JOURNAL OF
SYMPLECTIC GEOMETRY
Volume 17, Number 5, 14271446} 2019

Moser—Greene—Shiohama stability for
families

A1VARO PELAYO AND XI1UDI TANG

Let M be a noncompact oriented connected manifold and let B be
a compact manifold. We give conditions on two smooth families of
volume forms {wp}pen, {7p}pep Wwhich guarantee the existence of
a smooth family of diffeomorphisms {,},ep such that pyw, = 7,
for all p € B. If B is a point, our result recovers a theorem of
Greene and Shiohama from 1979, which itself extended a theorem
of Moser for compact manifolds.

1. Introduction

Throughout this paper smooth means C* smooth, and manifolds are always
assumed to be smooth manifolds without boundary except where explicitly
stated otherwise.

1.1. Past works

It is a well known theorem due to Moser [9] that if two volume forms w
and 7 on a compact manifold M satisfy [ W= I} 7 then one can find a
diffeomorphism ¢ of M such that p*w = 7. Later Greene and Shiohama [7]
realized that a version of Moser’s theorem also holds even if M is not com-
pact. The statement and the proof in [7] are more complicated than Moser’s
proof because the authors have to deal with the behavior at infinity of the
forms. Their proof has three stages: first, they extend Moser’s proof to forms
which are compactly supported. Then they chop their noncompact manifold
into pieces, and finally, a careful analysis of the behavior at the boundaries
and interiors, allows them to construct a global diffeomorphism by pasting
together the local diffeomorphisms, bypassing any analytic estimates.
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1.2. Smooth families

If one mimics the Greene-Shiohama argument in the case of two smooth
families of volume forms wy, 7, indexed by some compact manifold B which
plays the role of the parameter space, this produces for each p a diffeomor-
phism ¢, such that pyw, = 7, but there is no information given about how
¢p changes when p changes in B. The goal of our paper is to give sufficient
conditions for the variation of ¢, with respect to p to be smooth.

Definition 1.1. Let M be a manifold of dimension m and let B be a
compact manifold. Let ¢ be an integer with 0 < ¢ < m. A family of ¢-forms
{wptper C QM) is smooth if the map B x M — ANIT*M, (p, z) — wy(x) is
smooth. A family {¢,},ep of diffeomorphisms of M is smooth if the map B x
M — M, (p,z) — ¢p(z) is smooth. Two smooth families of volume forms
{wp}pep and {7,},cp are commensurable on M if for any compact set K C
M, for any connected component C' of M \ K, one of the following holds:

o forany p € B, [owp, = [, Tp = +00;

e the integrals fC wp and |, o Tp are finite and continuous with respect to
p € B, and their difference is smooth with respect to p € B.

1.3. Main theorem

Our main result is the following parametric version of the Moser and Greene—
Shiohama result:

Theorem 1.2. Let M be a noncompact oriented connected manifold. Let B
be a compact manifold. Let {wy}pep and {1p}pcp be commensurable smooth
families of volume forms on M such that fM wp = fM T, for any p € B.
Then there is a smooth family of diffeomorphisms {pp: M — M }pep such
that pywy = 7p for each p € B.

The case when M is compact was proved by Moser [9]. If B is a point,
Theorem was proved by Greene-Shiohama [7]. If {7,},cp is a constant
family, we obtain:

Corollary 1.3. Let M be a noncompact oriented connected manifold and
B be a compact manifold. Let py € B. Let {wp}pen be a smooth family of
volume forms on M such that fM wp 18 independent of p € B. Suppose more-
over for any connected component C of the complement of a compact subset
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of M, either fc wp = +o0 for allp € B, or fC wp 15 smooth with respect to
p € B. Then there is a smooth family of diffeomorphisms {¢,: M — M}pep
such that pyw, = wp, for each p € B.

The remaining of the paper is devoted to proving Theorem The
proof is inductive and requires the introduction of certain topological-
combinatorial constructions (Section , and geometric-analytic construc-
tions (Section . This allows us to prove a filtration lemma for noncompact
manifolds (Section [, from which Theorem easily follows (Section [j)).

2. Topological-combinatorial constructions

In this section, we prepare the topological-combinatorial ingredients needed
to prove our main theorem. We will first show a result about general topo-
logical spaces, which we will then use to give a slicing of a smooth manifold
which satisfies certain properties (in terms of an exhaustion function for the
manifold). Then we use this slicing to define a tree structure on the man-
ifold itself, which will be an essential ingredient for the proof of the main
theorem.

2.1. A topological statement about connected components

We start with a general topological statement which we shall need.

Lemma 2.1. Let X be a locally connected locally compact Hausdorff space.
Let K(X) be the collection of compact subsets of X. Let K € K(X) and let
A, A" C X be connected and precompact. If A, A" lie in the same connected
component C of X then there is L € K(X) such that they lie in the same
connected component of LN C.

Proof. For any topological space Y and a nonempty connected subset F,
denote by conn(Y, E') the unique connected component of Y containing FE.
For any P C K(X) denote conn(P, E) = | cp conn(L Nconn(Y, £), E).
Let X and nonempty A, A’ C X be as described in the statement. We
show that conn(P, A) = conn(X, A) for any nonempty P C K(X) such that
P> L C Ly € K(X) implies Ly € P. Let C = conn(X, A). Since X is lo-
cally connected and A is precompact, C is open in X and locally connected.
For any L € P and = € conn(L N C, A), there is a compact connected neigh-
borhood F, of z in C, so then conn(L N C, A) U F,, C conn((L U F,)NC, A).
Therefore conn(P, A) is open. For any precompact connected open set U C
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C, we have

UnNconn(P,A)#4#@ = JLe€P, UnNconn(LNC,A)# o
= U Cconn((LUU)NC, A) C conn(P,A4) )’

Thus U \ conn(P, A) # @ implies that U C C \ conn(P, A). Since C has a
topology base consisting of connected sets, conn(P, A) is closed in C. Now
conn(P, A) is a nonempty and clopen subspace of the connected space C,
which is C' itself.

Suppose conn(X, A) = conn(X,A’)=C. Let P={L e K(X)| LD AU
A"}, Since conn(P, A) = conn(P, A") = C, there are Li, Ly € P such that
conn(L; N C,A)Nconn(LaNC,A") # @. Let L' = L1 U Ly € P. Then

conn(L' N C, A) Nconn(L' N C, A")
D conn(L; NC, A) Nconn(Ly NC, A') # @,

which means conn(L’' N C, A) = conn(L' N C, A"). The case when either A or
A’ is empty is trivial. O

2.2. Slicing a manifold by an exhaustion function

Let M be a manifold. An exhaustion function f for M is a smooth function
f: M — Rsuch that for any o € R, f~1((—o0, a]) is compact. An exhaustion
function for M always exists. Let Reg(f) be the set of regular values of f
(including R\ f(M)). Fix as a basepoint xy € M a minimum point of f. For
any a € Reg(f) N f(M), let C be the connected component of f~1((—o0, a])
containing xg. Define M, as the union of C' and the precompact connected
components of M \ C. Then M, is compact and connected, see Figure
For a« € R\ f(M), let M, = @. We call M, the saturated slicing of M by
«. For any set A C M, let A, = AN M,.

We will need the following technical property of precompact subsets in
the proof of Lemma (which itself is needed to prove the main theorem).

Lemma 2.2. For any connected precompact set A C M,
0, % inf{a € f(A) | VB € Reg(f),B > o, Ag is connected}
1s finite.

Proof. Fix an o € Reg(f) N f(A). Since A, is the interior of a compact
manifold with boundary, it can only have finitely many components. By
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2f(@)

Figure 1: The saturated slicing M.

Lemmal2.1] there is K € (M) which is connected and contains ¢ and every
component of A,. Let 8 be a regular value of f greater than maxg f. Then
Ag D K contains every component of A,. Note that any component of Ag
contains a component of A, so Ag is connected. Hence 64 < 8 < 4+00. U

2.3. A tree structure on a manifold

Consider the following combinatorial notions of trees which will be very
useful for the proof of Theorem [1.2

A tree is a strictly partially ordered set (7, <) with the property that
for each « € T, the set Pre(xz) = {y € T | y < «} of all predecessors of z is
well ordered by <. We write 7 for (7, <) when there is no ambiguity. A
branch in T is a maximal linearly ordered subset of T. Let Rt(7T) = {x €
T |VyeT,y£x}+# D be the set of roots of T. If Rt(7) is a singleton we
call T rooted.

Let Suc(z) ={y € T |y > x} be the set of all successors of x. Then
(Suc(z), <) is a tree. Let

Ch(z) = Rt(Suc(z))

be the set of immediate successors or children of xz. If for any z € T, Ch(z)
is finite, we call T locally finite. Let

Gch(z) = U Ch(y)
y€Ch(x)
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be the set of grandchildren of x. Let Lf(T) ={x € T | Yy € T,z A y} be the
set of pendant vertices or leaves of T. If Lf(T) = @ we call T leafless.
The depth of z is the ordinal of Pre(z), which we denote by dpt(x). Let

hgt(7T) = sup{dpt(z) +1 |z € T}
be the height of T. For any ordinal ¢ < hgt(T), let
Lv(¢) = {z € T | dpt(z) = ¢}

be the ¢-th level of T.

Let w denote the smallest infinite ordinal. If hgt(7) = w, then every
node in 7 has finite depth, but these depths are unbounded. We have the
following essential construction for the combinatorial part of the proof of

Theorem [L.2

Lemma 2.3. Let M be a noncompact manifold, oy = —oo and {ay}een C
Reg(f) N f(M) be an unbounded strictly increasing sequence. Let L({) be the
collection of unbounded connected components of M \ M, _,. Then there is
a tree (T,2) of open subsets of M such that

T= [ <.

£eNU{0}

Moreover, (T,2) is a rooted locally finite leafless tree of height w, and
L(¢) = Lv(¢) for each ¢ € NU{0}.

Proof. Let A; € L(¢;) CT where ¢; € NU{0}, for ¢ =1,2 and 3. By def-
inition of connected components we have the following: if A; 2 A, then
l < Ly if Al,AQ 2 Az and /1 < ly, then Aq 2 As. Hence (T, 2) is a tree.
The only root of 7 is M € £(0). By induction £(¥) is the ¢-th level of
T, which is finite, so T is locally finite. For any A € Lv({), A\ Aq,,, # 2,
so T is leafless. Hence {dpt(A) | A€ T} =NU{0}, and hgt(7) =w. O

3. Geometric-analytic constructions

Throughout this section, M is a noncompact oriented manifold of dimension
m > 1. In this section, we present the analytic statements needed to prove
the main theorem. The main tool we use is a version of Hodge theory applied
to certain noncompact manifolds which is sufficient for the purpose of the
present paper. We split the content into several subsections for clarity.
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3.1. Forms with compactly supported difference

In this subsection, we prove (using the work of Bueler—Prokhorenkov on
Hodge theory [2]) a parametrized Moser stability theorem for two families
{wp}pen, {7p}pep of volume forms whose differences w, — 7, p € B are sup-
ported in some compact submanifold with boundary.

Lemma 3.1. Let f be an exhaustion for M, see Section [2.3. Let N be a
compact hypersurface of M through reqular points of f. Then there exists € >
0 and a diffeomorphism ®: N x (—e,e) — Vn such that Vi is an open neigh-
borhood of N C M, ®(y,0) =y, 7(®(y,s)) = 7(y) and f(®(y,s)) = f(y) + s
for any (y,s) € N x (—¢,e). If N is connected then Vi is connected too.

Proof. Pick an arbitrary Riemannian metric ¢ on M. Let 1~/N be an open
neighborhood of N C M which consists of regular points of f. Let X € X(M)
be such that X = \ng\;Qng in Vv, where V, f is the gradient of f. Then
X(f) =1 in Vy. Take the flow of X, ®: N x (—¢,&) — M, (y,s) > x, that
is ®(y,0) =y for all y € N and %—f(y,s) = X(®(y,s)) for all (y,s) € N x
(—¢,e), for € > 0 small enough such that the image of ® is contained in Vy.
Then let Vy = ®(N X (—¢,¢)). Since X(f) = 1in Vi, we have f(®(y,s)) =
f(y) + s for any (y,s) € N x (—¢,¢), and @ is a diffecomorphism. If N is
connected, then Vi is the image of ®, which is connected. O

Theorem 3.2. Let W be an open subset of M such that W is a submanifold
of M with boundary OW. Then for any q € N with 1 < q < m there is an
operator preserving smooth families of q-forms

Ify: {€ € QUM) | supp& C W, &lw € dd (W)}
— {n € QI (M) | suppn C W}

satisfying d o If;, = id.

Proof. By [2] there is a weighted Hodge-Laplacian A, : Qd(W) — Qd(W)
on W equipped with a specific metric ¢ and measure p. Its Green oper-
ator Gp: QUW) — QW) and the weighted codifferential d,: QI(W) —
Qg_l(W) satisfy the identity d o d, oG, od = d. Moreover, any form 7 €
G, (U (W)) has an extension 77 € Qd(M) supported in W. For any & € Qd(M)
supported in W such that &|y € dQI™" (W), we define I, (€) as the exten-
sion of (8, 0 G,)(E]w) to Q4 (M), see Figure Then we have d o I}, = id.
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The operator Igv preserves smooth families. Indeed, the p-derivative of
a smooth family &,, p € B of compactly supported forms is still compactly
supported. Since the Green’s operator G, is an integral operator with a
singular kernel, we can pass the p-derivative through the operator G, so
0pG&p exists and is a smooth form, for each p € B. By similar arguments
for higher order derivatives, G.&,, p € B is a smooth family. The map ¢,

preserves smooth families since it is a differential operator. O
I
(e & 3 = [\\'((\)
\/
_F _F
N —
W W

Figure 2: From compactly supported forms to forms with zero extensions.

Let B be a compact manifold. We adopt the following notations.

o F(B;Qyoi(M)) is the set of smooth families w = {wp}pep of vol-
ume forms on M. Similarly, F°°(B;Q%,(M)) is the set of smooth
families of non-negative m-forms on M. Note that F>°(B; Qo (M))
FX(B; QLo (M)).

e F°°(B;Diff(M)) is the set of smooth families ¢ = {¢},},ecp of diffeo-
morphisms of M.

o If w e F*(B; Q%L (M)), [,,w is the map B — [0, +00] given by

(oo

o If we FX(B;Qyo(M)), p € F(B;Diff(M)), we define

o*w = {@hwp}pen € F(B; Lol (M)).

Figure [4] illustrates the main point of the following lemma, where the
shaded region is the support of w, — 7.

Lemma 3.3. Let V be a connected open subset of M such that V is a
compact submanifold with boundary OV . Let w,T € F°°(B;Qyo1(M)) be such
that supp(w, — 1) C V,Vp € B and [, w = [, 7. Then there is a family ¢ €
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F(B; Diff(M)) such that M \'V has a neighborhood in which ¢, is the
identity forp € B and ¢*w = T.

Proof. Let N = 0V. Applying Lemma to N there are € > 0 and Vi
a neighborhood of N with the properties stated in the lemma. Since B
is compact and supp(w, —7p) C V,Vp € B, we may decrease ¢ if neces-
sary so that supp(wp, —7,) C V \ Vn,Vp € B. Let W =V \ V. Since the
map fW: H™(W) — R is a linear isomorphism, and fvw = |, 7, we have
(wp — Tp)|lw € AQT"1(W),Vp € B. Therefore by Theorem there exists
a smooth family o, = Ij;;§, € Qm=1(M),Vp € B, with suppo, C W such
that dop, =wp — 7, Vp € B. Let wy = (1 —t)w + t7 € FX(B; Qyo1(M)) for
any t € [0, 1].

Since w; is nowhere vanishing there exists a unique smooth family of
vector fields { Xy} pefoiyxp C X(M) where each Xy, is supported in W
and such that wy ,(X¢p, ) = op. Since V' is compact, for each p € B, the flow
¢tp, t €[0,1] in M generated by X, , exists and is the identity outside of W.
Fort € [0,1], ¢1 = {¢1p}pen € F(B; Diff(M)). Then pfw, = w. If o = ¢!
then we have p*w = 7. Since Xy, =0 in M \ W for (¢,p) € [0,1] x B, ¢,
is the identity outside of W. O

3.2. The transfer of volumes

In this subsection, we prove a series of lemmas which allow us to transfer
volumes of a smooth family of volume forms across the boundaries of com-
pact submanifolds, so as to modify the smooth families {wp},cB, {7p}pen SO
that they have the same volume in a certain set of compact submanifolds;
then we move the volumes within the compact submanifolds, to pull w, back
to 7, for each p € B.

Lemma 3.4. Let w € F®(B; Qo (M)), and let V. C M be a nonempty
precompact open set. Then for any w € C>*(B;(0,00)), there exists T €
F(B; Qo1 (M)) such that supp(w, — 7,) C V,¥p € B and [, 7 =w.

Proof. Let £ € F*°(B; Qyo1(M)) be such that supp(§, —wp) C V,Vp € B and
fV§ <w. Let n € foo(B;ng(M)) be such that suppn, C V,Vp € B and

ST 121
fvn>0. Then define 7 = & + o |
Lemma 3.5. Let N be a compact hypersurface of M and consider w,T €
F>X(B; Qo1(M)). Then there is Vy an open neighborhood of N and ¢ €
F(B;Diff(M)) such that, if Vi and Vy are the connected components of
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Vv \'V, the following hold: M \ Vi has a neighborhood in which ¢, is the
identity for any p € B; N has a neighborhood in which p*w = T; fv; orw =

fVﬁ w; and fV]; prw = fVA? w.

Proof. By Lemma there exists a neighborhood Vi of N in M, ¢ >
0, and a diffeomorphism ®: N x (—&,¢) — Vy such that ®(y,0) =y and
f(@(y,s)) = f(y) + s for any (y,s) € N x (—¢,¢), see Figure 5l Let Vi =
®(N x (0,¢)) and Vy = ®(N x (—¢,0)).

lim ((s,t)

t—1—

Figure 3: The graph of ((s,t).

First we consider ®(N x [0,¢)). Since B is compact, there is 6 € (0,e/2)
such that

/ . / o, / o> / -
(N x(0,6—5)) B(Nx(0,6)) (N x(0,6-5)) B(Nx(0,0))

Let ¢: (0,e) x (0,1) — [0,1] be a smooth function with the properties (see
Figure [3)):

C(s,) =1, s € (0,4];

. _a 9¢ : _ :
t£%1+g(s,t) =0, a(s, ) > O,tlﬁlqli ((s,t) =1, se€(d,e—0);

((s,)) =0, s €le—4,e).
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Define : B x (0,1) — R by

0(p1) = (s(p), )7p — (s(p); 1 = t)wp

¢ ¢
Vb Vi
where s = pryo®~1: ®(N x (—¢,¢)) = (—¢,€), pry: N x (—¢,¢) = (—¢,¢)
is the projection to the second factor. Since w, 7 € F*°(B; Qyo1(M)) and ¢
is smooth it follows that 6 is smooth. Furthermore

o0 ¢ ¢

a(p,t): V;;E v a(s(p),l—t)wp>0

(s(p), t)7p +

for any ¢ € (0,1) and lim; 04+ 68(p,t) < 0 < limy—1— 6(p,t) for any p € B.
Then for every p € B there is a unique ¢(p) solving 6(p,t(p)) = 0. By the
implicit function theorem, ¢: B — R is smooth.

Define A(p,z) = ((s(p, z), t(p)) and p(p,z) = ((s(p,x),1 —t(p)) in B x
V. The functions A and y are smooth in x and satisfy fv,j pw = fv; AT.
Analogously we can define A and pin Bx Vy, and let A=pu=1 on N.
Notice that A = p =1 in ®(N x [-6,4]), so we obtain smooth extensions of
A, ;o which we also denote by A\, u: B x Vy — R. Hence

/v;(“_“)““”:/v;“’

/VN(““)‘”“”:/VN“"

By Lemma applied to (1 — p)w + A7 and w on Vi and Vjy respectively,
combining the results we obtain ¢ € F°°(B;Diff(M)) such that ¢ =id in
M\ ®(N x (0 —e,e—9)) and p*w = (1 — p)w + AT. O

Lemma 3.6. Let {L;}jen be a cover of M by connected compact submani-
folds with boundary, which have the same dimension as M, and whose inte-
riors are pairwise disjoint. If w, ™ € F>(B;Quo(M)) are such that ij w=
ij T for each j € N then there is ¢ € F*°(B; Diff(M)) such that p*w = 7.

Proof. By the construction of {L;} en, any three different L;’s for j € N
do not intersect. Let C = {N | N € Conn(L; N L), j,k € N, j # k}. Then C
is a collection of pairwise disjoint connected hypersurfaces of M. So for
each N € C, if N C Lj N Ly where j,k € N, then by Lemma we obtain
ey >0 and a diffeomorphism ®y: N X (—en,en) — Vy where Vi is an
open neighborhood of N C M. We require Viy C L; U Ly.
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We apply Lemma to Viy to obtain ¢y € F°(B;Diff (M)) such that
N = id in a neighborhood of M \ Vy, ¢jw = 7 in a neighborhood of N,

and
* . * .
PNw = w, PNWw = w.
1% Vi Ve Va

Hence ij Pyw = ij w, ka P w = ka w. See Figure @

If necessary, choose £x small so that Vi, N € C, are mutually disjoint.
Since replacing w by ¢jw each time does not change the volume of L;
for any j € N, we compose these ¢y for N € C, as they are the identity
away from disjoint open sets, to obtain ¢’ € F°°(B;Diff(M)) such that w’ =
¢™w is equal to 7 in some neighborhood of |Jyco N and ij W= ij w=
ij 7 for each j € N. Applying Lemma to each L; for j € N we get ¢; €
F(B; Diff(M)) such that 7 = 97w’ in L; and ¢; = id in a neighborhood of
M \ L;. Replacing w’ by @ZJ}‘w’ each time and composing {1;};en we obtain

' € F°(B;Diff(M)) such that 7 = ¢"*w’. Let o = ¢/ o)/, O
part of M part of M part of M
Ly
N \/}VN N }VN
1% Lj
= =

Figure 4: Lemma [3.3] Figure 5: Lemma[3.5] Figure 6: Lemma [3.6

3.3. Approximation lemma for smooth functions

Here we prove a key technical tool for the proof of Lemma in which
we often need to express a smooth function as a sum of smooth functions
bounded by some continuous functions. The lemma below shows that we
can always do that as long as the sum of the bounds is greater than the
original smooth function.

In the following lemma, for any y € R we let y™ = max(y, 0) be its posi-
tive part and y~ = max(—y, 0) be its negative part. For a function f: B — R
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we denote f+(b) = f(b)T, f~(b) = f(b)” forbe B,so f*,f: B—[0,00)

are functions.

Lemma 3.7. Let B be a connected compact manifold. Let k € N. Let a €
C(B;R) and u € C*(B;R) be such that u < a. Then for any ai,...,a €
C(B;R), with Z? 165 = a, there are uy, ..., up € C®(B;R) such that uj <
a; for 1< kandz_luj—u

Proof. Without loss of generality we assume u = 0. Otherwise, we replace
a; by aj —u/k, uj by uj —u/k for 1 < j <k.

Choose € > 0 with ke < mlna Define h; = aj — ¢ for 1 < j < k. Then
Z?Zlhj:a ke > 0. SOZJ w >Z] 1h > 0. Define

+ k

Wi = S 2
Zz1 =

for 1 < j < k. Then Z?:l w; = 0. Moreover, for 1 < j <k,

:h+ Z£1€h+/0.
’ Zé 1h+j

By Whitney Approximation Theorem, for 1 < j < k, there i 1s a function
vj € C*(B;R) such that |v; —w;| < /2. Then let uj =vj — Zz:l v €
C*(B;R). So |u; — wj| < ¢, and Z?:l uj =0, hence aj —u; > hj —w; >0
is as required. Il

hj—wj

4. Filtration lemma

Now we combine the topological-combinatorial and geometric-analytic con-
structions from the previous sections. The objects in the following result are
illustrated in Figure

For any tree T of height w, for any X € Lv(¢), £ € NU {0}, let

HTX def XOéi+1 - X\ H Y"
Y eCh(X)

Oéz+2:X\ H Z

ZeGceh(X)

X < def X
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Lemma 4.1. Let M be a noncompact oriented connected manifold. Let B
be a compact manifold. Suppose w, T € F>°(B;Qyo1(M)) such that [,,w =
fM T, and for any connected component C of the complement of a compact
subset of M, either [,w = [,T =400, or [,w and [, T are finite and con-
tinuous, and there difference is smooth. Then there is a tree (T,2) of con-
nected open subsets of M and {wn }nenu(oys 17n nenugoy C F>°(B; Qvol(M))
such that wg = w, 79 = 7 and for any n € N, p € B, we have that

(4.1) supp((wn)p — (Wn—1)p) Usupp((7s)p — (Ta—1)p) C U (I170)°,
Celv(2n—2)

as well as that for each A € Lv(2n —3) with n>1, C € Lv(2n —2), E €
Lv(2n — 1),

(4.2) / wp = / T, / Wp = / Tn form > 1;
M M - A oirA
(4.3) / Wn, :/ Wn—1, / Tn :/ Tn—1;
m-C m-C -C m-C
(4.4) / Wp = / Tn-
E E

Proof. The abstract tools we have developed so far in the paper allow us to
give an inductive proof of Lemma [4.1] with a minimum of technical fuss.

We aim to find ag = —oo and {as}reny C Reg(f) N f(M) such that T
is constructed by Lemma Note that, if we know {ay}o<s<m for some
m € NU {0} for the sequence {ay}senufoy defining 7, then we say T is
constructed up to the m-th level, so we know Lv(¢) of T for any ¢ with
0<l<m.

We proceed by induction on n € NU {0} to find agp,—1, o, and wy, 7, €
F(B; Qo1 (M)) such that [ w, = [, 7, forany E € Lv(2n — 1) (E € Lv(0)
if n=0).

Case 0. Set ag = —00, My, = @, and Lv(0) = {M}. Since wg = w, 10 =

T 3 we ha\/(f
/ /
M M

Case (n — 1) for n € N. Assume by induction

(4.5) /Awnlz/ATnl

for any A € Lv(2n —3) (A € Lv(0) when n = 1).
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Figure 7: The manifold M sliced by f, and the tree 7 in Lemma [4.1]

Case n for n € N. Let aign—1 € Reg(f) such that ag,—1 > max{fc | C €
Lv(2n — 2)}, where 6¢ is defined by Lemma Then 7 is constructed
up to the (2n — 1)-th level. Let A € Lv(2n—3) (if n=1let A= M and
replace Geh(A) by Ch(M), 1A by Il M throughout this paragraph). Let
Gcho(A) (resp. Gehi(A)) be the subcollection of elements in Geh(A) with
finite (resp. infinite) volume. For any E € Gch(A), we define 0 € C*°(B;R)
as follows: if E has finite volume, let

5E:/7—n—1_/wn—1;
E E

if F has infinite volume, let

1
p— - - 5
P % Gehy (A) /IHTA et /mTAwn ' > om

EoeGeho(A)

Then by (4.5) we have

> =

EEGceh(A) A
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For any C € Ch(A), let uc € C*(B;R) be such that

max _/ Wnlv_/ Tn—1 + Z OF
n+C I+C

E€Ch(C)

<uc < / Wn—1 —/ Wp—1-
C n-Cc

Note that if C' has finite volume,

Wp—1 — wp—1 ) — | — Tp—1 + OE
(Lomr [ oomt) = (- [t &

EECh(C)

= / Wn—1+ </ Tn—1 _/ wnl) + Z (/ Tn—1 _/ Wnl)
C jigye; urc E E

= / Tn—1 > 0,
C

E€Ch(C)
so such u¢ exists. Since

uc < Z /Wnl—/wnl/ Wn—1,
I1,C

EeCh(C

by Lemma we can choose vy € C*°(B;R) such that vg < fE wWn_1 and

ZEeCh(C) VE = UC-
For any E € Ch(C), if E has infinite volume, take Sr € Reg(f) that is
greater than 5. Otherwise, the function

A:BxR =R,
(ba B) = mln((/ wnl) (b)v (/ Tn—1+ 5E> (b)> - UE(b)
E—oo.m E(—co,p1
is continuous in b and increasing in 3. Note that limg_, { o p(b, 8)( /| g Wn—1—

vg)(b) > 0 for any b € B. Since B is compact there is fg > max{a2,—1,0r}
such that A(+, Bg) > 0. Let a2, = maxgerv(2n—1) BE. Then T is constructed
up to the 2n-th level. So IllTE = E,,,. Then we have vg < fH g Wn—1, and

vE —0p < [y pTa-1.
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Since all the right hand sides of the next four equations are positive and
smooth, by Lemma there are wy, 7, € F*(B; Qo1 (M)) such that

/ Wnp = / Wn—1 + uc, / Tn = / Tp—1 + UC — Z 5E7
jigye; urc jigye; urc

E€Ch(C)

/ Wn = / Wn—1 — VE, / Tn = / Wp—1 — (UE - 6E)7
+E rE IrE UrkE

and

supp((wn)p — (Wn—1)p) Usupp((Tn)p — (Ta—1)p) C (Ma,,)° \ May, -

Then we have

/ Wn = / Wp—1 + Z uc
I A 1L, A

CEeCh(A)

[ mae Y Geuo= [ m
/HITA ! Z A

E€Geh(A)
and
/ Wn = / wn, + / Wn = / Wn—1,
/ Tn = / Tn + / Tn = / Tn—1,
i+C o-C EcCh(0) urE i+C
and

/wn:/ wn+/wn—1_/ Wn—1
E 1, E E 1, E
=/wn—l—vEZ/Tn—l—(vE—5E)=/ Tn.
E E E

5. Proof of main theorem

We apply Lemma to M and w,7 and obtain the tree 7 of connected
open subsets of M, such that (4.1) to (4.4) are satisfied.
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For n € N and C € Lv(2n — 2), applying Lemma (3.3 to (ILL7C)°, there
are ©n, ¥, € F°(B; Diff(M)) such that we have ¢} wn—1 = wp, Vi Th—1 = Tn,

and Pn = % = id outside of (Mazn)o \ Ma2n—2' Let

Woo = lim wy,, Too = lim 7,
(5.1) n—oo n—oo

Poo =P1OP20-+, Yoo =1h10thgo---.

Since {(IL7C)°}oeT 21apt(c) s mutually disjoint, the pointwise limits in
(5.1) will be stable at a finite 1, S0 Weo, Too € F(B; Qvol(M)), Poos Yoo €
F°°(B; Diff (M)),

/ Woo :/ Toos / Woo :/ Too
M M 1L, A 1L, A

for each A € T with odd depth, ¢} w = weo, and Y3 T = Teo.

We have left to show that there is ¢’ € F°°(B;Diff(M)) with ¢ ws =
Too- Let {Lj}jen be {IlyM} U {Ill7 A} 4c7 2tdpt(a)- Then this is the result
of Lemma [3.6]

Finally,

© = Yoo 0@ 0Pt € FX(B; Diff(M))

is as required.
6. Final remarks

We conclude with a few remarks:

1) We have proved Theorem using a version of Hodge theory on non-
compact manifolds due to Bueler and Prokhorenkov [2]. We believe
that there should also be a parametric version of the Greene—Shiohama
proof without resorting to Hodge theory. The idea of using Hodge the-
ory is in itself of interest because it can be easily generalized (for
instance to symplectic forms [4]).

2) The geometry of volume-preserving diffeomorphisms is much simpler
than that of their symplectic counterparts (see [6] and [11]).

3) In the way of applications, we would like to mention that the Moser
and Greene—Shiohama results are important in classical mechanics,
where understanding the geometry of volume forms is relevant [5l [§].

4) There is a version of Theorem for fiber bundles with nontrivial
topology. Theorem corresponds to the case of trivial bundles over
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B. The idea and techniques to prove this more general result are sim-
ilar, but the statement and proof require the introduction of a signifi-
cant amount of terminology [10].

5) If B =0, 1], a version of Theorem [1.2| was given for continuous fam-
ilies as [3, Theorem 1] for the case of manifolds M which are the
interior of a compact manifold with boundary. The work relies on a
version of Moser’s theorem for compact manifolds with boundary due
to Banyaga [1].
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