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Critical symplectic connections
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The space of symplectic connections on a symplectic manifold is a
symplectic affine space. M. Cahen and S. Gutt showed that the ac-
tion of the group of Hamiltonian diffeomorphisms on this space is
Hamiltonian and calculated the moment map. This is analogous to,
but distinct from, the action of Hamiltonian diffeomorphisms on
the space of compatible almost complex structures that motivates
study of extremal Kähler metrics. In particular, moment constant
connections are critical, where a symplectic connection is critical if
it is critical, with respect to arbitrary variations, for the L2-norm
of the Cahen-Gutt moment map. This occurs if and only if the
Hamiltonian vector field generated by its moment map image is
an infinitesimal automorphism of the symplectic connection. This
paper develops the study of moment constant and critical symplec-
tic connections, following, to the extent possible, the analogy with
the similar, but different, setting of constant scalar curvature and
extremal Kähler metrics.

It focuses on the special context of critical symplectic connec-
tions on surfaces, for which general structural results are obtained,
although some results about the higher-dimensional case are in-
cluded as well. For surfaces, projectively flat and preferred sym-
plectic connections are critical, and the relations between these
and other related conditions are examined in detail. The relation
between the Cahen-Gutt moment map and the Goldman moment
map for projective structures is explained.
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1. Introduction and summary of results

A torsion-free affine connection on a 2n-dimensional symplectic manifold
(M,Ω) is symplectic if ∇iΩjk = 0 (in this article a symplectic connection
is always torsion-free). The space S(M,Ω) of symplectic connections on
(M,Ω) is itself a symplectic affine space, and in [13] (see also [8] or [36]),
M. Cahen and S. Gutt showed that the action of the group Ham(M,Ω) of
Hamiltonian diffeomorphisms on S(M,Ω) is Hamiltonian, with moment map
∇ → K(∇) ∈ C∞(M) (see(1.10) for its definition).

This recalls the Hamiltonian action of Ham(M,Ω) on the space J(M,Ω)
of almost complex structures compatible with Ω, that plays an important
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role in the study of extremal and constant scalar curvature Kähler metrics.
This analogy suggests studying the moment constant and critical symplectic
connections, where a symplectic connection ∇ ∈ S(M,Ω) is critical if it is
critical with respect to arbitrary compactly supported variations for the
L2-norm

E(∇) =

ˆ
M

K(∇)2 Ωn

n! .(1.1)

(In earlier versions of this article, such connections were called extremal
symplectic. The terminology has been changed because the word extremal
apparently misled some readers into thinking that critical symplectic con-
nections were a special case of the usual almost Hermitian picture.)

This article initiates the study of critical symplectic connections. It has
three main subdivisions. The first, comprising Sections 2 and 3, describes
the general framework. Most of the results are valid in all dimensions 2n.

The second, constituting Sections 4–10, focuses on the case 2n = 2 of
surfaces, for which there are relations with the theory of flat projective
structures. In this setting general structural results are obtained. Basic lines
of inquiry include: the construction of moment flat and critical connections;
the description of the spaces of moment flat and critical connections on a
fixed symplectic manifold; the analysis of to what extent critical connections
are more general than moment constant connections; and, to what extent
moment flat connections are more general than other classes of distinguished
symplectic connections, such as preferred connections or projectively flat
connections.

Although one reason for interest in critical symplectic connections is the
applicability of these notions in the setting of symplectic manifolds admitting
no Kähler metrics, the most studied symplectic connections are the Levi-
Civita connections of Kähler metrics. The third part of the paper, comprising
Sections 11–13 addresses this special case. The results support the idea that
Kähler connections that are critical symplectic are uncommon, and must in
some cases be equivalent to local products of locally symmetric spaces. For
example, it is shown that the Levi-Civita connection of the Ricci-flat Yau
metric on a K3 surface is not critical symplectic.

The results reported here suggest that the higher-dimensional case 2n >
2 is interesting, and, although that context is not the focus of this article,
Section 14 contains brief discussion of analogues for symplectic connections
of the Einstein condition and Bach tensor associated with a metric.

The remainder of the introduction describes the contents in detail. For
technical reasons the ordering of the discussion in the introduction and the
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presentation of the corresponding material in the main text do not always
coincide.

1.1.

Every symplectic manifold admits a symplectic connection, for if ∇̄ is any
torsion-free affine connection then

∇ = ∇̄+ 2
3Ωkp∇̄(iΩj)p(1.2)

is symplectic. Here the abstract index conventions (see [53] or [58]) are used,
and indices are raised and lowered (respecting horizontal position) using
the symplectic form Ωij and the dual antisymmetric bivector Ωij , subject
to the conventions Xi = XpΩpi and Xi = ΩipXp (so that ΩipΩpj = −δj i,
where δj

i is the canonical pairing between the tangent space and its dual).
Enclosure of indices in square brackets (resp. parentheses) indicates com-
plete antisymmetrization (resp. symmetrization) over the enclosed indices.
Among the labels enclosed by delimiters, those further delimited by vertical
bars | · | are omitted from the indicated (anti)symmetrization. For example,
2∇[ih|j|k] = ∇ihjk −∇khji. A label is in either up position or down, and a
label appearing as both an up and a down index indicates the trace pairing
(summation convention).

The affine space S(M,Ω) of symplectic connections on (M,Ω) is mod-
eled on the vector space Γ(S3(T ∗M)) of completely symmetric covariant
cubic tensors, for if ∇, ∇̄ ∈ S(M,Ω) and ∇̄ = ∇+ Πij

k, then Π[ij]
k = 0,

because ∇ and ∇̄ are torsion free, and, with 0 = ∇̄iΩjk = −2Πi[jk], this im-
plies Πijk = Π(ijk). (For a smooth vector bundle E →M , Γ(E) denotes the

vector space of smooth sections of E, and Sk(E) denotes the kth symmetric
power of E.)

The symplectomorphism group Symp(M,Ω) of (M,Ω) comprises
compactly supported diffeomorphisms of M that preserve Ω. The bilinear
Symp(M,Ω)-invariant pairing of α, β ∈ Γ(Sk(T ∗M)) defined by

〈α, β〉 =

ˆ
M
αi1...ikβ

i1...ik Ωn

n!(1.3)

is graded symmetric in the sense that 〈α, β〉 = (−1)|α||β|〈β, α〉, where |α| =
k. If a function is regarded as a 0-tensor, then 〈 · , · 〉 agrees with the L2

inner product on C∞(M). Using a compatible almost complex structure it
is straightforward to show that the pairing 〈α, β〉 is (weakly) nondegenerate
in the sense that if 〈α, β〉 = 0 for all compactly supported β ∈ Γ(Sq(T ∗M))
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then α = 0. Hence, the pairing (1.3) determines on S(M,Ω) a weakly non-
degenerate antisymmetric bilinear form defined by 
∇(α, β) = 〈α, β〉 for
α, β ∈ T∇S(M,Ω) = Γ(S3(T ∗M)). The translation invariance, 
∇+Π = 
∇,
for Π ∈ T∇S(M,Ω) means 
 is parallel, so closed, and so 
 is a symplectic
form.

The diffeomorphism group Diff(M) of M acts by pullback on the
affine space A(M) of torsion-free affine connections on M ; for φ ∈ Diff(M),
φ∗(∇)XY = Tφ−1(∇Tφ(X)Tφ(Y )). The induced action of Symp(M,Ω) on
A(M) preserves the subspace S(M,Ω) and the form 
. This suggests that
interesting classes of symplectic connections can be identified in terms of
the symplectic geometry of the symplectic affine space (S(M,Ω),
) and the
action on it of Symp(M,Ω) and its subgroup Ham(M,Ω) consisting of com-
pactly supported Hamiltonian diffeomorphisms; these are the elements of
the path connected component of the identity Symp(M,Ω)0 ⊂ Symp(M,Ω)
that can be realized as the time one flow of a normalized time-dependent
Hamiltonian on M × [−1, 1], where normalized means mean-zero or com-
pactly supported as M is compact or noncompact.

In general, interesting classes of connections are defined in terms of cur-
vature and as critical points of functionals constructed from the curvature. In
particular, it is natural to consider functionals on S(M,Ω) invariant with re-
spect to the action of some subgroup of Symp(M,Ω). The most basic classes
of functionals are those quadratic in the curvature, or those determined by
some special property of the group action, for example that it be Hamilto-
nian. As will be explained, such considerations focus attention on the classes
of preferred, moment constant, and critical symplectic connections. In order
to define these classes, some more definitions are needed.

The curvature Rijk
l of ∇ ∈ A(M) is defined by 2∇[i∇j]Xk = Rijp

kXp

for X ∈ Γ(TM). The Ricci curvature is Rij = Rpij
p. (Sometimes, for read-

ability, there will be written Ric or Ricij instead of Rij .) The basic properties
of the curvature of a symplectic connection are treated in many sources;
good starting points include [8], [25], [30], and [57]. If ∇ ∈ S(M,Ω), then,
since ∇ preserves Ω, it has symmetric Ricci tensor, for 2R[ij] = −Rijp p = 0.
By the Ricci identity, 0 = 2∇[i∇j]Ωkl = −2Rij[kl], where Rijkl = Rijk

pΩpl.
With the Bianchi identity this yields Rp

p
ij = −2Rip

p
j = 2Rpij

p = 2Rij ; it
follows that every nontrivial trace of Rijkl is a constant multiple of Rij .
From this observation together with the differential Bianchi identity it is
straightforward to obtain ∇pRpijk = ∇iRjk.

The space of tensors on a vector space V having curvature tensor sym-
metries can be decomposed into irreducibles with respect to the action of a
subgroup of GL(V). The decomposition with respect to an orthogonal group
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yields the usual conformal Weyl tensor, the traceless Ricci curvature, and
the scalar curvature. The analogous decomposition with respect to the lin-
ear symplectic group yields only two irreducibles, one, W(V∗,Ω) = {αijkl ∈
⊗4V∗ : α[ij]kl=αijkl, αij[kl] =0, α[ijk]l=0, αpij

p=0}, comprising completely
trace-free tensors with the symmetries of a symplectic curvature tensor, and
one isomorphic to S2(V∗), corresponding to the Ricci curvature. The part of
Rijkl that vanishes when contracted with Ωij on any pair of indices is the
symplectic Weyl tensor

Wijkl = Rijkl − 1
n+1

(
Ωi(kRl)j − Ωj(kRl)i + ΩijRkl

)
∈ Γ(W(T ∗M,Ω)).(1.4)

Particularly in the case 2n = 2, an important role is played by the curva-
ture one-form ρi = ρ(∇)i = 2∇pRip of ∇ ∈ S(M,Ω). Absent some auxiliary
metric structure, there is no reasonable analogue for symplectic connections
of the scalar curvature of a metric, but the symplectic dual of the curvature
one-form is a reasonable analogue of the Hamiltonian vector field generated
by the scalar curvature of a Kähler metric. An almost complex structure Ji

j

is compatible with Ωij if gij = −Ji pΩpj = −Jij is symmetric and positive
definite. In this case the Riemannian volume element dvolg equals Ωn

n! . The
triple (g, J,Ω) is Kähler if J is moreover integrable; to specify it, it suffices
to specify any two of g, J , and Ω. In particular, the Levi-Civita connec-
tion D of g is symplectic. For a Kähler structure (Ω, g, J) with Levi-Civita
connection D and scalar curvature Rg = gijRij , by the traced differential
Bianchi identity there holds 2gpqDpRiq = DiRg, and so

ρi = −2ΩpqDpRiq = −2gpbDp(Jb
qRiq)(1.5)

= 2gpbDp(Ji
qRbq) = Ji

qDqRg = −giqHqRg ,

where Hif = −df i = Ωpidfp is the Hamiltonian vector field associated with

f ∈ C∞(M). (For a nondegenerate covariant symmetric two-tensor gij , g
ij

always denotes the inverse symmetric bivector, and not the tensor obtained
by raising indices with Ωij . When gij is determined by a compatible complex
structure, the two possible meanings for gij coincide.) Equivalently, the vec-
tor field ρ] i metrically dual to ρi is the negative of the Hamiltonian vector
field generated by the scalar curvature: ρ] i = gipρp = −HiRg . In particular,
a Kähler metric has constant scalar curvature if and only if ρ = 0, and is
extremal if and only if ρ] i is a real holomorphic vector field. For a general
symplectic connection the curvature one-form ρi serves as a substitute for
the rotated differential of the scalar curvature, and the vanishing of ρ is a
reasonable substitute for the condition of constant scalar curvature.
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The curvature one-form also admits an interpretation as a multiple of the
trace of the projective Cotton tensor of the projective structure generated by
∇. Two torsion-free affine connections are projectively equivalent if the image
of each geodesic of one is contained in the image of a geodesic of the other.
This is the case if and only if their difference tensor has the form 2γ(iδj)

k

for some one-form γi. A projective structure [∇] is a projective equiva-
lence class of torsion-free affine connections. Let Pij = 1

1−2nR(ij) − 1
2n+1R[ij].

The projective Weyl tensor Bijk
l = Rijk

l + 2δ[i
lPj]k − 2δk

lP[ij] = Rijk
l +

2
1−2nδ[i

lRj]k, depends only on the projective equivalence class of ∇. The

projective Cotton tensor is Cijk = 2∇[iPj]k = 2
1−2n∇[iRj]k − 2

4n2−1∇kR[ij].
When 2n > 2, by the differential Bianchi identity, Cijk = 2(1− n)∇pBijk p.
When 2n = 2, the projective Weyl tensor vanishes and Cijk = −2∇[iRj]k −
2
3∇kR[ij] does not depend on the choice of representative ∇ ∈ [∇]. The

projective structure [∇] is projectively flat if Bijk
l = 0 and Cijk = 0; this

is equivalent to the existence of an atlas of charts with transition func-
tions in PGL(2n,R). For ∇ ∈ S(M,Ω), (2n− 1)Bp

p
ij = 4(n− 1)Rij , so if

2n > 2 a projectively flat symplectic connection is Ricci flat, so flat. Skew-
symmetrizing the differential Bianchi identity ∇pRpijk = ∇iRjk yields (2n−
1)Cijk=∇pRijkp, while differentiating (1.12) yields 2(n+1)∇pRijkp=2(n+
1)∇pWijkp + (2n− 1)Cijk + Ωijρk − Ωk[iρj], so that

(2n+ 1)(2n− 1)Cijk = 2(n+ 1)∇pWijkp + ρkΩij − Ωk[iρj].(1.6)

Tracing (1.6) in ij yields (2n− 1)Cp
p
i = ρi.

The simplest Symp(M,Ω)-invariant functional on the symplectic affine
space (S(M,Ω),
) associates to ∇ ∈ S(M,Ω) the integral

´
M Ri

jRj
i Ωn

n! of
the square of the Ricci endomorphism. Its critical points are characterized
by the equation ∇(iRjk) = 0 (this follows from (2.37)) and are called pre-
ferred. For surfaces preferred symplectic connections were introduced by F.
Bourgeois and M. Cahen in [9] and in [10], where they were called solutions
to the field equations. One reason for interest in preferred symplectic connec-
tions, in addition to their variational character, is that, since decomposing
∇iRjk by symmetries yields 3∇iRjk = 3∇(iRjk) − 2(2n− 1)Ci(jk), the only
possible extensions of the condition that a symplectic connection have par-
allel Ricci tensor are that it have vanishing projective Cotton tensor or that
it be preferred.

Another reason for interest in the preferred symplectic connections is
that any functional on S(M,Ω) that is constructed by integrating expressions
quadratic in the curvature of ∇ ∈ S(M,Ω) has as its critical points the
preferred symplectic connections. If the curvature Rijk

l of ∇ ∈ S(M,Ω) is
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regarded as an adjoint bundle valued two-form Cij , the 4-form tr(C ∧ C)ijkl
equals 6R[ij|p|

qRkl]q
p. The first Pontryagin class p1(M) of M is represented

by the first Pontryagin form

p1 ijkl = p1(∇)ijkl = − 1
8π2 tr(C ∧ C)ijkl(1.7)

= − 3
4π2R[ij|p|

qRkl]q
p = − 3

4π2B[ij|p|
qBkl]q

p

of ∇ ∈ S(M,Ω). Since

8π2p1(∇) ∧ Ω(n−2)

(n−2)! = π2p1(∇)p
p
q
q Ωn

n! = (RijRij − 1
2R

ijklRijkl)
Ωn

n!(1.8)

(see (2.59) and (2.60)), the integral

ˆ
M

(RijRij − 1
2R

ijklRijkl)
Ωn

n!(1.9)

= 8π2

ˆ
M

p1 ∧ Ω(n−2)

(n−2)! = 8π2(n− 2)!〈[p1] ∪ [Ω]n−2, [M ]〉,

depends only on p1(M) and the cohomology class [Ω]. Since all functionals
on S(M,Ω) quadratic in the curvature of∇must be integrals of linear combi-
nations of RijRij and RijklRijkl, it follows that all such functionals have the
same critical points, which are the preferred symplectic connections. This
is similar to, although simpler than, the situation for quadratic curvature
functionals on the space of metrics in a fixed Kähler class as discussed in
[15].

An action of a Lie group G on a symplectic manifold (M,Ω) is sym-
plectic if G acts by symplectic diffeomorphisms. The Lie algebra homomor-
phism from the Lie algebra g of G to symp(M,Ω) defined by x→ Xxp =
d
dt

∣∣
t=0

exp(−tx) · p is Hamiltonian if there is a map µ : M → g∗, equivariant
with respect to the action of G on M and the coadjoint action of G on g∗,
such that for each x ∈ g, the Hamiltonian vector field Hµ(x) equals Xx; µ is
called a moment map.

It is natural to ask if the action of Symp(M,Ω) or its subgroup
Ham(M,Ω) on S(M,Ω) is Hamiltonian. The Lie algebra symp(M,Ω) of
Symp(M,Ω) comprises compactly supported vector fields X such that
LXΩ = 0; equivalently the one-form Xg = Ω(X, · ) is closed. Since H{u,v} =

[Hu,Hv] for the Poisson bracket {u, v} = HiuH
j
vΩij = −dupdvp = dv(Hu) of

u, v ∈ C∞(M), the compactly supported Hamiltonian vector fields consti-
tute a subalgebra ham(M,Ω) ⊂ symp(M,Ω). By a theorem of A. Banyaga,
the infinitesimal generator of a flow by Hamiltonian diffeomorphisms is a
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Hamiltonian vector field, so ham(M,Ω) can be regarded as the Lie alge-
bra of Ham(M,Ω). Because {u, v}Ωn

n! = du ∧ dv ∧ Ω(n−1)

(n−1)! = d(udv ∧ Ω(n−1)

(n−1)! ) is

always exact, if M is compact,
´
M{u, v}

Ωn

n! = 0 for u, v ∈ C∞(M), so the
subspace C∞0 (M) ⊂ C∞(M) of mean zero functions is a Lie subalgebra of
C∞(M), isomorphic to ham(M,Ω) via the map u→ Hu. If M is noncompact,
then ham(M,Ω) is isomorphic with the Lie algebra C∞c (M) of compactly
supported smooth functions. It follows that, for any u ∈ C∞(M), integra-
tion against uΩn

n! defines a linear functional on ham(M,Ω), so C∞(M) can
be identified with a subspace of ham(M,Ω)∗, however ham(M,Ω)∗ is topol-
ogized.

Theorem 1.1 (M. Cahen and S. Gutt [13]; see also [8] or [36]). On
a symplectic manifold (M,Ω), the map K : S(M,Ω)→ ham(M,Ω)∗ defined
by

K(∇) = ∇i∇jRij − 1
2R

ijRij + 1
4R

ijklRijkl = 1
2∇

iρi − π2

2 p1(∇)p
p
q
q(1.10)

is a moment map for the action of Ham(M,Ω) on the symplectic affine space
(S(M,Ω),
), equivariant with respect to the natural actions of the group
Symp(M,Ω) of compactly supported symplectomorphisms of (M,Ω).

Theorem 1.1 is reproved in section 2. Although here there is no real
novelty, the proof given is structured differently than that given in [8] or
[36], in a manner intended to parallel the proof given by S. Donaldson in
[22] that the Hermitian scalar curvature of the associated Hermitian metric
is a moment map for the action of Ham(M,Ω) on the space J(M,Ω) of almost
complex structures compatible with the symplectic form Ω (in the Kähler
case this was obtained also by A. Fujiki in [29]). This approach has the side
benefit of simplifying subsequent arguments, for example the computation
of the second variation of E .

It is reasonable to ask if the action of Symp(M,Ω) on S(M,Ω) is Hamil-
tonian. Although there is an obstruction when 2n > 2, for surfaces (2n = 2),
the answer is affirmative. To state the claim precisely it is necessary to spec-
ify where the moment map takes values. it is claimed that the dual space
symp(M,Ω)∗ can be identified with the space Λ1(M)/d′Λ2(M) of smooth
1-forms modulo coexact 2-forms, where the symplectic codifferential d′α of
a k-form α, defined by d′αi1...ik−1

= −∇pαpi1...ik−1
, does not depend on the

choice of∇ ∈ S(M,Ω) and satisfies d′ ◦ d′ = 0. Because dXg = 0, integration
determines a pairing symp(M,Ω)× Λ2n−1(M)/dΛ2n−2(M)→ R defined by
(X, [α])→

´
M Xg ∧ α, for any α ∈ [α]. Because the symplectic ?-operator,
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defined on a k-form β by k!(?β)i1,...,i2n−k = βj1...jk(Ωn

n! )j1...,jki1...i2n−k , satisfies
?d′ = (−1)k+1d?, it induces, via [β]→ [?β], an identification of Λ2n−1(M)/
dΛ2n−2(M) with the space Λ1(M)/d′Λ2(M) of one-forms modulo coexact
one-forms. Note that, because d′(f Ωn

n! ) = −df ∧ Ω(n−1)

(n−1)! = d(−f Ω(n−1)

(n−1)! ) and

d′(fΩ) = −df , there hold d′Λ2n(M) ⊂ dΛ2n−2(M) and dΛ0(M) ⊂ d′Λ2(M).
The dual of the space of compactly supported divergence-free vector fields
is naturally identified with Λ1(M)/dΛ0(M) and so the dual of its subspace
comprising symplectic vector fields is identified with the possibly smaller
quotient Λ1(M)/d′Λ2(M). Alternatively, symp(M,Ω)∗ can be identified di-
rectly with Λ1(M)/d′Λ2(M) using the pairing (1.3), since this pairing satis-
fies α ∧ ?β = 〈α, β〉Ωnn! for α, β ∈ Λk(M). Consequently, a moment map for
Symp(M,Ω) must take values in Λ1(M)/d′Λ2(M) ' Λ2n−1(M)/dΛ2n−2(M).
Moreover, its codifferential should be K(∇), so that when consideration is
restricted to the action of ham(M,Ω), it recovers K(∇). This requirement
makes sense because the codifferential of a coexact one-form is zero.

Theorem 1.2. If M is a surface (2n = 2), the map S(M,Ω)→ Λ1(M)/
d′Λ2(M) sending ∇ ∈ S(M,Ω) to the equivalence class −1

2 [ρ] is a moment
map for the action of the group Symp(M,Ω) of symplectomorphisms on
S(M,Ω), equivariant with respect to the natural actions of Symp(M,Ω).

In dimension 2n > 2 there is a curvature term that obstructs −1
2 [ρ] being

a moment map. It is not clear whether by modifying ρ this obstruction can
be overcome or even if the action of Symp(M,Ω) is Hamiltonian. This issue
is discussed in section 2.7.

A symplectic connection ∇ is moment constant or moment flat if K(∇)
is constant or zero. Since the curvature tensor of a locally symmetric ∇ ∈
S(M,Ω) is parallel, any scalar quantity formed from it and ∇ is constant,
and so, in this case, ∇ is moment constant. More generally, the same is
true if the group of automorphisms of ∇ ∈ S(M,Ω) acts on M transitively
by symplectomorphisms. For example, a reductive homogeneous space G/H
that is symplectic, meaning it admits a G-invariant symplectic form, carries
a canonical symplectic connection, namely the connection ∇ obtained by
applying (1.2) with ∇̄ being Nomizu’s canonical connection of the first kind
(see Theorem 10.1 of [51]); this ∇ is moment constant. There are exam-
ples of solvable symplectic Lie groups for which this canonical symplectic
connection is neither preferred nor has vanishing symplectic Weyl tensor;
the simplest are constructed on the group of affine transformations of the
complex line in [28].
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When M is compact the integral of K(∇) depends only on the cohomol-
ogy class of Ωn−2 and the first Pontryagin class, for, by (1.9),

ˆ
M

K(∇) Ωn

n! = −4π2

ˆ
M

p1 ∧ Ω(n−2)

(n−2)!(1.11)

= −4π2(n− 2)!〈[p1] ∪ [Ω]n−2, [M ]〉.

For example, when 2n = 4,
´
M K(∇) Ω2 = −12π2σ(M), where, by the Hirze-

bruch signature theorem, σ(M) = 1
3p1(M) is the signature of M . By (1.11),

when ∇ is moment constant, the constant value of K(∇) is expressible in
terms of the first Pontryagin class and the symplectic volume of M .

The critical points with respect to variations within a fixed Kähler class
of the Calabi functional, the squared L2-norm of the scalar curvature, are
the extremal Kähler metrics first studied in [15]. Here K is regarded as
an analogue for symplectic connections of the Hermitian scalar curvature
of an almost Kähler metric. This analogy suggests studying connections
∇ ∈ S(M,Ω), that are critical for E(∇) with respect to arbitrary compactly
supported variations.

Definition 1.3. On a symplectic manifold (M,∇), a symplectic connection
∇ ∈ S(M,Ω) is critical if it is a critical point, with respect to arbitrary
compactly supported variations, of the functional E : S(M,Ω)→ R defined
by (1.1).

By the Symp(M,Ω)-equivariance of K, E is constant along Symp(M,Ω)
orbits in S(M,Ω), so can be viewed as a functional on the quotient S(M,Ω)/
Symp(M,Ω). In the analogy with extremal Kähler metrics, E plays the role
of the Calabi functional.

Although the analogy is incomplete, the results obtained suggest that it
provides a reasonable guide to expectations. For example, a Kähler metric
is extremal if and only if the (1, 0) part of the metric gradient of its scalar
curvature is holomorphic. Analogously:

Theorem 1.4. A symplectic connection ∇ ∈ S(M,Ω) is critical if and only
if the Hamiltonian vector field HK(∇) generated by K(∇) is an infinitesimal
automorphism of ∇.

In particular moment constant symplectic connections are critical. On a
compact manifold, constant scalar curvature metrics are absolute minimiz-
ers of the Calabi functional. In fact, by Theorem 1.5 of [19], every extremal
Kähler metric is an absolute minimizer of the Calabi functional. It is not
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clear to what extent the analogous statements for critical symplectic con-
nections should be expected to be valid because the space over which E is
varied is larger than the fixed Kähler class over which the Calabi functional
is varied.

The second variation of E is computed in Lemma 3.5, and while the re-
sult formally resembles the second variation in the Kähler setting, it yields
useful information less readily, because ellipticity of the differential opera-
tors involved is not immediate as it is in the metric setting. Nonetheless,
by Corollary 3.6, the second variation is nonnegative at a moment constant
connection. The consequence, that, on a compact manifold, moment con-
stant symplectic connections are absolute minimizers is in any case obvious
since E is nonnegative.

A complete development of the analogy between extremal Kähler met-
rics and critical symplectic connections would include a class (or classes)
of symplectic connections analogous to Kähler Einstein metrics. In this re-
gard, there are available various possible notions, in which the first Pontrya-
gin class plays role like that of the first Chern class, but discussion here is
limited to some brief remarks relegated to the final Sections 14.1 and 14.2.

1.2. Surfaces equipped with a parallel volume form

The focus of sections 4–10 is the consideration of the simplest nontrivial
context for symplectic connections, namely connections preserving a volume
form on a surface. The results obtained are sufficiently rich to suggest that
the higher-dimensional case merits further study. On the other hand, the
case of surfaces is special in several respects. In particular, for a surface
there are close relations between moment flat symplectic connections and
projectively flat connections, fundamentally because of the identification
sl(2,R) ' sp(1,R); these are detailed in Section 10 and discussed further
below. Since, on a surface M , 2αij = αp

pΩij for any αij ∈ Γ(Λ2(T ∗M)),
and Wijkl = 0, (1.4) yields

(1.12) 2Rijkl = Ωi(kRl)j − Ωj(kRl)i + ΩijRkl = 2ΩijRkl,

showing that the curvature of ∇ ∈ S(M,Ω) is completely determined by the
Ricci curvature. When 2n = 2, (1.6) specializes to

2Cijk = 2∇pRijkp = ρkΩij .(1.13)

Consequently, a projective structure [∇] on an orientable surface is projec-
tively flat if and only if for some, and hence every, volume form Ωij , there
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vanishes the curvature one-form ρi of the unique representative ∇ ∈ [∇] for
which Ωij is parallel.

Since on a surface the first Pontryagin form vanishes, relations between
the geometry of a critical symplectic connection and the topology of the sur-
face are less direct than in higher dimensions. The part of (1.10) quadratic in
the curvature is a constant multiple of the contraction of Ω ∧ Ω with the first
Pontryagin form of the connection ∇ and so vanishes identically on a sym-
plectic 2-manifold. Hence, on a surface, 2K(∇) = ∇pρp. Alternatively, (1.12)
yields the identities 2RpqRpijq = −2RipRj

p = −RpqRpqΩij = 1
2Ri

abcRjabc,
and RijklRijkl = 2RijRij , and in (1.10) these yield 2K(∇) = ∇pρp. Since
K(∇) is a divergence, when M is compact

´
M K(∇) Ω = 0. Hence on a com-

pact symplectic 2-manifold, K(∇) is constant if and only if it is 0.

Lemma 1.5. On a surface (2n = 2), a symplectic connection is moment
flat if and only if the vector field symplectically dual to the curvature one-
form is symplectic. In particular, on a surface, a projectively flat symplectic
connection is moment flat.

Proof. Since dρ must be a multiple of Ω,

dρij = 2∇[iρj] = ∇pρpΩij = −2K(∇)Ωij ,(1.14)

so that K(∇) = 0 if and only if ρ is closed, or, equivalently, the vector field
ρi is symplectic. By (1.13), if ∇ is projectively flat, then ρi vanishes, so by
(1.14), ∇ is moment flat. �

Together (1.13) and (1.14) show that K can be viewed as a sort of derivative
of the projective Cotton tensor.

Purely local computations yield Theorem 1.6.

Theorem 1.6. On a symplectic 2-manifold a preferred symplectic connec-
tion is critical.

Since there are preferred symplectic connections that are not moment
flat, Theorem 1.6 demonstrates there are critical symplectic connections that
are not moment constant. By Lemma 1.5, projectively flat implies moment
flat and, by definition and Theorem 1.6, moment constant and preferred
imply critical. Basic issues are determining under what conditions these im-
plications are reversible, and, when they are not, characterizing the failure:

1) Determine when there exist and describe moment flat symplectic con-
nections that are not projectively flat.
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2) Determine when there exist and describe critical symplectic connec-
tions that are not moment constant.

3) Determine when there exist and describe critical symplectic connec-
tions that are not preferred.

As will be explained, in each case there are conditions under which the
implication is not reversible, while, on the other hand, there are conditions
on surfaces that guarantee that a critical connection is moment constant or
projectively flat.

The essential content of Theorem 1.6 (the criticality of preferred con-
nections), namely that the Hamiltonian flow generated by K preserves ∇,
is contained in Proposition 6.1 of [10], and its proof there uses (quanti-
ties equivalent to) K, ρ, and identities relating them and their differentials
that continue to be valid in the more general setting of critical symplectic
connections considered here. This motivated much of section 5, where the
key technical results that facilitate the description of a critical symplectic
connection ∇ are recorded.

The two key technical observations underlying structural results for crit-
ical symplectic connections that are not moment flat are the following. First,
for a critical ∇ ∈ S(M,Ω), since HK preserves ∇, it preserves the curvature
tensors associated with ∇, and, from LHK

ρ = 0, it follows that there is a
constant τ such that K2 + ρ(HK) = τ . Using this identity it can be con-
cluded that when K is not constant each connected component of its critical
set is an isolated point or an isolated closed ∇-geodesic. Second, the zero set
of τ −K2 is a union of isolated points and geodesic circles, and on its com-
plement M̄ , the one-form σ = (τ −K2)−1ρ is closed and Ω = dK ∧ σ. This
means K and a local primitive of σ constitute canonical action-angle coor-
dinates on M̄ ; precisely the action coordinate K is a moment map for the
action of the flow of the symplectically dual vector field σf. These observa-
tions and related technical claims are detailed in Lemma 5.1. In the special
setting of preferred connections, some form of both these observations plays
a key role in [10], and this signaled their importance in the more general con-
text of critical symplectic connections. They are useful both for constructing
examples and for proving that under certain conditions a critical symplectic
connection must be moment constant.

By Theorem 7.2 of [10] a preferred symplectic connection on a compact
surface has parallel Ricci tensor; in particular it has ρ = 0 so is projectively
flat. Consequently, Theorem 1.6 yields no interesting examples of critical
symplectic connections on compact surfaces. By Theorem 3.1 of Calabi’s
[15], on a compact surface an extremal Kähler metric has constant scalar
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curvature. These results both suggest that on a compact surface any critical
symplectic connection must be moment flat. Theorem 1.7 mostly confirms
this expectation.

Theorem 1.7. On a compact symplectic 2-manifold (M,Ω) of genus at
least two, any critical symplectic connection ∇ ∈ S(M,Ω) is moment flat.

The canonical action-angle coordinates on M̄ are used to show (see
Lemma 5.4) that, when M is compact, each connected component of M̄
carries a complete flat Kähler structure preserved by HK. This is enough to
conclude that the connected components of M̄ are diffeomorphic to cylinders
and so M is obtained by gluing together disks and cylinders, so must have
nonnegative Euler characteristic. This argument leaves open the possibility
that on the sphere or torus there are critical symplectic connections that are
not moment flat.

In trying to construct examples of symplectic connections that are crit-
ical but not moment flat, by Lemma 5.1, it can be assumed that Ω has the
standard Darboux form dx ∧ dy, that K(∇) equals x+ a for some constant
a, and hence that ρ = (τ − (x+ a)2)−1dy. The connection ∇ can be written
as ∂ + Π where ∂ is the standard flat affine connection preserving dx and
dy, and ρ, K, and the equations LHK

∇ = 0 can be computed explicitly in
terms of the components of Π. The results of this approach are stated in
Lemmas 6.1 and 6.3.

The expressions for K and HK in Darboux coordinates recounted in
Lemma 6.1 are sufficiently complicated that a complete analysis of them
has not been made, but with various simplifying assumptions they yield
tractable equations that can be solved to yield several classes of examples.
The first such simplifying assumption is to seek a critical ∇ that satis-
fies additionally ∇(iρj) = 0. This supposition determines a family of critical
symplectic connections on R2, that are not moment constant, and that are
geodesically complete for certain choices of parameters. These example are
not preferred except for a particular choice of parameter, in which case
they specialize to the preferred connections constructed in Proposition 11.4
of [10]. The observation that the preferred condition implies ∇(iρj) = 0 is
what suggested that the examples from [10] could be generalized to yield
connections critical but not preferred.

Attempts to patch together critical symplectic connections on Darboux
charts on a sphere S2 or torus have failed, although on S2 this approach
yields an interesting example of singular critical connections. Precisely, on
the complement of two poles in the two-sphere S2 there is (see Theorem 7.1
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and the surrounding discussion) a one-parameter family ∇(t) of rotationally
symmetric critical symplectic connections such that ∇(0) is the Levi-Civita
connection of the round metric on S2, that are neither moment flat nor
preferred for t 6= 0, and which extend continuously but not differentiably at
the poles (where K2 = τ) in the sense that the difference tensor ∇(t)−∇(0)
extends continuously but not differentiably at the poles when t 6= 0. These
connections satisfy E(∇(t)) = 3πt2, so are not absolute minimizers of E on
S2, except when t = 0. These observations suggest that a critical symplectic
connection smooth on all of S2 must be equivalent to ∇(0), but this has not
been proved.

Finally, the explicit expressions for K and ρ in Lemma 6.1 simplify con-
siderably if the difference tensor Πij

k = ∇− ∂ is decomposable, meaning
that Πijk = XiXjXk for some one-form Xi. If X is moreover closed, ex-
plicit expressions are obtained, and, when X = df is exact, K and ρ are
expressible in terms of f , df , and the Hessian of f . The conclusion, stated
in Theorem 8.3, is that for a function f ∈ C∞(R2) the graph of which is
an improper affine sphere, the connection ∇ = ∂ + dfidfjdf

k is moment flat
but not projectively flat. A conceptual explanation for the appearance of
affine spheres in these examples is lacking, but they suggest that in seeking
examples it is useful to examine symplectic connections whose difference
tensor Π with some particularly nice fixed reference symplectic connection
(e.g. the Levi-Civita connection of a constant curvature metric) has a sim-
ple form, e.g. is decomposable, is the symmetric product of a fixed metric
with a one-form, etc. As is explained in Section 8, the particular case where
Πijk = X(igjk) for a constant curvature metric g and a harmonic one-form
X yields a general way of constructing moment flat connections that are
not projectively flat. In particular, Theorem 8.6 shows that from a compact
hyperbolic surface and a harmonic one-form there can be constructed in this
way a moment flat connection that is not projectively flat.

When K vanishes, ρ is closed so determines a de Rham cohomology class.
This raises the question of which cohomology classes are represented by the
one-form ρ of some moment flat symplectic connection. This is resolved by
Theorem 1.8, that shows that every class in H1(M ;R) is represented by the
curvature one form of some symplectic connection.

Theorem 1.8. Let (M,Ω) be a compact symplectic 2-manifold with nonzero
Euler characteristic. Let [α] ∈ H1(M ;R) be a de Rham cohomology class.
There exists ∇ ∈ S(M,Ω) such that K(∇) = 0 and ρ(∇) ∈ [α].

The representative ∇ of Theorem 1.8 is constructed using Theorem 8.6.
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Remark 1.9. It is not clear whether the connection ∇ constructed in the
proof of Theorem 1.8 is complete. There remains unresolved the question:
is every class in H1(M ;R) represented by the curvature one-form of some
complete symplectic connection?

More generally, although a handful of the connections constructed in
the various examples are shown to be complete, many probably are not, and
the role of geodesic completeness in this context is not clear. In general,
for affine connections, useful criteria for determining the completeness of a
connection are not available, and, even in the case of flat affine connections,
it is not clear that the completeness property has the same importance as
it has in the metric setting.

In [32], W. Goldman showed that the projective Cotton tensor is a
moment map for the action of the connected component of the identity,
Diff0(M), of the group of diffeomorphisms of M on the space P(M) of pro-
jective structures on M . In section 10 it is explained in detail how the
moment map of Theorem 1.2, for the action of Symp(M,Ω) on S(M,Ω), is
related to the Goldman moment map, with the aim of addressing the fol-
lowing general issues. First it is recalled that projectively flat connections
abound. Moreover, that a projectively flat ∇ ∈ S(M,Ω) is moment flat leads
to the simplest examples of moment flat symplectic connections that are not
the Levi-Civita connections of Kähler metrics, because, as a consequence of
a theorem of W. Goldman (recalled here as Theorem 10.4), on a compact ori-
entable surfaceM of genus at least 2 there are many flat projective structures
which are not represented by the Levi-Civita connection of any Riemannian
metric. Suppose given, on such a surface, a flat projective structure [∇] and
suppose that there is a (necessarily Ricci symmetric) representative ∇ ∈ [∇]
which is the Levi-Civita connection of some Riemannian metric gij . Then gij
and the given orientation determine a unique Kähler structure, and because
∇ is projectively flat it must be that gij is conformally flat, so has con-
stant negative curvature. That is gij is hyperbolic. However, by Goldman’s
theorem, the deformation space of convex flat real projective structures on
M is homeomorphic to a ball of dimension 16(g − 1). Since by standard
Teichmüller theory the deformation space of flat conformal structures is
homeomorphic to a ball of dimension 6(g − 1), there are many flat projec-
tive structures admitting no representative connection that is a Levi-Civita
connection. By a theorem proved independently by J. Loftin and F. Labourie
(see [48] or [43]), the deformation space of convex flat real projective struc-
tures on M is parameterized by the bundle over the Teichmüller space of
M a fiber of which comprises cubic differentials holomorphic with respect
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to the conformal structure that is the base point; up to a constant fact, the
real part of the holomorphic cubic differential is the difference tensor of a
particular representative of the conformal structure with the representative
of the flat real projective structure preserving its volume form.

In the setting of symplectic connections, the work of Goldman, Labourie,
and Loftin gives a good understanding of the convex flat projective struc-
ture on compact surfaces similar to that afforded by the uniformization
theorem, and the principal remaining questions are understanding the dif-
ference between moment flat connections and projectively flat connections,
and understanding the difference between critical symplectic connections
and moment constant connections. For both questions relevant examples
have been constructed and some substantial partial answers have been ob-
tained, but neither is completely resolved. Theorems 1.11 and 12.1 show that,
on a compact surface, a moment flat connection that is not projectively flat
necessarily has a nonmetric character; precisely, Theorem 12.1 shows that
a moment flat connection that differs from a Levi-Civita connection by the
real part of a cubic holomorphic differential is necessarily projectively flat.
This is discussed in more detail in Section 1.3.

1.3. Restriction to the case of a Levi-Civita connection of a
Kähler metric

The Levi-Civita connections of Kähler metrics are among the most tractable
examples of symplectic connections, and it is natural to ask when they are
moment constant or critical. More generally, while there is no reason to sup-
pose that a critical symplectic connection is nicely related to any particular
compatible almost complex structure, once such a compatible structure has
been fixed, it is natural to ask what are the critical symplectic connections,
if any, among those related to it in some way. The simplest such setting is
that of Levi-Civita connections of Kähler metrics.

When it is nonempty, the subspace Jint(M,Ω) ⊂ J(M,Ω) comprising
integrable complex structures compatible with Ω admits a Symp(M,Ω)-
equivariant map  : Jint(M,Ω)→ S(M,Ω) defined by (J) = D where D is
the Levi-Civita connection of the metric −Jij . On the other hand, there is
no obvious canonical map of J(M,Ω) into S(M,Ω) (the Hermitian connec-
tion has torsion). A version of Lemma 1.10 was stated independently by L.
La Fuente-Gravy as Proposition 4.4 of [42]. (Although Lemma 1.10 was not
included in the first version of this article, it was known to the author then.)
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Lemma 1.10. For the Levi-Civita connection D of a Kähler metric (g, J,Ω)
with scalar curvature Rg on a 2n-dimensional manifold, the Cahen-Gutt mo-
ment map is given by

2K ◦ (J) = 2K(D) = ∆gRg − |Ric|2g + 1
2 |Riem|

2
g(1.15)

= ∆gRg + 1
2 |A|

2
g − n−2

n−1 |E|
2
g − n−1

n(2n−1)R
2
g

= LgRg + 1
2 |A|

2
g − n−2

n−1 |E|
2
g + (n−1)(n−2)

2n(2n−1) R2
g,

where ∆gf = gijDidfj is the Laplacian, Lg = ∆g − n−1
2(2n−1)Rg is the confor-

mal Laplacian, Eij = Rij − 1
2nRggij is the trace-free Ricci tensor, Aijkl is

the conformal Weyl tensor of g defined by

Aijkl = Rijk
pgpl + 1

n−1

(
gk[iRj]l − gl[iRj]k

)
− 1

(n−1)(2n−1)Rggk[igj]l,(1.16)

and the tensor norms are given by complete contraction with the metric.

Proof. The curvature of D satisfies Ji
pJj

qRpqk
l = Rijk

l and Ji
pJj

qRpq =
Rij . It follows that RijklR

ijkl = |Riem|2g and RijRij = |Ric|2g. From the twice
contracted differential Bianchi identity there follows 2DiDjRij = ∆gRg. To-
gether these observations yield the second equality of (1.15). The final equal-
ity of (1.15) follows from the identity

|A|2g = |Riem|2g − 2
n−1 |Ric|

2
g + 1

(n−1)(2n−1)R
2
g(1.17)

= |Riem|2g − 2
n−1 |E|

2
g − 1

n(2n−1)R
2
g,

that is a consequence of (1.16). �

Lemma 1.10 states that K(D) is the Laplacian of the scalar curvature plus
terms quadratic in the curvature tensor, related to the first Pontryagin form.
So, while the Levi-Civita connection of a Kähler metric is symplectic, the two
moment maps associated with the actions of Hamiltonian diffeomorphisms
on the spaces S(M,Ω) of symplectic connections and J(M,Ω) compatible
almost complex structures are different, though related (via a differential
operator).

A Kähler structure (g, J,Ω) is critical symplectic if its Levi-Civita con-
nection D is critical symplectic. That a Kähler structure be critical sym-
plectic means that its Levi-Civita connection is critical for E with respect to
variations through arbitrary symplectic connections, that in particular need
not be Levi-Civita connections of Kähler structures. Other notions are pos-
sible, and also interesting. For example, [42] studies the critical points of the
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restriction of E to fixed a Kähler class. This restricts the class of variations
considered, and so potentially yields more critical points. An intermediate
problem is to consider the critical points of the restriction of E to the image
(Jint(M,Ω)) ⊂ S(M,Ω). None of these problems reduces to the previously
studied problem of finding extremal almost Kähler structures, that by def-
inition are the critical points of the squared norm of the Hermitian scalar
curvature on J(M,Ω). That problem is surveyed in the last section of [2]
and studied in [46, 47]. There are potentially interesting connections be-
tween these various problems, but elucidating them is not the purpose of
this article.

Because the class of variations involved in its definition is large, the
condition that a Kähler metric be critical symplectic is very strong, so much
so as to raise the following question: If the Levi-Civita connection D of an
irreducible (in the Riemannian sense) Kähler metric on a simply-connected
manifold is moment constant, must the metric be locally symmetric? Some
evidence weakly supporting an affirmative answer is provided in Sections 11,
12, and 13.

In the Kähler setting the uniformization theorem classifies the constant
scalar curvature metrics, while Calabi’s theorem shows that on compact
surfaces the extremal Kähler metrics are simply constant curvature metrics
(for simplicity the more complicated situation in the noncompact case is not
discussed here; see [18] and [59]). Theorem 1.11 shows the analogous result
for symplectic connections.

Theorem 1.11. On a compact oriented surface, the Levi-Civita connection
of a Riemannian metric g is critical symplectic with respect to the symplectic
structure determined by g and the given orientation if and only if g has
constant curvature.

The difference tensor ∇−D of the Levi-Civita connection D of the
Cheng-Yau Riemannian metric on an oriented compact surface with a con-
vex flat real projective structure and the unique connection ∇ representing
the projective structure and making parallel the volume induced by the met-
ric is a cubic holomorphic differential with respect to the complex structure
induced by the metric and the given orientation (this underlies the Loftin-
Labourie parameterization of the moduli space of convex flat real projective
structures by cubic holomorphic differentials). This means that ∇ has a sort
of metric character and motivates Theorem 12.1, that shows: on a compact
oriented surface of genus at least one, a symplectic connection that differs
from the Levi-Civita connection of a Riemannian metric by the real part of
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a cubic differential holomorphic with respect to the complex structure deter-
mined by the metric is moment flat if and only if it is projectively flat.

In conjunction with Theorem 1.7, Theorems 1.11 and 12.1 can be in-
terpreted as saying that critical symplectic connections of metric origin are
projectively flat. This contrasts with Theorem 1.8 that shows that moment
flat connections that are not projectively flat abound.

For a 4-dimensional Kähler manifold, (1.15) simplifies (see (13.4)) be-
cause in the decomposition of the conformal Weyl tensor into its self-dual
and anti-self-dual parts, the self-dual part is a multiple of the scalar cur-
vature. Section 13 presents some results in this setting. The main one is:

Theorem 1.12. The Levi-Civita connection of the Ricci-flat Yau Kähler
metric on a K3 surface is not critical symplectic.

This implies that the Levi-Civita connection of a compact 4-dimensional
Ricci-flat Kähler metric is critical symplectic if and only if the metric is flat
and the underlying manifold is a torus. Theorem 1.12 destroys naive ideas
such as that the Levi-Civita connections of extremal Kähler metrics might
be critical symplectic.

Remark 1.13. Although it was indicated in the first version of this paper
that many of the results make sense in any dimension, their statements were
formulated only for the case 2n = 2. In the current version, the more general
statements have been included when they require little extra development.
Since the first version was posted there appeared L. La Fuente-Gravy’s [42],
which studies the critical points of the restriction to the the space of Levi-
Civita connections of Kähler metrics of the functional called here E with
respect to variations within a fixed Kähler class. The objectives here and
in [42] are different. Some material presented here that intersects with [42]
has been included with the intention of distinguishing clearly between that
context and the one considered here. As the proofs and point of view are dif-
ferent, the newly included material hopefully provides a useful complement
to [42].

2. Variation of the moment map

In this section the variations of ρ(∇) and K(∇) are computed and this is
used to show that K is a moment map. The computations are structured
to parallel the proof given in [22] that the Hermitian scalar curvature is
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a moment map for the action of Ham(M,Ω) on J(M,Ω). This manner of
organizing the computations has the side benefit that the proof of Theo-
rem 1.4 characterizing the critical symplectic connections is a trivial formal
computation.

Because there are only minor differences between the case 2n = 2 of sur-
faces and the general case 2n > 2, it is convenient to make the computations
assuming (M,Ω) is a 2n-dimensional symplectic manifold, signaling, where
appropriate, the specializations to the case 2n = 2.

2.1.

Because M is symplectic the canonical Poisson algebra structure on func-
tions on T ∗M polynomial in the fibers can be transferred via the symplec-
tic form to the algebra of covariant symmetric tensors. The result is the
Schouten pairing { · , · } : Γ(Sk(T ∗M))× Γ(Sl(T ∗M))→ Γ(Sk+l−1(T ∗M)),
expressible in terms of any ∇ ∈ S(M,Ω) by

{α, β}i1...ik+l−1
= −kαp(i1...ik−1

∇pβik...ik+l−1)(2.1)

+ lβp(i1...il−1
∇pαil...ik+l−1).

In (2.1) the sign is chosen so that {Xg, Y g} = [X,Y ]g for X,Y ∈ Γ(TM).
More generally, if X ∈ symp(M,Ω) then

{Xg, α}i1...ik = −Xp∇pαi1...ik + kαp(i1...ik−1
∇pXik)(2.2)

= Xp∇pαi1...ik + kαp(i1...ik−1
∇ik)X

p = (LXα)i1...ik ,

the penultimate equality because ∇[iXj] = 0. In particular, LHfα = {α, df}
for f ∈ C∞(M). The Schouten bracket of functions is trivial. The Poisson
bracket {f, g} is related to the Schouten bracket of vector fields (which is
the ordinary Lie bracket of vector fields) via the operator f → Hf ; precisely
{df, dg} = −d{f, g}.

A fiberwise endomorphism Ai
j ∈ Γ(End(TM)) is infinitesimally sym-

plectic if and only if A[ij] = 0, and so the algebraic commutator of endo-
morphisms [A,B]i

j = Ap
jBi

p −Bp jAi p induces an algebraic commutator
of symmetric covariant two-tensors α, β ∈ Γ(S2(T ∗M)) given by [α, β]ij =
2αp(iβj)

p. This algebraic bracket extends to an algebraic Poisson bracket

( · , · ) : Γ(Sk(T ∗M))× Γ(Sl(T ∗M))→ Γ(Sk+l−2(T ∗M)) defined for α ∈
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Γ(Sk(T ∗M)) and β ∈ Γ(Sl(T ∗M)) by

(α, β)i1...ik+l−2
= klαp(i1...ik−1

βik...ik+l−2)
p(2.3)

= kl
k+l−2

(
(k − 1)αpi1(i2...ik−1

βik...ik+l−2)
p

− (l − 1)βpi1(i2...il−1
αil...ik+l−2)

p
)
.

That (β, α) = −(α, β) is apparent. Let γ ∈ Γ(Sm(T ∗M)). That ( · , · ) is a
Lie bracket follows by summing cyclic permutations of the identity

((α, β), γ)i1...ik+l+m−4
(2.4)

= klm
(
(k − 1)αpq(i1...ik−2

βik−1...ik+l−3

pγik+l−2...ik+l+m−4)
q

−(l − 1)βpq(i1...il−2
αik−1...ik+l−3

pγik+l−2...ik+l+m−4)
q
)
.

Note that the second equality of (2.3) makes sense without further interpre-
tation provided at least one of k and l is greater than one. In the case l = 1
and k > 1, then (α, β) = kβpαpi1...ik−1

is simply k times interior multiplica-
tion of the vector field βi in α.

2.2.

For a linear operator P : Γ(Sq(T ∗M))→ Γ(Sp(T ∗M)) write |P| = p− q. De-
fine the (formal) adjoint P∗ : Γ(Sp(T ∗M))→ Γ(Sq(T ∗M)) of P by 〈Pα, β〉 =
(−1)|α||P|〈α,P∗β〉, where |α| = p. The sign conforms with the rule of signs
and guarantees that (P∗)∗ = P and (PQ)∗ = (−1)|P||Q|Q∗P∗.

Define d∇ : Γ(Sk(T ∗M))→ Γ(Sk+1(T ∗M)) by

d∇αi1...ik+1
= 2∇[i1αi2]i3...ik+1

and define δ : Γ(Sk(T ∗M))→ Γ(Sk−1(T ∗M)) by

δαi1...ik−1
= (−1)k−1 1

2(d∇α)p
p
i1...ik−1

= (−1)k−1∇pαi1...ik−1

p.(2.5)

For example, ρ = 2δRic. The formal adjoint δ∗ of δ is given by δ∗αi1...ik+1
=

−∇(i1αi2...ik+1). Straightforward computations using the Ricci identity show

that, for α ∈ Γ(Sk(T ∗M)),

∇iαi1...ik = −δ∗αii1...ik + k
k+1d∇αi(i1...ik).(2.6)
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Lemma 2.1. On a symplectic manifold (M,Ω), for ∇ ∈ S(M,Ω) and α ∈
Γ(Sk(T ∗M)) there holds

(k + 1)δδ∗αi1...ik + kδ∗δαi1...ik(2.7)

= (−1)k
(
2kR(i1

pαi2...ik)p − k(k − 1)Rp (i1i2
qαi3...ik)pq

)
= (−1)k

(
(α,Ric)i1...ik − k(k − 1)Rp (i1i2

qαi3...ik)pq

)
.

Proof. The Ricci identity yields

(−1)k−1δ∗δαi1...ik = ∇(i1∇
pαi2...ik)p(2.8)

= ∇p∇(i1αi2...ik)p + (k − 1)Rp (i1i2
qαi3...ik)pq −Rp (i1αi2...ik)p.

Combining (2.8) with

(−1)k(k + 1)δδ∗αi1...ik = (k + 1)∇p∇(i1αi2...ikp)(2.9)

= k∇p∇(i1αi2...ik)p +∇p∇pαi1...ik
= k∇p∇(i1αi2...ik)p + kRp (i1αi2...ik)p,

yields (2.7). �

Remark 2.2. When 2n = 2, (2.6) and (2.7) take the simpler forms

∇iαi1...ik = −δ∗αii1...ik + (−1)k+1 k
k+1Ωi(i1δαi2...ik),(2.10)

(k + 1)δδ∗αi1...ik + kδ∗δαi1...ik = (−1)kk(k + 1)R(i1
pαi2...ik)p.(2.11)

Differentiating the pullback of ∇ ∈ A(M) along the flow of X ∈ Γ(TM)
defines the Lie derivative LX∇ of ∇ along X. Explicitly,

(LX∇)ij
k = ∇i∇jXk +XpRpij

k.(2.12)

On a surface, (2.12) simplifies to (LX∇)ij
k = ∇i∇jXk +RijX

k −XpRpjδi
k,

because Rijk
l = 2δ[i

lRj]k.
For ∇ ∈ S(M,Ω), define L : Γ(T ∗M)→ T∇S(M,Ω) by L(Xg)ijk =

(LX∇)(ijk) for X ∈ Γ(TM). Since 2(LX∇)i[jk] = ∇idXg
jk,

(LX∇)ijk = (LX∇)(ijk) + 2
3∇(idX

g
j)k = L(Xg)ijk + 2

3∇(idX
g
j)k.(2.13)

If X ∈ symp(M,Ω), then (LX∇)ijk is completely symmetric, so, in this case,

L(Xg)ijk = (LX∇)(ijk) = (LX∇)ijk.(2.14)
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The induced action of ham(M,Ω) on S(M,Ω) is given by the differential
operator H : C∞(M)→ T∇S(M,Ω) defined by

H(f) = LHf∇ = L(−df) = L(δ∗f).(2.15)

Lemma 2.3. Let (M,Ω) be a symplectic manifold. For ∇ ∈ S(M,Ω)

L = (δ∗)2 − S∗, H = Lδ∗ = (δ∗)3 − S∗δ∗,(2.16)

L∗ = −δ2 − S, H∗ = (Lδ∗)∗ = δL∗ = −δ3 − δS,(2.17)

where S : Γ(S3(T ∗M))→ Γ(T ∗M) and S∗ : Γ(T ∗M)→ Γ(S3(T ∗M)) are de-
fined by

S(β)i = βabcRiabc = − 2
n+1βi

abRab + βabcWiabc,(2.18)

S∗(α)ijk = −αpRp(ijk) = − 2
n+1α(iRjk) − αpWp(ijk).(2.19)

For X ∈ symp(M,Ω) and f ∈ C∞(M),

δL(Xg) = LXRic, δH(f) = LHfRic.(2.20)

Proof. For a one-form α, L(α) can be rewritten as

L(α)ijk = ∇(i∇jαk) + αpRp(ijk) = (δ∗ 2α)ijk − S∗(α)ijk,(2.21)

and with (2.15) this shows (2.16). The identities (2.17) follow from (2.16)
by taking formal adjoints. Tracing (2.12) and using the Ricci identity shows
that, for ∇ ∈ A(M),

∇p(LX∇)ij
p = (LXRic)ij +∇i∇j∇pXp(2.22)

+ 2R[jp]∇iXp + 2Xp∇iR[jp].

Specializing (2.22) for ∇ ∈ S(M,Ω), X ∈ symp(M,Ω), and f ∈ C∞(M)
yields (2.20). �

Remark 2.4. On a surface,Wijkl = 0 and 2X[iRj]k = −XpRpkΩij , so (2.21)
simplifies to

L(α)ijk = (δ∗ 2α)ijk + α(iRjk),(2.23)

and (2.15) simplifies to H(f)ijk = (δ∗ 3f)ijk − df(iRjk).
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2.3.

The first variation δΠF(∇) of a functional F on S(M,Ω) at ∇ ∈ S(M,Ω) in
the direction of Π ∈ T∇S(M,Ω) is defined by δΠF(∇) = d

dt |t=0
F(∇+ tΠ).

The formulas for the first and second variations of various curvatures are
computed now.

For any αijkl ∈W(T ∗M,Ω) (recall this means αijkl has the algebraic
symmetries of a symplectic curvature tensor), define a completely trace-free
tensor C(α)ijkl ∈W(T ∗M,Ω), by

αijkl = C(α)ijkl + 1
n+1

(
Ωi(kαl)j − Ωj(kαl)i + Ωijαkl

)
,(2.24)

where αij = αpij
p = 1

2αp
p
ij is the Ricci trace of αijkl. For example, Wijkl =

C(R)ijkl when Rijkl is the curvature tensor of a symplectic connection. For
αijkl, βijkl ∈W(T ∗M,Ω),

αijklβ
ijkl = C(α)ijklC(β)ijkl + 4

n+1αijβ
ij .(2.25)

If α, β ∈ T∇S(M,Ω) are viewed as one-forms taking values in the bundle of
symplectic endomorphisms of TM , their commutator [α, β] ∈W(M,Ω) is de-
fined by [α, β]ijk

l = (α ∧ β + β ∧ α)ijk
l = 2αp[i

lβj]k
p + 2βp[i

lαj]k
p. More-

over, [α, β]ijkl ∈W(T ∗M,Ω), as a consequence of the complete symmetry
of αijk and βijk. In particular, [Π,Π]ijkl = 2(Π ∧Π)ijkl = 4Πpl[iΠj]k

p ∈
W(T ∗M,Ω). Define B(Π)ij and C(Π)ijkl by

B(Π)ij = Πip
qΠjq

p(2.26)

= −(Π ∧Π)pij
p = −1

2 [Π,Π]pij
p = −1

4 [Π,Π]p
p
ij ,

C(Π)ijkl = C([Π,Π])ijkl(2.27)

= [Π,Π]ijkl + 2
n+1

(
Ωi(kB(Π)l)j − Ωj(kB(Π)l)i + ΩijB(Π)kl

)
.

By definition, C(Π)ijkl is completely trace-free. Because

ΠpljΠik
pΠq

liΠjkq = −ΠkpiΠjq
kΠl

pjΠiql = −ΠpljΠik
pΠq

liΠjkq,(2.28)

where the first equality follows from raising and lowering indices, and the
second from relabeling indices, there holds ΠpljΠik

pΠq
liΠjkq = 0. Conse-

quently,

[Π,Π]ijkl[Π,Π]ijkl = 8B(Π)ijB(Π)ij ,

C(Π)ijklC(Π)ijkl = 8(n−1)
n+1 B(Π)ijB(Π)ij .

(2.29)
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Define a differential operator on Γ(S3(T ∗M)) by

d◦∇Πijkl = C(d∇Π)ijkl(2.30)

= d∇Πijkl − 1
n+1

(
Ωi(kδΠl)j − Ωj(kδΠl)i + 2ΩijδΠkl

)
.

Lemma 2.5. Let (M,Ω) be a 2n-dimensional symplectic manifold. For ∇ ∈
S(M,Ω) and Πijk ∈ T∇S(M,Ω),

ρ(∇+ tΠ)i = ρ(∇)i − 2t(L∗(Π)i + T(Π)i)(2.31)

− 2t2 (δB(Π)i + Πi
pqδΠpq)− 2t3T (Π)i,

K(∇+ tΠ) = K(∇) + tH∗(Π) + 1
2 t

2δ(Π∗Π)(2.32)

+ t3
(
δT (Π) + 1

4d
◦
∇ΠijklC(Π)ijkl + n−1

n+1δΠ
ijB(Π)ij

)
,

where the linear operator T : Γ(S3(T ∗M))→ Γ(T ∗M) is defined by

T(β)i = βabc(Wiabc − n−1
n+1Ωi(aRbc))(2.33)

= βabc(Ri(abc) − Ωi(aRbc)) = βi
pqRpq + S(β)i,

B(Π) and C(Π) are defined in (2.26),

(Π∗Π)i = 3δB(Π)i −Πabc∇iΠabc, T (Π)i = Πia
bB(Π)b

a,

and L∗ : T∇S(M,Ω)→ Γ(TM) and H∗ : T∇S(M,Ω)→ C∞(M) are the ad-
joints of the operators L and H with respect to the pairing 〈 · , · 〉. In par-
ticular,

−1
2δΠρ∇ = L∗(Π) + T(Π), δΠK∇ = H∗(Π).(2.34)

Moreover, for f ∈ C∞c (M),

〈K(∇+ tΠ), f〉 = 〈K(∇), f〉+ t〈H(f),Π〉+ 1
2 t

2〈LHfΠ,Π〉+O(t3).(2.35)

Proof. Given ∇ ∈ S(M,Ω), let Πijk ∈ T∇S(M,Ω) and let ∇̄ = ∇+ Πij
k.

Let R̄ijk
l be the curvature of ∇̄ = ∇+ tΠij

k and label with a ¯ the ten-
sors derived from it, e.g. R̄ij is the Ricci curvature of ∇̄. When necessary,
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the dependence of δ and δ∗ on ∇ is indicated by writing δ∇ and δ∗∇. Then:

R̄ijkl = Rijkl + 2t∇[iΠj]kl + 2t2Πpl[iΠj]k
p(2.36)

= Rijkl + td∇Πijkl + 1
2 t

2[Π,Π]ijkl,

R̄ij = Rij + t∇pΠij
p − t2Πip

qΠjq
p = Rij + tδΠij − t2B(Π)ij ,(2.37)

W̄ijkl = Wijkl + td◦∇Πijkl + 1
2 t

2C([Π,Π])ijkl.(2.38)

For α ∈ Γ(Sk(T ∗M)),

δ∗∇̄αi1...ik+1
= δ∗∇αi1...ik+1

+ 1
3(α,Π)i1...ik+1

,(2.39)

d∇̄α[ij]i1...,ik−1
= d∇α[ij]i1...,ik−1

− (k − 1)Πi(i1
pαi2...ik−1)jp(2.40)

+ (k − 1)Πj(i1
pαi2...ik−1)ip,

δ∇̄αi1...ik−1
= δ∇αi1...ik−1

+ (−1)k−1(k − 1)Πpq
(i1αi2...ik−1)pq.(2.41)

Combining (2.39) and (2.40) with (2.37) yields

δ∗∇̄Ric = δ∗Ric + t
(
δ∗δΠ + 1

3(Ric,Π)
)

(2.42)

+ t2
(
−δ∗B(Π) + 1

3(δΠ,Π)
)
− 1

3 t
3(B(Π),Π),

d∇̄Ricijk = d∇Ricijk + t
(
d∇δΠijk − 2Πk[i

pRj]p
)

(2.43)

− t2
(
d∇B(Π)ijk + 2Πk[i

pδΠj]p

)
+ 2t3Πk[i

pB(Π)j]p.

Combining (2.42) and (2.43) with (2.6) yields

∇̄iR̄jk = ∇iRjk + t
(
∇iδΠjk − 2Πi(j

pRk)p

)
(2.44)

− t2
(
∇iB(Π)jk + 2Πi(j

pδΠk)p

)
+ 2t3Πi(j

pB(Π)k)p.

Combining (2.41) with (2.37) and ρi = 2δRici, or contracting (2.43), yields

ρ(∇+ tΠ)i = ρ̄i = ρi + 2t
(
δ2Πi −ΠipqR

pq
)

(2.45)

− 2t2 (δB(Π)i + Πi
pqδΠpq) + 2t3Πi

pqB(Π)pq

= ρ(∇)i − 2t(L∗(Π)i + T(Π)i)

− 2t2 (δB(Π)i + Πi
pqδΠpq)− 2t3T (Π)i.

For any β ∈ Γ(Sk(T ∗M)), write β∗ for the differential operator sending sec-
tions of Sk(T ∗M) to one-forms defined as the adjoint of the Schouten bracket
{β, · } on one-forms. Precisely, for α ∈ Γ(T ∗M) and β, γ ∈ Γ(Sk(T ∗M)), β∗
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is defined by the equation

〈{β, α}, γ〉 = −〈α, β∗γ〉.(2.46)

A straightforward computation shows that, for Π ∈ T∇S(M,Ω),

(Π∗Π)i = 3δB(Π)i −Πabc∇iΠabc.(2.47)

From the identities

δ(ΠipqδΠ
pq) = δΠpqδΠ

pq −Πabcδ∗δΠabc,

δ(d∇ΠiabcΠ
abc) = −1

2d∇Πijkld∇Πijkl − 2RpqB(Π)pq

+ Πabcδ∗δΠabc − 1
2R

ijkl[Π,Π]ijkl,

δB(Π) = ΠipqδΠ
pq + Πabc∇aΠbci,

(2.48)

(where, for example, the abusive notation δ(ΠipqδΠ
pq) means δ applied to

ΠipqδΠ
pq) it follows that

δ2B(Π) + 1
2δ
(

ΠipqδΠ
pq − d∇ΠiabcΠ

abc
)

(2.49)

= 3
2δ

2B(Π)− 1
2δ
(

Πabc∇iΠabc

)
= 1

2δ(Π
∗Π).

Note that

δT(Π) = ∇iΠjkl(ΩijRkl −Rijkl).(2.50)

From (2.36), (2.37), (2.50), (2.49), (2.25), and (2.29) there results

− 1
2R̄ijR̄

ij + 1
4R̄ijklR̄

ijkl

(2.51)

= −1
2RijR

ij + 1
4RijklR

ijkl − tδT(Π)

+ t2
(
−1

2δΠijδΠ
ij + 1

4d∇Πijkld∇Πijkl +RijB(Π)ij + 1
4 [Π,Π]ijklR

ijkl
)

+ t3
(
δΠijB(Π)ij + 1

4d∇Πijkl[Π,Π]ijkl

)
+ t4

(
−1

2B(Π)ijB(Π)ij + 1
16 [Π,Π]ijkl[Π,Π]ijkl

)
= −1

2RijR
ij + 1

4RijklR
ijkl − tδT(Π)− 1

2 t
2δ
(

ΠipqδΠ
pq + d∇ΠiabcΠ

abc
)

+ t3
(

1
4d
◦
∇ΠijklC(Π)ijkl + n−1

n+1δΠ
ijB(Π)ij

)
.
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By (2.41), δ∇̄ρ̄ = δ∇ρ̄. With this observation, combining (2.31) and (2.51)
and using (2.49) yields

K(∇+ tΠ) = K(∇) + tδL∗(Π)(2.52)

+ t2
(
δ2B(Π) + 1

2δ(ΠipqδΠ
pq − d∇ΠiabcΠ

abc)
)

+ t3
(
δT (Π) + 1

4d
◦
∇ΠijklC(Π)ijkl + n−1

n+1δΠ
ijB(Π)ij

)
= K(∇) + tH∗(Π) + 1

2 t
2δ(Π∗Π)

+ t3
(
δT (Π) + 1

4d
◦
∇ΠijklC(Π)ijkl + n−1

n+1δΠ
ijB(Π)ij

)
.

For f ∈ C∞(M), 〈δ(Π∗Π), f〉 = −〈Π∗Π, δ∗f〉 = 〈LHfΠ,Π〉, and so (2.35) fol-
lows from (2.32). �

Proofs of Theorems 1.1 and 1.2. Reinterpreting Lemma 2.5 yields Theorems
1.1 and 1.2. The equivariance of ρ and K with respect to the action of
Symp(M,Ω) follows from the evident naturalness of their definitions with
respect to pullback via elements of Symp(M,Ω). For ∇ ∈ S(M,Ω), Π ∈
T∇S(M,Ω), X ∈ symp(M,Ω), and f ∈ C∞c (M) it follows from (2.55) and
(2.56) that

−2
∇(L(Xg),Π) = −2〈Xg,L∗(Π)〉 = δΠ〈Xg, ρ〉 − 〈Xg,T(Π)〉,(2.53)


∇(H(f),Π) = 〈f,H∗(Π)〉 = δΠ〈f,K(∇)〉.(2.54)

The identity (2.54) shows that K is a moment map.
If 2n = 2, then S(β)i = −βi abRab, so T(β) = 0. Because T(Π), d◦∇Π, and

C(Π) vanish when 2n = 2, in this case (2.31) and (2.32) specialize to

ρ(∇+ tΠ)j = ρ(∇)j − 2tL∗(Π)j(2.55)

− 2t2 (δB(Π)j + ΠjpqδΠ
pq)− 2t3T (Π)j ,

K(∇+ tΠ) = K(∇) + tH∗(Π) + 1
2 t

2δ(Π∗Π) + t3δT (Π).(2.56)

Hence, when 2n = 2, (2.53) becomes

−2
∇(L(Xg),Π) = −2〈Xg,L∗(Π)〉 = δΠ〈Xg, ρ〉,(2.57)

showing that −1
2 [ρ] is a moment map. �

Remark 2.6. There follows an alternative derivation of (2.51) that is per-
haps clearer conceptually. For αijkl ∈W(T ∗M,Ω), define αij = αpij

p. For
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α, β ∈W(T ∗M,Ω), let τijkl = α[ij|p|
qβkl]q

p. Then

3τp
p
ij = −αijpqβpq − βijpqαpq − 2α[i

abcβj]abc,

3τp
p
q
q = 2αabcdβ

abcd − 4αpqβ
pq.

(2.58)

Applying (2.58) to the expression (1.7) for the first Pontryagin form p1 of
∇ yields

2π2p1 p
p
ij = RijpqR

pq −RiabcRj abc

= Wi
abcWjabc + n−2

n+1

(
RpqWijpq + 1

n+1RpiRj
p
)

+ 2n−1
2(n+1)2R

pqRpqΩij ,

π2p1 p
p
q
q = RabR

ab − 1
2RabcdR

abcd = n−1
n+1R

abRab − 1
2W

abcdWabcd.

(2.59)

From (2.59) it follows that

8π2p1 ∧ Ω(n−2)

(n−2)! = π2p1 p
p
q
q Ωn

n! =
(
RijR

ij − 1
2RijklR

ijkl
)

Ωn

n!(2.60)

=
(
n−1
n+1R

abRab − 1
2W

abcdWabcd

)
Ωn

n! .

(This is stated in both [8] and [36], although the notation is different in
those references.)

Let ∇ ∈ S(M,Ω) and Πijk ∈ T∇S(M,Ω), and set ∇̄ = ∇+ Πij
k. The

Chern-Simons theory shows that first Pontryagin forms p1(∇̄) and p1(∇) are
cohomologous. Precisely, specializing the Chern-Simons theory (for example,
rewriting Lemma 3.1 of the appendix to [20] in the notations used here)
shows that p1(∇̄)− p1(∇) = − 3

4π2dσ(∇,Π) where σijk = σ(∇,Π)ijk is the
three-form

σijk = Π[i|p|
qRjk]q

p + 1
2Π[i|p|

qd∇Πjk]q
p + 1

6Πp[i
q[Π,Π]jkl]q

p(2.61)

= Π[i|p|
qRjk]q

p + 1
2Π[i|p|

qd∇Πjk]q
p + 2

3Π[i|a|
bΠj|b|

cΠk]c
a.

The difference p1(∇+ tΠ)− p1(∇) = dσ(∇, tΠ) can be computed either by
finding the exterior differential of σ(∇, tΠ) using (2.61) or by using the
definition of p1 and (2.36). There results

−4π2

3 (p1(∇+ tΠ)ijkl − p1(∇)ijkl)(2.62)

= 2t
(
R[ij|p|

qd∇Πkl]q
p
)

+ t2
(
d∇Π[ij|p|

qd∇Πkl]q
p +R[ij|p|

q[Π,Π]kl]q
p
)

+ t3d∇Π[ij|p|
q[Π,Π]kl]q

p.
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Contracting (2.62) and using (2.60) yields an alternative derivation of (2.51).

Remark 2.7. It is not clear whether the action of Symp(M,Ω) on S(M,Ω)
is Hamiltonian when 2n > 2. It is straightforward to see that

−3
2
d
dt

∣∣
t=0

σ(∇, tΠ)ip
p = −3

2ΩjkΠ[i|p|
qRjk]q

p(2.63)

= (Ri(abc) − Ωi(aRbc))Π
abc = T(Π)i.

where σ(∇, tΠ) is the primitive of p1(∇+ tΠ)− p1(∇) defined in (2.61).
Nonetheless, it is not clear how to produce a one-form valued function
on S(M,Ω) with first variation equal to T(Π), although the last equal-
ity of (2.63) is suggestive in this regard. Fix a reference connection ∇̄ ∈
S(M,Ω) and consider the primitive σ(∇, ∇̄ − ∇) of p1(∇̄)− p1(∇) defined
in (2.61). Then for τ(∇)i = σ(∇, ∇̄ − ∇)ip

p, by (2.61), the first variation
δΠτi = d

dt

∣∣
t=0

τ(∇+ tΠ)i = d
dt

∣∣
t=0

σ(∇+ tΠ, ∇̄ − ∇− tΠ)ip
p differs from

ΩjkΠ[i|p|
qRjk]q

p = −2
3T(Π)i by a term involving ∇̄ − ∇ and the first varia-

tion of the curvature of ∇. For a construction along these lines to work, it
is not necessary that the last mentioned term vanish, rather it is sufficient
that it be the image of some two-form under d′. Nonetheless, it is not clear
if such a condition can be achieved.

One might consider restricting to the class of symplectic connections for
which the equality 〈L(Xg),Π〉 = −1

2δΠ〈Xg, ρ〉 holds. When 2n > 2 that
T(Π) vanish for all Π means that (n+ 1)Wi(jkl) = (n− 1)Ωi(jRkl). Tracing
this shows that it holds if and only if Rij = 0, in whch case Wi(jkl) = 0 and
so also Ri(jkl) = 0. This implies Rijkl = 0. Hence restricting to the class of

symplectic connections for which there holds 〈L(Xg),Π〉 = −1
2δΠ〈Xg, ρ〉

amounts to restricting to the flat symplectic connections, in which case ρ is
zero anyway.

2.4.

This section concludes recording some miscellaneous facts about the op-
erators L, H, and their adjoints, and their relations with the orbits of
Symp(M,Ω) and Ham(M,Ω) on S(M,Ω). These are mostly specializations
of facts that are known to hold in general for moment maps on finite-
dimensional spaces, but which need to be checked in a infinite-dimensional
setting.
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Lemma 2.8. On a symplectic manifold (M,Ω), for ∇ ∈ S(M,Ω), X,Y ∈
symp(M,Ω), and f, g ∈ C∞c (M),

L∗L(Xg) + T(L(Xg)) = −1
2LXρ(∇),(2.64)

H∗H(f) = {f,K(∇)},(2.65)

〈H(f),H(g)〉 = 〈f, {g,K(∇)}〉 = 〈{f, g},K(∇)〉.(2.66)

When dimM = 2, for X ∈ symp(M,Ω), there holds L∗L(Xg) = −1
2LXρ(∇),

and, additionally,


(L(Xg),L(Y g)) = 〈Ω(X,Y ),K(∇)〉.(2.67)

Proof. Differentiating the relations ρ(φ∗t∇) = φ∗tρ(∇) and K(φ∗t∇) = K(∇) ◦
φt along the flow φt of X ∈ symp(M,Ω), and using Lemma 2.5 yields

− 2(L∗L(Xg) + T(L(Xg))(2.68)

= d
dt |t=0

ρ(φ∗t∇) = d
dt |t=0

φ∗tρ(∇) = LXρ(∇),

H∗L(Xg) = d
dt |t=0

K(φ∗t∇)(2.69)

= d
dt |t=0

K(∇) ◦ φt = dK(∇)(X) = Ω(X,HK(∇)).

Taking X = Hf in (2.69) gives (2.65). The first equality of (2.66) follows
from (2.65), and the second equality of (2.66) follows from the identity
〈{a, b}, c〉 = −〈{b, a}, c〉 = 〈a, {b, c}〉, valid for any a ∈ C∞c (M) and b, c ∈
C∞(M), because {b, ac}Ωn

n! is exact. When dimM = 2, (2.67) follows from
(2.68) and (1.14). �

The symplectic complement V ⊥ of a subspace V of a symplectic vec-
tor space (W,Ω) is defined by V ⊥ = {w ∈W : Ω(v, w) = 0 for all v ∈ v}. In
the infinite-dimensional case, for a weakly nondegenerate symplectic form,
although V ⊂ (V ⊥)⊥, it need not be the case that (V ⊥)⊥ = V .

Lemma 2.9. On a 2n-dimensional symplectic manifold (M,Ω), for ∇ ∈
S(M,Ω) there holds

T∇(Ham(M,Ω) · ∇)⊥ = H(ham(M,Ω))⊥ = kerH∗.(2.70)

Moreover,

kerH∗ = {Π ∈ T∇S(M,Ω) : L∗(Π) ∧ Ω(n−1)

(n−1)! is closed},

L(symp(M,Ω)g)⊥ = {Π ∈ T∇S(M,Ω) : L∗(Π) ∧ Ω(n−1)

(n−1)! is exact}.
(2.71)
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Proof. That kerH∗ = H(ham(M,Ω))⊥ follows from the strong nondegen-
eracy of the L2 inner product on functions. By definition, 
∇(H(f),Π) =
〈f,H∗(Π)〉 for all f ∈ ham(M,Ω) and Π ∈ T∇S(M,Ω). It is immediate that
kerH∗ ⊂ H(ham(M,Ω))⊥. On the other hand, if Π ∈ H(ham(M,Ω))⊥,
then 0 = 〈f,H∗(Π)〉 for all f ∈ ham(M,Ω). If M is noncompact this means
H∗(Π) = 0, while if M is compact it means H∗(Π) is constant; since H∗(Π)
is a divergence, this constant must be 0. Hence H(ham(M,Ω))⊥ ⊂ kerH∗.

For Π ∈ T∇S(M,Ω), H∗(Π)Ωn

n! = δL∗(Π)Ωn

n! = 2dL∗(Π) ∧ Ω(n−1)

(n−1)! , from

which it is immediate that H∗(Π) = 0 if and only if L∗(Π) ∧ Ω(n−1)

(n−1)! is closed.
From


∇(L(Xg),Π) = 〈Xg,L∗(Π)〉(2.72)

=

ˆ
M
XpL

∗(Π)p Ωn

n! =

ˆ
M
Xg ∧ L∗(Π) ∧ Ω(n−1)

(n−1)!

it follows that Π ∈ L(symp(M,Ω)g)⊥ if and only if
´
M α ∧ L∗(Π) ∧ Ω(n−1)

(n−1)! =
0 for all closed, compactly supported one-forms α. By Poincare duality this
holds if and only if L∗(Π) ∧ Ω(n−1)

(n−1)! is exact. �

If µ is the moment map of an action of a connected Lie group G on a
finite-dimensional symplectic manifold, a G orbit is isotropic if and only if
µ is constant on the G orbit. Lemma 2.10 extends this observation to the
setting considered here. Note that, since K is Symp(M,Ω)-equivariant, that
K be constant on a Symp(M,Ω) or Ham(M,Ω) orbit implies that K(∇) is
a constant function for any ∇ in the orbit.

Lemma 2.10. Let (M,Ω) be a symplectic manifold and let ∇ ∈ S(M,Ω).

1) The following are equivalent:
a) K(∇) is constant.
b) The tangent space to Symp(M,Ω) · ∇ is contained in the 
-

complement of the tangent space to Ham(M,Ω) · ∇.
c) The orbit Ham(M,Ω) · ∇ is isotropic.

2) If dim = 2 then:
a) The orbit Symp(M,Ω) · ∇ is isotropic if K(∇) = 0.
b) If the orbit Symp(M,Ω) · ∇ is isotropic, then K(∇) is constant.
In particular, if M is compact then Symp(M,Ω) · ∇ is isotropic if
and only if K(∇) = 0.

Proof. The orbit Symp(M,Ω) · ∇ is the image of the map Φ∇ :
Symp(M,Ω)→ S(M,Ω) defined by Φ∇(φ) = φ∗(∇), and Ham(M,Ω) · ∇ =
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Φ∇(Ham(M,Ω)). For φ ∈ Symp(M,Ω), an element of TφSymp(M,Ω) has
the form Tφ(X) for X ∈ symp(M,Ω). Since TΦ∇(φ)(Tφ(X)) = φ∗L(Xg)
for φ ∈ Symp(M,Ω) and X ∈ symp(M,Ω), the pullback Φ∇∗(
) is given by

Φ∇∗(
)φ(TΦ(X), TΦ(Y )) = 
φ∗∇(φ∗L(Xg), φ∗L(Y g))(2.73)

= 
∇(L(Xg),L(Y g)),

for X,Y ∈ symp(M,Ω). If φ ∈ Symp(M,Ω), f ∈ ham(M,Ω), and X ∈
symp(M,Ω), then Tφ(Hf ) = Hf◦φ and, using (2.69), (2.73) yields

Φ∇∗(
)φ(Tφ(X),Hf◦φ) = Φ∇∗(
)φ(TΦ(X), TΦ(Hf ))(2.74)

= 
∇(L(Xg),H(f)) = −〈f,H∗L(Xg)〉
= −〈f,Ω(X,HK(∇))〉 = −〈f, dK(∇)(X)〉.

By (2.74), for φ ∈ Symp(MΩ), TφSymp(M,Ω) is contained in the 
-
complement of TφHam(M,Ω) if and only if dK(∇)(X) = 0 for all X ∈
symp(M,Ω), and this last condition holds if and only if K(∇) is constant.
If φ ∈ Ham(M,Ω), then (2.74) yields Φ∇∗(
)φ(Hf◦φ,Hg◦φ) = 〈f, {g,K(∇)}〉,
for f, g ∈ ham(M,Ω). Consequently, Ham(M,Ω) · ∇ is isotropic if and only
if {g,K(∇)} = 0 for all g ∈ ham(M,Ω), and this last condition holds if and
only if K(∇) is constant.

If dim = 2, then, by (2.73), (2.64), and (1.14), for X,Y ∈ symp(M,Ω),

Φ∇∗(
)φ(TΦ(X), TΦ(Y )) = 
∇(L(Xg),L(Y g))(2.75)

= 
(Xg,L∗L(Y g)〉 = −1
2〈X

g,LY ρ〉
= 〈Xg,K(∇)Y g〉 = 〈Ω(X,Y ),K(∇)〉.

By (2.75), if K(∇) = 0 then Φ∇∗(
) = 0, so Symp(M,Ω) · ∇ is isotropic.
If Symp(M,Ω) · ∇ is isotropic, then 〈Ω(X,Y ),K(∇)〉 = 0 for all X,Y ∈
symp(M,Ω). In particular, 0 = 〈{f, g},K(∇)〉 = 〈f, {g,K(∇)}〉 for every
f, g ∈ C∞c (M). This means {g,K(∇)} = 0 for all g ∈ C∞c (M) so that K(∇)
is constant. �

Lemma 2.11.

1) Let (M,Ω) be a symplectic 2n-manifold and let ∇ ∈ S(M,Ω). The se-
quence

0 −→ H0(M ;R)
ι−→ C∞(M)

H−→ Γ(S3(T ∗M))
H∗−→ C∞(M) −→ 0(2.76)

is a complex if and only if dK(∇) = 0.
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2) Let (M,Ω) be a symplectic 2-manifold and let ∇ ∈ S(M,Ω). The se-
quence

0 −→ symp(M,Ω)g
L−→ Γ(S3(T ∗M))

L∗−→ Γ(T ∗M) −→ 0(2.77)

is a complex if and only if ρ(∇) = 0.

For compact M , H∗ takes values in C∞0 (M), so the second C∞(M) in
(2.76) can be replaced by C∞0 (M).

Proof. By (2.65), if (2.76) is a complex then K(∇) Poisson commutes with
every f ∈ C∞(M), so dK(∇) = 0. On the other hand, by (2.65), if dK(∇) =
0 then H(ham(M,Ω)) ⊂ kerH∗. By (2.67), when 2n = 2, the sequence (2.77)
is a complex if ρ(∇) = 0. If (2.77) is a complex, then, by (2.64), LXρ(∇) = 0
for all X ∈ symp(M,Ω). For any p ∈M there can be chosen f ∈ C∞(M)
such that df vanishes at p and∇idf j is invertible at p. Hence, at p there holds
0 = −(LHfρ)i = ρp∇idfp + dfp∇pρi = ρp∇idfp, and, by the invertibility of
∇idf j at p, this means ρ vanishes at p. Since this is true for every p ∈M ,
ρ(∇) = 0. �

The relation of the sequence (2.77) to the deformation sequence for pro-
jective structures on surfaces is discussed in Section 10. Compare Lemma
10.1 and Remark 10.3 with Lemma 2.11. One byproduct of this discussion is
the formula (10.8) for L∗L(Xg) for an arbitrary (not necessarily symplectic)
vector field X.

3. Critical symplectic connections

Recall that ∇ ∈ S(M,Ω) is critical if it is a critical point with respect to
compactly supported variations of the functional E(∇) =

´
M K(∇)2 Ω. Re-

call that Theorem 1.4 states: A symplectic connection ∇ ∈ S(M,Ω) is critical
if and only if H(K(∇)) = 0. Theorem 1.4 is the special case of Lemma 3.1
where φ(t) = t2.

Lemma 3.1. Let (M,Ω) be a symplectic manifold and let φ ∈ C4(R). The
connection ∇ ∈ S(M,Ω) is a critical point of Eφ(∇) =

´
M φ(K(∇)) Ωn

n! if and
only if H(φ′(K(∇)) = 0.



i
i

“4-Fox” — 2020/1/7 — 17:34 — page 1719 — #37 i
i

i
i

i
i

Critical symplectic connections on surfaces 1719

Proof. Calculating the first variation δΠEφ(∇) along Π ∈ T∇S(M,Ω) using
Lemma 2.5 yields

δΠEφ = 〈φ′(K(∇)),H∗(Π)〉 = 
∇(H(φ′(K(∇))),Π),(3.1)

which yields the claim. �

The assumption that φ be C4 is needed only so that H(φ′(K)) be defined
without further fussing. Note that Eφ is constant on an orbit of Symp(M,Ω)
in S(M,Ω).

Remark 3.2. Lemma 3.1 shows that the Hamiltonian vector field on
S(M,Ω) generated by Eφ is −H(φ′(K(∇)). It follows from (2.65) and Lemma
3.1 that the functions Eφ and Eψ on S(M,Ω) commute with respect to the
Poisson structure determined by 
; that is, {Eφ, Eψ} = 0.

3.1.

Finding the critical points of E with respect to the smaller class of varia-
tions having the form δ∗α for α ∈ Γ(S2(T ∗M)) leads to the following notion.
Define ∇ ∈ S(M,Ω) to be gauge critical if it is a critical point of E for all
variations of the form δ∗α for compactly supported α ∈ Γ(S2(T ∗M)). By def-
inition a critical symplectic connection is gauge critical. Lemma 3.3 shows
that ∇ is gauge critical if and only if the Hamiltonian vector field HK(∇)

generated by its moment map image preserves its Ricci tensor.

Lemma 3.3. A symplectic connection ∇ ∈ S(M,Ω) is gauge critical if and
only if LHK(∇)

Ric = 0.

Proof. By (3.1) and (2.20),

δδ∗αE∇ = 2〈H(K(∇)), δ∗α〉 = 2〈δH(K(∇)), α〉 = 2〈LHK(∇)
Ric, α〉,(3.2)

which yields the claim. �

Lemma 3.4. On a compact symplectic 2-manifold M of genus at least two,
if a symplectic connection ∇ is gauge critical and K(∇) is not identically
zero, then the Ricci tensor of ∇ is degenerate somewhere on M .

Proof. A compact orientable surface supporting a mixed signature metric
must be a torus, so if the Ricci tensor is nondegenerate, it must be definite
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because of the hypothesis on the genus. Then, by Theorem 1.4, HK(∇) is a
Killing field for a Riemannian metric, and so by Bochner’s theorem must be
identically 0. Hence K(∇) is constant, so zero, because M is compact. �

3.2.

Because S(M,Ω) is affine it carries a canonical flat connection δ. Via the cor-
responding parallel translation, elements α, β ∈ Γ(S3(T ∗M)) can be viewed
as constant, parallel vector fields on S(M,Ω). The Lie algebra structure
on vector fields on S(M,Ω) is generated by its group of translations, and
so, viewed as vector fields on S(M,Ω), α and β commute. The differen-
tial of F is δF , and δαF is its evaluation on the constant vector field α.
The Hessian of a twice differentiable functional is well defined at a crit-
ical point without the imposition of any extra structure. Given the flat
connection δ, the Hessian of a functional F on S(M,Ω) is well defined
everywhere as its Hessian with respect to δ. The Hessian δδF at α and
β is δα(δF)(β) = δαδβF − δδαβF = δαδβF , where δδαβF vanishes because
δαβ = 0. It follows that the Hessian of F at ∇ ∈ S(M,Ω) in the directions
α and β is given by the first variation in the direction α of the first variation
in the direction β of F , and so can be written simply δαδβF(∇).

Define the Jacobi operator J : Γ(S3(T ∗M))→ Γ(S3(T ∗M)) associated
with ∇ ∈ S(M,Ω) by

J(α) = HH∗(α) + LHK
α.(3.3)

The name for J is justified by the following observations. Let f ∈ C∞(M).
By the definition of H(f) and the fact that Hf commutes with raising and
lowering indices there holds

(δαH)(f) = d
dt |t=0

H∇+tαf(f) = d
dt |t=0

LHf (∇+ tαf)g = LHfα,(3.4)

in which (αf)ij
k = αij

k and LHf (∇+ tαf)g means LHf (∇+ tαf)ijk. Let
∇(t) be a C1 curve in the space of critical symplectic connections depend-
ing smoothly on t and such that d

dt t=0
∇(t) = αij

k. By (2.56) and (3.4),
differentiating 0 = H∇(t)(K(∇(t))) in t yields 0 = J(α), so that the kernel
of J describes the tangent space to the deformations of a critical symplectic
connection through critical symplectic connections.
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Lemma 3.5. The Hessian of E at ∇ ∈ S(M,Ω) in the directions α, β ∈
T∇S(M,Ω) is

δαδβE(∇) = 2〈J(α), β〉 = 2〈H∗(α),H∗(β)〉+ 2〈LHK
α, β〉.(3.5)

Proof. By (3.1) and (3.4),

δαδβE(∇) = 2δα〈H(K(∇)), β〉
= 2〈HH∗(α), β〉+ 2〈(δαH)(K(∇)), β〉 = 2〈J(α), β〉

An alternative proof is to expand E(∇+ tΠ) using (2.56) and simplify the
result as in (2.35). �

Corollary 3.6. Let ∇ ∈ S(M,Ω). If K(∇) is constant then δαδαE(∇) ≥ 0
with equality if and only if H∗(α) = 0. If M is compact then a moment
constant ∇ is an absolute minimizer of E.

Proof. Because K(∇) is constant, the last term in (3.5) vanishes, so
δαδαE(∇) = 〈H∗(α),H∗(α)〉 ≥ 0, with equality if and only if H∗(α) = 0.
The final claim holds because, if M is compact, then a moment constant
connection is moment flat. �

Lemma 3.7. For X ∈ symp(M,Ω) and α ∈ T∇S(M,Ω), JL(Xg) =
LXH(K), where K = K(∇). In particular, if ∇ is critical then δαδL(Xg)E(∇)
= 0 for all X ∈ symp(M,Ω) and α ∈ T∇S(M,Ω).

Proof. For X ∈ symp(M,Ω) and f ∈ C∞(M),

δ∗(df(X)) = −d(df(X)) = −LXdf = [X,Hf ]g,(3.6)

where the final equality holds because X is symplectic. Because X and HK

are symplectic, by (3.6),

LHK
L(Xg) = LHK

(LX∇)g = (LHK
LX∇)g(3.7)

= (L[HK,X]∇)g + (LXLHK
)g

= L([HK(∇), X]g) + LXH(K)

= −Lδ∗(dK(X)) + LXH(K)

= −H(dK(X)) + LXH(K).

By (2.69), H∗L(Xg) = dK(X), and combining this with (3.7) yields
JL(Xg) = HH∗L(Xg) + LHK(∇)

L(Xg) = LXH(K). The final claim follows
from (3.5). �
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4. On a surface, a preferred symplectic connection
is critical

Recall from the introduction that ∇ ∈ S(M,Ω) is preferred if −δ∗Ricijk =
∇(iRjk) = 0. Theorem 1.6 states that on surface a preferred symplectic con-
nection is critical.

Proof of Theorem 1.6. Let (M,Ω) be 2-dimensional. Let∇ ∈ S(M,Ω). Since
ρ = 2δRic, by (2.11),

δ∗ρ = 2δ∗δRic = −3δδ∗Ric.(4.1)

Since −2K = δρ, by (2.11),

2dK = −2δ∗K = δ∗δρ = −2δδ∗ρ+ 2Ripρ
p.(4.2)

By (2.10),

∇ρ = −δ∗ρ−KΩ, 3∇iRjk = −3δ∗Ricijk − Ωi(jρk).(4.3)

Since δdK=0, by (4.2), δ2δ∗ρ=∇p(Rq pρq)=Rpqδ∗ρpq. Differentiating (4.2)
and simplifying the result using (4.3), the identity δ2δ∗ρ = Rpqδ∗ρpq, and
(2.11) yields

∇idKj = 1
6ρiρj −KRij − ρpδ∗Ricijp + 4R(i

pδ∗ρj)p − 3
2δδ
∗ 2ρij .(4.4)

Differentiating (4.4) yields an explicit expression for H(K). Without some
further hypothesis, (4.4) is too complicated to be useful, but it simplifies
considerably if δ∗ρ or δ∗Ric vanishes.

By (4.1), if ∇ ∈ S(M,Ω) is preferred, then δ∗ρ = 0, so (4.4) simplifies to

∇idKj = 1
6ρiρj −KRij .(4.5)

Differentiating (4.5) shows ∇i∇jdKk = −dKiRjk, so that H(K) = 0. �

Remark 4.1. The essential content of the conclusion of Theorem 1.6, that
for a preferred symplectic connection the vector field HK(∇) is an infinites-
imal affine automorphism of ∇, is implicit in the proof of Proposition 6.1
of [10]. In particular, in sections 5 and 6 of [10], in the context of preferred
symplectic connections, a key role is played by a function β and one-form u
that are constant multiples of the specializations to this case of K(∇) and
ρ. For example, the identity 3∇iRjk = −Ωi(jρk) is in [10], and (5.6) of [10]
is equivalent to (4.5).
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5. Structural lemmas for symplectic connections
on surfaces

Lemma 5.1 shows that given a critical symplectic connection that is not mo-
ment constant there is a large Darboux coordinate chart on which K can be
considered the action coordinate of action-angle variables. This information
is useful both for proving nonexistence of such connections in Theorem 1.7
and for constructing examples.

For f ∈ C∞(M) let crit(f) = {p ∈M : dfp = 0} be the set of the critical
points of f . For ∇ ∈ S(M,Ω) let Z(ρ) be the set of points of M where ρ
vanishes and let dg(∇) be the set of points in M where dK ∧ ρ vanishes.
Note that dg(∇) ⊃ crit(K) ∪ Z(ρ).

Lemma 5.1. Let (M,Ω) be a symplectic 2-manifold and let ∇ ∈ S(M,Ω)
be critical symplectic with moment map K = K(∇).

1) If K is not constant then each connected component of crit(K) is a point
or a closed image of a geodesic of ∇, and these connected components
are isolated in the sense that around each there is an open neighborhood
containing no other connected component of crit(K).

2) There is a constant τ such that

K2 + ρidKi = τ.(5.1)

Consequently dg(∇) = {p ∈M : K(p)2 = τ} and:
a) dg(∇) = M if and only if K is constant.
b) If dg(∇) is empty then M is noncompact.
c) If τ is negative then dg(∇) is empty.
d) If dg(∇) is nonempty, τ is nonnegative and |K| equals

√
τ at every

point of dg(∇).
e) A maximal integral curve of the symplectically dual vector field

ρf i = ρi intersecting dg(∇) lies entirely in dg(∇) and K is con-
stant along the curve, equal to one of ±

√
τ .

f) If volΩ(M) <∞, E(∇) <∞, and d(ρ(HK)) is integrable then

τvolΩ(M) = 3E(∇) +

ˆ
M
d(Kρ).(5.2)

In particular, if M is compact then τvolΩ(M) = 3E(∇).

3) If K is not constant, then on the nonempty open subset M̄ = M \
dg(∇) there hold:



i
i

“4-Fox” — 2020/1/7 — 17:34 — page 1724 — #42 i
i

i
i

i
i

1724 Daniel J. F. Fox

a) The one-form σ = (τ −K2)−1ρ is closed.
b) d(Kσ) = dK ∧ σ = Ω.
c) The symplectically dual vector field σf i = σi commutes with HK

and Ω(σf,HK) = 1.
d) Around any point p ∈M \ crit(K), there are local coordinates (x, y)

such that p corresponds to the origin, K−K(p) = x, dy = (τ −
K2)−1ρ, and Ω = dx ∧ dy.

e) The complex structure J defined on M̄ by J(σf)=HK and J(HK)=
−σf is HK and σf invariant.

f) If τ > 0, the function

T =
1

2
√
τ

log

∣∣∣∣√τ + K√
τ −K

∣∣∣∣ =

{
τ−1/2 arctanh(τ−1/2K) if τ > K2,

τ−1/2 arccoth(τ−1/2K) if 0 < τ < K2,
(5.3)

is smooth on M̄ , while if τ < 0 the function

T = |τ |−1/2 arccot(|τ |−1/2K)(5.4)

is smooth on all of M . With the complex structure J defined by
J(HT ) = ρf and J(ρf) = −HT the flat Riemannian metric

kij = dTidTj + σiσj(5.5)

forms a Kähler structure with volume (τ −K2)−1Ω = dT ∧ σ =
d(Tσ). Moreover, HK is a Killing field for kij.

g) If dg(∇) is nonempty, then T maps each maximal integral mani-
fold of the vector field ρf on M̄ diffeomorphically onto its image.
Precisely, if φ : I →M is a maximal integral curve of ρf such that
φ(0) = p ∈ M̄ then T ◦ φ(t) = t+ T (p).

h) If dg(∇) is nonempty, and the restriction to M̄ of ρf is complete,
then the metric k of (5.5) is complete on M̄ , and each connected
component of M̄ with the Riemann surface structure (k, J) is con-
formally equivalent to the complex plane or the punctured disk.

Proof. Each connected component of the zero set of an infinitesimal au-
tomorphism of a torsion-free affine connection is a closed totally geodesic
submanifold (see p. 61 of [41]). In particular this applies to the zeros of
HK, that is to crit(K). If a connected component of crit(K) has nonempty
interior then it must be all of M , in which case K is constant. Hence if
K is nonconstant each connected component of crit(K) is a closed totally
geodesic submanifold of M of codimension at least one, so is a closed image
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of a geodesic or a point. Suppose K is nonconstant. Suppose x ∈ crit(K) and
every sufficiently small neighborhood of x contains some point of crit(K)
distinct from x. Fix a geodesically convex open neighborhood U of x and
choose y in crit(K) ∩ U distinct from x. Let L be the unique geodesic seg-
ment connecting x to y and contained in U . Since the flow of HK fixes x
and y it fixes L too, and so L ⊂ crit(K). Hence x and y belong to the same
connected component of crit(K). It follows that the connected components
of crit(K) are isolated.

Since the flow of HK preserves ∇ and Ω it preserves ρ, so, using (1.14),

0 = LHK
ρ = ι(HK)dρ+ d(ρ(HK))(5.6)

= 2KdK + d(ρ(HK)) = d(K2 + ρ(HK)),

from which it follows that there is a constant τ satisfying (5.1). From (5.1)
it is apparent that dg(∇) is the zero locus of τ −K2. In particular, K is
constant if and only if dg(M) = M . If dg(∇) is empty, then dK does not
vanish, so M must be noncompact.

By (5.1), if q ∈ dg(∇) then K(q)2 = τ , so if dg(∇) is nonempty, then τ
is nonnegative and, at every point of dg(∇), |K| equals

√
τ . Let q ∈ dg(K)

and let I ⊂ R be a maximal open interval around 0 such that φ : I →M is
a smooth integral curve of ρf satisfying φ(0) = q. By (5.1), u(t) = K ◦ φ(t)
solves u̇ = τ − u2. If φ(0) = q ∈ dg(∇) then u(0) = K(q) = ±

√
τ and so, by

the uniqueness of the solution to the initial value problem for u̇ = τ − u2,
K ◦ φ(t) = u(t) = ±

√
τ for all t ∈ I, and hence φ(I) ⊂ dg(∇).

If volΩ(M) is finite and E(∇) is finite, then integrating (5.1) and using
(1.14) yields

τvolΩ(M) =

ˆ
M

K2Ω +

ˆ
M
ρpdKpΩ = E(∇) +

ˆ
M
dK ∧ ρ(5.7)

= E(∇)−
ˆ
M

K ∧ dρ+

ˆ
M
d(Kρ) = 3E(∇) +

ˆ
M
d(Kρ),

where the last expression makes sense provided d(Kρ) is integrable. This
shows (5.2).

That σ = (τ −K2)−1ρ is closed on M̄ follows from differentiating (5.1)
and using (1.14) and

dK ∧ ρ = (τ −K2)Ω.(5.8)

That dK ∧ σ = Ω is immediate from (5.8). Since LHK
ρ = 0, the vector fields

ρi and HK commute. Since any function of K is constant along the flow
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of HK, this implies σi commutes with HK. Because σf, HK, and Ω are all
invariant under HK and σf so too is the complex structure J .

If ∇ is critical but not moment constant, then on the universal cover of
each connected component of M̄ there are coordinates x and y such that
Ω = dx ∧ dy, K = x, and ρ = (τ − x2)−1dy. Simply define x = K and let y
be a global primitive of σ. This proves (3d).

The claims of (3f) are all verified by straightforward computations.
Now suppose dg(∇) is a nonempty proper subset of M , so that τ > 0.
Given p ∈ M̄ let φ : I = (−a, b)→M be a maximal integral curve of ρf

such that φ(0) = p. Since dTpρ
p = (τ −K2)−1dKpρ

p = 1, the function u(t) =
T ◦ φ satisfies u(0) = T (p) and u̇ = 1 so u(t) = t+ T (p). Consequently T
maps φ(I) diffeomorphically onto its image (T (p)− a, T (p) + b).

If ρf is complete then its flow φt is globally defined. Let C be a con-
nected component of M̄ . Then C contains a connected component S of
K−1(0) and, because T ◦ φt(p) = t for p ∈ K−1(0), the map Φ : R× S → C
defined by Φ(t, p) = φt(p) is a diffeomorphism. Since S is a connected one-
manifold it is diffeomorphic to a circle S1 or the line R. Since φ∗t (σ) = σ,
the pullback Φ∗(σ) is a closed one-form on S extended trivially to R× S, so
is exact if S is a line, or is a multiple of the generator dθ of the cohomol-
ogy of S1 if S is a circle. It follows that the pullback via Φ of the metric k
of (5.5) is the flat metric on the plane R× R or on the infinite Euclidean
cylinder R× S1. The completeness of k follows. In this case, each connected
component of M \ dg(K) carries a complete flat Kähler structure and a non-
trivial holomorphic vector field preserving this Kähler structure. A Riemann
surface with biholomorphism group that is not discrete is biholomorphic to
one of the following: the Riemann sphere, the plane, the punctured plane,
a torus, the unit disc, the punctured unit disc, or an annulus of radii r < 1
and 1. Of these the only surfaces covered holomorphically by the plane are
the plane, torus, and punctured disk. Since K is not constant and dg(∇)
nonempty, the torus cannot occur as the complement of dg(∇). �

Remark 5.2. Let M and ∇ be as in Lemma 5.1. Then the metric

hij = |τ −K2|−1dKidKj + |τ −K2|σiσj = |τ −K2|kij(5.9)

on M̄ = M \ dg(∇) has constant scalar curvature Rh = 2 where τ > K2 and
constant scalar curvature RH = −2 where τ < K2, its volume form volh con-
sistent with the orientation given by Ω equals Ω, and HK is a Killing field for
h. However the restriction of h to a connected component of M̄ is generally
not complete, so it is not clear how useful h is.
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These claims can be proved as follows. Suppose dg(∇) is nonempty and
fix p ∈ M̄ = M \ dg(∇). Since σ is closed, there is a neighborhood of p on
which there is a smooth function φ such that dφ =

√
τσ. If p is contained

in a connected component of M̄ on which τ −K2 is positive, then, since
K ∈ [−

√
τ ,
√
τ ], there can be defined on this neighborhood a smooth func-

tion θ such that K = −
√
τ cos θ. In the coordinates (θ, φ) around p the

metric h takes the form dθ2 + sin2 θdφ2, which is one of the well known
standard forms of the spherical metric. This shows h has constant scalar
curvature 2. Its volume form is sin θdθ ∧ dφ = dK ∧ σ = Ω. If p is contained
in a connected component of M̄ on which τ −K2 is negative, then set-
ting K = ±

√
τ cosh θ and dφ = ±

√
τσ as K is positive or negative, there

result h = dθ2 + sinh2 θdφ2, a standard form of the hyperbolic metric, and
Ω = dK ∧ σ = sinh θdθ ∧ dφ. Since HK preserves K, dK, Ω, and σ, it pre-
serves h.

Remark 5.3. Since, by Theorem 1.6, preferred symplectic connections are
critical, it makes sense to speak of the special cases of Lemmas 5.1 and 5.4
for preferred symplectic connections. For preferred symplectic connections,
Lemma 5.1 specializes to the results of sections 5 and 6 of [10], and (3d) of
Lemma 5.1 specializes to Proposition 11.4 of [10].

Applying Lemma 5.4 yields Lemma 5.1, showing that on a compact
surface carrying a critical symplectic connection the complement of the set
of critical points of K is a union of parabolic Riemann surfaces.

Lemma 5.4. Let (M,Ω) be a compact symplectic 2-manifold and let ∇ ∈
S(M,Ω) be critical symplectic with moment map K = K(∇).

1) There holds Z(ρ) ⊂ crit(K) = dg(∇) and every critical point of K is a
global extremum at which |K| equals

√
τ . In particular, τ = 0 if and

only if K is identically zero.

2) If K is not constant, then:
a) Each r ∈ (−

√
τ ,
√
τ) is a regular value of K and the level set Lr(K)

= {q ∈M : K(q) = r} is a disjoint union of smoothly embedded cir-
cles.

b) For r, s ∈ (−
√
τ ,
√
τ), the level sets Lr(K) and Ls(K) are diffeo-

morphic.
c) The number of connected components of crit(K) where K assumes

its minimum equals the number of connected components of crit(K)
where K assumes its maximum.
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d) Each connected component of M̄ = M \ crit(K) is diffeomorphic to
the infinite Euclidean cylinder R× S1, and the metric kij of (5.5)
is complete, isometric to the standard flat metric on R× S1.

Proof. Because M is compact, K has a maximum and a minimum, at which
it takes the values ±

√
τ . Since it takes these same values at any point in

dg(∇), any point of dg(∇) is a global extremum. In particular dg(∇) =
crit(K). If K is not constant then for r ∈ (−

√
τ ,
√
τ), by (5.1), along Lr(K)

there holds ρpdKp = τ − r2 > 0, so that dK is nonvanishing along Lr(K).
This suffices to show that Lr(K) is a smoothly embedded one-dimensional
submanifold. Since it is also closed, it must be a union of circles. If −

√
τ <

r < s <
√
τ then K−1([r, s]) is compact and contains no critical point of K,

so Lr(K) is diffeomorphic to Ls(K) (see Theorem 3.1 of [49]); moreover, the
flow of ρf maps Lr(K) diffeomorphically onto Ls(K). The claim about the
equality of the numbers of components of crit(K) on which K assumes its
minimum and maximum follows. Since M is compact, ρf is complete, and
so (2d) follows from (3h) of Lemma 5.1. �

Note that in Lemma 5.4 the compactness is used in part to guarantee
the existence of a global flow for ρf and several of the conclusions are valid
in greater generality provided such a global flow exists. The compactness
is used in a more essential way to invoke the regular interval theorem to
conclude that the level sets of K are unions of circles.

With Lemma 5.4 in hand the proof of Theorem 1.7 is straightforward.

Proof of Theorem 1.7. Suppose ∇ is critical and not moment flat. It will be
shown that M must be a sphere or a torus. As in the proof of Lemma 5.4,
K−1(Iε) is a disjoint union of cylinders, where Iε = [−

√
τ + ε,

√
τ − ε]). Each

of the cylinders constituting K−1(Iε) has a positive end and a negative end,
as K tends to a maximum or a minimum at the end. For a suitably small ε,
the complement M \K−1(Iε) is a disjoint union of tubular neighborhoods
of the connected components of crit(K); precisely, its connected components
are cylindrical bands around the closed geodesics contained in crit(K) and
disks around the points contained in crit(K). Each of these cylinders and
disks is positive or negative as K has on the connected component of K

that it contains a maximum or minimum. It follows that M is the union of
cylinders attached end to end and disks attached to cylinders in a manner
compatible with the assignment of signs to the cylinders and disks. A closed
compact surface obtained by attaching cylinders end to end and cylinders
to disks has nonnegative Euler characteristic; since M is oriented, it must
be a sphere or a torus.
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An alternative way of reaching the conclusion about the structure of
the complement of crit(K) goes as follows. By (3f) of Lemma 5.4, each con-
nected component of M \ crit(K) carries a parabolic complex structure J
and a nontrivial holomorphic vector field preserving J . A Riemann surface
with biholomorphism group that is not discrete is biholomorphic to one of
the following: the Riemann sphere, the plane, the punctured plane, a torus,
the unit disc, the punctured unit disc, or an annulus of radii r < 1 and 1.
Of these the only parabolic surfaces are the plane, torus, and punctured
disk. If crit(K) is nonempty, closed compact surfaces cannot be obtained as
connected components of its complement, and the plane is not the comple-
ment of a set containing at least two connected components. The remaining
option is the punctured disk which is conformally equivalent to a cylinder,
and the rest of the argument is as before. �

There remains the question of whether there exist on the torus or sphere
critical symplectic connections that are not moment flat. It was shown in [10]
that a preferred symplectic connection on a compact surface must be locally
symmetric. A key point in the argument is to show that K(∇) must have a
nondegenerate critical point; this uses in an essential way the simplification
of (4.4) to (4.5) available in this case, and it is not clear if this argument
can be adapted to the more general setting of critical symplectic connections
considered here.

6. Symplectic connections in Darboux coordinates

Claim (3d) of Lemma 5.1 motivates calculating H(K) explicitly for a sym-
plectic connection in Darboux coordinates.

Lemma 6.1. Let x and y be global affine coordinates on R2 with respect
to the standard flat affine connection ∂ and let Ω = dx ∧ dy be the standard
symplectic form. Write X = ∂x and Y = ∂y for the coordinate vector fields
(partial derivatives with respect to x and y are indicated by subscripts). The
most general ∇ ∈ S(R2,Ω) has the form ∇ = ∂ + Π where

Π(X,X) = AX +BY, Π(Y, Y ) = CX +DY,(6.1)

Π(X,Y ) = Π(Y,X) = −DX −AY,
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for some A,B,C,D ∈ C∞(R2). For ∇ ∈ S(R2,Ω) of the form ∇ = ∂ + Π
with Π as in (6.1),

−1
2ρ =

(
− 2Axy −Byy −Dxx + (AD −BC)x(6.2)

+ 3(A2 −BD)y + 2ADx −DAx −BCx
)
dx

+
(
2Dxy +Ayy + Cxx + 3(AC −D2)x

− (AD −BC)y − 2DAy +ADy + CBy
)
dy,

K(∇) = 3Axyy + 3Dxxy +Byyy + Cxxx(6.3)

−BxCy +ByCx + 3(AxDy −AyDx)

+ 3(AC −D2)xx + 3(BD −A2)yy − 3(AD −BC)xy,

and, writing K = K(∇),

−H(K) = (Kxxx − 3AKxx − 3BKxy + KxBy −BxKy) dx
⊗ 3

(6.4)

+ (Kyyy − 3DKyy − 3CKxy + KyCx − CyKx) dy⊗ 3

+ 3 (Kxxy + 2DKxx −BKyy +AKxy +AxKy −AyKx) dx� dx� dy
+ 3 (Kxyy + 2AKyy − CKxx +DKxy +DyKx −DxKy) dx� dy � dy,

where � denotes the symmetrized tensor product, so, for example, 2dx�
dy = dx⊗ dy + dy ⊗ dx.

Proof. By (1.14), differentiating (6.2) yields (6.3) (several terms cancel), so
it suffices to check (6.2). Routine computation shows that the Ricci tensor
of ∇ is

Ric =
(
Ax +By + 2(BD −A2)

)
dx⊗ dx(6.5)

+
(
Cx +Dy + 2(AC −D2)

)
dy ⊗ dy

+ 2 (−Ay −Dx +AD −BC) dx� dy.

Since X and Y constitute a symplectic frame,

−1
2ρ(Z) = (∇XRic)(Z, Y )− (∇Y Ric)(Z,X),(6.6)
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for all Z ∈ Γ(TM). Routine computations show that

(∇XRic)(X,X) = Axx +Bxy + 2(BD −A2)x − 2A(Ax +By)

+ 2B(Ay +Dx)− 6ABD + 4A3 + 2B2C,

(∇Y Ric)(Y, Y ) = Cxy +Dyy + 2(AC −D2)y + 2C(Ay +Dx)

− 2D(Cx +Dy)− 6ACD + 4D3 + 2BC2,

(∇XRic)(X,Y ) = −Axy −Dxx + (AD −BC)x −B(Cx +Dy)

+D(Ax +By) + 4BD2 − 2A2D − 2ABC,

(∇Y Ric)(X,X) = Axy +Byy + 2(BD −A2)y + 2D(Ax +By)

− 2A(Ay +Dx) + 4BD2 − 2A2D − 2ABC,

(∇XRic)(Y, Y ) = Cxx +Dxy + 2(AC −D2)x − 2D(Ay +Dx)

+ 2A(Cx +Dy) + 4A2C − 2AD2 − 2BCD,

(∇Y Ric)(X,Y ) = −Ayy −Dxy + (AD −BC)y +A(Cx +Dy)

− C(Ax +By) + 4A2C − 2AD2 − 2BCD.

(6.7)

Substituting (6.7) in (6.6), and observing that the terms involving no deriva-
tives cancel yields

−1
2ρ =

(
−2Axy −Byy −Dxx + (AD −BC)x + 2(A2 −BD)y(6.8)

−B(Cx +Dy)−D(Ax +By) + 2A(Ay +Dx)) dx

+
(
2Dxy + Cxx +Ayy − (AD −BC)y + 2(AC −D2)x

−2D(Ay +Dx) +A(Cx +Dy) + C(Ax +By)) dy.

Simplifying (6.8) yields (6.2). From

∇dx = −Adx⊗ 2 − Cdy⊗ 2 + 2Ddx� dy,
∇dy = −Bdx⊗ 2 −Ddy⊗ 2 + 2Adx� dy,

(6.9)

it follows straightforwardly that

∇dK = (Kxx −AKx −BKy)dx
⊗ 2 + (Kyy − CKx −DKy)dy

⊗ 2(6.10)

+ (Kxy +DKx +AKy)(dx⊗ dy + dy ⊗ dx).

Using (4.5), (6.5), (6.9), and (6.10) to compute ∇2dK + dK⊗ Ric, and sym-
metrizing the result yields (6.4). �

Remark 6.2. Different simplifying assumptions on the functions A, B,
C, and D lead to different simplifications of the equations (6.3) that are
amenable to study:
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1) If A, B, C, and D depend only on x, then K is an affine function of
x. As is shown in the remainder of the present section, this leads to
complete examples on R2.

2) That AD −BC = 0, A2 −BD = 0, and AC −D2 = 0 are the condi-
tions that the difference tensor Π be the cube of a one-form σ.
a) As is shown in section 7, the case where σ is the metric dual of a

metric Killing field leads to examples of critical symplectic connec-
tions that are not preferred.

b) As is shown in section 8, the case where σ is closed gives rise to
moment flat symplectic connections that are not projectively flat.

These remarks suggest considering symplectic connections whose difference
tensor with some nice metric connection has some other special form. In
section 8 and (9) it is shown that when ∇ = D + Π with D the Levi-Civita
connection of a constant curvature Riemannian metric g and Πijk the sym-
metric product of g and a harmonic one-form leads to examples of moment
flat symplectic connections for which ρ(∇) represents an arbitrary de Rham
cohomology class.

Combining (3d) of Lemma 5.1 and Lemma 6.1 yields equations for crit-
ical symplectic connections that can be solved. Let ∇ ∈ S(M,Ω) be critical
with K nonconstant and suppose p /∈ crit(K). Let τ = ρ(HK) + K2. By (3d)
of Lemma 5.1, in an open neighborhood of p there may be taken as Darboux
coordinates x = K− a where a = K(p), and y where dy = (τ −K2)−1ρ =
(τ − (x+ a)2)−1ρ. Hence K = x+ a and ρ = (τ − (x+ a)2)dy. Let ∇ have
the form ∂ + Π where Π is as in (6.1) and ∂ is the standard flat affine
connection in the coordinates (x, y). By (6.4),

0 = −H(K) = Bydx
⊗3 − 3Aydx� dx� dy(6.11)

+ 3Dydx� dy � y − Cydy⊗3,

so that A, B, C, and D depend only on x. This can be seen in another
way as follows. The vector field HK = ∂y is Killing for both the flat affine
connection ∂ and ∇, so the Lie derivative along HK of the difference tensor
Π = ∇− ∂ vanishes.

Comparing ρ = (τ − (x+ a)2)dy and (6.2) shows that A, B, C, and D
satisfy the equations

(Cx + 3(AC −D2))xx = x+ a,

Dxx = (AD −BC)x + 2ADx −DAx −BCx.
(6.12)
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The preceding is summarized in Lemma 6.3.

Lemma 6.3. Let ∂ be the standard flat affine connection in the coordinates
(x, y) and let Ω = dx ∧ dy. The connection ∇ = ∂ + Π, where Π is defined as
in (6.1), is critical symplectic if A, B, C, and D are functions of x alone and
satisfy the equations (6.12). In this case K(∇) = x+ a for some constant a.

Computing δ∗Ric and δ∗ρ using (6.7) and (6.9) yields

−3δ∗Ric =
(
Axx + 2BxD + 4BDx − 3(A2)x(6.13)

+ 4A3 − 6ABD + 2B2C
)
dx⊗3

+
(
2CDx − 2CxD − 6ACD + 2BC2 + 4D3

)
dy⊗3

+
(
− 2Dxx + 6AxD − 4BCx − 2BxC

− 6ABC + 12BD2 − 6A2D
)
dx� dx� dy

+
(
Cxx + 6ACx − 3(D2)x

+ 12A2C − 6AD2 − 6BCD
)
dx� dy � dy,

δ∗ρ = (τ − (x+ a)2)(Bdx⊗2 +Ddy⊗2 − 2Adx� dy)(6.14)

+ 2(x+ a)dx� dy.

This suggests choosing A, B, and D so that δ∗ρ = 0. Then B = D = 0, A =
(x+ a)(τ − (x+ a)2)−1, and, by (6.12), (Cx + 3AC)xx = x+ a. For any con-
stants p and q the function C = −6−1(τ − (x+ a)2)((x+ a)2 + p(x+ a) + q)
yields a solution defined at least on the region where τ 6= (x+ a)2. Substi-
tuting into (6.13) yields 9δ∗Ric = (τ − q)dx� dy � dy. If q = τ then the re-
sulting connection is preferred. The family of connections corresponding to
q = τ (with p arbitrary) was found in Proposition 11.4 of [10], where it is
shown that every preferred symplectic connection on R2 that is not symmet-
ric is equivalent to one of these connections with q = τ < 0 and p arbitrary.
On the other hand, if q 6= τ , then the resulting connections are critical but
not preferred.

Theorem 6.4. Let ∂ be the standard flat affine connection in the coordi-
nates (x, y) and let Ω = dx ∧ dy. For any choices of constants a, p, q, and τ ,
the connection ∇ = ∂ + Π where Π is defined as in (6.1) with B = 0 = D,
A = (x+ a)(τ − (x+ a)2)−1 and C = −6−1(τ − (x+ a)2)((x+ a)2 + p(x+
a) + q) satisfies:

1) On each connected component of {(x, y) ∈ R2 : τ 6= (x+ a)2}, ∇ is a
critical symplectic connection satisfying K(∇) = x+ a and δ∗ρ = 0.
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2) ∇ is preferred if and only if q = τ .

3) If τ < 0 then ∇ is defined on all of R2 and is geodesically complete.

Proof. There remains only to prove that ∇ is complete when τ < 0. In the
case q = τ this is claimed in section 11 of [10]. The equations of the geodesics
of ∇ as in Lemma 6.1 are

ẍ+Aẋ2 − 2Dẋẏ + Cẏ2 = 0, ÿ +Bẋ2 − 2Aẋẏ +Dẏ2 = 0.(6.15)

No generality is lost by supposing a = 0. Then (6.15) becomes

ẍ+ x
τ−x2 ẋ

2 − 1
6(τ − x2)(x2 + px+ q)ẏ2 = 0, ÿ − 2x

τ−x2 ẋẏ = 0.(6.16)

From (6.16) it follows that along a solution (τ − x2)ẏ equals some constant
r. (This follows from the constancy of ρ(γ̇) for any ∇-geodesic γ, which is
an immediate consequence of δ∗ρ = 0.) Hence

ẍ+ x
τ−x2 ẋ

2 − r2(x2+px+q)
6(τ−x2) = 0, ẏ = r

τ−x2 .(6.17)

Suppose τ < 0 and let x =
√
−τ sinhu. Then u solves the conservative equa-

tion

ü = f(u) = − r2

6
−τ sinh2 u+p

√
−τ sinhu+q

(
√
−τ coshu)3 .(6.18)

Along each solution there is a constant E such that u̇2 + g(u) = E where
g(u)− g(u0) = −2

´ u
u0
f(v) dv. It is straightforward to see that there is a

constant C > 0 such that |f(u)| ≤ C/(4 cosh(u)) = C d
du arctan(eu) for u ∈

R. This bound implies |g(u)− g(u0)| ≤ C| arctan(eu)− arctan(eu0)| ≤ Cπ.
Consequently, if u(t) solves (6.18) with initial conditions u(0) = u0 and
u̇(0) = v0, then

u̇(t)2 = E − g(u(t)) ≤ E − g(u(0)) + |g(u(t))− g(u(0)|(6.19)

≤ E − g(u0) + Cπ = v2
0 + Cπ.

Hence there is a constant K > 0 depending on v0 such that |u̇(t)| ≤ K for
all t. This implies |u(t)| ≤ |u0|+K|t|, so that u(t) does not blow up in finite
time. Thus for any u0 and v0 there is a unique solution u of (6.18) defined
for all time, so x and y are as well. Hence ∇ is complete. �

Remark 6.5. In the examples of Theorem 6.4 the condition B = 0 can be
dropped and solutions will still be obtained. With D = 0, the solutions are
as above, but with BxC = −2BCx.
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7. Critical symplectic connections on the standard
two sphere

Other examples can be constructed using Lemma 6.3, but in general it
is difficult to find solutions that yield complete connections. For exam-
ple, let P (x) = x4/24 + ax3/6 + bx2/2 + cx+ d. By (6.3), (6.4), and Lemma
6.3, the ∇ defined by taking A = B = D = 0 and C = P (x) in (6.1) has
K(∇) = x+ a and H(K(∇)) = 0 so is critical symplectic but not moment
constant. These connections are not generally complete. By (6.15), a geodesic
satisfies y(t) = pt+ q and x(t) solves ẍ = −p2P (x). For a polynomial Q(x)
with derivative equal to P (x), ẋ2 + 2p2Q(x) is constant along a solution.
Since the constant term of Q is arbitrary, the constant of integration can
be absorbed into Q, and there can be written ẋ2 + 2p2Q(x) = 0, where the
choice of primitive Q depends on the particular solution curve. In general
solutions of such an equation blow up in finite time.

The following addresses the question of whether, for an appropriate
choice of P , the connection so obtained can be extended to a symplectic
connection on the two sphere with its usual volume form. The strange re-
sult is the construction of a family ∇(t) of critical symplectic connections
defined on the complement in S2 of two antipodal points, such that ∇(0)
is the Levi-Civita connection of the round metric, and, for t 6= 0, the dif-
ference tensor ∇(t)−∇(0) extends continuously but not differentiably at
the two excluded antipodal points. Moreover, E(∇(t)) is a multiple of t2,
so while these connections are critical they are not minimizers of E except
when t = 0.

The round two-dimensional sphere S2 of volume 4π is the subset
{(sin θ cosφ, sin θ sinφ, cos θ) ∈ R3 : θ ∈ [0, π], φ ∈ [0, 2π)} of R3 with the in-
duced metric. In the coordinates (x, y) defined on the complement of the
poles by x = − cos θ ∈ (−1, 1) and y = φ the standard round metric g =
dθ2 + sin2 θdφ2 takes the form g = (1− x2)−1dx2 + (1− x2)dy2, and the vol-
ume form Ω = sin θdθ ∧ dφ of g equals the Darboux form dx ∧ dy. Let ∂ be
the flat connection in the coordinates (x, y). The Levi-Civita connection
D of g has the form D = ∂ + Λ where Λ(X,X) = x(1− x2)−1X, Λ(X,Y ) =
Λ(Y,X) = −x(1− x2)−1Y , and Λ(Y, Y ) = x(1− x2)X. Define∇ = D + Γ =
∂ + Π where the components A, B, C, and D of Π = Γ + Λ are as in (6.1).
Taking A = x(1− x2)−1, B = D = 0, and C = x(1− x2) + P (x), where P
is a quartic polynomial in x, yields a connection ∇ with K(∇) linear in x.
Precisely, Cx + 3AC = 1 + P ′ + 3x(1− x2)−1P . Taking P = (1− x2)(ax2 +
bx+ c) yields K(∇) = Cxxx + 3(AC)xx = −6ax, so if a = −1/6, the result-
ing connection satisfies K(∇) = x. So far this ∇ has been defined only away
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from the poles in S2. There remains to determine whether b and c can be
chosen so that it extends smoothly at the poles.

As is explained following its proof, Theorem 7.1 gives an intrinsic con-
struction of a special case of the connections just described. Although its
statement appears more general, Theorem 7.1 is interesting mainly in the
special case D is the Levi-Civita connection of a round metric on M = S2.

Theorem 7.1. Let (M,Ω) be a symplectic 2-manifold and let D ∈ S(M,Ω)
have parallel Ricci tensor Rij. Suppose Zi is a nontrivial one-form satisfying
D(iZj) = 0. Let γ = DpZ

p. Then

ν = γ2 + 4ZaZbRab(7.1)

is constant. On M̂ = {p ∈M : γ(p)2 6= ν} define Γijk = (ν − γ2)−1ZiZjZk.
The symplectic connection ∇(t) = D + tΓij

k satisfies

R(t)ij = Rij + tγ(ν − γ2)−1ZiZj ,(7.2)

−δ∗∇(t)Ric(∇(t))ijk = ∇(t)(iR(t)jk) = −4tν(ν − γ2)−2Z(iZjRk)pZ
p,(7.3)

ρ(∇(t))i = 1
2 t(ν − 3γ2)(ν − γ2)−1Zi,(7.4)

K(∇(t)) = −3
4 tγ,(7.5)

τ(∇(t)) = (3t/16)ν,(7.6)

where R(t)ij = Ric(∇(t))ij and τ is the constant of (5.1) of Lemma 5.1.
Moreover, H∇(t)(γ) = 0, so ∇(t) is critical. If 4ν(ν − γ2)−2Z(iZjRk)pZ

p is

nonzero somewhere on M̂ , then ∇(t) is not preferred for t 6= 0. Finally, the
Jacobi operator satisfies J∇(t)(Γ) = 0 for all t ∈ R.

Proof. Let ∇ = ∇(1). For t 6= 0 it suffices to check all the claims for ∇
because tΓijk is obtained from tZi in the same way as Γijk is obtained from
Zi; that is the connection∇ corresponding to tZ in place of Z is simply∇(t).

By assumption 2DiZj = 2D[iZj] = γΩij . By the Ricci identity,

2dγi = 2DiDpZ
p = 2DpDiZ

p − 2RipZ
p(7.7)

= Dp(γδi
p)− 2RipZ

p = dγi − 2RipZ
p,

so

dγi = −2RipZ
p.(7.8)
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Since Rij is parallel,Di(Z
aZbRab) = 2ZaRabDiZ

b = γRipZ
p. Combined with

(7.8) this shows that d(γ2 + 4ZaZbRab) = 0, so there is a constant ν satis-
fying (7.1). From (7.8) and (7.1) there follows

Zpdγp = −2ZaZbRab = −(ν − γ2)/2.(7.9)

Computing using 2DiZj = γΩij and (7.9) shows

δΓij = DpΓij
p = γ(ν − γ2)−1ZiZj .(7.10)

Since Γip
lΓjk

p = 0 and Γip
p = 0, (7.2) follows from (7.10). A bit of compu-

tation using (7.2) shows

∇iRjk = DiRjk − 2Γi(j
pRk)p(7.11)

= Di(γ(ν − γ2)−1ZjZk)− 2(ν − γ2)−1ZiZ(jRk)pZ
p

= −2((ν − γ2)−1 + 2γ2(ν − γ2)−2)ZpRipZjZk

− 2(ν − γ2)−1ZiZ(jRk)pZ
p + γ2(ν − γ2)−1Ωi(jZk),

from which (7.3) follows. Contracting (7.11) and simplifying using (7.9)
yields (7.4). Alternatively, (7.4) follows from (2.55) coupled with the ob-
servations that, by (7.10), 4L∗D(Γ)i = (ν − γ2)−1(3γ2 − ν)Zi and that in
(2.55) the terms of order at least two in t all vanish. Since Zpρ(∇)p = 0,
∇iρ(∇)j = Diρ(∇)j , so to compute K(∇) it suffices to compute Diρ(∇)j
and contract the result. There results (7.5). As for (7.4), (7.5) can also be
computed using (2.56) and

H∗D(Γ) = δDL
∗
D(Γ) = −(3/4)γ.(7.12)

Differentiating (7.8) yields Didγj = −γRij , and, with (7.9), there follow

∇idγj = Didγj − ZpdγpZiZj
= −γRij + 2(ZaZbRab)ZiZj = −γRij + 1

2ZiZj ,

∇i∇jdγk = Di∇jdγk − 2(ν − γ−2)−1ZiZ(jZ
p∇k)dγp

= −dγiRjk + 1
2γΩi(jZk) + 2γ(ν − γ−2)−1ZiZ(jZ

pRk)p.

(7.13)
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Using (7.2), (7.8), and (7.13) yields

−H∇(γ) = ∇i∇jdγk + dγiRjk(7.14)

= ∇i∇jdγk + dγiRjk + γ(ν − γ−2)−1dγiZjZk

= 1
2γΩi(jZk) + γ(ν − γ−2)−1

(
dγiZjZk − ZiZ(jdγk)

)
= 1

2γΩi(jZk) + γ(ν − γ−2)−1
(
dγ[iZj]Zk + dγ[iZk]Zj

)
= 0,

in which the final equality follows from 4dγ[iZj] =2ZpdγpΩij =−(ν − γ2)Ωij ,
which uses (7.9).

It follows from (7.2) that L∗∇(Γ)ij = L∗D(Γ)ijk, and from (7.10) and (7.12)
that H∗∇(Γ) = δ∇L

∗
∇(Γ) = δ∇L

∗
D(Γ) = δDL

∗
D(Γ) = H∗D(Γ) = −(3/4)γ. Then

J∇(Γ) = H∇H
∗
∇(Γ) + LHK(∇)

Γ(7.15)

= H∇(−(3/4)γ)− (3/4)LXΓ = −(3/4)LXΓ,

where Xi = −dγi. Since

DpΓijk = 3
2γ(ν − γ2)−1Ωp(iZjZk) + 2γ(ν − γ2)−2dγpZiZjZk,(7.16)

and Didγj = −γRij ,

(LXΓ)ijk = −dγpDpΓijk − 3D(idγ
pΓjk)p(7.17)

= 3
2γ(ν − γ2)−1dγ(iZjZk) + 3γ(ν − γ2)−1ZpRp(iZjZk)

= 0,

the last equality by (7.8), it follows from (7.15) that J∇(Γ) = 0. While the
preceding argument does not show that JD(Γ) = 0, this is easily checked
directly. �

If D is the Levi-Civita connection of a Riemannian metric then the
hypothesis of Theorem 7.1 means that Zi is metrically dual to a Killing
field, so if M is compact and Z is nontrivial then M must be a sphere or
a torus. Since by hypothesis the Ricci tensor is parallel, in the case M is a
torus, the metric must be flat and any Killing field is parallel; in this case
ν = 0 and γ = 0 and the set M̂ of Theorem 7.1 is empty, so the construction
is vacuous.

In the case M = S2, the vector field Y = ∂y, which is rotation around
the axis through the deleted antipodal poles, is a nontrivial Killing field
for the round metric g for which the metrically dual one-form Z = ι(Y )g =
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(1− x2)dy has the properties required in Theorem 7.1. (This example moti-
vated the theorem.) Here the notations are as in the paragraphs preceding
the statement of Theorem 7.1. Precisely, Z satisfies DZ = −xΩ, and for an
appropriate choice of P , the difference tensor Γ is (1/4)(1− x2)−1ZiZjZk =
(1/4)(1− x2)2dy ⊗ dy ⊗ dy. Since γ = −2x and ZaZbRab = |Z|2g = (1− x2),
the constant ν equals 4. Theorem 7.1 shows that in this setting the re-
sulting ∇ is critical but not preferred. However, while the tensor Γijk ex-
tends continuously at the poles, vanishing there, its extension is not dif-
ferentiable at the poles. The behavior at the poles is seen most easily in

different coordinates. A convenient choice is u = tan θ
2 cos y =

√
1+x
1−x cos y

and v = tan θ
2 sin y =

√
1+x
1−x sin y. In these coordinates g has the standard

form 4(1 + u2 + v2)−2(du2 + dv2) and the origin corresponds to x = −1 (the
pole at x = 1 can be handled similarly). Since u2 + v2 = (1 + x)/(1− x),
x = (u2 + v2 − 1)/(u2 + v2 + 1), and dy = (u2 + v2)−1(udv − vdu),

Γ = 4(1 + u2 + v2)−4(u2 + v2)−1(udv − vdu)⊗ 3.(7.18)

The components of Γ behave like a smooth multiples of uav3−a(u2 + v2)−1

for a ∈ {0, 1, 2, 3}, so extend continuously at the origin of (u, v) coordinates,
but do not extend differentiably there.

For the ∇(t) of Theorem 7.1, by (7.5), since K(∇(t)) extends smoothly
to all of S2,

E(∇(t)) =

ˆ
S2

K(∇)2 Ω = (9/4)t2
ˆ 2π

0

ˆ 1

−1
x2 dx dy = 3πt2.(7.19)

Since the Levi-Civita connection D of the round metric on S2 has E(D) = 0,
this shows that ∇(t) is not an absolute minimizer of E when t 6= 0, although
it is critical. In particular, there is a one-parameter family of critical sym-
plectic connections on the Darboux cylinder along which E takes on all
nonnegative real values. Comparing (7.6) and (7.19) shows the necessity of
the boundary term in (5.2). For ∇ = ∇(1), by (7.6), τvolΩ(M) = 3π, while,
by (7.19), E(∇) = 3π, rather than 9π as (5.2) would imply were the bound-
ary term null. However, by (7.4) there holds ρ = 2−1(1− 3x2)dy, and so
Kρ = (3/4)x(1− 3x2)dy, which does not extend differentiably at the poles
x = ±1 since the one-form dy does not extend differentiably. It follows that
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the boundary term
´
M d(Kρ) in (5.2) does not vanish. Indeed,

ˆ 2π

0

ˆ 1−ε2

−1+ε1

d(Kρ) = −
ˆ 2π

0
(Kρ)x=1−ε2 +

ˆ 2π

0
(Kρ)x=−1+ε1(7.20)

= −2π(3/4)(1− ε2)(1− 3(1− ε2)2)

+ 2π(3/4)(ε1 − 1)(1− 3(ε1 − 1)2)

which tends to 6π when ε1 → 0 and ε2 → 0. This is what is needed to yield
equality in (5.2).

8. Moment flat connections that are not projectively flat

For Π as in (6.1), the components of Πg(U, V,W ) = Ω(Π(U, V ),W ) are

Πg(X,X,X) = −B, Πg(X,X, Y ) = A,

Πg(X,Y, Y ) = −D, Πg(Y, Y, Y ) = C.
(8.1)

The expressions (6.2) and (6.3) in Lemma 6.1 simplify considerably if AD −
BC = 0, A2 −BD = 0, and AC −D2 = 0. These are the conditions for the
cubic form (8.1) to take values in the image of a rational normal curve,
that is for Πg to be decomposable in the sense that there is a one-form
σ such that Πg = σ ⊗ σ ⊗ σ. Theorem 7.1 shows what happens when σ is
metrically dual to a metric Killing field. A different simplification is obtained
by supposing that σ is closed. Lemma 8.1 shows how Lemma 6.1 simplifies
when Πg is supposed to be the cube of a closed one-form, and Theorem 8.3
shows how it simplifies further when Πg is the cube of an exact one-form.

Lemma 8.1. Let (M,Ω) be a surface with a volume form, and let D ∈
S(M,Ω). Let ∇ = D + Πij

k ∈ S(M,Ω), where Πijk = XiXjXk and the one-
form Xi is closed. Let Rij and Rij be the Ricci curvatures of ∇ and D and
let κ = detDiX

j. Then

Rij = Rij + δΠij = Rij + 2XpX(iDj)Xp,(8.2)

ρ(∇)i = ρ(D)i + 12κXi − 6XiX
pXqRpq − 2Di(X

pXqDpXq)

= ρ(D)i + 8κXi − 6XiX
pXqRpq − 2XpXqDiDpXq,

(8.3)

K(∇) = K(D)− 6Xpdκp + 3XpDp(X
aXbRab).(8.4)

Proof. Because 2D[iXj] = DpX
pΩij , that X is closed means that DpX

p = 0.

For any
(

1
1

)
-tensorAi

j such thatAp
p = 0 there holdsAi

pAp
j = −det(A)δi

j ,
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and so there hold Ap
qAq

p = −2 det(A), ApqAqp = 2 det(A), and Aa
bAb

cAc
a

= 0. Applying these observations to Ai
j = DiX

j yields

DiX
pDpXj = −κΩij , DpXqDpXq = 2κ.(8.5)

By (8.5) and the Ricci identity,

XpXqDiDpXq = Di(X
pXqDpXq)− 2XpDiX

qDpXq(8.6)

= Di(X
pXqDpXq)− 2κXi.

Since Rp
p
ij = 2Rij , DpDpXi = RipX

p, and, by (1.12), RijklX
jXkX l =

−XiX
pXqRpq. Because Xi is closed, δΠij = DpΠij

p = 2XpX(iDj)Xp, and
(8.2) follows. Using (8.5), DpDpXi = RipX

p, the Ricci identity, and finally
(8.6) there results

L∗(Π)i = −δ2Πi −ΠipqR
pq = −4κXi + 2XpXqRpqXi +XpXqDpDqXi

= −4κXi + 2XpXqRpqXi +XpXq(DiDpXq − ΩpiRq
aXa)

= −4κXi + 3XpXqRpqXi +XpXqDiDpXq

= −6κXi + 3XpXqRpqXi +Di(X
pXqDpXq).(8.7)

Since Πip
qΠjq

p = 0 and ΠipqδΠ
pq = 0, by (2.55), ρ(∇) = ρ(D)− 2L∗(Π),

and with (8.7) this yields (8.3). Since 2K(∇) = ∇pρ(∇)p = Dpρ(∇)p, apply-
ing Dj to (8.3) yields (8.4). �

On a surface M , let (gij , Ji
j) be a constant curvature Kähler structure

having Levi-Civita connection D and volume form Ωij = Ji
pgpj . For f ∈

C∞(M), the function M(f) = det(Didf
j) is the usual Hessian determinant.

Precisely, the determinant det Ω of the covariant two-tensor Ω is identified in
a canonical way with the section Ω⊗2 of the tensor square of the line bundle of
two-forms. Consequently, as Didf

pΩpj = Didfj , M(f)Ω⊗ 2 = detDdf . In the
case D is a flat affine connection and Ω = dx ∧ dy, M(f) = detDf ⊗ Ω⊗−2

is just the usual Hessian determinant. Since DidfpDpdfj = M(f)δj
i, the

tensor Didf j is the adjugate tensor of Didfj . Define U(f) = dfidfjD
idf j , the

contraction of the adjugate tensor of the Hessian ∂df of f with df ⊗ df .

Corollary 8.2. On a surface M , let (gij , Ji
j) be a Kähler structure having

Levi-Civita connection D, volume form Ωij = Ji
pgpj, and constant scalar

curvature R. For f ∈C∞(M), let M(f)=det(Didf
j) and U(f)=dfidfjD

idf j.
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Then ∇ = D + dfidfjdf
k ∈ S(M,Ω) satisfies

ρ(∇)i = −3R|df |2gdfi + 12M(f)dfi − 2dU(f)i,

K(∇) = 6{f,M(f)} − 3
2R{f, |df |

2
g}.

(8.8)

Proof. Take Xi = dfi in Lemma 8.1. �

Corollary 8.2 yields moment flat symplectic connections that are not
projectively flat.

Theorem 8.3. Let ∂ be the standard flat connection on R2 equipped with
the symplectic form Ω = dx ∧ dy. Define ∇ ∈ S(R2,Ω) by ∇ = ∂ + Π where
Πijk = dfidfjdfk for f ∈ C∞(M). Then

ρ = 12M(f)df − 2dU(f), K(∇) = 6{f,M(f)}.(8.9)

If M(f) Poisson commutes with f then K(∇) = 0, but ∇ is not projectively
flat whenever dU(f)− 6M(f)df is somewhere nonzero. In particular, if the
graph of f is an improper affine sphere then K(∇) = 0. There exist improper
affine spheres for which the resulting ∇ is not projectively flat.

Proof. Except for the final claims, this is a special case of Corollary 8.2. The
graph of f is an improper affine sphere if and only if M(f) equals a nonzero
constant. In this case M(f) Poisson commutes with f so K(∇) = 0.

If f has homogeneity 2, meaning xfx + yfx = 2f , then U(f) = 2fM(f),
so that in this case, by (8.9), ρ = 12M(f)df − 4d(fM(f)) = 8M(f)df −
4fdM(f). If, moreover, M(f) is constant but f is not, then ρ = 8M(f)df
is not zero, although K(∇) vanishes. This occurs for any homogeneous
quadratic polynomial, e.g. x2 ± y2 or xy. More interesting examples are
obtained as follows. Let u(x) be any smooth function on the line. Then
f = xy + u(x) satisfies M(f) = −1 and U(F ) = x2u′′ − 2x(y + u′), so that
ρ = −2dU(f) = (4y + 4u′ − 2x2u′′′)dx+ 4xdy. Since M(f) = −1 the graph
of f is an improper (ruled) affine sphere, and since ρ never vanishes identi-
cally the resulting connection is not projectively flat. �

Remark 8.4. Specializing (8.2) shows that the Ricci curvature of ∇ as
in Theorem 8.3 has the form Ric = −∇Hf (df ⊗ df) = −∂Hf (df ⊗ df). Hence
Ric(Hf ,Hf ) = 0, so Ric degenerates along Hf .

Horospheres in hyperbolic space are convex submanifolds, flat in the
induced metric, and having constant Gaussian curvature, so are analogous
to affine spheres. This motivates the next example.
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Theorem 8.5. Let D be the Levi-Civita connection of the metric g on the
hyperbolic plane and let Ω be the corresponding volume form. Let β be a
Busemann function normalized to take the value −∞ at a fixed point in the
ideal boundary. Define ∇ ∈ S(R2,Ω) by ∇ = D + Π where Πijk = dfidfjdfk
and f = eβ. Then ρ = 6f2df = 2d(f3), so K(∇) = 0 but ∇ is not projectively
flat.

Proof. In the upper half-space model of hyperbolic space, the Busemann
function at the point at infinity is the negative of the logarithm of the ver-
tical coordinate. Using this it is straightforward to check that Ddβ + dβ ⊗
dβ = g, so that Ddf = Ddeβ = eβg = fg. Hence Didf

j = −fJi j , so M(f) =
det(Didf

j) = f2. As |dβ|2g = 1, there holds |df |2g = e2β = f2. Hence U(f) =
df idf jDidfj = f |df |2g = f3. Consequently ρ = −2dU(f)+12M(f)df = 6f2df .

�

Theorem 8.6 provides examples of moment flat symplectic connections
on compact surfaces that are not projectively flat. These are used later in the
proof of Theorem 1.8, that shows that any cohomology class in H1(M ;R)
is represented by the curvature one-form of some moment flat symplectic
connection.

Theorem 8.6. On a surface M , let (gij , Ji
j) be a Kähler structure having

Levi-Civita connection D, volume form Ωij = Ji
pgpj, and scalar curvature

Rg. Let Xi be a nontrivial harmonic one-form. Then, for Πijk = 3X(igjk),

the symplectic connection ∇ = D + Πij
k satisfies ρ(∇)i = ρ(D)i − 6RgXi.

In particular, if g has constant curvature, then ρ(∇) = −6RgXi and K(∇) =
0.

Proof. The difference ρ(∇)− ρ(D) is computed using (2.55). The operators
δ, L, etc. are those associated with D. Since one customarily raises and
lowers indices with the metric rather than the volume form, the notation
used here can be confusing. For instance, since Ji

pΩpj = −gij , Jij = −gij
and gi

j = −Ji j . ThatX is harmonic implies thatDiXj = DjXi, Ji
pDjXp =

Jj
pDiXp, g

pqDpXq = 0, and DpXp = 0. Using DpXp = 0, the symmetry of
Jj

pDiXp and DiXj , and gpqΠipq = 4Xi, there result

δΠij = −DpΠijp = Dp(XiJjp +XjJip +XpJij)(8.10)

= −2J(i
pD|p|Xj) = −2Ji

pDjXp,

δ2Πi = DpδΠip = 2Ji
pDqD

qXp = −RgJi pgp qXq = −RgXi,(8.11)

L∗(Π)i = −δ2Πi − 1
2RgΠi

abgab = 3RgXi,(8.12)
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B(Π)ij = (2X(iJp)
q + JipX

q)(2X(jJq)
p + JjqX

p)(8.13)

= −6XiXj + 2Ji
pJj

qXpXq,

δB(Π)i + ΠipqδΠ
pq = DpB(Π)ip + 4Ji

aJp
bDpXa(8.14)

= 6XpDpXi + 6Ji
aJp

bDpXa = 0.

Substituting (8.12), (8.14), and T (Π)i = −Πi
pqB(Π)pq = 0 in (2.55) yields

ρ(∇)i = ρ(D)i − 6RgXi. If g is assumed to have constant curvature, ρ(D) =
0, so ρ(∇) = −6RgXi and K(∇) = 0. �

9. Representation of H1(M ; R) by curvature one-forms
of moment flat connections

Let (M,Ω) be a symplectic 2-manifold. If ∇ ∈ K−1(0), then, by (1.14), ρ(∇)
is closed so the de Rham cohomology class [ρ] is defined. If φt is the flow
of X ∈ symp(M,Ω) and ∇ ∈ K−1(0), then ρ(φ∗t (∇))− ρ(∇) = φ∗t (ρ(∇))−
ρ(∇) is homotopic to the zero form, so exact, and hence the cohomology
class [ρ(∇)] is preserved by the action on K−1(0) of the path connected
component of the identity Symp(M,Ω)0 ⊂ Symp(M,Ω). Hence there is a
map

% : K−1(0)/Symp(M,Ω)0 → H1(M ;R),(9.1)

defined by

%(∇ · Symp(M,Ω)0) = [ρ(∇)].(9.2)

It is natural to ask if % is surjective, that is whether for a given symplectic
form a given de Rham cohomology class [α] ∈ H1(M ;R) can be represented
by ρ(∇) for some ∇ ∈ K−1(0). For compact surfaces of negative Euler char-
acteristic, Theorem 1.8 shows the answer is affirmative. That is, the map %
of (9.1) and (9.2) is surjective.

Proof of Theorem 1.8. Pick a constant curvature metric g such that the g-
volume of M equals

´
M Ω. By a theorem of Moser there exists a diffeo-

morphism φ of M isotopic to the identity such that volφ∗(g) = φ∗(volg) = Ω.
Since φ∗(g) has constant curvature, it can be assumed from the beginning
that g is a constant curvature metric with volume form equal to Ω. Since the
Euler characteristic is nonzero, the curvature Rg is nonzero. Let D be the
Levi-Civita connection of g and let αi be the unique g-harmonic represen-
tative of [α]. By Theorem 8.6 the connection ∇ = D + Πij

k, where Πijk =
−(6Rg)

−1α(igjk), is symplectic and satisfies K(∇) = 0 and ρ(∇) = α. �
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For X ∈ symp(M,Ω) and f ∈ ham(M,Ω), the tensors L(Xg) and H(f)
can be viewed as the vector fields generated on S(M,Ω) by the actions of the
flows of X and Hf . The images L(symp(M,Ω)g) and H(ham(M,Ω)) are sub-
bundles of TS(M,Ω), where symp(M,Ω)g = {α ∈ Γ(T ∗M) : dα = 0} is the
space of closed one-forms on M , regarded as the space symplectically dual
to symp(M,Ω). Since the Lie derivative commutes with the decomposition
of tensors by symmetries,

L([X,Y ]g) = LXL(Y g)− LY L(Xg)(9.3)

for X,Y ∈ symp(M,Ω). It is shown in [27], that on a compact symplectic
manifold of vanishing Euler characteristic and dimension at least four an in-
finitesimal automorphism of a symplectic connection need not be symplectic,
although this is the case in dimension 2 and in certain other situations. By
(9.3), the intersection kerL ∩ symp(M,Ω)g and the quotient kerH/R (mod-
ulo constant functions) are identified with the Lie subalgebras of symp(M,Ω)
and ham(M,Ω), respectively, comprising infinitesimal automorphisms of ∇
that preserve Ω. Since the group of automorphisms of an affine connection is
a finite-dimensional Lie group (see [40]), this implies kerL ∩ symp(M,Ω)g

and kerH are finite dimensional.

Lemma 9.1. Let (M,Ω) be a symplectic 2-manifold and let ∇ ∈ S(M,Ω).
Then kerH∗ comprises Π ∈ T∇S(M,Ω) such that L∗(Π) is a closed one-
form, and L(symp(M,Ω)g)⊥ comprises Π ∈ T∇S(M,Ω) such that L∗(Π) is
an exact one-form. If, moreover, ∇ ∈ K−1(0), then

H(ham(M,Ω)) ⊂ L(symp(M,Ω)g)(9.4)

⊂ L(symp(M,Ω)g)⊥ ⊂ kerH∗ = H(ham(M,Ω))⊥.

As a consequence the linear map map kerH∗/L(symp(M,Ω)g)⊥→H1(M ;R)
defined by Π + L(symp(M,Ω)g)→ [−2L∗(Π)] is injective and this map can
be interpreted as the derivative at ∇ of the map % defined in (9.2).

Proof. By Lemma 2.9, kerH∗ comprises Π ∈ T∇S(M,Ω) such that L∗(Π)
is a closed one-form, and L(symp(M,Ω)g)⊥ comprises Π ∈ T∇S(M,Ω) such
that L∗(Π) is an exact one-form.

When ∇ ∈ K−1(0), that L(symp(M,Ω)g) ⊂ L(symp(M,Ω)g)⊥ is im-
mediate from (2.67). Consider a path ∇(t) in K−1(0)/Symp(M,Ω)0 such
that %(∇(t)) is constant. Let ∇̃(t) be a path in K−1(0) projecting to ∇(t).
Then ρ(∇̃(t))− ρ(∇̃(0)) is exact for all t and so, by (2.55) of Lemma 2.5,
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−2L∗(Π) = d
dt t=0

ρ(∇̃(t)) is exact where Π = d
dt t=0

∇̃(t). The preceding com-
putations transform naturally under the action of Symp(M,Ω)0 on all the
objects involved, and so this justifies regarding the map Π+L(symp(M,Ω)g)
→ [−2L∗(∇)] as the derivative of % at ∇. �

10. Relation with the Goldman moment map for projective
structures

This section describes, for a surface M , the relation between the moment
map K on S(M,Ω) and the Goldman moment map on the space of of flat
real projective structures on M .

There is included a discussion of the projective deformation complex
and its use in the construction of a fine resolution of the sheaf of projective
Killing fields. The description given here of the cohomology of the sheaf of
projective Killing fields on a surface, and its relation to the deformation
space of flat projective structures, is modeled on Calabi’s treatment in [14]
of the cohomology of the sheaf of Killing fields on a constant curvature
Riemannian manifold; see also [6] and [38]. As is discussed below, it would
be interesting to describe similarly deformations of the space of moment
flat symplectic connections, but, because of the absence of a local geometric
interpretation of the vanishing of K, and despite the close relation with
deformations of flat projective structures, it is not clear what form such a
description would take.

The space of projective structures onM is written P(M). The space P(V)
of principal connections on the R× principal bundle V obtained by deleting
the zero section from |detT ∗M | is an affine space modeled on Γ(T ∗M).
A projective structure [∇] ∈ P(M) is in bijection with P(V) via the map
that assigns to β ∈ P(V) the unique ∇ ∈ [∇] that induces β. The difference
tensor of two projective structures is by definition the difference tensor of
their unique representatives corresponding to β ∈ P(V); this does not de-
pend on β and is trace free. Hence P(M) is an affine space modeled on
{Πij

k ∈ Γ(S2(T ∗M)⊗ TM) : Πip
p = 0}, which can be taken as the tangent

space T[∇]P(M). The map sending ∇ ∈ A(M) to ([∇], β) ∈ P(M)× P(V),
where β ∈ P(V) is induced by ∇, is an affine bijection, equivariant for the
action of Γ(T ∗M) on A(M) generating projective equivalence, and the ac-
tion of Γ(T ∗M) on P(M)× P(V) by (appropriately scaled) translations in
the second factor; the quotient of A(M) by this action is P(M). The action
of Diff(M) on A(M) by pullback commutes with the action of Γ(T ∗M), so
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induces an action, φ∗([∇]) = [φ∗(∇)], on P(M), also by pullback. The bijec-
tion A(M)→ P(M)× P(V) is also Diff(M)-equivariant, where the action of
Diff(M) on P(M)× P(V) is the product action, and the action of Diff(M)
on P(V) is that induced from pullback of densities on M . The Lie derivative
LX [∇] is the derivative of the difference tensor with [∇] of the pullback of
[∇] by the flow of X. For any ∇ ∈ [∇], this the completely trace-free part
of LX∇. Regarded as a functional on P(M), the projective Cotton tensor C
is evidently Diff(M) equivariant in the sense that C(φ∗([∇])) = φ∗(C([∇]))
for φ ∈ Diff(M).

Let M be 2-dimensional. Define sheaves Ci by C0(U) = Γ(TU), Ci = {0}
for i > 2, and

C1(U) = {Πij
k ∈ Γ(S2(T ∗U)⊗ TU) : Πip

p = 0},
C2(U) = {σijk ∈ Γ(⊗3T ∗U) : σijk = σ[ij]k and σ[ijk] = 0}.

(10.1)

where U ⊂M is an open subset. The restriction homomorphisms are given
by restriction in the ordinary sense. Define maps Ci : Ci → Ci+1 by

(C0X)ij
k = LX [∇]ij

k, (C1Π)ijk = δΠC([∇])ijk.(10.2)

A bit of computation shows 2∇[i∇|p|Πj]k
p = 2∇p∇[iΠj]k

p, and a bit more
yields

(C1Π)ijk = δΠC([∇])(10.3)

= −2∇[i∇|p|Πj]k
p + 2Πk[i

pRj]p + 2
3Πki

pR[pj] − 2
3Πkj

pR[pi]

= −2∇p∇[iΠj]k
p + 2Πk[i

pRj]p + 2
3Πki

pR[pj] − 2
3Πkj

pR[pi],

in which ∇ ∈ [∇] is arbitrary. Note that this shows that the right side of
(10.3) is a projectively invariant differential operator, something tedious to
check directly.

Lemma 10.1. Let M be a 2-dimensional manifold. For [∇] ∈ P(M) and
X ∈ Γ(TM), there holds C1C0(X) = LXC([∇]). Moreover, [∇] is flat if and
only if C1C0 = 0. That is, the sequence

0 −→ C0 C0

−→ C1 C1

−→ C2 −→ 0(10.4)

is a complex if and only if [∇] is flat.
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Proof. Let φt be the flow of X. As ([∇] + tLX [∇])− φ∗t [∇] has order at least
two in t,

δLX [∇]C([∇]) = d
dt |t=0

C([∇] + LtX [∇])(10.5)

= d
dt |t=0

C(φ∗t [∇]) = d
dt |t=0

φ∗tC([∇]) = LXC([∇]),

the penultimate equality by the diffeomorphism equivariance of the curva-
ture, and the last equality by definition of the Lie derivative. This shows
C1C0(X) = LXC([∇]). If [∇] is flat then C([∇]) = 0, so

C1C0(X) = δLX [∇]C([∇]) = 0.

At any p ∈M , there can be chosen X which vanishes at p and such that
∇X is the identity endomorphism on TpM . For such an X and any tensor

Aj1...jsi1...ir
there holds LXA = (r − s)A at p, and so, if r 6= s and LXA = 0 for

all X ∈ Γ(TM), then A is identically 0. Applying this with A taken to be
Cijk, it follows from C1C0(X) = LXC([∇]) that if C1C0(X) = 0 for all X,
then, at every p, Cijk = 0, so [∇] is flat. �

When [∇] ∈ P(M) is flat, the complex (10.4) is called the projective defor-
mation complex.

If (M,Ω) is a 2-dimensional symplectic manifold the map g : C1(U)→
Γ(U ;S3(T ∗M)) defined by Πij

k → (Πg)ijk = Πijk is a linear isomorphism.

Lemma 10.2. Let (M,Ω) be a 2-dimensional symplectic manifold. For ∇ ∈
S(M,Ω) and the projective structure [∇] generated by ∇, there hold

C0
[∇](X)g = L(Xg), C1

[∇](Π)ijk = −L∗(Πg)kΩij .(10.6)

for all X ∈ Γ(TM) and Π ∈ C1(TM). Consequently, for any open U ⊂M
the sequence (2.77) of Lemma 2.11 and the sequence (10.4) are isomorphic
via symplectic duality, as indicated in the diagram (10.7):

0 // C0(U)
C0

//
OO

Xi↔Xi

C1(U)
C1

//
OO

σij k↔σijk
��

C2(U)

σijk→1
2σp

p
k





// 0

0 // Γ(T ∗U) oo
L // Γ(S3(T ∗U))

−L∗ // Γ(T ∗U)

σk→Ωijσk

JJ

// 0

(10.7)

Here the vertical arrows are the indicated linear isomorphisms. In particular,

−2L∗∇L∇(Xg) = LXρ(∇) + (δ∇X)ρ(∇)(10.8)
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for all X ∈ Γ(TM). Consequently L∗L = 0 if and only if ρ(∇) = 0.

Proof. In this proof the subscripts indicating dependence on ∇ and [∇] are
omitted for readability. By definition LX [∇] is the trace-free part of LX∇.
Since (LX∇)ip

p = ∇i∇pXp +XqRqip
p = diδX, there holds (LX [∇])ij

k =
(LX∇)ij

k − 2
3δ(i

kdj)δX, so that

(LX [∇])ijk = (LX∇)ijk + 2
3Ωk(idj)δX.(10.9)

On the other hand, since dXg = (δX)Ωij , by (2.13),

L(Xg)ijk = (LX∇)(ijk) − 2
3∇(idX

g
j)k(10.10)

= (LX∇)(ijk) + 2
3Ωk(idj)δX = (LX [∇])ijk,

the last equality by (10.9). This shows the first equality of (10.6). By (10.3),

C1(Π)ijk = −2∇p∇[iΠj]k
p + 2Πk[i

pRj]p(10.11)

= −(∇p∇qΠk
pq + Πk

pqRpq)Ωij = −L∗(Πg)kΩij .

This shows the second equality of (10.6). This shows the commutativity of
(10.7). Finally, since

LX(Ω⊗ ρ) = Ω⊗ LXρ+ dXg ⊗ ρ = Ω⊗ (LXρ+ (δX)ρ),(10.12)

combining (10.9), (10.11), Cp
p
i = ρi, and (10.12) yields

−L∗L(Xg)kΩij = −L∗(C0(X)g)kΩij = C1C0(X)ijk(10.13)

= (LXC([∇]))ijk = 1
2LX(Ω⊗ ρ)ijk

= 1
2 ((LXρ)k + (δX)ρk) Ωij ,

showing (10.8). If ρ(∇) = 0, then (10.8) shows L∗L = 0. If L∗L(Xg) = 0 for
alL X ∈ Γ(T ∗M), then, by (10.13), LXC([∇]) = 0 for all X ∈ Γ(TM), and
by Lemma 10.1 this implies C([∇]) = 0, so ρi = Cp

p
i = 0. �

Remark 10.3. The conclusion of Lemma 10.1 transported to the sequence
(2.77) is stated in Lemma 2.11.

If M is an oriented surface, then for α, β ∈ T[∇]P(M) at least one of
which is compactly supported it makes sense to integrate the two-form
−2αp[i

qβj]q
p over M . There results the Diff(M)-invariant symplectic form

Ω[∇](α, β) = −2
´
M αp[i

qβj]q
p on P(M).
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Regard the space vecc(M) of compactly supported vector fields on M as
the Lie algebra of the identity component of the group Diffc(M) of compactly
supported diffeomorphisms. Regard LX [∇] as the vector field on P(M) gen-
erated by X ∈ vec(M). For X ∈ vecc(M) and A ∈ C2(M) integration de-
termines a pairing 〈X,A〉 =

´
M XpAijp, in which XpAijp is regarded as a

two-form, that identifies C2(M) with a subspace of the dual vector space
vecc(M)∗. In particular, via this identification C([∇]) is regarded as taking
values in this subspace.

Theorem 10.4 (W. Goldman; [31], [32]). Let M be a smooth surface.

1) The projective Cotton tensor is a moment map for the action of
Diffc(M) on the space P(M) of projective structures on the oriented
surface M . Precisely, for X∈vecc(M), [∇]∈P(M), and Π∈T[∇]P(M),
δΠ〈C([∇]), X〉 = Ω[∇](LX [∇],Π), where the first variation δC at [∇] in

the direction of Π ∈ T[∇]P(M) is defined by δΠC([∇]) = d
dt |t=0

C([∇] +

tΠ) (see (10.3) for an explicit formula for δΠC).

2) For a compact surface M , the symplectic quotient of P0(M) = C−1(0)
by the connected component Diff(M)0 of the identity of the group of
diffeomorphisms of M is the deformation space of isotopy classes of
flat real projective structures on M .

3) If M is compact and χ(M) < 0 then the deformation space RP2(M) =
P0(M)/Diff(M)0 is a real analytic manifold of dimension −8χ(M).

Lemma 10.5 shows the relation between the moment maps K and C on
S(M,Ω) and P(M).

Lemma 10.5. For a symplectic 2-manifold (M,Ω), the maps ι : S(M,Ω)→
P(M) and sΩ : P(M)→ S(M,Ω) defined by ι(∇) = [∇] and by setting sΩ([∇])
equal to the unique representative of [∇] preserving Ω are inverse symplectic
affine bijections that intertwine the moment maps given by C and ρ in the
sense that, for [∇] ∈ P(M), ∇ = sΩ([∇]) ∈ [∇], and f ∈ C∞(M) there holds

〈C([∇]),Hf 〉 = 1
2〈ρ, δ

∗f〉 = −1
2〈δρ, f〉 = 〈K(sΩ([∇])), f〉.(10.14)

Proof. It is straightforward to check that ι and s are inverse symplectic affine
bijections. Once a symplectic form Ω is fixed, the projective Cotton tensor C
of the projective structure [∇] generated by ∇ ∈ S(M,Ω) can be identified
with ρ via contraction with Ωij as in (1.13). The identity (10.14) follows
from (1.13) and (1.14). �
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Lemma 10.5 can be summarized as saying that the diagram

C∞(M)

S(M,Ω)

K

55

−1
2ρ

//

ι





Λ1(M)/d′Λ2(M)

δ=d′

OO

P(M)
C

//

sΩ

JJ

C2(M)

Ωij

OO

commutes. Theorem 10.6 shows that ι and sΩ descend to the quotients mod-
ulo the actions of the relevant groups.

Theorem 10.6. For a finite volume symplectic 2-manifold (M,Ω), the
maps ι : S(M,Ω)→ P(M) and sΩ : P(M)→ S(M,Ω) induce inverse bijec-
tions between S(M,Ω)/Symp(M,Ω)0 and P(M)/Diffc(M)0, where Diffc(M)0

is the path connected component of the identity in Diffc(M).

Proof. It is straightforward to check that ι and s are inverse symplectic
affine bijections. Once a symplectic form Ω is fixed, the projective Cot-
ton tensor C of the projective structure [∇] generated by ∇ ∈ S(M,Ω)
can be identified with ρ via contraction with Ωij as in (1.13). The identity
(10.14) follows from (1.13) and (1.14). If ∇ ∈ S(M,Ω) and φ ∈ Symp(M,Ω)0

then ι(φ∗(∇)) = φ∗(ι(∇)), so that the image under ι of the Symp(M,Ω)0

orbit of ∇ is contained in a Diffc(M)0 orbit of ι(∇) and ι descends to
a well-defined and evidently surjective map ι : S(M,Ω)/Symp(M,Ω)0 →
P(M)/Diffc(M)0. If φ ∈ Diffc(M)0 then φ∗(Ω) and Ω are equal outside of
some compact set K. Since

´
M φ∗(Ω) =

´
M Ω, by a theorem of J. Moser

([50]; see also section 1.5 of [4]) there is a diffeomorphism ψ, supported in
K and smoothly isotopic to the identity such that ψ∗ ◦ φ∗(Ω) = Ω. Then
τ = φ ◦ ψ ∈ Symp(M,Ω)0 is smoothly isotopic to φ and equal to φ outside a
compact set. Therefore, given [∇] ∈ P(M), sΩ(τ∗[∇]) preserves τ∗(Ω) = Ω,
so sΩ(τ∗[∇]) = τ∗(sΩ([∇])). Hence, if the projective structures [∇̄] and [∇]
generated by ∇̄,∇ ∈ S(M,Ω) lie in the same Diffc(M)0 orbit, then there is
a τ ∈ Symp(M,Ω)0 such that [∇̄] = τ∗[∇] and ∇̄ = sΩ([∇̄]) = τ∗sΩ([∇]) =
τ∗∇, so ∇̄ and ∇ lie in the same Symp(M,Ω)0 orbit. This shows that ι is a
bijection with inverse induced by sΩ. �
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Remark 10.7. Since, by Theorem 10.6, the fiber

%−1([0]) ⊂ K−1(0)/Symp(M,Ω)0

over the trivial cohomology class contains a subset identified with P0(M)/
Diff(M)0 and this last space has dimension 8 dimH1(M ;R), the fibers of %
can be quite large. It would be interesting to know if the fibers of % are finite-
dimensional. Since, by Lemma 9.1, the derivative of % is −2L∗, this would
follow if it could be shown that, when K(∇) = 0, then L(symp(M,Ω)g)⊥/
L(symp(M,Ω)g) is finite-dimensional.

A reformulation of this question yields the following generalization. For
a fixed cohomology class [α] ∈ H1(M ;R) let S[α] = {∇ ∈ K−1(0) : ρ(∇) ∈
[α]}. What can be said about the structure of the quotient space S[α]/
Symp(M,Ω)0 = %−1([α])?

By Theorem 10.6 the space of equivalence classes of symplectomorphic
projectively flat symplectic connections is identified with the deformation
space RP2(M) = P0(M)/Diff(M)0 of isotopy classes of flat real projective
structures on M . The tangent space of RP2(M) is naturally identified with
the first cohomology of the projective deformation complex.

Given a flat [∇] ∈ P(M) define the presheaf of projective Killing fields
on M by

P(U) = {X ∈ Γ(U, TM) : LX [∇] = 0},(10.15)

for an open set U ⊂M . The restriction homomorphisms are given by ordi-
nary restriction of vector fields. It is clear that P is a sheaf of Lie algebras.
Let i : P → C0 be the inclusion homomorphism. By Theorem 10.8, in the
projectively flat case the complex of Lemma 10.4 gives rise to a fine resolu-
tion of the sheaf P of projective Killing fields, and it follows that the tangent
space to RP2(M) is identified with the first Cech cohomology H1(M ;P).

Theorem 10.8. Let M be a 2-dimensional manifold. If [∇] ∈ P(M) is flat
then

0 −→ P i−→ C0 C0

−→ C1 C1

−→ C2 −→ 0(10.16)

is a fine resolution of the sheaf P of projective Killing fields and an elliptic
complex. The cohomology of the complex C•(M) of global sections is isomor-
phic to the Cech cohomology of the sheaf P of projective Killing fields. If M
is compact these cohomologies are finite-dimensional.
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Remark 10.9. Theorem 10.8 is motivated by the analogous statement for
constant curvature metrics due to Calabi in [14] (see also [6]). That (10.16)
is a fine resolution is stated without proof as Theorem 1 of T. Hangan’s
[37], and also as Theorem 2.1 of [38] where it is described in more detail,
although also without proof (it is stated that the proof will appear in future
work). Presumably Hangan’s proof was similar to that here; it seems that it
was never published.

Remark 10.10. The sequence (C•, C•) of (10.4) is a concrete realization
of the generalized BGG sequence associated with the adjoint representation
of sl(3,R). In particular, Theorem 10.8 can be obtained by specializing the
main theorem about BGG sequences proved in either [16] or [17], although
the demonstration of this claim requires too much space to be included here
(consult also [23] and [24] for discussion of BGG sequences in the context of
projective structures). Although it is mostly formal, some work is required,
because to connect Theorem 10.8 with the parabolic geometry formalism of
parabolic geometries there must be used a lifting construction based on the
Thomas or tractor connection. Although the resolution 10.16 can be deduced
from the general BGG machinery for parabolic geometries, it seems useful to
record the simple direct argument given here, and its presentation makes it
possible to discuss possible parallels with the more general setting of moment
flat symplectic connections.

Proof of Theorem 10.8. Lemma 10.1 implies that the sequence (C•, C•) is a
complex. That the complex be elliptic means that the associated principal
symbol complex is exact over the complement of the zero section. It suf-
fices to check that if σij

k ∈ C1
x satisfies ZpZ[iσj]k

p = 0 for Z ∈ T ∗xM \ {0},
then there is Ai ∈ TxM such that σij

k = ZiZjA
k − 2

3ZpA
pZ(iδj)

k. Because
ZpZ[iσj]k

p = 0 there is τi ∈ TxM such that Zpσij
p = Ziτj . Then Zjτi =

σji
kZk = σij

kZk = Ziτj , so there is c ∈ R such that τi = cZi. Choose linearly
independent Xi, Y i ∈ TxM such that XpZp = 1 and Y pZp = 0 and let Ui ∈
T ∗xM be such that XpUp = 0 and Y pUp = 1. Since Zk(σij

k − 3c(ZiZjX
k −

2
3Z(iδj)

k)) = 0 there are constants p, q, r ∈ R such that

σij
k = 3c(ZiZjX

k − 2
3Z(iδj)

k)) + (pZiZj + 2qZ(iUj) + rUiUj)Y
k.(10.17)

Since 0 = σip
p = qZi + rUi and Z and U are linearly independent, it must

be q = 0 = r. Setting Ai = 3cXi + pY i there results

σij
k = ZiZjA

k − 2
3ZpA

pZ(iδj)
k,
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as claimed.
The sheaves C• are fine because they are given by sections of smooth

tensor bundles. That the sequence of sheaves (10.16) is exact at the 0 level
is immediate from the definition of P. To prove exactness at the level 1 it
suffices to prove that if a tensor Πij

k ∈ C1(U) satisfies δΠC([∇]) = 0 then
given any p ∈ U there is an open neighborhood V containing p and con-
tained in U such that the restriction of Π to V is equal to LX [∇] for some
X ∈ Γ(TV ). Because [∇] is projectively flat, there can be chosen a neigh-
borhood W of p and a representative ∂ of the restriction to W of [∇] such
that ∂ is a flat affine connection. In the remainder of this proof the word
locally means restricting to a smaller open neighborhood of p (if necessary).
Locally there is a ∂-parallel symplectic (volume) form Ωij , which will be used
to raise and lower indices. Since any two-form αij satisfies 2αij = αp

pΩij ,
that ∂pApi1...ik = 0 is equivalent to ∂[iAj]i1...ik = 0 and so, by the usual
Poincaré lemma, implies that locally there is Bi1...ik such that Aii1...ik =
∂iBi1...ik . This observation will be used several times. By the flatness of
Π and the hypothesis C1(Π) = 0, ∂[i∂|p|Πj]k

p = ∂p∇[iΠj]k
p = 0. Hence lo-

cally there is a one-form Ai such that ∂pΠij
p = ∂iAj . Since 0 = ∂pΠ[ij]

p =
∂[iAj], again by the Poincaré lemma, locally there is a function f such that
∂pΠij

p = ∂i∂jf . Locally there is a vector field Xi such that ∂pX
p = f . Then

∂p(Πij
p − ∂i∂jXp) = 0 and so locally there is a tensor Aij = A(ij) such that

Πijk = ∂i∂jXk + ∂kAij . Then 0 = Πip
p = ∂i∂pX

p − ∂pAi p so that ∂p(Ai
p −

∂iX
p) = 0. Hence there is a vector field Yi such that Aij = ∂iXj + ∂jYi,

and so Πijk = ∂i∂jXk + ∂k∂iXj + ∂k∂jYi. Since 0 = Ap
p = ∂p(X

p − Y p), lo-
cally there is a function g such that Yi = Xi + g. Hence Πijk = 3π(i∂jXk) +
∂i∂j∂kg. Using ∂i∂jXk = ∂i∂kXj + 2∂i∂[jXk] = ∂i∂kXj + ∂ifΩjk there re-
sults Πijk = 3∂i∂jXk − 2∂(ifΩj)k + ∂i∂j∂kg. Since ∂pX

p = f , setting Zi =
3Xi + ∂ig there results

Πij
k = ∂i∂jZ

k − 2
3δ(i∂j)∂pZ

p = LZ [∂] = LZ [∇].(10.18)

This completes the proof of the local exactness of (10.16). By the abstract
de Rham theorem the cohomology of the complex C•(M) of global sections
is isomorphic to the Cech cohomology of the sheaf P of projective Killing
fields. If M is compact, becase C•(M) is elliptic, its cohomology is finite-
dimensional, by Proposition 6.5 of [3]. �

It is not clear if there is a parallel construction in the more general
context of moment flat symplectic connections. For moment flat connections
a claim analogous to Theorem 10.8, that would be based on Lemma 2.8, has
not been proved, and it is not clear whether it could be correct. The key
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ingredient in the description of the space of flat projective structure via
symplectic reduction is the fine resolution of the sheaf of projective Killing
fields. This construction uses in a fundamental way that a flat projective
structure can be locally represented by a flat affine connection. While there
is a corresponding complex for moment flat symplectic connections, it is
not clear that it yields a resolution. The problem is precisely that a local
geometric interpretation of the vanishing of K is lacking.

11. Critical symplectic Kähler connections on surfaces

The Levi-Civita connections of Kähler metrics are among the most studied
and accessible examples of symplectic connections, and it is natural to ask
when they are moment flat or critical. Recall from the introduction that a
Kähler structure (g, J,Ω) is critical symplectic if its Levi-Civita connection
D is critical symplectic.

The main result of this section is Theorem 1.11, that shows that on a
compact surface the Levi-Civita connection of a Kähler structure is critical
symplectic if and only if the Kähler metric has constant curvature.

The well known Lemma 11.1 can be proved by computing the squared
L2-norm of (LXg)ij = 2D(iX

[
j), where X[

i = Xpgip, via an integration by

parts using the identity 2(LXD)i(j
pgk)p = Di(LXg)jk = 2DiD(jX

[
k).

Lemma 11.1 (K. Yano [60]). On an orientable manifold M , a compactly
supported vector field X is an infinitesimal automorphism of the Levi-Civita
connection D of a Riemannian metric g if and only if it is g-Killing. That
is (LXD)ij

k = 0 if and only if (LXg)ij = 0.

Lemma 11.2. On a compact 2n-dimensional manifold M , a Kähler struc-
ture (g, J,Ω, D) is critical symplectic if and only if the Hamiltonian vector
field Xi = −ΩipDpK generated by K(D) is real holomorphic. In this case
the metric gradient gipDpK(D) is also real holomorphic and K(D) Poisson
commutes with the scalar curvature Rg.

Proof. By definition, D is critical symplectic if and only if LXD = 0. By
Lemma 11.1, since M is compact, this is the case if and only if LXg = 0.
On a compact Kähler manifold a (real) vector field is metric Killing if and
only if it is real holomorphic and preserves the volume form (see Corollary
2.125 of [7]). Since X is Hamiltonian it preserves the volume form, and so
X is real holomorphic if and only if D is critical symplectic. In this case, as
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the metric gradient gipDpK equals Jp
iXp, it is also real holomorphic. Also,

since X is g-Killing its flow preserves Rg, so 0 = dRg(X) = {K(D),Rg}. �

By Lemma 11.2, for a critical symplectic Kähler structure on a compact
manifold the (1, 0) part of HK(D) is holomorphic. This implies that a Kähler
structure on a compact manifold admitting no nontrivial holomorphic vector
field is critical symplectic if and only if K(D) is constant, and so necessarily
0. More generally:

Corollary 11.3. If, on a compact manifold, a Kähler structure with Levi-
Civita connection D has nonpositive Ricci curvature, it is critical symplectic
if and only if K(D) is constant.

Proof. The classical Bochner argument shows that the metric gradient Y of
K(D) is parallel. Since Y must vanish where K(D) assumes its maximum,
Y must be identically 0, so K(D) is constant. �

On a surface, (1.15) specializes to

2K(D) = ∆gRg.(11.1)

For a moment flat Kähler structure on a compact surface, since 0 = 2K(D) =
∆gRg, Rg is constant by the maximum principle. In particular, since a com-
pact surface of genus at least two has no nontrivial holomorphic vector field,
on a compact orientable surface of genus at least two, the Levi-Civita con-
nection D of a Kähler structure is critical symplectic if and only if Rg is
constant. With a different argument, the restriction on the genus can be
removed, yielding Theorem 1.11.

Proof of Theorem 1.11. There is a unique complex structure Ji
j such that

Ji
pJj

qgpq = gij and the symplectic form Ωij = Ji
pgpj determines the given

orientation. By (11.1) the Levi-Civita connection D of g satisfies 2K(D) =
∆gRg. That constant curvature implies critical symplectic is immediate. If
D is critical symplectic, then by Lemma 11.2, the metric gradient Xi =
gijDjK(D) is the real part of a holomorphic vector field. On a Riemann
surface a vector field is real holomorphic if and only if it is conformal
Killing. By Theorem II.9 of [12], on a compact Riemannian manifold (M, g)
with scalar curvature Rg any conformal Killing vector field Y i satisfies
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´
M Y pDpRg dvolg = 0, and so, by integration by parts,

0 =

ˆ
M
XjDjRg dvolg =

ˆ
M
gijDiK(D)DjRg dvolg(11.2)

= −
ˆ
M

K(D)∆gRg dvolg = −E(D).

Hence 0 = 2K(D) = ∆gRg, and so Rg is constant by the maximum principle.
�

Some brief remarks about the characterization of critical symplectic Kähler
metrics in higher dimensions are made in Section 13.

12. Critical symplectic connections of metric origin are
projectively flat

Let M be a compact orientable surface. As explained in the proof of The-
orem 1.8, as a consequence of Moser’s theorem, any volume form Ω on M
can be realized as the volume form of some Riemannian metric g, so there
is a distinguished subset of S(M,Ω) comprising the Levi-Civita connections
of Riemannian metrics with volume Ω. Theorem 1.11 can also be seen as
saying that in the distinguished subset of S(M,Ω) constituted by the Levi-
Civita connections of Riemannian metrics with volume Ω the only critical
symplectic connections are the constant curvature metrics. Fixing g deter-
mines the unique complex structure J such that gij = Jj

pΩip, so once g has
been chosen it makes sense to speak of holomorphic cubic differentials. If
the genus of M is at least one, then there are nontrivial holomorphic cu-
bic differentials. A larger distinguished subset of S(M,Ω) comprises those
∇ ∈ S(M,Ω) that differ from the Levi-Civita connection of a Riemannian
metric with volume Ω by the real part of a cubic differential holomorphic
with respect to the complex structure determined by the metric. Let D be
the Levi-Civita connection of g and consider ∇ = D + ΠijpΩ

kp where Π is
the real part of a holomorphic cubic differential. Theorem 12.1 shows that,
on a compact surface, ∇ is moment flat if and only if it is projectively flat.

Theorem 12.1. Let M be an orientable compact surface of genus at least
one. Let Ω be the volume form of a Riemannian metric g with Levi-Civita
connection D and compatible complex structure J . Let Πijk be the real part
of a holomorphic cubic differential. The following are equivalent.

1) The symplectic connection ∇ = D + ΠijpΩ
kp is moment flat.
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2) The symplectic connection ∇ = D + ΠijpΩ
kp is projectively flat.

3) Rg − |Π|2g is constant, where Rg is the scalar curvature of g and |Π|2g =

giagjbgjcΠijkΠabc.

If the genus of M is at least two then the conditions (1)–(3) are equivalent
to the condition:

4) The symplectic connection ∇ = D + ΠijpΩ
kp is critical.

Proof. In this proof the operators δ, L, etc. are those associated with D.
That Π be the real part of a holomorphic cubic differential is equivalent
to the conditions that Π be g-trace tree, gpqΠipq = 0, and that Π be D-
divergence free, gpqDpΠijq = 0; see Lemmas 3.3 and 3.5 of [26]. In this
case 2Π(3,0) = Π− iJ(Π) where Π(3,0) is the (3, 0) part of Π and J(Π)ijk =
Jk

pΠijp; see Lemma 3.4 of [26]. Since J(Π) is the real part of the holo-
morphic cubic differential iΠ(3,0), it is also completely symmetric, g-trace
free, and D-divergence free. Since δΠij = ΩpqDpΠijq is the D-divergence
of J(Π)ijk = ΠijpJk

p, it vanishes. That is δΠ = 0. Since the Ricci curva-
ture of g equals (Rg/2)gij and Π is g-trace free, it follows from (2.17) that
L∗(Π) = 0. Recall the notation used in Lemma 2.5. From the fact that J(Π)
is completely g-trace free it follows that 2B(Π) = 2J(Π)ipag

qaJ(Π)jqbg
pb =

|J(Π)|2ggij = |Π|2ggij ; see Lemma 3.2 of [26]. Here the tensor norm is that
given by complete contraction with the metric. Because Π is g-trace free,
2T (Π)i = 2ΠiapΩ

bpB(Π)bqΩ
qa = |Π|2gΠiapΩ

bpgbqΩ
qa = 0. In (2.55) the pre-

ceding shows that ρ(∇) = ρ(D)− 2δB(Π)j = ρ(D)− Ji pDp|Π|2g. This can
be written more compactly as ρ(∇) = ρ(D)− 2δB(Π) = ρ(D) + ?d|Π|2g,
where ? is the Hodge star operator. By (1.5), ρ(D) = − ? dRg, so by (2.55),

ρ(∇) = ρ(D) + ?d|Π|2g = ?d(|Π|2g − Rg).(12.1)

From (12.1) it is immediate that∇ is projectively flat if and only if Rg − |Π|2g
is constant. By (12.1), ?ρ(∇) is exact. If K(∇) = 0 then ρ(∇) is also closed,
so ?ρ(∇) is metrically coclosed and hence harmonic. Hence ?ρ(∇) is an
exact harmonic one-form. On a compact surface, an exact harmonic one-
form is identically zero. Hence ρ(∇) = 0 and ∇ is projectively flat. Finally,
by Theorem 1.7, (1) and (4) are equivalent when the genus of M is at least
two. �

Theorems 1.11 and 12.1 have similar characters. They can be summa-
rized as saying that critical symplectic connections with a metric character
must be projectively flat. It might be interesting to turn this remark on its
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head and to interpret projectively flat connections as arising from critical
symplectic connections subject to some metric compatibility.

Remark 12.2. Together Theorems 1.7 and 12.1 give an alternative proof
of Theorem 1.11 for compact surfaces of genus at least two. If a Kähler
structure on such a surface is critical symplectic, then by Theorem 1.7 it is
moment flat, while by Theorem 12.1 with Π = 0 it is projectively flat.

13. Critical symplectic Kähler connections in
higher dimensions

The characterizations of Kähler metrics for which the Levi-Civita connection
is moment constant or critical are interesting questions also in dimension
2n > 2. Here, to justify this expectation, some simple results are exhibited
for Kähler surfaces. In this case the decomposition of the conformal Weyl
tensor into its self-dual and anti-self-dual parts simplifies the expression
for K(D). The most interesting conclusion obtained here is Theorem 1.12,
showing that the Levi-Civita connection of the Ricci-flat Yau metric on a
K3 surface is not moment constant.

Recall, from (1.16), the definition of the conformal Weyl tensor of a
Riemannian metric g on a 2n-dimensional manifold M . When 2n = 4, the
conformal Weyl tensor decomposes orthogonally as the sum A = A+ +A−

of its self-dual and anti-self-dual parts. If M is compact, the generalized
Gauss-Bonnet theorem shows that the Euler characteristic χ(M) is given by

32π2χ(M) =

ˆ
M

(
|A+|2 + |A−|2 + 1

6R
2
g − 2|E|2

)
volg,(13.1)

where E is the trace-free Ricci tensor, and, by the Hirzebruch signature
theorem, the signature σ(M) = 1

3p1(M) satisfies

48π2σ(M) =

ˆ
M

(
|A+|2 − |A−|2

)
volg.(13.2)

Lemma 13.1. On a Kähler surface the self-dual part A+ of the conformal
Weyl tensor is given by

A+
ijkl = 1

12Rg
(
Jk[iJj]l + Ωk[iΩj]l − ΩijΩkl

)
.(13.3)

Proof. Let Λ2T ∗M = Λ+ ⊕ Λ− be the decomposition into self-dual and anti-
self-dual two forms under the action of the Hodge star operator ?. With
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the conventions used here ?αij = −Ji pJj qαpq + 1
2αp

pΩij . Equation (13.3)
results upon rewriting, in the notations in use here, Proposition 2 of [21].
Proposition 2 of [21] is based on Lemma 2.3 and Theorem 2.6 of [34], which
describe the decomposition of the space of curvature tensors of Kähler type
into U(2) irreducibles. �

Lemma 13.2. On a 4-manifold M , the Levi-Civita connection D of a
Kähler metric (g, J,Ω) satisfies

2K(D) = ∆gRg − 1
12R

2
g + 1

2 |A
−|2g = LgRg + 1

12R
2
g + 1

2 |A
−|2g,(13.4)

where Lg = ∆g − 1
6Rg is the conformal Laplacian. If M is compact, then

ˆ
M

K(D) volg = −12π2σ(M).(13.5)

Proof. A routine calculation using (13.3) and the J-invariance of A+ shows
that 6|A+|2g = R2

g. When 2n = 4, (1.15) becomes

2K(D) = (∆g − 1
6Rg)Rg + 1

2 |A|
2
g = LgRg + 1

2 |A|
2
g.(13.6)

Substituting 6|A+|2g = R2
g in (13.6) gives (13.4). If M is compact, taking

2n = 4 in (1.11) yields (13.5). �

The Fubini-Study metric on the complex projective plane is Kähler Ein-
stein and self-dual, so by (13.4), it is moment constant.

Let Σ be a compact orientable surface equipped with a hyperbolic met-
ric of constant scalar curvature −2, and let S be the two-sphere of constant
scalar curvature 2. Then the product S × Σ with the product metric is a lo-
cally conformally flat Kähler manifold with scalar curvature 0 and signature
0. More generally, since a locally conformally flat Kähler 4-manifold M is
self-dual, it has vanishing scalar curvature, and so by (13.4) has K(D) = 0
and signature 0.

By a K3 surface is meant a complex dimension 2 complex manifold with
trivial canonical line bundle and vanishing first Betti number. It can be
shown that all K3 surfaces are diffeomorphic to a quartic hypersurface in
the complex projective plane; in particular a K3 surface is simply-connected.
See section VIII of [5] for background. By Yau’s Theorem, every K3 surface
admits a Ricci-flat Kähler metric. Theorem 1.12 shows that a Ricci-flat
Kähler metric on a K3 surface is not critical symplectic. The preliminary
Lemma 13.3 is needed in its proof.
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Lemma 13.3. For a Ricci-flat Kähler metric (g, J,Ω) on a K3 surface
(M,J), any anti-self-dual two-form must vanish somewhere on M .

Proof. Let αij be a nowhere-vanishing anti-self-dual two form on M . A con-
tradiction will be obtained. That αij be anti-self-dual means Ji

pJj
qαpq =

αij and αp
p = 0. Normalize αij so that |α|2g = 4. Contracting the identity

α ∧ α = −α ∧ ?α = −1
4 |α|

2
gΩ ∧ Ω = −Ω ∧ Ω with Ωij and using that αp

p =
0 yields αi

pαpj = Ωij . From this it follows that the endomorphism Ki
j =

−J jpαip satisfies Ki
pKp

j = −δi j and Jp
jKi

p = −αi j = Kp
jJi

p, so is an
almost complex structure that commutes with J (equivalently, K is an
almost complex structure anti-self-adjoint with respect to g). Because K
commutes with J , the canonical orientation induced on M by K is oppo-
site that induced by J . Let M̄ denote M with this opposite orientation.
Since sections of Λ− are self-dual with respect to the orientation induced
by K, and the rank three bundle of self-dual two forms (with respect to
K) is isomorphic to the sum of a trivial line bundle and the canonical
line bundle (with respect to K), the square c2

1(M̄,K) of the first Chern
class c1(M̄,K) of the canonical line bundle of M̄ with respect to K equals
the first Pontryagin class p1(Λ−) = p1(M̄) + 2c2(M̄,K) = 2χ(M̄) + 3σ(M̄)
of Λ−, so satisfies c2

1(M̄,K) = −3σ(M) + 2χ(M) = 96, since χ(M) = 24 and
σ(M) = −16. Since 96 is not a square, this is a contradiction. (This argu-
ment is modeled on a similar one in section 3 of [44].) �

Theorem 1.12 is proved now, by obtaining a contradiction with Lemma 13.3.

Proof of Theorem 1.12. Let D be the Levi-Civita connection of a Ricci-flat
Kähler metric (g, J,Ω) on a K3 surface. It will be shown D is not critical
symplectic. Since there are no holomorphic vector fields on a K3 surface (see
[5]), if D is critical symplectic then, by Lemma 11.2, it is moment constant.
Hence it suffices to show that D cannot be moment constant.

It follows from (13.4) that 4K(D) = |A−|2. Hence the Levi-Civita con-
nection of a Ricci-flat Kähler metric on a K3 surface is moment constant
if and only if |A−|2 is constant. If this constant were zero, then A− would
vanish, so g would be flat, and the universal cover of M would be R4, which
is false. Hence it can be supposed that |A−|2 is a nonzero constant. This
will be shown to be impossible (the argument that follows was suggested to
the author by Claude LeBrun). Let det(A−) denote the determinant of the
endomorphism αij → −1

2αabg
pagqbA−pqij of the bundle Λ− of anti-self-dual
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2-forms. From the Weitzenböck formula

∆g|A−|2g = 2|DA−|2 +Rg|A−|2g − 144 det(A−)(13.7)

+ 4giagjbgkcgdlgpqA−abcdDiDqA
−
kljp,

(see, for example, section 4 of [11]) it follows that for a Ricci-flat Kähler
metric there holds ∆g|A−|2g = 2|DA−|2 − 144 det(A−). (Recall that here the
norms are those given by complete contraction, so differ by factors of 2 and
4 from those found in many references; in particular, |A−|2 is four times the
sum of the squares of the eigenvalues of A− viewed as an endomorphism
of Λ−.) The Ricci-flat condition is used to conclude that gpqDiDqA

−
kljp = 0;

this follows from the differential Bianchi identity (see [7], chapter 16). Since
|A−|2 6= 0, 0 < |DA−|2 = 72 det(A−), and so A− has exactly one positive
eigenvalue. Since M is simply-connected there is a nowhere vanishing sec-
tion of Λ− that is an eigenvector αij of A− corresponding to the positive
eigenvalue. This contradicts Lemma 13.3. �

Corollary 13.4. The Levi-Civita connection of a Ricci-flat Kähler metric
on a compact 4-manifold M is critical symplectic if and only if it is flat, in
which case M must be a torus.

Proof. By (13.1) and (13.2), equality holds in the Hitchin-Thorpe inequality,
and the result follows by the characterization of this case given in [39]. �

Remark 13.5. By Theorem A of [45], the connected sum Mk = CP2#kCP
2

admits a scalar-flat anti-self-dual Kähler metric. Since σ(Mk) = 1− k and
χ(Mk) = 3 + k, 3σ(Mk) + 2χ(Mk) = 9− k. When k ≥ 10, this last quantity
is negative, so by the Hitchin-Thorpe inequality Mk admits no Einstein
metric; in particular the scalar-flat Kähler metrics on it are not Ricci flat.
The argument proving Theorem 1.12 would work for these manifolds without
changes, with the exception of the step using the Weitzenböck formula (13.7);
if the anti-self-dual Weyl tensor is not harmonic, the conclusion about its
eigenvalues does not follow. In fact, by the main theorem of [1], a scalar-flat
Kähler surface with harmonic anti-self-dual Weyl tensor is either Ricci flat
or locally a product of constant curvature Riemann surfaces, so a scalar-flat
Kähler metric on Mk does not have harmonic Weyl tensor for k ≥ 10.

Lemma 13.6. Let M be an oriented compact 4-manifold with signature
σ(M) ≥ 0. Suppose the Levi-Civita connection D of a Kähler metric (g, J,Ω)
inducing the given orientation and having Yamabe invariant Y(g) is moment
constant.
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1) If Y(g) > 0 then Rg > 0.

2) If Y(g) = 0 then (M, g) is either flat or locally isometric to a Kähler
product of two Riemann surfaces of opposite constant scalar curva-
tures.

Proof. By Lemma 1.2 of M. Gursky’s [35] if the scalar curvature Rg of a
Riemannian metric on a compact 4-manifold satisfies LgRg ≤ 0 then Rg > 0
if Y(g) > 0 and Rg is identically zero if Y(g) = 0. If M is compact, then, by
(13.5), K(D)volg(M) = −12π2σ(M). Together with (13.4) this yields

0 = ∆gRg − 1
12R

2
g + 1

2 |A
−|2g + 24π2σ(M)

volg(M)(13.8)

= LgRg + 1
12R

2
g + 1

2 |A
−|2g + 24π2σ(M)

volg(M) .

Because σ(M) ≥ 0, (13.8) yields that LgRg ≤ 0, and so Gursky’s lemma
applies. In the case Y(g) = 0, so that Rg is identically zero, then, by (13.8)
and the nonnegativity of σ(M), A− vanishes and σ(M) = 0. In particular g is
conformally flat. By the main theorem of [54] if M is not flat then it is locally
isometric to a product of Riemann surfaces of opposite curvatures. �

14. Remarks on the moment 4-form and Einstein-like
conditions

It has been argued that moment constant and critical symplectic connections
are analogues of constant scalar curvature and extremal Kähler metrics.
To complete the analogy there should be identified classes of symplectic
connections that correspond to Kähler Einstein metrics. This section records
some remarks in this direction.

14.1. The moment 4-form

The moment form Ψ(∇) of ∇ ∈ S(M,Ω) is the closed 4-form

Ψ = Ψ(∇) = −2π2p1 − 1
4(n−1)dρ ∧ Ω.(14.1)

It satisfies:

1) Ψ(φ∗∇) = φ∗Ψ(∇) for φ ∈ Symp(M,Ω).

2) − 1
2π2 Ψ(∇) represents the first Pontryagin class of M .
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3) In the Lefschetz decomposition of Ψ(∇) into its primitive parts, the
zeroth order part equals the moment map K(∇). In particular, by
(1.8),

−4Ψ ∧ Ω(n−2)

(n−2)! = dρ ∧ Ω(n−1)

(n−1)! + 8π2p1 ∧ Ω(n−2)

(n−2)! = −2K(∇)Ωn

n! .(14.2)

4) Ψ(∇) vanishes if ∇ is projectively flat (see Lemma 1.5). Precisely, by
(1.6), (1.7), and (14.1) the moment form Ψ(∇) of a projectively flat
∇ ∈ S(M,Ω) satisfies 4(1− n)Ψ(∇) = dρ ∧ Ω = 0.

Item (2) is analogous to the statement that a multiple of the Ricci form of
a Kähler manifold represents the manifold’s first Chern class, while (3) is
analogous to the statement that zeroth part of the Lefschetz decomposition
of the Ricci form of a Kähler metric is the metric’s scalar curvature.

By these observations K(∇) and Ψ(∇) seem to be appropriate analogues
for symplectic connections of the scalar curvature and Ricci form of a Kähler
metric. The Kähler Einstein condition is equivalent to the statement that
the Ricci form is harmonic, and, since the Ricci form is always closed, the
condition is really that the Ricci form be coclosed; equivalently, the prim-
itive part of the Ricci form vanishes. This suggests that an analogue for
symplectic connections of the Kähler Einstein condition can be formulated
in terms of the primitive parts of the moment form Ψ(∇). Since the Lefschetz
decomposition of Ψ(∇) has parts of orders 0, 2, and 4, there are various pos-
sibilities. An example of a natural question suggested by these remarks is:
if the first Pontryagin class p1(M) of a symplectic manifold (M,Ω) satisfies
−2π2p1(M) = [λΩ ∧ Ω] for some λ ∈ R, must there exist ∇ ∈ S(M,Ω) such
that Ψ(∇) = λΩ ∧ Ω? Other similar questions can be posed, but the natural
context for such questions appears to be some form of symplectic cohomol-
ogy, such as the primitive cohomologies discussed in [55, 56], rather than
the ordinary de Rham cohomology. Although this requires too much back-
ground to discuss further here, it is planned to discuss these possibilities in
detail in future work. Just as constant curvature metrics on surfaces play a
special role in the theory of Kähler Einstein metrics, as a degenerate case of
the definition requiring a separate treatment, the conditions on symplectic
connections in the 4-dimensional case require special handling.

14.2. Symplectic Bach tensors

Given ∇ ∈ S(M,Ω), define an operator W : Γ(S3(T ∗M))→ Γ(W(T ∗M,Ω))
as the first variation δΠW (∇) = d

dt

∣∣
t=0

W (∇+ tΠ) of the symplectic Weyl
tensor of ∇ in the direction of Π, viewing Π as an element of T∇S(M,Ω).
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From (2.30) and (2.38) it follows that W(Π) = d◦∇Π, where d◦∇ is the operator
defined in (2.30). The symplectically adjoint operator W∗ : Γ(W(T ∗M,Ω))→
Γ(S3(T ∗M)) is defined, via the integration pairing, by

ˆ
M

W(Π)ijklA
ijkl Ωn

n! = −
ˆ
M

ΠijkW
∗(A)ijk Ωn

n! .(14.3)

When Aijkl is compactly supported, straightforward integration by parts
shows that

W∗(A)ijk = −2∇pAp(ijk) − 4
n+1∇(iA

p
jk)p,(14.4)

which is taken as the definition of W∗ in general. In particular it makes sense
to apply W∗ to Wijkl. Differentiating (1.12) yields

2(n+ 1)∇pWpijk = (2n+ 1)∇iRjk − 3∇(iRjk) + Ωi(jρk),(14.5)

and from (14.5) there results

W∗(W )ijk = 2(n−1)
n+1 δ∗Ricijk.(14.6)

Applying δ to (14.6), using (2.11), and simplifying the result yields

δW∗(W )ij = 2(n−1)
n+1 δδ∗Ricij = 4(n−1)

3(n+1)∇
p∇(iRj)p.(14.7)

On a compact 4-manifold the critical points of the squared L2-norm of the
conformal Weyl tensor of a Riemannian metric are given by the vanishing
of a trace-free symmetric 2-tensor called the Bach tensor (see [52] or [33]).
Alternatively, the Bach tensor is the image of the conformal Weyl tensor
under the metric adjoint of the second order differential operator given by
the linearization of the operator associating to a conformal structures its
conformal Weyl tensor (see [16]). For ∇ ∈ S(M,Ω) this motivates regarding
the tensors W∗(W ) and δW∗(W ) as analogues of the Bach tensor, as their
construction is formally parallel to that of the Bach tensor via linearization.
The vanishing of these tensors gives the equations for the critical points of
the functional

´
M WijklW

ijkl Ωn

n! with respect to arbitrary variations of Π
and gauge variations of Π, respectively, and so the analogy with the Bach
tensor is also consistent with the variational derivation of the Bach tensor.
By the identity (14.6), the critical points of

´
M WijklW

ijkl Ωn

n! with respect
to arbitrary variations are preferred connections; as was explained in the
introduction, this is because the all functionals quadratic in the curvature
of a symplectic connection have the same critical points.
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In dimension 4 the metric Bach tensor vanishes for conformally Einstein
metrics as well as half conformally flat metrics. If the analogy is taken seri-
ously, this suggests that that the preferred and gauge preferred conditions
are reasonable symplectic analogues of the Einstein and conformal Einstein
conditions for metrics. At any rate, it gives additional motivation for study-
ing these conditions.
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