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On L2-cohomology of almost
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We prove two results regarding the L2 cohomology of almost-
complex manifolds. First we show that there exist complete, d-
bounded almost Kähler manifolds of any complex dimension n ≥ 2
such that the space of harmonic 1-forms in L2 has infinite dimen-
sion. By contrast a theorem of Gromov [6] states that a complete
d-bounded Kähler manifold X has no nontrivial harmonic forms of
degree different from n = dimCX. Second let (X,J, g) be a com-
plete almost Hermitian manifold of dimension four. We prove that
the reduced L2 2nd-cohomology group decomposes as direct sum of
the closure of the invariant and anti-invariant L2-cohomology. This
generalizes a decomposition theorem by Drǎghici, Li and Zhang
[4] for 4-dimensional closed almost complex manifolds to the L2-
setting.

1. Introduction

Cohomological properties of closed complex manifolds have recently been
studied by many authors, focusing on their relations with other special struc-
tures (see e.g. [1, 4, 9] and the references therein). The aim of this paper
is to study cohomological properties of non compact almost complex man-
ifolds. In this context, L2-cohomology provides a useful tool to study the
relationship between such properties and the existence of further structures,
e.g., Kähler, almost Kähler structures.

In [6] Gromov developed L2-Hodge theory for complete Riemannian
manifolds, respectively Kähler manifolds, proving an L2-Hodge decompo-
sition Theorem for L2-forms.
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1774 R. Hind and A. Tomassini

As a consequence, for a complete and d-bounded Kähler manifold X, denot-
ing by Hk2 , respectively Hp,q2 , the space of ∆-harmonic L2-forms of degree
k, respectively ∆∂-harmonic L2-forms of bi-degree (p, q), he showed that
Hk2 ' ⊕p+q=kH

p,q
2 ; furthermore, denoting by m = dimCX, that Hk2 = {0},

for all k 6= m and hence Hp,q2 = {0}, for all (p, q) such that p+ q 6= m. A key
ingredient in the proof is the Hard Lefschetz Theorem.

In the present paper we show that such a conclusion no longer holds
in the category of non compact almost Kähler manifolds. Indeed, by using
methods of contact geometry, starting with a contact manifold (M,α) hav-
ing an exact symplectic filling (see Definition 3.1), we construct a d-bounded
complete almost Kähler manifold Y satisfying L2H

1(Y ) 6= {0}. More pre-
cisely, we prove the following main result (see Theorem 3.9).

Theorem. There exist d-bounded, complete almost Kähler manifolds Y of
every real dimension 2n ≥ 4 with L2H

1(Y ) infinite dimensional.

Next we focus on L2-cohomology of almost complex 4-dimensional man-
ifolds. In the closed case a theorem of Drǎghici, Li and Zhang [4] states that
the 2nd-de Rahm cohomology group decomposes as the direct sum of J-
invariant and J-anti-invariant cohomology subgroups, which can be viewed
as a sort of L2-Hodge decomposition theorem for almost complex manifolds.
We generalize this to L2 cohomology defined with respect to a complete
Hermitian metric, see Theorem 4.8.

Theorem. Let (X, J, g) be a complete almost Hermitian 4-dimensional man-
ifold. Then,

L2H
2(X;R) = L2H+(X)⊕ L2H−(X).

The paper is organized as follows: in Section 2 we recall some generalities
regarding L2-cohomology. Section 3 is devoted to the proof of non vanishing
of the first L2-cohomology group. In Section 4 we prove the decomposition
Theorem 4.8 and also give cohomological obstructions for an almost complex
structure to admit a compatible complete symplectic form.
Finally, we would like mention an open question. An almost-complex man-
ifold of dimension at least 6 may have a taming symplectic form but not
a compatible symplectic form (see e.g., [8]). For closed 4-dimensional man-
ifolds however, there are no local obstructions and Donaldson in [2] raised
the following question:

Donaldson’s Question([2])If J is an almost complex structure on a com-
pact 4-manifold which is tamed by a symplectic form, is there a symplectic
form compatible with J?
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Moving to the complex case, it is still unknown whether a closed complex
manifold X of dimension at least 6 with a taming symplectic form also has
a compatible symplectic form, in other words, whether it is Kähler. Such
a question has a positive answer by Li and Zhang for complex surfaces [9,
Theorem 1.2]. Here is an analogue of the question for open manifolds.

Question. Let (X, J) be a complex 2n-dimensional manifold. Suppose there
exists a d-bounded symplectic form ω taming J such that g(·, ·) = 1

2(ω(·, J ·)−
ω(J ·, ·)) is complete. Does (X, J) admit a complete d-bounded Kähler struc-
ture whose corresponding metric is uniformly comparable to g?

Our construction in section 3 gives d-bounded complete almost complex
manifolds Y which admit a compatible symplectic form and correspond-
ing complete metric satisfying L2H

1(Y ;R) 6= {0}. If our construction could
be upgraded to give examples of (integrable) complex manifolds which still
admit a taming symplectic form with corresponding complete metric and
satisfy L2H

1(Y ;R) 6= {0} then by Gromov’s theorem there could not be a
compatible Kähler structure with comparable metric, thus implying a neg-
ative answer.

Acknowledgments. We thank Weiyi Zhang for useful comments. We are also
pleased to thank the referee for fruitful suggestions and remarks leading to
a better presentation of the results. The second author would like to thank
the Math Departments of Stanford and Notre Dame Universities for their
warm hospitality.

2. Preliminaries

We start by recalling some notions about L2-cohomology. Let (X, g) be a
Riemannian manifold and denote by Ωk(X) the space of smooth k-forms
on X. Then α ∈ Ωk(X) is said to be bounded if the L∞-norm of α is finite,
namely,

‖α‖L∞(X)= sup
x∈X
|α(x)| < +∞

where |α(x)| denotes the pointwise norm induced by the metric g on the
space of forms. By definition, a (smooth) k-form α is said to be d-bounded
if α = dβ, where β is a bounded (k − 1)-form. Furthermore, a k-form α is
said to be L2, namely α ∈ L2Ω

k(X) if

‖α‖L2(X):=

(∫
X
|α(x)|2 dx

) 1

2

< +∞,
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that is the pointwise norm |α|2 is integrable. Denote by (L2A
•(X), d) the

sub-complex of (Ω•(X), d) formed by differential forms α such that both α
and dα are in L2. Then the reduced L2-cohomology group of degree k of X
is defined as

L2H
k(X;R) = L2A

k(X) ∩ ker d
/
dL2(Ak−1(X)).

We recall the following (see [6, Lemma 1.1.A])

Lemma 2.1. Let (X, g) be a complete Riemannian manifold of dimension
n and let α ∈ L1Ω

n−1(X), that is∫
X
|α(x)| dx < +∞.

Assume that also dα ∈ L1Ω
n(X). Then∫

X
dα = 0.

Let ∆ = dδ + δd denote the Hodge Laplacian and set

Hk2 = {α ∈ L2Ω
k(X) | ∆α = 0}

namely, Hk2 is the space of harmonic L2-forms on (X, g) of degree k. Then,
under the assumption that (X, g) is complete, Gromov proved the following
Hodge decomposition for L2-forms (see [6]), namely,

(1) L2Ω
k(X) = Hk2 ⊕ d(L2Ωk−1(X))⊕ δ(L2Ωk+1(X)),

where d(L2Ωk−1(X)) means the closure in L2Ω
k(X) of

L2Ω
k(X) ∩ d(L2Ω

k−1(X))

and similarly for δ(L2(Ωk+1(X)). Given any α, β ∈ Ωk(X), we set

〈α, β〉 =

∫
X
g(α, β)dx.

We have the following
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Lemma 2.2. Let (X, g) be a complete Riemannian manifold and let α ∈
L2Ω

k(X). Denote by

α = αH + λ+ µ

the Hodge decomposition of α, where

αH ∈ Hk2 , λ ∈ d(L2Ωk−1(X)), µ ∈ δ(L2Ωk+1(X)).

Then

i) dλ = 0.

ii) If dα = 0, then µ = 0.

Proof. i) Let λ be a smooth k-form. First of all note that dλ = 0 if and only
if for every compactly supported (k + 1)-form ϕ we have 〈λ, δϕ〉 = 0.
Let {dλj}j∈N be a sequence of d-exact forms in L2Ω

k(X) such that λj ∈
L2Ω

k−1(X) for every j ∈ N and dλj → λ in L2. Then

〈λ, δϕ〉 = lim
j→∞
〈dλj , δϕ〉 = 0,

since δ is the adjoint of d.
ii) Let {δµj}j∈N be a sequence of δ-exact forms in L2Ω

k(X) such that µj ∈
L2Ω

k+1(X) for every j ∈ N and δµj → µ in L2. Then, by Lemma 2.1, we
obtain

〈α, δµj〉 = 〈dα, µj〉 = 0.

Now

|〈α, µ〉 − 〈α, δµj〉| =
∣∣∣∣∫
X
g(α, µ− δµj)dx

∣∣∣∣ ≤ ∫
X
|α| |µ− δµj |dx

≤ ‖α‖L2(X)‖µ− δµj‖L2(X).

Hence, the sequence {〈α, δµj〉}j∈N converges to 〈α, µ〉. and consequenltly,
〈α, µ〉 = 0. Therefore, by the L2-orthogonality of the L2-Hodge decomposi-
tion, it follows that µ = 0. �

3. L2-cohomology and contact structures

Let now (X, J) be a complex manifold and g be a Hermitian metric. Then
according to Gromov [6, 1.2.B], if X is a complete n-dimensional Kähler
manifold whose Kähler form ω is d-bounded, then Hk2 = {0}, unless k = n

2 .
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In this section we will see that the same conclusion does not hold in the
category of almost Kähler manifolds.

To begin, let M be a (2n− 1)-dimensional compact contact manifold,
n > 1 and denote by α a contact form. Let ξ = kerα be the contact distri-
bution and R be the Reeb vector field.
On the product manifoldX = M × (3,+∞), with t the coordinate on (3,∞),
let ρ = ρ(t) be a positive smooth function, such that ρ′ > 0 and let ωρ =
d(ρα). Then ωρ is a symplectic form on X.

Definition 3.1. We say that a contact manifold M with contact form α
has an exact symplectic filling if there exists a compact exact symplectic
manifold (W,ω = dλ) with ∂W = M and λ|M = α. Furthermore we require
the Liouville field ζ defined by ζcω = λ to be outward pointing along M .

We remark that if a particular contact form on M has an exact sym-
plectic filling then so do all other contact forms which generate the same
contact structure, that is, all α′ such that kerα′ = kerα.

A version of Darboux’ Theorem implies that a tubular neighborhood of
M = ∂W in W can be identified symplectically with (M × (−δ, 0], d(etα)),
and we may choose a primitive on W equal to etα in this neighborhood.

Proposition 3.2. Suppose that (M,α) has an exact symplectic filling and
ρ(3) > 1. Then there exists an exact symplectic manifold (Y, ω = dβ) such
that the complement of a compact set may be identified with X = M ×
(3,+∞) via a diffeomorphism pulling back ρα to β.

Proof. We set Y = W ∪ (M × (−δ,∞)) where we identify M × (−δ, 0] with
a tubular neighborhood of M = ∂W as above. Then define β|W = λ and
β|M×(0,∞) = ρ(t)α where ρ is extended to (−δ,+∞) such that ρ = et for t
close to 0 and ρ′ > 0 for all t > 0. �

Remark 3.3. We note that if ρα is bounded (with respect to a choice of
metric) on M × [3,+∞) ⊂ Y then it is globally bounded; any compatible
almost complex structure on M × [3,+∞) extends to a compatible almost
complex structure on Y ; any exact 1-form γ on M × [3,+∞) extends to an
exact 1-form on Y , and if γ lies in L2 then so does its extension.

Suppose the contact form has a closed Reeb orbit and we can choose
coordinates (xi, yi, z) ∈ R2(n−1) × R/Z in a tubular neighborhood of the or-
bit such that the contact form is given by α = dz + 1

2(
∑n−1

i=1 xidyi − yidxi).
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Hence the Reeb vector field R = ∂
∂z . Set

r2 =

n−1∑
i=1

x2i + y2i , U =
∂

∂r2
= 2

n−1∑
i=1

(
xi

∂

∂xi
+ yi

∂

∂yi

)
,

V =

n−1∑
i=1

(
−yi

∂

∂xi
+ xi

∂

∂yi

)
+

1

2
r2
∂

∂z

Observe that the vector fields U, V ∈ ξ = kerα. Then define ξ′ ⊂ ξ by

ξ′ = 〈U, V 〉⊥ dα,

the symplectic orthogonal complement of the span of U and V in ξ with
respect to dα. Accordingly, we have a direct sum decomposition

(2) TX = 〈R〉 ⊕
〈
d

dt

〉
⊕ 〈U〉 ⊕ 〈V 〉 ⊕ ξ′.

We will call an almost complex structure J on X adapted to the local coor-
dinates, if there exist smooth functions f, ε : (3,+∞)→ (0,+∞) such that

J
d

dt
= fR, JR = − 1

f

d

dt
, J(ξ) = ξ

on TX. Further, on a subset A < r2 < B, we have in addition

JU =
1

ε
V, JV = −εU, Jξ′ = ξ′.

We will denote by gJ,ρ the Riemannian metric associated with (ωρ, J), that
is gJ,ρ(·, ·) = ωρ(·, J ·). Note that the direct sum (2) is an orthogonal decom-
position with respect to gJ,ρ.

Theorem 3.4. Let ρ(t) = log t, ε(t) = ρ(t)t1−n and f(t) = 1
t log2 t

. Then

(X,ωρ, J) is an almost Kähler manifold, and if (M,α) has an exact sym-
plectic filling then the structure extends to Y . Further:

i) ωρ is d-bounded.

ii) (Y, ωρ, J, gJ,ρ) is complete.

iii) Let b = b(r2) be a smooth function satisfying b′ = 0 if r2 /∈ (A,B). Set
γ = db. Then γ ∈ L2Ω

1(X). Moreover, γ ∈ dL2(C∞(X)) only if γ = 0.
The 1-form γ extends to a 1-form on Y and the conclusions hold for
the extension.
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For the proof of Theorem 3.4, we will need the following general

Lemma 3.5. Let (Z, g) be a Riemannian manifold and let γ ∈ L2Ω
k(Z),

γ 6= 0. Let {dϕj}j∈N be a sequence in d(L2Ω
k−1(Z)) ∩ L2Ω

k(Z) such that
dϕj → γ in L2. Then, for all j >> 1,

‖ϕj‖L2(Z)≥ C(γ) ,

for a suitable positive constant C(γ).

Proof. Since γ 6= 0 there exists a bump function a such that 〈γ, aγ〉 > 0. We
have:

〈γ, aγ〉 − 〈dϕj , aγ〉 = 〈γ − dϕj , aγ〉 =

∫
Z
g(γ − dϕj , aγ)dx

≤
∫
Z
|γ − dϕj ||aγ|dx ≤ ‖γ − dϕj‖L2(Z) ‖aγ‖L2(Z).

Set

Cj = ‖γ − dϕj‖L2(Z) ‖aγ‖L2(Z).

Note that Cj → 0 for j → +∞. We obtain

〈γ, aγ〉 − Cj ≤ 〈dϕj , aγ〉 = 〈ϕj , δ(aγ)〉 ≤ ‖ϕj‖L2(Z) ‖δ(aγ)‖L2(Z) .

For j large the left hand side is positive, hence ‖δ(aγ)‖L2(Z)> 0 and therefore
setting

C(γ) =
〈γ, aγ〉

2‖δ(aγ)‖L2(Z)

we get

‖ϕj‖L2(Z)≥ C(γ) > 0.

�

We give now the proof of Theorem 3.4

Proof of Theorem 3.4. By Remark 3.3 it suffices to work on X. By con-
struction, J is an almost complex structure on X which is compatible
with ωρ. Therefore, gJ,ρ(·, ·) = ωρ(·, J ·) is a Riemannian metric on X and
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(X,ωρ, J, gJ,ρ) is an almost Kähler manifold. Then

ωnρ = 2ρ′ρn−1dt ∧ α ∧ (dα)n−1

is a volume form on X and VolM = 2α ∧ (dα)n−1 is a volume form on the
compact contact manifold M , so that

ωnρ = ρ′ρn−1dt ∧VolM .

i) By assumption, ω = d(ρα) = dλ, where λ = ρα; by definition ωρ is d-
bounded if λ ∈ L∞(X). Recalling that JR = − 1

f
d
dt , we have,

|R|2 = ωρ(R, JR) = −ωρ
(
R,

1

f

d

dt

)
=
ρ′

f
.

Since J preserves the contact distribution ξ, we see that α is dual to f
ρ′R

with respect to gJ,ρ. Therefore |λ|2 = ρ2 fρ′ . Hence λ ∈ L∞(X) if and only if

(3) f ≤ C ρ′

ρ2
,

where C is a positive constant. By our assumptions,

ρ = log t, f =
1

t log2 t
,

so that (3) is satisfied.

ii) In order to check completeness of (Y, ωρ, J) it is enough to estimate∫ +∞
3 | ddt |dt. We obtain:

∣∣∣∣ ddt
∣∣∣∣2 = ωρ

(
d

dt
, J

d

dt

)
= ωρ

(
d

dt
, fR

)
= fρ′.

Therefore, ∫ +∞

3

∣∣∣∣ ddt
∣∣∣∣ =

∫ +∞

3

√
ρ′fdt = +∞ ,

that is (Y, ωρ, Jε,f , gε,f,ρ) is complete.



i
i

“5-Hind” — 2020/1/17 — 11:47 — page 1782 — #10 i
i

i
i

i
i

1782 R. Hind and A. Tomassini

iii) First of all we check that γ ∈ L2Ω
1(X). We have the pointwise estimate

valid on the support of γ:

|γ|2 = b′2|dr2|2 = b′2
(dr2(U))2

|U |2
,

since dr2 vanishes on the orthogonal complement of 〈U〉 in the decomposition
(2), indeed, dr2 = −2V bdα. Therefore,

|γ|2 = b′2
(dr2(U))2

|U |2
≤ ‖b′‖2L∞

ε

2ρA
,

since

|U |2 = ω(U, JU) =
1

ε
ω(U, V ) =

2ρr2

ε
.

Therefore, as ε = ρt1−n, for suitable constants c1, c2 we get:

‖γ‖2L2(X)≤ c1
∫
X

ε

ρ
ωnρ = c1

∫
X
t1−nρn−1ρ′dt ∧VolM

= c2

∫ +∞

3

logn−1 t

tn
dt < +∞.

Let γ 6= 0. We show that γ /∈ dL2(C∞(X)).
By contradiction: assume that there exists a sequence {ϕj}j∈N in L2(C∞(X))
such that dϕj ∈ L2Ω1(X) for every j ∈ N and dϕj → γ in L2Ω

1(X). Set
γj = dϕj . We also write

fj(t) :=

∫
M×{t}

(ϕj)
2 VolM .

Then

‖ϕj‖2L2(M×[a,b]) =

∫ b

a

(log t)n−1

t
dt

∫
M×{t}

(ϕj)
2 VolM

=

∫ b

a

(log t)n−1

t
fj(t)dt.

We will show that fj(t) is bounded away from 0 for large j, contradicting
the assumption that ϕj ∈ L2(C∞(X)). First, for the pointwise norm of γ,
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since γ( ddt) = 0, we have the estimate:∣∣∣∣γj ( d

dt

)∣∣∣∣ =

∣∣∣∣(γj − γ)

(
d

dt

)∣∣∣∣(4)

≤ |γ − γj |
∣∣∣∣ ddt
∣∣∣∣ = |γ − γj |

√
fρ′ =

1

t log t
|γ − γj |.

Now

f ′j(t) =

∫
M×{t}

2ϕjdϕj

(
d

dt

)
VolM =

∫
M×{t}

2ϕjγj

(
d

dt

)
VolM .

Therefore, by (4), setting

ψj(t) := 2‖γ − γj‖L2(M×{t}),

we obtain:

|f ′j(t)| ≤
∫
M×{t}

2|ϕj |
∣∣∣∣γj ( d

dt

)∣∣∣∣VolM(5)

≤ 2

t log t
‖ϕj‖L2(M×{t})‖γ − γj‖L2(M×{t})

=
1

t log t

√
fj(t)ψj(t).

From the last expression,

[√
fj(t)

]b
a
≤ 1

2

∫ b

a

1

t log t
ψj(t)dt(6)

≤ 1

2

(∫ b

a

1

t(log t)n+1
dt

) 1

2
(∫ b

a

(log t)n−1

t
ψ2
j (t)dt

) 1

2

=
1

2

√[
− 1

n(log t)n

]b
a

(∫ b

a

(log t)n−1

t
ψ2
j (t)dt

) 1

2

.

Now, by definition,∫ b

a

(log t)n−1

t
ψ2
j (t)dt = 4

∫ b

a

(∫
M×{t}

|γ − γj |2VolM

)
(log t)n−1

t
dt(7)

≤ 4‖γ − γj‖2L2(X).
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In view of (6) and (7), we obtain

(8)
√
fj(b)−

√
fj(a) ≤ 2

√
1

n(log a)n
− 1

n(log b)n
‖γ − γj‖L2(X).

By assumption, dϕj → γ in L2(X), and consequently dϕj → γ also in
L2(M × [3, 3 + δ]). By Lemma 3.5, it follows that there exists a constant
C(γ, δ) such that that

‖ϕj‖2L2(M×[3,3+δ])≥ C(γ, δ) ,

for all j >> 1, where C(γ, δ) > 0 is independent of j, that is

C(γ, δ) ≤
∫ 3+δ

3

(log t)n−1

t
fj(t)dt.

But ∫ 3+δ

3

(log t)n−1

t
fj(t)dt ≤ sup

3≤t≤3+δ
|fj(t)|

∫ 3+δ

3

(log t)n−1

t
dt,

which implies

sup
3≤t≤3+δ

|fj(t)| ≥
nC(γ, δ)

(log(3 + δ))n − (log 3)n
.

Therefore, for all large j there exists a t ∈ [3, 3 + ε] such that

fj(t) ≥
nC(γ, δ)/2

(log(3 + δ))n − (log 3)n

and we note that the lower bound is independent of j. By (8), this implies
that fj(t) is bounded below for large j and all t, since γj → γ in L2(X).
This gives our contradiction as required. �

Corollary 3.6. Let (Y, ωρ, J, gJ,ρ) be an almost Kähler structure adapted
to a contact form α as above. Then for γ, ε, f as in Theorem 3.4 we have

L2H
1(Y ;R) 6= {0}.

Proof. Let γ be a non-zero exact 1-form on M satisfying the hypothesis iii)
of Theorem 3.4. Then the pull-back of γ to X extends to a 1-form on Y ,
still denoted by γ, such that [γ] 6= 0. �
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Corollary 3.7. Suppose b1(r
2), b2(r

2), . . . is an infinite family of linearly
independent real valued smooth functions on M such that b′1 = 0, b′2 = 0, . . .
for r2 /∈ (A,B). Let γj be an extension to Y of the pull-back of γj = dbj
to X. Then (Y, ωρ, J, gJ,ρ) is an almost Kähler structure and L2H

1(Y ) is
infinite dimensional.

Proof. Any finite linear combination
∑r

j=1 cjγj , for ci ∈ R, j = 1, . . . , r sat-
isfies the assumptions of Corollary 3.6. Hence

r∑
j=1

cj [γj ] 6= 0.
�

Corollary 3.8. The almost complex structure J is not integrable.

Proof. By [6, 1.2.B], complete d-bounded Kähler manifolds have L2H
1 =

{0}. �

We collect the previous results in the following

Theorem 3.9. There exist d-bounded, complete almost Kähler manifolds
Y of every dimension 2n ≥ 4 so that L2H

1(Y ) is infinite dimensional.

4. L2-Decomposition for almost complex 4-manifolds

Let (X, J, g) be a 4-dimensional almost Hermitian manifold. Then J acts as
an involution on the space of smooth 2-forms Ω2(X): given α ∈ Ω2(X), for
every pair of vector fields u, v on X

Jα(u, v) = α(Ju, Jv) .

Therefore the bundle Λ2X splits as the direct sum of ±1-eigenspaces Λ±,
i.e., Λ2X = Λ+ ⊕ Λ−. We will refer to the sections of Λ+

J , respectively Λ−J
as to the invariant respectively anti-invariant forms, denoted by Ω+(X),
respectively Ω−(X). Let us denote by L2Z(X) the space of closed 2-forms
which are in L2 and set

L2Z± = L2Z(X) ∩ Ω±(X).

Define

L2H
±(X) = {a ∈ L2H

2(X;R) | ∃α ∈ L2Z± such that a = [α]}.
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We will assume that g is a complete J-Hermitian metric on X and we
will denote by ω the corresponding fundamental form. Let Λ±g be the ±1-
eigenbundle of the ∗ Hodge operator associated with g. Then, we have the
following relations

(9) Λ+
J = SpanR〈ω〉 ⊕ Λ−g , Λ+

g = SpanR〈ω〉 ⊕ Λ−J .

In general if α− is anti-invariant then

(10) ∗ α− = α−.

Therefore,

Corollary 4.1. Closed anti-invariant forms are harmonic, that is, we have
an inclusion L2Z− ↪→ H2

2. All anti-invariant forms are self-dual, while anti
self-dual forms are invariant.

For closed almost complex 4-manifolds Drǎghici, Li and Zhang showed
in [4] that there is a direct sum decomposition

H2
dR(X;R) = H+(X)⊕H−(X).

In this section we generalize such a decomposition to the L2 setting. The
arguments follow closely those in [4].
First of all, by the L2-Hodge decomposition and Lemma 2.2 the vector space
L2H

2(X;R) is isomorphic to the spaceH2
2 of L2-harmonic forms onX, which

is a topological subspace of the Hilbert space L2Ω
2(X). The following lemma

is well known.

Lemma 4.2. H2
2 is a closed subspace of L2Ω

2(X), and hence inherits the
structure of a Hilbert space.

Proof. We recall the proof for the sake of completeness. Let {αj}j∈N be a
sequence inH2

2 such that αj → α, for j → +∞ in L2. Then, for every smooth
compactly supported 2-form ϕ on X we have:

〈α, δϕ〉 = lim
j→+∞

〈αj , δϕ〉 = 0.

In the same way,

〈α, dϕ〉 = lim
j→+∞

〈αj , dϕ〉 = 0,

that is α is harmonic in the sense of distributions. Therefore, by elliptic
regularity, α ∈ H2

2. �
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Lemma 4.3. Let α ∈ L2Ω
2(X) be self-dual and let α = αH + λ+ µ be its

L2-Hodge decomposition (1). Then,

λsdg = µsdg , λasdg = −µasdg

where λ = λsdg + λasdg and µ = µsdg + µasdg denote the ∗-decomposition. Fur-
thermore, the forms

(11) α+ 2λasdg = αH + 2λ.

are closed.

Proof. By assumption ∗α = α. Hence, if

α = αH + λ+ µ,

where λ ∈ d(L2Ω1(X)), µ ∈ δ(L2Ω3(X)) then,

∗α = ∗αH + ∗λ+ ∗µ = αH + λ+ µ

Now, if {λj}j∈N, {µj}j∈N are sequences in d(L2Ω
1(X)), respectively

δ(L2Ω
3(X)) such that

λj = dλ′j , µj = dµ′j , λj ∈ L2Ω
1(X), µj ∈ L2Ω

3(X), dλ′j → λ, dµ′j → µ

in the L2-norm, then

‖λj − λ‖L2(X)= ‖dλ′j − λ‖L2(X)= ‖∗dλ′j − ∗λ‖L2(X),

so that ∗dλ′j → ∗λ in L2 and, similarly, ∗dµ′j → ∗µ. Therefore, since

∗dλ′j ∈ δ(L2Ω
3(X)), ∗δµ′j ∈ d(L2Ω

2(X)),

we obtain that

∗λ ∈ L2Ω
2(X), ∗µ ∈ L2Ω

2(X), ∗λ ∈ δ(L2Ω3(X), ∗µ ∈ d(L2Ω2(X).

Therefore, by the uniqueness of the L2-Hodge decomposition,

∗λ = µ, ∗µ = λ.

Then (11) follows. The form αH + 2λ is closed since αH is harmonic and λ
is closed by Lemma 2.2. �
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Lemma 4.4. The following holds

L2H+(X) ∩ L2H−(X) = {0}.

Proof. Let {αi}i∈N, {βj}i∈N be sequences of harmonic forms in L2Ω
2(X)

with [αi] ∈ L2H
+(X) and [βi] ∈ L2H

−(X) such that αi → α, for i→ +∞
in L2 and βi → α, for i→ +∞ in L2. Then, using Lemma 2.2 and Corollary
4.1 we can write

αi = θ+i + λi , βi = η−i

where θ+i ∈ L2Z+, η−i ∈ L2Z−, λi ∈ dL2(Ω1(X)). Then, as anti-invariant
forms are self-dual we can use Lemma 2.1 to obtain

0 =

∫
X
θ+i ∧ η

−
i =

∫
X
θ+i ∧ ∗η

−
i =

∫
X
αi ∧ ∗βi = 〈αi, βi〉.

Taking a limit this implies

‖α‖2L2(X)= 0,

that is, L2H+(X) ∩ L2H−(X) = {0}. �

Lemma 4.5.

(L2H
+(X)⊕ L2H

−(X))⊥ = {0}.

The orthogonal complement is defined by recalling that L2H
±(X) can be

thought of as subspaces of the Hilbert space H2
2.

Proof. By contradiction: assume that there exists 0 6= [α] ∈ L2H
2(X;R) such

that, for every [θ+] + [θ−] ∈ L2H
+(X)⊕ L2H

−(X),

< α, θ+ + θ− >= 0.

To compute the inner product we assume that α, θ+ and θ− are harmonic
representatives. By taking θ+ to be the anti self-dual part of α (which is
invariant by Corollary 4.1) and θ− = 0 we see immediately that the anti
self-dual part of α must vanish, that is, α is self-dual. Therefore, by (9) we
have

α = cω + θ−,

where c is a function on X such that c 6= 0 and θ− ∈ Ω−(X).
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Since [α] /∈ L2H
−(X) we may assume that there exists x ∈ X such that

c(x) > 0. Let a be a bump function and W be a compact neighborhood of
x such that a|W = 1 and

supp a ⊂ {x ∈ X | c(x) > 0}.

Let Φ : X → R be defined as

Φ(x) = g(α, aω)(x).

Then

Φ(x) = g(α, aω)(x) = g(cω + θ−, aω)(x) = c(x)a(x) ≥ 0.

Now we apply Lemma 4.3 to the self-dual form aΦω. Let λ be the exact part
of the L2 Hodge decomposition of aΦω. Then Lemma 4.3 gives

(aΦω)H + 2λ = aΦω + 2λasdg ∈ L2H
+(X).

Therefore, using Lemma 2.1, 2.2 and noting that self-dual and anti self-dual
forms are pointwise g-orthogonal, we obtain

0 =< (aΦω + 2λasdg )H , α >=
∫
X(aΦω + 2λasdg ) ∧ ∗α

=
∫
X g(α, aΦω) + 2g(α, λasdg )VolX =

∫
X g(α, aΦω)VolX =

∫
X Φ2VolX .

Hence Φ = 0 and c(x) = 0. This gives a contradiction. �

Lemma 4.6. We have

L2H
2(X;R) = L2H+(X)⊕ L2H−(X).

Proof.

L2H+(X)⊕ L2H−(X) = ((L2H
+(X)⊕ L2H

−(X))⊥)⊥ = {0}⊥ = H2
2

using Lemma 4.5. �

Lemma 4.7. The subspace L2H+(X)⊕ L2H−(X) is closed in L2H
2(X;R).

Proof. As L2H+(X) and L2H−(X) are orthogonal, we can check that a
sequence {(αi, βi)} in t he direct sum is Cauchy if and only if both {αi} and
{βi} are Cauchy. �
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Theorem 4.8. Let (X, J, g) be a complete almost Hermitian 4-dimensional
manifold. Then, we have the following decomposition

L2H
2(X;R) = L2H+(X)⊕ L2H−(X).

Proof. Indeed, by Lemma 4.7 the direct sum is closed and so by Lemma 4.6
contains L2H

2(X;R) = L2H+(X)⊕ L2H−(X). �

Let now J be an almost complex structure on a manifold X of any dimen-
sion. The following Proposition provides a cohomological obstruction on J
in order that there exists a compatible symplectic form ω such that the
associated Hermitian metric gJ(·, ·) = ω(·, J ·) is complete.

Proposition 4.9. Let (X, J, ω, gJ) be an almost Kähler manifold such that
gJ is complete. Then

L2H
+(X) ∩ L2H

−(X) = {0}.

Proof. Let [α] ∈ L2H
+(X) ∩ L2H

−(X). Then, there exist α± ∈ L2Z± such
that

α = α+ + λ , α = α− + µ,

where α± ∈ L2Z±. Then

(12) α+ = α− + η

where η ∈ d(L2A1(X)). Let {ηj}j∈N be a sequence in L2(X) such that ηj =
dη′j , η

′
j ∈ L2(X) and dη′j → η in L2(X). Then, by bi-degree reasons,

(13)

∫
X
α+ ∧ α− ∧ ωn−2 = 0.

We claim that

(14)

∫
X
η ∧ α− ∧ ωn−2 = 0.

Indeed,

|〈dη′j ∧ α−, ∗ωn−2〉 − 〈η ∧ α−, ∗ωn−2〉|

≤
∫
X
|(dη′j − η) ∧ α−|| ∗ ωn−2|VolX ≤ C

∫
X
|(dη′j − η)||α−|VolX

≤ ‖dη′j − η‖L2(X)‖α−‖L2(X),
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that is 〈dη′j ∧ α−, ∗ωn−2〉 → 〈η ∧ α−, ∗ωn−2〉, for j → +∞. On the other
hand, by Lemma 2.1,

0 = lim
j→∞
〈dη′j ∧ α−, ∗ωn−2〉 =

∫
X
η ∧ α− ∧ ωn−2,

that is, (14). Therefore, by (10), (12) and (13) we have

0 =

∫
X
α+ ∧ α− ∧ ωn−2

=

∫
X

(α− + η) ∧ α− ∧ ωn−2 =

∫
X
α− ∧ α− ∧ ωn−2

= (n− 2)!

∫
X
α− ∧ ∗α− = (n− 2)!‖α−‖2L2(X),

since given any J-anti-invariant form α− on a 2n-dimensional almost Her-
mitian manifold X, we have ∗α− = 1

(n−2)!α
− ∧ ωn−2. Hence [α] = 0. �

Example 4.10. Let ∆2 = {(z1, z2) ∈ C2 | |z1| < r1, |z2| < r2} be a poly-
disc in C2 endowed with the complete and d-bounded Kähler metric

ω = i∂∂

2∑
j=1

log(1− |zj |2).

Then, the real J-anti-invariant forms

1

2
(dz1 ∧ dz2 + dz1 ∧ dz2) ,

1

2i
(dz1 ∧ dz2 − dz1 ∧ dz2)

and the real J-invariant forms

1

2
(dz1 ∧ dz2 + dz1 ∧ dz2) ,

1

2i
(dz1 ∧ dz2 − dz1 ∧ dz2)

are L2-harmonic, so that L2H
±(∆2) 6= {0}.

Remark 4.11. Notice that for the de Rham cohomology, Drǎghici, Li and
Zhang in [5, Theorem 3.24] constructed non-compact complex surfaces for
which H+(M) ∩H−(M) 6= {0}.
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