. The shifted cotangent bun-
dle T ∗[3](A0 ⊕A∗−1)[1] is a P -manifold of degree 3 over M . Denote by
(xi, ξj , θk, pi, ξj , θ

k) a canonical Darboux coordinate on M, where xi is a
coordinate on M , (ξj , θk) is the fiber coordinate on A0 ⊕A∗−1, (pi, ξj , θ

k) is
the momentum coordinate on M for (xi, ξj , θk). The degrees of variables
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(xi, ξj , θk, pi, ξj , θ
k) are respectively (0, 1, 1, 3, 2, 2). The degree of the sym-

plectic structure ω = dxidpi + dξjdξj + dθkdθ
k is 3 and the degree of the

corresponding graded Poisson structure is −3.
Now we consider the following function2 µ of degree 4 on M:

µ = µ1
i
j(x)piξ

j + µ2
i
j(x)ξiθ

j(37)

+
1

2
µ3

k
ij(x)ξkξ

iξj + µ4
k
ijθ

jξiθk +
1

6
µ5

l
ijk(x)θlξ

iξjξk,

where µ1
i
j , µ2

i
j , µ3

k
ij , µ4

k
ij , µ5

l
ijk are functions on M . The function µ can be

uniquely decomposed into3

µ = µ2 + µ134 + µ5,

where µ2, µ134 and µ5 are given by

µ2 = µ2
i
j(x)ξiθ

j ,

µ134 = µ1
i
j(x)piξ

j +
1

2
µ3

k
ij(x)ξkξ

iξj + µ4
k
ijξ

iθjθk,

µ5 =
1

6
µ5

l
ijk(x)θlξ

iξjξk.

Define a bundle map l1 : A−1 −→ A0 by

(38) l1(X
1) =

{
X1, µ2

}
.

Define l2 : Γ(A−i)× Γ(A−j) −→ Γ(A−i−j), 0 ≤ i+ j ≤ 1 by

(39)


l2(X

0, Y 0) =
{
Y 0,

{
X0, µ134

}}
,

l2(X
0, Y 1) =

{
Y 1,

{
X0, µ134

}}
,

l2(Y
1, X0) = −

{
X0,

{
Y 1, µ134

}}
.

Define a bundle map l3 : ∧3A0 −→ A−1 by

(40) l3(X
0, Y 0, Z0) =

{
Z0,

{
Y 0,

{
X0, µ5

}}}
,

where X0, Y 0, Z0 ∈ Γ(A0) and X1, Y 1 ∈ Γ(A−1).

2We thank very much the referee for pointing out that such a function is linear
on A∗.

3It is routine to check that the decomposition does not depend on the choice of
local coordinates. See also [IU] for more details.
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Finally, define a bundle map a : A0 −→ TM by

(41) a(X0)(f) =
{
f,
{
X0, µ134

}}
, ∀ X0 ∈ Γ(A0), f ∈ C∞(M).

Theorem 4.1. Let A = A−1 ⊕A0 be a graded vector bundle and µ a de-
gree 4 function given by (37). If {µ, µ} = 0, (A, l1, l2, l3, a) is a split Lie
2-algebroid, where l1, l2, l3 and a are given by (38)–(41) respectively.

Conversely, if (A, l1, l2, l3, a) is a split Lie 2-algebroid, we have {µ, µ} =
0, where µ is given by (37), in which µ1

i
j , µ2

i
j , µ3

k
ij , µ4

k
ij , µ5

l
ijk are given by:

a(ξj) = µ1
i
j

∂

∂xi
, l1(θj) = µ2

i
jξi,

l2(ξi, ξj) = µ3
k
ijξk, l2(θj , ξi) = µ4

k
ijθk, l3(ξi, ξj , ξk) = µ5

l
ijkθl.

Proof. One can easily prove that {µ, µ} = 0 is equivalent to the following
three identities:

{µ134, µ2} = 0,

1

2
{µ134, µ134}+ {µ2, µ5} = 0,

{µ134, µ5} = 0.

It is straightforward to deduce that Conditions (ii) and (iii) in Definition 2.6
holds.

In the following, we prove that (Γ(A), l1, l2, l3) is a Lie 2-algebra. It
is easy to see that l2 and l3 are totally skew-symmetric. For all X0 ∈
Γ(A0), X

1 ∈ Γ(A−1), we have{
X1,

{
X0, {µ2, µ134}

}}
= −l2(X0, l1(X

1)) + l1l2(X
0, X1) = 0,

which implies that l1l2(X
0, X1) = l2(X

0, l1(X
1)).

For all X1, Y 1 ∈ Γ(A−1), we have{
Y 1,

{
X1, {µ2, µ134}

}}
= l2(l1(X

1), Y 1)− l2(X1, l1(Y
1)) = 0,

which implies that l2(l1(X
1), Y 1) = l2(X

1, l1(Y
1)).

For all X0, Y 0, Z0 ∈ Γ(A0), by{
Z0,

{
Y 0,

{
X0,

1

2
{µ134, µ134}+ {µ2, µ5}

}}}
= 0,
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we get

l2(X
0, l2(Y

0, Z0)) + l2(Z
0, l2(X

0, Y 0)) + l2(Y
0, l2(Z

0, X0))

= l1l3(X
0, Y 0, Z0).

For all X0, Y 0 ∈ Γ(A0), Z
1 ∈ Γ(A−1), by{

Z1,

{
Y 0,

{
X0,

1

2
{µ134, µ134}+ {µ2, µ5}

}}}
= 0,

we get

l2(X
0, l2(Y

0, Z1)) + l2(Z
1, l2(X

0, Y 0)) + l2(Y
0, l2(Z

1, X0))

= l3(X
0, Y 0, l1(Z

1)).

For all X0, Y 0, Z0,W 0 ∈ Γ(A0), by{
W 0,

{
Z0,

{
Y 0,

{
X0,

1

2
{µ134, µ134}+ {µ2, µ5}

}}}}
= 0,

we deduce that (6) holds for n = 4. Therefore, (Γ(A), l1, l2, l3) is a Lie 2-
algebra.

The proof of the converse part is similar as the above deduction. We
omit the details. The proof is finished. �

Let (A, l1, l2, l3, a) be a split Lie 2-algebroid with the structure function
µ. Then we have a generalized Chevalley-Eilenberg complex

(Γ(Sym(A[1])∗), δ),

where δ is defined by

(42) δ(·) = {µ, ·}.

In particular, for all f ∈ C∞(M), α0 ∈ Γ(A∗0), α
1 ∈ Γ(A∗−1), we have

(43)


δ(f)(X0) = a(X0)(f),

δ(α0)(X0, Y 0) = a(X0)〈α0, Y 0〉−a(Y 0)〈α0, X0〉−〈α0, l2(X
0, Y 0)〉,

δ(α1)(X0, Y 1) = a(X0)〈α1, Y 1〉 − 〈α1, l2(X
0, Y 1)〉,

where X0, Y 0 ∈ Γ(A0), Y
1 ∈ Γ(A−1).
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Given a split Lie 2-algebroid (A, l1, l2, l3, a), define l∗1 : A∗0 −→ A∗−1 by

(44) 〈l∗1(α0), X1〉 = 〈α0, l1(X
1)〉, ∀α0 ∈ Γ(A∗0), Y

1 ∈ Γ(A−1).

For all X0 ∈ Γ(A0), define L0
X0 : Γ(A∗−i) −→ Γ(A∗−i), i = 0, 1, by

〈L0
X0α0, Y 0〉 = ρ(X0)〈Y 0, α0〉 − 〈α0, l2(X

0, Y 0)〉,
〈L0

X0α1, Y 1〉 = ρ(X0)〈Y 1, α1〉 − 〈α1, l2(X
0, Y 1)〉,

where α0 ∈ Γ(A∗0), Y
0 ∈ Γ(A0), α

1 ∈ Γ(A∗−1), Y
1 ∈ Γ(A−1).

For all X1 ∈ Γ(A−1), define L1
X1 : Γ(A∗−1) −→ Γ(A∗0) by

(45) 〈L1
X1α1, Y 0〉 = −〈α1, l2(X

1, Y 0)〉, ∀α1 ∈ Γ(A∗−1), Y
0 ∈ Γ(A0).

For all X0, Y 0 ∈ Γ(A0), define L3
X0,Y 0 : Γ(A∗−1) −→ Γ(A∗0) by

(46) 〈L3
X0,Y 0α1, Z0〉 = −〈α1, l3(X

0, Y 0, Z0)〉, ∀α1 ∈ Γ(A∗−1), Z
0 ∈ Γ(A0).

The following lemmas list some properties of the above operators.

Lemma 4.2. For all X0 ∈ Γ(A0), X
1 ∈ Γ(A−1), f ∈ C∞(M), α0 ∈ Γ(A∗0),

α1 ∈ Γ(A∗−1), we have

L0
X0fα0 = f(L0

X0α0) + a(X0)(f)α0,

L0
fX0α0 = f(L0

X0α0) + 〈X0, α0〉δ(f),

L0
X0fα1 = f(L0

X0α1) + a(X0)(f)α1,

L0
fX0α1 = f(L0

X0α1),

L1
X1fα1 = f(L1

X1α1),

L1
fX1α1 = f(L1

X1α1) + 〈X1, α1〉δ(f),

L0
X0α0 = ιX0δα0 + διX0α0,

L1
X1α1 = διX1α1 − ιX1δα1.

Proof. It is straightforward. �

Lemma 4.3. For X0, Y 0 ∈ Γ(A0), X
1 ∈ Γ(A−1), α

0 ∈ Γ(A∗0), α
1 ∈ Γ(A∗−1),

we have

L0
l2(X0,Y 0)α

0 − L0
X0L0

Y 0α0 + L0
Y 0L0

X0α0 = −L3
X0,Y 0 l∗1α

0,(47)

L0
l2(X0,Y 0)α

1 − L0
X0L0

Y 0α1 + L0
Y 0L0

X0α1 = −l∗1L3
X0,Y 0α1,(48)

L1
l2(X1,Y 0)α

1 − L1
X1L0

Y 0α1 + L0
Y 0L1

X1α1 = −L3
l1(X1),Y 0α

1.(49)
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Proof. For all Z0 ∈ Γ(A0), we have

〈L0
l2(X0,Y 0)α

0 − L0
X0L0

Y 0α0 + L0
Y 0L0

X0α0, Z0〉
= (a(l2(X

0, Y 0))− a(X0)a(Y 0) + a(Y 0)a(X0))〈α0, Z0〉
+ 〈α0,−l2(l2(X0, Y 0), Z0)− l2(Y 0, l2(X

0, Z0)) + l2(X
0, l2(Y

0, Z0))〉
= 〈α0, l1l3(X

0, Y 0, Z0)〉
= 〈−L3

X0,Y 0 l∗1α
0, Z0〉,

which implies that the first equality holds. The others can be proved simi-
larly. �

Let (A, l1, l2, l3, a) be a split Lie 2-algebroid. Now let E0 = A0 ⊕A∗−1,
E−1 = A−1 ⊕A∗0 and E = E0 ⊕ E−1. Let ∂ : E−1 −→ E0 and ρ : E0 −→ TM
be bundle maps defined by

∂(X1 + α0) = l1(X
1) + l∗1(α0),(50)

ρ(X0 + α1) = a(X0).(51)

On Γ(E), there is a natural symmetric bilinear form (·, ·)+ given by

(X0 + α1 +X1 + α0, Y 0 + β1 + Y 1 + β0)+(52)

= 〈X0, β0〉+ 〈Y 0, α0〉+ 〈X1, β1〉+ 〈Y 1, α1〉,

where X0, Y 0 ∈ Γ(A0), X
1, Y 1 ∈ Γ(A−1), α

0, β0 ∈ Γ(A∗0), α
1, β1 ∈ Γ(A∗−1).

On Γ(E), we introduce the operation � by

(53)


(X0 + α1) � (Y 0 + β1) = l2(X

0, Y 0) + L0
X0β1 − L0

Y 0α1,

(X0 + α1) � (X1 + α0) = l2(X
0, X1) + L0

X0α0 + ιX1δ(α1),

(X1 + α0) � (X0 + α1) = l2(X
1, X0) + L1

X1α1 − ιX0δ(α0).

An E−1-valued 3-form Ω is defined by

Ω(X0 + α1, Y 0 + β1, Z0 + ζ1)(54)

= l3(X
0, Y 0, Z0) + L3

X0,Y 0ζ1 + L3
Z0,X0β1 + L3

Y 0,Z0α1,

where X0, Y 0, Z0 ∈ Γ(A0), α
1, β1, ζ1 ∈ Γ(A∗−1).

It is easy to see that the operator D : C∞(M) −→ Γ(E−1) is given by

(55) D(f) = δ(f), ∀ f ∈ C∞(M).
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Theorem 4.4. Let (A, l1, l2, l3, a) be a split Lie 2-algebroid. Then

(E−1, E0, ∂, ρ, S, �,Ω)

is a CLWX 2-algebroid, where ∂ is given by (50), ρ is given by (51), S is
given by (52), � is given by (53) and Ω is given by (54).

Proof. It is easy to verify that e � e = 1
2D(e, e)+ for all e ∈ Γ(E).

In the following, we verify that (Γ(E−1),Γ(E0), ∂, �,Ω) is a Leibniz 2-
algebra. For all e0 = X0 + α1 ∈ Γ(E0), e

1 = X1 + α0, we have

∂((X0 + α1) � (X1 + α0)) = l1l2(X
0, X1) + l∗1

(
L0
X0α0 + ιX1δ(α1)

)
,

(X0 + α1) � ∂(X1 + α0) = l2(X
0, l1(X

1)) + L0
X0 l∗1(α0)− L0

l1(X1)α
1.

Since (Γ(A), l1, l2, l3) is a Lie 2-algebra, we have

l1l2(X
0, X1) = l2(X

0, l1(X
1)), l2(l1(X

1), Y 1) = l2(X
1, l1(Y

1)).

Then by the fact that a ◦ l1 = 0, we get

l∗1
(
L0
X0α0 + ιX1δ(α1) = L0

X0 l∗1(α0)− L0
l1(X1)α

1.

Therefore we have

(56) ∂(e0 � e1) = e0 � ∂(e1),

which implies that Condition (a) in Definition 2.5 holds.
Also by the fact a ◦ l1 = 0, we have

∂(e1 � e0) = l∗1(δ(e1, e0)+)− ∂(e0 � e1)
= −∂(e0 � e1) = −e0 � ∂(e1) = ∂(e1) � e0,

which implies that Condition (b) in Definition 2.5 holds.
Similarly, for all e1i ∈ Γ(E−1), i = 1, 2, we have

(57) ∂(e11) � e12 = e11 � ∂(e12),

which implies that Condition (c) in Definition 2.5 holds.
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For all X0
i ∈ Γ(A0), i = 1, 2, 3, it is obvious that

K(X0
1 , X

0
2 , X

0
3 ) = l1l3(X

0
1 , X

0
2 , X

0
3 ) = ∂Ω(X0

1 , X
0
2 , X

0
3 ).

Furthermore, for all X0
i ∈ Γ(A0), i = 1, 2 and α1 ∈ Γ(A∗−1), by Lemma 4.3,

we have

K(X0
1 , X

0
2 , α

1) = −(L0
l2(X0

1 ,X
0
2 )
α1 − L0

X0
1
L0
X0

2
α1 + L0

X0
2
L0
X0

1
α1)

= l∗1L
3
X0

1 ,X
0
2
α1 = ∂Ω(X0

1 , X
0
2 , α

1).

Therefore, for all e0i ∈ Γ(E0), i = 1, 2, 3, we get

(58) K(e01, e
0
2, e

0
3) = ∂Ω(e01, e

0
2, e

0
3),

which implies that Condition (d) in Definition 2.5 holds.
Similarly, for all e0i ∈ Γ(E0), i = 1, 2 and e1 ∈ Γ(E−1), we have

K(e01, e
0
2, e

1) = Ω(e01, e
0
2, ∂e

1),

K(e01, e
1, e02) = Ω(e01, ∂e

1, e02),

K(e1, e01, e
0
2) = Ω(∂e1, e01, e

0
2),

which implies that Conditions (e1)-(e3) in Definition 2.5 holds.
By the coherence law that l3 satisfies in the definition of a Lie 2-algebra,

we can deduce that Condition (f) in Definition 2.5 also holds. We omit the
details. Thus, (Γ(E−1),Γ(E0), ∂, �,Ω) is a Leibniz 2-algebra.

Finally, for all e11, e
1
2 ∈ Γ(E−1), e1, e2, e3 ∈ Γ(E) and e01, e

0
2, e

0
3, e

0
4 ∈ Γ(E0),

it is straightforward to deduce that

(∂(e11), e
1
2)+ = (e11, ∂(e12))+,

ρ(e1)(e2, e3)+ = (e1 � e2, e3)+ + (e2, e1 � e3)+,
(Ω(e01, e

0
2, e

0
3), e

0
4)+ = −(e03,Ω(e01, e

0
2, e

0
4))+,

which implies that axioms (iii), (iv) and (v) in Definition 3.1 hold. The proof
is finished. �

Example 4.5. Let (g−1, g0, l1, l2, l3) be a Lie 2-algebra. Denote by d0 =
g0 ⊕ g∗−1 and d−1 = g−1 ⊕ g∗0. Then the CLWX 2-algebroid given by Theo-
rem 4.4 is over a point. By remark 3.2, we obtain a metric Lie 2-algebra struc-
ture on the graded vector space d0⊕d−1. The Lie 2-algebra (d−1, d0, ∂, [·, ·],Ω)
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is given as follows:

∂ = l1 + l∗1,

[x0 + α1, y0 + β1] = l2(x
0, y0) + ad0∗

x0β1 − ad0∗
y0α

1,

[x0 + α1, y1 + β0] = l2(x
0, y1) + ad0∗

x0β0 − ad1∗
y1α

1,

Ω(x0 + α1, y0 + β1, z0 + ζ1) = l3(x
0, y0, z0) + ad3∗

x0,y0ζ
1 + ad3∗

y0,z0α
1

+ ad3∗
z0,x0β1,

for all x0, y0, z0 ∈ g0, x
1, y1 ∈ g−1, α

1, β1 ∈ g∗−1, α
0, β0 ∈ g∗0, where ad0∗

x0 :

g∗−i −→ g∗−i, ad1∗
x1 : g∗−1 −→ g∗0 and ad3∗

x0,y0 : g∗−1 −→ g∗0 are defined respec-
tively by

〈ad0∗
x0α1, x1〉 = −〈α1, l2(x

0, x1)〉,
〈ad0∗

x0α0, y0〉 = −〈α0, l2(x
0, y0)〉,

〈ad1∗
x1α1, y0〉 = −〈α1, l2(x

1, y0)〉,
〈ad3∗

x0,y0α
1, z0〉 = −〈α1, l3(x

0, y0, z0)〉.

Thus, this Lie 2-algebra is exactly the semidirect product of the Lie 2-algebra
(g−1, g0, l1, l2, l3) with its dual g∗0[1]⊕ g∗−1[1] via the coadjoint representa-
tion.

5. QP-manifolds T ∗[3]A[1] and CLWX 2-algebroids

Let A be a vector bundle over M and A∗ its dual bundle. The shifted bundle
A[1] is a graded manifold whose fiber space has degree −1. We consider the
shifted cotangent bundle M := T ∗[3]A[1]. It is a P -manifold of degree 3
over M . In this section, we construct a CLWX 2-algebroid from the degree 3
QP-manifold T ∗[3]A[1].

Denote by (qi, ξα, ξα, pi) a canonical Darboux coordinate on T ∗[3]A[1],
where qi is a coordinate on M , ξα is the fiber coordinate on A[1], (pi, ξα) is
the momentum coordinate on T ∗[3]A[1] for (qi, ξα). The degrees of variables
(qi, ξα, ξα, pi) are respectively (0, 1, 2, 3). The degree of the symplectic struc-
ture ω = dqidpi + dξαdξα is 3 and the degree of the corresponding graded
Poisson structure is −3. In the local coordinate, any Q-structure Θ is of the
following form:

(59) Θ = f1
i
a(x)piξ

a + f2
ab(x)ξaξb +

1

2
f3
c
ab(x)ξaξbξc +

1

6
f4abcd(x)ξaξbξcξd.
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We write Θ = θ2 + θ13 + θ4, where the substructures are

θ2 = f2
abξaξb,

θ13 = f1
i
a(x)piξ

a +
1

2
f3
c
abξ

aξbξc,

θ4 =
1

6
f4abcdξ

aξbξcξd.

The classical master equation {Θ,Θ} = 0 is equivalent to the following three
identities:

{θ13, θ2} = 0,(60)

1

2
{θ13, θ13}+ {θ2, θ4} = 0,(61)

{θ13, θ4} = 0.(62)

Define two bundle maps ∂ : A∗ −→ A and ρ : A −→ TM by the following
identities respectively:

∂α = {α, θ2}, ∀ α ∈ Γ(A∗),(63)

ρ(X)(f) = {f, {X, θ13}}, ∀ X ∈ Γ(A), f ∈ C∞(M).(64)

A natural non-degenerate bilinear form S on A∗ ⊕A is given by

(65) S(X + α, Y + β) = 〈X,β〉+ 〈Y, α〉, ∀ X,Y ∈ Γ(A), α, β ∈ Γ(A∗).

Define the operation � by

(66)


X � Y = {Y, {X, θ13}}, ∀ X,Y ∈ Γ(A),

X � α = {α, {X, θ13}}, ∀ X ∈ Γ(A), α ∈ Γ(A∗),

α �X = −{X, {α, θ13}}, ∀ X ∈ Γ(A), α ∈ Γ(A∗).

An A∗-valued 3-form Ω is defined by

(67) Ω(X,Y, Z) = {Z, {Y, {X, θ4}}}, ∀ X,Y, Z ∈ Γ(A).

Theorem 5.1. Let (T ∗[3]A[1],Θ) be a QP -manifold of degree 3. Then
(A∗[1], A, ∂, ρ, S, �,Ω) is a CLWX 2-algebroid, where ∂ is given by (63), ρ
is given by (64), S is given by (65), � is given by (66) and Ω is given by
(67).

The proof follows from the following Lemma 5.2–5.4 directly.
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Lemma 5.2. With the above notations, e � e = 1
2DS(e, e), where S is given

by (65) and D : C∞(M)−→Γ(A∗) is given by 〈D(f), X〉 = ρ(X)(f), in which
ρ is given by (64).

Proof. By (66) and (43), we can deduce that

X � Y = −Y �X,(68)

X � α+ α �X = δ〈X,α〉,(69)

which finishes the proof. �

Lemma 5.3. With the above notations, (Γ(A∗),Γ(A), ∂, �,Ω) is a Leibniz
2-algebra, where ∂ is given by (63), � is given by (66) and Ω is given by (67)
respectively.

Proof. By (60), we have {θ2, {X, θ13}} = 0. Thus we have

∂(X � α) = {{α, {X, θ13}}, θ2}(70)

= −{{θ2, α}, {X, θ13}} − {α, {θ2, {X, θ13}}}
= {{α, θ2}, {X, θ13}} = X � ∂(α).

By (60), we get

(71) ρ ◦ ∂ = 0.

Then by (69), we have

(72) ∂(α �X) = ∂(δ〈X,α〉 −X � α) = ∂(δ〈X,α〉)−X � ∂(α) = ∂(α) �X.

Similarly, we have

(73) ∂(α) � β = α � ∂(β).

By (61) and the following two facts:

{Z, {Y, {X, {θ13, θ13}}}} = −2
(
X � (Y � Z)− (X � Y ) � Z − Y � (X � Z)

)
,

{Z, {Y, {X, {θ2, θ4}}}} = ∂Ω(X,Y, Z),

where X,Y, Z ∈ Γ(A), we have

(74) X � (Y � Z)− (X � Y ) � Z − Y � (X � Z) = ∂Ω(X,Y, Z).
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Similarly, we can obtain

X � (Y � α)− (X � Y ) � α− Y � (X � α) = Ω(X,Y, ∂(α)),(75)

X � (α � Y )− (X � α) � Y − α � (X � Y ) = Ω(X, ∂(α), Y ),(76)

α � (X � Y )− (α �X) � Y −X � (α � Y ) = Ω(∂(α), X, Y ).(77)

Finally, expanding {W, {Z, {Y, {X, {θ13, θ4}}}}} = 0 by the graded Jacobi
identity, we have

W � Ω(X,Y, Z)−X � Ω(W,Y,Z) + Y � Ω(W,X,Z) + Ω(W,X, Y ) � Z(78)

− Ω(W �X,Y, Z)− Ω(X,W � Y, Z)− Ω(X,Y,W � Z)

+ Ω(W,X � Y,Z) + Ω(W,Y,X � Z)− Ω(W,X, Y � Z) = 0.

By (70), (72), (73), (74)–(78), we deduce that (Γ(A∗),Γ(A), ∂, �,Ω) is a
Leibniz 2-algebra. �

Lemma 5.4. With the above notations, for all α, β ∈ Γ(A∗), X,Y, Z,W ∈
Γ(A) and e1, e2, e3 ∈ Γ(A)⊕ Γ(A∗), we have

〈∂α, β〉 = 〈α, ∂β〉,(79)

ρ(e1)S(e2, e3) = S(e1 � e2, e3) + S(e2, e1 � e3),(80)

S(Ω(X,Y, Z),W ) = −S(Z,Ω(X,Y,W )).(81)

Proof. By the Jacobi identity of the graded Poisson bracket {·, ·}, we have

〈∂α, β〉 = {∂α, β} = {{α, θ2}, β}
= {α, {θ2, β}} − {θ2, {α, β}} = −{α, ∂β} = {∂β, α} = 〈∂β, α〉.

For X,Y ∈ Γ(A), α ∈ Γ(A∗), we have

{Y, {α, {X, θ13}}} = {{Y, α}, {X, θ13}}+ {α, {Y, {X, θ13}}},

which implies that

〈Y,X � α〉 = ρ(X)〈Y, α〉 − 〈α,X � Y 〉.

That is ρ(X)S(Y, α) = S(X � Y, α) + S(Y,X � α). Therefore, (80) holds
when e1, e2 ∈ Γ(A) and e3 ∈ Γ(A∗). Similarly, we can show that (80) holds
for all the other cases.



i
i

“8-Sheng” — 2020/1/7 — 15:44 — page 1886 — #34 i
i

i
i

i
i

1886 J. Liu and Y. Sheng

Finally, (81) follows from

S(Ω(X,Y, Z),W ) = {W, {Z, {Y, {X, θ4}}}}
= {{W,Z} , {Y, {X, θ4}}} − {Z, {W, {Y, {X, θ4}}}}
= −S(Ω(X,Y,W ), Z).

The proof is finished. �

Remark 5.5. The P-manifold of degree 3, T ∗[3]A[1], can be viewed as a
shifted manifold of T ∗[2]A[1], which is a P-manifold of degree 2. However,
in general, a degree 3 function Θ on T ∗[2]A[1] is not a degree 4 function on
T ∗[3]A[1]. Thus, there is not a canonical way to obtain a QP-manifold of
degree 3 from a given QP-manifold of degree 2. Therefore, we can not obtain
a CLWX 2-algebroid from an arbitrary Courant algebroid.

Remark 5.6. Let us consider the degree 3 QP-manifold T ∗[3]T [1]M where
the Q-structure is given by piξ

i in local coordinates. On one hand, accord-
ing to Theorem 5.1, we obtain the CLWX 2-algebroid (T ∗[1]M,TM, ∂ =
0, ρ = id, S, �,Ω = 0) given in Remark 3.4. Then according to Theorem 3.14,
we have a Lie 3-algebra structure on C∞(M)[2]⊕ Ω1(M)[1]⊕ X(M). On
the other hand, according to [Zam], there is also a Lie 3-algebra structure
on C∞(M)[2]⊕ Ω1(M)[1]⊕ (X(M)⊕ Ω2(M)). However, we do not find any
connection between the two Lie 3-algebras.

Furthermore, if we consider the Q-structure given by

piξ
i +

1

6
f4abcdξ

aξbξcξd,

we obtain the CLWX 2-algebroid (T ∗[1]M,TM, ∂ = 0, ρ = id, S, �,Ω = H)
given in Example 3.5.

6. The CLWX 2-algebroid associated to a split Lie
2-bialgebroid

In this section, we introduce the notion of a split Lie 2-bialgebroid and show
that there is a CLWX 2-algebroid structure on A⊕A∗[1] associated to any
split Lie 2-bialgebroid (A,A∗[1]).

Now assume that there is a split Lie 2-algebroid structure on the dual
bundle A∗[1] = A∗0[1]⊕A∗−1[1]. Since T ∗[3]((A0 ⊕A∗−1)∗[1])[1], T ∗[3](A0 ⊕
A∗−1)[1] and T ∗[3](A0 ⊕A∗−1)∗[2] are naturally isomorphic, by Theorem 4.1,
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the dual split Lie 2-algebroid (A∗[1], l1, l2, l3, a) gives rise to a degree 4 func-
tion γ on T ∗[3](A0 ⊕A∗−1)[1] satisfying {γ, γ} = 0. It is given in local coor-
dinates (xi, ξj , θk, pi, ξj , θ

k) by

γ = γ1
ij(x)pjθi + γ2

j
i (x)ξjθ

i(82)

+
1

2
γ3
ij
k (x)θkθiθj + γ4

ij
k ξiθjξ

k +
1

6
γ5
ijk
l (x)ξlθiθjθk.

We will also write γ = γ2 + γ134 + γ5.

Definition 6.1. Let (A, l1, l2, l3, a) be a split Lie 2-algebroid with the struc-
ture function µ given by (37) and (A∗[1], l1, l2, l3, a) a split Lie 2-algebroid
with the structure function γ given by (82). The pair (A,A∗[1]) is called a
split Lie 2-bialgebroid if γ2 = µ2 and

(83) {µ+ γ − µ2, µ+ γ − µ2} = 0,

where {·, ·} is the graded Poisson bracket corresponding to the symplectic
structure ω = dxidpi + dξjdξj + dθkdθ

k on T ∗[3](A0 ⊕A∗−1)[1].

Denote a split Lie 2-bialgebroid by (A,A∗[1]).
We denote by L0,L1,L3, δ∗ the operations for the dual split Lie 2-

algebroid (A∗[1], l1, l2, l3, a) corresponding to the operations L0, L1, L3, δ for
the split Lie 2-algebroid (A, l1, l2, l3, a).

Now we assume that (A, l1, l2, l3, a) and (A∗[1], l1, l2, l3, a) are split Lie
2-algebroids. Let E0 = A0 ⊕A∗−1, E−1 = A−1 ⊕A∗0 and E = E0 ⊕ E−1.

Let ∂ : E−1 −→ E0 and ρ : E0 −→ TM be bundle maps defined by

∂(X1 + α0) = l1(X
1) + l1(α

0),(84)

ρ(X0 + α1) = a(X0) + a(α1).(85)

On Γ(E), we introduce the operation � by

(86)



(X0 + α1) � (Y 0 + β1) = l2(X
0, Y 0) + L0

X0β1 − L0
Y 0α1

+l2(α
1, β1) + L0α1Y 0 − L0β1X0,

(X0 + α1) � (X1 + α0) = l2(X
0, X1) + L0

X0α0 + ιX1δ(α1)

+l2(α
1, α0) + L0α1X1 + ια0δ∗(X

0),

(X1 + α0) � (X0 + α1) = l2(X
1, X0) + L1

X1α1 − ιX0δ(α0)

+l2(α
0, α1) + L1α0X0 − ια1δ∗(X

1).



i
i

“8-Sheng” — 2020/1/7 — 15:44 — page 1888 — #36 i
i

i
i

i
i

1888 J. Liu and Y. Sheng

An E−1-valued 3-form Ω is defined by

Ω(X0 + α1, Y 0 + β1, Z0 + ζ1)(87)

= l3(X
0, Y 0, Z0) + L3

X0,Y 0ζ1 + L3
Y 0,Z0α1 + L3

Z0,X0β1

+ l3(α
1, β1, ζ1) + L3α1,β1Z0 + L3β1,ζ1X

0 + L3ζ1,α1Y 0,

where X0, Y 0, Z0 ∈ Γ(A0), α
1, β1, ζ1 ∈ Γ(A∗−1).

Theorem 6.2. Let (A,A∗[1]) be a split Lie 2-bialgebroid. Then

(E−1, E0, ∂, ρ, (·, ·)+, �,Ω)

is a CLWX 2-algebroid, where E0 = A0 ⊕A∗−1, E−1 = A−1 ⊕A∗0, ∂ is given
by (84), ρ is given by (85), (·, ·)+ is given by (52), � is given by (86) and Ω
is given by (87).

Proof. Since µ+ γ − µ2 is a degree 4 function on T ∗[3]E0[1] satisfying

{µ+ γ − µ2, µ+ γ − µ2} = 0,

by Theorem 5.1, there is a CLWX 2-algebroid defined by µ+ γ − µ2 through
derived brackets. It is straightforward to deduce that (84)–(87) are exactly
the one obtained through derived brackets. The proof is finished. �
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