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Futaki invariant for Fedosov star products

LAURENT LA FUENTE-GRAVY

We study obstructions to the existence of closed Fedosov star prod-
ucts on a given Kéhler manifold (M,w, J). In our previous paper
[14], we proved that the Levi-Civita connection of a K&hler mani-
fold will produce a closed Fedosov star product (closed in the sense
of Connes—Flato—Sternheimer [4]) only if it is a zero of a moment
map p on the space of symplectic connections. By analogy with the
Futaki invariant obstructing the existence of constant scalar cur-
vature Kéhler metric, we build an obstruction for the existence of
zero of u and hence for the existence of closed Fedosov star product
on a Kahler manifold.

1. Introduction

In [3], a moment map u on the space of symplectic connections is introduced.
The study of zeroes of u and of the so-called critical symplectic connections
was first proposed by D.J. Fox [9] in analogy with the moment map picture
for the Hermitian scalar curvature on almost-Kéhler manifolds [6]. Recently
[14], we give additional motivations for the study of u, and its zeroes on
Kaéhler manifolds, coming from the formal deformation quantization of sym-
plectic manifolds.

We exhibit an obstruction to the existence of zeroes of ¢ on closed Kéhler
manifolds in the spirit of Futaki invariants [10]. It is a character on b the
Lie algebra of holomorphic vector fields in T M having a zero on M, see
[15]. Recall that on a Kéhler manifold (M,w,J), elements in b are (1,0)-
part of vector fields on M of the form Z = Xp + J Xy, for F, H € C*°(M)
with zero mean, Xp (resp. Xp) is the Hamiltonian vector field defined by
i(Xp)w = dF (resp. i(Xg)w = dH) so that F' and H depend on w.

Part of this work benefitted from the Belgian Interuniversity Attraction Pole
(IAP) DYGEST.
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Theorem 1. Let (M,w,J) be a closed Kdhler manifold with Kdhler class
O, Levi-Civita connection V and fized complex structure J. Then, the map

n

f“:h—>R:Z>—>/ Hu(V)~-,
for Z = Xp + J X, u the Cahen—Gutt moment map on E(M,w), is a char-
acter that does not depend on the choice of a Kdhler form in the Kdahler
class ©.

Deformation quantization as defined in [2] is a formal associative defor-
mation of the Poisson algebra (C*°(M), .,{-,-}) of a Poisson manifold (M, )
in the direction of the Poisson bracket. The deformed algebra is the space
C>(M)][[v]] of formal power series of smooth functions with composition
law = called star product.

On a symplectic manifold (M, w) endowed with a symplectic connection
V (i.e. torsion-free connection leaving w parallel), one can associate the
Fedosov star product *y, [7]. The moment map p evaluated at V is the first
non-trivial term in the expression of a trace density for the star product v,
see [I4]. So that, if the star product *y is closed (in the sense of Connes—
Flato-Sternheimer [4]), then p(V) is the zero function which implies the
following result.

Corollary 1.1. Let (M,w,J) be a closed Kihler manifold with Kihler class
O, such that F* is not identically zero, then, given any Kdhler form w € Mg
with Levi-Civita connection V, the Fedosov star product g is not closed.

Finally, we identify the character F* with one of the so-called higher
Futaki invariants [11]. It enables us to exhibit an example of Ké&hler manifold
[17, 18] admitting non-zero values of F* and hence no closed Fedosov star
products as considered in Corollary

2. The moment map and Fedosov star products

Consider a closed symplectic manifold (M, w) of dimension 2n. A symplec-
tic connection V on (M,w) is a torsion-free connection such that Vw = 0.
There always exists a symplectic connection on a symplectic manifold. If we
denote by A(-) a field of 1-form with values in End(T'M) and if V is a sym-
plectic connection then the connection V + A(-) is symplectic if and only if
the 3-tensor field w(A(-)-,-) is symmetric. The space £(M,w) of symplectic
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connections is the affine space
E(M,w) =V +T(S*T*M) for some V € £(M,w),

where S3T*M = {A € AY(M) ® End(TM) | w(A(),-) is symmetric}. For
A€ S3T*M, we set A(-,-,-) for the symmetric 3-tensor w(A(-)-, ).

There is a natural symplectic form on £(M,w). For A, B € TvE(M,w),
seen as sections of A'(M) ® End(TM,w), one defines

wn—l

0% (A, B) ::/ tr(A A B) A

w’l’b
M (n—1)! nl’

__ / AFltr(A(er) Bler))
M

where A is the product on A'(M) ® End(TM,w) induced by the usual A-
product on forms and the composition on the endomorphism part, A* is
defined by A*wy; = 6F for wy == w(ey, ;) for a frame {eg} of T, M and using,
as for the rest of the paper, Einstein summation convention on repeated
indices. The 2-form QF is a symplectic form on &(M,w).

Remark 2.1. The symplectic form Q¢ can be written in coordinate as :

wn

£2019213=J1]2]3

0% (A, B) = / NINBRNBT A, s By =
M n:

for A,B € TyE(M,w).

There is a natural symplectic action of the group of symplectomorphisms
on £(M,w). For ¢, a symplectic diffecomorphism, we define an action

(2.1) (P V)xY = (Vo x9i 'Y),

forall XY € TM and V € (M, w).

Recall that a Hamiltonian vector field is a vector field Xp for F €
C*°(M) such that i(Xp)w = dF. We denote by Ham(M,w) the group of
Hamiltonian diffeomorphisms of the symplectic manifold (M,w) with Lie
algebra the space C§°(M) of smooth functions F' such that [,, F %T =0.

The action defined in Equation restricts to an action of the group
Ham(M,w). Let X be a Hamiltonian vector field with F' € C§°(M), the
fundamental vector field on £(M,w) associated to Xp is the Lie derivative:
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for Y, Z e T'(TM),
(Lx,V)(Y)Z = Viy 5 Xr + RY (XF,Y)Z,

where V%va)W = VyVyW — Vy,vW is the second covariant derivative
and RY (U, V)W := [Vy, Vy|W — Vi)W is the curvature tensor of V, for
U,V,W € T(TM).

Let RicV(X,Y) :=tr[V + RY(V, X)Y] for all X,Y € TM be the Ricci
tensor of V. Let P(V) be the function defined by

n wn—2

(n—2)V

P©)2 = %tr(RV(., YRR, ) A

with integral o := [,, P(V)%r, note that o is a topological constant de-
pending on the first Pontryagin class of M and |w], hence not depending on
V. Define the map p : E(M,w) — C§° (M) by

w(V) = (V%eweq)RicV)(ep, e!) 4+ P(V) — o
where {e;.} is a frame of T, M and {e'} is the symplectic dual frame of {ey}
(that is w(ey,e!) = 6L).

Theorem 2.2 (Cahen—Gutt [3]). The map p: E(M,w) — C° (M) is an
equivariant moment map for the action of Ham(M,w) on E(M,w), i.e.

d

(2.2) =

/M W(V + tA)F% = 05 (Lx,V, A).
. .

In [14], the moment map p is related to the notion of trace density for Fe-
dosov star products. Also, the closedness (closedness in the sense of Connes—
Flato—Sternheimer [4]) of a Fedosov star product implies u = 0. Let us recall
briefly all those notions and results.

A star product, as defined in [2], on (M,w) is a R[[v]]-bilinear associa-
tive law on the space C°>°(M)][[v]] of formal power series of smooth functions:

w1 (C(M)[[V]])? = C(M)[[V]] : (H,K) — Hx K := ZVTCT(H, K)
r=0

where the C,.’s are bidifferential operators null on constants such that for all
H, KeC>®M)|v]:Co(H,K)=HK and C1(H,K) — C1(K,H) = {H,K}.

In [7], Fedosov gave a geometric construction of star products on sym-
plectic manifolds using a symplectic connection V and a formal series of
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closed 2-forms Q € vQ?(M)[[v]]. We will only consider Fedosov star prod-
ucts built with 2 = 0 and denote them by *v.

Let * be a star product on a symplectic manifold. A trace for * is a
R][v]]-linear map

tr: C°(M)[[v]] — R[[v]],

satisfying tr(F « H) = tr(H = F') for all F, H € C*°(M)[[v]].
Any star product * on a symplectic manifold (M,w) admits a trace
[8, 13| [16]. More precisely, there exists k € C°°(M)[[v]] such that

u(F)i= [ e

n!

for all F' € C°°(M)[[v]]. The function « is called a trace density. Moreover,
any two traces for *x differ from each other by multiplication with a formal
constant C' € R[v~1, 1]].

A star product is called closed [4] if the map F — [, F; satisfies the
trace property:

/F*H‘*"—/ Hx F= for all F,H € C®(M)[[V]).
M . M mn.

In [14], we linked the moment map with the trace density " of the
Fedosov star product xy by the formula :

2

(2.3) kY =1+ %M(V) + 0.

So that, if xy is closed, then p(V) = 0.
3. Futaki invariant for u
3.1. Definition and main Theorem

We consider a closed Kéahler manifold (M, w, J). Let © be the Kahler class
of w and denote by Mg the set of Kéhler forms in the class ©:

Mg ={wy =w+dd°¢ s.t. ¢ € C5°(M), wy(-,J-) is positive definite },

where d°F := —dF o J for F € C*°(M).
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Consider the functional
wy € Mg + n?(V?) € C=(M),

where p? is the moment map on £(M,wy) and V? is the Levi-Civita con-
nection of g4(-,-) := wy (-, J-). Using the second Bianchi identity, one can
write:

WO (V%) = —%A¢Scalv¢ + P(V®) — o,

where ScalV’ denotes the scalar curvature of V?. Recall that Lo is a topo-
logical constant so that p?(V?) is normalised with respect to the integral
with volume form % Finally, remark that one uses the Kéhler metric to
define the scalar curvature, for a general symplectic connection there is no
notion of scalar curvature [12].

Let b the Lie algebra of holomorphic vector fields in T(h9 M having a
zero on M. For any wg € Mg, elements in b can be represented as vector
fields on M by Z = X% + J X}, for unique F?, H* € C*°(M) (depending
on wg) whose integral with respect to %‘? is zero and where X, denotes
the Hamiltonian vector field of K € C°°(M) with respect to the symplectic
form wy.

Definition 3.1. For wy, € Mg, we define the map

n

(3.1) PR Zr—)/ Hut (v9) 22,
M n.

for Z = X734 + JX, as above.

Though the definition of F*¢ seems a priori to depend on the choice of
a point in Mg, we will prove it is not the case.

Theorem 1. Let (M,w,J) be a closed Kihler manifold with Kdhler class
O, Levi-Civita connection V and fized complex structure J. Then, the map

n
}"”:h—HR:Z'—)/ Hu(V)~-,
for Z = Xp + JXg, u the Cahen—Gutt moment map on E(M,w), is a char-

acter that does not depend on the choice of a Kdhler form in the Kdahler
class ©.
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The Theorem [I| implies that the non-vanishing of F% is an obstruction
to the existence of wy € Mg such that u®(V®) = 0.

Proof of Corollary[1.1. For & € Me with Levi-Civita connection V, assume

the Fedosov star product g is closed. Then p®(V) =0 and hence F¥ =
0. O

3.2. The space Jint(M,w)

The goal of this subsection is to state the formulas coming from [14] we will
use to prove Theorem

Definition 3.2. We denote by Jini(M,w) the space of integrable complex
structures on M compatible with w, that is J € T (M,w) is a complex
structure such that w(J-,J-) = w(-,-) and w(-, J-) is a Riemannian metric.

For J; € Jint(M,w) a smooth path of complex structures at J := Jy and
A= %‘0 Jt € Ty Tint(M,w). Then, A € T'(End(T'M)) satisfies AJ + JA =0
and the 1-form (VA)(-) with values in End(T'M) satisfies:

J(VA)(X)Y — (VA)(JX)Y is symmetric in X,Y.
Consider the map
Ic : Tint(M,w) = E(M,w) : J — V7

which associates to an integrable complex structure J compatible with w,
the Levi-Civita connection V7 of the Kihler metric g;(-,-) := w(-, J-).

The map lc is equivariant with respect to the group of symplectic diffeo-
morphisms of (M,w). That is: for all ¢ € Symp(M,w) and J € Jins(M,w)
with ¢ - J 1= @, Jp; 1

le(p-J)=¢-lc(J).

Proposition 3.3. Let A € Ty Tim(M,w) and write B € TyE(M,w) such
that B = lc,j(A). Then B is the unique solution to the equation

B(X)Y + JB(X)JY = —J(VA)(X)Y.
and if JA € Ty Timt(M,w), then :

lews (JANX)Y = TBUIX)IY + 3 (J(VA(TX)Y) + (VAY(X)Y).
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From those equations we obtain [14]:

Lemma 3.4. If A, A" and JA, JA" € T)Tint(M,w) then
(1 QE) 7 (JA, JA") = (1¢*Q%) (A, A).

3.3. Proof of Theorem (1]

Consider a smooth map ¢ : | — €, e[— C5°(M) : t = ¢(t) for some € € R}
such that the 2-form wg ) := w + dd°¢(t) is a smooth path in Mg passing
through w = wg(g). To prove the independence of F*¢, we will show that for
all Z € b:

d

2| Fwsw(Z) = 0.
i @)

All the forms wy(;) are symplectomorphic to each other. Indeed, con-
sider the one parameter family of diffeomorphisms f; integrating the time-
dependent vector field —J XZ"’“). Then,

(3.2) frwge) = w-

Consider f; as in the above equation (3.2). Then, the natural action of
ft_l on J produces a path

Jp = ft_l -J = ft;ljft* € Jint(M,w).

Define the associated Kihler metric gy, (-,-) := w(, J;) and denote by V7’
its Levi-Civita connection. Then, V/* and V¢®) are related by the following
formula :

th — ft_l . V(b(t)’

where ( ft_1 V) Z = fth?g/ fixZ. Then, their image by the moment
map is related by :

(3.3) w(V7) = frut®(vew),

Note that on the LHS the moment map is taken with respect to a fixed
symplectic form while on the RHS p?® is a function on & (M, wy())-
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Proof of Theorem[1 We will use the notations introduced above. First, us-

ing Equations (3.1]), (3.2)) and (3.3]), we have:
g Eq 3.1, :

wn

wn
Feen (Z) = / H0 900 (900 200 _ / () ()
M n: M n:

We will differentiate at ¢ = 0. Using %!OH‘M” = Z($(0)) (see for example
[20]) and writing H for H?©) we have:

d

y7 [ (HA) = =T X 5(H) + Z((0)).

0

Using —JX;(H) = —w(Xn, JX;) = —JXnu(¢(0)), we obtain:

d N .
at I (Hd)(t)) = XF(¢(O))-
0
Now, applying %‘ I Hu(VJf)% = Q‘SV(EXHV, %|0 V7)) by the mo-
ment map equation (2.2), we get
th> :
0

d d
Now, the first term of the above equation becomes [, X (4(0))pu(V)<y =

 dt

OJ-“WM (Z) = /M XF(dS(O))u(V)%T +0% (['XHV

n!

dt
—Ju »(0)X F(1(V))%; and using the equivariance of ;1 and again the mo-

va> .
0

ment map equation (2.2), we get
d

To finish the proof, we will make use of the map lc. Recall that lc is

equivariant, hence

Jt> .

0

dt
Now, we compute %‘ oJt = —Lyx,,,J- The vanishing of the Nijenhuis
tensor implies Ly J = JLyJ, for any vector field V', so that

d

W (¢) — _0¢ , -
e (2) = ~0% (Lx -

$(0)
0

V,Lx,.V)+ 0% (szv

4
dt

d

Fwow (Z) = —(IC*QE)J(EX- dt

#(0)
0

J, Lx,.J)+ (1c*Qf); (LXH J,

Feo(Z) = —(1c* Q) 5 (Lx, ], Lx T) = (1¢*QF) 5 (Lx, T, T Lx, o ),
0

dt
= —(1c*0%) ;(Lx.

¢(0)

J Lx,.J)+ (1c*Q8) (T Lx, J, Lx.. J),

¢(0)
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where we use Lemma [3.4] in the last equality.
Finally, Z € h means that LzJ =0. As Z = Xp + J Xy, then JLx, J =
—Lx,J (where we use again Ly J = JLy J, for any vector field V). Con-

sequently,
d
—| Fw(Z) =0,
il 7
which implies that 7“# does not depend on the choice of wyg € Mg.
We finish by showing F“ is a character. It is a consequence of the fact
that F¢ is an invariant of the Kéahler class, indeed, for Y, Z € b, one has

Y, 7= % ’0 ©Y,.Z, for ¢}, the flow of Y so that

d

I Y
dt ‘F (<p—t>k )

FAY, Z]) =

(801—/15*2) =

dt |,
Now, when Z = X%+JX$%, one computes ¢¥,,Z = X“%,f F+JX“";* “ . Then

d

Y, Y
Z) =0.
dt 0 (So—t* )

4. Generalised Futaki invariants
4.1. F% is a generalised Futaki invariant

In [11], Futaki generalised the Futaki invariant obstructing the existence of
Kahler-Einstein metrics. One of these so-called generalised Futaki invariants
is the invariant we define using the moment map.

Futaki’s construction goes as follows. On a Kéhler manifold (M,w, J),
consider the holomorphic bundle 70 M of tangent vectors of type (1,0).
Choose any (1,0)-connection V on T M with curvature RY. For Z € b,
define L(Z(19):=V 40.0 — L 700, it is a 0-form with values in End(T™M0) M).
Let ¢ be a Gl(n,C)-invariant polynomial on gl(n,C) of degree p, Futaki
defined in 11, the map §, : h — C by

M

where uy = F +iH € C§°(M,C) for Z = Xp + JXy € b. Remark that as
L(Z19) + RV is a form of mixed degree, the form ¢(L(Z(1?) + RV) is also
of mixed degree but in the second term of §, only the component of degree
p — 1 will contribute to the integral.
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Futaki shows §, depends neither on the choice of the (1,0)-connection
nor on the choice of the Kahler form in Mg, see [II]. Moreover, if you
take ¢ = ¢ the polynomials defining the k-th Chern form, it is proved in
[T1] that one recovers Bando’s obstruction [I] to the harmonicity of the k**
Chern form:

(4.1) 5o (Z) = (n—k+1) /M ugcr(RY) A w®H).

Proposition 4.1. We have that F¥ is the imaginary part of § s.2

(n—1)! (02_%01'C1)

Proof. The key of the computation is that the Pontryagin 4-form defining
P(V) satisfies:

o 1
tr(RY A RY) = 1672 <02 - 50 cl> (RY).

Then, for Z = Xp + JXgy € b,

1 w" w2
F(Z) = —= [ HAScal¥— 82/H RY) A
(2) Q/M Tl en M e2(B) (n—2)!
9 v wn—Q
—4r /MH01'01(R ) A =T

As uyz = F +iH, Equation (4.1) tells us that the imaginary part of
T sz (Z)is:

(n—1)1 2

8 / Hes(RY) A —
M

It remains to compute § 4.2

(-1 11

wn—2
(42) %’ 4r2 01~C1 477'2/ Uuzcy - )/\
M .

(n—1)!

= 47T2/ uger - e Rv) W
n—1
" <c 10) VA w
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tr C(-) and cl(Rv) LpV for pV :=RicV(J,")
(Zz10)) = FL(AF +iAH), we have.

where we used ¢ (-) :=

1
T
the Ricci form. Since tr®(L

n—1 wh
. C (1,0\\ .V w _ 1 vw.
22/Mtr (L(Z5)pY A 1 2 /M (AF +1iAH) Scal e
— 1 ; v

=5 /M (F+iH)AScal o

So, F“ is the imaginary part of § s.2 O

(n—1)!

Remark 4.2. From Equation ({2.3)), we see that for Z := Xp + J Xy € b:

2

£V (H) = %P(Z) + 0.

(czf%cl-cl)'

A natural question is: what is hidden behind the higher order terms of
tr*v(H)? As the index theorem for deformation quantization [8|, [16] shows
that tr*v(1) writes in term of characteristic classes of the manifold, one
should check if other generalised Futaki invariants show up in higher order
terms of tr*v (H).

4.2. Example

For g = Td,, the invariant polynomials defining the p Todd class, methods
are developped to compute §q,, see [3, 18, 19], in order to study the asymp-
totic semi-stability [I1] of the manifold. Those methods and this notion of
asymptotic semi-stability are beyond the scope of this paper. However, when
the manifold is Kéahler-Einstein, as it is the case in [I§], §1q, determines
completely F«.

Observatlon 4.3. When (M,w, J) is Kahler-Einstein, F* is the imaginary
part of ,STd2

Proof. Recall that Tdy = c2 + ¢1 - ¢1. From Equation (4.2), we have for Z =
Xp+JXyg €bhthat § a2 (Z) equals:
(n—1)1 “1°%1

n—2

1 n
—/ (F +iH)p" A pY A +/ (F +iH)AScalV %,
M M n!

(n—2)! 2
where pV denotes the Ricci form Since the manifold is Kéhler-Einstein pV =
Aw, then §¢, .., = 0. So that, ( ) tFrd, = 8 sa2 and its imaginary

(n—1)! (02_%01.61)

part is F* by Proposition O
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In [I7], a 7-dimensional (complex dimension) smooth Ké&hler manifold
(V,w, J) is constructed, the so-called Nill-Paffenholz example. V' is a toric
Fano manifold that is Kéhler-Einstein, [I7]. Moreover, Ono, Sano and Yot-
sutani [I8] showed that, on V, §1q, # 0 for 2 < p < 7. Combined with the
above Observation [4.3] it means F*“ # 0. Consequently, Corollary im-
plies:

Theorem 4.4. Let (V,w,J) be the Nill-Paffenholz example [17] and © =
[w], then there is no closed Fedosov star products of the form *g for V the
Levi-Civita connection of some w € Mg.
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