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The convexity and Morse-theoretic properties of moment maps in
symplectic geometry typically fail for presymplectic manifolds. We
find a condition on presymplectic moment maps that prevents these
failures. Our result applies for instance to Prato’s quasifolds and to
Hamiltonian actions on contact manifolds and cosymplectic mani-
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1. Introduction

1.1. This paper deals with a topic in transverse geometry: in the context
of a manifold X with a (regular) foliation F and a symplectic structure
transverse to the foliation we develop analogues of a few basic results of
symplectic geometry. While statements such as the Darboux theorem re-
main valid, one quickly discovers counterexamples to naive parallels of the
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convexity theorems of Hamiltonian compact Lie group actions proved by
Atiyah [1], Guillemin and Sternberg [9], and Kirwan [16]. Some such coun-
terexamples are recorded in Section 4. Our main contribution is to state a
condition under which these convexity theorems are true in the transversely
symplectic setting. The condition, which we call cleanness of the group ac-
tion, and special cases of which have been found earlier by other authors,
such as He [11] and Ishida [15], is that there should exist an ideal of the
Lie algebra of the group, called the null ideal, which at every point of the
manifold spans the tangent space of the intersection of the group orbit with
the leaf of F .

We state and prove our convexity theorem in Section 2. It is formulated
in terms of presymplectic structures instead of the equivalent language of
transversely symplectic foliations. The adjective “presymplectic” has con-
flicting meanings in the current literature. We will use it for a closed 2-form
of constant rank.

1.2. It was proved by Atiyah [1] and Guillemin and Sternberg [9] that the
components of a symplectic moment map are Morse-Bott functions, an ob-
servation that lies at the heart of all subsequent developments in equivariant
symplectic geometry. In the hope of opening the way to similar applications
to the topology of presymplectic Lie group actions we show in Section 3
that under the cleanness assumption the components of a presymplectic
moment map are Morse-Bott as well. In Section 4 we discuss some examples
of the convexity theorem, including orbifolds, contact manifolds and Prato’s
quasifolds [22].

1.3. To what extent does the moment polytope of the action of a compact
Lie group G on a transversely symplectic manifold X depend only on the
leaf space X/F? If the foliation F is fibrating, the leaf space is a symplectic
manifold and the moment polytope of X is the same as that of X/F . In
this case the moment polytope of X is therefore completely determined by
X/F . But if the null foliation is not fibrating, the leaf space is often a messy
topological space from which one cannot hope to recover the polytope. The
structure of the leaf space can be enriched to that of an étale symplectic stack
X (as in Lerman and Malkin [18], but without the Hausdorff condition),
which is equipped with a Hamiltonian action of a stacky Lie group G (namely
the “quotient” of G by the in general non-closed normal subgroup generated
by the null ideal). One of the results of the paper [14] is that the moment
polytope, reinterpreted as a stacky polytope, is an intrinsic invariant of the
G-action on X .
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2. Presymplectic convexity

2.1. A presymplectic manifold is a paracompact C∞-manifold equipped with
a closed 2-form of constant rank. A Hamiltonian action on a presymplectic
manifold (X,ω) consists of two pieces of data: a smooth action of a Lie group
G on X and a smooth moment map Φ: X → g∗. Here g = Lie(G) denotes
the Lie algebra of G and g∗ the dual vector space of g. These data are subject
to the following requirements: the G-action should preserve the presymplec-
tic form (i.e. g∗ω = ω for all g ∈ G) and Φ should be an equivariant map
satisfying dΦξ = ι(ξX)ω for all ξ ∈ g. Here ξX denotes the vector field on X
induced by ξ ∈ g, and Φξ is the function on X defined by Φξ(x) = 〈Φ(x), ξ〉
for x ∈ X.

In the remainder of this section X will denote a fixed manifold with a
presymplectic form ω and G will denote a fixed compact connected Lie group
acting on X in a Hamiltonian fashion with moment map Φ. We will refer
to X as a presymplectic Hamiltonian G-manifold. As far as we know, this
notion was first introduced (under a different name) by Souriau [26, § 11].
The main goal of this section is to establish the following theorem. This
result is very similar to the symplectic case, but the presence of the null
foliation causes some interesting new phenomena.

Theorem 2.2 (presymplectic convexity theorem). Assume that the
G-action on X is clean. Assume also that the manifold X is connected and
that the moment map Φ: X → g∗ is proper. Choose a maximal torus T of G
and a closed Weyl chamber C in t∗, where t = Lie(T ), and define ∆(X) =
Φ(X) ∩ C.

(i) The fibres of Φ are connected and Φ: X → Φ(X) is an open map.

(ii) ∆(X) is a closed convex polyhedral set.

(iii) ∆(X) is rational if and only if the null subgroup N (X) of G is closed.
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This statement contains several undefined terms, which we proceed to
explain in 2.3–2.6 below. In 2.7–2.11 we make further preliminary comments
and state a sequence of auxiliary results. The proof of the theorem is in 2.12.
Examples are presented in Section 4.

2.3. A convex polyhedral set in a finite-dimensional real vector space is an
intersection of a locally finite number of closed half-spaces. A convex poly-
hedron is an intersection of a finite number of closed half-spaces. A convex
polytope is a bounded convex polyhedron. If the manifold X is compact, the
set ∆(X) defined in Theorem 2.2 is a convex polytope.

2.4. Let E be a finite-dimensional real vector space equipped with a Q-
structure. We call a convex polyhedral subset of E rational if it can be writ-
ten as a locally finite intersection of half-spaces, each of which is given by an
inequality of the form 〈η, ·〉 ≥ a with rational normal vector η ∈ E∗(Q) and
a ∈ R. This is nonstandard terminology. The more usual definition requires
the scalars a to be rational as well. Our notion of rationality is equivalent
to the normal fan of the polyhedral set being rational.

We call a convex polyhedral subset of t∗ rational if it is rational with
respect to the Q-structure Q⊗Z X∗(T ). Here X∗(T ) ⊆ t∗ denotes the char-
acter lattice of the torus T , i.e. the lattice dual to the exponential lattice
X∗(T ) = ker(exp: t→ T ).

2.5. The null ideal sheaf. The subbundle ker(ω) of the tangent bundle
TX is involutive (see e.g. [2, § 3]) and therefore, by Frobenius’ theorem,
integrates to a (regular) foliation F = FX , called the null foliation of ω. We
call ker(ω) the tangent bundle of the foliation and denote it usually by TF .
The leaves of F are not necessarily closed; indeed the case where they are
not closed is the focus of our attention.

Let U be an open subset of X. Define n(U) to be the Lie subalgebra
of g consisting of all ξ ∈ g with the property that the 1-form dΦξ = ι(ξX)ω
vanishes on the G-invariant open set G · U . Equivalently, ξ is in n(U) if and
only if the moment map component Φξ is locally constant on G · U , which
is the case if and only if the induced vector field ξX is tangent everywhere
on G · U to the foliation F . Define N (U) to be the connected immersed
(but not necessarily closed) Lie subgroup of G whose Lie algebra is n(U). If
the leaves of F|G·U are closed subsets of G · U , then the subgroup N (U) is
closed, but we do not assume this to be the case. For all g ∈ G and ξ ∈ n(U)
we have

ι((Adg(ξ))X)ω = ι(g∗(ξX))ω = (g−1)∗(ι(ξX)ω) = 0
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on G · U , and therefore the adjoint action of G on g preserves n(U). In
particular the subalgebra n(U) of g is an ideal and the subgroup N (U) of G
is normal.

The assignment n : U 7→ n(U) is a presheaf on X. Its associated sheaf ñ
is a subsheaf of ideals of the constant sheaf g. We have ñ(U) =

∏
V n(V ),

where the product is over all connected components V of U . The restric-
tion morphisms of the presheaf n are injective, which implies that for a
decreasing sequence of open sets U1 ⊇ U2 ⊇ · · · ⊇ Un ⊇ · · · the sequence of
ideals n(U1) ⊆ n(U2) ⊆ · · · ⊆ n(Un) ⊆ · · · is increasing and therefore even-
tually constant. Hence the sheaf ñ is constructible and its stalk nx = ñx at
x is equal to n(U) for all sufficiently small open neighbourhoods U of x.
Similarly, the presheaf N : U 7→ N (U) sheafifies to a constructible subsheaf
Ñ of normal subgroups of the constant sheaf G, whose stalk Nx = Ñx at x
is equal to N (U) for any suitably small open U containing x. We call the
group of global sections N (X) of N the null subgroup of the presymplectic
Hamiltonian action. We call ñ = ñX the null ideal sheaf and Ñ = ÑX the
null subgroup sheaf.

2.6. Clean actions. Let x ∈ X and let U be a G-invariant open neigh-
bourhood of x. The N (U)-action maps each leaf of the foliation F|U to
itself. Therefore the orbit N (U) · x is contained in G · x ∩ F(x), where F(x)
denotes the leaf of x. Infinitesimally, the tangent space Tx(N (U) · x) is con-
tained in Tx(G · x) ∩ TxF . Taking U to be small enough we have N (U) = Nx
and so Tx(Nx · x) ⊆ Tx(G · x) ∩ TxF . We call the G-action on X clean at x
if this inclusion is an equality, i.e.

(2.6.1) Tx(Nx · x) = Tx(G · x) ∩ TxF .

Cleanness is a G-invariant condition: if the action is clean at x, then it is
clean at gx for every g ∈ G. Cleanness is a local condition: the G-action
on X is clean at x if and only if the G-action on U is clean at x for some
G-invariant open set U containing x. Cleanness is not necessarily an open
condition. (See Example 2.6.5.)

We will state some criteria for the action to be clean in terms of the
induced G-action on the leaf space. Since the G-action on X preserves the
form ω, it sends leaves to leaves, and therefore descends to a continuous
action on the leaf space X/F (equipped with its quotient topology). Let Gx
be the stabilizer of x ∈ X and gx its Lie algebra. Let x̄ = F(x) denote the
leaf of x considered as a point in the leaf space. Let Gx̄ be the stabilizer of x̄
with respect to the induced G-action on X/F . We equip Gx̄ with its induced
Lie group structure (see e.g. [3, § III.4.5]), which makes it an immersed (but
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not necessarily embedded) subgroup of G. Its Lie algebra gx̄ consists of all
ξ ∈ g satisfying ξX(x) ∈ TxF . By definition we have

(2.6.2) Gx̄ · x = G · x ∩ F(x)

and

(2.6.3) n(U) =
⋂

x∈G·U
gx̄

for all open U ⊆ X. (Thus N = N (X) is the identity component of the sub-
group of G that acts trivially on the leaf space X/F .) The foliation F , being
G-invariant, induces a foliation of each orbit G · x. This induced foliation is
equal to the null foliation of the form ω restricted to G · x. The leaves of the
induced foliation are the connected components of intersections of the form
G · x ∩ F(y). We see from (2.6.2) that the leaves of the induced foliation
can also be described as the left translates of the connected components of
Gx̄ · x.

Lemma 2.6.4. For every x ∈ X the following conditions are equivalent.

(i) The G-action is clean at x;

(ii) there exist vectors ξ1, ξ2, . . . , ξk ∈ g and a G-invariant open neighbour-
hood U of x with the property that ξ1,X , ξ2,X , . . . , ξk,X are tangent to
F on U and ξ1,X(x), ξ2,X(x), . . . , ξk,X(x) span Tx(G · x) ∩ TxF ;

(iii) the leaves of the foliation of the G-orbit G · x induced by F are Nx-
orbits;

(iv) Tx(Nx · x) = Tx(Gx̄ · x);

(v) the orbit Nx · x is an open subset of the orbit Gx̄ · x;

(vi) gx̄ = gx + nx;

(vii) the Gx̄-action is clean at x.

Proof. Condition (ii) is a straightforward reformulation of the definition of
cleanness. Next we show that (i) ⇐⇒ (iii). Let Fx be the induced foliation
of the orbit G · x. Let g ∈ G and y = gx. The leaf Fx(y) = g · Fx(x) contains
the orbit Nx · y = Nx · gx = g · Nx · x. Since Nx is connected, the reverse
inclusion Fx(y) ⊆ Nx · y holds if and only if Nx · x is open in Fx(x), which is
the case if and only if Tx(Nx · x) = Tx(G · x) ∩ TxF . The equivalence (i) ⇐⇒
(iv) is immediate from (2.6.1) and (2.6.2). Since the orbit Nx · x is always a
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subset ofGx̄ · x, the equivalence (iv) ⇐⇒ (v) is immediate. Condition (iv) is
equivalent to gx̄/gx = (nx + gx)/gx, which is equivalent to (vi). Finally, (vii)
is a reformulation of (iv). �

Example 2.6.5. Let X = Y × V and ω = ωY ⊕ 0, where (Y, ωY ) is a sym-
plectic Hamiltonian G-manifold and V is a real G-module. Then the leaves of
the null foliation F are the fibres of the projection X → Y . Let x = (y, v) ∈
X. Then F(x) = {y} × V and therefore for ξ ∈ g the tangent vector to the
orbit ξX,x ∈ Tx(G · x) is tangent to the leaf if and only if ξY,y = 0. This shows
that

(2.6.6) Tx(G · x) ∩ TxF = {0} × Tv(Gy · v) ⊆ TyY × V.

The stabilizer of the leaf F(x) is Gx̄ = Gy. It follows from (2.6.3) that for
all open U ⊆ X we have

n(U) =
⋂

(y,v)∈G·U

gx̄ =
⋂

(y,v)∈G·U

gy = k,

where k = ker(g→ Γ(TY )) denotes the kernel of the infinitesimal action of
g on Y . Hence ñX is the constant sheaf with stalk k and Nx = K, where
K = exp(k). Therefore

(2.6.7) Tx(Nx · x) = {0} × Tv(K · v) ⊆ TyY × V.

Comparing (2.6.6) with (2.6.7) we see that the action is clean at x = (y, v)
if v = 0, but usually not at other points. For instance, if the action on Y is
effective (K = {1}), the action is not clean at x soon as dim(Gy · v) ≥ 1.

Two extreme cases of the cleanness condition merit attention. We say the
G-action is leafwise transitive at x if F(x) = Nx · x. Leafwise transitivity at
a point is a G-invariant, local and open condition. We say that the action is
leafwise nontangent at x if Tx(G · x) ∩ TxF = 0. Leafwise nontangency forces
the stalkNx to be a subgroup of the stabilizer Gx. Leafwise nontangency at a
point is a G-invariant local condition, but not necessarily an open condition.
Either condition implies cleanness.

We say that the G-action on X is clean (resp. leafwise transitive, resp.
leafwise nontangent) if it is clean (resp. leafwise transitive, resp. leafwise
nontangent) at all points of X. Leafwise transitivity guarantees that the null
foliation is Riemannian, a property that is frequently useful in applications.
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2.7. In the symplectic case (ker(ω) = 0) the foliation F is trivial, the sheaf
ñ is constant with stalk equal to the kernel of the infinitesimal action g→
Γ(TX), and the cleanness condition is automatically fulfilled, so Theorem 2.2
reduces to the convexity theorems of Atiyah [1], Guillemin and Sternberg
[9], and Kirwan [16]. A novel feature of our more general theorem is that
the polyhedral set ∆(X) may be irrational. It is however “rational” in
the weak sense that its normal vectors are contained in the quasi-lattice
X∗(T )/(X∗(T ) ∩ n(X)) in the quotient space t/n(X), as we shall explain
in 2.13.

2.8. Other antecedents of Theorem 2.2 can be found in the papers of Prato
[22] and Ishida [15] and in He’s thesis [11]. These authors impose oppo-
site versions of our cleanness condition: Prato and Ishida deal with leafwise
transitive torus actions, while He studies certain leafwise nontangent torus
actions. It was our attempt to unify their results that led to this paper. It
was observed by He [11, Ch. 4] that in the absence of any cleanness hypoth-
esis the convexity of the image may fail. We give further counterexamples
in 4.2. However, cleanness is not necessary for convexity to hold. For in-
stance, let Z be a G-manifold and suppose we have an equivariant surjective
submersion f : Z → X. Then f∗ω is a presymplectic form on Z and f∗Φ is
a moment map for the G-action on Z. Clearly Z has the same moment map
image as X. But the action on Z is rarely clean, even if the action on X is
clean.

2.9. The leaf space as a Hamiltonian space. The null subgroup N (X)
acts trivially on the leaf space X/F , so the induced G-action descends to an
action of the (in general non-Hausdorff) quotient group G/N (X) on the (in
general non-Hausdorff) space X/F . The moment map also descends because
of the following basic proposition. Here we denote by C∞bas(X) the set of basic
smooth functions on X, i.e. those that are constant along the leaves. By the
affine span of a subset A of a vector space E we mean the smallest affine
subspace of E that contains A, i.e. the intersection of all affine subspaces of
E that contain A. We denote by F ◦ ⊆ E∗ the annihilator of a linear subspace
F of E.

Proposition 2.9.1. (i) The moment map Φ is constant along the leaves
of F .

(ii) The moment map Φ induces a morphism of Poisson algebras Φ∗ : g→
C∞bas(X).
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(iii) If X is connected, the affine span of the image Φ(X) is of the form
λ+ n(X)◦ for some element λ ∈ g∗ which is fixed under the coadjoint
G-action.

Proof. (i) Let x ∈ X, v ∈ TxF = ker(ωx), and ξ ∈ g. Then

dΦξ(v) = ωx(ξX(x), v) = 0,

so Φξ is constant on the leaf F(x) for all ξ.
(ii) It follows from (i) that Φ pulls back smooth functions on g∗ to

basic functions on X. That C∞bas(X) is a Poisson algebra is discussed for
example in [5, § 2.2]. That Φ∗ preserves the Poisson bracket follows from the
equivariance of Φ as in the non-degenerate case.

(iii) Let ξ ∈ g. Regarding ξ as a linear function on g∗ we have: ξ is
constant on Φ(X) ⇐⇒ Φξ is constant on X ⇐⇒ dΦξ = 0 ⇐⇒ ξ ∈ n(X).
Thus the affine span of Φ(X) is equal to λ+ n(X)◦, where λ = Φ(x) for some
x ∈ X. Since the moment map is equivariant, this affine subspace contains
the coadjoint orbit of λ. It follows from Lemma B.2, applied to the G-module
g∗ and the submodule n(X)◦, that λ+ n(X)◦ = λ0 + n(X)◦, where λ0 is G-
fixed. �

So if X is connected we can replace Φ with Φ− λ to obtain a new
equivariant moment map which maps X into n(X)◦ ∼= (g/n(X))∗ and which
descends to a continuous map

ΦF : X/F −→ (g/n(X))∗.

This suggests the point of view that ΦF is the “moment map” for a “Hamil-
tonian action” on the “symplectic leaf space” X/F of the “Lie group”
G/N (X), whose “tangent Lie algebra” is g/n(X), and that ∆(X) is the
“moment polytope” for this action. In the paper [14] we justify this point of
view in terms of the language of Lie groupoids or differentiable stacks: we
“integrate” the foliated manifold (X,F) to a Lie groupoid X• and the Lie
algebra homomorphism n(X)→ g to a Lie 2-group G• which acts on X•,
and show that the moment polytope is a Morita invariant of the G•-action
on X•.

Here we point out just one manifestation of this Morita invariance.
Suppose that the null subgroup N (X) admits a complement in the sense
that there exists an immersed Lie subgroup K of G with the property that
KN (X) = G and k + n(X) = g. Let m(X) = k ∩ n(X) be the null ideal of
the K-action on X. Then the Lie 2-group N (X)→ G is Morita equivalent
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to the Lie 2-group M(X)→ K, where M(X) is the immersed Lie subgroup
of K generated by exp(m(X)). The Lie algebras g/n(X) and k/m(X) are
isomorphic, so it follows immediately from Proposition 2.9.1 that under the
projection g∗ → k∗ the G-moment map image of X maps bijectively to the
K-moment map image. We can play G and K off against each other in two
opposite ways. (1) If the G-action is clean, then the K-action may not be
clean, but even so the convexity theorem guarantees the convexity of the
K-moment map image. (2) If G is not compact, but K is compact and
acts cleanly, then the convexity theorem guarantees the convexity of the
G-moment map image.

2.10. A foliated slice theorem. The first step towards the proof of Theo-
rem 2.2 is to construct equivariant foliation charts. We would like to choose
a G-invariant transverse section to the foliation at a point x, but a trans-
verse section Y has the property TxY ∩ TxF = 0, and therefore cannot be
G-invariant unless the action is leafwise nontangent at x. Instead we do
the next best thing, which is to choose a G-invariant presymplectic sub-
manifold Y that is transverse to F at x and has the weaker property that
TxY ∩ TxF ⊆ Tx(G · x). The slice theorem for compact Lie group actions
says that x has an invariant open neighbourhood which is equivariantly dif-
feomorphic to a homogeneous vector bundle E = G×Gx V , where V is the
Gx-module TxX/Tx(G · x). The following refinement of the slice theorem
states that we can single out a direct summand V1 of V such that the cor-
responding subbundle G×Gx V1 is a transversal Y of the desired type. We
write points in homogeneous bundles such as E as equivalence classes [g, v]
of pairs (g, v) ∈ G× V .

Theorem 2.10.1. Let x ∈ X and let H = Gx be the stabilizer of x. Define
the H-modules

V =
TxX

Tx(G · x)
, V0 =

Tx(G · x) + TxF
Tx(G · x)

, V1 = V/V0 =
TxX

Tx(G · x) + TxF
,

and the corresponding G-homogeneous vector bundles

E = G×H V, E0 = G×H V0, E1 = E/E0 = G×H V1.

Choose an H-invariant inner product on TxX and identify V ∼= V0 ⊕ V1 as
an orthogonal direct sum of H-modules and E ∼= E0 ⊕ E1 as an orthogonal
direct sum of vector bundles. There exists a G-equivariant open embedding
χ : E → X which sends [1, 0] to x and has the following properties:
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(i) Y = χ(E1) is a presymplectic Hamiltonian G-manifold with presym-
plectic form ωY = ω|Y and moment map ΦY = Φ|Y ;

(ii) U = χ(E) is a G-equivariant tubular neighbourhood of Y with tubular
neighbourhood projection p : U → Y corresponding to the orthogonal
projection E → E1; every fibre of p is contained in a leaf of F and
p−1(x) ∼= V0;

(iii) p∗ωY = ωU and p∗ΦY = ΦU , where ωU = ω|U and ΦU = Φ|U ;

(iv) Y is transverse to the foliation F ;

(v) TxY ∩ TxF ⊆ Tx(G · x).

Now assume that the G-action is clean at x. Then χ can be chosen in such
a way that in addition to (i)–(v) the following conditions are satisfied:

(vi) the G-action on Y is leafwise transitive;

(vii) the null ideal sheaves ñY and ñU are constant with stalk equal to nX,x.

Proof. Choose a foliation chart (O, ζ) at x in the following manner: start
with an H-invariant open neighbourhood O of x and a chart ζ̆ : O → TxX
centred at x which satisfies Txζ̆ = idTxX and which maps the leaf of each
y ∈ O onto the affine subspace through ζ̆(y) parallel to TxF . In other words,
ζ̆(O ∩ F(y)) = ζ̆(y) + TxF for all y, and in particular ζ̆(O ∩ F(x)) = TxF .
Let dh be the normalized Haar measure onH and put ζ(y) =

∫
H hζ̆(h−1y) dh

for y ∈ O. Then ζ : O → TxX is H-equivariant and Txζ = idTxX . For all
y ∈ O and z ∈ O ∩ F(y) we have

ζ(z)− ζ(y) =

∫
H
h
(
ζ̆(h−1z)− ζ̆(h−1y)

)
dh ∈ TxF ,

because ζ̆(h−1z)− ζ̆(h−1y) ∈ TxF and H preserves the subspace TxF of
TxX. This shows that ζ(O ∩ F(y)) is contained in the affine subspace ζ(y) +
TxF . After replacing O with a smaller open set and after rescaling ζ if nec-
essary we obtain an H-equivariant chart ζ : O → TxX centred at x with the
property that ζ(O ∩ F(y)) = ζ(y) + TxF for all y ∈ O. The normal bundle
of the orbit G · x ∼= G/H is the homogeneous vector bundle E, whose fibre
V we identify with the H-submodule Tx(G · x)⊥ of TxX (the orthogonal
complement of Tx(G · x) with respect to the H-invariant inner product on
TxX). Likewise we identify

V0
∼= Tx(G · x)⊥ ∩ TxF and V1

∼= Tx(G · x)⊥ ∩ (TxF)⊥.
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Then V = V0 ⊕ V1 is an orthogonal direct sum and the map χV = ζ−1|V is
an H-equivariant embedding of the fibre V into O which maps every affine
subspace of V parallel to V0 into a leaf of F . The map χV extends uniquely
to a G-equivariant open immersion χ : E → X, the image of which is the
open set U = χ(E) = G ·O and which maps each fibre of the orthogonal
projection E → E1 into a leaf of F . Let us choose O so small that χ is an
embedding. Then U is a tubular neighbourhood of the orbit G · x. We claim
that χ : E → X satisfies requirements (i)–(v). The sum E = E1 ⊕ E2 is a
vector bundle over E1 with fibre V0, which proves (ii). The form ω restricts to
forms ωU on U = χ(E) and ωY on Y = χ(E1). The map Φ restricts to maps
ΦU : U → g∗ and ΦY : Y → g∗. Since ω is F-basic (i.e. ι(v)ω = ι(v)dω = 0
for all vectors v tangent to F) and each fibre of p is contained in a leaf of
F , we have p∗ωY = ωU and p∗ΦY = ΦU , which proves (iii). This also implies
that ωY is of the same rank as ω. In particular ωY is of constant rank,
which proves (i), and Y is transverse to F , which proves (iv). The restricted
foliation FY = F|Y is the null foliation of ωY . The tangent space to Y at x
is TxY = Tx(G · x)⊕ V1, so the tangent space to FY at x is the subspace of
TxY given by

TxFY = ker(ωY,x) = TxY ∩ TxF =
(
Tx(G · x)⊕ V1

)
∩ TxF .

Since V1 is orthogonal to both Tx(G · x) and TxF this gives

TxFY = Tx(G · x) ∩ TxF ,

which implies (v). Now assume the action is clean at x. Then we obtain

TxFY = Tx(NX,x · x).

Let us choose O so small that NX,x = NX(U); then NX,x ⊆ NX,y for all
y ∈ Y . The orbit NX,x · y is an immersed submanifold of Y diffeomorphic
to a homogeneous space of NX,x. Because Y is a G-homogeneous vector
bundle over G · x, we have a G-equivariant projection Y → G · x. It follows
that dim(NX,x · y) ≥ dim(NX,x · x) for all y ∈ Y . On the other hand, since
NX,x is contained in NX,y, NX,x · y is contained in the leaf FY (y), whose
dimension is independent of y. So we see that dim(NX,x · y) = dim(NX,x · x)
and TyFY = Ty(NX,x · y) for all y ∈ Y . This proves (vi), but it actually
proves something a bit stronger, namely Ty(Gȳ · y) = Ty(NX,x · y) for all
y ∈ Y . This means gȳ/gy = (nX,x + gy)/gy, i.e.

(2.10.2) gȳ = gy + nX,x



i
i

“7-Sjamaar” — 2019/10/16 — 12:12 — page 1171 — #13 i
i

i
i

i
i

Convexity properties of presymplectic moment maps 1171

for all y ∈ Y . Let z ∈ U and put y = p(z) ∈ Y . To prove (vii) it is enough
to show that nX,z = nY,y = nX,x. Let ξ ∈ g. By definition we have ξ ∈ nX,z
if and only if ι(ξU ′)ωU ′ = 0 for some open neighbourhood U ′ ⊆ U of z.
Since the vector fields ξU and ξY are p-related and p∗ωY = ωU , we have
ι(ξU ′)ωU ′ = 0 if and only if ι(ξp(U ′))ωp(U ′) = 0, i.e. ξ ∈ nX,y. This proves
nX,z = nY,y. Taking z = x yields nX,x = nY,x. We finish by showing that
nY,y = nY,x. We replace O, if necessary, by a smaller open neighbourhood of x
such that Y has the property that nY (Y ) = nY,x. Then we have nY,y ⊇ nY,x.
Supposing our assertion nY,y = nY,x to be false, we can find ξ ∈ g such that
ξ ∈ ny \ nx. This means that the vector field ξY is tangent to FY in an in-
variant neighbourhood U2 of y in Y but not tangent to FY in a invariant
neighbourhood U1 of x in Y . In other words,

ξY (w) ∈ Tw(G · w) ∩ TwFY = Tw(Gw̄ · w)

for all w ∈ U2, but

ξY (v) 6∈ Tv(G · v) ∩ TvFY = Tv(Gv̄ · v)

for some v ∈ U1. Because of (2.10.2) this means that ξ ∈ gw + nX,x for all
w ∈ U2 but ξ 6∈ gv + nX,x for some v ∈ U1. But, the group G being compact,
by choosing w to be generic with respect to the G-action we can arrange
for gw to be a subalgebra of gv, which is a contradiction. Therefore nY,y =
nY,x. �

Corollary 2.10.3. (i) If the action is clean at x ∈ X, then the sheaves
ñ and Ñ are constant on a neighbourhood of x.

(ii) Suppose that the G-action on X is clean and that X is connected.
Then the sheaves ñ and Ñ are constant. It follows that Tx(N (X) · x) =
Tx(G · x) ∩ TxF for all x ∈ X.

(iii) If X is connected, the G-action on X is clean if and only if there exists
an immersed Lie subgroup N of G with the property that Tx(N · x) =
TxF ∩ Tx(G · x) for all x.

(iv) If X is connected and the G-action on X is leafwise transitive, then
F(x) = N (X) · x for all x.

Proof. (i) is a restatement of Theorem 2.10.1(vii). (ii) follows from (i) and
the monotonicity property n(U1) ⊇ n(U2) for U1 ⊆ U2 of the presheaf n. (iii)
and (iv) follow immediately from (ii). �
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If the G-action is leafwise nontangent at x, the transversal Y of Theo-
rem 2.10.1 is a section of the foliation and therefore symplectic, which shows
that X is near x a G-equivariant bundle over a symplectic Hamiltonian G-
manifold. In particular, if x is a fixed point the action is leafwise nontangent
at x and we obtain the following linearization or equivariant Darboux theo-
rem. In the statement of this theorem we regard the tangent space TxX as a
presymplectic manifold with constant presymplectic form ωx. It follows from
Corollary B.5 that at a fixed point x the moment map has a well-defined
Hessian T 2

xΦ: TxX → g∗.

Corollary 2.10.4 (equivariant presymplectic Darboux theorem).
Let x ∈ X be a fixed point of G. Then x has a G-invariant neighbour-
hood that is isomorphic as a presymplectic Hamiltonian G-manifold to a
G-invariant neighbourhood of the origin in the tangent space TxX, equipped
with the presymplectic structure ωx and the moment map λ+ T 2

xΦ, where
λ = Φ(x) ∈ (g∗)G and the Hessian is given by T 2

xΦξ(v) = 1
2ωx(ξ(v), v).

Proof. Since Gx = G, we have

E = V = TxX, E0 = V0 = TxF , and E1 = V1 = TxX/TxF .

Moreover, TxY ∩ TxF = 0, so Y = χ(V1) is symplectic. Therefore

U = χ(V ) = χ(V0 × V1) = V0 × Y.

Applying the symplectic equivariant Darboux theorem (see [10, § 22]) to the
symplectic Hamiltonian G-manifold Y and the fixed point x ∈ Y , we find
that a G-invariant neighbourhood of x in X is presymplectically and G-
equivariantly isomorphic to a neighbourhood of the origin in V ∼= V0 ⊕ V1.
The action on V being linear, the moment map on V is quadratic with
constant term λ and homogeneous quadratic part T 2

xΦ = ΦV , where ΦV is
as in Lemma B.1. �

2.11. Symplectization. The second step towards the proof of Theorem 2.2
is symplectization. Choose a G-invariant Riemannian metric on X. (Recall
our standing hypothesis that G is compact.) Let TX → TF be the orthog-
onal projection onto the subbundle TF of TX (with respect to the metric)
and let j : T ∗F → T ∗X be the dual embedding, where T ∗F is the vector
bundle dual to TF . Let ω0 be the standard symplectic form on the cotan-
gent bundle T ∗X and let Ω = pr∗ ω + j∗ω0, where pr : T ∗F → X is the bun-
dle projection. The 2-form Ω on T ∗F is symplectic in a neighbourhood of
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the zero section X and the embedding X → T ∗F is coisotropic. (See [8]
for these facts.) The G-action on T ∗F is Hamiltonian with moment map
Ψ: T ∗F → g∗ given by

Ψ = pr∗Φ + j∗Φ0,

where Φ0 : T ∗X → g∗ is the moment map for the cotangent action given
by the dual pairing Φξ

0(y) = 〈y, ξX(x)〉 for y ∈ T ∗xX. The germ at X of the
Hamiltonian G-manifold T ∗F is called the symplectization of X. The next
result says that in the leafwise transitive case every fibre of Φ is a fibre of Ψ
and that the image of Φ is the intersection of the image of Ψ with an affine
subspace.

Proposition 2.11.1. Assume that X is connected and that the G-action
on X is leafwise transitive. Let λ ∈ (g∗)G be as in Proposition 2.9.1(iii).

(i) X = Ψ−1(λ+ n(X)◦).

(ii) Ψ: T ∗F → g∗ intersects the affine subspace λ+ n(X)◦ cleanly.

(iii) Φ(X) = Ψ(T ∗F) ∩ (λ+ n(X)◦).

Proof. (i) Let x ∈ X. Then Φ0(j(x)) = 0, so

Ψ(x) = Φ(x) + Φ0(j(x)) = Φ(x),

and so Ψ(x) is in λ+ n(X)◦ by Proposition 2.9.1(iii). This shows that
X ⊆ Ψ−1(λ+ n(X)◦). Conversely, let z ∈ T ∗F and suppose that Ψ(z) ∈ λ+
n(X)◦. Put x = pr(z) ∈ X and y = j(z) ∈ T ∗xX. Then Ψ(z) = Φ(x) + Φ0(y),
so Φ0(y) = Ψ(z)− Φ(x) ∈ n(X)◦. It follows that 〈y, ξX(x)〉 = 0 for every
ξ ∈ n(X). In other words, y ∈ T ∗xX annihilates the tangent space to the
N (X)-orbit N (X) · x. By Corollary 2.10.3(ii) we have N (X) · x = F(x) be-
cause the action is leafwise transitive. Therefore y annihilates all of TxF .
But y is in the image of j, which is a splitting of the natural surjec-
tion T ∗X → T ∗F , and therefore y ∈ im(j) ∩ (TxF)◦ = 0. We conclude that
z = x ∈ X.

(ii) We have just shown that Ψ−1(λ+ n(X)◦) is equal to X and is there-
fore a submanifold of M = T ∗F . It remains only to show that X has the
correct tangent bundle, namely TX = (TΨ)−1(n(X)◦). Let x ∈ X. Regard-
ing x as a point in the zero section of T ∗X, we have Tx(T ∗X) = TxX ⊕ T ∗xX
and

TxM = TxX ⊕ T ∗xF , TxΨ = pr∗ TxΦ + j∗TxΦ0,
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where now pr stands for the projection TxM → TxX and j for the inclu-
sion TxM → Tx(T ∗X). The derivative at x of Φ0 : T ∗X → g∗ is the lin-
ear map TxΦ0 : TxX ⊕ T ∗xX → g∗ given by 〈TxΦ0(u, v), ξ〉 = 〈v, ξX(x)〉 for
u ∈ TxX, v ∈ T ∗xX and ξ ∈ g. Now let w ∈ TxM and suppose TxΨ(w) ∈
n(X)◦. Put u = pr(w) ∈ TxX and v = j(w) ∈ Tx(T ∗X). Then TxΦ0(v) =
TxΨ(w)− TxΦ(u) ∈ n(X)◦, so 〈v, ξX(x)〉 = 0 for all ξ ∈ n(X). As in the
proof of (i) we deduce from this that v = 0, i.e. w = u ∈ TxX. This proves
(TxΨ)−1(n(X)◦) ⊆ TxX. The reverse inclusion follows from the fact that X
is contained in Ψ−1(λ+ n(X)◦).

(iii) follows immediately from (i). �

The next result, which is essentially due to Guillemin and Sternberg, is a
partial converse to Proposition 2.11.1 as well as a useful source of examples.

Proposition 2.11.2. Let (M,ωM ) be a symplectic Hamiltonian G-manifold
with moment map ΦM : M → g∗. Let λ ∈ g∗ and let a be an ideal of g satisfy-
ing k ⊆ a ⊆ gλ, where k is the kernel of the infinitesimal action g→ Γ(TM).
Assume that ΦM intersects the affine subspace λ+ a◦ cleanly. Then X =
Φ−1
M (λ+ a◦) is a coisotropic submanifold of M preserved by the action of G.

Therefore X is a presymplectic Hamiltonian G-manifold with presymplectic
form ω = ωM |X and moment map Φ = ΦM |X . The action on X is leafwise
transitive and the null ideal n(X) of X is equal to a.

Proof. It follows from Lemma B.3 that λ+ a◦ is preserved by the coadjoint
action. Therefore X is preserved by G and, by [10, Theorem 26.4], X is
coisotropic and the leaves of the null foliation of the presymplectic form ω
are the orbits of the A-action on X, where A is the connected immersed
normal subgroup corresponding to the ideal a. Hence the action is leafwise
transitive. By Proposition 2.9.1(iii) the affine span of Φ(X) is the affine
subspace λ+ n(X)◦ and the affine span of Φ(M) is λ+ k◦. Therefore

λ+ n(X)◦ = (λ+ a◦) ∩ (λ+ k◦) = λ+ a◦.

We conclude that n(X) = a. �

2.12. Proof of the convexity theorem. First we prove the following
local version of the presymplectic convexity theorem. Recall that T denotes a
maximal torus ofG, t∗ the dual of its Lie algebra t, and C a closed chamber in
t∗. Recall also that every coadjoint orbit intersects the chamber C in exactly
one point and that the inclusion C → g∗ induces a homeomorphism C →
g∗/Ad∗(G), the quotient of g∗ by the coadjoint action. (See e.g. [3, § IX.5.2].)
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We identify g∗/Ad∗(G) with C via this homeomorphism and denote by
φ : X → C the composition of the moment map Φ: X → g∗ with the quotient
map g∗ → C. Then the intersection ∆(X) = Φ(X) ∩ C is nothing but the
image φ(X).

Theorem 2.12.1 (local presymplectic convexity theorem). Assume
that the G-action is clean at x ∈ X. Then there exist a rational convex poly-
hedral cone ∆x in t∗ with apex φ(x) and a basis of G-invariant open neigh-
bourhoods U of x in X with the following properties:

(i) the fibres of the map φ|U are connected;

(ii) φ : U → ∆x ∩
(
φ(x) + n◦x

)
is an open map.

Proof. Let us replace x by a suitable G-translate in order that Φ(x) = φ(x).
Choose a transversal Y at x and a G-invariant tubular neighbourhood U of
Y as in Theorem 2.10.1. Since G is connected, we may assume Y and U to be
connected. Then Φ(U) ⊆ φ(x) + n◦x by Proposition 2.9.1(iii), and therefore
φ(U) ⊆ φ(x) + n◦x. Let φU = φ|U and φY = φ|Y . Let M be the symplecti-
zation of Y as defined in 2.11. Let Ψ: M → g∗ the moment map for the
G-action on M and ψ : M → C the composition of Ψ with the orbit map
g∗ → C. It follows from Theorem 2.10.1 and Proposition 2.11.1 that for all
ν ∈ φ(U)

(2.12.2) φ−1
U (ν) = p−1(φ−1

Y (ν)), φ−1
Y (ν) = ψ−1(ν),

and that

(2.12.3) φU = φY ◦ p, φY = ψ|Y , Y = ψ−1
(
φ(x) + n◦x

)
.

The local convexity theorem in the symplectic case (see e.g. [25, Theo-
rem 6.5]) states that the fibres of ψ are connected and that ψ : M → ∆x

is an open mapping to a rational convex polyhedral cone ∆x in t∗ with apex
φ(x) = ψ(x). Taking this into account, we see from (2.12.2) that the fibres
of φU contract onto fibres of ψ and are therefore connected as well, and we
see from (2.12.3) that φU is an open map to ∆x ∩

(
φ(x) + n◦x

)
. �

Proof of Theorem 2.2. Theorem 2.12.1 asserts that the family of convex
cones ∆x ∩

(
φ(x) + n◦x

)
, where x ranges over X, is a system of local con-

vexity data for the quotient map φ in the sense of Hilgert, Neeb and Planck
[13, Definition 3.3]. Parts (i) and (ii) of Theorem 2.2 now follow from the
local-to-global principle due to these authors, [13, Theorem 3.10]. It remains
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to prove part (iii). The local-to-global principle also tells us that for each
x ∈ X the cone ∆x ∩

(
φ(x) + n◦x

)
is equal to the intersection of all support-

ing half-spaces of the convex set ∆(X) at the point φ(x). A closed convex
set is equal to the intersection of all its supporting half-spaces, and therefore

∆(X) =
⋂
x∈X

∆x ∩
(
φ(x) + n◦x

)
.

Since the action is clean, by Corollary 2.10.3(ii) we have nx = n(X) for
all x. By Proposition 2.9.1(iii) there is an Ad∗(G)-fixed λ ∈ g∗ such that
Φ(X) ⊆ λ+ n(X)◦ = φ(x) + n(X)◦ for all x. After shifting the moment map
we may assume λ = 0. Then

(2.12.4) ∆(X) =
⋂
x∈X

∆x ∩ n(X)◦,

the intersection of the locally finite family of rational cones ∆x with the
linear subspace n(X)◦. Now suppose that the null subgroup N (X) is closed.
Then by Corollary A.2 the subspace n(X) ∩ t of t is rational and therefore
the subspace n(X)◦ ∩ t∗ of t∗ is rational. Because of this and (2.12.4) the
polyhedral set ∆(X) is rational. Conversely, suppose that ∆(X) is rational.
Let z be the centre of g and pr: g∗ → z∗ the projection dual to the inclusion
of z into g ∼= [g, g]⊕ z. Then the image pr(∆(X)) is a rational polyhedral
subset of z. The chamber C of g∗ is of the form C = C ′ × z∗, where C ′

is a chamber of [g, g]∗, so we see that pr(∆(X)) is equal to the image of
X under the moment map ΦZ for the action of the central subtorus Z =
expG(z) of G. By Proposition 2.9.1(iii) the affine span of ΦZ(X) = pr(∆(X))
is equal to (n(X) ∩ z)◦. It follows that n(X) ∩ z is a rational subspace of z.
By Corollary A.2 we conclude that N (X) is a closed subgroup of G. �

2.13. Irrationality. The following result is a consequence of the proof of
Theorem 2.2(iii).

Corollary 2.13.1. Under the hypotheses of Theorem 2.2, the polyhedral
set ∆(X) is rational if and only if the moment map image for the action
of the central subtorus Z = exp(z) is a rational polyhedral subset of z∗. In
particular ∆(X) is always rational if G is semisimple.

So we see that the irrationality of presymplectic moment polytopes is
essentially an abelian phenomenon.

As explained in 2.9, ∆(X) is best regarded intrinsically as a subset of
t∗0, where t0 is the quotient t/(t ∩ n(X)). The vector spaces t0 and t∗0 have
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no natural Q-structure (except when the null subgroup N (X) is closed),
but as a substitute we have the quasi-lattice Λ = im

(
X∗(T )→ t0

)
. Here

X∗(T ) = ker(exp: t→ T ) is the exponential lattice of the maximal torus,
and by a quasi-lattice in a vector space V we mean a finitely generated
additive subgroup that spans V over R. The rank of the quasi-lattice Λ is
≥ dim(t0), where equality holds if and only if t ∩ n(X) is rational, i.e. N (X)
is closed. If we regard the polyhedral set ∆(X) as a subset of t∗0, the normal
vectors to its facets are in t∗∗0 = t0. It follows from (2.12.4) that these normal
vectors are contained in the quasi-lattice Λ.

Corollary 2.13.2. Under the hypotheses of Theorem 2.2, the polyhedral
subset ∆(X) ⊆ t∗0 is the intersection of a locally finite collection of half-
spaces of the form 〈η, ·〉 ≥ a, where a ∈ R and η is in the quasi-lattice
Λ = im

(
X∗(T )→ t0

)
.

3. Morse functions and the abelian case

3.1. This section is a discussion of Morse-theoretic properties of presym-
plectic moment maps and of the presymplectic convexity theorem in the
abelian case. The main result is Theorem 3.4.6, which asserts that the com-
ponents of a presymplectic moment map are Morse-Bott functions under the
assumption that the action is clean.

We keep the notational conventions of Section 2: X is a manifold with
presymplectic form ω and G is a compact connected Lie group acting on M
in a Hamiltonian fashion with moment map Φ. We denote the null foliation
of ω by F , the null ideal of an open subset U by n(U) and the null subgroup
by N (U). We denote the leaf of x ∈ X by F(x). When we think of the leaf
as a point in the leaf space X/F we denote it by x̄.

3.2. Let E be a finite-dimensional real vector space and σ a presymplectic
form on E. We call an inner product on E compatible with σ if on the linear
subspace F = ker(σ)⊥ orthogonal to ker(σ) the inner product is compatible
with the symplectic form σ|F in the usual sense, namely that the endomor-
phism J of F determined by 〈u, v〉 = σ(Ju, v) for all u, v ∈ F defines an
orthogonal complex structure. On the subspace F the symplectic form and
the compatible inner product combine to give a Hermitian inner product.
Compatible inner products always exist and, if E is a presymplectic H-
module for some compact Lie group H, can be chosen to be H-invariant. A
choice of such an inner product makes the subspace F a unitary H-module.
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3.3. We say that a subset Z of X is a submanifold at x ∈ X if x has an
open neighbourhood U with the property that Z ∩ U is a submanifold of
U . Let f : X → R be smooth and let Γf = {x ∈ X | Txf = 0 } be its critical
set. We say a critical point x ∈ Γf is nondegenerate in the sense of Bott if
Γf is a submanifold at x and the kernel of the Hessian T 2

xf : TxX → R is
equal to the tangent space TxΓf . The index of f at x is the dimension of
a maximal negative definite subspace for the quadratic form T 2

xf . We say
f is a Morse-Bott function if all its critical points are nondegenerate in the
sense of Bott.

3.4. For ξ ∈ g we denote the critical set ΓΦξ of the function Φξ by X [ξ]. For
a subalgebra h of g we define the critical set of h to be X [h] =

⋂
ξ∈hX

[ξ], the

common critical set of the functions Φξ with ξ ∈ h. In the symplectic case
the critical set of h is the fixed point manifold of the subgroup generated by
h. The next lemma says that for this to remain true in the presymplectic
case we have to replace fixed points by fixed leaves.

Lemma 3.4.1. (i) Let h be a Lie subalgebra of g and H the connected
immersed subgroup of G with Lie algebra h. Then

X [h] = {x ∈ X | h ⊆ gx̄ } = {x ∈ X | H · x̄ = x̄ }.

(ii) X [ξ] = {x ∈ X | ξ ∈ gx̄ } = {x ∈ X | ξX(x) ∈ TxF } for all ξ ∈ g.

Proof. (i) Let x ∈ X. Since H is connected, we have H · x̄ = x̄ ⇐⇒ H ⊆ Gx̄
⇐⇒ h ⊆ gx̄, which proves the second equality. Moreover, H · x̄ = x̄ ⇐⇒
Tx(H · x) ⊆ TxF . Applying Lemma B.4(i) to the subgroup H we see that
Tx(H · x) ⊆ TxF is equivalent to TxΦξ = 0 for all ξ ∈ h, which proves the
first equality.

(ii) follows from (i) applied to the Lie subalgebra spanned by ξ. �

The critical set X [ξ] is unaffected if we perturb ξ in the direction of the
null ideal. Specifically, if U is an open subset and ζ is in the null ideal n(U),
then dΦζ = 0 on U . Therefore

(3.4.2) X [ξ] ∩ U = X [η] ∩ U and T 2
xΦξ = T 2

xΦη

for all x ∈ U and for all ξ, η ∈ g satisfying ξ − η ∈ n(U). Similarly,

(3.4.3) X [h] ∩ U = X [h+n(U)] ∩ U

for all subalgebras h. The critical set of h is preserved by the subgroup
HN (X) generated by the Lie subalgebra h + n(X).
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The next assertion implies that if the G-action is clean the critical set is
a submanifold and its normal bundle is symplectic. This can easily be false
without the cleanness assumption. (See 4.2 for counterexamples.)

Proposition 3.4.4. Let h be a Lie subalgebra of g and let x ∈ X [h]. Assume
that the G-action on X is clean at x. Then X [h] is a submanifold at x.
The subspace of TxX orthogonal to TxX

[h] with respect to a Gx-invariant
compatible inner product on TxX is symplectic.

Proof. By Lemmas 2.6.4(vi) and 3.4.1(i) the cleanness assumption implies
that h ⊆ gx̄ = gx + nx. That is to say, h + nx = f + nx, where f is the sub-
algebra (h + nx) ∩ gx of gx. Choose an open neighbourhood U of x with
n(U) = nx. Then

X [h] ∩ U = X [h+nx] ∩ U = X [f+nx] ∩ U = X [f] ∩ U

by (3.4.3), so we may just as well replace h with f. The advantage of the
subalgebra f is that it fixes x and therefore acts linearly in a Gx-equivariant
Darboux chart centred at x. More precisely, the equivariant Darboux The-
orem, Corollary 2.10.4, allows us to replace X with the presymplectic Gx-
module E = TxX and the functions Φη for η ∈ f with the quadratic forms
T 2
xΦη. Choosing a Gx-invariant compatible inner product on E, we have

that E = E0 ⊕ E1 is an orthogonal direct sum of a Gx-module E0 and a
unitary Gx-module E1. The critical set is then X [f] = E0 ⊕ Ef

1, where Ef
1

denotes the f-fixed subspace of E1. This shows that X [f] is a submanifold.
The orthogonal complement of X [f] is a unitary submodule of E1, and in
particular it is symplectic. �

Taking h = Rξ gives the following result.

Theorem 3.4.5. Let ξ ∈ g and let x ∈ X [ξ] be a critical point of Φξ. As-
sume that the G-action on X is clean at x. Then x is nondegenerate in
the sense of Bott. Choose a Gx-invariant compatible inner product on TxX.
Then the positive and negative subspaces of T 2

xΦξ are symplectic subspaces
of TxX. In particular the index of Φξ at x is even.

Proof. It follows from Proposition 3.4.4 that X [ξ] is a submanifold at x. We
argue nondegeneracy by writing ξ = η + ζ with η ∈ gx and ζ ∈ nx. Then
X [ξ] = X [η] near x and T 2

xΦξ = T 2
xΦη because of (3.4.2), and the vector

field ηX is linear in an equivariant Darboux chart at x. With the same
notation as in the proof of the proposition, the subspace of TxX orthogonal
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to X [η] is the sum of the nonzero weight spaces of the unitary module E1. In
other words, (TxX

[η])⊥ = E+
1 ⊕ E

−
1 , where E+

1 , resp. E−1 , is spanned by all
positive, resp. negative, weight vectors, i.e. vectors e ∈ E1 satisfying ξ(e) =√
−1αe for some α > 0, resp. α < 0. On E+

1 the Hessian of Φη is positive
definite, on E−1 it is negative definite. �

Assuming cleanness at all points of X we obtain the next statement,
which is the main result of this section.

Theorem 3.4.6. Assume that the G-action on X is clean. Then for every
ξ ∈ g the component Φξ of the moment map is a Morse-Bott function. The
positive and negative normal bundles of the critical set X [ξ], taken with re-
spect to a G-invariant compatible Riemannian metric on X, are symplectic
subbundles of TX orthogonal to the subbundle TF .

In the symplectic case this result goes back to Atiyah [1] and Guillemin
and Sternberg [9]. For leafwise transitive Hamiltonian circle actions on K-
contact manifolds the result was proved by Rukimbira [24]. His result was
extended to leafwise transitive Hamiltonian torus actions on K-contact man-
ifolds by Goertsches et al. [7, § 6] and to leafwise transitive presymplectic
Hamiltonian torus actions by Ishida [15, § 2].

3.5. If G is a torus and X is compact symplectic, then the vertices of the
moment polytope Φ(X) are images of G-fixed points. In the presymplectic
case there may not be any fixed points. Instead one needs to consider the
critical points of the moment map, or equivalently the G-fixed leaves. More-
over, we can weaken the assumption that G is abelian to the assumption
that the quotient G/N (X) is abelian, or equivalently that the null ideal
n(X) contains the derived subalgebra of g. By Proposition 2.9.1, then the
moment map image is contained in z(g)∗, the dual of the centre z(g) of g,
and we have ∆(X) = Φ(X).

Theorem 3.5.1 (abelian convexity). Assume that the null ideal n(X)
contains the derived subalgebra [g, g], that X is compact, and that the G-
action on X is clean. Then Φ

(
X [g]

)
is a finite subset of g∗ and Φ(X) is the

convex hull of Φ
(
X [g]

)
. For every vertex λ of Φ(X) the fibre Φ−1(λ) is a

connected component of X [g].

Proof. It follows from Theorem 2.2 that Φ(X) is a convex polytope and
therefore equal to the convex hull of its vertices. It follows from Propo-
sition 3.4.4 that X [g] is a closed submanifold of X, and therefore has a
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finite number of connected components. The moment map is constant on
each component, so Φ(X [g]) is finite. Let λ be a vertex of Φ(X) and let
x ∈ Φ−1(λ). Then there exists an open subset Ξ of t with the property that
for every ξ ∈ Ξ the function Φξ attains its global minimum at x. Hence
TxΦξ = 0 and T 2

xΦξ is positive semidefinite for all ξ ∈ Ξ. Because Ξ spans
t, this implies that TxΦ = 0, i.e. x ∈ X [g]. By Theorem 3.4.6, for all ξ ∈ Ξ
the Hessian of Φξ at x is positive definite in the direction normal to X [g].
Computing in an equivariant Darboux chart U at x we see that the portion
U ∩ Φ−1(λ) of the fibre Φ−1(λ) is contained in X [g]. Therefore the entire
fibre is contained in X [g]. Since the fibre is connected (Theorem 2.2), it is
equal to a component of X [g]. �

In the leafwise transitive case a G-fixed leaf is an orbit of G and in
particular is closed, so Theorem 3.5.1 gives the following lower bound on
the number of closed leaves.

Corollary 3.6. In addition to the hypotheses of Theorem 3.5.1 assume that
the action is leafwise transitive. Then the foliation F has at least one closed
leaf for every vertex of the polytope Φ(X).

4. Examples

4.1. In this section G denotes a compact connected Lie group, t a Cartan
subalgebra of g and C a closed chamber in t∗.

4.2. Failure of convexity. Z. He [11, Ch. 4] gave the first example of
a presymplectic Hamiltonian torus action with a nonconvex moment map
image. Here we show that such examples are ubiquitous. In particular pre-
symplectic Hamiltonian actions are typically not clean. Our starting point
is the following elementary fact, which is implicit in [10, Theorem 26.4]. (Cf.
also Proposition 2.11.2.)

Lemma 4.2.1. Let (M,πM ) and (N, πN ) be Poisson manifolds and let
φ : M → N be a Poisson morphism. Let Y be a coisotropic submanifold of
N that intersects φ cleanly. Then X = φ−1(Y ) is a coisotropic submanifold
of M .
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Proof. That φ is a Poisson morphism means by definition that the square

TM φ∗TN

T ∗M φ∗T ∗N

←→Tφ

←

→

π]M

←→T
∗φ

←

→

φ∗π]N

commutes. That Y is coisotropic means that π]N (T ◦Y ) is contained in TY ,
where T ◦Y denotes the annihilator of TY in T ∗M |Y . That Y intersects φ
cleanly means that X is a submanifold with tangent bundle equal to TX =
(Tφ)−1(φ∗TY ). Therefore the annihilator of TX is T ◦X = T ∗φ(φ∗T ◦Y ).
From π]N (T ◦Y ) ⊆ TY we infer

Tφ ◦ π]M ◦ T
∗φ(φ∗T ◦Y ) ⊆ φ∗TY,

and hence Tφ(π]M (T ◦X)) ⊆ φ∗TY . We conclude that π]M (T ◦X) ⊆ TX. �

Let us apply this result to a symplectic Hamiltonian G-manifold M with
symplectic form ωM , taking N to be the linear Poisson manifold g∗ and φ
to be the moment map. Any G-invariant submanifold Y of g∗ is coisotropic.
Therefore, if Y intersects φ cleanly, its preimage X = φ−1(Y ) is a coisotropic
submanifold of M . It follows that the closed 2-form ω = ωM |X has constant
corank equal to the codimension of X in M . The moment map is equivariant,
so X is preserved by the G-action, and the G-action on X is Hamiltonian
with moment map Φ = φ|M . Thus X is a presymplectic Hamiltonian G-
manifold. Its moment map image is

Φ(X) = φ(φ−1(Y )) = Y ∩ φ(M).

It is easy to choose Y in such a manner that ∆(X) = Φ(X) ∩ C is not convex.
For a specific example let T = R/2πZ be the circle and let G = Td be

the d-torus acting on M = Cd in the standard way,

t · x = (t1, t2, . . . , td) · (x1, x2, . . . , xd) =
(
eit1x1, e

it2x2, . . . , e
itdxd

)
.

Then g = Rd and g∗ = (Rd)∗ ∼= Rd, and the map φ : Cd → Rd defined by
φ(x) = 1

2

(
|x1|2, |x2|2, . . . , |xd|2

)
is a moment map for this action with respect

to the standard symplectic form ω0 = 1
2i

∑
j dxj ∧ dx̄j . Let Y be a subman-

ifold of Rd of codimension k which is transverse to the faces of the orthant
Rd
≥0. Then Y is transverse to φ, so X = φ−1(Y ) is a submanifold of Cd of
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(real) codimension k. Obviously Y is coisotropic with respect to the zero
Poisson structure, so X is a presymplectic Hamiltonian G-manifold with
presymplectic form of corank k. Its moment map image is the intersection
of Y with the orthant,

(4.2.2) Φ(X) = φ(φ−1(Y )) = Y ∩Rd
≥0,

which is a d− k-manifold with corners, but is of course seldom convex.
For instance, the following curve in the positive quadrant (d = 2, k = 1)

is the moment map image of a T2-action on a presymplectic 3-sphere.

This class of examples displays some other phenomena of interest, such
as the existence of nontrivial deformations of presymplectic Hamiltonian
actions. The equivariant Darboux theorem implies that symplectic Hamilto-
nian G-manifolds cannot be continuously deformed locally near any point.
The Moser stability theorem implies that the same is true globally for com-
pact symplectic Hamiltonian G-manifolds as long as we move the symplec-
tic form within a fixed cohomology class. We now show that both these
statements are false for presymplectic Hamiltonian manifolds. (However,
we will prove in Appendix C that there is a presymplectic equivariant
Darboux theorem under the assumption that the action is clean.) Take
any isotopic family (Yt)0≤t≤1 of compact submanifolds of Rd, all of which
are transverse to φ. Then the manifolds Xt = φ−1(Yt) form an isotopic
family of compact submanifolds of Cd, each of which is a presymplectic
Hamiltonian G-manifold with presymplectic form ωt = ω0|Xt and moment
map Φt = φ|Xt . The forms ωt on Xt are exact for all t. The fibres Xt are
equivariantly diffeomorphic, but they are usually not isomorphic as presym-
plectic G-manifolds. Indeed, if there existed G-equivariant diffeomorphisms
ft : X0 → Xt satisfying f∗t ωt = ω0, then we would have f∗t Φt = Φ0 + λt for
some λt ∈ g∗, and therefore Φt(Xt) = Φ0(X0) + λt, which by (4.2.2) would
imply Yt ∩R≥0 = Y0 ∩R≥0 + λt. So by choosing the manifolds Yt in such a
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way that the intersections Yt ∩Rd
≥0 are not translates of each other we can

guarantee that the presymplectic G-manifolds Xt are not all isomorphic.
For instance, the 3-sphere represented by the picture above can be

smoothly deformed to an ellipsoid, the moment map image of which is an
interval. This deformation is not equivariantly presymplectically trivial.

Another feature of these examples is that the components of the moment
map Φ are often not Morse-Bott functions. For instance, let us take Y to
be a smooth curve in the plane R2 with the following properties: (1) Y
is transverse to the coordinate axes; (2) Y ∩R2

≥0 is compact; and (3) the
set C consisting of all points y ∈ Y with horizontal tangent line TyY is
countably infinite and is contained in the open orthant R2

>0. Then X =
φ−1(Y ) is a compact real hypersurface in C2. The critical set of the second
component of the moment map Φ = (Φ1,Φ2) : X → R2 is equal to Φ−1(C) =⋃
y∈C Φ−1(y), an infinite disjoint union of codimension 1 submanifolds of X,

and therefore is not a submanifold.

4.3. Prato’s toric quasifolds. We continue the discussion of the pre-
vious subsection, but now we take the submanifold Y in (4.2.2) to be
an affine subspace of Rd transverse to the orthant. Then the intersection
P = Φ(X) = Y ∩Rd

≥0 is a convex polyhedron. The transversality to the or-
thant is equivalent to P being simple, i.e. the link of each of its faces being
a simplex. It follows from Proposition 2.11.2 that the action of G = Td on
the coisotropic submanifold X of Cd is leafwise transitive and that its null
ideal n(X) is the linear subspace of g = Rd orthogonal to Y . Prato [22] calls
the leaf space X/N (X) a toric quasifold associated with P . It carries an
action of the quotient group Td/N (X) and a moment map whose image is
P and whose fibres are the Td/N (X)-orbits. See [23] for a classification of
toric quasifolds in terms of simple polyhedra.

4.4. Orbifolds. As an illustration of our convexity theorem we present a
new proof of a result due to Lerman et al. [19, Theorem 1.1].
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Theorem 4.4.1. Let (M,ωM ) be a symplectic orbifold equipped with a
Hamiltonian G-action and a proper moment map ΦM . Then ΦM (M) ∩ C
is a rational convex polyhedral set.

Proof. Let Meff be the effective orbifold which underlies M , as defined e.g.
in [12]. The symplectic structure and the Hamiltonian action descend toMeff,
and Meff has the same moment map image as M . So we may assume without
loss of generality that M is effective. Choose a G-invariant Riemannian
metric on M compatible with the symplectic form ωM . This choice endows
the tangent bundle TM with the structure of a Hermitian orbifold vector
bundle. Let X be the unitary frame bundle of TM , which is an orbifold
principal bundle over M with structure group U(n), where n = 1

2 dim(M).
Then X is a smooth manifold (see e.g. [21, § 2.4]), every diffeomorphism
of M lifts naturally to a U(n)-equivariant diffeomorphism of X, and the
G-action lifts to a G-action on X which commutes with the U(n)-action.
Let p : X →M be the projection, ω = p∗ωM and Φ = p∗ΦM . Then X is a
presymplectic Hamiltonian G-manifold with proper moment map Φ. The
leaves of the null foliation of X are the U(n)-orbits. The G-action on X is
typically not clean (cf. Example 2.6.5), but the action of Ĝ = G×U(n) is
leafwise transitive and has moment map Φ̂ = Φ× 0: X → ĝ∗ = g∗ ⊕ u(n)∗.
Since the null foliation has closed leaves, the null subgroup N̂ (X) for the
Ĝ-action is a closed subgroup of Ĝ, which contains the subgroup U(n).
We conclude from Theorem 2.2 that ∆(M) = Φ(X) ∩ C = Φ̂(X) ∩ C is a
rational convex polyhedral set. �

4.5. Contact manifolds. Let X be a compact manifold and let α be a
contact 1-form on X. The exact 2-form ω = −dα is nondegenerate on the
contact hyperplane bundle ker(α) and therefore is a presymplectic form of
corank 1. The null foliation F of ω is spanned by the Reeb vector field, which
is by definition the unique vector field ρ with the properties ι(ρ)ω = 0 and
ι(ρ)α = 1. Suppose that G acts on X and leaves α invariant. Then the action
is Hamiltonian with moment map Φ: X → g∗ defined by Φξ = ι(ξX)α. The
action is said to be of Reeb type (see e.g. Boyer and Galicki [4, § 8.4.2]) if there
exists a Lie algebra element ξ ∈ g with the property that ξX = ρ. Reeb-type
actions are leafwise transitive. The next result follows immediately from the
presymplectic convexity theorem.

Theorem 4.5.1 (contact convexity theorem I). Suppose that the G-
action on X is clean (e.g. of Reeb type). Then ∆(X) = Φ(X) ∩ C is a convex
polytope.
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In the abelian case we have the following consequence of Corollary 3.6.

Corollary 4.5.2. Suppose that the G-action on X is of Reeb type and that
the null ideal n(X) contains [g, g]. Then the Reeb vector field has at least
one closed orbit for every vertex of the polytope Φ(X).

There are many compact contact Hamiltonian G-manifolds X for which
∆(X) is not convex (and hence the action is not clean). Here are two methods
to produce examples of this. (1) Start with a pair (X,α) for which ∆(X) is
convex and then replace α by a conformally equivalent contact form efα for
some G-invariant smooth function f . This has the effect of multiplying the
moment map Φ by ef , which will usually destroy the convexity of ∆(X).
(2) Follow the method of 4.2, starting with a hypersurface Y in Rd which is
transverse to the faces of the orthant Rd

≥0 as well as to the radial vector field

on Rd. The moment map φ for the standard Td-action on Cd is quadratic,
and therefore maps the radial vector field on Cd to twice the radial vector
field on Rd. It follows that the hypersurface X = φ−1(Y ) is transverse to
the radial vector field on Cd, which is Liouville, and hence X is of contact
type. Unless Y is an affine hyperplane (in which case X is a contact ellipsoid
and Φ(X) a simplex), the image Φ(X) = Y ∩Rd

≥0 is not convex.
It is instructive to compare and contrast our contact convexity theorem,

Theorem 4.5.1, with a theorem of Lerman [17], as improved by Chiang and
Karshon [6]. Our result regards the symplectic leaf space X/F of X. Their
result regards the symplectization M = X × (0,∞) of X, which carries the
symplectic form ωM = −d(tα) = tω − dt ∧ α, where t is the coordinate on
the interval (0,∞). Letting G act trivially on the second factor, we get
a Hamiltonian G-action on M with moment map ΦM (x, t) = tΦ(x). The
image of ΦM is the conical set ΦM (M) =

⋃
t>0 tΦ(X). Intersecting the image

with the chamber C and adding the origin defines a subset ∆(M) = {0} ∪(
ΦM (M) ∩ C

)
of C, which is the union of all dilatations of ∆(X),

∆(M) =
⋃
t≥0

t∆(X).

The Lerman-Chiang-Karshon theorem states that, if G is a torus of di-
mension ≥ 2, then ∆(M) is a rational convex polyhedral cone. They make
no cleanness hypothesis on the action. In fact, by either of the methods
discussed in the previous paragraph one can manufacture examples where
∆(M) is convex but ∆(X) is not.

Another difference between the two contact convexity theorems is that,
as noted above, the image Φ(X) is highly dependent on the choice of the
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contact form α. In contrast, the symplectic cone (M,ωM ) is an intrinsic
invariant of the contact hyperplane bundle ker(α), from which it follows
that its moment cone ∆(M) depends only on the conformal class of α.

Nevertheless, our Theorem 4.5.1 is not wholly independent from the
Lerman-Chiang-Karshon theorem. To see the connection, we lift the Reeb
vector field ρ to a vector field on M which is tangent to the fibres X × {t}
and we note that this lifted vector field (which we continue to denote by ρ)
satisfies

ι(ρ)ωM = −tι(ρ)dα− ι(ρ)(dt ∧ α) = 0 + dt ∧ ι(ρ)α = dt.

In other words, ρ is the Hamiltonian vector field of the function M → R
defined by (x, t) 7→ t. Since the vector field ρ is G-invariant, its flow com-
mutes with the G-action, and therefore M is equipped with a Hamiltonian
of the product Ĝ = G×R with moment map Φ̂: M → ĝ∗ = g∗ ×R defined
by Φ̂(x, t) = (tΦ(x), t). Putting ∆̂(M) = {0} ∪

(
Φ̂(M) ∩ (C ×R)

)
⊆ C ×R

we find

(4.5.3) ∆̂(M) =
⋃
t≥0

(
t∆(X)× {t}

)
.

The set ∆(X) is obtained by intersecting ∆̂(M) with the hyperplane t = 1,
which is as it should be, because the symplectic quotient of M at level 1 with
respect to the R-action is the leaf space X/F . The cone ∆(M) is obtained
by restricting the Ĝ-action to G, i.e. by projecting ∆̂(M) along the R-axis.
Thus we obtain the following nonabelian extension of the Lerman-Chiang-
Karshon theorem, which appears to be new.

Theorem 4.5.4 (contact convexity theorem II). Suppose that the G-
action on X is clean. Then ∆̂(M) and ∆(M) are convex polyhedral cones.

Proof. Theorem 4.5.1 gives that ∆(X) is a convex polytope. Let η1, η2, . . . ,
ηk ∈ t be inward-pointing normal vectors to the facets of ∆(X); then points
v ∈ ∆(X) are determined by inequalities of the form 〈ηi, v〉 ≥ ai with ai ∈ R.
It then follows from (4.5.3) that points v̂ = (tv, t) ∈ ∆̂(M) are determined
by the homogeneous inequalities 〈ηi, tv〉 − ait ≥ 0, i.e. 〈η̂i, v̂〉 ≥ 0, where
η̂i = (ηi,−ai) ∈ t×R. Hence ∆̂(M) is a convex polyhedral cone. Hence its
projection ∆(M) onto t∗ is likewise a convex polyhedral cone. �

Unfortunately our proof does not enable us to show that the cone ∆(M)
is rational, nor that it is convex if the action is not clean.
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Appendix A. Immersed normal subgroups

Let G be a connected compact Lie group. What immersed connected normal
Lie subgroups N does G have? “Not very many” is the answer. There are two
basic types of such immersions: (1) G is semisimple and simply connected
and N is a product of simple factors of G; (2) G is a torus and N is a
product of a torus and a vector space immersing into G. Type (1) is a closed
embedding, but type (2) may not be. We have the following straightforward
result.

Lemma A.1. Every immersed connected normal Lie subgroup N of G is,
up to finite covering groups, a product of types (1) and (2).

Proof. The Lie algebra g = Lie(G) is the direct sum of the derived subalge-
bra g1 = [g, g] and the centre g2 = z(g). The ideal n = Lie(N) is the direct
sum of the ideals n1 = n ∩ g1 and n2 = n ∩ g2. The ideal n1 is a direct sum
of simple ideals of the semisimple Lie algebra g1. (See e.g. [3, § I.6].) Let-
ting G1 and N1 be the corresponding simply connected groups, we have an
embedding N1 → G1 of type (1). Letting G2 be the identity component of
the centre Z(G) and N2 = exp(n2), we have an immersion N2 → G2 of type
(2). The product G1 ×G2 is a finite covering group of G and N1 ×N2 is a
finite covering group of the identity component of N . �

The following consequence is used in the proof of Theorem 2.2(iii). As
usual, by a rational subspace of the Lie algebra of a torus we mean a subspace
that is rational with respect to the Q-structure defined by the character
lattice of the torus.

Corollary A.2. Let N be an immersed normal Lie subgroup of G and t a
Cartan subalgebra of g. The following statements are equivalent:

(i) N is closed;

(ii) n ∩ z(g) is a rational subspace of z(g);

(iii) n ∩ t is a rational subspace of t.

Appendix B. Some presymplectic linear algebra

This appendix lists a few elementary facts referred to in the proof of the
convexity theorem. Let G be a fixed connected compact Lie group. Let E be
a finite-dimensional real vector space and F a linear subspace. We denote
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by F ◦ ⊆ E∗ the annihilator of F . Let σ be a presymplectic form on E. We
denote by

F σ = {u ∈ E | σ(u, v) = 0 for all v ∈ F }

the subspace of E orthogonal to F with respect to σ. We call E a presym-
plectic G-module if G acts smoothly and linearly on E and the G-action
preserves σ. We state the following simple result without proof.

Lemma B.1. A presymplectic G-module (E, σ) is a presymplectic Hamilto-
nian G-manifold with moment map ΦE given by Φξ

E(e) = 1
2σ(ξ(e), e), where

e 7→ ξ(e) denotes the action of ξ ∈ g on E.

We require the following simple lemma concerning linear G-actions.

Lemma B.2. Let E be finite-dimensional real G-module. Let F be a G-
submodule and e ∈ E. Then the following conditions are equivalent.

(i) e = e0 + e1 for some e0 ∈ EG and some e1 ∈ F ;

(ii) G · e ⊆ e+ F ;

(iii) the affine subspace e+ F is preserved by the G-action;

(iv) Te(G · e) ⊆ F .

Proof. First we prove (ii) =⇒ (i) (which is the only implication that re-
quires the compactness of G). Let dg be the normalized Haar measure on G
and put e0 =

∫
G g · e dg. Then e0 is fixed under the action. Since g · e ∈ e+ F

for all g ∈ G, we have φ(g · e) = φ(e) for all φ ∈ F ◦. Therefore

φ(e0) =

∫
G
φ(g · e) dg =

∫
G
φ(e) dg = φ(e)

for all φ ∈ F ◦. This shows that e− e0 ∈ F , which proves (i). Next we prove
(iv) =⇒ (ii) (which is the only implication that requires the connectedness
of G). If Te(G · e) ⊆ F , then Tf (G · e) ⊆ F for all f ∈ G · e, because the ac-
tion preserves F . Hence the orbit G · e is everywhere tangent to the foliation
of E given by the affine subspaces parallel to F . Therefore G · e is contained
in the leaf e+ F . The other implications are straightforward. �

Lemma B.3. Let a be an ideal of g and λ ∈ g∗. The coadjoint orbit G · λ
is contained in the affine subspace λ+ a◦ if and only if a is contained in the
centralizer gλ of λ.
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Proof. Apply Lemma B.2 to the module E = g∗ and the submodule F = a◦

and use the fact that Tλ(G · λ) = g◦λ. �

In the next statements X denotes a presymplectic Hamiltonian G-mani-
fold with moment map Φ and null foliation F . The result holds regardless of
any cleanness assumptions on the G-action on X. We denote by x̄ the leaf
of a point x ∈ X, considered as a point in the leaf space X/F , and by gx̄ its
stabilizer subalgebra, which consists of all ξ ∈ g satisfying ξX(x) ∈ TxF .

Lemma B.4. For all x ∈ X we have

(i) ker(TxΦ) = Tx(G · x)ωx;

(ii) im(TxΦ) = g◦x̄ and coker(TxΦ) = g∗x̄.

Proof. (i) The moment map condition dΦξ = ι(ξX)ω implies that v is in
ker(TxΦ) if and only if ωx(ξX(x), v) = 0, i.e. v ∈ Tx(G · x)ωx .

(ii) Similarly, a vector ξ ∈ g is in im(TxΦ)◦ if and only if ωx(ξX(x), v) = 0
for all v ∈ TxX, i.e. ξX(x) ∈ ker(ωx) = TxF . This is equivalent to ξX(x) ∈
Tx(G · x) ∩ TxF = Tx(Gx̄ · x), where we used (2.6.2). Thus im(TxΦ)◦ = gx̄.
In other words, im(TxΦ) = g◦x̄ and coker(TxΦ) = g∗/g◦x̄ = g∗x̄. �

Recall that any smooth map of manifolds f : A→ B has an intrinsically
defined Hessian or second derivative T 2

a f : ker(Taf)→ coker(Taf) at every
a ∈ A.

Corollary B.5. For every x ∈ X the second derivative of the moment map
at x is a linear map T 2

xΦ: Tx(G · x)ωx → g∗x̄. In particular, if the leaf x̄ is
G-fixed, the second derivative is a linear map T 2

xΦ: TxX → g∗.

Appendix C. The local normal form

C.1. This appendix, the results of which are not used in the main body of
the paper, but which develops a theme touched upon in Section 4.2, contains
a local normal form theorem for clean presymplectic Hamiltonian Lie group
actions, which is a refinement of the slice theorem, Theorem 2.10.1. It is
a type of equivariant Darboux-Weinstein theorem, which extends results
established in the symplectic case by Guillemin and Sternberg [10, § 41] and
Marle [20]. It says that up to isomorphism an invariant neighbourhood of a
point x in a presymplectic Hamiltonian G-manifold is entirely determined by
infinitesimal data, namely the stabilizer subgroup Gx, the image of x under
the moment map, and two finite-dimensional representations of Gx, which
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describe the relevant information “orthogonal” to the orbit of x. These Gx-
modules, which are subquotients of the tangent space at x and which we call
the symplectic slice and the null slice, capture respectively the symplectic
directions and the null directions complementary to the orbit. As shown in
Section 4.2, the equivariant Darboux-Weinstein theorem is false without a
cleanness assumption on the point x. For a fixed point x the theorem reduces
to Corollary 2.10.4.

As in Section 2 we denote by X a manifold with presymplectic form ω
and by G a connected compact Lie group acting on M in a Hamiltonian
fashion with moment map Φ. (See 2.1.) We denote the null foliation of ω
by F = FX , the null ideal sheaf by ñ = ñX and the null subgroup sheaf
by Ñ = ÑX . (See 2.5.) In C.2–C.3 we introduce the slice modules; in C.4
we describe the local model and in C.5 we prove the equivariant Darboux-
Weinstein theorem.

C.2. Let E be a finite-dimensional real vector space and σ a presymplectic
form on E. We denote by E\ the largest symplectic quotient space of E, i.e.
E\ = E/ ker(σ), and by σ\ the symplectic form on E\ induced by σ. If F
is a linear subspace of E equipped with the presymplectic form σF = σ|F ,
then ker(σF ) = F ∩ F σ, where F σ denotes the subspace of E orthogonal to
F with respect to σ. Therefore the largest symplectic quotient space of F is

F \ = F/(F ∩ F σ) ∼= (F + F σ)/F σ.

We have (F σ)σ = F + ker(σ) and so

ker(σFσ) = F σ ∩ (F + ker(σ)) = F σ ∩ F + ker(σ).

Hence the largest symplectic quotient space of F σ is

(C.1) (F σ)\ = F σ/(F σ ∩ F + ker(σ)) ∼= (F + F σ)/(F + ker(σ)).

Let H be a Lie group and suppose that E is a presymplectic H-module.
Suppose also that F is an H-submodule of E. Then the vector spaces E\,
F \ and (F σ)\ are symplectic H-modules in a natural way. We omit the proof
of the following elementary assertion.

Lemma C.2. Let (E1, σ1) and (E2, σ2) be presymplectic H-modules.
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(i) Let f : E1 → E2 be an H-equivariant surjective linear map satisfy-
ing f∗σ2 = σ1. Then f descends to an isomorphism of symplectic H-
modules

f \ : E\1
∼=−→ E\2.

Let F1 be an H-submodule of E1 and put F2 = f(F1). Then F σ2

2 =
f(F σ1

1 ). Hence f descends to isomorphisms of symplectic H-modules

f \ : F \1
∼=−→ F \2 , f \ :

(
F σ1

1

)\ ∼=−→
(
F σ2

2

)\
.

(ii) Let F1 be an H-submodule of E1 and F2 an H-submodule of E2. Let
E = E1 ⊕ E2 and F = F1 ⊕ F2. Then E\ ∼= E\1 ⊕ E

\
2, F \ ∼= F \1 ⊕ F

\
2 ,

and (F σ)\ ∼= (F σ1

1 )\ ⊕ (F σ2

2 )\.

C.3. Let x ∈ X. Applying the observations of C.2 to the Lie group H = Gx,
the Gx-module E = TxX, the presymplectic form σ = ωx, and the submod-
ule F = Tx(G · x), we arrive at a symplectic Gx-module

Sx(X) =
(
Tx(G · x)ωx

)\
= Tx(G · x)ωx

/(
Tx(G · x)ωx ∩ Tx(G · x) + TxF)

)
,

which we call the symplectic slice of X at x.

Lemma C.1. The symplectic slice Sx(X) is naturally isomorphic to a sub-
module of the module V1 = TxX

/(
Tx(G · x) + TxF

)
of Theorem 2.10.1. The

ideal gx ∩ nx of gx acts trivially on Sx(X).

Proof. It follows from (C.1) that

Sx(X) ∼=
(
Tx(G · x) + Tx(G · x)ωx

)/(
Tx(G · x) + TxF

)
,

which is a submodule of V1. Let η ∈ gx ∩ nx. Then the function Φη is constant
near x, and therefore its Hessian T 2

xΦη : TxX → R is 0. By the equivariant
Darboux theorem, Corollary 2.10.4, applied to the fixed point x of the Gx-
action, the Hessian T 2

xΦη is the η-component of the moment map of the
linear Gx-action on TxX. Therefore the linearization at x of the vector field
ηX is tangent to the leaves of the constant presymplectic form ωx on TxX.
It follows that η acts trivially on the quotient module (TxX)\ = TxX/TxF .
Hence η acts trivially on the subquotient Sx(X) of (TxX)\. �
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Let x̄ = F(x) be the leaf of x, considered as a point in the leaf space
X/F , and let Gx̄ the stabilizer of x̄. The null slice of X at x is the Gx-module

Vx(X) =
(
Tx(G · x) + TxF

)/
Tx(G · x)

∼= TxF
/(
Tx(G · x) ∩ TxF

)
= TxF/Tx(Gx̄ · x),

where the last equality follows from (2.6.2). This is the module denoted by
V0 in Theorem 2.10.1. Note that Vx(X) = 0 if and only if the leaf F(x) is
contained in the G-orbit of x. The next result describes how the symplectic
slice and the null slice behave under presymplectic submersions and under
symplectization.

Lemma C.2. Let x ∈ X.

(i) Let (Y, ωY ) be a presymplectic Hamiltonian G-manifold and let p : X →
Y be an equivariant submersion with the property p∗ωY = ω. Let y =
p(x) and assume Gy = Gx. Then p induces an isomorphism of sym-
plectic Gx-modules

p\ : Sx(X)
∼=−→ Sx(Y )

and a short exact sequence of Gx-modules

0 −→ ker(Txp) −→ Vx(X)
Txp−→ Vy(Y ) −→ 0.

(ii) Let M = T ∗F be the symplectization of X. Then Vx(M) = 0 and there
is an isomorphism of symplectic Gx-modules

Sx(M) ∼= Sx(X)⊕ Vx(X)⊕ Vx(X)∗.

In particular, Sx(M) ∼= Sx(X) if F(x) ⊆ G · x.

Proof. (i) Let H = Gx = Gy, E1 = TxX, and E2 = TyY . Then E1 and E2

are presymplectic H-modules with presymplectic forms σ1 = ωx, resp. σ2 =
ωY,y. The tangent spaces to the orbits F1 = Tx(G · x) and F2 = Ty(G · y) are
submodules of E1, resp. E2. The tangent map p∗ = Txp : E1 → E2 satisfies
p∗σ2 = σ1 and p∗(F1) = F2. By definition the symplectic slices are Sx(X) =
(F σ1)\ and Sy(Y ) = (F σ2)\. The statement that the two are isomorphic now
follows from the third isomorphism in Lemma C.2(i). The restriction of p∗
to the subspace F1 + TxF has image F2 + TyFY . Hence p∗ descends to a
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surjection from Vx(X) = (F1 + TxF)/F1 to Vy(Y ) = (F2 + TyFY )/F2 with
kernel ker(p∗).

(ii) Since M is symplectic, we have Vx(M) = 0. Let E1 = TxX and E2 =
E\1. On E1 we have the presymplectic form σ1 = ωx and on E2 we have the

symplectic form σ2 = σ\1. Let π : E1 → E2 be the quotient map and E0 =
ker(π) its kernel. Then E0 = ker(σ1) and π∗σ2 = σ1. Let F1 = Tx(G · x) ∼=
g/gx, let F2 = π(F1) ⊆ E2 be the image of F1, and let F0 = F1 ∩ E0 be the
kernel of π : F1 → F2. It follows from (2.6.2) that

F0 = Tx(G · x) ∩ TxF = Tx(Gx̄ · x) ∼= gx̄/gx.

Therefore F2 = F1/F0
∼= g/gx̄. From the third isomorphism in Lemma C.2(i)

we obtain

(C.3) Sx(X) =
(
F σ1

1

)\ ∼= (F σ2

2

)\
= F σ2

2

/(
F σ2

2 ∩ F2

)
.

We can express the relationships among the various presymplectic Gx-mod-
ules as a commutative diagram with exact rows:

(C.4)

gx̄/gx g/gx g/gx̄

F0 F1 F2

E0 E1 E2

←↩ →

←

→∼=

←�

←
→∼=

←

→∼=

←↩ →
←
↩

→

← �

←
↩

→ ←
↩

→

←↩ → ←�

Recall from 2.11 that the symplectic form Ω on M = T ∗F depends on a
choice of a G-invariant Riemannian metric on X. Given such a choice, we
obtain compatible splittings of the rows of the diagram (C.4), namely by
identifying the middle terms with orthogonal direct sums E1

∼= E2 ⊕ E0 and
F1
∼= F2 ⊕ F0. Let E = TxM and σ = Ωx. Then E is a direct sum, E =

E2 ⊕ E0 ⊕ E∗0 , and the symplectic form on E is σ = σ2 ⊕ σ0, where σ0 is
the standard symplectic form on E0 ⊕ E∗0 . Applying Lemma C.2(ii) to the
subspace F1 = F2 ⊕ F0 of E we obtain

(C.5) Sx(M) = F σ2

2

/(
F σ2

2 ∩ F2

)
⊕ F σ0

0

/(
F σ0

0 ∩ F0

)
.

Now F σ0

0 = E0 ⊕ F ◦0 , where F ◦0 is the annihilator of F0 in E∗0 , so F σ0

0 ∩ F0 =
F0 and

F σ0

0

/(
F σ0

0 ∩ F0

)
= E0/F0 ⊕ F ◦0 = V ⊕ V ∗,
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where V = Vx(X). Substituting this and (C.3) into (C.5) gives Sx(M) ∼=
Sx(X)⊕ V ⊕ V ∗. If F(x) ⊆ G · x, then V = 0, so Sx(M) ∼= Sx(X). �

C.4. We now describe the local model for clean presymplectic Hamiltonian
actions. First a quick review of the symplectic case. (See [10, § 41] or [20]
for a complete exposition.) The symplectic local model has a list of four
ingredients (λ,H, θ, S), consisting of

(1) a covector λ ∈ g∗,

(2) a closed subgroup H of the coadjoint stabilizer Gλ of λ,

(3) an H-equivariant splitting θ : gλ/h→ gλ of the quotient map gλ →
gλ/h,

(4) a finite-dimensional symplectic H-module S.

We denote the H-module gλ/h by m. We use the splitting θ to identify the
H-module m with a direct summand of gλ and the H-module h∗ with a
direct summand of g∗λ. The homogeneous bundle

(C.1) M = M(λ,H, θ, S) = G×H (m∗ × S)

carries a closed 2-form ωM which is nondegenerate in a neighbourhood of
the zero section. The left multiplication action of G on M is Hamiltonian
with moment map ΦM given by

ΦM([g, a, s]) = Ad∗g
(
λ+ a+ ΦS(s)

)
,

where Φη
S(s) = 1

2ωS(ηS(s), s) for η ∈ h. The formula for ΦM is to be inter-
preted as follows. The inclusion gλ → g has a unique Gλ-equivariant left
inverse, which we use to identify g∗λ with a direct summand of g∗. This
allows us to identify g∗ with a product

(C.2) g∗ ∼= g◦λ × g∗λ
∼= g◦λ ×m∗ × h∗,

and to regard a ∈ m∗ and ΦS(s) ∈ h∗ as elements of g∗. Then for g ∈ G we
let Ad∗g act on the element λ+ a+ ΦS(s) ∈ g∗.

The presymplectic local model requires six ingredients (λ,H, θ, S, V, a),
where λ, H, θ, S are as in (1)–(4) and in addition we have

(5) an H-module V ,

(6) an ideal a of g with the properties that k ⊆ a ⊆ gλ and that the ideal
a ∩ h of h acts trivially on S.
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Here k denotes the kernel of the infinitesimal G-action g→ Γ(TM) on the
symplectic Hamiltonian G-manifold M defined in (C.1). The ideal k of g is
determined by the data λ, H and S. The quotient p = (a + h)/h ∼= a/(a ∩ h)
is an H-submodule of m = gλ/h. We require the splitting θ : m→ gλ to be
compatible with the ideal a in the sense that θ(p) is contained in a. Because
the H-action on gλ preserves the ideal a, such a splitting always exists. We
form the quotient module q = m/p and the homogeneous vector bundle

X = X(λ,H, θ, S, V, a) = G×H (q∗ × S × V ).

We define an equivariant vector bundle map f : X→M by

f([g, b, s, v]) = [g, i(b), s],

where i : q∗ → m∗ is the natural inclusion. Let Y be the direct summand

Y = X(λ,H, θ, S, 0, a) = G×H (q∗ × S)

of the vector bundle X. Then f = j ◦ p, where

X
p−→ Y

j−→M

are defined by p([g, b, s, v]) = [g, b, s] and j([g, b, s]) = [g, i(b), s]. We write
ωX = f∗ωM, ΦX = f∗ΦM, ωY = j∗ωM, and ΦY = j∗ΦM. Note that j is an
equivariant embedding of the vector bundle Y. We identify Y with the
subbundle j(Y) of M. Let x0 ∈ X denote the basepoint [1, 0, 0, 0] and let
A be the connected immersed normal subgroup of G generated by the ideal
a. Here are the relevant properties of the model X.

Lemma C.3. (i) The map ΦM : M→ g∗ intersects the affine subspace
λ+ a◦ cleanly and Y = Φ−1

M (λ+ a◦). Hence near the zero section Y
is a coisotropic submanifold of M and M is the symplectization of Y.
The leaves of the null foliation of ωY are the orbits of the A-action
on Y.

(ii) Near the zero section X is a presymplectic Hamiltonian G-manifold
with presymplectic form ωX and moment map ΦX. The G-action on X
is clean at x0. Near the zero section the null ideal sheaf ñX is constant
with stalk a.

(iii) The stabilizer of the basepoint is Gx0
= H, its moment map value is

ΦX(x0) = λ, the symplectic slice is Sx0
(X) ∼= S, and the null slice is

Vx0
(X) ∼= V .
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Proof. (i) Let [g, a, s] ∈M. Writing ΦM([g, a, s]) = Ad∗g(λ+ φ(a, s)), where
φ is the H-equivariant map m∗ × S → g∗ defined by (a, s) 7→ a+ ΦS(s), we
have

ΦM([g, a, s]) ∈ λ+ a◦ ⇐⇒ φ(a, s) ∈ a◦.

Under the identification (C.2) we have a◦ ∼= g◦λ × q∗ × (a ∩ h)◦, where g◦λ de-
notes the annihilator of gλ in g∗ and (a ∩ h)◦ the annihilator of a ∩ h in h∗. By
assumption a ∩ h acts trivially on S, so the H-moment map ΦS maps S into
(a ∩ h)◦. Therefore φ(a, s) ∈ a◦ is equivalent to a ∈ q∗, i.e. φ−1(a◦) = q∗ × S.
Therefore Y = G · φ−1(a◦) = Φ−1

M (λ+ a◦). Moreover, φ intersects the linear
subspace a◦ cleanly, which implies that ΦM intersects λ+ a◦ cleanly. The
remaining assertions now follow from Proposition 2.11.2.

(ii) The first assertion follows from (i) and the fact that p : X→ Y is an
equivariant surjective submersion. By Proposition 2.11.2 the action on Y is
leafwise transitive and the null ideal is n(Y) = a. Therefore the action on
X is clean at x0 and, by Corollary 2.10.3, the sheaf nX is constant near x0

with stalk a.
(iii) The space X is a homogeneous bundle over G/H and the base-

point x0 is the identity coset in G/H, so its stabilizer is Gx0
= H. We have

ΦX(x0) = ΦM([1, 0, 0]) = λ. The equivariant surjection p induces an isomor-
phism Sx0

(X) ∼= Sx0
(Y) by Lemma C.2(i). The fact that the action on Y is

leafwise transitive implies Vx0
(Y) = 0, and hence Sx0

(Y) ∼= Sx0
(M) ∼= S by

Lemma C.2(ii). This shows Sx0
(X) ∼= S. Moreover, Vx0

(X) ∼= ker(Tx0
p) = V

by Lemma C.2(i). �

C.5. The local normal form theorem is as follows.

Theorem C.1. Let x ∈ X and assume that the G-action on X is clean at
x. Let

λ = Φ(x), H = Gx, S = Sx(X), V = Vx(X), a = nx.

Choose an H-equivariant splitting θ : gλ/h→ gλ of the quotient map gλ →
gλ/h which is compatible with a. Then a G-invariant neighbourhood of x in X
is isomorphic as a presymplectic Hamiltonian G-manifold to a G-invariant
neighbourhood of x0 in the local model X = X(λ,H, θ, S, V, a).

Proof. First we verify that the list (λ,H, θ, S, V, a) satisfies the conditions
imposed in C.4(1)–(6). That the subgroup H is contained in Gλ follows
from the equivariance of the moment map Φ. That the null ideal a contains
k follows from (2.6.3). That a is contained in gλ follows from Lemma B.3.
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That a ∩ h acts trivially on the symplectic slice module S is Lemma C.1.
Now choose a leafwise transitive transversal Y at x as in Theorem 2.10.1
and let M be the symplectization of Y . Let us denote by γ(X) and γ(M)
the germs of X and M at the orbit G · x. Similarly, let us denote by γ(X)
and γ(M) the germs of X and M = M(λ,H, S) at the orbit G · x0. Then

Sx(M) ∼= Sx(Y ) ∼= Sx(X) = S ∼= Sx0
(M),

where the first two isomorphisms follow from Lemma C.2 and the last from
Lemma C.3. It now follows from the symplectic local normal form theorem
(see [10, § 41] or [20]) that γ(M) and γ(M) are isomorphic as germs of sym-
plectic Hamiltonian G-manifolds. Isomorphisms intertwine moment maps, so
from Proposition 2.11.1 we get that γ(Y ) = γ

(
Ψ−1(λ+ a◦)

)
is isomorphic

to

γ
(
Φ−1

M (λ+ a◦)
)

= γ(Y).

Theorem 2.10.1 states that γ(X) is isomorphic to the equivariant bundle
over γ(Y ) with fibre V , that is to say the bundle γ

(
G×H (q∗ × S × V )

)
=

γ(X). �
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