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A twin Lagrangian fibration, originally introduced by Yau and the
first author, is roughly a geometric structure consisting of two La-
grangian fibrations whose fibers intersect with each other cleanly.
In this paper, we show the existence of twin Lagrangian fibrations
on certain symplectic manifolds whose mirrors are fibered by rigid
analytic cycles. Using family Floer theory in the sense of Fukaya
and Abouzaid, these twin Lagrangian fibrations are shown to be
induced from fibrations by rigid analytic subvarieties on the mir-
ror. As additional evidences, we discuss two simple applications of
our constructions.
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1332 N. C. Leung and Y. Li

1. Introduction

1.1. Background

This paper is devoted to the study of certain geometric structures arising
naturally from the context of mirror symmetry. The Strominger-Yau-Zaslow
conjecture [47] asserts that mirror symmetry should be understood in a geo-
metric way via the so-called T -duality. Roughly speaking, this means that the
mirror Y ∨ of a Calabi-Yau manifold Y should be interpreted as the moduli
space of the Lagrangian branes (Fb, ξb), where Fb is a fiber of the (special)
Lagrangian torus fibration π : Y → B and ξb a unitary rank 1 local system.
We call π the SYZ fibration on Y .

In [31], Yau and the first author applied such an interpretation of mir-
ror symmetry to the case when Y ∨ carries an additional elliptic fibration
structure, and conjectured that there should be another Lagrangian fibration
π? : Y → B? which is compatible with the original SYZ fibration π in certain
sense. They call such a geometric structure

(1) B
π←− Y

π?−→ B?

a twin Lagrangian fibration on Y , see Definition 2.3 below. It is not hard to
see the heuristic arguments used in [31] can be extended to the more general
case when Y ∨ admits a fibration by rigid analytic subvarieties.

On the other hand, the family Floer theory developed by Fukaya and
Abouzaid in [1, 2, 19] allows us to see precisely what is the mirror object of
a tautologically unobstructed Lagrangian submanifold L ⊂ Y , or more gen-
erally, L equipped with a unitary rank 1 local system ξ. More precisely, as-
suming that π : Y → B does not admit any singular fiber, given (L, ξ), the
construction of [19] and [1] provides a family Floer module F(L, ξ), whose
cohomology sheaf H∗F(L, ξ) can be realized as a (twisted) coherent sheaf on
Y ∨. When singular fibers appear in the SYZ fibration π, the construction of
Abouzaid-Fukaya can be applied over every chamber Bα ⊂ B so that π re-
stricted to π−1(Bα) is a Lagrangian torus bundle, this yields a coherent sheaf
on the algebraic torus (K∗)n, which is regarded as a chart U∨α of the mirror.
If we know how to glue the charts {U∨α }α∈A together to obtain the corrected
mirror manifold Y ∨, this approach will provide a way to verify the proposal
of [31] rigorously.

However, the classical SYZ approach to mirror construction is not easy to
carry out. The difficulties arise both in the construction of Lagrangian fibra-
tions and in determining very complicated quantum corrections. Fortunately,
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Twin Lagrangian fibrations in mirror symmetry 1333

there are several interesting special cases where this approach does work.
Constructions of this kind are based on the fundamental paper of Auroux
[5], and later generalized in [3, 12, 22]. In all these cases, whenever quantum
corrections arise, they can be explicitly determined via algebraic counts of sta-
ble holomorphic discs defined by Fukaya-Oh-Ohta-Ono in [21]; and whenever
walls appear in B, they are of the form ∆× R>−ε, where ∆ is a codimension
1 set in B over which the singular Lagrangian fibers lie, see Appendix A.2. In
particular, since walls disjoint from each other, more complicated scattering
phenomenon does not appear. Our verifications in this paper depend heavily
on these constructions.

1.2. Statement of the results

Let X be a smooth toric Calabi-Yau manifold with complex dimension n,
which means that it’s a toric variety with trivial canonical bundle KX

∼= OX .
Consider the open Calabi-Yau manifold X = X \D, where D is a smooth
divisor in X to be specified in Section 2.1. The mirror construction in this
case is essentially carried out by Gross in [26]. It follows that the SYZ mirror
of X is the open Calabi-Yau manifold defined by

(2) X∨ =
{

(x1, . . . , xn−1, y, z) ∈ (K∗)n−1 ×K2 | yz = g(x1, . . . , xn−1)
}
,

for some regular function g on (K∗)n−1. Unless otherwise specified, we assume
K = Λ (or C whenever there is no convergence issue) where

(3) Λ =
{ ∞∑
i=0

aiT
λi
∣∣∣ ai ∈ C, λi ∈ R, λi →∞

}

is the Novikov field. By projecting to the first n− 1 coordinates, we get a
fibration on X∨ by affine conics in K2:

(4) p0 : X∨ → (K∗)n−1.

As suggested in [31], one should expect that X admits a twin Lagrangian
fibration. In Section 4.2, we will show that this is indeed the case: the La-
grangian fibration πG : X → B introduced by Goldstein and Gross [24, 26]
and a non-proper Lagrangian fibration πH which we will define in Section 2.1
form a twin Lagrangian fibration on X. Moreover, this twin Lagrangian fi-
bration structure

(5) B
πG←− X

πH−−→ B?
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1334 N. C. Leung and Y. Li

on X is shown to be naturally induced from the affine conic bundle structure
(4) on its mirror X∨ in the following sense.

Definition 1.1. Let Y be a Calabi-Yau manifold and Y ∨ be its mirror.
We say that a Lagrangian fibration π? : Y → B? is mirror to the fibration
ρ : Y ∨ → S by rigid analytic subvarieties on Y ∨ if for every regular fiber L?
of π?, equipped with any ξ? ∈ H1(L?, UK),

(6) suppH∗F(L?, ξ?) = ρ−1(s),

where ρ−1(s) ⊂ Y ∨ is a fiber of ρ. If π? and the SYZ fibration π : Y → B
form a twin Lagrangian fibration on Y , then we say that this twin Lagrangian
fibration is induced by the fibration ρ : Y ∨ → S.

Remark. It’s easy to see that (L?, ξ?) 7→ suppH∗F(L?, ξ?) is a slight gener-
alization of the Fourier type transformations introduced in [4] and [32]. The
coherent sheaf H∗F(L?, ξ?) is in general not globally defined, and we need
some gluing and analytic continuation procedure to make suppH∗F(L?, ξ?)
into a well-defined rigid analytic subvariety of Y ∨, this will be discussed in
detail in Section 3.

In the above definition, whether the Lagrangian fibration π? is proper
depends on whether the fibration ρ on the mirror is proper. Although for
most of the examples considered in this paper, π? is a non-proper Lagrangian
fibration, by taking Y to be the quotient of our examples by a certain real
lattice in Rn−1, it’s not difficult to get an induced Lagrangian torus fibration
on Y which is mirror to a fibration on Y ∨ by abelian subvarieties. The mirror
symmetry of these manifolds is studied in Section 10.2 of [3].

Since the heuristic argument which predicts the existence of a twin La-
grangian fibration on certain symplectic manifolds depends on a good under-
standing of certain moduli spaces of sheaves supported on the fibers of ρ, there
is usually some mild assumptions on the singular fibers of ρ, see Section 4.1.

Here we use the notation UK to denote the unitary group U(1) when
K = C or

(7) UΛ =
{
a0 +

∞∑
i=1

aiT
λi
∣∣∣ a0 6= 0, λi > 0

}

when K = Λ.
With the above notation, our first result can be stated as follows.

Theorem 1.1. Let X be an n-dimensional toric Calabi-Yau manifold, then
there is a twin Lagrangian fibration B

πG←− X
πH−−→ B? on X = X \D of index
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1. Moreover, this twin Lagrangian fibration is induced from the affine conic
bundle structure p0 : X∨ → (K∗)n−1 in the sense of Definition 1.1.

In the above, the index of a twin Lagrangian fibration is defined to be
the minimal codimension of the intersection locus (as a smooth submanifold
in an SYZ fiber) between the fibers of πG and πH .

Similar constructions can be done in the converse direction, by endowing
the mirror X∨ with a suitable symplectic structure ωε to be specified below.
Algebraically, X∨ is a partial compactification of X∨ by a divisor D∨, that
can be realized as the blow up of V × C along the codimension 2 subvariety
H × 0 ⊂ V × C, where V is an (n− 1)-dimensional toric variety and H ⊂ V
is a smooth hypersurface with defining equation

(8) g(x) = 0,x = (x1, . . . , xn−1) ∈ V.

In this case, a piecewise smooth Lagrangian fibration πA : X∨ → B∨ is con-
structed by Abouzaid-Auroux-Katzarkov in [3]. With some additional as-
sumptions on V and H to exclude higher order instanton corrections, the
SYZ mirror construction can be carried out in a similar way as outlined in [5],
so we obtain a rigid analytic Calabi-Yau manifold X, such that X = X tD
is a toric Calabi-Yau variety. Here, X, X and D are the same as before. In
this case, the defining section w of the toric boundary divisor DX defines a
fibration

(9) w0 : X → K∗

whose generic fibers are hypersurfaces in X isomorphic to (K∗)n−1, and w0
can be identified with w by adding some constant. According to [31], such
an additional geometric structure on X should induce a twin Lagrangian
fibration on X∨. In Section 2.2, we will construct a non-proper piecewise
smooth Lagrangian fibration

(10) πL : X∨ → B∨? ,

and show that πA and πL form the expected twin Lagrangian fibration on X∨
in Section 4.3.

Theorem 1.2. Let X∨ be the blow up of the toric variety V × C along H ×
0, where H ⊂ V is a nearly tropical hypersurface in the sense of Definition 2.2
and V satisfies Assumption A.1. Then there is a twin Lagrangian fibration
B∨

πA←− X∨
πL−→ B∨? on X∨ of index n− 1. Moreover, this twin Lagrangian

fibration is induced from the fibration w0 : X → K∗ on the mirror manifold X.
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The results above can be generalized to the intermediate cases when H ⊂
V is a complete intersection, then the geometric structure on X can be T k-
invariant for any 1 ≤ k ≤ n− 1. These results should be compared with a
speculation of Teleman [48] on the mirror of the abelian gauge theory, see
also [41]. More explicitly, a Hamiltonian T -action on a symplectic manifold
Y is believed to be mirror to a holomorphic map ρ : Y ∨ → T∨C , where T∨C is
the dual complexified torus of T . In our case, ρ is not only a regular map
but actually a fibration, which should then lead to more delicate geometric
structures on Y , namely a twin Lagrangian fibration which is compatible with
the Hamiltonian T -action.

When dimC(X∨) = 2, the mirror symmetry between the fibrations πL and
w0 established in Theorem 1.2 gives geometric understandings of homologi-
cal mirror symmetry for X∨. In Section 5.1, we introduce a Fukaya category
Fuk(πL) associated to the Lagrangian fibration πL on X∨ which captures the
information coming from the singular fibers of πL. There is then an equiva-
lence

(11) DFuk(πL) ∼= Dπ
sing
(
w−1(0)

)
,

where Dπ
sing
(
w−1(0)

)
is the idempotent completion of the triangulated cate-

gory of singularities associated to the fibration w : X → K, defined by Orlov
in [35]. This very simple equivalence provides further evidence to the fact that
the fibrations πL and w0 are mirror to each other.

Motivated by Section 4 of Smith’s very beautiful paper [46], we consider
the partial compactification BlK(C2) of X∨, which is just C2 blown up at
a finite set of points K ⊂ C2. We show that in BlK(C2) (equipped with a
suitable monotone symplectic form) there are a finite number of Lagrangian
tori T̃1, . . . , T̃p which split-generate the non-zero eigensummand of the mono-
tone Fukaya category Fuk

(
BlK(C2)

)
(see Proposition 5.2). In this case, the

thimbles ∆1, . . . ,∆p retains under the fiberwise partial compactification

(12) p̃0 : BlK(C2)→ C

of the Lefschetz fibration p0 on the smoothing of Ap−1 singularities X∨p−1 ⊃
X∨, and they are isomorphic to the idempotents of T̃1, . . . , T̃p in TwFuk(πL)
up to degree shifts. These considerations lead to the following result, which
shows that the equivalence (11) fits naturally into a commutative diagram,
and in particular interprets the homological mirror symmetry for BlK(C2) as
the mirror symmetry between the fibration structures πL and w0.
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Theorem 1.3. Let Dπ(X,W ) be the split-closed triangulated category of D-
branes of type B defined by Orlov [35]. The diagram

(13) DFuk(πL)

Φ•
��

Φ(e+)
// DπFuk

(
BlK(C2)

)
ΦCHL

��

Dπ
sing
(
w−1(0)

) Φ(e+)∨
// Dπ(X,W )

commutes, where Φ• is the equivalence (11), and ΦCHL is some variation of
the localized mirror functor defined in [16, 17].

The definitions of the functors Φ(e+) and Φ(e+)∨ will be given in Sec-
tion 5.1.

In the context of family Floer theory, an obvious application of a twin
Lagrangian fibration is that one can use the additional Lagrangian fibration
to detect the non-displaceability of certain SYZ fibers. However, when singular
fibers are involved, this is technically not easy. In this paper, we look at a
particularly simple example, based on the observation that the singular fibers
of πL contain a basis of Lefschetz thimbles ∆1, . . . ,∆p of p0. By studying the
Floer cohomologies between ∆i and the Lagrangian torus fibers of πA, we are
able to detect the non-displaceable Lagrangian tori in

(14) X∨p−1 =
{

(x, y, z) ∈ C3 | yz = xp − 1
}
.

Combining this with the work of Wu [52] on finite group actions on Fukaya
categories, we can then compute the Floer cohomologies of certain Lagrangian
tori Tp,q in the rational homology balls Bp,q = X∨p−1/Gp,q with Gp,q

∼= Zp, see
Section 5.2. This recovers the following result due to Lekili-Maydanskiy.

Theorem 1.4 (Lekili-Maydanskiy [30]). There exist Floer theoretical es-
sential tori Tp,q ⊂ Bp,q, and

(15) HF∗(Tp,q, Tp,q) ∼= H∗(T 2,K)

additively. In particular, the symplectic cohomology SH ∗(Bp,q) 6= 0.

The Floer cohomologies HF∗(Tp,q, Tp,q) are computed by Lekili and May-
danskiy earlier in [30] over Z2 using the deep results of Biran and Cornea [8]
on pearl complexes.
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1.3. Arrangement of this paper

The paper is organized as follows. Section 2 contains some preliminaries on
constructing Lagrangian fibrations using symplectic reduction, and based on
this we construct the Lagrangian fibrations πH and πL. Using family Floer
theory, we define the mirror transformation (L, ξ) 7→ suppH∗F(L, ξ) in Sec-
tion 3. This is the main tool we use in Section 4, where we show that the
twin Lagrangian fibrations on X and X∨ are mirror to fibrations by rigid
analytic subvarieties on X∨ and X respectively. Section 5 focuses on the spe-
cial case of complex surfaces, Theorems 1.3 and 1.4 will be proved there.
The background materials concerning SYZ mirror constructions will be used
frequently in this paper, so we collect them in Appendix A for readers’ con-
venience. The localized mirror functor Φ̂CHL introduced in [16] is only used
in proving Theorem 1.3, which will be briefly recalled in Appendix B.
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2. Construction of Lagrangian fibrations

2.1. Lagrangian fibrations on toric Calabi-Yau manifolds

Let N ∼= Zn be a lattice and N∨ be its dual lattice. Σ is a strongly convex
simplicial fan supported in NR = N ⊗ R. Associated to Σ there is a smooth
toric variety X := XΣ. Denote by vα the primitive generators of the rays of
Σ, then the Calabi-Yau condition KX

∼= OX is equivalent to the existence of
a ν ∈ N∨ such that

(16) 〈ν, vα〉 = 1

for every vα. We will denote the set which parametrizes vα by A.
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From now on we assume that X is a toric Calabi-Yau manifold with
dimC(X) = n. It’s an easy observation that the meromorphic function w :
X → C corresponding to ν ∈ N∨ is actually holomorphic, therefore defines
a global coordinate function. Let TC(N) ⊂ X be the maximal cell inside the
toric variety X, which is defined by N ⊗Z C∗.

Embedded in TC(N), there is a real torus TR(N) which acts on X effec-
tively, making X into a toric symplectic manifold. Define

(17) Nν = {n ∈ N | 〈ν, n〉 = 0} ,

which determines an (n− 1)-dimensional real torus TR(Nν). Associated to
the Hamiltonian TR(Nν)-action, there is a moment map

(18) µν : X → t∗R(Nν) ∼= Rn−1,

where tR(Nν) is the Lie algebra of TR(Nν). Denote by D the anticanonical
divisor

(19) {w = −1} ⊂ X,

and let X = X \D. A standard symplectic reduction argument reduces the
problem of producing a special Lagrangian fibration on X to that of producing
a special Lagrangian fibration on each reduced space. The observation that
these reduced spaces can be identified with the w coordinate plane leads to
the following theorem.

Theorem 2.1 (Gross [26], Goldstein [24]). Let (X,ωX) be a toric Calabi-
Yau manifold equipped with its toric Kähler form, then πG : X → Rn defined
by

(20) πG =
(

log |w + 1|, µν
)

is a special Lagrangian torus fibration with respect to the holomorphic volume
form

(21) Ω = ΩX

in(w + 1) ,

where ΩX = dz1 ∧ · · · ∧ dzn when restricted to TC(N).

It’s not difficult to verify that the set of critical points of πG is given by
the union of codimension 2 toric strata in X. From this we see that there
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is a codimension 2 discriminant locus ∆ ⊂ B ' Rn inside {0} × Rn−1 over
which the fibers of πG become singular, see [26] for an explicit description. In
particular, ∆ can be decomposed as a disjoint union of smooth submanifolds.
For example, when dimC(X) = 3, ∆ ⊂ R3 is a trivalent graph, and we have
the decomposition

(22) ∆ = ∆d t∆g

into vertices ∆d and edges ∆g. The singular fiber π−1
G (•) over • ∈ ∆g is ob-

tained by collapsing a circle in the regular fiber L down to a point. These are
called generic singular fibers. Passing from an edge to a vertex in ∆d makes
the corresponding Lagrangian fiber ”more singular”, which means there is a
2-torus in L which collapses to a point. Lagrangian fibrations with such a
topological behavior near a trivalent vertex in ∆d are called positive in the
sense of [25] and [11]. The situation in higher dimensions is similar.

Using the same method we get the following.

Example 2.1. The map πH : X → S1 × Rn−1 defined by

(23) πH =
(

arg(w + 1), µν
)

is a Lagrangian fibration on X with respect to ωX .

It’s clear from the definition that the Lagrangian fibration πH is smooth
and non-proper, and its regular fibers are homeomorphic to T n−1 × R. On the
other hand, it’s easy to see that with the above definition, the set of critical
points of the map πH coincides with that of πG, from which we obtain an
identification between the discriminant loci of the Lagrangian fibrations πH
and πG.

The singular fibers of πH has a similar description with that of πG. For a
generic singular fiber π−1

H (•) of πH , it can be decomposed as

(24) π−1
H (•) = L+ ∪ L−,

where L± are Lagrangian submanifolds homeomorphic to T n−2 × R2 and L+

intersects L− cleanly along a T n−2. Over lower dimensional components of
∆ (if non-empty), the fibers of πH become “more singular” in the sense that
one of the orbits of the Hamiltonian TR(Nν)-action degenerates to a lower-
dimensional torus T k with k < n− 2. In particular, over the vertices in ∆,
the fiber becomes a cone over T n−1.

The following follows easily from the definitions of the Lagrangian fibra-
tions πG and πH .
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Proposition 2.1. Let L be a regular fiber of πG, then for any fiber L? of
πH which intersects L non-trivially, the intersection L ∩ L? is an (n− 1)-
dimensional sub-torus of L. Similarly, for any fiber L of πG which has non-
trivial intersection with a regular fiber L? of πH , it intersects L? cleanly along
a T n−1.

Proof. Fix an L so that

(25) L =
{
|w + 1| = C1, µν = C2

}
,

where C1 > 0 and C2 ∈ Rn−1 are constants. For any point in L ∩ L?, it satis-
fies µν = C2, which implies that any L? with L ∩ L? 6= ∅ has the form

(26) L? =
{

arg (w + 1) = C3, µν = C2
}

for some C3 ∈ S1. For the reduced coordinate w, the ray specified by arg(w +
1) = C3 intersects the circle |w + 1| = C1 precisely at one point. This shows
that L ∩ L? ' T n−1, where the intersection locus is a Hamiltonian orbit of
the TR(Nν)-action.

Similar argument applies to any regular fiber L? of πH . �

2.2. Lagrangian fibrations on affine conic bundles

Let V be an (n− 1)-dimensional toric variety, H ⊂ V a nearly tropical hy-
persurface (i.e. H belongs to a certain degenerating family, Hτ , converging to
certain tropical limit, which we will define below). Denote by X∨ the blow up
of V × C along H × 0. Here we follow closely the approach of [3] to introduce
the A-side geometric setup of X∨.

Let ΣV ⊂ Rn−1 be the fan associated to V , which is generated by a set
of primitive integral vectors σ1, . . . , σr. Let Hτ ⊂ V be a family of smooth
algebraic hypersurfaces with 0 < τ < 1, and assume that they are transverse
to the toric boundary divisor DV ⊂ V . To understand the combinatorial na-
ture of the hypersurfaces Hτ ⊂ V , we can pass to the tropical limit τ → 0
and look at the degeneration of Hτ . More precisely, let x = (x1, . . . , xn−1) be
the coordinates of the open stratum (C∗)n−1 ⊂ V , which we denote by V0.
Suppose that Hτ are defined by the following equations

(27) gτ (x) =
∑
α∈A

cατ
ρ(α)xα = 0,
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where A ⊂ Zn−1 consists of the group characters of V0, cα ∈ C∗ and ρ : A→ R
is a map satisfying certain convexity property, which we will define shortly
below.

An alternative way to describe Hτ is to regard it as the zero locus of a
section gτ of some nef line bundle L→ V defined by the convex piecewise
linear function ` : ΣV → R with integer slopes. The polytope PL associated
to L is given by

(28) PL =
{
v ∈ Rn−1 | 〈σi, v〉+ `(σi) ≥ 0,∀1 ≤ i ≤ r

}
,

then PL ∩ Zn−1 can be identified with a basis of H0(X,O(L)
)
. The condition

that Hτ is transversal to DV is equivalent to the requirement that A ⊂ PL ∩
Zn−1 intersects nontrivially with the closure of each face of PL.

We want to impose an additional convexity assumption on ρ. To do this,
let P be a polyhedral decomposition of the convex hull Conv(A) ⊂ Rn−1,
whose set of vertices is given by P(0) = A. We assume further that P is reg-
ular, i.e. every cell of P is congruent to a standard simplex under the action
of GL(n− 1,Z). The map ρ : A→ R is said to be adapted to P if it’s the re-
striction of a convex piecewise linear function ρ̃ : Conv(A)→ R on A, whose
maximal domains of linearity are exactly those cells of P.

Definition 2.1 ([3]). We say that the family of hypersurfaces Hτ ⊂ V has
a maximal degeneration for τ → 0 if it is defined by (27) and ρ is adapted to
some regular polyhedral decomposition P.

For every fixed hypersurface Hτ , consider the image of Hτ ∩ V0 under the
map

(29) Logτ : (x1, . . . , xn−1) 7→ 1
| log τ |

(
log |x1|, . . . , log |xn−1|

)
.

This is known as an amoeba Πτ ⊂ Rn−1. As τ → 0, Πτ ⊂ Rn−1 converges to
a tropical hypersurface Π0 ⊂ Rn−1 defined by the tropical polynomial

(30) χ(ξ) = max
{
〈α, ξ〉 − ρ(α) | α ∈ A

}
.

In fact, Π0 is just the dual cell complex of P, in particular the connected
components of Rn−1 \ Π0 are labeled by the elements of P(0) = A, depending
on which term in (30) is the maximal one.

Definition 2.2 ([3]). A smooth hypersurfaceH ⊂ V is called nearly tropical
if it appears as a member of a maximally degenerating family of hypersurfaces,
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with the additional property that its amoeba Π = Log(H ∩ V0) is contained
in a neighborhood of the tropical hypersurface Π0, and there is a retraction
from Π to Π0.

Roughly speaking, nearly tropical means that H is close enough to its
tropical limit, so that the complement of Πτ in Rn−1 have same combinatorial
type as that of Rn−1 \ Π0 in the sense that Rn−1 \ Πτ and Rn−1 \ Π0 have the
same number of chambers and the adjacency between chambers is preserved
when passing to the limit τ → 0. The assumption that the family is maximally
degenerating is intended to ensure that the mirror X of X∨ constructed in
Appendix A.2 is smooth.

To equipX∨ with an appropriate symplectic structure, we first write down
the equation of X∨ using the coordinates on V × C and the fiber coordinates
of L. Recall that the defining equation g(x) of H can be identified with a
section of the line bundle L→ V . The normal bundle νH×0 ⊂ V × C is given
by (L× C)⊕ OV×C|H×0, so we can realize X∨ as a hypersurface in the total
space of the fiberwise compactification

(31) P
(
(L× C)⊕ OV×C

)
→ V × C.

More explicitly, denote by x and y the coordinates on V and C respectively,
then

(32) X
∨ =

{(
x, y, (u : v)

)
∈ P

(
(L× C)⊕ OV×C

)
| g(x)v = yu

}
.

Note that this is a partial compactification of the affine conic bundle X∨

defined in (2) by the anticanonical divisor

(33) D∨ = p−1(DV × C) ∪ Ṽ ,

where p : X∨ → V × C denotes the blow up map and Ṽ is the proper trans-
form of V . Consider the following S1-action on X

∨:

(34) eiθ ·
(
x, y, (u : v)

)
=
(
x, eiθy, (u : eiθv)

)
.

This action preserves the exceptional divisor E and acts by rotation on each
fiber of the trivial P1-bundle

(35) p|E : E → H × 0.

Also the the fixed point set of the S1-action (34) is given by Ṽ t H̃, where H̃
consists of the points (0 : 1) in each fiber of (35).
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To equip X
∨ with an S1-invariant Kähler form ωε, [3] introduces an S1-

invariant C∞ cutoff function η : X∨ → R with supp(η) lying inside a tubular
neighborhood of H × 0 and η = 1 near H × 0. Set

(36) ωε = p∗ωV×C + iε

2π∂∂̄
(
η(x, y) log

(
|g(x)|2 + |y|2

))
.

This is a well-defined S1-invariant Kähler form on X
∨ provided that ε > 0

is small enough. More precisely, ε needs to be chosen so that a standard
symplectic neighborhood of size ε of H × 0 can be embedded S1 equivariantly
into supp(η). To achieve this, the following assumption is imposed in [3]:

Assumption 2.1. supp(η) ⊂ p−1(UH ×Bδ), where UH ⊃ H is a standard
symplectic neighborhood of H with area δ and Bδ ⊂ C is the disc of radius δ.

We now review the construction of the Lagrangian torus fibration πA on
(X∨, ωε) in [3]. First note that the S1-action (34) on X∨ is Hamiltonian with
respect to ωε, denote by µ1 : X∨ → R the associated moment map. By the
expression (36) of ωε, µ1 is given by

(37) µ1(x, y) = π|y|2 + ε|y| ∂
∂|y|

(
η(x, y) log

(
|g(x)|2 + |y|2

))
.

Here we prefer to make a slight modification and set µ0 = µ1 − ε, so it takes
the value −ε over Ṽ . The generic level sets of µ0 are smooth, with the excep-
tion that µ−1

0 (0) is singular along H̃ ⊂ (X∨)S1 .
Denote by

(38) X
∨
red,λ = µ−1

0 (λ)/S1

the reduced space at λ. For λ > −ε, we have a diffeomorphism X
∨
red,λ
∼= V .

Also for λ� 0, since µ−1
0 (λ) is disjoint from supp(η), then by (36), we have

a symplectomorphism (X∨red,λ, ωred,λ) ∼= (V, ωV ). But for λ < 0, ωred,λ differs
from the toric Kähler form ωV in a tubular neighborhood of H.

The remedy is to average ωred,λ with respect to the standard T n−1-action
on the toric variety V :

(39) ωV,λ = 1
(2π)n

∫
Tn−1

t∗ωred,λdt,

which leads to a toric Kähler form ωV,λ for λ 6= 0. Since ωred,λ and ωV,λ lie in
the same cohomology class, the following Moser type lemma can be obtained.
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Lemma 2.1 (Abouzaid-Auroux-Katzarkov [3], Lemma 4.1). There
exists a family of homeomorphisms φλ : (X∨red,λ, ωred,λ)→ (V, ωV,λ) for λ ∈
R>−ε such that φ∗λωV,λ = ωred,λ and

• φλ preserves DV ⊂ V ;

• for λ 6= 0, φλ restricted to V0 is a diffeomorphism;

• φλ depends piecewise smoothly on λ, and smoothly except when λ = 0.

This is the key lemma which enables us to complete the construction of
a Lagrangian torus fibration on X∨. Namely one first applies the diffeomor-
phism φλ to identify X∨red,λ with the toric symplectic manifold (V, ωV,λ), then
the map Logτ defined by (29) will induce a Lagrangian torus fibration on V0,
which together with the Hamiltonian S1 orbits gives a Lagrangian fibration
on X∨.

Theorem 2.2 (Abouzaid-Auroux-Katzarkov [3]). The map πA : X∨ →
Rn−1 × R>−ε defined by

(40) πA(p) =
(
Logτ ◦ φλ(x), µ0(p) = λ

)
,

where x ∈ X∨red,λ is the S1 orbit of p ∈ X∨, is a Lagrangian torus fibration
on X∨ with respect to the symplectic form ωε.

In general, the fibration πA is only piecewise smooth when dimC(X∨) ≥
3. In fact, this coincides with various expectations in the study of mirror
symmetry from the vewpoint of T -duality, see for example [25], [27] and [11].
More precisely, according to [25], T -duality in dimension 3 is topologically
a duality between positive and negative vertices of the discriminant locus.
However, it seems near a negative vertex, the local model of and the expected
Lagrangian torus fibration cannot be smooth, instead a piecewise smooth
fibration can be constructed, see for example [11]. In our case, every vertex in
∆d is positive, and πG is a smooth fibration. This explains why, as the dual
of πG, the Lagrangian fibration πA should only be piecewise smooth.

When dimC(X∨) ≥ 3, the set of critical points of πA can be identified with
the hypersurface H ⊂ V0, therefore under the projection of the map Logτ ◦ φε,
its discriminant locus ∆ ⊂ B∨ is an amoeba Π̃ ⊂ Rn−1 × {0} diffeomorphic
to Πτ , and the generic singular fibers of πA over Πτ are topologically circle
fibrations over T n−1 ⊂ V0, with the circle fibers over H ⊂ V0 being collapsed
to points.
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Using the same method we can construct a piecewise smooth non-proper
Lagrangian fibration on X∨.

Example 2.2. The map πL : X∨ → T n−1 × R>−ε defined by

(41) πL(p) =
(
Arg ◦ φλ(x), µ0(p) = λ

)
,

where

(42) Arg(x) =
(

arg(x1), . . . , arg(xn−1)
)

is a piecewise smooth Lagrangian fibration on X∨ with respect to ωε, with
its generic fiber L? homeomorphic to Rn−1 × S1.

From now on, we shall fix the same choice of the family of homeomor-
phisms {φλ} in the construction of the Lagrangian fibrations πA and πL.

It’s straightforward to verify that the set of critical points of πL coincides
with that of πA. From this we see that the discriminant locus of πL is the
image of the hypersurface H ⊂ V0 under the map Arg ◦ φε. A generic singular
fiber of πL is topologically the singular space obtained by collapsing the S1-
orbits in Rn−1 × S1 of the Hamiltonian circle action over the hypersurface H
to points.

Proposition 2.2. Let L be a regular fiber of πA, then for any fiber L? of
πL which intersects L non-trivially, L ∩ L? ∼= S1. Similarly, for any fiber L
of πA which has non-trivial intersection with a regular fiber L? of πL, the
intersection is a circle.

Proof. Consider a regular fiber L of πA, it be written as

(43) L =
{
Log ◦ φC6(x) = C5, µ0(p) = C6

}
,

where C5 ∈ Rn−1 and C6 ∈ R>−ε are constants. If L ∩ L? 6= ∅, the fiber L? of
πL must satisfy

(44) L? =
{
Arg ◦ φC6(x) = C7, µ0(p) = C6

}
,

where C7 ∈ T n−1. Since
{
Log(x) = C5

}
and

{
Arg(x) = C7

}
intersect transver-

sally at one point in V0, it’s easy to see that L ∩ L? is a circle, which is in
fact a Hamiltonian S1-orbit of the action (34).

Similar considerations hold for any regular fiber L? of πL. �
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We now introduce the notion of a twin Lagrangian fibration, whose mo-
tivation from mirror symmetry will be discussed later in Section 4.1.

Definition 2.3. A twin Lagrangian fibration on the symplectic manifold Y
consists of two Lagrangian fibrations π : Y → B, π? : Y → B? (which may
contain singular fibers), such that for every regular fiber L of π, any fiber
L? (possibly singular) of π? with L ∩ L? 6= ∅ intersects L cleanly along a
smooth submanifold. The same is required for every regular fiber of π?. Such
a structure will be denoted by

(45) B
π←− Y

π?−→ B?.

The index of a twin Lagrangian is defined to be codimR(L ∩ L?) in L or L?.

Our discussions in this section implies the following:

Proposition 2.3. The Lagrangian fibrations πG and πH form a twin La-
grangian fibration of index 1 on X, and the Lagrangian fibrations πA and πL
form a twin Lagrangian fibration of index (n− 1) on X∨.

3. Family Floer theory and mirror transformation

In this section, we introduce a mirror transformation

(46) (L, ξ) 7→ suppH∗F(L, ξ)

by applying the formalism of family Floer theory developed in [1, 2, 19]. The
expositions here follows [1–3, 20].

We begin with the local case. Let π : Y → B be a Lagrangian torus bundle
with a Lagrangian section, so that as integral affine manifolds

(47) (B,A) ∼= (P,Astd),

where P ⊂ Rn is the interior of a convex polytope equipped with the standard
integral affine structure. By Arnold-Liouville theorem, we have the identifi-
cations

(48) TbB ∼= H1(Fb,R), T ∗b B
∼= H1(Fb,R),
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where Fb is any fiber of π. Assuming π2(B) = 0, the mirror Y ∨ of Y is the
rigid analytic variety defined by

(49) Y ∨ ≡ val−1(B) =
⊔
b∈B

H1(Fb, UK) ⊂ H1(Fb,K∗),

where val : Y ∨ → B denotes the valuation.

Definition 3.1. A Lagrangian submanifold L in a symplectic maniold Y is
tautologically unobstructed if there exists a tame almost complex structure
JL on Y such that L bounds no non-constant JL-holomorphic disc.

Let L ⊂ Y be a tautologically unobstructed Lagrangian submanifold which
is relatively Spin, we recall the local construction of the family Floer module
F(L) associated to L due to [1, 2].

For Fb a fiber of π : Y → B, assume that there is a (compactly supported)
Hamiltonian diffeomorphism φ so that the intersection Fb ∩ φ(L) is transverse
for every b ∈ B with Fb ∩ φ(L) 6= ∅. For x, y ∈ Fb ∩ φ(L), denote by Mb(x, y)
the moduli space of solutions u : R× [0, 1]→ Y of the equation

(50) (∂s − Jt∂t)u = 0

with Lagrangian boundary conditions

(51) u(s, 0) ∈ Fb, u(s, 1) ∈ φ(L)

and asymptotic conditions

(52) lim
s→−∞

u(s, t) = x, lim
s→+∞

u(s, t) = y,

where {Jt}t∈[0,1] is a family of tame almost complex structures so that J1 =
φ∗(JL). Associated to u ∈Mb(x, y) there is an orientation line ou of the lin-
earized Cauchy-Riemann operator Du at u.

Since L is assumed to be relatively Spin, standard index theory assigns
a rank 1 free abelian group ox to each intersection point x ∈ Fb ∩ φ(L), and
there is a canonical isomorphism

(53) ou ⊗ ox ∼= oy.

Assuming deg y = deg x+ 1, for a generic choice of {Jt} the moduli space
Mb(x, y) consists only of rigid elements, and kerDu is 1-dimensional. Fixing
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the orientation of kerDu corresponding to the positive direction one gets a
canonical map

(54) ∂u : ox → oy.

The local version of family Floer module is defined as

(55) F(L) =
⊕

x∈Fb∩φ(L)
OY ∨ ⊗ ox.

To define the associated differential δ : F(L)→ F(L)[1], for each intersection
point x ∈ φ(L) ∩ Fb, choose a function gx : B → R such that the Lagrangian
section of π : Y → B is obtained by fiberwise addition of dgx. This choice de-
termines a path γ on Fb from x to the basepoint, i.e. the intersection between
Fb and the fixed Lagrangian section. Define

(56) [∂u] ∈ H1(Fb,Z)

to be the homology class of the loop in Fb obtained by concatenating the
boundary of the strip ∂u with γ. Define

(57) δ|ox :=
⊕
y

∑
u∈Mb(y,x)

TE(u)z[∂u] ⊗ ∂u,

where E(u) is the energy of u, and z is the coordinate on Y ∨. It’s a non-trivial
fact that the infinite sum

∑
u∈Mb(y,x) T

E(u)z[∂u] converges in T -adic topology
and defines a function in OY ∨ , see [1, 20].

Passing from local to global requires carefully choosing the Floer data
and establishing the relevant continuation maps. We are not going to recall
these issues as they are not needed here, see [1, 2] for more details.

Passing to cohomology gives us a coherent sheaf H∗F(L) over Y ∨, with its
stalk over (Fb, ξb) ∈ Y ∨ given by the Floer cohomology group HF∗

(
(Fb, ξb), L

)
.

The above construction has an obvious generalization to the case when
L is equipped with a unitary rank 1 local system ξ, and the coherent sheaf
H∗F(L, ξ) has its stalk over (Fb, ξb) the Floer cohomology group

(58) HF∗
(
(Fb, ξb), (L, ξ)

)
.

Notice that L ⊂ Y is not assumed to be compact in the above definition,
since Fb is closed and both Lagrangian submanifolds are tautologically un-
obstructed, the Floer cohomology groups (58) are well-defined in the usual
sense.
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Now consider the more general case when π : Y → B is a Lagrangian
fibration with possibly singular fibers but whose generic fiber has vanishing
Maslov class. This is the case of πG and πA introduced above, see for example,
Proposition 5.1 of [3] for details. Let

{
(Lt, Jt)

}
t∈[0,1] be a path between the

Lagrangian fibers L0, L1 ⊂ Y , and Jt is a family of almost complex structures
which are fixed at infinity. For the cases we deal with in this paper, the
following assumption is always satisfied for any two regular fibers Fp and Fq
of π.

Assumption 3.1. The path
{
(Lt, Jt)

}
t∈[0,1] can be decomposed into finitely

many sub-paths
{
(Lt, Jt)

}
t∈[t0,t1] so that all simple stable holomorphic discs

lie in a fixed class in H2(Y, Lt0).

Under this assumption, we have a birational map

(59) H1(L0,K∗) 99K H1(L1,K∗)

whose construction is essentially due to Fukaya in [20], see also [49]. After
specializing to the case when L0 = Fp and L1 = Fq, we get a wall-crossing
map

(60) Υαβ : H1(Fp,K∗) 99K H1(Fq,K∗).

In the cases treated in Appendix A, there exist charts Uα, Uβ ⊂ Y fitting
into the local picture above, such that Fp ⊂ Uα, Fq ⊂ Uβ and we have the
identifications

(61) U∨α
∼= H1(Fp,K∗), U∨β

∼= H1(Fq,K∗),

where U∨α and U∨β are rigid analytic T -duals of Uα and Uβ respectively. So the
birational maps Υαβ can be used to glue different charts U∨α and U∨β together
to obtain the corrected, completed SYZ mirror

(62) Y ∨ =
⊔
α∈A

H1(Fp,K∗)/ ∼,

where the equivalence relation ∼ identifies points which are mapped to each
other under Υαβ.

The local construction of the family Floer module can be applied each
chart Uα ⊂ Y . In particular, for any Lagrangian submanifold L ⊂ Y which
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is oriented, Spin, and tautologically unobstructed when restricted to Uα, we
obtain a rigid analytic subvariety

(63) suppH∗F(Lα, ξα) ⊂ U∨α ,

where Lα = L|Uα and ξα is the one induced from certain ξ ∈ H1(L,UK).
Under the additional assumption that

(64) Υαβ

(
suppH∗F(Lα, ξα)

)
= suppH∗F(Lβ, ξβ),

the rigid analytic subvarieties coming from local constructions can be glued
together to obtain a well-defined rigid analytic subvariety

(65) suppH∗F(L, ξ) ⊂ Y ∨,

which is defined to be our mirror transformation of (L, ξ).
For the examples considered in this paper, namely when L is a regular

fiber of πH or πL, the gluing condition (64) above is satisfied. This is due
to the fact that in our case, the wall-crossing map Υαβ is the identity when
restricted to the subvarieties suppH∗F(Lα, ξα) of U∨α . See Sections 4.2 and 4.3
for details.

4. Twin Lagrangian fibrations

4.1. Geometric setup

This subsection is essentially an overview of [31]. We explain the motivation of
introducing the notion of a twin Lagrangian fibration (Definition 2.3) and give
some speculations of such a geometric structure. For simplicity, we consider
here the mirror of an elliptic Calabi-Yau manifold. With some additional
effort, one should be able to extend most of the considerations here to the
general case of Calabi-Yau manifolds fibered by rigid analytic subvarieties.

Let Y ∨ be an n-dimensional Calabi-Yau manifold over K, with ρ : Y ∨ →
S being an elliptic fibration on Y ∨. Suppose that we have a well-defined
compactified relative Jacobian

(66) Y∨ := Jac(Y ∨/S),

which is the moduli space of semistable sheaves of rank one, degree zero
supported on the fibers of ρ. Mirror symmetry predicts that such a moduli
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space can be identified with certain moduli space Y of Lagrangian branes
(L?, ξ?) with ξ ∈ H1(L,UK) on the mirror symplectic manifold Y .

For simplicity, we impose the following additional assumptions:

• The Lagrangian submanifolds L? are oriented, Spin and unobstructed.

• The elliptic fibration ρ : Y ∨ → S has a section.

• The singular fibers of ρ only have nodal or cuspidal singularities.

Since the elliptic fibration ρ may contain singular fibers, L? may be singular
as well. Here we assume that L? is an immersed Lagrangian submanifold, so
that it has a well-defined Floer theory. L? (decorated with local systems) in Y

are disjoint (or disjoinable by Hamiltonian isotopies) from each other in view
of the fact that

(67) Ext∗(OF1 ,OF2) = 0

for two different fibers F1, F2 of ρ. Since dimK(Y∨) = n, we see that dimR(Y) =
2n, which implies that these Lagrangian submanifolds foliate at least an open
subset Y ◦ of Y . If one looks closer, the Lagrangians L? should actually foliate
the whole space Y . In fact, the expected isomorphism

(68) HF∗(L?, L?) ∼= Ext∗(OF ,OF )

suggests that the Lagrangian submanifolds L? are tori, where F is a fiber
of ρ so that OF is mirror to L?. Treating the foliation on Y ◦ by Lagrangian
submanifolds L?’s as an SYZ fibration, its mirror (Y ◦)∨ can be identified
with the relative Jacobian Y∨ of Y ∨. By our assumptions on ρ, there is an
isomorphism Y∨ ∼= Y ∨. This implies that (Y ◦)∨ ∼= Y ∨. Passing to the mirror
side, the embedding ι : Y ◦ ↪→ Y should then be a symplectomorphism into
ι(Y ◦). In conclusion, besides the putative SYZ fibration π : Y → B, the mirror
of an elliptic Calabi-Yau manifold carries another Lagrangian fibration π? :
Y → B?.

Generalizing the above picture, it also makes sense to consider other fi-
brations on Y ∨ by rigid analytic subvarieties, which should still induce La-
grangian fibrations on Y . However, in general, it could be difficult to make
sense of the moduli space Y∨. This is the case of the Lagrangian fibrations
πH and πL defined above in Section 2, as these fibrations are induced from
fibrations on Y ∨ by non-complete subvarieties.

The first assumption on the elliptic fibration ρ in the heuristic arguments
above is actually not necessary. This is illustrated in the following example,
which is also considered in [1].
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Example. Consider R4 with coordinates x1, x2, x3, x4 and equipped with
the standard symplectic form ωC2 . Let Γ ′ ⊂ R4 be the lattice defined by trans-
lations of integral vectors in the directions x2, x3, x4 and the transformation

(69) (x1, x2, x3, x4)→ (x1 + 1, x2, x3, x4 + x3).

The symplectic form ωC2 is invariant under the action of Γ ′ and therefore de-
scends to the quotient M = R4/Γ ′. M is called the Kodaira-Thurston mani-
fold [50]. In [45] it is noticed that on M there are two inequivalent Lagrangian
fibrations. The first one π : M → B is obtained by projecting to the coordi-
nates x2 and x3. It has a Lagrangian section and we regard it as the SYZ
fibration on M . The second fibration is a principal T 2-bundle π? : M → B?,
and therefore has no Lagrangian section. π? is obtained by projecting to
the coordinates x1 and x3. One can see that the rigid analytic T -dual of
π : M → B is a primary Kodaira surface M∨, which is a principal elliptic
bundle ρ : M∨ → E over an elliptic curve E. Since ρ does not admit a sec-
tion, the relative Jacobian J is not isomorphic to M∨. In fact, J ∼= E × E
is an abelian surface. We remark that the Lagrangian fibration mirror to
ρ : M∨ → E is exactly the principal T 2-bundle π? : M → T 2.

One can also consider the mirror of π?, which involves a gerbe αM ∈
H2(J,O∗). This is in fact the obstruction to the existence of a relative Poincaré
sheaf over M∨ ×E J [9].

Back to the general setting, we want to derive some further constraints on
the second Lagrangian fibration π? : Y → B?. Let L be a fiber of π : Y → B,
which we also assume to be unobstructed. Then its mirror Oy is a skyscraper
sheaf with y ∈ Y ∨. Homological mirror symmetry predicts that

(70) HF∗(L,L?) ∼= Ext∗(Oy,OF )

as K-vector spaces. Adopting the Morse-Bott model of Lagrangian Floer co-
homology [21], the above isomorphism suggests that the intersection L ∩ L?
is clean and is a codimension 1 submanifold of L. (One may regard it as a
simplifying assumption which does not violate our general prediction.) As a
concrete example, take L and L? to be respectively the fibers of the two La-
grangian fibrations on (T 4, ωstd) defined by projecting respectively to (x2, x4)
and (x1, x4), and let ρ : E × E → E be the obvious elliptic fibration on the
mirror.

Remark. In [31], it is also required that the Lagrangian fibations π and π?
should admit Lagrangian sections. This condition is not imposed here because
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we want to include the Kodaira-Thuston manifold M as an example which
admits a twin Lagrangian fibration.

4.2. Twin Lagrangian fibrations on toric Calabi-Yau manifolds

Let X be an n-dimensional toric Calabi-Yau manifold. In this subsection,
we study the mirror symmetry of the twin Lagrangian fibration structure
on X = X \D given by the Lagrangian fibrations πG and πH constructed in
Section 2.1.

As mentioned in the introduction, such a twin Lagrangian fibration is
expected to be mirror to the affine conic bundle p0 : X∨ → (K∗)n−1 on the
mirror. Based on the mirror construction described in Appendix A.1 and
the mirror transformation introduced in Section 3, we now verify this. The
following unobstructedness result is needed in our proof.

Recall from Appendix A.1 that the base B of the SYZ fibration πG is
separated by the wall W ⊂ B into two chambers

(71) B1 = {b1 > 0} × Rn−1, B2 = {b1 < 0} × Rn−1.

Lemma 4.1. Let Ui = π−1
G (Bi), where i = 1, 2. For any regular fiber L? of

πH , Li? = L?|Ui is tautologically unobstructed as a Lagrangian submanifold
in Ui.

Proof. Recall from Section 2.1 that the set of critical points of πH is identical
to that of πG, so after removing the fibers of πG over the wall W := {0} × Rn−1

in B, the critical locus of πH has been removed. After restricting the definition
of πH to Ui, it then becomes a Lagrangian T n−1 × R bundle fi : Ui → S1 ×
Rn−1. Note that after removing the critical locus of πH , a singular fiber splits
into two copies of T n−1 × R, and each of them serves as a fiber of fi. The
lemma then follows from the isomorphism

(72) π2(Ui, Li?) ∼= π2(S1 × Rn−1) = 0. �

We now verify that the gluing condition (64) is satisfied for the regular fibers
of Lagrangian fibration πH , so that suppH∗F(L?, ξ?) is well-defined as a rigid
analytic subvariety of X∨.

Proposition 4.1. The rigid analytic subvarieties suppH∗F(L1
?, ξ

1
?) ⊂ U∨1

and suppH∗F(L2
?, ξ

2
?) ⊂ U∨2 patch together under the wall-crossing map Υ12 :

U∨1 99K U
∨
2 to produce a rigid analytic subvariety suppH∗F(L?, ξ?) ⊂ X∨.
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Proof. From (61), we see that U∨1
∼= U∨2

∼= (K∗)n. Denote the coordinates
on U∨1 and U∨2 by (x1, . . . , xn−1, z) and (x′1, . . . , x′n−1, y) respectively. Let
Lb = π−1

G (b) be a regular fiber of the SYZ fibration πG, which is equipped
with the unitary rank one local system ξb ∈ H1(Lb, UK). By the SYZ mirror
constructions recalled in Section 3 or Appendix A.1, we know that the La-
grangian brane (Lb, ξb) determines a point of the mirror X∨. In order to write
down the coordinates of this point, fix a reference fiber Lref of πG. By (A.1)
and (A.6) from Appendix A.1, we have

(73) xj = x′j = T

∫
Θj
ω
X ξb(θj), j = 1, . . . , n− 1,

where {θj} is a set of generators of H1(Lb,Z) which span a regular orbit of the
Hamiltonian TR(Nν)-action, and {Θj} are cylinders traced out by these loops
with their boundaries lying on Lb and the reference fiber Lref . In particular,
this implies that the wall-crossing map Υ12 : U∨1 99K U∨2 is the identity for
the first n− 1 coordinates.

We claim that for i = 1, 2, the rigid analytic subvarieties suppH∗F(Li?, ξi?)
⊂ U∨i are defined by the linear equations

(74) x1 = s1, . . . , xn−1 = sn−1

and

(75) x′1 = s1, . . . , x
′
n−1 = sn−1,

where si ∈ K∗ are fixed constants independent of i, so in particular they can
be patched together under Υ12 to the affine conic in K2 defined by

(76) yz = g(s1, . . . , sn−1).

To see this, let L? be a regular fiber of πH . By Proposition 2.1, its restric-
tion Li? ⊂ Ui fibers as a T n−1 bundle over the submanifold Qi ⊂ Bi defined
by

(77) Qi =
{
(b1,b2) ∈ Bi | b2 = C4

}
,

where b1 and b2 are respectively standard coordinates on the R and Rn−1

factors, and C4 ∈ Rn−1 is a constant vector. By Lemma 4.1, Li? ⊂ Ui is a
tautologically unobstructed Lagrangian submanifold, so in particular the co-
herent sheaves H∗F(Li?, ξi?) are well-defined for any choice of ξ? ∈ H1(L?, UK),
where ξi? is the restriction of ξ? to Li?.
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To determine suppH∗F(L?, ξ?), we need to consider the Floer cohomology
groups

(78) HF∗
(
(Lb, ξb), (Li?, ξi?)

)
for every b ∈ Bi. Since Lb ∩ Li? 6= ∅ precisely when b ∈ Qi, by the isotopy
invariance of Floer cohomology, we see that

(79) HF∗
(
(Lb, ξb), (Li?, ξi?)

)
6= 0

only if b ∈ Qi. Since the Lagrangian submanifolds Lb and Li? intersect cleanly
for any b ∈ Qi, and both of Lb and Li? are tautologically unobstructed, we
have

(80) HF∗
(
(Lb, ξb), (Li?, ξi?)

)
= H∗

(
Lb ∩ Li?, (ξb − ξi?) | (Lb ∩ Li?)

)
,

where the right hand side is ordinary cohomology with local coefficients, from
which we deduce HF∗

(
(Lb, ξb), (Li?, ξi?)

)
6= 0 if and only if ξb = ξi? in H1(Lb ∩

Li?, UK).
The non-vanishing conditions of the Floer cohomology (78) is equivalent

to requiring that

• T
∫

Θj
ω
X remains constant,

• ξb(θj) = ξ?(θj),

for 1 ≤ j ≤ n− 1, where the first condition above follows from the invariance
of symplectic area in a relative homotopy class with Lagrangian boundary
condition, namely π2(Ui, Li?). These two conditions together imply the invari-
ance of the coordinates xj and x′j , which completes the proof. �

We have proved:

Theorem 4.1. The twin Lagrangian fibration B
πG←− X

πH−−→ B? on X is in-
duced from the affine conic bundle structure p0 : X∨ → (K∗)n−1 on its mirror
X∨ in the sense of Definition 1.1, namely

(81) suppH∗F(L?, ξ?) = p−1
0 (s1, . . . , sn−1)

for any regular fiber L? of πH equipped with any ξ? ∈ H1(L?, UK).
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4.3. Twin Lagrangian fibrations on blowups of toric varieties

We have a parallel story for X∨. Recall that two Lagrangian fibrations πA
and πL on X∨ = X

∨ \D∨ have been described in Section 2.2.
As we have mentioned in the introduction, the twin Lagrangian fibration

B∨
πA←− X∨

πL−→ B∨? on X∨ is expected to be mirror to the fibration w0 : X →
K∗. Recall that up to an additive constant, w0 is the defining function of KX ,
so it has a unique singular fiber and the regular fibers of w0 are isomorphic
to (K∗)n−1.

Recall from Appendix A.2 that the base B∨ of πL is separated by the wall
W� = ∆× R>−ε into chambers B∨α parametrized by the finite set A, i.e.

(82) B∨ \W� =
⊔
α∈A

B∨α .

Lemma 4.2. The Lagrangian submanifold Lα? = L?|U∨α with α ∈ A is tau-
tologically unobstructed in U∨α , where U∨α = π−1

A (B∨α).

Proof. Recall from Section 2.2 that we have an identification between the
set of critical points of the two Lagrangian fibrations πA and πL, therefore
after removing the fibers of πA over the wall W� ⊂ B∨, we have removed the
critical locus of πL as well. Taking the inverse image of πA over the chamber
B∨α , we get an open subset U∨α ⊂ V0, without loss of generality we may assume

(83) U∨α = {ai < |xi| < bi, 1 ≤ i ≤ n− 1} ⊂ (C∗)n−1.

The fibration πL, when restricted to U∨α , then become a Lagrangian Rn−1 ×
S1 bundle fα : U∨α → T n−1 × R>−ε. The lemma then follows easily from the
isomorphism

(84) π2(U∨α , Lα? ) ∼= π2(T n−1 × R>−ε) = 0. �

As in the toric Calabi-Yau case, we need to verify here that the gluing con-
dition (64) holds for regular fibers of the Lagrangian fibration πL.

Proposition 4.2. The rigid analytic subvarieties suppH∗F(Lα? , ξα? ) ⊂ Uα,
α ∈ A, can be patched together under the wall-crossing map Υαβ : Uα 99K Uβ
to produce a rigid analytic subvariety suppH∗F(L?, ξ?) ⊂ X.

Proof. The proof is analogous to that of Proposition 4.1. By (61), we have
Uα∼=(K∗)n for each α. Denote the coordinates on Uα by (vα,1, . . . , vα,n−1, wα,0).
Let Lb = π−1

A (b) be a regular fiber of the SYZ fibration πA equipped with the
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unitary rank one local system ξb ∈ H1(Lb, UK). By the mirror constructions
recalled in Section 3 or Appendix A.2, we know that the Lagrangian brane
(Lb, ξb) determines a point of the mirror X. To write down the coordinates of
this point, fix a reference fiber Lref of πA. By (A.9) from Appendix A.2, we
have

(85) wα,0 = T

∫
Θ0
ωε
ξb(θ0)

for every α ∈ A, where θ0 ∈ H1(Lb,Z) corresponds to the S1-orbit of the
Hamiltonian action (34) and it traces out the cylinder Θ0 under the isotopy
from Lb to the reference fiber Lref . In particular, this implies that all the
wall-crossing maps Υαβ : Uα 99K Uβ are the identity for the last coordinate.

We claim that for α ∈ A, the rigid analytic subvariety suppH∗F(Lα? , ξα? ) ⊂
Uα is defined by the linear equation

(86) wα,0 = s

where s ∈ K∗ is a fixed constant independent of α, so in particular they can
be patched together under Υαβ to the hypersurface w−1

0 (s) ⊂ X.
To see this, let L? be a regular fiber of πL. By Proposition 2.2, its restric-

tion Lα? in U∨α fibers as an S1 bundle over the submanifold Qα ⊂ B∨α defined
by

(87) Qα =
{
(b1, b2) ∈ B∨α | b2 = C8

}
,

where b1 is the standard coordinate on Rn−1 and C8 ∈ R>−ε is some fixed con-
stant. By Lemma 4.2, Lα? ⊂ U∨α is a tautologically unobstructed Lagrangian
submanifold, so in particular the coherent sheaves H∗F(Lα? , ξα? ) are well-
defined for any choice of the local system ξ? ∈ H1(L?, UK), where ξα? denotes
the restriction of ξ? to Lα? .

In order to to determine suppH∗F(L?, ξ?), we have to study the Floer
cohomology groups

(88) HF∗
(
(Lb, ξb), (Lα? , ξα? )

)
for every b ∈ B∨α . Since Lb ∩ Lα? 6= ∅ precisely when b ∈ Qα, we see that

(89) HF∗
(
(Lb, ξb), (Lα? , ξα? )

)
6= 0

only when b ∈ Qα. Since the Lagrangian submanifolds Lb and Lα? intersect
over points of Qα, and both of Lb and Lα? are tautologically unobstructed as
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Lagrangian submanifolds in U∨α , we have

(90) HF∗
(
(Lb, ξb), (Lα? , ξα? )

)
= H∗

(
Lb ∩ Lα? , (ξb − ξα? ) | (Lb ∩ Lα? )

)
,

where the right hand side is ordinary cohomology with local coefficients.
This shows that HF∗

(
(Lb, ξb), (Lα? , ξα? )

)
6= 0 if and only if ξb = ξα? in H1(Lb ∩

Lα? , UK).
The non-vanishing conditions of the Floer cohomology (88) can be equally

expressed as

• T
∫

Θ0
ωε remains constant,

• ξb(θ0) = ξ?(θ0),

where the first condition above follows from the invariance of symplectic
area inside a relative homotopy class with Lagrangian boundary conditions,
namely π2(X∨, Lα? ). These two conditions together imply the invariance of
the coordinate wα,0, which completes the proof. �

We summarize our main result in this subsection in the following theorem.

Theorem 4.2. Let X∨ be the blow up of V × C along H × 0, where V is
a toric variety satisfying Assumption A.1, and H ⊂ V is a nearly tropical
hypersurface. Then the twin Lagrangian fibration B∨

πA←− X∨
πL−→ B∨? on X∨

is induced from the fibration w0 : X → K∗ on the mirror manifold X, in the
sense that

(91) suppH∗F(L?, ξ?) = w−1
0 (s)

for any regular fiber L? of πL equipped with any ξ? ∈ H1(L?, UK).

Since w0 : X → K∗ has a unique singular fiber, by carefully examining
the definition of coordinates on the mirror, we have a somehow stronger con-
clusion.

Proposition 4.3. For a generic choice of the regular fiber L? of πL and any
ξ? ∈ H1(L?, UK), suppH∗F(L?, ξ?) is a regular fiber of w0 : X → K∗.

Proof. Fix a chamber B∨α to work with, since w0 has a unique singular fiber
w−1

0 (−T ε) = DX , we only need to show that the mirror coordinate wα,0 avoids
the value −T ε ∈ K∗. But by the definition of wα,0 in Appendix A.2, this forces
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the symplectic area
∫

Θ0
ωε to be some constant λ0. It is known that up to a

multiplicative constant, we have

(92)
∫

Θ0

ωε = C8 − λref ,

where λref is the second coordinate of the reference fiber Lref of πA, see [3]. So
wα,0 = −T ε forces C8 = λ1 for some suitable constant λ1. But choosing the
fiber L? so that C8 6= λ1 does not affect the genericity of the choice of L?. �

5. Applications in four dimensions

This section contains two simple applications of twin Lagrangian fibrations
studied in the last section, which are inspired respectively by Section 4.4
of the paper of Smith [45] and the work of Lekili-Maydanskiy [30]. To get
a more explicit picture, we restrict ourselves here to the case of symplectic
4-manifolds.

5.1. Homological mirror symmetry for BlK(C2)

Let V = C in the setting of Section 2.2. Consider a partial compactification
of our space X∨, which is simply a smoothing of the Ap−1 singularity

(93) X∨p−1 =
{
(x, y, z) ∈ C3 | yz = (x− r1) · · · (x− rp)

}
.

We equip X∨p−1 with the restriction of the constant symplectic form on C3,
making it into a Liouville manifold. The nearly tropical condition on H ⊂ C
is now equivalent to

(94) |r1| � · · · � |rp|.

By projecting to x, we get an exact Lefschetz fibration

(95) p0 : X∨p−1 → C,

whose regular fibers are symplectomorphic to T ∗S1. On the other hand, by
the discussions above, there is a twin Lagrangian fibration on the open dense
subset X∨ ⊂ X∨p−1 formed by πA and πL. Strictly speaking, here the sym-
plectic structure on X∨ differs from the general case treated before, but the
Lagrangian fibrations πA and πL still exist, and can actually be explicitly
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written down as

(96) πA =
(
log |x|, |y|2/2− |z|2/2

)
, πL =

(
arg(x), |y|2/2− |z|2/2

)
.

In particular, we see that both of the fibrations πA and πL are smooth. We
shall always work in the “generic case”, namely when every singular fiber of
πL contains a unique singularity, which requires an additional assumption on
the positions of the ri’s. After assuming this, any singular fiber π−1

L (•) of πL
is then a union of two Lagrangian discs L+ and L−, meeting transversely at
the singularity of π−1

L (•).
We make the following simple observation.

Lemma 5.1. The Lagrangian discs L± in any singular fiber of πL are Lef-
schetz thimbles of p0 : X∨p−1 → C.

Proof. Under the map p0, the fibers of πL are projected to rays on the x
coordinate plane. The singular fibers of πL correspond precisely to those rays
passing through the critical values of p0, namely r1, . . . , rp ∈ C. Over these
points, the orbits of the Hamiltonian S1-action (34) on X∨ degenerate to
points. The Lagrangian discs L± are then projected by p0 to two vanishing
paths γ+

i and γ−i which meet at a unique critical value ri, which shows that
they are thimbles meeting transversely at the critical point in the fiber p−1

0 (ri).
�

Since H1(X∨p−1) = 0, up to quasi-isomorphism there is a well-defined Z-graded
directed A∞ category Fuk(p0) associated to the Lefschetz fibration p0 :
X∨p−1 → C, see [40]. The objects of Fuk(p0) are closed unobstructed La-
grangian submanifolds equipped with gradings and Spin structures as well
as Lefschetz thimbles, and the morphisms between thimbles are defined using
Hamiltonian diffeomorphisms with constant slopes near infinity. More explic-
itly, denote by ∆1, . . . ,∆p a basis of Lefschetz thimbles of p0 associated to
the vanishing paths γ1, . . . , γp which are straight lines, and assume

(97) arg(γ1) < · · · < arg(γp),

then we have

(98) HF∗(∆i,∆j) =


H∗(S1,K) i < j,

Ke∆i i = j,

0 i > j.
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By Lemma 5.1, we can choose the basis of thimbles ∆1, . . . ,∆p so that they
are Lagrangian discs contained in the singular fibers of πL. For every i ∈
{1, . . . , p}, we choose the copy of L± ⊂ π−1

L (•) so that its vanishing path γi
is an outward pointing ray starts at ri, and still denote the resulting basis of
Lefschetz thimbles by ∆1, . . . ,∆p.

Define Fuk(πL) to be the Fukaya category consisting of ∆1, . . . ,∆p as its
objects with the morphism spaces setting to be

(99) CF∗(∆i,∆j) =
{
K i = j,

0 i 6= j,

which means for thimbles disjoint from each other, we don’t use Hamiltonian
perturbations to create intersections between them. It’s easy to see with such
a definition, we actually have an equivalence

(100) Fuk
(
{p pts}

) ∼= Fuk(πL),

where Fuk
(
{p pts}

)
is the Fukaya category of p distinct points.

Mirror to the Lagrangian fibration πL is the fibration w0 : X → K∗, which
admits a unique singular fiber w−1(0) = DX . For this fibration, Orlov defined
the triangulated category of singularities [35]:

(101) Db
sing
(
w−1(0)

)
= DbCoh

(
w−1(0)

)
/Perf

(
w−1(0)

)
,

where Perf
(
w−1(0)

)
denotes the full triangulated subcategory of perfect com-

plexes in the derived category of coherent sheaves DbCoh
(
w−1(0)

)
, and the

right hand side is a Verdier quotient. Although by definition the category
Db

sing
(
w−1(0)

)
is naturally Z2-graded, in our situation we can lift it to a Z-

grading by specifying a K∗-action on X so that

• w has weight 2,

• −1 ∈ K∗ acts trivially.

On each K2 chart of the toric variety X with coordinates x and y, this can
be seen explicitly by letting K∗ act with weight 0 on x and weight 2 on y.

Denote by Dπ
sing
(
w−1(0)

)
the idempotent completion of Db

sing
(
w−1(0)

)
,

which is still triangulated by [7].
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Proposition 5.1. There is an equivalence

(102) Φ• : DFuk(πL) ∼= Dπ
sing
(
w−1(0)

)
between Z-graded triangulated categories, where DFuk(πL)=H0(TwFuk(πL)

)
denotes the derived Fukaya category of Fuk(πL).

Proof. This is an application of the simplest example of Knörrer periodicity,
which states that

(103) Dπ
sing
(
w−1(0)

) ∼= DbCoh(pt)

when p = 1, where DbCoh(pt) is the derived category of coherent sheaves of
one point. However, by Proposition 1.14 of [35], such an equivalence extends
to the case of any p ∈ Z≥0. This in particular shows that the total morphism
algebra of Dπ

sing
(
w−1(0)

)
is isomorphic to the semi-simple ring Kp, which

proves the desired equivalence. The functor Φ• is defined in the obvious way.
In particular, it sends ∆i to an idempotent of the skyscraper sheaf Osi of the
singularity si of w−1(0) on object level. �

To get a deeper understanding of the above equivalence, we further (partially)
compactify X∨p−1 to X∨, which is just BlK(C2), where K ⊂ C2 is a finite set
consisting of p distinct points. For later purposes we further assume that these
p points lie on a sufficiently large circle C̃ in the x-coordinate plane centered
at the origin so that

(104) dist(ri, rj) > 2
√
π

for any two different points ri, rj ∈ K. Note that assuming K ⊂ C̃ will make
H = K ⊂ C fail to be nearly tropical, which then results in a singular mirror
by [3]. However, this can be avoided easily if one is willing to take more
care about the positions of the ri’s, we assume this here only to simplify our
expositions. By blowing up with equal amounts at every point of K, one then
obtains a (non-compact) monotone symplectic manifold BlK(C2). Following
Smith [46], we consider the Lagrangian correspondences

(105) L1 =
p⊔
i=1

S1
eq ⊂ {p pts} × P1 ∼= E, L2 = ∂νE ⊂ E− × BlK(C2),

where E ⊂ BlK(C2) denotes the exceptional divisor, which is a disjoint union
of P1’s, and E− is the symplectic manifold (E,−ωE). S1

eq ⊂ P1 denotes the
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equator. νE is a tubular neighborhood of the exceptional divisor, and ∂νE
denotes its boundary.

Lemma 5.2. Equip every P1 in E with the symplectic form 2ωFS, where
ωFS denotes the Fubini-Study form, and equip BlK(C2) with the symplectic
form Ω1 so that every exceptional curve has area π. Then the Lagrangian
correspondence L2 ⊂ E− × BlK(C2) associated to ∂νE is monotone.

Proof. In our case, ∂νE is a disjoint union of coisotropic S3’s in BlK(C2).
The symplectic form Ω1 is well-defined on BlK(C2) because by our assump-
tion there are balls of radius strictly larger than

√
π centered at the p points

in K ⊂ C2, and these balls are disjoint from each other. Since π1(L2) = 0
as a Lagrangian submanifold in E− × BlK(C2), we only need to show the
symplectic manifold E− × BlK(C2) is spherically monotone, namely the ho-
momorphisms

(106) c1, ω : π2
(
E− × BlK(C2)

)
→ R

defined by the first Chern class and the symplectic form are positively propor-
tional. In our case, E− × BlK(C2) is is equipped with the product symplectic
form −2ωFS × Ω1. On the other hand,

(107) c1
(
E− × BlK(C2)

)
∈ H2(E−)⊕H2(BlK(C2)

)
is easily computed to be (−2, . . . ,−2, 1, . . . , 1), which shows that L2 is mono-
tone. �

In what follows, we shall always equip BlK(C2) with the monotone symplectic
form Ω1. Since L1 is obviously monotone, the geometric composition L1 ◦ L2
defines a monotone Lagrangian submanifold in BlK(C2), which is a disjoint
union of p monotone Lagrangian tori T̃1, . . . , T̃p. These tori can also be seen
using the Lefschetz fibration on BlK(C2). Start with the trivial fibration C2 →
C by projecting to one of the two coordinates, after blowing up at K ⊂ C2

we get a Lefschetz fibration

(108) p̃0 : BlK(C2)→ C

whose vanishing cycles are homotopically trivial.
Under the map p̃0, the tori T̃1, . . . , T̃p project to disjoint circles with the

same radius c̃1, . . . , c̃p centered at the critical values of p̃0, namely r̃1, . . . , r̃p ∈
C̃. Denote by Di ⊂ C the closed disc bounded by c̃i, and by p̃0 : Vi → Di
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the restriction of the Lefschetz fibration to Vi = p̃−1
0 (Di). Note that one can

arrange the ordering so that ri = r̃i, so there is a 1-1 correspondence between
the Lefschetz thimbles of p0 and p̃0. We shall adopt this convention from now
on.

Denote by T̃ the monotone Lagrangian torus lying over the interior corner
of the moment polytope of the toric variety OP1(−1).

Lemma 5.3. There is a diffeomorphism between moduli spaces

(109) M
O(−1)
1 (T̃ , β) ∼= M

BlK(C2)
1 (T̃i, βK)

as compact manifolds, where M
O(−1)
1 (T̃ , β) denotes the moduli space of stable

holomorphic discs with one boundary marked point represented by the the
class β ∈ π2

(
OP1(−1), T̃

)
with respect to the standard complex structure, and

βK ∈ π2
(
BlK(C2), T̃i

)
is the corresponding class of holomorphic discs bounded

by T̃i.

Proof. First consider the Lefschetz fibration p̃0 : BlK(C2)→ C, by applying
maximum principle to the holomorphic function p̃0 ◦ u : D→ Di, we see that
for every holomorphic disc u : (D, ∂D)→

(
BlK(C2), T̃i

)
, im(u) ⊂ Vi.

Since the Lagrangian torus T̃i is monotone, only disc bubblings and sphere
bubblings are possible. We then show that for every holomorphic disc u :
(D, ∂D)→

(
Vi, T̃i

)
, neither disc bubbling nor sphere bubbling can occur. For

disc bubbles, first notice that for dimension reasons, T̃i ⊂ Vi only bounds
stable discs of Maslov index 2, in other words, their classes βK ∈ π2

(
Vi, T̃i

)
must have intersection number 1 with

(110) Zi := p̃−1
0 (r̃i) ∪ (Ṽ ∩ Vi),

where Ṽ is the proper transform of V × {0} ∼= C. Because of this, any disc
bubble must have Maslov index 0, i.e. it’s a holomorphic disc u with im(u) ∩
Zi = ∅. But Vi \ Zi can be realized as a Lagrangian torus bundle over some
aspherical manifold with T̃i as one of its fiber, which implies that π2(Vi \
Zi, T̃i) = 0 and there is no disc bubbling. Sphere bubbles can be excluded
simply by noticing that there is only one holomorphic sphere of Chern number
1 in Vi, which is an exceptional curve, and other holomorphic spheres in
BlK(C2) are disjoint from Vi. This proves that

(111) M
BlK(C2)
1 (T̃i, βK) ∼= MVi

1 (T̃i, βK)

and their compactness.
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Its easy to see the above arguments can also be applied to OP1(−1), from
which we get the desired diffeomorphism (109). �

The following result is proved in [46] for T̃ ⊂
(
OP1(−1),Ω1

)
.

Corollary 5.1. For any 1 ≤ i ≤ p, equip T̃i with the Spin structure which
is non-trivial on both S1 factors and the Z2-grading coming from orientation,
then

(112) HF∗(T̃i, T̃i) ∼= Cl2,

as Z2-graded algebras, where Cl2 is the Clifford algebra associated to a non-
degenerate quadratic form on K2.

Proof. Lemma 5.3 allows us to identify the enumeration of holomorphic discs
bounded by T̃i ⊂ BlK(C2) with that of T̃ ⊂ OP1(−1). The latter one is studied
in detail in [6] and [14], from which we get the toric fiber T̃ bounds three
families of holomorphic discs, one for each toric boundary divisor in OP1(−1).
By (A.2) we see that the superpotentials for T̃i are given by

(113) W (T̃i) = z1 + z2 + T−1/2z1z2,

where zi ∈ K∗. Since by maximum principle, all the holomorphic strips
bounded by T̃i are local, the fact that the unique critical point of W (T̃i)
is non-degenerate shows that HF∗(T̃i, T̃i) ∼= Cl2. �

Proposition 5.2. T̃1, . . . , T̃p split-generate the non-zero eigensummand
Fuk

(
BlK(C2)

)
λ̃

of the monotone Fukaya category, where

(114) λ̃e
T̃i

= m0(T̃i) = m0(T̃i)[T̃i]

is defined in terms of enumeration of Maslov index 2 holomorphic discs, see
Appendix A.

Proof. Since BlK(C2) is a symplectic manifold conical at infinity, we can
consider the open-closed string maps

(115) OC 0 : HF∗(T̃i, T̃i)→ QH ∗
(
BlK(C2)

)
constructed in [38]. By Corollary 5.1, [pt] defines a cocycle in HF∗(T̃i, T̃i). It
follows that OC 0([pt]) 6= 0. On the other hand, by a version of the Cardy rela-
tion (see [43]), the images of cocycles for different T̃i’s are orthogonal to each
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other with respect to the quantum intersection pairing on QH ∗
(
BlK(C2)

)
.

From explicit computations one can see that

(116) QH ∗
(
BlK(C2)

)
/QH ∗

(
BlK(C2)

)
0
∼=

p⊕
i=1

K

is semisimple, where QH ∗
(
BlK(C2)

)
0 is the nilpotent summand with respect

to the quantum multiplication of c1
(
BlK(C2)

)
.

Denote by C the full subcategory formed by T̃1, . . . , T̃p, from the above we
see that the open-closed map OC restricted on C hits an invertible element
of QH ∗

(
BlK(C2)

)
λ̃
. By the generation criterion obtained in [38], the claim

follows. �

A similar generation result holds for a more general class of non-compact
monotone symplectic manifolds, see [33].

For simplicity, we shall omit the subscript and simply write Fuk
(
BlK(C2)

)
.

On the other hand, from [46] we see that the Lagrangian tori T̃i have non-
trivial idempotents, which we denote by e±i , and e+

i
∼= e−i [1] in the split-

closure of the category of twisted complexes TwπFuk
(
BlK(C2)

)
. Denote by

∆̃1, ·, ··, ∆̃p the Lefschetz thimbles of p̃0 so that their vanishing paths γ̃1, . . . , γ̃p
point outwards along the radical directions.

Lemma 5.4. ∆̃i is the unique Lefschetz thimble of p̃0 which has non-trivial
intersections with the monotone Lagrangian torus T̃i, and

(117) HF∗(T̃i, ∆̃i) ∼= H∗(S1,K).

Proof. The first half of the lemma follows from the positions of vanishing
paths associated to the thimbles ∆̃i we choose. Corollary 5.1 and the same
proof as in [46], Lemma 4.26 yield the second half. �

By [34], the composite monotone Lagrangian correspondence L1 ◦ L2 defines
a functor

(118) Φ̂L1◦L2 : Fuk
(
{p pts}

)
→ Fuk

(
BlK(C2)

)
This functor has an idempotent summand

(119) Φ̂(e+) : Fuk
(
{p pts}

)
→ TwπFuk

(
BlK(C2)

)
,

see [46]. Identifying Fuk
(
{p pts}

)
with Fuk(πL) as Z2-graded categories in

the obvious way, we obtain a functor from Fuk(πL) to TwπFuk
(
BlK(C2)

)
.
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By slight abuse of notation, this functor is still denoted Φ̂(e+). Note that on
the level of objects, Φ̂(e+) sends ∆i to e+

i .
In view of Proposition 5.1, there is a similar phenomenon on the mirror

side, namely a fully faithful embedding

(120) Φ(e+)∨ : Dπ
sing
(
w−1(0)

)
↪→ Dπ(X,W )

defined by regarding the generators on the left hand side as idempotents
in Db(X,W ), where Dπ(X,W ) is the triangulated category consisting
Dπ

sing
(
W (T̃i)−1(−T 1/2)

)
as its direct summands, or it can be regarded as a tri-

angulated category of D-branes of type B in the sense of [35]. Here w : X → K
and W (T̃i) are defined on (K∗)2 or K2, both categories are equipped with their
natural Z2-gradings. On the object level, Φ(e+)∨ sends an idempotent of Osi
to an idempotent of Oti , where ti ∈ W (T̃i)−1(−T 1/2) is the unique singularity.

Remark. Note that the expressions of W (T̃i) coincide with the dis-
cussions in Appendix A.2, see Lemmas A.7 and A.8. By restricting W =
w0 + w1 + w2 defined on the toric Calabi-Yau surface X to each K2 coor-
dinate chart, we get essentially the superpotential W (T̃i) associated to the
monotone Lagrangian torus T̃i. This justifies the notation Dπ(X,W ) we use
here.

To summarize our discussions in this subsection, we need a slight variation
of the localized mirror functor Φ̂CHL introduced in [16] and [17], which will
be made precise in Appendix B. This is an A∞ functor

(121) Φ̂CHL : Fuk
(
BlK(C2)

)
→ MF(X,W )

where

(122) MF(X,W ) :=
p⊔
i=1

MF
(
W (T̃i)

)
is the disjoint union of the category of matrix factorizations MF

(
W (T̃i)

)
.

On the other hand, it is proved by Orlov in [35] and [37] that there is an
equivalence

(123) Σ : H0(MF(X,W )
)
→ Db(X,W )

between Z2-graded triangulated categories. Denote by

(124) ΦCHL : DFuk
(
BlK(C2)

)
→ Db(X,W )
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the composition of the induced functor of Φ̂CHL on derived categories with
Σ . ΦCHL can then be extended to a functor on split-closures of both sides
in (124), which by abuse of notation we still denote by ΦCHL.

Theorem 5.1. The following diagram is commutative.

(125) DFuk(πL)

Φ•
��

Φ(e+)
// DπFuk

(
BlK(C2)

)
ΦCHL

��

Dπ
sing
(
w−1(0)

) Φ(e+)∨
// Dπ(X,W )

where Φ(e+) is the functor induced by Φ̂(e+) on split-closed derived categories.

Proof. First observe that all four functors in the diagram (125) are equiv-
alences. This is proved for Φ• in Proposition 5.1. The functor Φ(e+) is by
definition fully faithful. Since the Lagrangian torus T̃i ⊂ BlK(C2) is gener-
ated by the thimbles ∆̃1, . . . , ∆̃p by Proposition 5.8 of [45] and T̃i only has
non-empty intersections with the thimble ∆̃i by Lemma 5.4, we see that T̃i
is in fact generated by ∆̃i. This shows that Φ(e+) is an equivalence. Simi-
lar reasonings show that Φ(e+)∨ is an equivalence. For any Lagrangian torus
T̃i in Fuk

(
BlK(C2)

)
, its Floer cohomology HF∗(T̃i, T̃i) has been computed

in Corollary 5.1. To show that ΦCHL is an equivalence, we need to compute
homDπsing

(Oti ,Oti) in Dπ
sing
(
W (T̃i)−1(−T 1/2)

)
. Since ti is a nodal singularity,

the computation can be done in the standard local model when Oti is the
skyscraper sheaf at the origin in Spec

(
K[x, y]/xy

)
. The result is

(126) homDπsing
(Oti ,Oti) ∼= HF∗(T̃i, T̃i)

as Z2-graded K-vector spaces, which proves that ΦCHL is indeed an equiva-
lence by Theorem 1.3 of [17].

By the above, it’s enough to show that the diagram (125) commutes
on the object level, since multiplying by K∗ is isomorphic to an identity
functor on the field K viewed as a linear category with a single object. But
the commutativity of (125) on the level of objects is straightforward from
definitions. �

The above result gives a geometric interpretation of the homological mirror
symmetry equivalence DπFuk

(
BlK(C2)

) ∼= Dπ(X,W ) as the mirror symme-
try between the fibration structures πL and w0 in the framework of twin
Lagrangian fibrations.
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5.2. Non-displaceable Lagrangian tori in rational homology balls

As a geometric application of the structure of twin Lagrangian fibrations, we
consider here the rational homology balls Bp,q studied in [30]. These are Stein
surfaces defined as the quotients of the Ap−1 Milnor fiber X∨p−1 by certain
finite group actions. More precisely, we assume throughout this subsection
that rj = e

2jπ
p
i ∈ C are p-th roots of unity in the definition of X∨. Denote by

Gp,q the following free action of Zp on X∨p−1:

(127) ξ · (x, y, z) = (ξqx, ξy, ξ−1z),

where ξ ∈ Zp is any primitive p-th root of unity and (p, q) = 1. Then the
quotient Bp,q = X∨p−1/Gp,q is a rational homology ball for any p ≥ 2. It is
proved in [30] that there is no closed exact Lagrangian submanifolds in Bp,q
for any p > 2 and SH ∗(Bp,q) 6= 0, therefore these Stein surfaces provide non-
trivial examples to test the non-vanishing criterion of symplectic cohomology
due to Seidel and Smith for 4-dimensional Liouville manifolds, see Section 5
of [42].

In this subsection, we give a new proof of the non-vanishing result
SH ∗(Bp,q) 6= 0 from the point of view of twin Lagrangian fibrations. We begin
with the following observation.

Proposition 5.3. After the quotient by Gp,q, the twin Lagrangian fibration
on X∨ descends to a twin Lagrangian fibration on Bp,q away from some divisor
D∨p,q ⊂ Bp,q.

Proof. Under the action of Gp,q, the fibers of πA are invariant, which implies
that it descends to a Lagrangian torus fibration πp,qA on Bp,q \D∨p,q, where
D∨p,q ⊂ Bp,q is the divisor which lifts to the conic {yz = 1} ⊂ X∨p−1. On the
other hand, Gp,q acts on the fibers of πL freely, which implies that the orbits
of the fibers of πL under the action of Gp,q form another Lagrangian R× S1

fibration πp,qL on Bp,q \D∨p,q. Since the action of Gp,q preserves the moment
map of the Hamiltonian S1-action on X∨, the intersections between the fibers
of πp,qA and πp,qL are clean and affine. �

The idea of our proof goes as follows. Pick a circle cp ⊂ C in the base of
the Lefschetz fibration p0 on X∨p−1 centered at the origin, so that the radius
of cp is larger than 1. The vanishing cycles fibered over cp then defines a
Lagrangian torus Tp ⊂ X∨p−1, which is a fiber of πA. From the point of view
of family Floer cohomology, the non-displaceability of Tp should be detected
with the help of the additional Lagrangian fibration πL. More precisely, the
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Floer cohomologies HF∗
(
Tp, π

−1
L (b)

)
with b ∈ B∨? should lead to a spectral

sequence converging to HF∗(Tp, Tp).
In our case, the situation is much simpler because Lemma 5.1 provides a

set of distinguished Lagrangians coming from the singular fibers πL, namely
the Lefschetz thimbles ∆1, . . . ,∆p of p0 which form a full exceptional collec-
tion in DFuk(p0), so it suffices to look at finitely many Floer cohomology
groups HF∗(Tp,∆i). In view of the proposition above, we then expect that
the same story will descend to the quotient Bp,q. By a theorem of Seidel-
Smith [42], this then implies the non-triviality of SH ∗(Bp,q). In short, the
non-vanishing of SH ∗(Bp,q) should follow by studying the Lagrangian Floer
theory between certain fibers of πp,qA and πp,qL which form a twin Lagrangian
fibration on Bp,q \D∨p,q.

Lemma 5.5. For every 1 ≤ i ≤ p, HF∗(Tp,∆i) ∼= H∗(S1,K).

Proof. The Lagrangian submanifolds Tp and ∆i meet cleanly along a circle.
The easiest way to see the vanishing of the Morse-Bott-Floer differentials on
C∗(Tp ∩∆i) is to consider the Fukaya-Seidel category Fuk(p0). It is proved
in Proposition 5.8 of [46] that Tp is generated by the thimbles ∆1, . . . ,∆p

over any field K with char(K) 6= 2. On the other hand, by Corollary 9.1 of
[3], equipping Tp with an appropriate Spin structure we have

(128) HF∗(Tp, Tp) ∼= H∗(T 2,K)

as an algebra. Note that although it is assumed in Corollary 9.1 of [3] that
|ri|’s are not the same, the chart U∨α containing Tp is not affected. More
precisely, the holomorphic discs bounded by Tp ⊂ X∨p−1 are sections of the
Lefschetz fibration p0 : X∨p−1 → C over the disc bounded by cp. This disc
counting can be broken into standard local models using the gluing results
of [44] (see also [51] where the orientation issue is considered), which shows
that the superpotential W (Tp) is unaffected as long as the ri’s lie inside the
disc bounded by cp. This implies that HF∗(Tp,∆i) 6= 0 for some i. But such
a non-vanishing then extends to all i by applying Dehn twists τVk along the
Lagrangian matching spheres Vk ' S2 associated to the basic paths, i.e. linear
paths in C connecting two p-th roots of unity. �

We now take the Gp,q-action into consideration. Note that although the La-
grangian fibrations πA and πL are compatible with the Gp,q-action, the Lef-
schetz fibration p0 is not. More precisely, since Tp is invariant under the
action of Gp,q, it descends to a Lagrangian torus Tp,q ⊂ Bp,q. On the other
hand, Gp,q acts by permuting the thimbles ∆i, so after the quotient, we get a
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Lagrangian disc ∆p,q ⊂ Bp,q, which lifts to the union of the thimbles
⊔p
i=1 ∆i

in X∨p−1. However, ∆p,q is no longer a Lefschetz thimble. Because of this, we
consider the equivariant Fukaya category Fuk(πL)Gp,q , where Fuk(πL) is the
subcategory of Fuk(p0) introduced in Section 5.1, but here we also include
the torus fibers of πA as its objects. By Lemma 5.7, this will not cause any
confusion when passing to derived categories. Fuk(πL)Gp,q will serve as a tech-
nical replacement of the Fukaya category of the weakly unobstructed closed
Lagrangian submanifolds and the Lagrangian disc ∆p,q in Bp,q.

The free action of a finite group on the Fukaya category of closed La-
grangians is studied systematically in [52], which is essentially enough for our
purposes here.

Lemma 5.6. The A∞ category Fuk(πL)Gp,q is well-defined, with its objects
the Gp,q-Lagrangian branes Gp,qL equipped with Z2-gradings and Spin struc-
tures induced from L ∈ Ob

(
Fuk(πL)

)
, and morphisms

CF∗Gp,q(Gp,qL0, Gp,qL1) = CF∗(Gp,qL0, Gp,qL1)Gp,q(129)
=
⊕
g0,g1

CF∗(g0L0, g1L1)Gp,q ,

where gi ∈ Gp,q/Gp,q,Li , with Gp,q,Li denotes the isotropy subgroup at Li.

Proof. Since the regular fibers of πA are all invariant under the Gp,q-action,
the gradings, Spin structures and A∞ structures of these Lagrangians are
well-defined. The key point is that we can choose Gp,q-invariant Floer data
and transversality of the corresponding moduli problems can be achieved with
the Gp,q-invariant Floer data. The Gp,q-invariance of the Floer datum then
implies that the A∞ compositions

µdGp,q : CF∗Gp,q(Gp,qLd−1, Gp,qLd)⊗ · · · ⊗ CF∗Gp,q(Gp,qL0, Gp,qL1)(130)
→ CF∗(Gp,qL0, Gp,qLd)

lie in the Gp,q-invariant part of CF∗(Gp,qL0, Gp,qLd).
For the thimbles ∆i, we only need to use a small perturbation at infinity

to make their self-morphisms well-defined, so adding these objects to the
category will not affect the proof in [52] that transversality for the relevant
moduli spaces can be achieved within Gp,q-invariant Floer data. Assumption
4.1 of [52] is clearly satisfied since every thimble ∆i is a copy of the Lagrangian
disc ∆p,q in the finite cover

⊔p
i=1 ∆i → ∆p,q, so Gp,q∆i =

⊔p
i=1 ∆i inherits its

grading and Spin structure from ∆i. �
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In order to use Fuk(πL)Gp,q to compute the Floer cohomology of Tp,q ⊂ Bp,q,
the following simple generation result is useful.

Lemma 5.7. In the equivariant Fukaya category Fuk(πL)Gp,q , the Gp,q-
invariant monotone Lagrangian torus Tp is generated by Gp,q∆i for any i =
1, . . . , p.

Proof. By Proposition 5.8 of [46], in Fuk(p0), the monotone Lagrangian torus
Tp ⊂ X∨p−1 is generated by the Lefschetz thimbles ∆1, . . . ,∆p in the sense that

(131) T∆1 · · ·T∆p(Tp) ∼= 0

in H0(Fuk(p0)
)
, where T∆i is the abstract twist along ∆i. In fact, since the

monotone toric fiber T̃ ⊂ OP1(−1) is generated by the unique Lefschetz thim-
ble ∆̃ of p̃0 : OP1(−1)→ C, by Lemma 5.5 the same functorial relation carries
over to the situation here and gives

(132) T∆i(Tp) ∼= 0, i = 1, . . . , p

in H0(Fuk(p0)
)
, which then implies

(133) T∆1,...,∆pTp
∼= 0,

where T∆1,...,∆p is the generalized twist operation defined in [40], Remark 5.1.
This clearly descends to the relation

(134) TGp,q∆iGp,qTp ∼= 0

in H0(Fuk(πL)Gp,q
)
, which in particular yields the desired generation result.

�

Recall from [52] that there is an A∞ functor

(135) T : Fuk(Bp,q)→ Fuk(X∨p−1)Gp,q ,

which is fully faithful and sends L ⊂ Bp,q to its lift in X∨p−1 on the object
level. Again we consider here only Lagrangian torus fibers of πp,qA and πA as
objects of Fuk(Bp,q) and Fuk(X∨p−1) respectively.

Corollary 5.2 (Lekili-Maydanskiy [30]). The Stein surfaces Bp,q are
non-empty, i.e. SH ∗(Bp,q) 6= 0. Furthermore, HF∗(Tp,q, Tp,q) ∼= H∗(T 2,K).
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Proof. Recall that for an A∞ category A whose derived category D(A ) ad-
mits a full exceptional collection Y1, . . . , Ym, the Beilinson spectral sequence
with starting page

(136) Ers
1 =

(
homH(A )(X0, Y

!
r+1)⊗ homH(A )(Ym−r, X1)

)r+s
converges to homH(A )(X0, X1), where Y !

r+1 denotes the Koszul dual of Ym−r,
see [23, 40].

By Lemma 5.7, we can apply the above spectral sequence to the full sub-
category A ⊂ Fuk(πL)Gp,q formed by the objects Gp,q∆i and Gp,qTp. In our
case, m = 1, Y1 = Gp,q∆i, and X0 = X1 = Gp,qTp. It follows that the spectral
sequence degenerates at E1 page. This combines with Lemma 5.5 shows that

(137) HF∗Gp,q(Tp, Tp) ∼= H∗(T 2,K).

Now the transfer functor T gives us a fully faithful embedding Fuk(Bp,q) ↪→
Fuk(πL)Gp,q , which implies that

(138) HF∗(Tp,q, Tp,q) ∼= HF∗Gp,q(Tp, Tp). �

Appendix A. SYZ mirror constructions

A.1. SYZ mirror of toric Calabi-Yau manifolds

This section is a summary of the work of Chan-Lau-Leung [12] on SYZ mirror
symmetry for toric Calabi-Yau manifolds, see also [5] and Section 8 of [3].
Let X be an n-dimensional toric Calabi-Yau manifold. In this case, we use
the Gross fibration πG : X → B as the SYZ fibration. Denote by ∆ ⊂ B the
discriminant locus of πG, then ∆ ⊂W lies entirely in the unique wall W ⊂ B
defined by {0} × Rn−1. B \W consists of two chambers B1 and B2.

Lemma A.1 ([3], Lemma 8.1). A regular fiber Lb ⊂ X of πG bounds some
non-constant stable discs of Maslov 0 if and only of Lb = π−1

G (b) with b ∈
W \∆.

By the above lemma, the regular fibers over B \W are tautologically un-
obstructed; while the other regular fibers are potentially obstructed, namely
they bound holomorphic discs of Maslov index 0.

Fix a reference fiber Lref of πG, and choose a basis θ1, . . . , θn−1, θ
(1)
0 of

H1(Lref ,Z), with −θ1, . . . ,−θn−1 corresponding to the factors of the Hamil-
tonian TR(Nν)-action defined in Section 2.1 and −θ(1)

0 corresponding to the
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last S1 factor of TR(N). There is an exact Lagrangian isotopy between Lref
and a toric fiber µ−1

X
(•).

Let U1 ⊂ X be the torus bundle over B1 which is the inverse image
π−1
G (B1), then its rigid analytic T -dual U∨1 can be regarded as the moduli

space of (Lb, ξb), with Lb a torus fiber of πG and ξb a unitary rank 1 local
system. Under the isotopy from Lref to Lb, every loop θi traces out a cylin-
der Θi with boundary lying inside Lref ∩ Lb, and the loop θ

(1)
0 traces out the

cylinder Θ(1)
0 . Identifying H1(Lb,Z) with H1(Lref ,Z), ξb is determined by its

holonomies along θ1, . . . , θn−1, θ
(1)
0 ; while Lb is specified by the symplectic ar-

eas of Θ1, . . . ,Θn−1,Θ(1)
0 . Up to a multiplicative constant, this provides a set

of coordinates on U∨1 ⊂ (K∗)n:
(A.1)

(x1, . . . , xn−1, z) =
(
T

∫
Θ1
ω
X ξb(θ1), . . . , T

∫
Θn−1

ω
X ξb(θn−1), T

∫
Θ(1)

0
ω
X
ξb
(
θ

(1)
0

))
,

where T is the Novikov parameter corresponding to the symplectic form ωX .
For every Lagrangian brane (Lb, ξb) with Lb ⊂ U1, its obstruction is given by
(Section 2.2 of [3])

(A.2) m0(Lb, ξb) =
∑

β∈π2(X,Lb)\0
T

∫
β
ω
X ξb(∂β)ev∗

[
M1(Lb, β)

]
,

where M1(Lb, β) is the moduli space of holomorphic discs with one boundary
marked point representing the relative homotopy class β and ev : M1(Lb, β)→
Lb is the evaluation map. The pair (Lb, ξb) defines a weakly unobstructed ob-
ject in the extended Fukaya category F̃uk(X) (see Appendix B), i.e. it satisfies
the weak Maurer-Cartan equation

(A.3) m0(Lb, ξb) = W∨(Lb, ξb)eLb ,

where eLb is the unit of H0(Lb,K), and W∨(Lb, ξb) is a regular function on
U∨1 defined by

(A.4) W∨(Lb, ξb) =
∑

β∈π2(X,Lb),β·D=1

n(Lb, β)T
∫
β
ω
X ξb(∂β).

Recall from Section 2.1 that we will use A to denote the set of toric
divisors in X. Using the Lagrangian isotopy between µ−1

X
(•) and Lb, together

with the result of [15] we have:
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Lemma A.2 ([12], Proposition 4.30). For Lb ⊂ U1 a regular fiber of πG,
regarded as a Lagrangian submanifold of X, the algebraic counts of Maslov
index 2 stable holomorphic discs n(Lb, β) 6= 0 only when β = βα + γ, where
βα are basic disc classes corresponding to α ∈ A, γ ∈ H2(X,Z) are classes
represented by rational curves. Moreover n(Lb, βα) = 1 for all α ∈ A.

From (A.1) and the above lemma we deduce

Lemma A.3 ([3], Lemma 8.2). In the chart U∨1 , the superpotential W∨
is given by

(A.5) W∨ =
∑
α∈A

1 +
∑

γ∈H2(X,Z)

n(Lb, βα + γ)T
∫
γ
ω
X

T ρ(α)xαz−1,

where xα = xα1
1 · · · x

αn−1
n−1 and αi is the i-th entry of α ∈ Zn−1.

Similar discussions can be carried out on the other chamber B2. Let
Lref with b ∈ B2 be the reference fiber, choose a basis θ1, . . . , θn−1, θ

(2)
0 of

H1(Lref ,Z), where −θ1, . . . ,−θn correspond to the orbits of the Hamilto-
nian TR(Nν)-action, and θ

(2)
0 is the boundary of a section of the fibration

w0 : X → C over the disc of radius b centered at 0. Denote by Θ(2)
0 the rel-

ative homotopy class traced out by θ
(2)
0 under the isotopy between Lref and

Lb, and Θ1, . . . ,Θn−1 be same as above, up to a multiplicative constant, the
coordinates on U∨2 are given by
(A.6)

(x′1, . . . , x′n−1, y) =
(
T

∫
Θ1
ω
X ξb(θ1), . . . , T

∫
Θn−1

ω
X ξb(θn−1), T

∫
Θ(2)

0
ω
X
ξb
(
θ

(2)
0

))
.

At this stage we appeal to the following result in [15]:

Lemma A.4 ([12], Proposition 4.36). Let β0 be the relative homotopy
class representing the section of w0 : X → C with boundary θ(2)

0 . For a regular
fiber Lb ⊂ X of πG in U2, n(Lb, β) = 1 when β = β0, otherwise n(Lb, β) = 0.

This implies the following:

Lemma A.5 ([3], Lemma 8.3). On the chart U∨2 , the superpotential W∨
admits the expression

(A.7) W∨ = y.
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The gluing formula of the charts U∨1 and U∨2 can then be determined by
the requirement that W∨ should define a global regular function on the mirror
X∨. After a completion process [6], this completes the mirror construction for
any toric Calabi-Yau manifold X.

Theorem A.1 (Chan-Lau-Leung [12]). The affine conic bundle X∨ de-
fined by (2) is SYZ mirror to the open Calabi-Yau manifold X, with

(A.8) g(x) =
∑
α∈A

1 +
∑

γ∈H2(X,Z)

n(Lb, βα + γ)T
∫
γ
ω
X

T ρ(α)xα.

Moreover, the Landau-Ginzburg model (X∨,W∨) is SYZ mirror to the toric
Calabi-Yau manifold X.

To write down the defining equation of X∨ explicitly, one needs to do non-
trivial computations of the algebraic counts of stable discs n(Lb, βα + γ). This
can be done by relating n(Lb, βα + γ) to certain Gromov-Witten invariants,
see [12, 13, 28, 29] for details.

A.2. The converse mirror construction

This section summarizes the work of Abouzaid-Auroux-Katzarkov [3] on SYZ
mirror symmetry of blow-ups of toric varieties. Similar mirror constructions
as in the last section can be done in the converse direction, from the affine
conic bundle X∨ to the rigid analytic Calabi-Yau manifold X, using the La-
grangian fibration πA defined in Section 2.2 as the SYZ fibration [3]. However,
in this case we need to make the following assumptions to exclude higher order
instanton corrections.

Assumption A.1. c1(V ) · C > max(0, H · C) for every rational curve C ⊂
V .

Assumption A.2. Every rational curve C ⊂ X
∨ satisfies D∨ · C ≥ 0.

Observe that Assumption A.1 implies Assumption A.2 and every smooth
affine toric variety satisfies the assumptions above.

Analogous to Lemma A.1, we have the following result.

Lemma A.6 ([3], Proposition 5.1). The regular fibers of πA : X∨ → B∨

which bound non-constant holomorphic discs in X∨ are precisely those having
non-trivial intersections with p−1(H × C).



i
i

“4-Li” — 2019/11/5 — 1:38 — page 1378 — #48 i
i

i
i

i
i

1378 N. C. Leung and Y. Li

Define the wall W� ⊂ B∨ to be the set of points over which the fiber of πA
intersects p−1(UH × C) non-trivially, where UH is the neighborhood appeared
in Assumption 2.1. Note that when dimC(X∨) = 2, W� consists of finitely
many open intervals in B∨ which are parallel to each other. However, when
dimC(X∨) ≥ 3, W� = ∆× R>−ε, which is diffeomorphic to Πτ × R, in par-
ticular dimR(W�) = dimR(B∨). By Lemma A.6, the fibers over B∨ \W� are
tautologically unobstructed, while that over W� are potentially obstructed.

We will denote by U∨α the chart which is a Lagrangian torus bundle over
the connected component B∨α of B∨ \W�, over which the monomial of weight
α dominates all other monomials in the defining equation (27) of H.

The rigid analytic T -dual of U∨α gives a coordinate chart Uα in the mir-
ror manifold X of X∨. More precisely, fix a reference fiber Lref ⊂ U∨α of πA
with b ∈ B∨α . H1(Lref ,Z) carries a preferred basis θ1, . . . , θn−1, θ0 consisting
of orbits of the various S1 factors. The chart Uα ⊂ X is the moduli space of
pairs (Lb, ξb) with Lb a fiber of πA and ξb ∈ H1(Lb, UK). Under the isotopy
from Lref to Lb, the loops θ1, . . . , θn−1 trace out the cylinders Θ1, . . . ,Θn−1
respectively; and the loop λ traces out the cylinder Θ0. With these data one
can write down the coordinates on Uα, up to a multiplicative constant we
have:
(A.9)
(vα,1, . . . , vα,n−1, wα,0) =

(
T

∫
Θ1
ωε
ξb(θ1), . . . , T

∫
Θn−1

ωε
ξb(θn−1), T

∫
Θ0
ωε
ξb(θ0)

)
,

where T is the Novikov paramter corresponding to the symplectic form ωε.
As in the case of toric Calabi-Yau manifolds, one can still use the global
regularity of the superpotential to glue together the charts {Uα}α∈A. However,
in this case the anticanonical divisor D∨ ⊂ X

∨ consists of more irreducible
components and we need to analyze their wall-crossing phenomena one by
one.

Given a partial compactification X∨• of X∨ satisfying Assumption A.2,
(Lb, ξb) defines a weakly unobstructed object in the extended Fukaya category
F̃uk(X∨• ), i.e.

(A.10) m0(Lb, ξb) = W•(Lb, ξb)eLb ,

where W•(Lb, ξb) is determined by a weighted count of Maslov index 2 holo-
morphic discs bounded by Lb in X∨• , in the form of (A.4). In particular,
for each α ∈ A, W• : Uα → K defines a regular function, and these regular
functions glue together to a global regular function on X.

Using the above formalism, one can first show that the last coordinate
wα,0 is globally defined.
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Lemma A.7 ([3], Lemma 5.5). Define

(A.11) X∨w = X∨ ∪ Ṽ0 ⊂ X
∨
,

then any pair (Lb, ξb) with Lb ⊂ U∨α is a weakly unobstructed object in the
extended Fukaya category F̃uk(X∨w), with

(A.12) Ww(Lb, ξb) = wα,0.

Next, we consider monomials in the remaining coordinates

(A.13) vα = (vα,1, . . . , vα,n−1) ∈ (K∗)n−1.

We will see that these coordinates have wall-crossings. Let σ ∈ Zn−1 be a
primitive generator of the fan ΣV defining the toric variety V , and let Din

σ ⊂
DV be the open stratum of the toric boundary divisor associated to σ. The
following lemma shows that the monomial vσα = vσ1

α,1 · · · v
σn−1
α,n−1 appears in a

weighted count of holomorphic discs in the partial compactification

(A.14) X∨σ = X∨ ∪ p−1(Din
σ × C) ⊂ X

∨
.

Lemma A.8 ([3], Lemma 5.6). Let κ ∈ R which satisfies the equation
〈σ, u〉+ κ = 0 of the facet of the moment polytope ∆V of V specified by σ, and
let αmin ∈ A be such that 〈σ, αmin〉 achieves its minimal value. Any pairing
(Lb, ξb) with Lb ⊂ U∨α defines a weakly unobstructed object of F̃uk(X∨σ ), with

(A.15) Wσ(Lb, ξb) = (1 + T−εw0)〈α−αmin,σ〉T κvσα.

In fact, Lemma A.8 can be extended to the case of general monomials in
the coordinates vα. For such σ one can still associate a partial compactifica-
tion X∨σ of X∨. Now the main problem is that X∨σ does not necessarily admit
an embedding into X

∨, so the symplectic form ωε may not extend to X∨σ ,
which prevents us from talking about the holomorphic curve theory of X∨σ .
However, this can be remedied by choosing a Kähler form ωσ on X∨σ which
agrees ωε outside a small neighborhood of the compactifying divisor. Then a
regular fiber Lb of πA lying in the region where ωσ = ωε is also a Lagrangian
submanifold of X∨σ . This enables us to remove the assumption that σ being
a primitive generator of the fan ΣV in the statement of Lemma A.8.

The expressions of Wσ : Uα → K for different σ ∈ Zn−1 should glue to-
gether to give a global regular function on X. This is used to determine the
coordinate transformations between different charts Uα. Consider two adja-
cent chambers B∨α and B∨β separated by part of the wall W�, i.e. assume that
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α, β ∈ A are connected by an edge in the polyhedral decomposition P men-
tioned in Section 2.2. In view of Lemma A.7 and the strengthened version of
Lemma A.8 one obtains:

Proposition A.1 ([3], Proposition 5.8). The wall-crossing maps (60)
between the coordinate charts Uα and Uβ preserve the coordinate w0. For the
remaining coordinates, we have

(A.16) vσα = (1 + T−εw0)〈β−α,σ〉vσβ,

for any σ ∈ Zn−1.

Up to the completion process of the mirror coordinates mentioned above,
this shows that the SYZ mirror manifold of X∨ is a toric Calabi-Yau manifold
X with an anticanonical divisor D removed, which we denote by X. To de-
termine the mirror Landau-Ginzbug model of X∨, it still remains to compute
the superpotential W : X → K. As remarked above, this is simply given by
taking the sum of Wσ’s corresponding to the components of D∨. Finally we
get

(A.17) W (Lb, ξb) = wα,0 +
r∑
i=1

(1 + T−εw0)〈α−αi,σi〉T κivσiα ,

where κi ∈ R satisfies the equation 〈σi, u〉+ κi = 0 for 1 ≤ i ≤ |A| and u lies
in the facet of ∆V . σ1, . . . , σr are primitive integral generators of ΣV . αi ∈ A
are chosen so that 〈σi, αi〉 is minimal. Denote by wi the expression

(A.18) (1 + T−εw0)〈α−αi,σi〉T κivσiα .

Theorem A.2 (Abouzaid-Auroux-Katzarkov, [3]). Under Assumption
A.1, the Landau-Ginzburg model (X,W ) is SYZ mirror to X∨, where

(A.19) W = w0 + · · ·+ wr.

Appendix B. Localized mirror functor

We recall here the construction of the localized mirror functor associated to
a weakly unobstructed Lagrangian torus in the sense of [16] and [17], and
then apply it to the setting of Section 5.1. For simplicity, assume that T ⊂
Y is a monotone Lagrangian torus in the monotone symplectic manifold Y
with dimR(Y ) = 2n. The idea is that although family Floer theory should be
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regarded as an infinite direct sum of Yoneda modules associated to the fibers
(equipped with local systems), in the local case of a chart U ⊂ Y containing T ,
the family Floer theory associated to the putative SYZ fibration π restricted
to U can be replaced by the Yoneda module associated to the Lagrangian
torus T equipped with K∗ local systems. This is actually the cases of toric
Calabi-Yau manifolds and their mirrors, where T is represented by a fiber Lb
of the corresponding SYZ fibration.

Given a weakly unobstructed, Spin Lagrangian submanifold L ⊂ Y , de-
note by Mweak(L) the space of weak bounding cochains of L. Denote by
Λ+ ⊂ Λ0 the maximal ideal in the Novikov ring

(B.20) Λ0 =
{ ∞∑
i=1

aiT
λi
∣∣∣ ai ∈ C, λi ≥ 0, λi →∞

}

recall that b ∈ C1(L,Λ+) is called a weak bounding cochain if it satisfies the
Maurer-Cartan equation

(B.21)
∞∑
k=0

mk(b, . . . , b) = W (L, b) · eL.

The mirror matrix factorization will be constructed using the non-trivial de-
formation of the A∞ structure of the monotone Fukaya category Fuk(Y )
induced by the weak bounding cochains. Namely we can define an extended
Fukaya category F̃uk(Y ) whose objects are L×Mweak(L) with L ∈
Ob
(
Fuk(Y )

)
and whose morphism spaces are

(B.22) CF∗
(
(L1, b1), (L2, b2)

)
:= CF∗(L1, L2),

where bi ∈Mweak(Li). More precisely, for CF∗(L1, L2) to be well-defined, we
need to work over a direct summand Fuk(Y )λ ⊂ Fuk(Y ) consisting of La-
grangians with m0(L) = λ · eL instead of the whole Fukaya category. The
deformed A∞ operations on F̃uk(Y )λ

(B.23) mb0,...,bk
k : CF∗(L0, L1)[1]⊗ · · · ⊗ CF∗(Lk−1, Lk)[1]→ CF∗(L0, Lk)[1]

are defined to be

(B.24) mb0,...,bk
k (x1, . . . , xk) =

∑
l0,...,lk

mk+l0+···+lk

(
b⊗l00 , x1, b

⊗l1
1 , . . . , xk, b

⊗lk
k

)
.

To get a mirror functor associated to the monotone Lagrangian torus T ⊂
Y fixed at the beginning of this appendix, we specialize to the case when
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L = T in the above, so the localized mirror functor is actually defined to
be the Yoneda module associated to (T, b) ∈ Ob

(
Fuk(Y )

)
×Mweak(T ). We

emphasize that there is no need to require that T lies in the direct summand
F̃uk(Y )λ.

Definition B.1 (Cho-Hong-Lau [17]). Fix a λ ∈ Λ, the A∞ functor

(B.25) Φ̂(T,b)
CHL : F̃uk(Y )λ → MF

(
W (T, b)− λ

)
is defined as follows:

• For (L1, b1) ∈ Ob
(
F̃uk(Y )λ

)
,

(B.26) Φ̂(T,b),0
CHL (L1, b1) :=

(
CF∗

(
(T, b), (L1, b1)

)
,mb,b1

1

)
.

• For (L1, b1), . . . , (Lk, bk) ∈ Ob
(
F̃uk(Y )λ

)
and xi ∈ CF∗

(
(Li, bi), (Li+1,

bi+1)
)

for i = 1, . . . , k.

(B.27) Φ̂(T,b),k
CHL (x1, . . . , xk) : CF∗

(
(T, b), (L1, b1)

)
→ CF∗

(
(T, b), (Lk, bk)

)
is defined as

Φ̂(T,b),k
CHL (x1, . . . , xk)(y)(B.28)

= (−1)(
∑

i
deg xi+k)(deg y+1)mb,b0,...,bk

k+1 (y, x1, . . . , xk),

where y ∈ CF∗
(
(T, b), (L1, b1)

)
.

In [16], the definition of the above A∞ functor is formulated in the lan-
guage of Lagrangian submanifolds equipped with flat line bundles, and the
definition is given in the special case when L1, . . . , Lk are monotone and
b1 = · · · = bk = 0, or equivalently, in the case when the line bundles Li → Li
are equipped with trivial connections. Φ̂(T,b)

CHL defined above then becomes an
A∞ functor defined on Fuk(Y )λ. Under this formulation, the superpotentials
W (T, b) and W (Li) are naturally defined on (Λ∗)n rather than Λn.

We further restrict ourselves to the case when Y =
(
BlK(C2),Ω1

)
, which

is the situation of Section 5.1 where the above formalism is applied to a mono-
tone Lagrangian torus T̃i ⊂ BlK(C2). Since T̃i is monotone, we can choose
bi ∈Mweak(T̃i) so that the superpotential W

(
T̃i, bi

)
= 0. With this choice,



i
i

“4-Li” — 2019/11/5 — 1:38 — page 1383 — #53 i
i

i
i

i
i

Twin Lagrangian fibrations in mirror symmetry 1383

Φ̂(T̃i,bi)
CHL defines an A∞ functor

(B.29) Φ̂(T̃i,bi)
CHL : Fuk

(
BlK(C2)

)
λ̃
→ MF

(
W (T̃i)

)
.

Namely as objects of the non-zero eigensummand Fuk
(
BlK(C2)

)
λ̃
, we equip

the Lagrangian tori T̃i’s with trivial bounding cochains. Since the Lagrangian
tori T̃1, . . . , T̃p are Floer theoretically orthogonal, applying the above functor
to each T̃i we get an A∞ functor

(B.30) Φ̂CHL : Fuk
(
BlK(C2)

)
λ̃
→ MF(X,W ),

which is exactly the functor appeared in (121).
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