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We study focus-focus singularities (also known as nodal singular-
ities, or pinched tori) of Lagrangian fibrations on symplectic 4-
manifolds. We show that, in contrast to elliptic and hyperbolic
singularities, there exist homeomorphic focus-focus singularities
which are not diffeomorphic. Furthermore, we obtain an algebraic
description of the moduli space of focus-focus singularities up to
smooth equivalence, and show that for double pinched tori this
space is one-dimensional. Finally, we apply our construction to dis-
prove Zung’s conjecture which says that any non-degenerate singu-
larity can be smoothly decomposed into an almost direct product
of standard singularities.
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1. Introduction

The main goal of the present paper is to study one interesting property of
focus-focus singularities (also known as nodal singularities, or pinched tori)

1613
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in the context of the theory of singular Lagrangian fibrations or, which is es-
sentially the same, in the context of topology of finite-dimensional integrable
Hamiltonian systems.

From the viewpoint of symplectic topology, an integrable system on a
symplectic manifold (M2n, ω) is defined by a collection of Poisson commuting
functions f1, f2, . . . , fn : M2n → R which are independent almost everywhere
on M2n. Throughout the paper we assume that the corresponding moment
map F = (f1, . . . , fn) : M2n → Rn is proper. In particular, the Hamiltonian
flows generated by f1, f2, . . . , fn are all complete so that M2n is endowed
with the natural Rn-action generated by these flows. The fibers of the sin-
gular Lagrangian fibration on M2n, associated with this integrable system,
are connected components of level sets F−1(a), a ∈ Rn. According to the
Arnold-Liouville theorem, regular fibers are Lagrangian tori of dimension n.
Here, however, we are mainly interested in singular fibers containing those
points P ∈M2n where rank dF(P ) < n.

In the case of non-degenerate singularities, topological description of
singular fibers in the semiglobal setting is due to N. T. Zung [16]. His fun-
damental decomposition theorem states that under some mild additional
conditions, such a singularity is homeomorphic to an almost direct product
of elementary bricks of four types: regular, elliptic, hyperbolic, and focus-
focus. The latter case is of particular interest as focus-focus singularities
possess a number of remarkable properties and have far reaching applica-
tions in symplectic geometry, see e.g. [3, 7, 9]. Among numerous works on
focus-focus singularities we would like to emphasize, first of all, the papers
by V. Matveev [10] and N. T. Zung [17, 18] (topological classification), as
well as S. Vũ Ngo.c [13] (symplectic classification).

The properties and invariants we are going to discuss in this paper are
related to the following phenomenon: unlike elliptic and hyperbolic case,
there exist homeomorphic focus-focus singularities which are not diffeomor-
phic. In other words, in the focus-focus case there are non-trivial smooth
invariants, somewhere between topological and symplectic ones previously
studied. This phenomenon was first noticed in [1, Section 9.8.2].

Our motivation to study smooth invariants of (not necessarily non-
degenerate) singular Lagrangian fibrations comes from symplectic geome-
try. Of course, our primary goal is to classify such fibrations up to sym-
plectomorphisms. However, if we are looking for a symplectic map between
two Lagrangian fibrations Fi : Mi → Bi, it is quite natural to do it in two
steps. First, we find a fiberwise diffeomorphism Ψ : M1 →M2. As a result
we obtain two different symplectic forms on M1, the original one ω1 and
the pullback ω′ := Ψ∗ω2, such that the fibration given on M1 is Lagrangian
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Figure 1: Focus-focus singularity with n = 5 critical points.

with respect to both of them. After this we can try to find another map
Ψ′ : M1 →M1 such that each fiber is preserved and ω1 = Ψ′∗ω′. Working in
this setting is more convenient for many reasons, for instance, to “compare”
two different symplectic forms on the same manifold we can use the usual
Moser trick which can be naturally adapted to Lagrangian fibrations.

Recall that the topology of a focus-focus singularity (for an integrable
system on a symplectic 4-manifold) is completely determined by the number
of focus-focus points on the singular fiber. In particular, if the singular fiber
contains n focus-focus critical points (and no other critical points!), then it
is an n-pinched torus illustrated in Figure 1 (see more detailed description
in Section 2).

In [1], there is only a short remark about existence of non-trivial smooth
invariants starting from n = 2 (for n = 1, all focus-focus singularities with
one pinched point on the fiber are diffeomorphic). However no explanation
of their nature is given. This paper is aimed at filling this gap. The de-
scription of smooth invariants for n ≥ 2 will be given in Section 3. In brief,
an n-pinched focus-focus singularity is determined (up to diffeomorphisms)
by n − 1 gluing maps φ1,2, . . . , φ1,n which prescribe how standard neigh-
borhoods of n focus-focus points are “glued” together. These maps can be
interpreted as elements of the group G of germs at z = 0 of local (real) dif-
feomorphisms of C fixing the origin. These diffeomorphisms are defined not
uniquely, but only up to an action of the subgroup H of liftable germs (Def-
inition 3.1) that consists of germs divisible by z or z̄. Therefore, the space of
smooth structures on an n-pinched focus-focus singularity can be thought of
as the quotient space of Gn−1 by the corresponding action of liftable germs.
More precisely, we have the following result.
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Theorem A (=Theorem 3.8). Two focus-focus singularities with n pinch
points are fiberwise diffeomorphic if and only if the corresponding gluing
maps φ1,2, . . . , φ1,n and φ̃1,2, . . . , φ̃1,n are related by

(1) φ̃1,i = ψ1 ◦ φ1,i ◦ ψ−1
i ,

where ψ1, . . . , ψn ∈ H are liftable.
In other words, smooth structures on an n-pinched focus-focus singularity

are in one-to-one correspondence with the orbits of the action of Hn on
Gn−1 defined by (1). The germ groups G and H can be replaced by the
corresponding groups of infinite jets.

Since the groups G and H are infinite-dimensional, a complete descrip-
tion of C∞-smooth invariants, i.e. invariants of action (1), is a non-trivial
problem. One can, however, describe Ck-invariants, i.e. invariants of the
same action (1) with germ groups G and H replaced by the corresponding
groups of k-jets. For instance, in the simplest case k = 1, the group G is iso-
morphic to GL2(R), and H ⊂ GL2(R) consists of C-linear and C-antilinear
functions. The orbits of the corresponding action (1) are easy to describe:

Theorem B (=Theorem 3.16 + Proposition 4.6). Focus-focus singu-
larities with n pinch points have 2n− 3 C1-invariants. These invariants are
given, in terms of the corresponding Poisson-commuting Hamiltonians, by
n− 1 complex numbers

µi =
λi − λ1

λi + λ̄1
,

considered up to multiplication by the same complex number of absolute
value 1 and simultaneous complex conjugation. Here λi is a (suitably chosen)
eigenvalue of a generic Hamiltonian linearized at i’th focus-focus point.

In Section 3.4 we also give a geometric interpretation of these invariants
in terms of complex structures on the base of a focus-focus fibration.

Although one can similarly define and describe Ck-invariants for every
k, for n = 2 pinch points this is unnecessary. In this case the C1-invariant
(which is unique since 2n− 3 = 1) already separates generic orbits of ac-
tion (1), i.e. generic orbits are of codimension one:

Theorem C (=Theorem 3.23). The (regular part of the) space of double-
pinched focus-focus singularities, considered up to C∞-diffeomorphisms, is
one-dimensional and parametrized by the C1-invariant.
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For general n (number of pinch points on the singular fiber) there is,
apparently, a similar stabilization phenomenon. We conjecture that for each
n there is k = k(n) such that Ck-invariants allow one to distinguish generic
orbits of action (1), so that the codimension of generic orbits (or equivalently,
the number of C∞-smooth invariants) is finite (see Remark 3.26).

It is important to note that since the underlying symplectic structure
does not play any essential role in the context of smooth invariants, one can
consider a (potentially) more general situation of toric fibrations with an iso-
lated focus-focus-like fiber. (Such fibrations arise, in particular, in integrable
non-Hamiltonian systems. It is shown in [19] that focus-like singularities are
typical in this general setting, and they indeed naturally appear in integrable
nonholonomic systems [2, 5].) That is what we are actually doing in our pa-
per. However, this approach naturally raises the symplectization problem: is
it true that any focus-like singularity can be endowed with a suitable sym-
plectic structure in such a way that all the fibers become Lagrangian? A
positive answer is given in Section 4.1.

Finally, by using non-triviality of smooth invariants in the focus-focus
case, we disprove the conjecture stated by Zung in [16]. Recall that his main
result is that any non-degenerate singularity can be topologically decomposed
into an almost direct product of “elementary bricks” of dimension 2 or 4.
In other words, every such singularity is homeomorphic to the quotient of a
certain direct product of “elementary bricks” by a symplectic component-
wise fibration-preseving action of a finite group. It is quite obvious that such
a decomposition is in general not symplectic, i.e. no suitable symplectomor-
phism can be found. However, Zung conjectured that this decomposition is
smooth. In Section 5 we construct the following counterexample:

Example D (see Section 5). Consider a one-parametric family of double-
pinched focus-focus singularities on a symplectic 4-manifold such that the
C1-invariant defined in Theorem B varies within the family. Multiplying the
total space of this family by a circle S1, one can turn it into a Lagrangian
fibration on a 6-manifold, which has a non-degenerate singularity (focus
singularity of rank one with two critical circles on each singular fiber). It is
easy to see that the so-obtained singularity is homeomorphic to the direct
product of a focus-focus singularity with two pinch points and a regular circle
fibration on an annulus. However, as we show in Section 5, this singularity
is not diffeomorphic to any product of this kind. The proof is essentially
based on the interpretation of C1-invariants in terms of complex structures
presented in Section 3.4.
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2. Basic definitions and facts on focus-focus singularities

Consider two commuting functions H,F on a symplectic 4-manifold (M,ω).
Let P ∈M be a rank 0 singular point of the moment map F = (H,F ) :
M4 → R2, which means that dH(P ) = 0 and dF (P ) = 0.

Consider the linearizations AH , AF of the Hamiltonian vector fields
XH := ω−1(dH), XF := ω−1(dF ) at the singular point P . Since H and F
commute and the vector fields XH , XF are Hamiltonian, the operators AH
and AF can be understood as commuting elements of the symplectic Lie
algebra sp(TPM,ω). Recall that P ∈M is called non-degenerate if the com-
mutative subalgebra in sp(TPM,ω) generated by the operators AH and AF
is a Cartan subalgebra. Singular points of focus-focus type are defined by
the following additional condition.

Definition 2.1. A non-degenerate singular point P ∈M is said to be of
focus-focus type if the corresponding Cartan subalgebra is conjugate to the
subalgebra of the form

a −b 0 0
b a 0 0
0 0 −a −b
0 0 b −a

 , a, b ∈ R.

Here we use the standard matrix representation of sp(TPM,ω) with ω =
dp1 ∧ dq1 + dp2 ∧ dq2 and the coordinates ordered as p1, p2, q1, q2.

Equivalently, one can say that for a generic linear combination αH + βF ,
the operator αAH + βAF is diagonalizable, its eigenvalues are distinct and
form a complex quadruple ±a±

√
−1b.

It is easy to see that a focus-focus is an isolated singular point of the
moment map F = (H,F ).

According to Eliasson’s theorem (see [6, 11, 15] for the general case and
also [4, 14] for the focus-focus case), locally every non-degenerate singularity
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can be reduced to a standard normal form. In the case of a focus-focus
singularity we have

Proposition 2.2. In a neighborhood of a non-degenerate singular point of
focus-focus type, there is a symplectic coordinate system p1, p2, q1, q2, in
which the commuting functions H and F take the following form:

H = H(f1, f2)

F = F (f1, f2)

f1 := p1q1 + p2q2

f2 := p1q2 − q1p2,

Moreover, the transition map f1, f2 7→ H,F is non-degenerate (i.e., a local
diffeomorphism).

For our purposes, it will be more convenient to rewrite the above formu-
las in complex notation. Namely, we set

u := p1 −
√
−1p2, v := q1 +

√
−1q2.

Then

uv = f1(u, v) +
√
−1f2(u, v), ω = Re (du ∧ dv).

So, a singular point P of the moment map F : M4 → R2 is of focus-
focus type if there exist local complex coordinates (u, v) on M4 (canonical
in the sense that Re (du ∧ dv) = ω) and a local complex coordinate z on R2

in which F takes the form z = uv. (Here by complex coordinates we mean
a C∞-smooth, but not necessarily holomorphic, map to a complex vector
space of appropriate dimension.)

These normal coordinates immediately give us a local description of the
corresponding Lagrangian fibration in a neighborhood of a focus-focus point.

Proposition 2.3. Consider the neighborhood U of a focus-focus point which
is a ball in normal coordinates (that is U := {p2

1+p2
2+q2

1 +q2
2 < ε} = {|u|2+

|v|2 < ε}). Let Lδ := {(u, v) ∈ U | uv = δ ∈ C∗} be the intersection of a regu-
lar fiber (that is sufficiently close to the singular one L0 := {(u, v) ∈ U | uv =
0}) with the neighborhood U . Then

1) Lδ is diffeomorphic to a cylinder.



i
i

“2-Izosimov” — 2020/1/7 — 15:48 — page 1620 — #8 i
i

i
i

i
i

1620 A. Bolsinov and A. Izosimov

2) The Hamiltonian flow of f2 = Imuv is 2π-periodic (i.e., defines a
Hamiltonian S1-action). Every trajectory of this flow generates the
first homology group H1(Lδ,Z).

3) The singular fiber L0 is the union of two transversally intersecting
discs.

Remark 2.4. Notice that the functions f1 and f2 can be obtained from the
original commuting functions H and F by means of a non-degenerate change
of variables (i.e., by a suitable local diffeomorphism f1 = f1(H,F ), f2 =
f2(H,F )). The first of them f1 is defined uniquely up to sign and adding a
flat function, while the second one f2 is defined up to sign, see [13].

The next theorem, due to Matveev [10] and Zung [17], describes focus-
focus singularities in the semi-local setting, i.e. in a neighborhood of the
singular fiber.

Theorem 2.5. Let F : M4 → R2 be a moment map defined by two Poisson
commuting functions. Let also L0 := F−1(0) be a singular fiber that contains
a focus-focus point P . Assume that the singular fiber L0 is compact, and that
all singular points of F on L0 are non-degenerate of rank 0. Then

1) All singular points on L0 are of focus-focus type and there are finitely
many of them.

2) The singular fiber L0 is the union of n Lagrangian spheres transver-
sally intersecting at singular points1, where n is the number of singular
points on the fiber (see Figure 1).

3) A sufficiently small neighborhood U(L0) := F−1(Bδ) of the singular
fiber L0, where Bδ := {a ∈ R2 | |a| < δ}, contains no other singular
points and admits a Hamiltonian S1-action that is free everywhere
except for n focus-focus points which remain fixed.

4) The generator of this S1-action is well defined in the whole neighbor-
hood U(L0) and, in a neighborhood of each focus-focus point, coincides
(up to sign) with the function f2 from Proposition 2.2. In particular,
the functions f2(H,F ) related to different focus-focus points coincide
as functions of H and F (up to sign).

1If n = 1, the fiber is an immersed Lagrangian sphere with one self-intersection
point.
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5) Each non-singular fiber La := F−1(a), a ∈ Bδ \ {0}, is connected and
diffeomorphic to a 2-torus.

We refer to the singularity described in this theorem as a (symplectic)
focus-focus singularity of complexity n (or n-pinched focus-focus singularity),
where n is the number of focus-focus points on the singular fiber L0.

The following important classification result is also due to Matveev and
Zung.

Theorem 2.6. All focus-focus singularities of the same complexity n are
fiberwise homeomorphic.

The case of complexity one was studied much earlier by L. M. Lerman,
and Ya. L. Umanskii, see [8] and references therein.

Since we are going to study smooth invariants of focus-focus singularities,
the main part of our construction will not use explicitly any symplectic
structure. For this reason, it is natural to define focus-focus singularities
as in Theorem 2.5 but in a more general context without referring to a
symplectic structure. In Section 4 we will show that all such singularities
can be “symplectized”.

Definition 2.7. Consider a smooth map F : M4 → N2 and let P ∈M4 be
a singular point of F with F(P ) = Q. We will say that P is of focus-focus
type (in the smooth sense) if locally in some suitable complex coordinate
systems (u, v in a neighborhood of P on M4 and z in a neighborhood of
Q ∈ N2) the map F is given as z = uv.

To define a focus-focus singularity in the semilocal setting, we consider
the whole fiber LQ = F−1(Q) containing several critical points. First of all,
we impose the following two natural assumptions:

Assumption 1. The singular fiber LQ is compact.

Assumption 2. All singular points of F located on LQ are of focus-focus
type. (In particular, the number of such points is finite.)

These two assumptions, however, are not enough to determine the topol-
ogy of the singularity. Indeed, while in a neighborhood of each focus-focus
point the structure of the singularity is standard and is described by Proposi-
tion 2.3, these local standard singularities can be arranged together in many
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different ways. So we need to assume that this arrangement is the same as
in Figure 1:

Assumption 3. The singular fiber LQ is homeomorphic to the n-pinched
torus shown in Figure 1. In other words, the complement of focus-focus
points in the singular fiber LQ is a disjoint union of n cylinders.

Finally, we need the following “orientability” assumption:

Assumption 4. The manifold M4 is oriented and the following equivalent
conditions hold.

1) All intersections between 2-spheres constituting the singular fiber LQ
are positive2.

2) For any focus-focus points P ∈ LQ, the orientation induced on M4

by the local volume form Re (du ∧ dv) ∧ Re (du ∧ dv), where u, v are
normal coordinates near P (see Definition 2.7), is positive.

Remark 2.8. These two conditions are equivalent because the fiber LQ is
given, in local normal coordinates, by two discs {u = 0}, {v = 0} whose in-
tersection is positive. Also note that this positivity condition imposes strong
restrictions on the intersection form of M4, see the paper [12] devoted to
topology of multi-pinched focus-focus singularites.

Definition 2.9. A singularity satisfying Assumptions 1-4 will be called a
focus-focus singularity in the smooth sense, or a smooth focus-focus singu-
larity.

Remark 2.10. Note that in integrable nonholonomic systems Assump-
tion 4 does not need to hold. This phenomenon can be understood as a
topological obstruction to Hamiltonization of such systems, see [5]. Never-
theless, we believe that our classification is still valid for singularities not
satisfying Assumption 4. In this case, one regards the “signs” of focus-focus
points (i.e., the signs of intersections between 2-spheres constituting the
singular fiber) as additional discrete invariants.

2Note that these spheres can be simultaneously oriented by picking a (local)
orientation of the base N2. Reversal of orientation of N2 changes orientations of
all spheres, so the intersection numbers are well-defined.
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3. Smooth structures on focus-focus singularities

In what follows, given any smooth manifoldsM andN and any point P ∈M ,
the notation C∞P (M,N) stands for the space of germs at P of smooth maps
from M to N , while DiffP (M) is the group (under composition) of germs at
P of local diffeomorphisms of M fixing P . Even if the manifolds M and N
are complex, we assume that all maps are only infinitely real-differentiable,
but not necessarily holomorphic. We also write F : (M,L)→ (N,Q) when
F is a germ at a submanifold L ⊂M of a map M → N taking L to the
point Q ∈ N .

3.1. The group of liftable diffeomorphisms

In this section we define the group of so-called liftable diffeomorphisms,
which, roughly speaking, determine possible way to “shuffle” the fibers near
a focus-focus singular point. The sturcture of this group (in particular the
fact that not all diffeomorphisms are liftable) underlies our construction of
smooth invariants.

Let F : M4 → N2 be a map from a 4-manifold M4 to a surface N2.
Assume that F has a focus-focus singular point at P ∈M4. According to
Definition 2.7, this means that there exist complex coordinates (u, v) cen-
tered at P and a complex coordinate z centered at Q := F(P ) such that in
these coordinates the map F takes the form z = uv. In other words, there ex-
ist germs of diffeomorphisms Φ: (M4, P )→ (C2, 0) and φ : (N2, Q)→ (C, 0)
such that the following diagram commutes

(2)

(M4, P ) (C2, 0)

(N2, Q) (C, 0).

Φ

F uv

φ

We refer to φ as a normal chart. Such a chart is not unique. The collection
of all normal charts is an intrinsic property of a focus-focus singular point.
We describe this collection by means of so-called liftable germs. Given two
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normal charts φ, φ̃ : (N2, Q)→ (C, 0), we get the following diagram:

(3)

(C2, 0) (M4, P ) (C2, 0)

(C, 0) (N2, Q) (C, 0).

Φ̃ ◦Φ−1

uv

ΦΦ̃

F uv

φ̃ ◦φ−1

φφ̃

From this diagram we conclude that the transition map φ̃ ◦ φ−1 ∈ Diff0(C)
between the normal charts φ and φ̃ admits a lift Φ̃ ◦ Φ−1 to the total space
of the fibration uv : (C2, 0)→ (C, 0). We call such germs liftable:

Definition 3.1. A germ of a diffeomorphism ψ ∈ Diff0(C) is called liftable
if there exists a germ of a diffeomorphism Ψ ∈ Diff0(C2) such that the fol-
lowing diagram commutes:

(4)

(C2, 0) (C2, 0)

(C, 0) (C, 0).

Ψ

uv uv

ψ

Liftable germs form a subgroup of the group Diff0(C). We denote this
subgroup by LDiff0(C). From diagram (3) we get the following result.

Proposition 3.2. Let φ : (N2, Q)→ (C, 0) be a normal chart, and let ψ ∈
LDiff0(C) be a liftable germ. Then ψ ◦ φ : (N2, Q)→ (C, 0) is also a nor-
mal chart. Conversely, for any two normal charts φ, φ̃ : (N2, Q)→ (C, 0)
the corresponding transition map φ̃ ◦ φ−1 ∈ Diff0(C) is liftable.

In other words, the collection of normal charts (N2, Q)→ (C, 0) is a
principal homogeneous space relative to the left action of LDiff0(C).

The following result classifies liftable germs.
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Theorem 3.3. A germ of a diffeomorphism ψ ∈ Diff0(C) is liftable if and
only if it can be written either as

ψ(z) = zh(z),

or as

ψ(z) = z̄h(z),

where, in both cases, h ∈ C∞0 (C,C) is a germ at 0 of an infinitely real-
differentiable function C→ C with h(0) 6= 0.

Remark 3.4. Note that an infinitely real-differentiable function ψ : C→ C
is divisible by z (or z̄) if and only if its Taylor series at 0 in terms of z, z̄
is divisible by z (respectively, z̄). So, Theorem 3.3 can be reformulated as
follows: ψ ∈ Diff0(C) is liftable if and only if its Taylor series at 0 is either
divisible by z, or divisible by z̄. (Equivalently, the Taylor series of ψ either
does not contain monomials of the form z̄k, or does not contain monomials
of the form zk.)

Proof of Theorem 3.3. First note that the complex conjugation map ψ :
z → z̄ is liftable: as its lift Ψ making diagram (4) commute, one can take
Ψ(u, v) := (ū, v̄). So, it suffices to show that an orientation-preserving dif-
feomorphism ψ ∈ Diff0(C) is liftable if and only if it can be written as
ψ(z) = zh(z).

Assume that ψ(z) = zh(z). Then diagram (4) commutes, for instance,
for Ψ(u, v) := (u, vh(uv)), so ψ is liftable.

Conversely, assume that ψ is orientation-preserving and liftable. Accord-
ing to Remark 3.4, it suffices to show that the Taylor series ψ∞ ∈ C[[z, z̄]] of
ψ at 0 is divisible by z. Let Ψ be a lift of ψ making diagram (4) commute.
Then the Taylor series f∞, g∞ ∈ C[[u, ū, v, v̄]] of components of Ψ satisfy

(5) ψ∞(uv, ūv̄) = f∞(u, ū, v, v̄) · g∞(u, ū, v, v̄).

Equating the lowest-degree terms on both sides, we get that the quadratic
part auv + būv̄ of ψ∞(uv, ūv̄) is the product of linear parts of f∞ and g∞.
But since a quadratic form can only be factored into linear forms when its
rank is at most 2, it follows that either a = 0 or b = 0. Also taking into
account that ψ is an orientation-preserving diffeomorphism, we conclude
that a 6= 0 and b = 0, i.e. the quadratic part of ψ∞(uv, ūv̄) is a non-zero
multiple of uv. But then it follows that the linear part of g∞ is a non-zero
multiple of either u or v. Without loss of generality we can assume that it
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is v, i.e. g∞ = cv + · · · , where c is a non-zero constant. Then, setting u in
equation (5) to zero, we get

ψ∞(0, ūv̄) = f∞(0, ū, v, v̄) · (cv + · · · ).

Assume that the left-hand side does not vanish. Then, equating the lowest-
degree terms on both sides, we get that a certain non-zero polynomial of
ū, v̄ is divisible by v. Since this is not possible, it follows that ψ∞(0, ūv̄) is
identically zero, and hence ψ∞(z, z̄) is divisible by z, as desired. �

3.2. Gluing maps and the main classification theorem

In this section we apply the above description of liftable diffeomorphisms to
give an algebraic description for the space of n-pinched focus-focus singu-
larities up to smooth equivalence.

Assume that the fiber of F : M4 → N2 over Q ∈ N2 contains n focus-
focus points P1, . . . , Pn (in the smooth sense). For each of those points,
choose a normal chart φi : (N2, Q)→ (C, 0).

Definition 3.5. The germs of diffeomorphisms φi,j ∈ Diff0(C) given by

φi,j := φi ◦ φ−1
j

are called gluing maps of a focus-focus singularity (relative to the normal
charts φ1, . . . , φn).

Remark 3.6. Gluing maps satisfy the conditions

(6) φi,i = id, φi,j ◦ φj,k ◦ φk,i = id

and hence are uniquely determined by the choice of, say, φ1,2, φ1,3, . . . , φ1,n.
Note that while φ1,2, φ2,3, . . . , φn−1,n seems to be a more natural choice, it
is less convenient for computations.

Possible non-triviality of gluing maps is the source of smooth invariants
for focus-focus singularities. Note that although gluing maps depend on the
choice of normal charts, they are well-defined up to the left-right action
of liftable diffeomorphisms. Hence one can identify smooth structures on
focus-focus singularities with the corresponding quotient space.

Remark 3.7. Here and in what follows, we assume that singular points of a
focus-focus singularity are labeled, in cyclic order, with integers {1, . . . , n},
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and all diffeomorphisms are required to preserve this labelling. Hence, all
invariants we construct are invariants of “labeled focus-focus singularities”.
To obtain invariants of unlabelled singularities, one should take into account
the action of the “relabelling” group, isomorphic to the dihedral group Dn.

Theorem 3.8. 1) Two smooth focus-focus singularities with the same
number of singular points are diffeomorphic if and only if the corre-
sponding gluing maps are related by

(7) φ̃i,j = ψi ◦ φi,j ◦ ψ−1
j ,

where ψ1, . . . , ψn ∈ LDiff0(C) are liftable.

2) Smooth structures on an n-pinched focus-focus singularity are in
one-to-one correspondence with orbits of the LDiff0(C)n action on
Diff0(C)n−1 given by

(8) (ψ1, . . . , ψn) ý(φ1,2, . . . , φ1,n) := (ψ1 ◦ φ1,2 ◦ ψ−1
2 , . . . , ψ1 ◦ φ1,n ◦ ψ−1

n ),

where ψ1, . . . , ψn ∈ LDiff0(C) and φ1,2, . . . , φ1,n ∈ Diff0(C).

3) Equivalently, smooth structures on an n-pinched focus-focus singular-
ity are in one-to-one correspondence with orbits of the LDiff∞0 (C)n

action on Diff∞0 (C)n−1 given by the same formula (8). Here Diff∞0 (C)
is the group of ∞-jets at 0 of local diffeomorphisms (C, 0)→ (C, 0),
and LDiff∞0 (C) is the subgroup of liftable ∞-jets, i.e., series divisible
by z or z̄.

Remark 3.9. The last statement of the theorem can be interpreted as
follows: Two smooth focus-focus singularities are C∞-equivalent if and only
if they are formally equivalent.

The proof of Theorem 3.8 is based on the following lemma.

Lemma 3.10. Assume that we are given two n-pinched focus-focus sin-
gularities F : (M4, L)→ (N2, Q) and F̃ : (M̃4, L̃)→ (Ñ2, Q̃) such that for
suitable choice of normal charts the corresponding gluing maps coincide
(i.e. if φi,j’s are gluing maps for F , and φ̃i,j’s are gluing maps for F̃ , then
φi,j = φ̃i,j). Then these singularities are diffeomorphic.
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Proof of the lemma. We need to show that there exist germs of diffeomor-
phisms ψ : (N2, Q)→ (Ñ2, Q̃) and Ψ: (M4, L)→ (M̃4, L̃) such that the fol-
lowing diagram commutes:

(9)

(M4, L) (M̃4, L̃)

(N2, Q) (Ñ2, Q̃).

Ψ

F F̃
ψ

To begin with, we construct these maps ψ and Ψ locally. Let P1, . . . , Pn
be the singular points of F on the fiber L, and let P̃1, . . . , P̃n be the singular
points of F̃ on the fiber L̃. Let also φi : (N2, Q)→ (C, 0) and φ̃i : (Ñ2, Q̃)→
(C, 0) be normal charts satisfying the condition of the lemma. Then, com-
bining diagrams (2) for normal charts φi and φ̃i, we get the following com-
mutative diagram

(10)

(M4, Pi) (C2, 0) (M̃4, P̃i)

(N2, Q) (C, 0) (Ñ2, Q̃).

Φi

F

Φ̃−1
i ◦Φi

uv

Φ̃i

F̃

φ̃−1
i ◦φi

φi φ̃i

This diagram can be viewed as a local version of (9), with ψ = φ̃−1
i ◦ φi and

Ψ = Φ̃−1
i ◦ Φi. Furthermore, the coincidence of the gluing maps φi ◦ φ−1

j =

φ̃i ◦ φ̃−1
j implies

φ̃−1
i ◦ φi = φ̃−1

j ◦ φj ,

i.e. ψ does not depend on i. (In other words, the lower dashed arrow in all n
copies of diagram (10) is the same.) Now it remains to extend local diffeomor-
phisms Ψ = Φ̃−1

i ◦ Φi : (M4, Pi)→ (M̃4, P̃i) to a global one Ψ: (M4, L)→
(M̃4, L̃) and hence obtain a global version of (9). To that end, notice that
by Assumption 3 of Definition 2.9, the neighborhood of an n-pinched focus-
focus singular fiber can be represented as a union of n standard neigh-
borhoods of focus-focus points and n trivial fibrations into cylinders. The
local diffeomorphisms Φ̃−1

i ◦ Φi define maps between standard neighbor-
hoods of focus-focus points and hence between boundaries of the cylinders.
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(More precisely, they define ∞-jets of diffeomorphisms of cylinders rela-
tive to the boundary. Also note that one may need to compose Φi with
the map (u, v) 7→ (v, u) to ensure that opposite boundaries of each cylinder
are mapped to opposite boundaries of another cylinder.) These diffeomor-
phisms between the boundaries can be extended inside the cylinders thanks
to Assumption 4 of Definition 2.9. (This extension can be constructed as
follows. First, we identify the cylinders using an arbitrary diffeomorphism.
This reduces the problem to the following: Given a cylinder and ∞-jets of
orientation-preserving diffeomorphisms at its boundaries, one needs to find a
global diffeomorphism of the cylinder to itself which realizes given jets. Such
an extension can be perfomed, for instance, using the Moser path method.
First, one extends given jets to actual diffeomorphisms in small neighbor-
hoods of the boundary. Then one connects those diffeomorphisms with the
identity. These paths of diffeomorphisms can be viewed as flows of certain
time-dependent vector fields near the boundary. Using a partition of unity,
one extends those vector fields to a global vector field on the cylinder. In-
tegrating the latter vector field provides the desired diffeomorphism.) This
extension gives us a global diffeomorphism Ψ: (M4, L)→ (M̃4, L̃) making
diagram (9) commute. Thus, the lemma is proved. �

Proof of Theorem 3.8. We begin with the first statement. Assume that two
focus-focus singularities F : (M4, L)→ (N2, Q) and F̃ : (M̃4, L̃)→ (Ñ2, Q̃)
are diffeomorphic. This means that there exist germs of diffeomorphisms
ψ : (N2, Q)→ (Ñ2, Q̃) and Ψ: (M4, L)→ (M̃4, L̃) such that diagram (9)
commutes. Take any normal charts φ1, . . . , φn : (N2, Q)→ (C, 0) for the first
singularity, and “push them forward” using the bottom arrow ψ in dia-
gram (9), i.e. consider the charts φi ◦ ψ−1 : (Ñ2, Q̃)→ (C, 0) on the base of
the second singularity. It is easy to see that these charts are normal. (Dif-
feomorphisms of focus-focus singularities preserve normality.) Therefore, if
φ̃1, . . . , φ̃n are any other normal charts for the second singularity, then by
Proposition 3.2 we have

φ̃i = ψi ◦ φi ◦ ψ−1,

where ψi is liftable. But this immediately yields relation (7) between the
gluing maps φi,j = φi ◦ φ−1

j and φ̃i,j = φ̃i ◦ φ̃−1
j .

Conversely, assume that we are given two singularities such that, for
certain normal charts φ1, . . . , φn for the first singularity and φ̃1, . . . , φ̃n for
the second one, the corresponding gluing maps are related by (7). Then, since
φi is a normal chart, the chart ψi ◦ φi, where ψi is a liftable diffeomorphism
entering (7), is normal as well (Proposition 3.2). Furthermore, gluing maps
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for the normal charts ψ1 ◦ φ1, . . . , ψn ◦ φn are the same as for φ̃1, . . . , φ̃n:

(ψi ◦ φi) ◦ (ψj ◦ φj)−1 = ψi ◦ φi ◦ φ−1
j ◦ ψ

−1
j = φ̃i ◦ φ̃−1

j .

So, the singularities are diffeomorphic by Lemma 3.10. Thus, the first state-
ment of the theorem is proved.

To prove the second statement, we use that any collection of diffeomor-
phisms φi,j ∈ Diff0(C) satisfying (6) can be realized as gluing maps for an
appropriate focus-focus singularity. Such a singularity can be obtained by
taking standard neighborhoods of focus-focus points and identifying neigh-
borhoods of their boundaries (which are trivial foliations into cylinders) as
prescribed by the maps φi,i+1. (The orientations of the boundaries should
be matched properly for the resulting singularity to satisfy Assumption 4.
Note that since we glue neighborhoods of boundaries, the resulting space
automatically obtains a smooth structure.) Therefore, a smooth structure
on a focus-focus singularity is determined by a collection {φi,j ∈ Diff0(C)}
satisfying (6) modulo the action defined by (7). But since such a collection
{φi,j} is uniquely determined by φ1,2, . . . , φ1,n, this reduces to the action of
LDiff0(C)n on Diff0(C)n−1 given by (8).

To prove the last statement, consider the map Diff0(C)n−1→Diff∞0 (C)n−1

which takes a collection of germs to the corresponding jets. This map is
surjective by Borel’s theorem on the existence of a smooth map with a
given Taylor series. Furthermore, this map intertwines LDiff0(C)n action
on Diff0(C)n−1 with the LDiff∞0 (C)n action on Diff∞0 (C)n−1, which gives a
surjective map between the corresponding orbit spaces

Diff0(C)n−1 /LDiff0(C)n → Diff∞0 (C)n−1 /LDiff∞0 (C)n.

To complete the proof it suffices to notice that since flat diffeomorphisms
are liftable (see Remark 3.4), the latter map is also injective and hence a
bijection. Thus, the theorem is proved. �

Remark 3.11. In what follows, we prefer to work with orientation-
preserving gluing maps. Let Diff0(C)+ ⊂ Diff0(C) be the subgroup of
orientation-preserving germs. Then, since complex conjugation is liftable,
each orbit of the action LDiff0(C)n ýDiff0(C)n−1 has a representative which
belongs to Diff0(C)n−1

+ . Also note than the action of an element (ψ1, . . . , ψn)
∈ LDiff0(C)n on Diff0(C)n−1 preserves Diff0(C)n−1

+ if and only if either
all ψi’s are orientation-preserving, or all of them are orientation-reversing.
Denote by LDiff0(C)+ ⊂ LDiff0(C) the subgroup of orientation-preserving
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liftable germs, and let LDiff0(C)− := LDiff0(C) \ LDiff0(C)+ be orientation-
reversing liftable germs. Then we get a natural identification between orbits
spaces

Diff0(C)n−1 /LDiff0(C)n ' Diff0(C)n−1
+ /LDiff0(C)n±,

where LDiff0(C)n± := LDiff0(C)n+ t LDiff0(C)n−, and the action of LDiff0(C)n±
on Diff0(C)n−1

+ is defined by the same formula (8).

Corollary 3.12. Smooth structures on an n-pinched focus-focus singularity
are in one-to-one correspondence with orbits of the LDiff0(C)n± action on
Diff0(C)n−1

+ defined by (8).

Remark 3.13. In the complex-analytic setting, focus-focus fibers are
known as Kodaira In singularities of elliptic fibrations. In this case all glu-
ing maps are holomorphic and hence liftable. Therefore, by Theorem 3.8 any
such singularity is diffeomorphic to the one with trivial gluing maps. In fact,
a stronger statement is true: any two In singularities with the same n are
complex isomorphic.

3.3. Description of first order invariants

Since the groups LDiff0(C) and Diff0(C) are infinite-dimensional, an explicit
description of orbits for action (8) is a problem of unknown complexity.
(See, however, the description of generic orbits for n = 2 in Section 3.5).
Nevertheless, one can construct invariants of this action by replacing the
groups LDiff0(C) and Diff0(C) with the corresponding finite-dimensional
groups of finite-order jets. The aim of this section is to define these invariants
and explicitly describe those which are related to 1-jets.

Let Diffk0(C) be the group of k-jets at 0 of diffeomorphisms (C, 0)→
(C, 0), and LDiffk0(C) be the subgroup of liftable k-jets, i.e., jets divisible by
z or z̄. (Note that both Diffk0(C) and LDiffk0(C) are finite-dimensional real
Lie groups). Let also Diffk0(C)+ ⊂ Diffk0(C) be the subgroup of orientation-
preserving jets, and let LDiffk0(C)+ := Diffk0(C)+ ∩ LDiffk0(C), LDiffk0(C)− :=
LDiffk0(C) \ LDiffk0(C)+ (cf. Remark 3.11).

Then we have surjective homomorphisms Diff0(C)+ → Diffk0(C)+ assign-
ing to each germ the corresponding k-jet. These homomorphisms induce
surjective maps between orbit spaces

Diff0(C)n−1
+ /LDiff0(C)n± → Diffk0(C)n−1

+ /LDiffk0(C)n±,
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where LDiffk0(C)n± :=LDiffk0(C)n+tLDiffk0(C)n−, and the action of LDiffk0(C)n±
on Diffk0(C)n−1

+ is given by the same formula (8). In other words, invariants
of the action LDiffk0(C)n± ýDiffk0(C)n−1

+ are also invariants of the action
LDiff0(C)n± ýDiff0(C)n−1

+ , i.e. invariants of n-pinched focus-focus singular-
ities. We say that such invariants have order k. In this section we describe
the first order invariants.

The group Diff1
0(C) is isomorphic to GL2(R), but it will be convenient

to regard its elements as invertible R-linear functions from C to C, that
are functions of the form az + bz̄, where a, b ∈ C are such that |a| 6= |b|.
The subgroup Diff1

0(C)+ consists of orientation-preserving R-linear functions
from C to C, that are functions of the form az + bz̄, where a, b ∈ C are such
that |a| > |b|. The subgroup LDiff1

0(C) consists of invertible C-linear and C-
antilinear functions C→ C, that are functions of the form az, where a ∈ C∗
(such functions constitute the subgroup LDiff1

0(C)+), or bz̄, where b ∈ C∗
(such functions form the complementary subset LDiff1

0(C)−).

Proposition 3.14.

1) Every orbit of the action LDiff1
0(C)n± ýDiff1

0(C)n−1
+ has a representa-

tive of the form

(11) (z + µ1z̄, . . . , z + µn−1z̄),

where µi ∈ C, |µi| < 1 for each i. This element is unique up to mul-
tiplying all µi’s by the same complex number of absolute value 1 and
replacing each µi by µ̄i (or performing both operations at a time). Thus,
the orbits are parametrized by n− 1 numbers µ1, . . . , µn−1 in the open
unit disk {z ∈ C | |z| < 1}, considered up to multiplication by the same
complex number of absolute value 1 and simultaneous complex conju-
gation.

2) The numbers µi corresponding to the orbit of (a1z + b1z̄, . . . , an−1z +
bn−1z̄) ∈ Diff1

0(C)n−1
+ are given by

µi =
bi
āi
.

Proof. Take ξ := (a1z + b1z̄, . . . , an−1z + bn−1z̄) ∈ Diff1
0(C)n−1

+ . Acting by
η := (z, a1z, . . . , an−1z) ∈ LDiff1

0(C)n+ on ξ, we get

(z ◦ (a1z + b1z̄) ◦ (a−1
1 z), . . . ) = (z + µ1z̄, . . . ),
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where µi = biā
−1
i (see formula (8) for the action). This proves the existence

part of the first statement, as well as the second statement. (Note that
|biā−1

i | < 1 thanks to the orientation-preserving condition.)
To prove the uniqueness part of the first statement, one checks that

an element of LDiff1
0(C)n+ of form (11) is mapped, under the action of η ∈

LDiff1
0(C)n± , to an element of the same form if and only if η = (cz, . . . , cz)

or η = (cz̄, . . . , cz̄), where c ∈ C∗. In the former case, the numbers µi in (11)
are transformed by the rule µi 7→ cc̄−1µi, while in the latter case we get
µi 7→ cc̄−1µ̄i. But since cc̄−1 can take any value on the unit circle, the result
follows. �

Corollary 3.15. The orbit space Diff1
0(C)n−1 /LDiff1

0(C)n is homeomor-
phic to the quotient of a polydisk {z ∈ C | |z| < 1}n−1 by the diagonal action
of the orthogonal group O1(R). In particular,

dim
(
Diff1

0(C)n−1 /LDiff1
0(C)n

)
= 2n− 3.

Hence we get the following result.

Theorem 3.16. Focus-focus singularities with n singular points have 2n−
3 first order invariants. These invariants are given by the numbers

µi :=
∂φ1,i/∂z̄(0)

∂φ1,i/∂z(0)
∈ {z ∈ C | |z| < 1}, i = 2, . . . , n,

considered up to multiplication by the same complex number of absolute
value 1 and simultaneous complex conjugation. Here φ1,2, φ1,3, . . . , φ1,n ∈
Diff0(C)+ are orientation-preserving gluing maps.

3.4. First order invariants and complex structures

In this section we give a geometric interpretation of first order invariants.
Later on, in Section 5, we will generalize this construction to give an exam-
ple of a singularity which does not admit a smooth almost direct product
decomposition.

Let F : (M4, P )→ (N2, Q) be a germ of a smooth map with a focus-
focus singular point at P . Then every normal chart φ : (N2, Q)→ (C, 0)
gives rise to a complex structure J on the tangent space TQN

2, defined as
the pullback of the canonical complex structure on C by means of φ. In other
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words, we have the following commutative diagram

(12)

TQN
2 T0C

TQN
2 T0C,

dQφ

J Jst

dQφ

where Jst is multiplication by
√
−1, and dQ stands for the differential at Q.

Proposition 3.17. Complex structures on TQN
2 coming from different

normal charts (associated with the same focus-focus point P ) agree up to
sign.

Proof. From diagram (12) we get Ji = (dQφi)
−1 ◦ Jst ◦ dQφi, while for a dif-

ferent normal chart φ̃ we get

J̃i = (dQφ̃i)
−1 ◦ Jst ◦ dQφ̃i

= (dQφi)
−1 ◦ (dQφi ◦ (dQφ̃i)

−1) ◦ Jst ◦ (dQφi ◦ (dQφ̃i)
−1)−1 ◦ dQφi

= (dQφi)
−1 ◦ (±Jst) ◦ dQφi = ±Ji,

where we used that the germ φ ◦ φ̃−1 : (C, 0)→ (C, 0) is liftable (see Propo-
sition 3.2) and hence its differential d(φ ◦ φ̃−1) = dφi ◦ dφ̃−1

i is complex or
anti-complex (Theorem 3.3). �

So, we get a well-defined pair of complex structures ±J on TQN
2. Now as-

sume that the fiber of F over Q contains n focus-focus points P1, . . . , Pn.
Then we get n pairs of complex structures ±Ji on TQN

2. By construc-
tion, these pairs, considered up to simultaneous conjugation, are invariant
under diffeomorphisms. Since the space of complex structures on R2 is 2-
dimensional, while the conjugation action of GL2(R) has one-dimensional
kernel consisting of scalar matrices, this way we get 2n− 3 smooth invari-
ants of n-pinched fosus-focus singularities, cf. Theorem 3.16.

Proposition 3.18. The invariants of the n-tuple (±J1, . . . ,±Jn) under
the GL2(R) action are exactly the first order invariants, as defined in Theo-
rem 3.16. In other words, two focus-focus singularities have conjugate tuples
(±J1, . . . ,±Jn) if and only if they have the same first order invariants.
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Proof. From diagram (12), we have

Ji = (dQφi)
−1 ◦ Jst ◦ dQφi,

where φi : (N2, Q)→ (C, 0) is the normal chart corresponding to the i’th sin-
gular point. Since we are only interested in complex structures (J1, . . . , Jn)
up to simultaneous conjugation, we may replace them by complex structures
on C defined by

J̃i := dQφ1 ◦ Ji ◦ (dQφ1)−1.

Then we have

J̃1 = Jst, J̃i = d0φ1,i ◦ Jst ◦ (d0φ1,i)
−1,

where φ1,i are the gluing maps. Now it is easy to see that the LDiff1
0(C)n

action on differentials of the gluing maps corresponds to simultaneous con-
jugation of J̃i’s and changing their signs. But this means that the invariants
of (±J1, . . . ,±Jn) are exactly the invariants of the LDiff1

0(C)n action on
Diff1

0(C)n−1, i.e. first order invariants. �

Remark 3.19. For double pinched focus-focus singularities, the only first
order invariant is µ = |µ2| ∈ [0, 1) (see Theorem 3.16 and Section 3.5 below),
while the only invariant of a pair J1, J2 of complex structures is the trace
of J2J

−1
1 . (We get rid of the ambiguity in the choice of signs by requiring

that J1 and J2 define the same orientation on TQN
2.) The relation between

these invariants is as follows:

tr (J2J
−1
1 ) = 2 · 1 + µ2

1− µ2
.(13)

There are also similar formulas for general n, with |µi| instead of µ in the
right-hand side. However, for n > 2, the absolute values of µi’s do not form
a complete set of first order invariants (while the traces of ratios do not form
a complete set of invariants for n-tuples of complex structures), so there are
additional, more complicated, relations.

In the remaining part of this section we explain how to construct complex
structures on the tangent space to the base of a focus-focus fibration without
referring to the classification of liftable diffeomorphisms. This geometric
construction will be useful later on, in the discussion of the multidimensional
case (see Section 5).
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As above, let F : (M4, P )→ (N2, Q) be a germ of a smooth map with
a focus-focus singular point at P . Consider the Hessian of the map F at P .
This is a symmetric bilinear form

d2
PF : TPM

4 × TPM4 → TQN
2.

Proposition 3.20. There exists a unique, up to sign, complex structure
J on TQN

2 such that d2
PF becomes a complex bilinear form for a suitable

choice of a complex structure on TPM
4. The complex structures ±J with

this property coincide with the ones constructed by pulling back the canonical
complex structure on C by means of a normal chart.

Proof. Existence follows the fact that in suitable coordinates F becomes a
holomorphic map (this also shows that the corresponding complex struc-
tures coincide with the ones constructed by means of a normal chart),
while uniqueness can be demonstrated as follows. Using the normal form
(u, v) 7→ uv of F , one easily shows that there is unique, up to permutation
of summands, decomposition TPM

4 = V1 ⊕ V2, where the spaces V1 and V2

are 2-dimensional and maximally isotropic with respect to d2
PF . (Geomet-

rically, V1 and V2 are tangent planes to the fiber of F at P .) Furthermore,
for any ξ ∈ V1, ξ 6= 0, the mapping

Dξ := d2
PF(ξ, ∗) : V2 → TQN

2

is an isomorphism, so for any ξ, η ∈ V1, ξ 6= 0, there is a well-defined operator

Rξη := Dη ◦D−1
ξ : TQN

2 → TQN
2.

Notice that if ξ and η are linearly independent, then the operator Rξη can-
not be scalar. (Otherwise V2 is not maximal isotropic.) At the same time,
if d2

PF is a complex bilinear form, then Rξη commutes with the complex
structure on TQN

2. But a non-scalar operator on a two-dimensional vector
space commutes with at most two complex structures, which differ by sign.
So, there is at most two (in fact, exactly two by the existence part) complex
structures on TQN

2 for which d2
PF is complex bilinear, as desired. �

3.5. Classification of double pinched focus-focus singularities

In this section we classify (generic) double pinched focus-focus singularities
up to diffeomorphisms. First of all, for n = 2, one can reformulate Proposi-
tion 3.14 in the following way:
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Corollary 3.21. The orbit of any element az + bz̄ ∈ Diff1
0(C)+ under the

LDiff1
0(C)2

±-action has a unique representative of the form z + µz̄, where
µ ∈ R, 0 ≤ µ < 1. The number µ is given by µ = | ba |.

Thus, we obtain a function µ : Diff0(C)+→ [0, 1) invariant under the
action of LDiff0(C)2

±. Explicitly, this function reads

µ(φ) =

∣∣∣∣∂φ/∂z̄(0)

∂φ/∂z(0)

∣∣∣∣ ∈ [0, 1).

For a double-pinched focus-focus singularity F , we define µ(F) := µ(φ)
where φ := φ1,2 is the corresponding orientation-preserving gluing map.

Corollary 3.22. If double-pinched focus-focus singularities F and F̃ are
diffeomorphic, then µ(F) = µ(F̃).

It turns out, that the converse result is also true, provided that µ 6=
0. In other words, the space of double pinched focus-focus singularities is
generically one-dimensional:

Theorem 3.23. Assume that double-pinched focus-focus singularities F
and F̃ are such that µ(F) = µ(F̃) 6= 0. Then F and F̃ are diffeomorphic.

The proof is based on the corresponding algebraic statement:

Lemma 3.24. Assume that φ, φ̃ ∈ Diff0(C)+ are such that µ(φ) = µ(φ̃) 6=
0. Then φ and φ̃ belong to the same orbit of LDiff0(C)2

±-action.

Remark 3.25. For µ(φ) = µ(φ̃) = 0 it is not necessarily true that φ and φ̃
belong to the same orbit. For example, it is easy to see that all germs of the
form φ = z + z̄k ∈ Diff0(C)+ belong to different orbits. On the other hand,
any ∞-jet φ ∈ Diff∞0 (C)+ with µ(φ) = 0 contains the “trivial” jet φ0 = z in
its LDiff∞0 (C)2

±-orbit closure. (Here we endow the space of ∞-jets with its
natural Fréchet topology.) Indeed, for any such φ and any c ∈ C∗ we have

lim
c→∞

cz ◦ φ ◦ c−1z = z.

This means that there exist no continuous invariants which distinguish be-
tween the orbits at the level µ = 0, and the orbit space

Diff∞0 (C)+ /LDiff∞0 (C)2
±
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0

1

µ0

Figure 2: The µ-invariant of double-pinched focus-focus singularities takes
values in [0, 1). All singularities at the fixed level µ = µ0 6= 0 are pairwise dif-
feomorphic. The level µ = 0 contains infinitely many diffeomorphism classes
each containing the “trivial” singularity, i.e. the singularity whose gluing
map is the identity, in its closure.

(i.e. the space of double-pinched focus-focus singularities up to smooth
equivalence) is non-Hausdorff. See Figure 2.

Proof of Lemma 3.24. It suffices to show that if µ := µ(φ) 6= 0, then φ lies
in the same orbit as the linear function z + µz̄. In other words, there exist
liftable diffeomorphisms ψ1, ψ2 such that

(z + µz̄) ◦ ψ2 = ψ1 ◦ φ.(14)

We look for orientation-preserving liftable ψ1, ψ2. (Note that since the func-
tion z + µz̄ commutes with complex conjugation, existence of liftable ψ1, ψ2

satisfying (14) is equivalent to existence of orientation-preserving liftable ψ1,
ψ2 with the same property.) By Theorem 3.3 this means that ψ1(z) = zf(z),
ψ2(z) = zg(z), where f, g ∈ C∞0 (C,C) are such that f(0) 6= 0 and g(0) 6= 0.
In terms of the functions f , g, equation (14) reads

zg(z) + µz̄ḡ(z) = φ(z)f(φ(z)).

We show that this equation has a solution f, g ∈ C∞0 (C,C) with f(0) 6= 0
and g(0) 6= 0. Since φ is a diffeomorphism, this is equivalent to finding g, h ∈
C∞0 (C,C) with g(0) 6= 0 and h(0) 6= 0 such that

(15) zg(z) + µz̄ḡ(z) = φ(z)h(z).

Without loss of generality we can assume that φ(z) = z + µz̄ + · · · , where
the dots denote higher order terms. (Indeed, by Corollary 3.21, every orbit
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has a representative of this form.) Then, since µ 6= 0, one can write φ as

φ(z) = z + µz̄ + zu(z) + µz̄v(z),

where u, v ∈ C∞0 (C,C) are such that u(0) = v(0) = 0. Further, since φ is a
diffeomorphism, the ideal generated in C∞0 (C,C) by φ and φ̄ is precisely
{w ∈ C∞0 (C,C) | w(0) = 0}. This allows us to write u, v as

u(z) = φ(z)u1(z) + φ̄(z)u2(z), v(z) = φ(z)v1(z) + φ̄(z)v2(z),

where u1, u2, v1, v2 ∈ C∞0 (C,C). Then a straightforward substitution shows
that the functions

g := 1 + φv̄2 + φ̄u2, h := 1 + z(v̄2 − u1) + µz̄(ū2 − v1)

solve (15). Thus, Lemma 3.24 is proved, and Theorem 3.23 follows. �

Remark 3.26. We believe that a statement similar to that of Theorem 3.23
is true for n-pinched singularities as well. Namely, we believe that for generic
n-pinched focus-focus singularities the number of smooth invariants is finite,
and C∞-classification of such singularities can be reduced to Ck-classification
for certain k = k(n). So far, we were not able to prove that conjecture. How-
ever, it is not hard to show that for generic n-pinched focus-focus singular-
ities the number of finite order invariants is finite. More precisely, we have
the following result.

Proposition 3.27. For the LDiffk0(C)n action on Diffk0(C)n−1 given by (8),
the codimension of generic orbits is a bounded function of k.

Proof. Consider the n-tuple

ξ := (z + µ1z̄, . . . , z + µn−1z̄) ∈ Diffk0(C)n−1,

where all µi’s are non-zero and such that µi 6= µj , and µi 6= 1/µ̄j for any i, j.
Then, explicitly computing the stabilizer of ξ under the LDiffk0(C)n action,
one can show that its dimension is given by

dim Stab ξ =

1

2
k(k + 1), for k < 2n− 1,

k2 + (3− 2n)k + (n− 1)(2n− 3), for k ≥ 2n− 1.
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Therefore, the dimension of the orbit of ξ is given by

dim Orb ξ = dim LDiffk0(C)n − dim Stab ξ

=

(n− 1

2
)k(k + 1), for k < 2n− 1,

(n− 1)k2 + (3n− 1)k − (n− 1)(2n− 3), for k ≥ 2n− 1,

while the codimension is given by

codim Orb ξ = dim Diffk0(C)n−1 − dim Orb ξ

=

− 1

2
k2 + (2n− 5

2
)k, for k < 2n− 1,

(n− 1)(2n− 3), for k ≥ 2n− 1.

So, for large k, there is an orbit of LDiffk0(C)n action on Diffk0(C)n−1 whose
codimension is (n− 1)(2n− 3). Therefore, the codimension of generic orbits
is less or equal to this number, as desired. �

4. Symplectic focus-focus singularities

4.1. Any focus-focus singularity admits a symplectic structure

The following result shows that smooth classification for symplectic focus-
focus singularities is equivalent to that for smooth focus-focus singularities.

Theorem 4.1. Any focus-focus singularity admits a symplectic structure
which makes the corresponding fibration Lagrangian.

To begin with, recall (see Proposition 2.2) that for any symplectic focus-
focus point, there is a “symplectic” version of diagram (2), namely the top
arrow Φ: (M4, P )→ (C2, 0) is a symplectic map. (Here we endow C2 with
the symplectic structure Re (du ∧ dv).) We will refer to the corresponding
bottom arrow φ : (N2, Q)→ (C, 0) as the symplectic normal chart. Such a
normal chart is unique up to multiplying its real and imaginary parts by −1
and adding a flat function to the real part (see Remark 2.4).

Furthermore, in the case several focus-focus points on the fiber, the imag-
inary part of the symplectic normal charts φi : (N2, Q)→ (C, 0) agree up to
sign: Imφi = ±Imφj (Theorem 2.5), and we can choose these charts in such
a way that Imφi = Imφj . Then the corresponding symplectic gluing maps
φi,j := φi ◦ φ−1

j satisfy Imφi,j(z) = Im z. Conversely, any diffeomorphisms
with this property can be realized as symplectic gluing maps:
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Proposition 4.2. Let {φi,j ∈ Diff0(C)} be a collection of diffeomorphisms
satisfying (6) and such that Imφi,j(z) = Im z for every i, j = 1, . . . , n. Then
there exists an n-pinched symplectic focus-focus singularity whose symplectic
gluing maps are φi,j’s.

Proof. The idea of the proof is to take a symplectic focus-focus singularity
with identity gluing maps and then appropriately modify the Lagrangian
fibration. Let F = (H,F ) : (M4, L)→ (R2, 0) be such a “trivial” singularity
(see Remark 4.3). Since the gluing maps are trivial, one can assume that
(H,F ) is a normal chart for each of the focus-focus points P1, . . . , Pn ∈ L.
Moreover, the function F generates a global S1-action.

Now, we change this Lagrangian fibration by modifying the function H.
To that end, we take a cover of a neighborhood of L in M4 by S1-invariant
open sets U1, . . . , Un such that Pi ∈ Ui, and Pi /∈ Ūj for j 6= i. (Here Ūj is
the closure of Uj .) Let also {Gi} be a partition of unity subordinate to the
cover {Ui}. Without loss of generality, it can be assumed that the functions
Gi are invariant under the S1-action generated by F (if not, we replace them
by their averaged counterparts). We then define a new function H̃ : M4 → R
by

(16) H̃ :=

n∑
i=1

Gi · Reφ−1
1,i (H,F ).

The functions H̃ and F Poisson-commute and thus give rise to a new La-
grangian fibration on M4. As the initial fibration, the modified one has L
as its singular fiber of focus-focus type. Indeed, from (16) we get

(dH̃ ∧ dF )|L = J(dH ∧ dF )|L,

where the function J is given by

J :=

n∑
i=1

Gi
∂

∂H
Reφ−1

1,i (H,F ).

Further, note that
∂

∂H
Reφ−1

1,i (H,F ) > 0,

since φ1,i is orientation-preserving and has the form (x, y) 7→ (. . . , y), and
also that Gi ≥ 0, with at least one of Gi’s being strictly positive. Therefore,
the function J does not vanish, and singular points of the modified fibration
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which belong to L are the same as for the initial fibration. Furthermore,
these points are of focus-focus type, because the two fibrations coincide
near each of the singular points. So, the fibration defined by H̃ and F has L
as its singular fiber of focus-focus type. Furthermore, it is easy to see that
the gluing maps for the new fibration are φi,j ’s. Thus, the proposition is
proved. �

Remark 4.3. A symplectic focus-focus singularity with trivial gluing maps
can be constructed, for instance, as an n-fold covering of a focus-focus sin-
gularity with 1 pinch point. Indeed, for a sufficiently small neighborhood
U of a focus-focus singularity with 1 pinch point, its fundamental group is
isomorphic to Z. Therefore, one can construct an n-fold covering π : V → U
corresponding to the index n subgroup nZ ⊂ π1(U). Further, one lifts the
symplectic structure and the Lagrangian fibration from U to V using the pro-
jection π. Clearly, the so-obtained fibration on V has a focus-focus fiber with
n pinch points as the π-preimage of the singular fiber in U . Furthermore,
as normal charts for the focus-focus fibration on V one can take the nor-
mal chart for the fibration on U . Hence, all gluing maps for the focus-focus
fibration on V are trivial for suitable choice of normal charts, as desired.

Remark 4.4. Although there exist different approaches to the proof of
Proposition 4.2 (see e.g. [13, Section 7]), the advantage of our approach
is that it allows one to construct focus-focus singularities with all possible
gluing maps on one and the same symplectic manifold. Moreover, given a
family of germs {φti,j} depending smoothly on a parameter t ∈ R, our con-
struction produces a smooth family of singularities. This will be important
in Section 5.

Lemma 4.5. For any germ f : (C, 0)→ (R, 0) such that df(0) 6= 0 there
exists a liftable germ ψ ∈ LDiff0(C) such that Imψ = f .

Proof. Let z = x+
√
−1y be the coordinate in C. Write f as f = xv(z) +

yu(z), where u, v ∈ C∞0 (C,R), and set

ψ(z) := xu(z)− yv(z) +
√
−1f(z).

Then, from the condition df(0) 6= 0 it follows that ψ is a diffeomorphism.
Furthermore,

ψ = xu− yv +
√
−1(xv + yu) = (x+

√
−1y)(u+

√
−1v),

so ψ is liftable, as desired. �



i
i

“2-Izosimov” — 2020/1/7 — 15:48 — page 1643 — #31 i
i

i
i

i
i

Smooth invariants of focus-focus singularities 1643

Proof of Theorem 4.1. The statement of the theorem can be reformulated as
follows: Any smooth focus-focus singularity (in the sense of Definition 2.9)
is diffeomorphic to a symplectic one. Thanks to Theorem 3.8 and Propo-
sition 4.2, this is equivalent to saying that, for any tuple (φ1,2, . . . , φ1,n) ∈
Diff0(C)n−1, its orbit under the LDiff0(C)n action has a representative of
the form (φ̃1,2, . . . , φ̃1,n) where Im φ̃1,i(z) = Im z for every i = 2, . . . , n. To
prove the latter, take any φ1,2, . . . , φ1,n ∈ Diff0(C). Then, by Lemma 4.5,
there exist liftable ψ2, . . . , ψn ∈ LDiff0(C) such that Imψi = Imφ1,i. Notice
that

Imψi(φ
−1
1,i (z)) = Imφ1,i(φ

−1
1,i (z)) = Im z.

Therefore, the inverse map φ̃1,i := (ψi ◦ φ−1
1,i )
−1 = φ1,i ◦ ψ−1

i also satisfies

Im φ̃1,i(z) = Im z, as desired. �

4.2. First order invariants in terms of eigenvalues

Let F be a symplectic focus-focus singularity, and let H be a generic func-
tion constant on the fibers of F . (Here generic means that ∂H/∂(Reφi) 6= 0,
where φi is the symplectic normal chart corresponding to the singular point
Pi.) In this section we express first order invariants of F in terms of eigenval-
ues of the corresponding Hamiltonian vector field XH linearized at singular
points.

Let Ai : TPi
M4 → TPi

M4 be the linearization of XH at the singular point
Pi. Then the eigenvalues of Ai form a quadruple symmetric with respect to
the real and imaginary axes. We choose one eigenvalue out of the quadruple
in the following way. Let φi be the symplectic normal chart corresponding
to the point Pi. Then we have

H = aiReφi + biImφi + · · ·

(where dots denote higher order terms), and eigenvalues of Ai are exactly
±ai ±

√
−1bi. Then, as a preferred eigenvalue, we choose λi := ai +

√
−1bi.

This gives a canonical way to choose eigenvalues λ1, . . . , λn (one for each
point Pi), up to simultaneous complex conjugation or simultaneous multi-
plication by −1. (Here we assume that the normal charts are chosen in such
a way that their orientations agree.)

Proposition 4.6. Assume that λi is the eigenvalue of the linearization of
XH at the singular point Pi, chosen as described above. Then the first order
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invariants µ2, . . . , µn are given by

µi =
λi − λ1

λi + λ̄1
.(17)

Proof. First of all notice that ifH is replaced by another generic Hamiltonian
H̃, then the corresponding eigenvalues change as λi 7→ aλi + b

√
−1, where

a, b ∈ R are the same for all i’s. Therefore, the expression on the right-hand
side of (17) does not depend on the choice of the Hamiltonian.

Let φi be the symplectic normal chart corresponding to the point Pi. To
compute the invariants µi, we set H := Reφ1. Writing H in terms of the
normal chart φi, we get

H = aiReφi + biImφi + · · ·

Since H = Reφ1, and Imφ1 = Imφi, the gluing map φ1,i = φ1 ◦ φ−1
i has the

form

x+
√
−1y 7→ aix+ biy +

√
−1y + · · · ,

so

µi =
∂φ1,i/∂z̄(0)

∂φ1,i/∂z(0)
=
ai + bi

√
−1− 1

ai + bi
√
−1 + 1

=
λi − λ1

λi + λ̄1
,

where we used that λi = ai + bi
√
−1 and λ1 = 1 due to the choice of H. �

Remark 4.7. The procedure of choosing one eigenvalue from a quadruple
can also be performed without knowing the normal charts. First of all, one
should choose λi’s such that the sign of Reλi is the same for all i = 1, . . . , n.
(One has Reλi 6= 0 since H is generic.) Furthermore, one can distinguish
between λi and λ̄i in the following way. Instead of a particular Hamiltonian
H, consider the whole 2-dimensional family of commuting Hamiltonians,
aH + bF . Then the corresponding linearization at Pi depends on the param-
eters a, b, and λi becomes a bilinear function of a, b: λi = λi(a, b). Further,
according to Theorem 2.5, our symplectic focus-focus singularity admits a
global S1-action. Although the generator of this action does not have to
be of the form aH + bF , it is of such form up to higher order terms. So,
there exist a, b ∈ R such that λi(a, b) = ±

√
−1 for each i = 1, . . . , n. Then

we choose λi in such a way that λi(a, b) =
√
−1 for any i (or −

√
−1 for

any i).
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5. An obstruction to smooth almost direct product
decomposition

In this section we construct a Lagrangian fibration in dimension 6 with a
rank 1 focus-focus singularity which is homeomorphic to the direct product
of a rank 0 focus-focus singularity and a trivial fibration, but not diffeomor-
phic to it. This disproves a conjecture stated by Zung in [16] which says
that any non-degenerate singularity can be (semilocally, i.e. in the neigh-
borhood of the singular fiber) smoothly decomposed into an almost direct
product of elementary bricks of four types: regular, elliptic, hyperbolic, and
focus-focus..

Our construction is as follows. Take a family Ft of double-pinched sym-
plectic focus-focus singularities on (M4, ω) depending on the parameter
t ∈ (a, b) ⊂ R in such a way that the µ-invariant defined in Section 3.5 varies
within the family: µ = µ(t). (The existence of such a family follows from
Proposition 4.2, see also Remark 4.4.) Such a family gives rise to a La-
grangian fibration on M6 := M4 × (a, b)× S1 endowed with the symplectic
structure ω + dt ∧ dφ, where φ is the coordinate on S1. The corresponding
moment map F̃ : M6 → R3 is given by F̃(x, t, φ) = (F , t). This fibration has
a focus-focus singularity of rank 1, with two critical circles on each fiber. By
construction, it is homeomorphic to the direct product of a double-pinched
rank 0 focus-focus singularity and a regular foliation of an annulus by con-
centric circles.

Proposition 5.1. This singularity is not diffeomorphic to an (almost) di-
rect product.

Proof. The idea of the proof is to show that the µ-invariant is well-defined
for rank 1 focus-focus singularities with two critical circles on the fiber. In
this case, this invariant is no longer a number, but a function on the set of
critical values of the moment map. (The latter is a smooth curve Σ ⊂ R3.)
The definition of this invariant is compatible with the rank 0 case in the
following sense: if a rank 1 singularity is diffeomorphic to a direct product,
then its µ-invariant is a constant function equal to the µ-invariant of the
corresponding rank 0 singularity.

To define this invariant, we repeat the construction of Section 3.4.
Namely, consider the Hessian of the moment map F at a rank one focus-focus
point P . This is now a bilinear map

d2
PF : Ker dPF ×Ker dPF → Coker dPF ,
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where Coker dPF := TF(P )R3 / Im dPF is the cokernel of the differential of
F at P . As in Section 3.4, one shows that there exists a unique, up to
sign, complex structure on Coker dPF which lifts to a complex structure on
Ker dPF in such a way that d2

PF becomes a complex bilinear map. Moreover,
this complex structure does not depend on the choice of the point P on the
critical orbit. Indeed, for any other point P̃ on the same critical orbit, there is
a fiberwise diffeomorphism (in fact, even a symplectomorphism) taking P to
P̃ . But since our construction is invariant under diffeomorphisms, it follows
that the corresponding complex structures on Coker dPF = Coker dP̃F are
the same.

Now, considering both critical orbits on the same fiber, we get two com-
plex structures on the space Coker dF . Also notice that the latter can be
viewed as a fiber in the normal bundle NΣ to the set of critical values
Σ ⊂ R3. (Indeed, for non-degenerate singularities, the image of the differen-
tial of the moment map is exactly the tangent space to the set Σ of critical
values.) Repeating the construction for every singular value Q ∈ Σ, we get
two complex structures J1, J2 in the normal bundle NΣ, and hence a func-
tion tr (J2J

−1
1 ) : Σ→ R which is invariant under diffeomorphisms. (While

this is not exactly the µ-invariant, those invariants are functions of each
other given by formula (13).)

It is clear that the so-constructed invariant should be a constant function
on Σ for direct-product-type singularities. Moreover, this invariant does not
change under covering maps, so it is also constant for almost direct products.
On the other hand, the µ-invariant of the singularity constructed above is a
non-trivial function. Therefore, this singularity is not diffeomorphic to any
almost direct product. �
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Mathematics Research Notices 2005 (2005), no. 1, 27–45.

[12] G. Smirnov, Focus-focus singularities in classical mechanics (in Rus-
sian), Nelin. Dinam. 10 (2014), no. 1, 101–112. (English translation:
arXiv:1312.1708).
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