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In this paper, we extend the Atiyah–Guillemin–Sternberg convex-
ity theorem and Delzant’s classification of symplectic toric man-
ifolds to presymplectic manifolds. We also define and study the
Morita equivalence of presymplectic toric manifolds and of their
corresponding framed momentum polytopes, which may be ratio-
nal or non-rational. Toric orbifolds [16], quasifolds [3] and non-
commutative toric varieties [14] may be viewed as the quotient of
our presymplectic toric manifolds by the kernel isotropy foliation
of the presymplectic form.
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1. Introduction

The celebrated convexity theorem of Atiyah [1] and Guillemin–Sternberg [10]
states that if a connected compact symplectic manifold (M,ω) admits an
effective Hamiltonian torus Tn-action with corresponding momentum map
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F : M → Rn, then the image F (M) ⊂ Rn is a convex n-dimensional poly-
tope, called the momentum polytope, which is rational, i.e., each facet is
given by a linear equation with rational linear coefficients in Rn.

A particularly important special case, related to algebraic toric geome-
try, is when the dimension of the symplectic manifold is exactly 2n, where n
is the dimension of the torus which acts on it. In this case, the momentum
polytope is not only rational, but also simple (i.e., each s-dimensional face
has exactly n− s faces of dimension s+ 1 adjacent to it) and regular (i.e.,
for any point x0 on any s-dimensional face there is a complete integral affine
coordinate system (h1, . . . , hn) such that the polytope is locally given near
x0 by the system of linear inequalities {h1(x) ≥ 0, . . . , hn−s(x) ≥ 0}). Con-
vex polytopes which satisfy the three conditions of rationality, simplicity and
regularity are called Delzant polytopes, because Delzant [7] found a nat-
ural 1-to-1 correspondence between such polytopes and connected compact
symplectic toric manifolds (i.e., those symplectic manifolds which admit an
effective Hamiltonian torus action of half the dimension).

In this paper, we give a natural extension of these theorems to presym-
plectic manifolds. Our main results can be roughly formulated as follows:
• (Theorem 2.4 and Theorem 2.7) The image of the momentum map

of a Hamiltonian torus action on a connected compact presymplectic man-
ifold with a regular presymplectic form, under a natural flatness condition,
is a convex polytope (of lower dimension in general) in a Euclidean space.
Moreover, any such presymplectic manifold admits an equivariant symplec-
tization, which is unique in a natural sense.
• (Theorem 3.13, Theorem 3.14 and Theorem 3.15). Connected compact

presymplectic toric manifolds are classified, up to equivariant presymplectic
diffeomorphisms, by their associated framed momentum polytopes. The clas-
sification, up to Morita equivalence, of connected presymplectic toric mani-
folds is given by the Morita equivalence classes of their framed momentum
polytopes.

Our motivation for this work comes from our desire to understand the
role in symplectic geometry of convex simple polytopes which do not satisfy
the rationality or the regularity conditions of Delzant polytopes. Many other
authors have worked on this question. In particular, Lerman and Tolman
[16] obtained the relation between non-regular simple rational polytopes
and symplectic toric orbifolds.

Battaglia and Prato (see, e.g., [2–5] and references therein) and
Katzarkov–Lupercio–Meersseman–Verjovsky (see, [14]) have worked on irra-
tional analogues of symplectic toric manifolds. However, we wanted to have
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a simpler understanding of the geometric structure and so developed our
own approach, which uses presymplectic realizations.

In the process of studying quotient spaces of presymplectic toric man-
ifolds, we are naturally led to the notion of Morita equivalence of these
manifolds, and of their corresponding framed momentum polytopes, borrow-
ing the idea from the theory of Lie groupoids and stacks. Using our language
of Morita-equivalent framed polytopes, we recover the results of Lerman and
Tolman [16] on symplectic toric orbifolds, and also give a clear, easy to un-
derstand, definition of what it means for two toric quasifolds (in the sense
of Prato [23]) to be isomorphic.

We also note that, in order to turn an irrational convex polytope into a
momentum polytope of a (pre)symplectic toric object, one first needs to lift
it non-isomorphically to a rational-faced polytope in a higher-dimensional
space! This simple but important observation clarifies the role of irrational
polytopes in toric (pre)symplectic geometry.

The paper is structured as follows. Section 2 is devoted to the presym-
plectic version of the Atiyah–Guillemin-Sternberg convexity theorem. Sec-
tion 3 is about presymplectic toric manifolds, their framed momentum poly-
topes, and their Morita equivalence classes. Section 4, the last section of this
paper, contains some final remarks about related works by other authors and
related questions.

2. Presymplectic convexity theorem

2.1. The flatness condition

The goal of this section is to prove an analogue of the Atiyah-Guillemin-
Sternberg convexity theorem [1, 10] for Hamiltonian torus actions on presym-
plectic manifolds.

Let (M,ω) be a connected compact presymplectic manifold of dimension
2n+ d, i.e., ω ∈ Ω2(M) is closed. Suppose that the dimension of the image
of the linear maps TxM 3 vx 7→ ω(x)(vx, ·) ∈ T ∗xM is 2n for all x ∈M , i.e.,
the presymplectic form ω has constant corank d. Assume that there is a
presymplectic torus Tq+d-action on M which is effective, i.e., the intersection
of all isotropy groups of the torus action is the identity element. In addition,
suppose that this action is Hamiltonian in the following presymplectic sense.

Let the vector fields X1, . . . , Xq+d on M be a family of generators of the
torus action, i.e., the flow of each Xi is periodic of period 1 and their flows
together form the Tq+d-action. We assume that for each i = 1, . . . , q + d,
there is a function Fi : M → R, called the Hamiltonian function of Xi,
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such that

ω(Xi, ·) = dFi,

similarly to the symplectic case. This condition implies automatically that
ω is preserved by Xi: LXi

ω = d(Xiyω) +Xiy(dω) = d(dF ) + 0 = 0. Hence
ω is invariant with respect to the torus Tq+d-action, which implies that each
function Fi is also Tq+d-invariant. Indeed, for every i and j, the function
Xj(Fi) = ω(Xi, Xj) is Tq+d-invariant, but on each orbit of the Tq+d-torus
action there is a critical point of the restriction of Fi to that orbit, and
Xj(Fi) = 0 at such a critical point; hence Xj(Fi) = 0 everywhere. The map

F = (F1, . . . , Fq+d) : M → Rq+d

is called the momentum map of the Hamiltonian Tq+d-action. Since the
momentum map F is invariant with respect to the Tq+d-action, it factors
through a map from the space of orbits M/Tq+d of the Tq+d-action to Rq+d.
We will assume that the kernel of ω lies in the tangent spaces to the orbits of
the Tq+d-action. Under this assumption, the rank of F is at most q at every
point of M , and so the image F (M) ⊂ Rq+d also has dimension at most q.

In the symplectic case, when d = 0 and hence ω is non-degenerate, the
celebrated Atiyah–Guillemin–Sternberg theorem [1, 10] states that F (M) is
a convex polytope. We want to obtain a similar result for the presymplectic
case, i.e., we want to see when the image F (M) of the momentum map F
of a presymplectic manifold M is still a convex polytope. If this is the case,
then the image (which has dimension at most q by our assumptions) must
lie in a q-dimensional affine subspace, i.e., the intersection of d hyperplanes
in Rq+d. We call this the flatness condition of the momentum map.

Definition 2.1. With the hypotheses and notations above, we say that
the momentum map F = (F1, . . . , Fq+d) : M → Rq+d is flat if it satisfies d
linearly independent affine relations on M :

(1)

q+d∑
j=1

aijFj = bi, aij , bi ∈ R, i = 1, . . . , d.

In other words, the image F (M) of the momentum map lies in the q-
dimensional intersection

L =

d⋂
i=1

Li
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of the hyperplanes

Li =

x = (x1, . . . , xq+d) ∈ Rq+d
∣∣∣∣∣∣
q+d∑
j=1

aijxj = bi

 , i = 1, . . . , d.

The above flatness condition is equivalent to the inclusions Yi ∈ kerω
for all i = 1, . . . , d, where

(2) Yi =

q+d∑
j=1

aijXj , i = 1, . . . , d,

with the same constant coefficients aij as in equation (1).

Example 2.2 (Flat slice). Let F : (M̂2(n+d), ω)→ Rq+d be the momen-
tum map of a Hamiltonian effective torus Tq+d-action on a connected
compact symplectic manifold (M̂2(n+d), ω), and let L be an arbitrary q-
dimensional affine subspace of Rq+d which intersects the (q + d)-dimensional
polytope F (M̂2(n+d)) transversally at P = L ∩ F (M̂2(n+d)). Then (M =
F−1(P ), ω) is a (2n+ d)-dimensional presymplectic manifold with the in-
herited Hamiltonian torus Tq+d-action from (M̂2(n+d), ω), the presymplectic
form ω on M has constant corank d, the inherited momentum map F is flat
on M , and its image F (M) = P is a q-dimensional convex polytope. We say
that M is a flat presymplectic slice of (M̂2(n+d), ω) by L.

If, instead of taking the transversal intersection of F (M̂2(n+d)) with an
affine q-dimensional subspace L ⊂ Rq+d, we take its transversal intersection

P ′ = S ∩ F (M̂2(n+d))

with a curved q-dimensional submanifold S ⊂ Rq+d, then M ′ = F−1(P ′) is
still a presymplectic manifold with a Hamiltonian torus Tq+d-action on it,
the kernel of the presymplectic form still lies in the tangent space to the
orbits of the Tq+d-action at every point, but its image under the momentum
map is now P ′, which is a non-convex set.

Remark 2.3. Usually, the target space of the momentum map of a Hamil-
tonian action of a Lie group G is the dual space g∗ of the Lie algebra
g = Lie(G) of G. In this paper, our Lie group is always a torus T of some
dimension k. The target space of the momentum map is identified with a
Euclidean space Rk ∼= t∗ by fixing a canonical basis of t = Lie(T) and the
corresponding dual basis of t∗.
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2.2. The presymplectic convexity theorem

It turns out that the above flatness condition, which is of course a necessary
condition for the convexity of F (M) under our assumptions, is also the
only additional condition that one needs in order to ensure that F (M) is a
q-dimensional convex polytope. Moreover, if we assume that F (M) is flat q-
dimensional, then the condition that the kernel of ω is tangent to the orbits
of the torus action is automatically satisfied, at least at regular points of the
torus action.

Theorem 2.4. Let F : M2n+d → Rq+d be a flat momentum map of a Hamil-
tonian torus Tq+d-action on a connected compact presymplectic manifold
(M2n+d, ω) whose presymplectic form ω has constant corank d. Then the
image F (M) is a convex q-dimensional polytope lying in a q-dimensional
affine subspace L of Rq+d. Moreover, the fibers of F are connected and F :
M → F (M) is open, with F (M) ⊂ Rq+d endowed with the subspace topology.

We reduce the proof of the above theorem to the symplectic case. In
order to do so, we first study the kernel of the presymplectic form on M2n+d.
Then we show that (M2n+d, ω), together with the Hamiltonian torus action,
admits a natural symplectization (Theorem 2.7). This local symplectization
theorem allows us to deduce the local normal form of a Hamiltonian torus
action in the presymplectic case from the one in symplectic case, which, in
turn, reduces the convexity problem in the presymplectic case to the well-
known convexity result in the symplectic case.

2.3. On the kernel of the presymplectic form

We begin with the following statement linking the kernel of the presymplec-
tic form with the tangent spaces to the Tq+d-action.

Proposition 2.5. Under the assumptions of Theorem 2.4, for every point
y ∈M2n+d we have

kerω(y) ⊂ Ty(Tq+d · y),

where Tq+d · y denotes the orbit of the Hamiltonian Tq+d-action through
y and Ty(Tq+d · y) is its tangent space at y. Moreover, the vector fields
Y1, . . . , Yd given by equation (2) are linearly independent and span kerω
at every point of M2n+d.
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Proof. First consider the generic case, when the Tq+d-action is locally free
at y. Then Ty(Tq+d · y) = span(X1, . . . , Xq+d)(y) has dimension q + d. Its
image under the contraction map X 7→ ω(X, ·) has dimension at most q, so
the kernel of this linear map has dimension at least d. However, the kernel of
this linear map lies in kerω, which has dimension exactly d. Therefore, the
kernel of the linear map X 7→ ω(X, ·) on Ty(Tq+d · y) coincides with kerω(y),
which implies kerω(y) ⊂ Ty(Tq+d · y).

Consider now the case when y is a singular point for the torus Tq+d-
action, i.e., dim(Tq+d · y) < q + d. We show that the inclusion kerω(y) ⊂
Ty(Tq+d · y) still holds.

By the slice theorem, there is a local submanifold N(y) which intersects
the orbit Tq+d · y transversally at y and which is saturated by the orbits of
the action of Ty, where Ty denotes the connected component of the identity
of isotropy subgroup of the Tq+d-action at y. The singular foliation by the
orbits of the torus action is locally a direct product of the orbits of Ty on
N(y) with a small neighborhood of y in the orbit Tq+d · y. Moreover, by a
local linearization, the orbits of Ty on N(y) can be assumed to lie on the
concentric spheres centered at y.

If kerω(y) 6⊂ Ty(Tq+d · y), there would exist a non-zero vector Y ∈
kerω(y) ∩ TyN(y). By continuity, for every point y′ ∈ N(y) near y which is
regular with respect to the Tq+d-action, there is also a vector Y ′ ∈ kerω(y′)
which is “almost equal to Y ”; y′ can be chosen so that Y ′ is transverse to
the cylinder which is the direct product of the sphere centered at y in N(y)
with a small neighborhood of y in Tq+d · y in the local linearized model for
the torus Tq+d-action. On the other hand, locally the orbit through y′ lies
on this cylinder, so Y ′ /∈ Ty′(Tq+d · y′), which is a contradiction, because y′

is a regular point and we must have Y ′ ∈ kerω(y′) ⊂ Ty′(Tq+d · y′).
Recall that the vector fields Y1, . . . , Yd are tangent to kerω, and are given

by linearly independent linear combinations of X1, . . . , Xq+d, so at a regular
point y, where X1, . . . , Xq+d are linearly independent, we also have that
Y1, . . . , Yd are linearly independent and span kerω, because dim kerω(y) = d.

Let us show that if y is a singular point, i.e., the connected component Ty
of the isotropy group of the torus Tq+d-action has positive dimension s ≥ 1,
then Y1, . . . , Yd are still linearly independent at y. Without loss of generality,
we may assume that the subgroup Ty ⊂ Tq+d is generated by X1, . . . , Xs.
Assume that Y1, . . . , Yd are linearly dependent at y. Then, without loss of
generality, we may assume that Y1(y) = 0. In the linear combination ex-
pression Y1 =

∑
a1iXi we must have a1i = 0 for all i > s (because other-

wise Y1(y) would be non-zero), so Y1 =
∑s

i=1 a1iXi. Since the torus Tq+d-
action preserves the regular integrable distribution kerω, we can linearize
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simultaneously this torus action and kerω near y, i.e., find a coordinate
system (x1, . . . , xq+d−s, z1, . . . , z2n−q+s) of M centered at y in which kerω
is a constant distribution, Xs+i = ∂/∂xi for every i = 1, . . . , q + d− s, and
X1, . . . , Xs and Y1 are linear vector fields in z1, . . . , z2n−q+s with imaginary
eigenvalues. In order for kerω to contain Y1 in this linearized coordinate sys-
tem, kerω must have non-trivial intersection with the distribution spanned
by ∂/∂z1, . . . , ∂/∂zn+s (at point y, and hence at any point in a small neigh-
borhood of y because both distributions are constant). But such a nontrivial
intersection is not tangent to the vector space generated by X1, . . . , Xs at a
generic point, and hence kerω is not tangent to the vector space generated
by X1, . . . , Xs, Xs+1, . . . , Xq+d at a generic point, which is a contradiction.
Thus Y1, . . . , Yd must be linearly independent at y. �

Proposition 2.6. Under the assumptions of Theorem 2.4, for every point
y ∈M2n+d we have the following equality:

(q + d)− dim(Tq+d · y) = q − rank (dF1, . . . ,dFq+d)(y)

Proof. This equality is a direct consequence of the previous proposition:
the map X 7→ ω(X, ·) sends Ty(Tq+d · y) to span(dF1, . . . ,dFq+d)(y) and its
kernel is kerω(y) ⊂ Ty(Tq+d · y) which is d-dimensional, hence dim(Tq+d ·
y) = d+ rank (dF1, . . . ,dFq+d)(y). �

The number (q + d)− dimTq+d · y = q − rank (dF1, . . . ,dFq+d)(y) is
called the corank of y with respect to the Hamiltonian torus action and
is denoted by corank y. The point y is regular if and only if its corank is 0,
or, equivalently, the orbit through y has dimension q + d, or, equivalently,
the momentum map has rank q at y. The point y is maximally singular
if and only if the momentum map has rank zero at y, in which case the orbit
through y has dimension d and is a leaf of the isotropic foliation of ω.

2.4. Local symplectization

In order to prove Theorem 2.4, we will need the following symplectization
result.

Theorem 2.7 (Local Symplectization). Under the hypotheses of The-
orem 2.4, there exists a Hamiltonian torus Tq+d-action on M ×Dd (where
Dd ⊂ Rd denotes a small d-dimensional open disk) equipped with an appro-
priate symplectic form ω̃ and momentum map F̃ such that:



i
i

“8-Ratiu” — 2019/11/13 — 15:38 — page 1487 — #9 i
i

i
i

i
i

Presymplectic convexity and (ir)rational polytopes 1487

(i) For each z ∈ Dd, M × {z} is presymplectic of constant corank d and
is invariant with respect to the torus Tq+d-action.

(ii) Denote by O ∈ Dd the origin of the disk. Then M × {O} together with
the pull back of ω̃, the restriction of the Tq+d-action and of F̃ , coincides
with the original M with its presymplectic form, Hamiltonian Tq+d-
action, and momentum map F .

Moreover, this local symplectization is unique in the following natural
sense. If there is an equivariant presymplectic embedding φ :M→(M̂2(n+d), ω̂)
from M to a symplectic manifold (M̂2(n+d), ω̂) equipped with a Hamiltonian
Tq+d-action, then φ can be extended to an equivariant symplectic diffeomor-
phism from a neighborhood of M ∼= M × {O} in M ×Dd (equipped with the
above symplectic from and Hamiltonian Tq+d-action) into (M̂2(n+d), ω̂).

Proof. Put an arbitrary Tq+d-invariant Riemannian metric g on M . At each
point y ∈M denote by Vy = (kerω(y))⊥ ⊂ TyM the 2n-dimensional sub-
space of the tangent space TyM which is g-orthogonal to kerω(y). Then the
distribution V = {Vy | y ∈M} is smooth and invariant with respect to the
Tq+d-action. For each i = 1, . . . , d, define the 1-form αi on M by

(3) αi(Yi) = 1, αi(Yj) = 0, ∀j 6= i, αi(V ) = 0, ∀V a section of V.

Then put

(4) ω̃ =

d∑
i=1

dhi ∧ αi +

n∑
i=1

hidαi + proj∗ω,

where (h1, . . . , hd) is a coordinate system on Dd which vanishes at O, and
proj : M ×Dd →M is the natural projection onto M .

Lift the Tq+d-action from M to M ×Dd by making it acting trivially
on Dd.

It is clear that ω is closed and non-degenerate (if the radius of the diskDd

is small) and invariant with respect to the Tq+d-action, which shows that this
is action is symplectic. This symplectic action is actually Hamiltonian for
cohomological reasons. Indeed, when restricted to M × {O} ∼= M , the first
cohomology class of ω̃(Xi, ·) = ω(Xi, ·) = dFi is trivial, so on M ×Dd the
cohomology class of ω̃(Xi, ·) is also trivial by homotopy, and hence ω̃(Xi, ·) =
dF̃i for some F̃i which can be chosen to be equal to Fi on M ∼= M × {O}.

Note that, by construction, we have XHi
= Yi, where Hi =

∑q
j=1 aijF̃j

is constant on M for each i = 1, . . . , d.
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To show the uniqueness of the local symplectization, we invoke Gotay’s
coisotropic embedding theorem [9], or, more precisely, its equivariant version,
which is proved using the equivariant Moser path method. �

We remark that, if we forget about the torus action, then the situation
studied by Gotay is more general than ours, because, in his case, the isotropic
tangent vector bundle can be non-parallelizable, while in our case this bundle
is parallelizable (precisely because of the torus action).

2.5. Normal form near an orbit of the torus action

In this subsection we recall the normal form theorem, due to Marle [19]
and Guillemin–Sternberg [11], for a Hamiltonian torus Tk-action (k ≥ 1)
on a symplectic manifold in the neighborhood of an orbit of the action, and
then adapt this theorem to our presymplectic case using the Symplectization
Theorem 2.7; see [21, Chapter 7] for the details and proofs of the well-known
results stated in this subsection.

Let us start with the following simplified (Hamiltonian instead of sym-
plectic) version of the so-called Witt–Artin decomposition, which was first
proved by Witt [24] for symmetric bilinear forms. Fix a point m in a sym-
plectic manifold M with a Hamiltonian Tk-action. Since the torus action is
Hamiltonian, every orbit is isotropic. We split t, the Lie algebra of Tk, into
the direct sum of two summands,

(5) t = tm ⊕m,

where m is the orthogonal complement of tm in t with respect to some
positive definite inner product 〈·, ·〉 on t. The splitting in (5) induces a similar
one on the dual

(6) t∗ = t∗m ⊕m∗,

where t∗m = {〈η, ·〉 | η ∈ tm} and m∗ = {〈ξ, ·〉 | ξ ∈ m}.
We use the following notation. If (V,Ω) is a symplectic vector space

and S ⊂ V is an arbitrary subset, then SΩ = {v ∈ V | Ω(v, s) = 0, ∀x ∈ S}
denotes the Ω-orthogonal complement of S in V . Note that SΩ is a vector
subspace of V .

If G is a Lie group acting on a manifold N whose Lie algebra is denoted
by g, then the tangent space to the orbit G · n ⊂ N equals g · n = {ξN (n) |
ξ ∈ g}, where ξN (n) = d

dt

∣∣
t=0

exp(tξ) · n is the value at n of the infinitesimal
generator vector field ξN defined by ξ ∈ g.
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Theorem 2.8 (Witt–Artin decomposition). Let (M,ω) be a symplectic
manifold together with a Hamiltonian Tk-action. Then for any point m ∈M
we have

(7) TmM = t ·m⊕ V ⊕W,

where:

(i) V is the orthogonal complement to t ·m in (t ·m)ω(m) with respect to
a Tkm-invariant inner product �·,·� in TmM . The subspace V is a
symplectic Tkm-invariant subspace of (TmM,ω(m)).

(ii) t ·m := {ξM (m) | ξ ∈ t} is a Lagrangian subspace of V ω(m).

(iii) W is a Tkm-invariant Lagrangian complement to t ·m in V ω(m).

(iv) The map f : W → m∗ defined by

〈f(w), η〉 := ω(m)(ηM (m), w), for all η ∈ m

is a Tkm-equivariant isomorphism.

The space V in Theorem 2.8 is called a symplectic normal space at
m. The Tm-action on (V, ω(m)|V ) is linear Hamiltonian and has a standard
associated momentum map JV : V → t∗m given by

(8) 〈JV (v), ξ〉 =
1

2
ω(m)(ξ · v, v),

where ξ · v = ξV (v).
Let (M,ω) be a symplectic manifold together with a Hamiltonian Tk-

action and m ∈M . Let V be a symplectic normal space at m and m ⊂ t the
subspace introduced in the splitting (5). Define the smooth manifold

(9) Yr = Tk ×Tk
m

(m∗r × Vr)

as the quotient of the product Tk × (m∗r × Vr) by the Tkm-action defined
by h · (t, α, v) = (th, α, h−1 · v) for any h ∈ Tkm, t ∈ Tk, α ∈ m∗, and v ∈ V .
Let π : Tk × (m∗r × Vr)→ Tk ×Tk

m
(m∗r × Vr) be the projection. The torus Tk

acts on Yr by the formula g · [h, η, v] := [gh, η, v], for any g ∈ Tk and any
[h, η, v] ∈ Yr.

There exist Tkm-invariant disks m∗r ⊂ m∗ and Vr ⊂ V of some small radius
r > 0 centered at the origin, such that Yr is a symplectic manifold with the
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Tk-invariant symplectic two-form ωYr
defined by

ωYr
([g, ρ, v])(T(g,ρ,v)π(TeLg(ξ1), α1, u1), T(g,ρ,v)π(TeLg(ξ2), α2, u2))(10)

= 〈α2 + TvJV (u2), ξ1〉 − 〈α1 + TvJV (u1), ξ2〉+ ω(m)(u1, u2),

where [g, ρ, v] ∈ Yr, ξ1, ξ2 ∈ t, α1, α2 ∈ m∗, and u1, u2 ∈ V .
The symplectic manifold (Yr, ωYr

) constructed above is called a sym-
plectic tube of (M,ω) at the point m with respect to the Hamiltonian
torus action. The importance of this symplectic tube is in the fact that
it models the symplectic manifold (M, ω) as a Hamiltonian Tk-space in a
neighborhood of the orbit Tk ·m.

Theorem 2.9 (Symplectic Slice Theorem). Let (M,ω) be a symplec-
tic manifold together with a Hamiltonian Tk-action. Let m ∈M and let
(Yr, ωYr

) be the Tk-symplectic tube at that point constructed above. Then
there is a Tk-invariant neighborhood U of m in M and a Tk-equivariant
symplectomorphism φ : U → Yr satisfying φ(m) = [e, 0, 0].

Theorem 2.10 (The Marle–Guillemin–Sternberg normal form). Let
(M,ω) be a connected symplectic manifold with a Hamiltonian torus Tk-
action and associated momentum map F : M → Rk. Let m ∈M and (Yr, ωYr

)
be the symplectic tube at m constructed above that models a Tk-invariant
open neighborhood U of the orbit Tk ·m via the Tk-equivariant symplecto-
morphism φ : (U, ω|U )→ (Yr, ωYr

). Then the momentum map FYr
= F |U ◦

φ−1 : Yr → Rk of the Hamiltonian Tk-action on (Yr, ωYr
) has the expression

(11)
FYr

: Yr = Tk ×Tk
m

(m∗r × Vr) −→ Rk
[g, ρ, v] 7−→ F (m) + ρ+ JV (v),

where JV : V → t∗m is given by (8).

The above normal forms plus the symplectization theorem (Theorem 2.7)
yields the following normal form around an orbit in the presymplectic case
under the flatness condition for the momentum map.

Theorem 2.11 (Presymplectic normal form under the flatness con-
dition). Let (M2n+d, ω) be a connected presymplectic manifold, whose
presymplectic form ω has constant corank d, with a Hamiltonian torus Tq+d-
action and associated momentum map F : M → Rq+d which satisfies the
flatness condition (see Definition 2.1). Let m ∈M and (Yr, ωYr

) be the
symplectic tube at m constructed above that models a Tq+d-invariant open
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neighborhood U of the orbit Tq+d ·m in the symplectization (M̂2n+2d, ω̂)
of (M2n+d, ω) via the Tq+d-equivariant symplectomorphism φ : (U, ω|U )→
(Yr, ωYr

). Then the momentum map

FZr
= F |U ◦ φ−1|Zr

: Zr → Rq+d

of the Hamiltonian Tq+d-action on Zr = Yr ∩ φ(M2n+d) has the expression

(12)
FZr

: Zr = Tq+d ×Tq+d
m

Br −→ Rq+d
[g, ρ, v] 7−→ F (m) + ρ+ JV (v),

where JV : V → t∗m is given by (8) and Br ⊂ m∗r × Vr consists of points (ρ, v)
such that ρ+ JV (v) ∈ l, where l is a q-dimensional linear subspace of t∗ ∼=
Rq+d such that l + m∗ = t∗.

Remark 2.12. The space l in the above theorem is nothing else but the
vector subspace which is parallel to the q-dimensional affine subspace which
contains the image F (M) of the momentum map by the flatness condi-
tion. The equality l + m∗ = t∗ in the theorem assures that the set Br in the
theorem is a manifold, and hence the normal form model is regular. The
intersection l ∩m∗ is not trivial in general: in fact, it corresponds to the face
of F (M) which contains the point F (m).

2.6. Proof of convexity Theorem 2.4

Equipped with symplectization (Theorem 2.7) and presymplectic normal
forms (Theorem 2.11) we can now obtain Theorem 2.4 by simply repeating
the same steps in the proofs of the classical Atiyah–Guillemin–Sternberg
theorem.

For example, we can use the approach based on the local-global convexity
principle, as outlined in [27].

Denote by B the q-dimensional base space of a presymplectic toric man-
ifoldM with momentum F , which satisfies the conditions of Theorem 2.4. By
definition, B is the set of all connected components of all fibers F−1(c) ⊂M ,
c ∈ F (M), endowed with the quotient topology, i.e., a subset U ⊂ B is open
if and only if π−1(U) is open in M , where π : M → B is the map that sends
y ∈M to the connected component of F−1(F (y)) containing y.

The momentum map F : M → Rq+d factorizes through B, i.e., F = F̃ ◦
π, where π is the projection map fromM to B and F̃ is a map from B to Rq+d.
F may be viewed as the restriction of the momentum map F̂ : M̂ → Rq+d
of the torus action on the symplectization M̂ of M to M , and B may be
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viewed as a subspace of the base space B̂ of the torus action on M̂ . The
base space B̂ admits an intrinsic integral affine structure (see [27] for a def-
inition of this integral affine structure using period integrals over 1-cycles),
whose local integral affine functions are those functions which generate local
Hamiltonian T1-actions on M̂ (i.e., local action functions).The Normal Form
Theorem 2.11 implies, in particular, that B is a locally flat subspace of B̂
(this is exactly what the flatness condition is about). More precisely, locally
B̂ can be identified with a corner of t∗ ∼= Rq+d while B can be identified
with the intersection of that corner with a linear q-dimensional subspace l
of t∗. Thus, B inherits an intrinsic affine structure from B̂. (A corner means
a subspace of the type {(x1, . . . , xq+d) ∈ Rq+d | x1 ≥ 0, . . . , xs ≥ 0} for some
s ≥ 0).

The Atiyah–Guillemin–Sternberg theorem (more precisely, its local ver-
sion) states that B̂ is locally convex with locally polyhedral boundary with
respect to its integral affine structure, and the projected momentum map
˜̂
F : B̂ → Rq+d is a locally injective integral affine map. Since B is locally a
flat slice of B̂, it inherits these properties from B, i.e., B is locally convex
with locally polyhedral boundary with respect to its affine structure, and
the projected momentum map F̃ : B → Rq+d is a locally injective affine map.
Moreover, B is connected compact. The local-global convexity principle (see
Lemma 3.7 of [27]) then says that F̃ is an injective affine map on B, and its
image F̃ (B) = F (M) is a convex polytope of dimension q in Rq+d. The in-
jectivity of F̃ also implies that the preimages of F are connected. Similarly,
the openness of F follows immediately from the openness of F̃ .

Theorem 2.4 is proved. �

3. Presymplectic toric manifolds

3.1. Framed momentum polytopes of presymplectic toric
manifolds

Definition 3.1. A compact presymplectic toric manifold is a compact
connected manifold M2n+d of dimension 2n+ d (n, d ≥ 0) equipped with a
presymplectic structure ω with constant corank d and a Hamiltonian torus
Tn+d-action ρ : Tn+d ×M2n+d →M2n+d which is free almost everywhere
and which satisfies the flatness condition given in Definition 2.1.

Remark 3.2. Karshon and Tolman in [13] also introduced a notion of
presymplectic toric manifolds, but their notion is completely different and
should not be confused with ours. In fact, the presymplectic structure in their
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manifolds are symplectic almost everywhere and is degenerate only at a small
subset, while our presymplectic structure is a regular presymplectic structure
of constant corank. Their manifolds do not have convexity properties for the
momentum maps, while our presymplectic toric manifolds do have convex
momentum polytopes.

It follows from Theorem 2.4 and Theorem 2.7 that if (M2n+d, ω, ρ) is
a compact presymplectic toric manifold with a corresponding momentum
map F = (F1, . . . , Fn+d), then its image P = F (M2n+d) is an n-dimensional
convex polytope lying in Rn+d. Moreover, by Theorem 2.7, (M2n+d, ω, ρ)
admits a unique (up to local isomorphisms) symplectization in the form
of an open symplectic manifold (M̂2n+2d, ω, ρ), together with a Hamilto-
nian torus Tn+d-action, which contains (M2n+d, ω, ρ), such that M̂2n+2d is a
small tubular neighborhood ofM2n+d, the inclusion map i : (M2n+d, ω, ρ) ↪→
(M̂2n+2d, ω, ρ) is compatible with the (pre)symplectic forms, the torus ac-
tions, and the momentum maps, which are denoted by the same letters for
both M2n+d and M̂2n+2d.

In particular, for a sufficiently small local tubular symplectization
(M̂2n+2d, ω, ρ) of (M2n+d, ω, ρ), the image F (M̂2n+2d) of (M̂2n+2d, ω, ρ) un-
der the momentum map F is a (n+ d)-dimensional locally-polyhedral set
Q ⊂ Rn+d, and P = L ∩Q where L is an n-dimensional affine subspace of
Rn+d; Q is like an open subset of a Delzant polytope, i.e., its faces satisfy
the rationality, simplicity, and regularity conditions of a Delzant polytope.
Indeed, denoting by B and B̂ the base spaces of M2n+d and M̂2n+2d with
respect to the torus actions, then the momentum map from M̂2n+2d to Rq+d
projects to a map from B̂ to Rq+d which is integral affine locally injective
and which is injective on B. But since B̂ is a small neighborhood of B, the
local injectivity of the momentum map on B̂ plus its injectivity on B implies
its injectivity on B̂. From this fact we get that Q, which is the image of
B̂ in Rn+d under an injective integral affine map, is locally rational simple
polyhedral, because B̂ has these local properties.

We are only interested in the germ of a neighborhood of P in Q. That
germ is called the framed momentum polytope. To make things more precise,
we introduce the following definitions.

Definition 3.3. (i) A n-dimensional convex polytope P ⊂ RN (N ≥ n) is
called rational-faced if for every facet Z of P there is a linear function
with integral coefficients HZ =

∑N
j=1 cjfj , where cj ∈ Z and (f1, . . . , fN ) is

an integral affine coordinate system on RN , such that HZ is constant on Z
but is not constant on P .
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(ii) An injective affine map η : RN1 → RN2 (N1 ≤ N2) is called an inte-
gral affine embedding from RN1 to RN2 if, up to a translation, the image
η(ZN1) of the integral lattice of RN1 is a sub-lattice of the integral lattice
ZN2 of RN1 such that the quotient ZN2/η(ZN1) is without torsion, or equiv-
alently, the pull-back of the space of integral affine functions on RN2 to RN1

via the map η is exactly equal to the space of integral affine functions on
RN1 : η∗(AffZRN2) = AffZRN1 . If P ⊂ RN1 is a polytope and η : RN1 → RN2

is an integral affine embedding then the restriction of η to P is also called
an integral affine embedding from P to RN2 .

(iii) Two convex polytopes P1 ⊂ RN1 and P2 ⊂ RN2 (N1 ≤ N2) are called
(integral-affinely) isomorphic if there is an integral affine embedding η :
RN1 → RN2 such that the restriction of η to P is a homeomorphism from P1

to P2 = η(P1). In other words, there is integral affine embedding from P1 to
RN2 whose image is P2.

Remark 3.4. It is easy to see that the above notion of integral-affinely iso-
morphic polytopes is really an equivalence relation. If two polytopes P, P ′ ⊂
RN in the same Euclidean space are isomorphic then it means that there is
an integral affine transform φ ∈ GL(N,Z) nRN such that φ(P ) = P ′.

Definition 3.5. (i) A regular rational-faced framing of a convex sim-
ple polytope P of dimension n in RN (N ≥ n) is a pair (L,Q), where L
is the n-dimensional affine subspace of RN which contains P , and Q is a
locally-polyhedral set in RN whose faces satisfy the rationality, simplicity,
and regularity conditions of a Delzant polytope, such that L intersects Q
transversally and L ∩Q = P . The convex polytope P together with a regular
rational-faced framing given by Q is called a regular rational-faced framed
polytope .

(ii) If P = F (M2n+d) ⊂ L ⊂ Rn+d is the image under the flat momentum
map F of a presymplectic toric manifold (M2n+d, ω, ρ) and Q = F (M̂2n+2d)
is the image under the momentum map F of a symplectization (M̂2n+2d, ω, ρ)
of (M2n+d, ω, ρ), then P is called the momentum polytope of (M2n+d, ω, ρ),
and P together with the framing given by Q is called the framed momen-
tum polytope of (M2n+d, ω, ρ).

(iii) Two n-dimensional regular rational-faced framed polytopes P1 =
L1 ∩Q1 and P2 = L2 ∩Q2 in Rn+d are called (integral-affinely) isomorphic
if there is an integral affine transform Φ ∈ GL(n+ d,Z) nRn+d such that
Φ(L1) = L2 and Φ(U(P1)) = U(P2) where U(P1) (resp., U(P2)) is a small
neighborhood of P1 (resp., P2) in Q1 (resp., Q2).
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(iv) Two presymplectic toric manifolds are called isomorphic if there
is a diffeomorphism from one to the other which preserves the presymplectic
structure and the torus action, up to an automorphism of the torus.

Theorem 3.6. (i) If (M2n+d, ω, ρ) is a connected compact presymplectic
toric manifold, then its momentum polytope is a convex rational-faced sim-
ple polytope and its framed momentum polytope is a regular rational-faced
framed polytope.

(ii) Conversely, any convex regular rational-faced framed polytope is the
framed momentum polytope of a compact connected presymplectic toric man-
ifold.

(iii) Connected compact presymplectic toric manifolds are classified by
their framed momentum polytopes: two compact presymplectic toric mani-
folds are isomorphic if and only if their corresponding framed momentum
polytopes are isomorphic.

Proof. Part (i) is just a special case of the results obtained in Section 2. The
image Q = F (M2n+d) of a symplectization (M̂2n+2d, ω, ρ) of our presym-
plectic manifold is locally-polyhedral and satisfies the rationality, simplicity
and regularity properties at its face because the singularities of the Hamilto-
nian torus action, viewed as a toric integrable Hamiltonian system on it, are
all non-degenerate elliptic. The momentum polytope P of (M2n+d, ω, ρ) is
a convex polytope because of the convexity Theorem 2.4, and this polytope
is simple because it is a slice of Q, which is simple, by an affine submanifold
which cuts Q transversally (the transversality condition is implied by the
regularity condition of the presymplectic form ω on M2n+d).

To prove Part (ii), we can use the method of integrable surgery for con-
structing integrable Hamiltonian systems [26]. Let us recall that, from the
point of view of integrable Hamiltonian systems, a Hamiltonian torus ac-
tion of maximal dimension on a symplectic manifold is also an integrable
Hamiltonian system, whose singularities are all non-degenerate elliptic (see
[25, 26]). Given a regular framing (P,Q) of P , there is a unique integrable
Hamiltonian system with elliptic singularities which admits Q (together with
its induced integral affine structure) as the base space, according to general
results of [26] on the construction and classification of integrable Hamil-
tonian systems. (See Section 4 of [26] about classification and integrable
surgery, and in particular Example 4.14 about the case of Delzant poly-
topes. Our situation here is absolutely similar, i.e., the monodromy sheaf is
constant and there is no room for characteristic classes, hence we have both



i
i

“8-Ratiu” — 2019/11/13 — 15:38 — page 1496 — #18 i
i

i
i

i
i

1496 Tudor Ratiu and Nguyen Tien Zung

existence and uniqueness). See also Karshon and Lerman [12] where this re-
sult is also proved in more detail. Due to the type of the base space and singu-
larities, this integrable Hamiltonian system is actually a Hamiltonian torus
action of half the dimension of the symplectic manifold (M̂2n+2d, ω). By tak-
ing M2n+d = F−1(P ) with the pull-back of the symplectic form and the re-
striction of the torus action on it, where F : M̂2n+2d → Rn+d is the momen-
tum map of the Hamiltonian torus Tn+d-action such that F (M̂2n+2d) = Q,
we get the required presymplectic toric manifold whose framed momentum
polytope is (P,Q). Part (iii) also follows from these same arguments, to-
gether with Theorem 2.7 about the existence and uniqueness of equivariant
symplectization. �

Remark 3.7 (Slices of Delzant polytopes). When Q is a framing of
P then we also say that P is a slice of Q. If Q is a Delzant polytope and
P = L ∩Q is a slice of Q by an affine subspace which intersects Q transver-
sally, then, of course, by Delzant’s theorem Q = F (M) is the image of the
momentum map F of a symplectic toric manifold M and MP = F−1(P ) is
the presymplectic toric submanifold of M whose momentum polytope is P .
In general, we do not need Q to be a regular simple polytope, we just need
that locally Q looks like a regular simple polytope at its faces.

3.2. Lifting and framing of polytopes

In the definition of a rational-faced polytope P , the affine subspace L ⊂
RN containing P may be irrational, in the sense that the linear equations
defining it may have irrational linear coefficients, even though each facet
of P must satisfy a rational linear equation. If L is rational, then we also
say that P is rational , and if L is irrational then we also say that P is
irrational .

More precisely, we can define the degree of irrationality to be the
minimal number of linear equations which must have at least one irrational
linear coefficient in the definition of the supporting affine subspace L of P .
It is clear that P is rational if and only if its degree of irrationality is 0, and
if P and P ′ are isomorphic then they have the same degree of irrationality.

For each convex rational-faced polytope P ⊂ RN , denote by AffZ(P )
the Abelian group of all integral affine functions restricted to P , i.e., the
quotient of the space of all integral affine functions on RN by those which
vanish on P . The rational-faced condition means that each facet of P is
given by an equation of the form F = 0, where F ∈ AffZ(P ). The quotient
DaffZ(P ) = AffZ(P )/R of AffZ(P ) by constant functions is a free finitely
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generated Abelian group, and is called the Abelian group of integral
affine 1-forms on P .

Up to isomorphisms, each convex rational-faced polytope P is uniquely
characterized by its group of integral affine functions AffZ(P ), i.e., P1 is
isomorphic to P2 (even if they live in different Euclidean spaces) if and
only if there is a homeomorphism from P1 to P2 which induces a group
isomorphism from AffZ(P1) to AffZ(P2). The number

I = rankZDaffZ(P )− dimP

is nothing else but the degree of irrationality of P . In addition, P is a subset
of a Euclidean space of dimension at least n+ I, where n is the dimension
of P and I is the degree of irrationality of P .

One can embed P isomorphically into Rn+I by a map G = (G1, . . . ,
Gn+I) : P → Rn+d, where (G1, . . . , Gn+I) modulo constants is a basis of
DaffZ(P ). However, in order to find a regular simple rational-faced framing
for P , we may need more than n+ I dimensions. Indeed, already if P is n-
dimensional simple rational but not regular in Rn, we need more dimensions
in order to produce a regular framing of P .

By increasing the dimension of the Euclidean space, if necessary, it is
always possible to find a regular rational-faced framing for a rational-faced
simple convex polytope, as will be shown in Theorem 3.8.

By an irrational polytope, many authors, including Prato–Battaglia [3]
and Katzarkov–Lupercio–Meersseman–Verjovsky [14], mean an n-dimen-
sional polytope in Rn with an irrational face. However, the rational-faced
property of a polytope is preserved under isomorphisms, so if a polytope P
has an irrational face, there is no way to turn it into the momentum polytope
of a presymplectic toric manifold by integral affine isomorphisms.

Nevertheless, one can always lift an arbitrary convex polytope P ⊂ Rn
to a rational-faced polytope P ′ ⊂ RN with a regular rational-faced framing
Q ⊂ RN for some N > n, such that the linear projection map proj : RN →
Rn on the first n components of RN projects P ′ to P homeomorphically. If P
is rational-faced then projection map proj is an integral-affine isomorphism
from P ′ to P , and if P is not rational-faced, then it is not. We call such a
P ′ a rational-faced lifting of P .

We describe below an easy construction of rational-faced liftings together
with a regular framing, which is already used by Prato in [23].

Let P ⊂ Rn be a arbitrary convex polytope of dimension n. Let Fi(x) =∑n
j=1 aijxj + bi, where aij , bi ∈ R and (x1, . . . , xn) is an integral affine coor-

dinate system of Rn, be linear functions on Rn which determine the facets
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of P (i = 1, . . . , d), and such that Fi ≥ 0 on P . Then P can be written as

P = {x ∈ Rn | Fi(x) ≥ 0, i = 1, . . . , d}.

Denote the coordinates of points in Rn+d by (x1, . . . , xn, y1, . . . , yd). For
M > 0 sufficiently large, define the box

Q = {(x1, . . . , xn, y1, . . . , yd) ∈ Rn+d | −M ≤ xi ≤M, i = 1, . . . , n,

0 ≤ yj ≤M, j = 1, . . . , d}.

Cut Q by the d hyperplanes Li, i = 1, . . . , d, where

Li =

(x1, . . . , xn, y1, . . . , yd) ∈ Rn+d

∣∣∣∣∣∣ yi =

n∑
j=1

aijxj + bi


to obtain P ′ = Q ∩ L1 ∩ · · · ∩ Ld. It is easy to see that if M is large enough,
then P ′ ⊂ Rn+d projects bijectively to P ⊂ Rn, and that Q is a Delzant
polytope, hence a regular framing for P ′.

When P is rational-faced, we can choose all the above coefficients aij
to be integers. In this case, because the coefficient of yi in the equation
yi =

∑n
j=1 aijxj + bi is 1 for every 1 ≤ i ≤ d, it is easy to verify that the

projection from P ′ to P is an integral affine isomorphism.
If the dimension of P ⊂ Rn is smaller than n, the situation is the same:

just add the same defining linear equations for P to the above linear equa-
tions yi =

∑n
j=1 aijxj + bi for P ′; Q remains the same. From this construc-

tion, we obtain the following result.

Theorem 3.8. For any convex simple polytope P ⊂ RN there is another
polytope P ′ ⊂ RN ′

(N ′ ≥ N) which projects to P under the natural projec-
tion from RN ′

to RN , such that P ′ admits a regular rational-faced framing in
RN ′

, and hence is the momentum polytope of a presymplectic toric manifold.
Moreover, if P is rational-faced then P ′ can be chosen to be integral-affinely
isomorphic to P .

Remark 3.9. Even when P is not simple, we can use the same construc-
tion. The only difference is that L does not intersect Q transversally, if P is
not simple.

Example 3.10. In general, the same convex rational-faced polytope ad-
mits infinitely many regular framings which are not isomorphic, and thus
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correspond to infinitely many non-isomorphic presymplectic toric manifolds.
Take, for example, the interval P = [O,A] ⊂ R2, where O = (0, 0) and A =
(a, 0). Then P is rational-faced and admits infinitely many non-isomorphic
2-dimensional regular rational-faced framings. In fact, for any positive inte-
ger p and any integer q such that gcd(p, q) = 1, the set

Qp,q = {(x, y) ∈ R2 | −ε < y < ε, x ≥ 0, p(x− a) + qy ≤ 0}

(for ε > 0 small enough) is a regular rational-faced framing of P , and two
framings Qp,q and Qp′,q′ are isomorphic if and only if p = p′ and q = ±q′.

3.3. Morita equivalence

The notion of Morita equivalence that we want to introduce in this sub-
section is inspired by the notion of Morita equivalence for Lie groupoids
(see, e.g., [18], [8, Section 7.2]). Intuitively speaking, two presymplectic toric
manifolds (M1, ω1, ρ1) and (M2, ω2, ρ2) (ρ1 and ρ2 are the torus actions) are
Morita equivalent if their quotient spaces with respect to the corresponding
kernel isotropic foliations are isomorphic.

In the case of rational momentum polytopes, the quotient spaces of the
presymplectic toric manifolds are symplectic toric orbifolds and we can re-
ally compare them directly. However, when the momentum polytopes are
irrational, the quotient spaces are quasifolds which are not Hausdorff, and it
is rather inconvenient to compare such bad quotient spaces directly. Instead,
we will develop the Morita equivalence as an indirect way to verify when
two presymplectic toric manifolds should be considered as having the same
quotient space.

Definition 3.11. (i) Let φ : (M2n+d1
1 , ω1, ρ1)→ (M2n+d2

2 , ω2, ρ2) be a sub-
mersion with connected fibers between two presymplectic toric manifolds M1

and M2, with d1 ≥ d2 (di is the corank of ωi). Then φ is called a Morita
equivalence submersion if ω1 = φ∗ω2, and φ(ρ1(t, x)) = ρ2(θ(t), φ(x)) for
any x ∈M2n+d1

1 and any t ∈ Tn+d1 , where θ : Tn+d1 → Tn+d2 is a surjective
homomorphism whose kernel is connected.

(ii) Two presymplectic toric manifolds (M2n+d1
1 , ω1, ρ1) and (M2n+d2

2 ,
ω2, ρ2) are called Morita equivalent if there is a third presymplectic toric
manifold (M2n+d3

3 , ω3, ρ3) together with two Morita equivalence submersions
φ1 : M2n+d3

3 →M2n+d1
1 and φ2 : M2n+d3

3 →M2n+d2
2 .

It is not obvious from the definition that the above Morita equivalence
notion is a true equivalence relation among presymplectic toric manifolds,
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but it really is. In order to see why, we can translate this equivalence re-
lation to an equivalence relation among framed momentum polytopes of
presymplectic toric manifolds.

Definition 3.12. (i) Let Q1 ⊂ RN1 and Q2 ⊂ RN2 be two regular rational-
faced framings of two rational-faced simple polytopes P1 ⊂ RN1 and P2 ⊂
RN2 , respectively. Assume that there is an integral affine embedding η :
RN2 → RN1 from RN2 to RN1 (N1 ≥ N2), such that η(P2) = P1 and η(U(P2))
= U(P1), where U(Pi) is a small neighborhood of Pi in Qi, respectively (i =
1, 2). Then we say that the framed polytope (P1, Q1) is Morita-equivalent
to the framed polytope (P2, Q2), and that η is a Morita equivalence em-
bedding from (P2, Q2) to (P1, Q1).

(ii) Two framed polytopes are called Morita-equivalent if both of them
admit Morita equivalence embeddings to a third framed polytope.

Theorem 3.13. The Morita equivalence of regular rational-faced framed
simple convex polytopes is a true equivalence relation.

Proof. All framings in this proof are assumed to be regular simple. It is
easy to see directly from Definition 3.12 that if η is a Morita equivalence
embedding from a framed polytope (P1, Q1) to a framed polytope (P2, Q2),
and ν is a Morita equivalence embedding from (P2, Q2) to a framed polytope
(P3, Q3), then the composition ν ◦ η is a Morita equivalence embedding from
(P1, Q1) to (P3, Q3).

The main point in the proof of the above theorem is the verification of
the following statement: if (P,Q) admits two Morita equivalence embeddings
to (P1, Q1) and (P2, Q2) then there exist Morita equivalence embeddings from
(P1, Q1) and (P2, Q2) to another framed polytope (P3, Q3).

We will construct (P3, Q3) as a “crossed product of (P1, Q1) and (P2, Q2)
over (P,Q)”. The construction goes as follows: for each i = 1, 2, decompose
the ambient Euclidean space Vi ∼= RNi of Qi in an integral affine way as
Vi = Ki ⊕ V (the integral affine structure on Vi is the direct sum of the
integral affine structures on Ki and V ), where V ∼= RN is identified with the
ambient Euclidean space of Q via the Morita equivalence embedding from
(P,Q) to (Pi, Qi). P is identified with P1 and P2 via these embeddings. Put
V3 = K1 ⊕K2 ⊕ V ∼= RN1+N2−N , which contains both V1 and V2 via natural
identifications, and define the framing Q3 of P3 = P in V3 as follows:

Each facet ζ of Q is contained in exactly one facet ζ1 of Q1 and exactly
one facet ζ2 of Q2 in V , ζ1 ∩ ζ2 = ζ. The (smallest) affine subspace of V3

which contains both ζ1 and ζ2 is a hyperplane (i.e., of codimension 1) in
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V3. Denote by ζ̃3 the half-space of V3 bounded by this hyperplane which
contains P . Take Q̃3 to be the intersection of all these half-spaces (one for
each facet of Q), and define Q3 to be a small neighborhood of P in this
intersection. This is the framing of P that we wanted to construct.

It is clear from the construction that Q3 is simple, rational, and that
both (P,Q1) and (P,Q2) are embedded in (P,Q3) in an integral affine way.
It remains to check that Q3 is regular, but this fact is a consequence of our
assumption that the three frames Q,Q1, Q2 are all regular.

Indeed, consider a face of Q3 and prove that Q3 is regular at that face.
It’s enough to show that Q3 is regular at one point x of that face, and we
can choose x to be in Q, because Q is a transversal slice of Q3 and each face
of Q3 contains a face of Q.

Denote by ζ1, . . . , ζm the facets of Q which contain x (m ≥ 1). The
regularity of Q at x means that on the tangent space TxQ, equipped with
the integral lattice induced from V ⊃ Q, there is a basis (α1, . . . , αN ) of
this integral lattice such that αi ∈ Tx(ζ1 ∩ · · · ∩ ζi−1 ∩ ζi+1 ∩ · · · ∩ ζm) for
each i = 1, . . . ,m and (ζm+1, . . . , ζN ) is a basis for the integral lattice of
Tx(ζ1 ∩ · · · ∩ ζm).

Because Q1 is also regular at x, we have a similar basis for the in-
tegral lattice of TxQ1. Actually, because of the embedding of Q in Q1,
we can choose the basis of the integral lattice of TxQ1 to be of the form
(α1, . . . , αN , β1, . . . , βN1−N ), where (α1, . . . , αN ) is the above basis for TxQ
and β1, . . . , βN1−N are additional vectors in the tangent space to the in-
tersection of the facets of Q1 at x. For the same reasons, we have a similar
basis (α1, . . . , αN , γ1, . . . , γN2−N ) for the integral affine lattice of TxQ2. Then
(α1, . . . , αN , β1, . . . , βN1−N , γ1, . . . , γN2−N ) is a basis for the integral lattice
of TxQ3, which implies that Q3 is regular at x. �

Theorem 3.14. There is a Morita equivalence submersion φ : (M2n+d1
1 , ω1,

ρ1)→ (M2n+d2
2 , ω2, ρ2) between two presymplectic toric manifolds if and only

if there is a Morita equivalence embedding η from the corresponding second
framed momentum polytope (P2, Q2) to the first framed momentum polytope
(P1, Q1).

Proof. Let φ : (M2n+d1
1 , ω1, ρ1)→ (M2n+d2

2 , ω2, ρ2) be a Morita equivalence
submersion between two presymplectic toric manifolds. By definition, we
have that ω1 = φ∗ω2, hence the tangent spaces to the fibers of the projec-
tion map φ : M1 →M2 lie in the kernel of ω1. These tangent spaces have
dimension s = d1 − d2.
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Denote by Ts = θ−1(0) the kernel of θ (it is a torus of dimension s),
where θ : Tn+d1 → Tn+d2 is the surjective homomorphism given in Defini-
tion 3.11 of Morita equivalence submersion. For any x ∈M1 and t ∈ Ts we
have φ(ρ1(t, x)) = ρ2(θ(t), φ(x)) = ρ2(0, φ(x)) = φ(x), which means that the
orbit of the action of Ts through x in M1 lies in the fiber of φ which con-
tains x.

Consider a symplectization (M̂2n+2d1
1 , ω1, ρ1) of (M2n+d1

1 , ω1, ρ1) and the
sub-Hamiltonian Ts-action of the Hamiltonian Tn+d1-action on it. Denote
by (H1, . . . ,Hs) : M̂2n+2d1

1 → Rs the momentum map of this Ts-action, and
by X1, . . . , Xs the corresponding infinitesimal generators, with Xi being the
Hamiltonian vector field of Hi. Since Xi lies in the kernel of ω1 on M1, it
follows that Hi is constant on M1 for every i = 1, . . . , s, and without losing
generality we can assume that Hi = 0 on M1.

Since Xi are in the kernel of ω1 on M1, the results of the previous section
say that the vector fields X1, . . . , Xs are independent everywhere on M1, i.e.,
the action of Ts on M1 is locally free everywhere. It follows that the orbits of
Ts on M1 have dimension s everywhere, and hence coincide with the fibers
of the submersion φ. The action of Ts is free almost everywhere (being a
sub-action of a Tn+d1-action which is free almost everywhere), and its orbits
form a locally trivial fibration, so the action must actually be free everywhere
(without any discrete isotropy at any point).

Consider the Marsden-Weinstein reduction of (M̂2n+2d1
1 , ω1) with respect

to the Ts-action at the zero level {H1 = · · · = Hs = 0}. One verifies easily
that the reduced symplectic manifold is a symplectization of (M2n+d2

2 , ω2, ρ2)
and the image of the momentum map of the Hamiltonian Tn+d2-action on
it coincides with Q′ = Q1 ∩ {H1 = 0} ∩ · · · ∩ {Hs = 0}, which is a regular
framing of P in an (n+ d2)-dimensional space. Due to the uniqueness of
symplectization of (M2n+d2

2 , ω2, ρ2) up to isomorphisms, we have that the
framed polytope (P2, Q2) is isomorphic to (P,Q′), which means that there
is a Morita equivalence embedding from (P2, Q2) to (P1, Q1).

The converse statement can be proved in a similar way. �

Theorem 3.15. The Morita equivalence of compact presymplectic toric
manifolds is a true equivalence relation, and two compact presymplectic toric
manifolds are Morita-equivalent if and only if their corresponding framed
momentum polytopes are Morita-equivalent.

Proof. It is a direct consequence of Theorem 3.13 and Theorem 3.14. �
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Example 3.16. The two intervals P1 = [A,B] and P2 = [G,H] in Figure 1
are isomorphic. Their framings, also shown in Figure 1 are not isomorphic,
but are Morita-equivalent. The framed P2 corresponds to the presymplectic
manifold S3 with the Hopf circle fibration as the kernel isotropic foliation,
while the framed P1 corresponds to the presymplectic manifold S2 × S1

whose kernel isotropic foliation is the projection to S2. Both have S2 as
the quotient space. By taking a direct product of the framing of P2 with
an interval, one can easily realize a 3-dimensional framing of P2 which is
Morita-equivalent to both the framed P1 and the framed P2 via integral
affine embeddings. On the other hand, Figure 2 shows an example of non-
Morita-equivalent framings of an interval: one of them corresponds to a
symplectic sphere while the other one corresponds to a symplectic orbifold
(see the next subsection).

Figure 1: Non-isomorphic but Morita-equivalent framed intervals.

Figure 2: Non-Morita-equivalent framings of an interval.
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3.4. Toric orbifolds and quasifolds

Theorem 3.15 reduces the problem of classification of presymplectic toric
manifolds, up to Morita equivalence, to the combinatorial problem of classi-
fication of framed polytopes up to Morita equivalence. In particular, if two
presymplectic toric manifolds are Morita equivalent, then their momentum
polytopes must be integral-affinely isomorphic, though the same polytope
(without framing) can correspond to infinitely many non-Morita-equivalent
presymplectic toric manifolds.

It is clear that the following three conditions are equivalent:
(i) the quotient of a presymplectic toric manifold (M2n+k, ω, ρ) by the

kernel isotropic foliation is Hausdorff;
(ii) all the leaves of the foliation are closed;
(iii) the momentum polytope is rational.
In the rational case, the leaves of the kernel isotropic foliation are k-

dimensional tori (so we get a higher-dimensional analogue of Seifert fibra-
tions), and the quotient space (M2n+k/kernel, ω/kernel, ρ/kernel) is a 2n-
dimensional symplectic toric orbifold.

Compact symplectic toric orbifolds have been classified (up to equivari-
ant symplectomorphisms) by Lerman and Tolman [16]: they put on each
facet of the momentum polytope a positive integer m, which corresponds
to the orbifold type D2(n−1) × (D2/Zm) of points whose image under the
momentum map lies in the interior of the facet.

A rational convex polytope together with one positive integer for each
facet is called a weighted rational convex polytope . Lerman and Tolman
[16] proved that connected compact symplectic toric orbifolds are classified
by their weighted rational convex polytopes (up to natural isomorphisms),
and any weighted rational convex polytope can be realized by a compact
symplectic toric orbifold.

We can recover the above-mentioned result of Lerman and Tolman from
our language of Morita-equivalent framed momentum polytopes as follows.

Let (P,Q) be a rational simple polytope with a regular framing, Q is
of dimension n+ k and sits in Rn+d, P = L ∩Q, where L is a rational n-
dimensional affine subspace of Rn+d which intersects Q transversally. Let
ζP be a facet of P and ζQ be the corresponding facet of Q, ζP ⊂ ζQ. Fix a
point x ∈ ζP and a basis α1, . . . , αn+d of the integral lattice of TxQ. This
basis can be chosen so that α1, . . . , αn−1 ∈ TxζP and α1, . . . , αn+d−1 ∈ TxζQ.
The vector αn does not belong to TxP , in general, but there exists a linear
combination β =

∑n+d
i=1 ciαi with integer coefficients ci such that β ∈ TxζP

and cn+d > 0. The minimal positive number cn+d > 0 for which such an
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integral linear combination β =
∑n+d

i=1 ciαi ∈ TxζP exists will be called the
weight of the facet ζP in the framing (P,Q). It is easy to see that this
number does not depend on the choice of the basis (α1, . . . , αn+d). So each
facet has a weight which is a positive integer, which depends only on the
framed polytope.

For any choice of weights for the facets of a given rational simple poly-
tope, there always exists a regular framing with those weights. Indeed, in
the construction of the cubic framing Q given in Subsection 3.2, each facet
of Q, which corresponds to a facet ζi of P , is given by an equation of the
type

yi =

n∑
j=1

aijxj + bi,

(where aij are integers because P is rational), and it is easy to check that
the weight of this facet is nothing else but the greatest common divisor of
the numbers ai1, . . . , ain. By multiplying all the coefficients ai1, . . . , ain and
bi by p/q, where q is the greatest common divisor of ai1, . . . , ain, and p is
any new weight that we want to have, we can change Q to a new regular
frame (while leaving P unchanged), such that the weight of the facet ζi is
changed from q to p.

If a regular framed polytope (P,Q1) admits a Morita equivalence embed-
ding into a regular framed polytope (P,Q2), and x is a point in a facet ζP of
P , then a basis (α1, . . . , αn+d) of the integral lattice of TxQ1 with the above
properties can be completed to a basis of the integral lattice of TxQ2 with
similar properties. This implies that the weight of ζP given by the framing
(P,Q1) is the same as its weight given by the framing (P,Q2). Hence facet
weights are invariants with respect to Morita equivalence transformations of
regular framed polytopes.

Let us now show the converse: if two regular framings Q1 and Q2 of a
rational simple convex polytope P give rise to the same weight for each facet
of P , then (P,Q1) and (P,Q2) are Morita equivalent. In order to show it, we
need to construct a third regular framing (P,Q3) with Morita equivalence
embeddings from (P,Q1) and (P,Q2) to (P,Q3). Q3 can be constructed as
the crossed product of Q1 and Q2 relative to P3 in a way which is abso-
lutely similar to the construction in the proof of Theorem 3.13. One then
verifies directly that Q3 is regular, also in a similar way to the proof of
Theorem 3.13. So we obtain the following result, which incorporates the
classification theorem of Lerman and Tolman [16].
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Theorem 3.17. Consider two connected compact presymplectic toric man-
ifolds with rational momentum polytopes. The following conditions are equiv-
alent:

(i) they are Morita equivalent;

(ii) their quotients by the kernel isotropic foliations are isomorphic as sym-
plectic toric orbifolds;

(iii) their momentum polytopes are isomorphic and, moreover, have the
same facet weights given by the respective regular framings.

For irrational polytopes, we do not have orbifolds but quasifolds in the
sense of Prato [23] and Battaglia–Prato [3] (after a lifting and framing). In
this case, our Morita equivalence for framed polytopes and presymplectic
toric manifolds can be understood as a natural isomorphism relation among
symplectic toric quasifolds.

4. Some final remarks

Remark 4.1. In this paper we considered only simple polytopes, but in
fact any non-simple convex polytope P also admits a lifting and rational
framing (P ′, Q) by the same constructions. Q still satisfies the rationality,
simplicity and regularity conditions at its faces, P ′ is still a slice of Q by an
affine subspace L. The only difference is that if P ′ is not simple then L inter-
sects Q non-transversally. We still have a symplectic 2(n+ d)-dimensional
manifold (M2n+2d, ω) with a Hamiltonian Tn+d-action ρ on it with a mo-
mentum map F such that F (M) = Q, and can still take MP = F−1(P ′)
to be the (2n+ d)-dimensional presymplectic toric variety corresponding to
the framed polytope (P ′, Q). When P is not simple then this presymplectic
toric variety is singular (not a manifold) but still has very reasonable topol-
ogy and geometry. When P is rational non-simple then P ′ is isomorphic
to P , we can talk about a framing (P,Q) of P , take the quotient of the
singular presymplectic toric variety MP = F−1(P ′) by the kernel isotropy
foliation to get a singular symplectic toric variety corresponding to (P,Q)
(with algebraic singularities). Some results about such singular symplectic
toric varieties can be found, for example, in [6].

Remark 4.2. In [16], Lerman and Tolman extended the convexity theorem
of Atiyah–Guillemin–Sternberg to the case of Hamiltonian torus actions on
symplectic orbifolds. In this paper, we didn’t study presymplectic orbifolds,
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but we are pretty sure that the presymplectic convexity theorem (Theo-
rem 2.4) can be naturally extended to the case of presymplectic orbifolds,
with essentially the same arguments for the proof.

Remark 4.3. One can extend in a natural way the theory of symplectic
cuts [15] to the presymplectic setting, and to presymplectic toric manifolds in
particular. The corresponding operations on the level of framed momentum
polytopes will also be cuts by rational hyperplanes. Some results concerning
cuts for irrational polytopes and associated quasifolds were obtained recently
by Battaglia and Prato [4]. We recall again that their non-rational polytopes
need to be lifted (non-isomorphically) before they can be framed and then
cut.

Remark 4.4. In [2, 5], Battaglia and Zaffran also worked on foliation and
quotient modelings of irrational analogs of toric varieties. Their approach
is complex-analytic, based on ideas from complex geometric invariant the-
ory and earlier results of Meersseman and Verjovsky [20] and others; it is
quite different from our real presymplectic approach. In the case of rational
polytopes, different approaches should give basically the same results.

Remark 4.5. In this paper we didn’t talk about Kähler structures at all,
but one can put compatible Kähler structures on symplectizations of presym-
plectic toric manifolds (these symplectizations are “semi-local” versions of
symplectic toric manifolds), and use reduction (with respect to kernel torus
actions) to get Kähler structures on quotient spaces, which are toric orb-
ifolds or quasifolds or “non-commutative toric varieties” in the language of
[14].

Remark 4.6. There is a theory of so-called moment-angle manifolds, de-
veloped by Panov and many other authors (see, e.g., [22]), which is closely
related to our notion of presymplectic toric manifolds satisfying the flatness
condition. Indeed, even though the authors studying moment-angle man-
ifolds were mainly interested in other things like complex structures and
cohomological rings and didn’t care much about the presymplectic struc-
tures, the definition of moment-angle manifolds by itself shows that these
manifolds are a special case of flat presymplectic toric manifolds (without
the specified presymplectic structure). One may hope that the two theories
can be combined together, and in particular the notion of Morita equivalence
may prove useful for the study of moment-angle manifolds.
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Remark 4.7. After our preprint was posted on arXiv, we were informed
by Reyer Sjamaar that he and Y. Lin also studied convexity properties of
presymplectic manifolds in a preprint [17] which appeared on arXiv a few
weeks after ours. Their work is complementary to our work, though there
are some overlaps. They studied more general compact group actions while
we restricted our attention to torus actions; on the other hand, we studied
Morita equivalence of framed polytopes and presymplectic toric manifolds,
which they did not.

Remark 4.8. We have the following global symplectization conjecture,
which is the global version of Theorem 2.7, and which looks very reason-
able to us: With the assumptions of Theorem 2.7 there exists a connected
compact symplectic manifold M̂ with an effective Hamiltonian Tq+d-action
such that M is a flat presymplectic cut of M̂ with this action. If one weakens
this conjecture and requires M̂ to be an orbifold instead of a manifold, then
it becomes rather easy.
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