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Futaki invariant for Fedosov star products
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We study obstructions to the existence of closed Fedosov star prod-
ucts on a given Kähler manifold (M,ω, J). In our previous paper
[14], we proved that the Levi-Civita connection of a Kähler mani-
fold will produce a closed Fedosov star product (closed in the sense
of Connes–Flato–Sternheimer [4]) only if it is a zero of a moment
map µ on the space of symplectic connections. By analogy with the
Futaki invariant obstructing the existence of constant scalar cur-
vature Kähler metric, we build an obstruction for the existence of
zero of µ and hence for the existence of closed Fedosov star product
on a Kähler manifold.

1. Introduction

In [3], a moment map µ on the space of symplectic connections is introduced.
The study of zeroes of µ and of the so-called critical symplectic connections
was first proposed by D.J. Fox [9] in analogy with the moment map picture
for the Hermitian scalar curvature on almost-Kähler manifolds [6]. Recently
[14], we give additional motivations for the study of µ, and its zeroes on
Kähler manifolds, coming from the formal deformation quantization of sym-
plectic manifolds.

We exhibit an obstruction to the existence of zeroes of µ on closed Kähler
manifolds in the spirit of Futaki invariants [10]. It is a character on h the
Lie algebra of holomorphic vector fields in T (1,0)M having a zero on M , see
[15]. Recall that on a Kähler manifold (M,ω, J), elements in h are (1, 0)-
part of vector fields on M of the form Z = XF + JXH , for F,H ∈ C∞(M)
with zero mean, XF (resp. XH) is the Hamiltonian vector field defined by
i(XF )ω = dF (resp. i(XH)ω = dH) so that F and H depend on ω.

Part of this work benefitted from the Belgian Interuniversity Attraction Pole
(IAP) DYGEST.
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1318 Laurent La Fuente-Gravy

Theorem 1. Let (M,ω, J) be a closed Kähler manifold with Kähler class
Θ, Levi-Civita connection ∇ and fixed complex structure J . Then, the map

Fω : h→ R : Z 7→
∫
M
Hµ(∇)

ωn

n!
,

for Z = XF + JXH , µ the Cahen–Gutt moment map on E(M,ω), is a char-
acter that does not depend on the choice of a Kähler form in the Kähler
class Θ.

Deformation quantization as defined in [2] is a formal associative defor-
mation of the Poisson algebra (C∞(M), ., {·, ·}) of a Poisson manifold (M,π)
in the direction of the Poisson bracket. The deformed algebra is the space
C∞(M)[[ν]] of formal power series of smooth functions with composition
law ∗ called star product.

On a symplectic manifold (M,ω) endowed with a symplectic connection
∇ (i.e. torsion-free connection leaving ω parallel), one can associate the
Fedosov star product ∗∇, [7]. The moment map µ evaluated at ∇ is the first
non-trivial term in the expression of a trace density for the star product ∗∇,
see [14]. So that, if the star product ∗∇ is closed (in the sense of Connes–
Flato–Sternheimer [4]), then µ(∇) is the zero function which implies the
following result.

Corollary 1.1. Let (M,ω, J) be a closed Kähler manifold with Kähler class
Θ, such that Fω is not identically zero, then, given any Kähler form ω̃ ∈MΘ

with Levi-Civita connection ∇̃, the Fedosov star product ∗∇̃ is not closed.

Finally, we identify the character Fω with one of the so-called higher
Futaki invariants [11]. It enables us to exhibit an example of Kähler manifold
[17, 18] admitting non-zero values of Fω and hence no closed Fedosov star
products as considered in Corollary 1.1.

2. The moment map and Fedosov star products

Consider a closed symplectic manifold (M,ω) of dimension 2n. A symplec-
tic connection ∇ on (M,ω) is a torsion-free connection such that ∇ω = 0.
There always exists a symplectic connection on a symplectic manifold. If we
denote by A(·) a field of 1-form with values in End(TM) and if ∇ is a sym-
plectic connection then the connection ∇+A(·) is symplectic if and only if
the 3-tensor field ω(A(·)·, ·) is symmetric. The space E(M,ω) of symplectic
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Futaki invariant for Fedosov star products 1319

connections is the affine space

E(M,ω) = ∇+ Γ(S3T ∗M) for some ∇ ∈ E(M,ω),

where S3T ∗M := {A ∈ Λ1(M)⊗ End(TM) | ω(A(·)·, ·) is symmetric}. For
A ∈ S3T ∗M , we set A(·, ·, ·) for the symmetric 3-tensor ω(A(·)·, ·).

There is a natural symplectic form on E(M,ω). For A,B ∈ T∇E(M,ω),
seen as sections of Λ1(M)⊗ End(TM,ω), one defines

ΩE∇(A,B) :=

∫
M

tr(A
◦
∧ B) ∧ ωn−1

(n− 1)!
= −

∫
M

Λkltr(A(ek)B(el))
ωn

n!
,

where
◦
∧ is the product on Λ1(M)⊗ End(TM,ω) induced by the usual ∧-

product on forms and the composition on the endomorphism part, Λkl is
defined by Λklωlt = δkt for ωlt := ω(el, et) for a frame {ek} of TxM and using,
as for the rest of the paper, Einstein summation convention on repeated
indices. The 2-form ΩE is a symplectic form on E(M,ω).

Remark 2.1. The symplectic form ΩE can be written in coordinate as :

ΩE∇(A,B) :=

∫
M

Λi1j1Λi2j2Λi3j3Ai1i2i3Bj1j2j3

ωn

n!
,

for A,B ∈ T∇E(M,ω).

There is a natural symplectic action of the group of symplectomorphisms
on E(M,ω). For ϕ, a symplectic diffeomorphism, we define an action

(2.1) (ϕ.∇)XY := ϕ∗(∇ϕ−1
∗ Xϕ

−1
∗ Y ),

for all X,Y ∈ TM and ∇ ∈ E(M,ω).
Recall that a Hamiltonian vector field is a vector field XF for F ∈

C∞(M) such that i(XF )ω = dF. We denote by Ham(M,ω) the group of
Hamiltonian diffeomorphisms of the symplectic manifold (M,ω) with Lie
algebra the space C∞0 (M) of smooth functions F such that

∫
M F ωn

n! = 0.
The action defined in Equation (2.1) restricts to an action of the group

Ham(M,ω). Let XF be a Hamiltonian vector field with F ∈ C∞0 (M), the
fundamental vector field on E(M,ω) associated to XF is the Lie derivative:
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1320 Laurent La Fuente-Gravy

for Y, Z ∈ Γ(TM),

(LXF∇)(Y )Z = ∇2
(Y,Z)XF +R∇(XF , Y )Z,

where ∇2
(U,V )W := ∇U∇VW −∇∇UVW is the second covariant derivative

and R∇(U, V )W := [∇U ,∇V ]W −∇[U,V ]W is the curvature tensor of ∇, for
U, V,W ∈ Γ(TM).

Let Ric∇(X,Y ) := tr[V 7→ R∇(V,X)Y ] for all X,Y ∈ TM be the Ricci
tensor of ∇. Let P (∇) be the function defined by

P (∇)
ωn

n!
:=

1

2
tr(R∇(., .)

◦
∧ R∇(., .)) ∧ ωn−2

(n− 2)!
,

with integral µ0 :=
∫
M P (∇)ω

n

n! , note that µ0 is a topological constant de-
pending on the first Pontryagin class of M and [ω], hence not depending on
∇. Define the map µ : E(M,ω)→ C∞0 (M) by

µ(∇) := (∇2
(ep,eq)

Ric∇)(ep, eq) + P (∇)− µ0

where {ek} is a frame of TxM and {el} is the symplectic dual frame of {ek}
(that is ω(ek, e

l) = δlk).

Theorem 2.2 (Cahen–Gutt [3]). The map µ : E(M,ω)→ C∞0 (M) is an
equivariant moment map for the action of Ham(M,ω) on E(M,ω), i.e.

(2.2)
d

dt

∣∣∣∣
0

∫
M
µ(∇+ tA)F

ωn

n!
= ΩE∇(LXF∇, A).

In [14], the moment map µ is related to the notion of trace density for Fe-
dosov star products. Also, the closedness (closedness in the sense of Connes–
Flato–Sternheimer [4]) of a Fedosov star product implies µ = 0. Let us recall
briefly all those notions and results.

A star product, as defined in [2], on (M,ω) is a R[[ν]]-bilinear associa-
tive law on the space C∞(M)[[ν]] of formal power series of smooth functions:

∗ : (C∞(M)[[ν]])2 → C∞(M)[[ν]] : (H,K) 7→ H ∗K :=

∞∑
r=0

νrCr(H,K)

where the Cr’s are bidifferential operators null on constants such that for all
H, K ∈ C∞(M)[[ν]] : C0(H,K) = HK and C1(H,K)− C1(K,H) = {H,K}.

In [7], Fedosov gave a geometric construction of star products on sym-
plectic manifolds using a symplectic connection ∇ and a formal series of
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Futaki invariant for Fedosov star products 1321

closed 2-forms Ω ∈ νΩ2(M)[[ν]]. We will only consider Fedosov star prod-
ucts built with Ω = 0 and denote them by ∗∇.

Let ∗ be a star product on a symplectic manifold. A trace for ∗ is a
R[[ν]]-linear map

tr : C∞(M)[[ν]]→ R[[ν]],

satisfying tr(F ∗H) = tr(H ∗ F ) for all F,H ∈ C∞(M)[[ν]].
Any star product ∗ on a symplectic manifold (M,ω) admits a trace

[8, 13, 16]. More precisely, there exists κ ∈ C∞(M)[[ν]] such that

tr(F ) :=

∫
M
Fκ

ωn

n!

for all F ∈ C∞(M)[[ν]]. The function κ is called a trace density. Moreover,
any two traces for ∗ differ from each other by multiplication with a formal
constant C ∈ R[ν−1, ν]].

A star product is called closed [4] if the map F 7→
∫
M F ωn

n! satisfies the
trace property:∫

M
F ∗Hωn

n!
=

∫
M
H ∗ F ω

n

n!
, for all F,H ∈ C∞(M)[[ν]].

In [14], we linked the moment map with the trace density κ∇ of the
Fedosov star product ∗∇ by the formula :

(2.3) κ∇ := 1 +
ν2

24
µ(∇) +O(ν3).

So that, if ∗∇ is closed, then µ(∇) = 0.

3. Futaki invariant for µ

3.1. Definition and main Theorem

We consider a closed Kähler manifold (M,ω, J). Let Θ be the Kähler class
of ω and denote by MΘ the set of Kähler forms in the class Θ:

MΘ := {ωφ = ω + ddcφ s.t. φ ∈ C∞0 (M), ωφ(·, J ·) is positive definite },

where dcF := −dF ◦ J for F ∈ C∞(M).
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1322 Laurent La Fuente-Gravy

Consider the functional

ωφ ∈MΘ 7→ µφ(∇φ) ∈ C∞(M),

where µφ is the moment map on E(M,ωφ) and ∇φ is the Levi-Civita con-
nection of gφ(·, ·) := ωφ(·, J ·). Using the second Bianchi identity, one can
write:

µφ(∇φ) = −1

2
∆φScal∇

φ

+ P (∇φ)− µ0,

where Scal∇
φ

denotes the scalar curvature of ∇φ. Recall that µ0 is a topo-
logical constant so that µφ(∇φ) is normalised with respect to the integral

with volume form
ωnφ
n! . Finally, remark that one uses the Kähler metric to

define the scalar curvature, for a general symplectic connection there is no
notion of scalar curvature [12].

Let h the Lie algebra of holomorphic vector fields in T (1,0)M having a
zero on M . For any ωφ ∈MΘ, elements in h can be represented as vector
fields on M by Z = X

ωφ
Fφ + JX

ωφ
Hφ for unique F φ, Hφ ∈ C∞(M) (depending

on ωφ) whose integral with respect to
ωnφ
n! is zero and where X

ωφ
K denotes

the Hamiltonian vector field of K ∈ C∞(M) with respect to the symplectic
form ωφ.

Definition 3.1. For ωφ ∈MΘ, we define the map

(3.1) Fωφ : h 7→ R : Z 7→
∫
M
Hφµφ(∇φ)

ωnφ
n!
,

for Z = X
ωφ
Fφ + JX

ωφ
Hφ as above.

Though the definition of Fωφ seems a priori to depend on the choice of
a point in MΘ, we will prove it is not the case.

Theorem 1. Let (M,ω, J) be a closed Kähler manifold with Kähler class
Θ, Levi-Civita connection ∇ and fixed complex structure J . Then, the map

Fω : h→ R : Z 7→
∫
M
Hµ(∇)

ωn

n!
,

for Z = XF + JXH , µ the Cahen–Gutt moment map on E(M,ω), is a char-
acter that does not depend on the choice of a Kähler form in the Kähler
class Θ.
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Futaki invariant for Fedosov star products 1323

The Theorem 1 implies that the non-vanishing of Fω is an obstruction
to the existence of ωφ ∈MΘ such that µφ(∇φ) = 0.

Proof of Corollary 1.1. For ω̃ ∈MΘ with Levi-Civita connection ∇̃, assume
the Fedosov star product ∗∇̃ is closed. Then µω̃(∇̃) = 0 and hence Fω =
0. �

3.2. The space Jint(M,ω)

The goal of this subsection is to state the formulas coming from [14] we will
use to prove Theorem 1.

Definition 3.2. We denote by Jint(M,ω) the space of integrable complex
structures on M compatible with ω, that is J ∈ Jint(M,ω) is a complex
structure such that ω(J ·, J ·) = ω(·, ·) and ω(·, J ·) is a Riemannian metric.

For Jt ∈ Jint(M,ω) a smooth path of complex structures at J := J0 and
A := d

dt

∣∣
0
Jt ∈ TJJint(M,ω). Then, A ∈ Γ(End(TM)) satisfies AJ + JA = 0

and the 1-form (∇A)(·) with values in End(TM) satisfies:

J(∇A)(X)Y − (∇A)(JX)Y is symmetric in X,Y.

Consider the map

lc : Jint(M,ω)→ E(M,ω) : J 7→ ∇J

which associates to an integrable complex structure J compatible with ω,
the Levi-Civita connection ∇J of the Kähler metric gJ(·, ·) := ω(·, J ·).

The map lc is equivariant with respect to the group of symplectic diffeo-
morphisms of (M,ω). That is: for all ϕ ∈ Symp(M,ω) and J ∈ Jint(M,ω)
with ϕ · J := ϕ∗Jϕ

−1
∗ :

lc(ϕ · J) = ϕ · lc(J).

Proposition 3.3. Let A ∈ TJJint(M,ω) and write B ∈ T∇E(M,ω) such
that B = lc∗J(A). Then B is the unique solution to the equation

B(X)Y + JB(X)JY = −J(∇A)(X)Y.

and if JA ∈ TJJint(M,ω), then :

lc∗J(JA)(X)Y = JB(JX)JY +
1

2
(J(∇A)(JX)Y ) + (∇A)(X)Y ) .
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From those equations we obtain [14]:

Lemma 3.4. If A,A′ and JA, JA′ ∈ TJJint(M,ω) then

(lc∗ΩE)J(JA, JA′) = (lc∗ΩE)J(A,A′).

3.3. Proof of Theorem 1

Consider a smooth map φ : ]− ε, ε[→ C∞0 (M) : t 7→ φ(t) for some ε ∈ R+
0

such that the 2-form ωφ(t) := ω + ddcφ(t) is a smooth path in MΘ passing
through ω = ωφ(0). To prove the independence of Fωφ , we will show that for
all Z ∈ h:

d

dt

∣∣∣∣
0

Fωφ(t)(Z) = 0.

All the forms ωφ(t) are symplectomorphic to each other. Indeed, con-
sider the one parameter family of diffeomorphisms ft integrating the time-
dependent vector field −JXωφ(t)

φ̇
. Then,

(3.2) f∗t ωφ(t) = ω.

Consider ft as in the above equation (3.2). Then, the natural action of
f−1
t on J produces a path

Jt := f−1
t · J := f−1

t∗ Jft∗ ∈ Jint(M,ω).

Define the associated Kähler metric gJt(·, ·) := ω(·, Jt·) and denote by ∇Jt
its Levi-Civita connection. Then, ∇Jt and ∇φ(t) are related by the following
formula :

∇Jt = f−1
t · ∇φ(t),

where (f−1
t · ∇φ(t))Y Z = f−1

t∗ ∇
φ(t)
ft∗Y

ft∗Z. Then, their image by the moment
map is related by :

(3.3) µ(∇Jt) = f∗t µ
φ(t)(∇φ(t)).

Note that on the LHS the moment map is taken with respect to a fixed
symplectic form while on the RHS µφ(t) is a function on E(M,ωφ(t)).
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Proof of Theorem 1. We will use the notations introduced above. First, us-
ing Equations (3.1), (3.2) and (3.3), we have:

Fωφ(t)(Z) =

∫
M
Hφ(t)µφ(t)(∇φ(t))

ωnφ(t)

n!
=

∫
M
f∗t (Hφ(t))µ(∇Jt)ω

n

n!
.

We will differentiate at t = 0. Using d
dt

∣∣
0
Hφ(t) = Z(φ̇(0)) (see for example

[20]) and writing H for Hφ(0), we have:

d

dt

∣∣∣∣
0

f∗t (Hφ(t)) = −JXφ̇(H) + Z(φ̇(0)).

Using −JXφ̇(H) = −ω(XH , JXφ̇) = −JXH(φ̇(0)), we obtain:

d

dt

∣∣∣∣
0

f∗t (Hφ(t)) = XF (φ̇(0)).

Now, applying d
dt

∣∣
0

∫
M Hµ(∇Jt)ωnn! = ΩE∇(LXH∇, d

dt

∣∣
0
∇Jt) by the mo-

ment map equation (2.2), we get

d

dt

∣∣∣∣
0

Fωφ(t)(Z) =

∫
M
XF (φ̇(0))µ(∇)

ωn

n!
+ ΩE∇

(
LXH∇,

d

dt

∣∣∣∣
0

∇Jt
)
.

Now, the first term of the above equation becomes
∫
M XF (φ̇(0))µ(∇)ω

n

n! =

−
∫
M φ̇(0)XF (µ(∇))ω

n

n! and using the equivariance of µ and again the mo-
ment map equation (2.2), we get

d

dt

∣∣∣∣
0

Fωφ(t)(Z) = −ΩE∇(LXφ̇(0)∇,LXF∇) + ΩE∇

(
LXH∇,

d

dt

∣∣∣∣
0

∇Jt
)
.

To finish the proof, we will make use of the map lc. Recall that lc is
equivariant, hence

d

dt

∣∣∣∣
0

Fωφ(t)(Z) = −(lc∗ΩE)J(LXφ̇(0)J,LXF J) + (lc∗ΩE)J

(
LXHJ,

d

dt

∣∣∣∣
0

Jt

)
.

Now, we compute d
dt

∣∣
0
Jt = −LJXφ̇(0)J . The vanishing of the Nijenhuis

tensor implies LJV J = JLV J , for any vector field V , so that

d

dt

∣∣∣∣
0

Fωφ(t)(Z) = −(lc∗ΩE)J(LXφ̇(0)J,LXF J)− (lc∗ΩE)J(LXHJ, JLXφ̇(0)J),

= −(lc∗ΩE)J(LXφ̇(0)J,LXF J) + (lc∗ΩE)J(JLXHJ,LXφ̇(0)J),
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where we use Lemma 3.4 in the last equality.
Finally, Z ∈ h means that LZJ = 0. As Z = XF + JXH , then JLXHJ =

−LXF J (where we use again LJV J = JLV J , for any vector field V ). Con-
sequently,

d

dt

∣∣∣∣
0

Fωφ(t)(Z) = 0,

which implies that Fωφ does not depend on the choice of ωφ ∈MΘ.
We finish by showing Fω is a character. It is a consequence of the fact

that Fω is an invariant of the Kähler class, indeed, for Y,Z ∈ h, one has
[Y,Z] = d

dt

∣∣
0
ϕY−t∗Z, for ϕYt∗ the flow of Y so that

Fω([Y,Z]) =
d

dt

∣∣∣∣
0

Fω(ϕY−t∗Z) =
d

dt

∣∣∣∣
0

FϕY ∗t ω(ϕY−t∗Z).

Now, when Z = Xω
F +JXω

H , one computes ϕY−t∗Z = X
ϕY ∗t ω
ϕY ∗t F

+JX
ϕY ∗t ω
ϕY ∗t H

. Then

d

dt

∣∣∣∣
0

FϕY ∗t ω(ϕY−t∗Z) = 0.

�

4. Generalised Futaki invariants

4.1. Fω is a generalised Futaki invariant

In [11], Futaki generalised the Futaki invariant obstructing the existence of
Kähler-Einstein metrics. One of these so-called generalised Futaki invariants
is the invariant we define using the moment map.

Futaki’s construction goes as follows. On a Kähler manifold (M,ω, J),
consider the holomorphic bundle T (1,0)M of tangent vectors of type (1, 0).

Choose any (1, 0)-connection ∇ on T (1,0)M with curvature R∇. For Z ∈ h,
define L(Z(1,0)) :=∇Z(1,0)−LZ(1,0) , it is a 0-form with values in End(T (1,0)M).
Let q be a Gl(n,C)-invariant polynomial on gl(n,C) of degree p, Futaki
defined in [11], the map Fq : h→ C by

Fq(Z) :=

∫
M

(n− p+ 1)uZq(R
∇) ∧ ω(n−p) + q(L(Z(1,0)) +R∇) ∧ ω(n−p+1),

where uZ = F + iH ∈ C∞0 (M,C) for Z = XF + JXH ∈ h. Remark that as

L(Z(1,0)) +R∇ is a form of mixed degree, the form q(L(Z(1,0)) +R∇) is also
of mixed degree but in the second term of Fq only the component of degree
p− 1 will contribute to the integral.
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Futaki shows Fq depends neither on the choice of the (1, 0)-connection
nor on the choice of the Kähler form in MΘ, see [11]. Moreover, if you
take q = ck the polynomials defining the k-th Chern form, it is proved in
[11] that one recovers Bando’s obstruction [1] to the harmonicity of the kth

Chern form:

(4.1) Fck(Z) = (n− k + 1)

∫
M
uZck(R

∇) ∧ ω(n−k).

Proposition 4.1. We have that Fω is the imaginary part of F 8π2

(n−1)!
(c2− 1

2
c1·c1)

Proof. The key of the computation is that the Pontryagin 4-form defining
P (∇) satisfies:

tr(R∇
◦
∧ R∇) = 16π2

(
c2 −

1

2
c1 · c1

)
(R∇).

Then, for Z = XF + JXH ∈ h,

Fω(Z) = −1

2

∫
M
H∆Scal∇

ωn

n!
+ 8π2

∫
M
Hc2(R∇) ∧ ωn−2

(n− 2)!

−4π2

∫
M
Hc1 · c1(R∇) ∧ ωn−2

(n− 2)!
.

As uZ = F + iH, Equation (4.1) tells us that the imaginary part of
F 8π2

(n−1)!
c2

(Z) is:

8π2

∫
M
Hc2(R∇) ∧ ωn−2

(n− 2)!
.

It remains to compute F 4π2

(n−1)!
c1c1

:

F 4π2

(n−1)!
c1·c1(Z) = 4π2

∫
M
uZc1 · c1(R∇) ∧ ωn−2

(n− 2)!
(4.2)

+ 4π2

∫
M
c1 · c1(L(Z(1,0)) +R∇) ∧ ωn−1

(n− 1)!

= 4π2

∫
M
uZc1 · c1(R∇) ∧ ωn−2

(n− 2)!

+ 2i

∫
M

trC(L(Z(1,0)))ρ∇ ∧ ωn−1

(n− 1)!
,
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where we used c1(·) := 1
2π trC(·) and c1(R∇) = i

2πρ
∇ for ρ∇ := Ric∇(J ·, ·)

the Ricci form. Since trC(L(Z(1,0))) = −i
2 (∆F + i∆H), we have:

2i

∫
M

trC(L(Z(1,0)))ρ∇ ∧ ωn−1

(n− 1)!
=

1

2

∫
M

(∆F + i∆H)Scal∇
ωn

n!
,

=
1

2

∫
M

(F + iH) ∆Scal∇
ωn

n!
.

So, Fω is the imaginary part of F 8π2

(n−1)!
(c2− 1

2
c1·c1)

. �

Remark 4.2. From Equation (2.3), we see that for Z := XF + JXH ∈ h:

tr∗∇(H) =
ν2

24
Fω(Z) +O(ν3).

A natural question is: what is hidden behind the higher order terms of
tr∗∇(H)? As the index theorem for deformation quantization [8, 16] shows
that tr∗∇(1) writes in term of characteristic classes of the manifold, one
should check if other generalised Futaki invariants show up in higher order
terms of tr∗∇(H).

4.2. Example

For q = Tdp, the invariant polynomials defining the pth Todd class, methods
are developped to compute FTdp , see [5, 18, 19], in order to study the asymp-
totic semi-stability [11] of the manifold. Those methods and this notion of
asymptotic semi-stability are beyond the scope of this paper. However, when
the manifold is Kähler-Einstein, as it is the case in [18], FTd2

determines
completely Fω.

Observation 4.3. When (M,ω, J) is Kähler-Einstein, Fω is the imaginary
part of 8π2

(n−1)!FTd2
.

Proof. Recall that Td2 = c2 + c1 · c1. From Equation (4.2), we have for Z =
XF + JXH ∈ h that F 4π2

(n−1)!
c1·c1(Z) equals:

−
∫
M

(F + iH)ρ∇ ∧ ρ∇ ∧ ωn−2

(n− 2)!
+

1

2

∫
M

(F + iH) ∆Scal∇
ωn

n!
,

where ρ∇ denotes the Ricci form. Since the manifold is Kähler-Einstein ρ∇ =
λω, then Fc1·c1 = 0. So that, 8π2

(n−1)!FTd2
= F 8π2

(n−1)!
(c2− 1

2
c1·c1)

and its imaginary

part is Fω by Proposition 4.1. �
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In [17], a 7-dimensional (complex dimension) smooth Kähler manifold
(V, ω, J) is constructed, the so-called Nill–Paffenholz example. V is a toric
Fano manifold that is Kähler-Einstein, [17]. Moreover, Ono, Sano and Yot-
sutani [18] showed that, on V , FTdp 6= 0 for 2 ≤ p ≤ 7. Combined with the
above Observation 4.3, it means Fω 6= 0. Consequently, Corollary 1.1 im-
plies:

Theorem 4.4. Let (V, ω, J) be the Nill–Paffenholz example [17] and Θ =
[ω], then there is no closed Fedosov star products of the form ∗∇̃ for ∇̃ the
Levi-Civita connection of some ω̃ ∈MΘ.
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