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Let M be a noncompact oriented connected manifold and let B be
a compact manifold. We give conditions on two smooth families of
volume forms {ωp}p∈B , {τp}p∈B which guarantee the existence of
a smooth family of diffeomorphisms {ϕp}p∈B such that ϕ∗pωp = τp
for all p ∈ B. If B is a point, our result recovers a theorem of
Greene and Shiohama from 1979, which itself extended a theorem
of Moser for compact manifolds.

1. Introduction

Throughout this paper smooth means C∞ smooth, and manifolds are always
assumed to be smooth manifolds without boundary except where explicitly
stated otherwise.

1.1. Past works

It is a well known theorem due to Moser [9] that if two volume forms ω
and τ on a compact manifold M satisfy

∫
M ω =

∫
M τ then one can find a

diffeomorphism ϕ of M such that ϕ∗ω = τ . Later Greene and Shiohama [7]
realized that a version of Moser’s theorem also holds even if M is not com-
pact. The statement and the proof in [7] are more complicated than Moser’s
proof because the authors have to deal with the behavior at infinity of the
forms. Their proof has three stages: first, they extend Moser’s proof to forms
which are compactly supported. Then they chop their noncompact manifold
into pieces, and finally, a careful analysis of the behavior at the boundaries
and interiors, allows them to construct a global diffeomorphism by pasting
together the local diffeomorphisms, bypassing any analytic estimates.
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1428 Á. Pelayo and X. Tang

1.2. Smooth families

If one mimics the Greene–Shiohama argument in the case of two smooth
families of volume forms ωp, τp, indexed by some compact manifold B which
plays the role of the parameter space, this produces for each p a diffeomor-
phism ϕp such that ϕ∗pωp = τp, but there is no information given about how
ϕp changes when p changes in B. The goal of our paper is to give sufficient
conditions for the variation of ϕp with respect to p to be smooth.

Definition 1.1. Let M be a manifold of dimension m and let B be a
compact manifold. Let q be an integer with 0 6 q 6 m. A family of q-forms
{ωp}p∈B ⊂ Ωq(M) is smooth if the map B ×M → ∧qT ∗M, (p, x) 7→ ωp(x) is
smooth. A family {ϕp}p∈B of diffeomorphisms ofM is smooth if the map B ×
M →M, (p, x) 7→ ϕp(x) is smooth. Two smooth families of volume forms
{ωp}p∈B and {τp}p∈B are commensurable on M if for any compact set K ⊂
M , for any connected component C of M \K, one of the following holds:

• for any p ∈ B,
∫
C ωp =

∫
C τp = +∞;

• the integrals
∫
C ωp and

∫
C τp are finite and continuous with respect to

p ∈ B, and their difference is smooth with respect to p ∈ B.

1.3. Main theorem

Our main result is the following parametric version of the Moser and Greene–
Shiohama result:

Theorem 1.2. Let M be a noncompact oriented connected manifold. Let B
be a compact manifold. Let {ωp}p∈B and {τp}p∈B be commensurable smooth
families of volume forms on M such that

∫
M ωp =

∫
M τp for any p ∈ B.

Then there is a smooth family of diffeomorphisms {ϕp : M →M}p∈B such
that ϕ∗pωp = τp for each p ∈ B.

The case when M is compact was proved by Moser [9]. If B is a point,
Theorem 1.2 was proved by Greene–Shiohama [7]. If {τp}p∈B is a constant
family, we obtain:

Corollary 1.3. Let M be a noncompact oriented connected manifold and
B be a compact manifold. Let p0 ∈ B. Let {ωp}p∈B be a smooth family of
volume forms on M such that

∫
M ωp is independent of p ∈ B. Suppose more-

over for any connected component C of the complement of a compact subset
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of M , either
∫
C ωp = +∞ for all p ∈ B, or

∫
C ωp is smooth with respect to

p ∈ B. Then there is a smooth family of diffeomorphisms {ϕp : M →M}p∈B
such that ϕ∗pωp = ωp0 for each p ∈ B.

The remaining of the paper is devoted to proving Theorem 1.2. The
proof is inductive and requires the introduction of certain topological-
combinatorial constructions (Section 2), and geometric-analytic construc-
tions (Section 3). This allows us to prove a filtration lemma for noncompact
manifolds (Section 4), from which Theorem 1.2 easily follows (Section 5).

2. Topological-combinatorial constructions

In this section, we prepare the topological-combinatorial ingredients needed
to prove our main theorem. We will first show a result about general topo-
logical spaces, which we will then use to give a slicing of a smooth manifold
which satisfies certain properties (in terms of an exhaustion function for the
manifold). Then we use this slicing to define a tree structure on the man-
ifold itself, which will be an essential ingredient for the proof of the main
theorem.

2.1. A topological statement about connected components

We start with a general topological statement which we shall need.

Lemma 2.1. Let X be a locally connected locally compact Hausdorff space.
Let K(X) be the collection of compact subsets of X. Let K ∈ K(X) and let
A,A′ ⊂ X be connected and precompact. If A,A′ lie in the same connected
component C of X then there is L ∈ K(X) such that they lie in the same
connected component of L ∩ C.

Proof. For any topological space Y and a nonempty connected subset E,
denote by conn(Y,E) the unique connected component of Y containing E.
For any P ⊂ K(X) denote conn(P, E) =

⋃
L∈P conn(L ∩ conn(Y,E), E).

Let X and nonempty A,A′ ⊂ X be as described in the statement. We
show that conn(P, A) = conn(X,A) for any nonempty P ⊂ K(X) such that
P 3 L1 ⊂ L2 ∈ K(X) implies L2 ∈ P. Let C = conn(X,A). Since X is lo-
cally connected and A is precompact, C is open in X and locally connected.
For any L ∈ P and x ∈ conn(L ∩ C,A), there is a compact connected neigh-
borhood Fx of x in C, so then conn(L ∩ C,A) ∪ Fx ⊂ conn((L ∪ Fx) ∩ C,A).
Therefore conn(P, A) is open. For any precompact connected open set U ⊂
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C, we have(
U ∩ conn(P, A) 6= ∅ =⇒ ∃L ∈ P, U ∩ conn(L ∩ C,A) 6= ∅

=⇒ U ⊂ conn
(
(L ∪ U) ∩ C,A

)
⊂ conn(P, A)

)
.

Thus U \ conn(P, A) 6= ∅ implies that U ⊂ C \ conn(P, A). Since C has a
topology base consisting of connected sets, conn(P, A) is closed in C. Now
conn(P, A) is a nonempty and clopen subspace of the connected space C,
which is C itself.

Suppose conn(X,A) = conn(X,A′) = C. Let P = {L ∈ K(X) | L ⊃ A ∪
A′}. Since conn(P, A) = conn(P, A′) = C, there are L1, L2 ∈ P such that
conn(L1 ∩ C,A) ∩ conn(L2 ∩ C,A′) 6= ∅. Let L′ = L1 ∪ L2 ∈ P. Then

conn(L′ ∩ C,A) ∩ conn(L′ ∩ C,A′)
⊃ conn(L1 ∩ C,A) ∩ conn(L2 ∩ C,A′) 6= ∅,

which means conn(L′ ∩ C,A) = conn(L′ ∩ C,A′). The case when either A or
A′ is empty is trivial. �

2.2. Slicing a manifold by an exhaustion function

Let M be a manifold. An exhaustion function f for M is a smooth function
f : M → R such that for any α ∈ R, f−1((−∞, α]) is compact. An exhaustion
function for M always exists. Let Reg(f) be the set of regular values of f
(including R \ f(M)). Fix as a basepoint x0 ∈M a minimum point of f . For
any α ∈ Reg(f) ∩ f(M), let C be the connected component of f−1((−∞, α])
containing x0. Define Mα as the union of C and the precompact connected
components of M \ C. Then Mα is compact and connected, see Figure 1.
For α ∈ R \ f(M), let Mα = ∅. We call Mα the saturated slicing of M by
α. For any set A ⊂M , let Aα = A ∩Mα.

We will need the following technical property of precompact subsets in
the proof of Lemma 4.1 (which itself is needed to prove the main theorem).

Lemma 2.2. For any connected precompact set A ⊂M ,

θA
def
= inf{α ∈ f(A) | ∀β ∈ Reg(f), β > α,Aβ is connected}

is finite.

Proof. Fix an α ∈ Reg(f) ∩ f(A). Since Aα is the interior of a compact
manifold with boundary, it can only have finitely many components. By
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f(x)

α

Mα

x0

Figure 1: The saturated slicing Mα.

Lemma 2.1, there isK ∈ K(M) which is connected and contains x0 and every
component of Aα. Let β be a regular value of f greater than maxK f . Then
Aβ ⊃ K contains every component of Aα. Note that any component of Aβ
contains a component of Aα, so Aβ is connected. Hence θA 6 β < +∞. �

2.3. A tree structure on a manifold

Consider the following combinatorial notions of trees which will be very
useful for the proof of Theorem 1.2.

A tree is a strictly partially ordered set (T ,≺) with the property that
for each x ∈ T , the set Pre(x) = {y ∈ T | y ≺ x} of all predecessors of x is
well ordered by ≺. We write T for (T ,≺) when there is no ambiguity. A
branch in T is a maximal linearly ordered subset of T . Let Rt(T ) = {x ∈
T | ∀y ∈ T, y 6≺ x} 6= ∅ be the set of roots of T . If Rt(T ) is a singleton we
call T rooted.

Let Suc(x) = {y ∈ T | y � x} be the set of all successors of x. Then
(Suc(x),≺) is a tree. Let

Ch(x) = Rt(Suc(x))

be the set of immediate successors or children of x. If for any x ∈ T , Ch(x)
is finite, we call T locally finite. Let

Gch(x) =
⋃

y∈Ch(x)

Ch(y)
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be the set of grandchildren of x. Let Lf(T ) = {x ∈ T | ∀y ∈ T, x 6≺ y} be the
set of pendant vertices or leaves of T . If Lf(T ) = ∅ we call T leafless.

The depth of x is the ordinal of Pre(x), which we denote by dpt(x). Let

hgt(T ) = sup{dpt(x) + 1 | x ∈ T }

be the height of T . For any ordinal ` < hgt(T ), let

Lv(`) = {x ∈ T | dpt(x) = `}

be the `-th level of T .
Let ω denote the smallest infinite ordinal. If hgt(T ) = ω, then every

node in T has finite depth, but these depths are unbounded. We have the
following essential construction for the combinatorial part of the proof of
Theorem 1.2.

Lemma 2.3. Let M be a noncompact manifold, α0 = −∞ and {α`}`∈N ⊂
Reg(f) ∩ f(M) be an unbounded strictly increasing sequence. Let L(`) be the
collection of unbounded connected components of M \Mα`−1

. Then there is
a tree (T ,)) of open subsets of M such that

T =
∐

`∈N∪{0}

L(`).

Moreover, (T ,)) is a rooted locally finite leafless tree of height ω, and
L(`) = Lv(`) for each ` ∈ N ∪ {0}.

Proof. Let Ai ∈ L(`i) ⊂ T where `i ∈ N ∪ {0}, for i = 1, 2 and 3. By def-
inition of connected components we have the following: if A1 ) A2, then
`1 < `2; if A1, A2 ) A3 and `1 < `2, then A1 ) A2. Hence (T ,)) is a tree.

The only root of T is M ∈ L(0). By induction L(`) is the `-th level of
T , which is finite, so T is locally finite. For any A ∈ Lv(`), A \Aα`+1

6= ∅,
so T is leafless. Hence {dpt(A) | A ∈ T } = N ∪ {0}, and hgt(T ) = ω. �

3. Geometric-analytic constructions

Throughout this section, M is a noncompact oriented manifold of dimension
m > 1. In this section, we present the analytic statements needed to prove
the main theorem. The main tool we use is a version of Hodge theory applied
to certain noncompact manifolds which is sufficient for the purpose of the
present paper. We split the content into several subsections for clarity.
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3.1. Forms with compactly supported difference

In this subsection, we prove (using the work of Bueler–Prokhorenkov on
Hodge theory [2]) a parametrized Moser stability theorem for two families
{ωp}p∈B, {τp}p∈B of volume forms whose differences ωp − τp, p ∈ B are sup-
ported in some compact submanifold with boundary.

Lemma 3.1. Let f be an exhaustion for M , see Section 2.2. Let N be a
compact hypersurface of M through regular points of f . Then there exists ε >
0 and a diffeomorphism Φ: N × (−ε, ε)→ VN such that VN is an open neigh-
borhood of N ⊂M , Φ(y, 0) = y, π(Φ(y, s)) = π(y) and f(Φ(y, s)) = f(y) + s
for any (y, s) ∈ N × (−ε, ε). If N is connected then VN is connected too.

Proof. Pick an arbitrary Riemannian metric g on M . Let ṼN be an open
neighborhood ofN ⊂M which consists of regular points of f . LetX ∈ X(M)
be such that X = |∇gf |−2

g ∇gf in ṼN , where ∇gf is the gradient of f . Then

X(f) = 1 in ṼN . Take the flow of X, Φ: N × (−ε, ε)→M, (y, s) 7→ x, that
is Φ(y, 0) = y for all y ∈ N and ∂Φ

∂s (y, s) = X(Φ(y, s)) for all (y, s) ∈ N ×
(−ε, ε), for ε > 0 small enough such that the image of Φ is contained in ṼN .
Then let VN = Φ(N × (−ε, ε)). Since X(f) = 1 in VN , we have f(Φ(y, s)) =
f(y) + s for any (y, s) ∈ N × (−ε, ε), and Φ is a diffeomorphism. If N is
connected, then VN is the image of Φ, which is connected. �

Theorem 3.2. Let W be an open subset of M such that W is a submanifold
of M with boundary ∂W . Then for any q ∈ N with 1 6 q 6 m there is an
operator preserving smooth families of q-forms

IqW :
{
ξ ∈ Ωq

c(M)
∣∣ supp ξ ⊂W, ξ|W ∈ dΩq−1

c (W )
}

→
{
η ∈ Ωq−1

c (M)
∣∣ supp η ⊂W

}
satisfying d ◦ IqW = id.

Proof. By [2] there is a weighted Hodge-Laplacian ∆µ : Ωq
c(W )→ Ωq

c(W )
on W equipped with a specific metric g and measure µ. Its Green oper-
ator Gµ : Ωq

c(W )→ Ωq(W ) and the weighted codifferential δµ : Ωq
c(W )→

Ωq−1
c (W ) satisfy the identity d ◦ δµ ◦Gµ ◦ d = d. Moreover, any form η ∈

Gµ(Ωq
c(W )) has an extension η̃ ∈ Ωq

c(M) supported inW . For any ξ ∈ Ωq
c(M)

supported in W such that ξ|W ∈ dΩq−1
c (W ), we define IqW (ξ) as the exten-

sion of (δµ ◦Gµ)(ξ|W ) to Ωq−1
c (M), see Figure 2. Then we have d ◦ IqW = id.
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The operator IqW preserves smooth families. Indeed, the p-derivative of
a smooth family ξp, p ∈ B of compactly supported forms is still compactly
supported. Since the Green’s operator Gµ is an integral operator with a
singular kernel, we can pass the p-derivative through the operator Gµ, so
∂pGµξp exists and is a smooth form, for each p ∈ B. By similar arguments
for higher order derivatives, Gµξp, p ∈ B is a smooth family. The map δµ
preserves smooth families since it is a differential operator. �

F

α

W

IW

F

β = IW (α)

W

Figure 2: From compactly supported forms to forms with zero extensions.

Let B be a compact manifold. We adopt the following notations.

• F∞(B; Ωvol(M)) is the set of smooth families ω = {ωp}p∈B of vol-
ume forms on M . Similarly, F∞(B; Ωm

>0(M)) is the set of smooth
families of non-negative m-forms on M . Note that F∞(B; Ωvol(M)) (
F∞(B; Ωm

>0(M)).

• F∞(B; Diff(M)) is the set of smooth families ϕ = {ϕp}p∈B of diffeo-
morphisms of M .

• If ω ∈ F∞(B; Ωm
>0(M)),

∫
M ω is the map B → [0,+∞] given by(∫

M
ω

)
(p) =

∫
M
ωp.

• If ω ∈ F∞(B; Ωvol(M)), ϕ ∈ F∞(B; Diff(M)), we define

ϕ∗ω =
{
ϕ∗pωp

}
p∈B ∈ F∞(B; Ωvol(M)).

Figure 4 illustrates the main point of the following lemma, where the
shaded region is the support of ωp − τp.

Lemma 3.3. Let V be a connected open subset of M such that V is a
compact submanifold with boundary ∂V . Let ω, τ ∈ F∞(B; Ωvol(M)) be such
that supp(ωp − τp) ⊂ V,∀p ∈ B and

∫
V ω =

∫
V τ . Then there is a family ϕ ∈
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F∞(B; Diff(M)) such that M \ V has a neighborhood in which ϕp is the
identity for p ∈ B and ϕ∗ω = τ .

Proof. Let N = ∂V . Applying Lemma 3.1 to N there are ε > 0 and VN
a neighborhood of N with the properties stated in the lemma. Since B
is compact and supp(ωp − τp) ⊂ V,∀p ∈ B, we may decrease ε if neces-
sary so that supp(ωp − τp) ⊂ V \ VN ,∀p ∈ B. Let W = V \ VN . Since the
map

∫
W : Hm

c (W )→ R is a linear isomorphism, and
∫
V ω =

∫
V τ , we have

(ωp − τp)|W ∈ dΩm−1
c (W ), ∀p ∈ B. Therefore by Theorem 3.2 there exists

a smooth family σp = ImW ξp ∈ Ωm−1
c (M),∀p ∈ B, with suppσp ⊂W such

that dσp = ωp − τp, ∀p ∈ B. Let ωt = (1− t)ω + tτ ∈ F∞(B; Ωvol(M)) for
any t ∈ [0, 1].

Since ωt is nowhere vanishing there exists a unique smooth family of
vector fields {Xt,p}(t,p)∈[0,1]×B ⊂ X(M) where each Xt,p is supported in W

and such that ωt,p(Xt,p, ·) = σp. Since V is compact, for each p ∈ B, the flow
ϕt,p, t ∈ [0, 1] in M generated by Xt,p exists and is the identity outside of W .
For t ∈ [0, 1], ϕt = {ϕt,p}p∈B ∈ F∞(B; Diff(M)). Then ϕ∗tωt = ω. If ϕ = ϕ−1

1

then we have ϕ∗ω = τ . Since Xt,p = 0 in M \W for (t, p) ∈ [0, 1]×B, ϕt,p
is the identity outside of W . �

3.2. The transfer of volumes

In this subsection, we prove a series of lemmas which allow us to transfer
volumes of a smooth family of volume forms across the boundaries of com-
pact submanifolds, so as to modify the smooth families {ωp}p∈B, {τp}p∈B so
that they have the same volume in a certain set of compact submanifolds;
then we move the volumes within the compact submanifolds, to pull ωp back
to τp for each p ∈ B.

Lemma 3.4. Let ω ∈ F∞(B; Ωvol(M)), and let V ⊂M be a nonempty
precompact open set. Then for any w ∈ C∞(B; (0,∞)), there exists τ ∈
F∞(B; Ωvol(M)) such that supp(ωp − τp) ⊂ V,∀p ∈ B and

∫
V τ = w.

Proof. Let ξ ∈ F∞(B; Ωvol(M)) be such that supp(ξp − ωp) ⊂ V,∀p ∈ B and∫
V ξ < w. Let η ∈ F∞(B; Ωm

>0(M)) be such that supp ηp ⊂ V,∀p ∈ B and∫
V η > 0. Then define τ = ξ +

w−
∫
V
ξ∫

V
η
η. �

Lemma 3.5. Let N be a compact hypersurface of M and consider ω, τ ∈
F∞(B; Ωvol(M)). Then there is VN an open neighborhood of N and ϕ ∈
F∞(B; Diff(M)) such that, if V +

N and V −N are the connected components of
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VN \ V , the following hold: M \ VN has a neighborhood in which ϕp is the
identity for any p ∈ B; N has a neighborhood in which ϕ∗ω = τ ;

∫
V +
N
ϕ∗ω =∫

V +
N
ω; and

∫
V −N

ϕ∗ω =
∫
V −N

ω.

Proof. By Lemma 3.1, there exists a neighborhood VN of N in M , ε >
0, and a diffeomorphism Φ: N × (−ε, ε)→ VN such that Φ(y, 0) = y and
f(Φ(y, s)) = f(y) + s for any (y, s) ∈ N × (−ε, ε), see Figure 5. Let V +

N =
Φ(N × (0, ε)) and V −N = Φ(N × (−ε, 0)).

s
O δ ε− δ ε

1

lim
t→0+

ζ(s, t)

ζ(s, 0.3)
ζ(s, 0.5)

ζ(s, 0.7)

lim
t→1−

ζ(s, t)

Figure 3: The graph of ζ(s, t).

First we consider Φ(N × [0, ε)). Since B is compact, there is δ ∈ (0, ε/2)
such that∫

Φ(N×(0,ε−δ))
τ >

∫
Φ(N×(0,δ))

ω,

∫
Φ(N×(0,ε−δ))

ω >

∫
Φ(N×(0,δ))

τ.

Let ζ : (0, ε)× (0, 1)→ [0, 1] be a smooth function with the properties (see
Figure 3):

ζ(s, ·) = 1, s ∈ (0, δ];

lim
t→0+

ζ(s, t) = 0,
∂ζ

∂t
(s, ·) > 0, lim

t→1−
ζ(s, t) = 1, s ∈ (δ, ε− δ);

ζ(s, ·) = 0, s ∈ [ε− δ, ε).
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Define θ : B × (0, 1)→ R by

θ(p, t) =

∫
V +
N

ζ(s(p), t)τp −
∫
V +
N

ζ(s(p), 1− t)ωp

where s = pr2 ◦Φ−1 : Φ(N × (−ε, ε))→ (−ε, ε), pr2 : N × (−ε, ε)→ (−ε, ε)
is the projection to the second factor. Since ω, τ ∈ F∞(B; Ωvol(M)) and ζ
is smooth it follows that θ is smooth. Furthermore

∂θ

∂t
(p, t) =

∫
V +
N

∂ζ

∂t
(s(p), t)τp +

∫
V +
N

∂ζ

∂t
(s(p), 1− t)ωp > 0

for any t ∈ (0, 1) and limt→0+ θ(p, t) < 0 < limt→1− θ(p, t) for any p ∈ B.
Then for every p ∈ B there is a unique t(p) solving θ(p, t(p)) = 0. By the
implicit function theorem, t : B → R is smooth.

Define λ(p, x) = ζ(s(p, x), t(p)) and µ(p, x) = ζ(s(p, x), 1− t(p)) in B ×
V +
N . The functions λ and µ are smooth in x and satisfy

∫
V +
N
µω =

∫
V +
N
λτ .

Analogously we can define λ and µ in B × V −N , and let λ = µ = 1 on N .
Notice that λ = µ = 1 in Φ(N × [−δ, δ]), so we obtain smooth extensions of
λ, µ which we also denote by λ, µ : B × VN → R. Hence∫

V +
N

((1− µ)ω + λτ) =

∫
V +
N

ω,∫
V −N

((1− µ)ω + λτ) =

∫
V −N

ω.

By Lemma 3.3 applied to (1− µ)ω + λτ and ω on V +
N and V −N respectively,

combining the results we obtain ϕ ∈ F∞(B; Diff(M)) such that ϕ = id in
M \ Φ(N × (δ − ε, ε− δ)) and ϕ∗ω = (1− µ)ω + λτ . �

Lemma 3.6. Let {Lj}j∈N be a cover of M by connected compact submani-
folds with boundary, which have the same dimension as M , and whose inte-
riors are pairwise disjoint. If ω, τ ∈ F∞(B; Ωvol(M)) are such that

∫
Lj
ω =∫

Lj
τ for each j ∈ N then there is ϕ ∈ F∞(B; Diff(M)) such that ϕ∗ω = τ .

Proof. By the construction of {Lj}j∈N, any three different Lj ’s for j ∈ N
do not intersect. Let C = {N | N ∈ Conn(Lj ∩ Lk), j, k ∈ N, j 6= k}. Then C
is a collection of pairwise disjoint connected hypersurfaces of M . So for
each N ∈ C, if N ⊂ Lj ∩ Lk where j, k ∈ N, then by Lemma 3.1, we obtain
εN > 0 and a diffeomorphism ΦN : N × (−εN , εN )→ VN where VN is an
open neighborhood of N ⊂M . We require VN ⊂ Lj ∪ Lk.
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We apply Lemma 3.5 to VN to obtain ϕN ∈ F∞(B; Diff(M)) such that
ϕN = id in a neighborhood of M \ VN , ϕ∗Nω = τ in a neighborhood of N ,
and ∫

V +
N

ϕ∗Nω =

∫
V +
N

ω,

∫
V −N

ϕ∗Nω =

∫
V −N

ω.

Hence
∫
Lj
ϕ∗Nω =

∫
Lj
ω,
∫
Lk
ϕ∗Nω =

∫
Lk
ω. See Figure 6.

If necessary, choose εN small so that VN , N ∈ C, are mutually disjoint.
Since replacing ω by ϕ∗Nω each time does not change the volume of Lj
for any j ∈ N, we compose these ϕN for N ∈ C, as they are the identity
away from disjoint open sets, to obtain ϕ′ ∈ F∞(B; Diff(M)) such that ω′ =
ϕ′∗ω is equal to τ in some neighborhood of

⋃
N∈C N and

∫
Lj
ω′ =

∫
Lj
ω =∫

Lj
τ for each j ∈ N. Applying Lemma 3.3 to each Lj for j ∈ N we get ψj ∈

F∞(B; Diff(M)) such that τ = ψ∗jω
′ in Lj and ψj = id in a neighborhood of

M \ Lj . Replacing ω′ by ψ∗jω
′ each time and composing {ψj}j∈N we obtain

ψ′ ∈ F∞(B; Diff(M)) such that τ = ψ′∗ω′. Let ϕ = ϕ′ ◦ ψ′. �

part of M

V

Figure 4: Lemma 3.3.

part of M

N VN

Figure 5: Lemma 3.5.

part of M

Lj

Lk

N VN

Figure 6: Lemma 3.6.

3.3. Approximation lemma for smooth functions

Here we prove a key technical tool for the proof of Lemma 4.1, in which
we often need to express a smooth function as a sum of smooth functions
bounded by some continuous functions. The lemma below shows that we
can always do that as long as the sum of the bounds is greater than the
original smooth function.

In the following lemma, for any y ∈ R we let y+ = max(y, 0) be its posi-
tive part and y− = max(−y, 0) be its negative part. For a function f : B → R
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we denote f+(b) = f(b)+, f−(b) = f(b)− for b ∈ B, so f+, f− : B → [0,∞)
are functions.

Lemma 3.7. Let B be a connected compact manifold. Let k ∈ N. Let a ∈
C(B;R) and u ∈ C∞(B;R) be such that u < a. Then for any a1, . . . , ak ∈
C(B;R), with

∑k
j=1 aj = a, there are u1, . . . , uk ∈ C∞(B;R) such that uj <

aj for 1 6 j 6 k and
∑k

j=1 uj = u.

Proof. Without loss of generality we assume u = 0. Otherwise, we replace
aj by aj − u/k, uj by uj − u/k for 1 6 j 6 k.

Choose ε > 0 with kε < min a. Define hj = aj − ε for 1 6 j 6 k. Then∑k
j=1 hj = a− kε > 0. So

∑k
j=1 h

+
j >

∑k
j=1 h

−
j > 0. Define

wj =
h+
j∑k

`=1 h
+
`

k∑
`=1

h−` − h
−
j ,

for 1 6 j 6 k. Then
∑k

j=1wj = 0. Moreover, for 1 6 j 6 k,

hj − wj = h+
j −

∑k
`=1 h

−
`∑k

`=1 h
+
`

h+
j > 0.

By Whitney Approximation Theorem, for 1 6 j 6 k, there is a function
vj ∈ C∞(B;R) such that |vj − wj | < ε/2. Then let uj = vj − 1

k

∑k
`=1 v` ∈

C∞(B;R). So |uj − wj | < ε, and
∑k

j=1 uj = 0, hence aj − uj > hj − wj > 0
is as required. �

4. Filtration lemma

Now we combine the topological-combinatorial and geometric-analytic con-
structions from the previous sections. The objects in the following result are
illustrated in Figure 7.

For any tree T of height ω, for any X ∈ Lv(`), ` ∈ N ∪ {0}, let

CTX
def
= Xα`+1

= X \
∐

Y ∈Ch(X)

Y,

WTX
def
= Xα`+2

= X \
∐

Z∈Gch(X)

Z.
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Lemma 4.1. Let M be a noncompact oriented connected manifold. Let B
be a compact manifold. Suppose ω, τ ∈ F∞(B; Ωvol(M)) such that

∫
M ω =∫

M τ , and for any connected component C of the complement of a compact
subset of M , either

∫
C ω =

∫
C τ = +∞, or

∫
C ω and

∫
C τ are finite and con-

tinuous, and there difference is smooth. Then there is a tree (T ,)) of con-
nected open subsets of M and {ωn}n∈N∪{0}, {τn}n∈N∪{0} ⊂ F∞(B; Ωvol(M))
such that ω0 = ω, τ0 = τ and for any n ∈ N, p ∈ B, we have that

(4.1) supp((ωn)p − (ωn−1)p) ∪ supp((τn)p − (τn−1)p) ⊂
⋃

C∈Lv(2n−2)

(WT C)◦,

as well as that for each A ∈ Lv(2n− 3) with n > 1, C ∈ Lv(2n− 2), E ∈
Lv(2n− 1),∫

CTM
ω1 =

∫
CTM

τ1,

∫
WTA

ωn =

∫
WTA

τn for n > 1;(4.2) ∫
WT C

ωn =

∫
WT C

ωn−1,

∫
WT C

τn =

∫
WT C

τn−1;(4.3) ∫
E
ωn =

∫
E
τn.(4.4)

Proof. The abstract tools we have developed so far in the paper allow us to
give an inductive proof of Lemma 4.1 with a minimum of technical fuss.

We aim to find α0 = −∞ and {α`}`∈N ⊂ Reg(f) ∩ f(M) such that T
is constructed by Lemma 2.3. Note that, if we know {α`}06`6m for some
m ∈ N ∪ {0} for the sequence {α`}`∈N∪{0} defining T , then we say T is
constructed up to the m-th level, so we know Lv(`) of T for any ` with
0 6 ` 6 m.

We proceed by induction on n ∈ N ∪ {0} to find α2n−1, α2n and ωn, τn ∈
F∞(B; Ωvol(M)) such that

∫
E ωn =

∫
E τn for any E ∈ Lv(2n− 1) (E ∈ Lv(0)

if n = 0).
Case 0. Set α0 = −∞, Mα0

= ∅, and Lv(0) = {M}. Since ω0 = ω, τ0 =
τ , we have ∫

M
ω0 =

∫
M
τ0.

Case (n− 1) for n ∈ N. Assume by induction

(4.5)

∫
A
ωn−1 =

∫
A
τn−1

for any A ∈ Lv(2n− 3) (A ∈ Lv(0) when n = 1).
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WT C

M

M

A

C

E

Figure 7: The manifold M sliced by f , and the tree T in Lemma 4.1.

Case n for n ∈ N. Let α2n−1 ∈ Reg(f) such that α2n−1 > max{θC | C ∈
Lv(2n− 2)}, where θC is defined by Lemma 2.2. Then T is constructed
up to the (2n− 1)-th level. Let A ∈ Lv(2n− 3) (if n = 1 let A = M and
replace Gch(A) by Ch(M), WT A by CTM throughout this paragraph). Let
Gch0(A) (resp. Gch1(A)) be the subcollection of elements in Gch(A) with
finite (resp. infinite) volume. For any E ∈ Gch(A), we define δE ∈ C∞(B;R)
as follows: if E has finite volume, let

δE =

∫
E
τn−1 −

∫
E
ωn−1;

if E has infinite volume, let

δE =
1

# Gch1(A)

∫
WTA

τn−1 −
∫
WTA

ωn−1 −
∑

E0∈Gch0(A)

δE0

.
Then by (4.5) we have∑

E∈Gch(A)

δE =

∫
WTA

τn−1 −
∫
WTA

ωn−1.
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For any C ∈ Ch(A), let uC ∈ C∞(B;R) be such that

max

−∫
CT C

ωn−1,−
∫
CT C

τn−1 +
∑

E∈Ch(C)

δE


< uC <

∫
C
ωn−1 −

∫
CT C

ωn−1.

Note that if C has finite volume,

(∫
C
ωn−1 −

∫
CT C

ωn−1

)
−

−∫
CT C

τn−1 +
∑

E∈Ch(C)

δE


=

∫
C
ωn−1 +

(∫
CT C

τn−1 −
∫
CT C

ωn−1

)
+

∑
E∈Ch(C)

(∫
E
τn−1 −

∫
E
ωn−1

)
=

∫
C
τn−1 > 0,

so such uC exists. Since

uC <
∑

E∈Ch(C)

∫
E
ωn−1 =

∫
C
ωn−1 −

∫
CT C

ωn−1,

by Lemma 3.7, we can choose vE ∈ C∞(B;R) such that vE <
∫
E ωn−1 and∑

E∈Ch(C) vE = uC .
For any E ∈ Ch(C), if E has infinite volume, take βE ∈ Reg(f) that is

greater than θE . Otherwise, the function

λ : B × R→ R,

(b, β) 7→ min

((∫
E(−∞,β]

ωn−1

)
(b),

(∫
E(−∞,β]

τn−1 + δE

)
(b)

)
− vE(b)

is continuous in b and increasing in β. Note that limβ→+∞ ρ(b, β)(
∫
E ωn−1 −

vE)(b) > 0 for any b ∈ B. Since B is compact there is βE > max{α2n−1, θE}
such that λ(·, βE) > 0. Let α2n = maxE∈Lv(2n−1) βE . Then T is constructed
up to the 2n-th level. So CT E = Eα2n

. Then we have vE <
∫
CT E

ωn−1, and

vE − δE <
∫
CT E

τn−1.
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Since all the right hand sides of the next four equations are positive and
smooth, by Lemma 3.4, there are ωn, τn ∈ F∞(B; Ωvol(M)) such that∫

CT C
ωn =

∫
CT C

ωn−1 + uC ,

∫
CT C

τn =

∫
CT C

τn−1 + uC −
∑

E∈Ch(C)

δE ,∫
CT E

ωn =

∫
CT E

ωn−1 − vE ,
∫
CT E

τn =

∫
CT E

ωn−1 − (vE − δE),

and

supp((ωn)p − (ωn−1)p) ∪ supp((τn)p − (τn−1)p) ⊂ (Mα2n
)◦ \Mα2n−2

.

Then we have∫
WTA

ωn =

∫
WTA

ωn−1 +
∑

C∈Ch(A)

uC

=

∫
WTA

τn−1 −
∑

E∈Gch(A)

(δE − uC) =

∫
WTA

τn,

and ∫
WT C

ωn =

∫
CT C

ωn +
∑

E∈Ch(C)

∫
CT E

ωn =

∫
WT C

ωn−1,∫
WT C

τn =

∫
CT C

τn +
∑

E∈Ch(C)

∫
CT E

τn =

∫
WT C

τn−1,

and ∫
E
ωn =

∫
CT E

ωn +

∫
E
ωn−1 −

∫
CT E

ωn−1

=

∫
E
ωn−1 − vE =

∫
E
τn−1 − (vE − δE) =

∫
E
τn.

�

5. Proof of main theorem

We apply Lemma 4.1 to M and ω, τ and obtain the tree T of connected
open subsets of M , such that (4.1) to (4.4) are satisfied.
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For n ∈ N and C ∈ Lv(2n− 2), applying Lemma 3.3 to (WT C)◦, there
are ϕn, ψn ∈ F∞(B; Diff(M)) such that we have ϕ∗nωn−1 = ωn, ψ∗nτn−1 = τn,
and ϕn = ψn = id outside of (Mα2n

)◦ \Mα2n−2
. Let

(5.1)
ω∞ = lim

n→∞
ωn, τ∞ = lim

n→∞
τn,

ϕ∞ = ϕ1 ◦ ϕ2 ◦ · · · , ψ∞ = ψ1 ◦ ψ2 ◦ · · · .

Since {(WT C)◦}C∈T ,2|dpt(C) is mutually disjoint, the pointwise limits in
(5.1) will be stable at a finite n, so ω∞, τ∞ ∈ F∞(B; Ωvol(M)), ϕ∞, ψ∞ ∈
F∞(B; Diff(M)),∫

CTM
ω∞ =

∫
CTM

τ∞,

∫
WTA

ω∞ =

∫
WTA

τ∞

for each A ∈ T with odd depth, ϕ∗∞ω = ω∞, and ψ∗∞τ = τ∞.
We have left to show that there is ϕ′ ∈ F∞(B; Diff(M)) with ϕ′∗ω∞ =

τ∞. Let {Lj}j∈N be {CTM} ∪ {WT A}A∈T ,2-dpt(A). Then this is the result
of Lemma 3.6.

Finally,

ϕ = ϕ∞ ◦ ϕ′ ◦ ψ−1
∞ ∈ F∞(B; Diff(M))

is as required.

6. Final remarks

We conclude with a few remarks:

1) We have proved Theorem 1.2 using a version of Hodge theory on non-
compact manifolds due to Bueler and Prokhorenkov [2]. We believe
that there should also be a parametric version of the Greene–Shiohama
proof without resorting to Hodge theory. The idea of using Hodge the-
ory is in itself of interest because it can be easily generalized (for
instance to symplectic forms [4]).

2) The geometry of volume-preserving diffeomorphisms is much simpler
than that of their symplectic counterparts (see [6] and [11]).

3) In the way of applications, we would like to mention that the Moser
and Greene–Shiohama results are important in classical mechanics,
where understanding the geometry of volume forms is relevant [5, 8].

4) There is a version of Theorem 1.2 for fiber bundles with nontrivial
topology. Theorem 1.2 corresponds to the case of trivial bundles over
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B. The idea and techniques to prove this more general result are sim-
ilar, but the statement and proof require the introduction of a signifi-
cant amount of terminology [10].

5) If B = [0, 1], a version of Theorem 1.2 was given for continuous fam-
ilies as [3, Theorem 1] for the case of manifolds M which are the
interior of a compact manifold with boundary. The work relies on a
version of Moser’s theorem for compact manifolds with boundary due
to Banyaga [1].
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