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Real Gromov-Witten theory in all genera
and real enumerative geometry:
Properties
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The first part of this work constructs positive-genus real Gromov-
Witten invariants of real-orientable symplectic manifolds of odd
“complex” dimensions; the present part focuses on their proper-
ties that are essential for actually working with these invariants.
We determine the compatibility of the orientations on the moduli
spaces of real maps constructed in the first part with the stan-
dard node-identifying immersion of Gromov-Witten theory. We
also compare these orientations with alternative ways of orient-
ing the moduli spaces of real maps that are available in special
cases. In a sequel, we use the properties established in this pa-
per to compare real Gromov-Witten and enumerative invariants,
to describe equivariant localization data that computes the real
Gromov-Witten invariants of odd-dimensional projective spaces,
and to establish vanishing results for these invariants in the spirit
of Walcher’s predictions.
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1. Introduction

The theory of J-holomorphic maps plays prominent roles in symplectic
topology, algebraic geometry, and string theory. The foundational work of [6),
15, M9] 21) 25] has established the theory of (closed) Gromov-Witten in-
variants, i.e. counts of J-holomorphic maps from closed Riemann surfaces
to symplectic manifolds. The two main obstacles to defining real Gromov-
Witten invariants, i.e. counts of J-holomorphic maps from symmetric Rie-
mann surfaces commuting with the involutions on the domain and the target,
are the potential non-orientability of the moduli space of real J-holomorphic
maps and the existence of real codimension-one boundary strata. These ob-
stacles are overcome in many genus 0 situations in [2, 5] 9 26} 28], 29]; see [12],
Section 1.3] for some comparisons. In the first part of this work, we introduce
the notion of real orientation on a real symplectic 2n-manifold (X, w, ¢) and
overcome both obstacles in all genera for real-orientable symplectic manifolds
of odd “complex” dimension n.

A real orientation on a real symplectic 2n-manifold (X, w, ¢) with n¢27Z
induces orientations on the moduli spaces of real J-holomorphic maps from
arbitrary genus g symmetric surfaces to (X, ¢). Theorems and com-
pare these orientations with the natural complex orientations and with the
orientations induced by the corresponding spin and relative spin structures
whenever the latter three make sense. By Theorem the orientations on
the moduli spaces of real J-holomorphic maps induced by a real orientation
on (X,w, ¢) are “anti-compatible” with the node-identifying immersion
which is central to much of “classical” Gromov-Witten theory. This theorem
is instrumental for any study of the structure of the real Gromov-Witten in-
variants that depends on a splitting property at a conjugate pair of nodes in
the spirit of [I8], 2.2.6] and in particular for interpreting real Gromov-Witten
theory in terms of integrable systems in the spirit of [3]. A similar compar-
ison of orientations in Lagrangian Floer theory is key to establishing the
renown As-relations of [7]. Theorems and |1.4] are likewise essential
for studying the properties of real GW-invariants constructed in [12]. For
example, they play crucial roles in determining the normal bundles to the
torus-fixed loci in [I3] and the contributions from the degenerate loci in [23].

1.1. Real-orientable symplectic manifolds

An involution on a topological space X is a homeomorphism ¢: X — X
such that popp=1idx. By an involution on a manifold, we will mean a smooth
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involution. Let
X¢ = {zeX: ¢(x)=a}

denote the fixed locus. An anti-symplectic involution ¢ on a symplectic mani-
fold (X, w) is an involution ¢: X — X such that ¢*w=—w. A real symplectic
manifold is a triple (X, w, ¢) consisting of a symplectic manifold (X,w) and
an anti-symplectic involution ¢.

Let (X, ¢) be a topological space with an involution. A conjugation on a
complex vector bundle V — X lifting an involution ¢ is a vector bundle ho-
momorphism ¢: V—V covering ¢ (or equivalently a vector bundle homo-
morphism ¢: V — ¢*V covering idx) such that the restriction of ¢ to each
fiber is anti-complex linear and pop =idy . A real bundle pair (V, o) — (X, ¢)
consists of a complex vector bundle V— X and a conjugation ¢ on V lift-
ing ¢. For example,

(XxC,pxc) — (X, 9),

where ¢: C" — C" is the standard conjugation on C", is a real bundle pair. If
X is a smooth manifold, then (T°X, d¢) is also a real bundle pair over (X, ¢).
For any real bundle pair (V, ¢) — (X, ¢), we denote by

AZP(V ) = (ASPV, ALP )

the top exterior power of V over C with the induced conjugation. Direct
sums, duals, and tensor products over C of real bundle pairs over (X, ¢) are
again real bundle pairs over (X, ¢).

Definition 1.1 ([12, Definition 5.1]). Let (X, ¢) be a topological space
with an involution and (V,¢) be a real bundle pair over (X, ¢). A real ori-
entation on (V, ¢) consists of

(RO1) a rank 1 real bundle pair (L, ¢) over (X, ¢) such that
(1.1) wy(VF) = wi(L9)? and  ALP(V.p) ~ (L.9)**,

(RO2) a homotopy class of isomorphisms of real bundle pairs in ((1.1)), and

(RO3) a spin structure on the real vector bundle V“’EBQ(L*)‘Z* over X?
compatible with the orientation induced by |[(RO2)]
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An isomorphism in (I.1)) restricts to an isomorphism
t $\ 22
(1.2) ARPV? ~ (L)%

of real line bundles over X?. Since the vector bundles (L?)®? and 2(L*)?" are
canonically oriented, determines orientations on the vector bundles
V¥ and VP @2(L*)?". By the first assumption in , the real vector bundle
V9D2(L*)?" over X¢ admits a spin structure.

Let (X,w, ¢) be a real symplectic manifold. A real orientation on (X, w, ¢)
is a real orientation on the real bundle pair (T'X,d¢). We call (X, w, ¢) real-
orientable if it admits a real orientation.

1.2. Compatibility with node-identifying immersion

A symmetric surface (X,0) is a closed oriented surface 3 (manifold of real
dimension 2) with an orientation-reversing involution o. The fixed locus
of o is a disjoint union of circles. If in addition (X, ¢) is a manifold with an
involution, a real map

u: (X,0) — (X, ¢)

is a smooth map u: ¥ — X such that uooc = ¢gou. We denote the space
of such maps by B,(X)?°. The main focus of [12] is on smooth and one-
nodal connected symmetric surfaces, but in the present paper we also need
to consider disconnected and two-nodal symmetric surfaces. Throughout
this paper, the term symmetric surface will thus refer to smooth connected
surfaces unless explicitly stated otherwise.

For a symplectic manifold (X,w), we denote by J, the space of w-
compatible almost complex structures on X. If ¢ is an anti-symplectic invo-
lution on (X,w), let

Je={JeTu: ¢"T=—J}.

For a genus g symmetric surface (X, o), possibly nodal and disconnected, we
similarly denote by J3 the space of complex structures j on ¥ compatible
with the orientation such that ¢*j=—j. For J € jf, jeJg,anduc %Q(X)d”",
let

= 1

Orju = §(du +Jo duoj)
be the 0, ;-operator on B,(X)?°.
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Let (X,w,¢) be a real-orientable symplectic 2n-manifold with n¢2Z,
9,1€22°, Be Hy(X;Z), and J € J2. We denote by M, (X, B; J)® the mod-
uli space of equivalence classes of stable real degree B J-holomorphic maps
from genus g symmetric (possibly nodal) surfaces with [ pairs of conjugate
marked points. By [12, Theorem 1.4], a real orientation on (X,w, ¢) deter-
mines an orientation on this compact space, endows it with a virtual funda-
mental class, and thus gives rise to genus g real GW-invariants of (X, w, ¢)
that are independent of the choice of J Ejf .

We denote by ﬁ;l(X, B; J)? the moduli space of stable real degree B
morphisms from possibly disconnected nodal symmetric surfaces of holo-
morphic Euler characteristic 1—g¢ with [ pairs of conjugate marked points.
For each i=1,...,1, let

evi:ﬁ;l(X,B; J)? — X, [u, (27, 27), ... (57, 2)] — w(z),

be the evaluation at the first point in the ¢-th pair of conjugate points. If
[>2, let

/e oy ]
M, (X, B; J)? = {[u]eMm, (X, B; J)?: evi—1([u])=ev([u]) }.
The short exact sequence
~=/® by
0 — T, (X, B; J)® — T, (X, B; J)d’\ﬁ;l(

X,y eV TX —0

induces an isomorphism
(1.3) ARP (TG 1(X, B5 D) e (x piye)
— /e "
~ AP (T, (X, By J)?) @ evi (ARP(T X))
of real line bundles over ﬁlg.,l(X ,B; J)?.

The identification of the last two pairs of conjugate marked points in-
duces an immersion

—/e ooy J
(1.4) v o o(X, By J)? — M (X, B3 J)°.
This immersion takes the main stratum of the domain, i.e. the subspace con-

sisting of real morphisms from smooth symmetric surfaces, to the subspace
of the target consisting of real morphisms from symmetric surfaces with one
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pair of conjugate nodes. There is a canonical isomorphism

ST, (X, B; J)?
Ni= ——7 5~ Lin®cLita
TM,_9140(X, B; J)
of the normal bundle of ¢+ with the tensor product of the universal tangent
line bundles for the first points in the last two conjugate pairs. It induces
an isomorphism

(1.5) (AP (T, (X, B; J)?))

~ AP (Tﬁ;—sz(X, B; J)?) @ AR (Li41®cLit2)
of real line bundles over ﬁ;‘,Q’HQ(X,B; J)?. Along with |D with (g,1)
replaced by (g—2,1+2), it determines an isomorphism

(1.6) Aﬁé’p (Tﬁ;—Q,H—Q(Xv B; J)¢|ﬁ;'_211+2(x,3;‘])¢) ® A (Li1®cLis2)
~ (AP (Tﬁ;l(X, B;J)?)) ®@evi, (AP (TX))

of real line bundles over ﬁ/g:2,l+2(X7 B; J)®.

Theorem 1.2. Let (X,w, ®) be a real-orientable 2n-manifold with n¢ 27,
g,1€72°, BE Hy(X;Z), and JE€JL. The isomorphism is orientation-
reversing with respect to the orientations on the moduli spaces determined by

a real orientation on (X,w, ) and the canonical orientations on the bundles
Li11®@cLiys and TX.

The substance of this statement is that the orientations on
—/e
S1ng—2,l—i—2()(a Ba J)¢

induced from the orientations of ﬁ;—2,l+2(Xa B, J)? and ﬁ;’l(X, B, J)? via
the isomorphisms and (|1.5) are opposite. This may seem surprising
from the point of view of the classical (closed) GW-theory, where moduli
spaces have canonical orientations and signs do not appear. On the other
hand, systematic orientations of moduli spaces in open and real GW-theories
depend on orienting conventions and additional topological data (such as a
spin structure or a real orientation) on the target manifold. The appearance
of signs is then a fairly common occurrence, and it is notoriously difficult to
determine them correctly in most cases. The orientation conventions in [12]
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are natural from mathematical considerations and conform with the mir-
ror symmetry expectations described in [27]; see [12, Section 3] and [I3|
Section 1.3], respectively, for details. While it is possible to adjust the ori-
entations on moduli spaces of real maps to make the isomorphism
orientation-preserving, this would be artificial from the geometric stand-
point and undesirable based on mirror symmetry considerations.

We note that the statement of Theorem is invariant under inter-
changing the points within the last two conjugate pairs simultaneously (this
corresponds to reordering the nodes of a nodal map). This interchange re-
verses the orientation of the last factor on the left-hand side of , because
the complex rank of £;41®c L2 is 1, and the orientation of the last factor
on the right-hand side of , because the complex rank of T'X is odd.

An analogue of Theorem [1.2] with n € 27Z is described in Remark

1.3. Comparison with complex orientation

Let go€Z=°. We define a go-doublet to be a two-component smooth sym-
metric surface (X, 0) of the form

(1.7) S =308 = {1} xZoU{2} x5, o(i,2) = (3—i,2) V (i,2)€X,

where Y is a connected smooth oriented genus gg surface and ¥y denotes
> with the opposite orientation. The holomorphic Euler characteristic of a
go-doublet is 1—g with g=2g9—1.

Suppose (X, w, ¢) is a real-orientable 2n-manifold, [ € ZZ°, B € Ho(X; 7Z),
and Je J¢. With (3,0) as in (L7), let

S90—1.1(X, B; J)¢’U - ﬁ;gg—l,l(X7 B; J)¢

denote the open subspace of real J-holomorphic maps from (3, o). For each
sC{l,...,l}, let

Ego—l,l(X’ B; ‘])f’(f - 5In;go—l,l()(? B; J)QSJ

be the open subspace consisting of marked maps so that the second point
in the i-th conjugate pair lies on ¥ if and only if i €s. In particular,

(18) M3y 4 (X, B2 € || (Mg a(X, Bos J) x My, (X, 6. Bos J)),

BoeH,(X;Z)
Bo—¢.By=B
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where My, (X, Bo; J) is the usual moduli space of degree By J-holomorphic
maps from smooth genus gg curves with [ marked points. The projection

(1.9) S0 1(X, By D27 — | |M,1(X, Bo; J)

Bo—¢.Bo=B

to the first factor in is an isomorphism (in the sense of Kuranishi
structures, i.e. identifies the deformation-obstruction theories of the
two moduli spaces). The moduli space on the right-hand side of carries
a natural orientation obtained by homotoping the linearization of the O-
operator to a C-linear Fredholm operator; see [22), Section 3.2]. We will call
the orientation on the left-hand side of induced by this orientation the
complex orientation of M3, (X, B; J)g 7

Theorem 1.3. Let (X,w, ®) be a real-orientable 2n-manifold with n¢ 27,
90,1€7Z2%, (3,0) a go-doublet, B€ Hy(X;7Z), and JeJe. The orientation
on QJ?QQO_U(X,B;J)‘?’J induced by a real orientation on (X,w,®) and its
complex orientation differ by (—1)9+1+sl,

Since the orientation on 907 (X B;J)? induced by a real orientation
on (X,w, @) is compatible Wlth orlentlng the fibers of the forgetful mor-
phisms

(1.10) ﬁ;m(){, B;J)? — ﬁ;,(x, B;J)?

by the first marked point in the last conjugate pair, the statement of this
theorem is compatible with the forgetful morphisms. Under the assumptions
of this theorem, the “complex” dimension of the right-hand side of in
the [ =0 case, i.e.

dim* My, o(X, Bo; J) = {c1(TX), Bo) + (n—3)(1—go),

is even by the second condition in (|1.1)). Thus, the “conjugation” diffeomor-
phism

| Mg 0(X, Bo;J) — | |Mgo0(X, Boi ), [u,j] — [pou —j],
Bo€H,(X;7) BoeH,(X;Z)
Bofd)*Bo:B Bofd)*B():B
is orientation-preserving. This implies that the validity of Theorem is
independent of the ordering of the topological components of 3.
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An illustration of Theorems and in the genus 0 case is [11],
Lemma 5.2]. It describes the normal bundle to a stratum of genus 0 maps
consisting of a central component with a pair of conjugate bubbles, i.e. a
0-doublet, attached. This boundary stratum is oriented by choosing one of
the nodes and taking the complex orientation associated with the corre-
sponding bubble. The claim of [I1, Lemma 5.2] is that the normal bundle
is then oriented by the complex orientation of the smoothings of this node.
According to Theorem the “canonical” orientation of this boundary
stratum is obtained by taking the opposite of the complex orientation on
the distinguished bubble. According to Theorem [I.2] the orientation of the
normal bundle is then opposite to the complex orientation of the smooth-

ings of the distinguished node. Thus, [I1, Lemma 5.2] is a consequence of
Theorems [[.2] and

1.4. Comparison with spin and relative spin orientations

Let X be a topological space, Y C X be a subspace, and F'—Y be a real
oriented vector bundle. A relative spin structure on F' as in [7] consists of
a real oriented vector bundle F— X and a spin structure on FQFEly. If
(X, ¢) is a topological space with an involution and (L, ¢) is a real bundle
pair over (X, ¢), the map

(1.11) 2L — L*|xe, (v,w) — v+ iw,

is an isomorphism of real oriented vector bundles over X?¢. Thus, a real
orientation on a real bundle pair (V,¢) as in Definition determines a
relative spin structure on the real oriented vector bundle V¥ — X¢ with
E=L* in the above notation; we will call this structure the associated rela-
tive spin structure on V¥. If in addition L? — X is orientable, 2(L*)?" has
a canonical homotopy class of trivializations as in the proof of [12, Corol-
lary 5.6]. Such a real orientation on (V) ¢) thus determines a spin structure
on V¥; we will call the latter the associated spin structure on V¥,

Let 7 be the standard involution on P!; we take it to be given by z —1/2
on C. For [>2, we denote by MSJ the uncompactified moduli space of
equivalence classes of (P!, 7) with [ pairs of conjugate marked points. The
Deligne-Mumford compactification MSQ of M{ 5 includes 3 additional stable
real two-component nodal curves. A diffeomorphism of ﬂgz with a closed
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interval is given by

(1.12) Mgz R = [0, o0,

+_ o+ - +_ |2

+ o) (oF T o T W T | |2 =2 |
21,21 ), (25,259 )| — : = .
R T

It takes the two-component curve with zfr and z; on the same component
to 0 and the two-component curve with zfr and z; on the same component
to oco. For [ >2, the fibers of the forgetful morphism

T 5T
M1 — Moy

are oriented by the canonical complex orientation of the tangent space at
the first marked point in the last conjugate pair. It follows that the moduli
space ﬂg,l is orientable.

Let (X,w, ¢) be a real symplectic manifold. By [12, Theorem 1.3], a real
orientation on (X,w,¢) and an orientation on MSQ determine an
orientation on each moduli space Mg ;(X, B;J )¢”T of real J-holomorphic
maps from (P!, 7) to (X, ¢). The standard approach [2 8, 26] to orienting
Mo (X, B; J )‘W involves orienting the associated moduli space of disk maps
from a relative spin structure on TX? — X?; in some cases, the resulting
orientation on the disk space descends to an orientation on Mg (X, B; J Yoo,
Theorem below compares the orientations on My (X, B; J )7 resulting
from the two approaches to orienting it. Both approaches involve some sign
conventions, which we specify next.

The construction of the orientation on the real line bundle in
the proof of [I2], Proposition 5.9] involves a somewhat arbitrary sign choice
for the Serre duality isomorphism [12, (5.21)]. The (real) dimensions of
its domain and target are 3(g—1)+2l. Thus, this choice has no effect on
the homotopy class of this isomorphism or the resulting orientation of the
real line bundle if g 27. If g€ 27, changing this choice changes the
resulting orientation of and the orientation on the moduli spaces
M, (X, B; J)?7 of real maps. In light of Proposition the above sign
choice is determined by a choice of orientation of the real line bundle
over MSQ. In this case, the operator dc is surjective and its kernel consists
of constant R-valued functions. Thus, an orientation on over Mgg is
determined by an orientation on MS,? As in [T}, Section 3], we orient ﬂaz
by the diffeomorphism (|1.12]).
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Let G, denote the group of holomorphic automorphisms of (P!, 7). The
exact sequence

0 — TigSt — TG, — TyC — 0

and the standard orientations of S' and C determine an orientation on G,.
Let Bo (X, B; J) denote the space of (parametrized) degree B J-holomorphic
real maps from (P!, 7) to (X, ¢); thus,

(1.13) Mo,o(X, B; J)»T = Po(X, B; J) /G- .

An orientation on the left-hand side of (1.13])) determines an orientation
on Po(X, B; J) via the canonical isomorphism

(1.14) AP (TuBo(X, B; J)) = AP (T1 Moo (X, B; J)*7) @ AP (TG ).

An orientation on the marked moduli spaces Mo ;(X, B; J)™? is then de-
termined by orienting the fibers of the forgetful morphisms by the
first marked point in the last conjugate pair. Since G has two topological
components, an orientation on Po(X, B;J) may not descend to the quo-
tient . By [9, Theorem 6.6] with (E,7)=(L,®)*, a real orientation
on (X,w,¢) induces an orientation on Po(X, B;J) that descends to this
quotient and extends to the stable map compactification.

The (virtual) tangent space of Bo(X, B; J) is the index (as a K-theory
class) of the linearization of the dj-operator at u. An orientation on this
index, or equivalently on det D(TX@@\U, is determined by a relative spin
structure on TX? — X?; see the proof of [7, Theorem 8.1.1] or [20, The-
orem 6.36]. If this orientation descends to the quotient , the induced
orientation on the latter depends on the ordering of the two lines on the

right-hand side of (1.14)) if
dimy™ Mo o(X, B; J)*" = (c1(TX), B) +n—3,

is odd. If (X,w, ¢) is real-orientable, this is the case if and only if n € 2Z.
The marked moduli space My (X, B; J )7 can also be oriented by first
orienting the marked parametrized space 9;(X, B; J) from the orientation
of Po(X, B; J) via the forgetful morphism as in and then taking the
quotient as in . If 1>2, we can then take (X, B)=(pt,0) and obtain
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an orientation on
M62 =My g(pt O)id’T .

With the orlentlng convention , this orientation agrees with the orien-
tation on MO o determined by the dlﬁeomorphlsm

Theorem 1.4. Suppose (X,w,¢) is a real-orientable manifold, | € 7Z=9,
B € Hy(X;Z), and JeJe. The orientations on Mo (X, B; J)®7 induced
by a real orientation on (X,w, @) as in Deﬁm’tion and by the associated
relative spin structure on TX® —s X differ by (—1)*B), where

)= | L2 2|

If in addition L — X9 is orientable, then the orientations on
Mo (X, B; J)*T

induced by the real orientation on (X,w, $) and by the associated spin struc-
ture on TX? are the same.

A key step in the proof of this theorem in Section is Proposition
it obtains an explicit comparison of orientations of determinants of Fredholm
operators. This comparison is in the spirit of the undetermined sign of [20),
Proposition 8.4]. As indicated in Section and illustrated in [13], Propo-
sition makes it possible to determine the equivariant weights of vector
bundles along torus fixed loci in settings such as in [17, Section 5], [24, Sec-
tion 4], and [5, Section 6.4]. We in fact give three proofs of Proposition
a direct computation and as a consequence of the equivariant computations
in [5].

Remark 1.5. The approach to orienting the moduli spaces of real maps
from (P',7) to (X, ¢) by “stabilizing” the real bundle pair (T'X,d¢) with
two copies of a real bundle pair (E,T) over (X, ¢) is introduced in [9]. For
these moduli spaces, the orienting procedure of [12, Theorem 1.3] specializes
to the orienting procedure of [9]. While the stabilizing real bundle pair (E, T)

in [9] can be of any rank, the purpose of (E,7) is also fulfilled by A{P(E,7)
and so it is sufficient to restrict to the rank 1 real bundle pairs. On the other
hand, the proof of Theorem |1.4 readily extends to real bundle pairs (L, <b)
of any rank. In sharp contrast to the relative spin orienting procedure of [7,
Theorem 8.1.1], the orientation from the approach of [9] with a rank 1 real
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bundle (E,7) depends only on wy (E7) and the spin structure on TX?@®2E7,
not on (E,7) itself; see Remark

1.5. Outline of the paper and acknowledgments

Section [2] sets up the notation necessary for the remainder of this paper and
summarizes the orientation construction of [I12]. Theorems and are
proved in Sections [3.1] and respectively. Section [3.3] obtains a number of
computationally useful statements concerning orientations of the determi-
nants of real Cauchy-Riemann operators on real bundle pairs. Theorem
is established in Section [

We would like to thank E. Brugallé, R. Crétois, E. Ionel, S. Lisi, M. Liu,
J. Solomon, J. Starr, M. Tehrani, G. Tian, and J. Welschinger for related
discussions. The second author is very grateful to the IAS School of Math-
ematics for its hospitality during the initial stages of our project on real
GW-theory.

2. Notation and review

We set up the necessary notation involving moduli spaces of stable maps and
curves in Section 2.1} We then recall standard facts concerning determinant
lines of Fredholm operators in Section Section [3| reviews some of the key
statements from [12].

2.1. Moduli spaces of symmetric surfaces and real maps
Let (X,0) be a genus g symmetric surface. We denote by D, the group
of orientation-preserving diffeomorphisms of ¥ commuting with the invo-

lution o. If (X, ¢) is a smooth manifold with an involution, {€Z=% and
B € Hy(X;Z), let

B,1(X, B)*° C By(X)?7 x £

denote the space of real maps u: (X,0) — (X, ¢) with u.[X]z = B and [
pairs of conjugate non-real marked distinct points. We define

Hg (X, B)*7 = (By(X,B)* xTZ) /Dy
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If Je jf , the moduli space of marked real J-holomorphic maps in the class
B € Hy(X;Z) is the subspace

ng(X,B; J)(b’U = {[uv (Zf_721_)7'--7(Zrazl_)aj]eHg,l(X7B)¢’U: 5J,ju:0}>

where 0 7; is the usual Cauchy-Riemann operator with respect to the com-
plex structures J on X and j on X. If g4+1>2,

MG, = Mg (pt, 0)'Y7 = Hgy(pt, 0)'D7

is the moduli space of marked symmetric domains. There is a natural for-
getful morphism

(2.1) f:Hy(X,B)" — M

it drops the map component u from each element of the domain.
We denote by

My (X, B; J)*7 D My (X, B; J)*°
Gromov’s convergence compactification of M, (X, B; J )% obtained by in-

cluding stable real maps from nodal symmetric surfaces. The (virtually)
codimension-one boundary strata of

My (X, B; J)®7 — My 1 (X, B; J)*° € My (X, B; J)*°
consist of real J-holomorphic maps from one-nodal symmetric surfaces to
(X, ¢). Each stratum is either a (virtual) hypersurface in M, (X, B; J)®7 or

a (virtual) boundary of the spaces ﬁg,l(X , B; J)? for precisely two topo-
logical types of orientation-reversing involutions o on X. Let

My (X, B; J)? = | |Mgu(X, B; J)*7  and
o
Mg(X, B; J)? = My (X, B; J)*7
denote the (disjoint) union of the uncompactified real moduli spaces and

the union of the compactified real moduli spaces, respectively, taken over all
topological types of orientation-reversing involutions o on X. If g4+1>2, we
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denote by

ﬂ;l_mg, (pt O)IdGDMgl, Rﬂ%l_ glptO UMgl

the real Deligne-Mumford moduli spaces. The forgetful morphism ([2.1]) ex-
tends to a morphism

(2.2) f: 9y (X, B; J)? — RM,,
between the compactifications.

2.2. Determinant line bundles

Let (V,¢) be a real bundle pair over a symmetric surface (X,0). A real
Cauchy-Riemann (or CR-) operator on (V) is a linear map of the form

(23) D=0+A:T(%;V)? = {£€l(5;V): {oo=pof}
— TOU S V)# = {CeT(S5(T75,5)" @cV): Codo = poC},

where 0 is the holomorphic J-operator for some j€Jy and a holomorphic
structure in V' and

A € T(Z;Homg (V, (T7°%,i)> @cV))¥

is a zeroth-order deformation term. A real CR-operator on a real bundle
pair is Fredholm in the appropriate completions.
If X, Y are Banach spaces and D: X —Y is a Fredholm operator, let

det D = AP (ker D) ® (AP (cok D))"

denote the determinant line of D. A continuous family of such Fredholm op-
erators D, over a topological space ‘H determines a line bundle over H, called
the determinant line bundle of {D,} and denoted det D; see [22], Section A.2]
and [30] for a construction. A short exact sequence of Fredholm operators

0 ¢ X > X" 0

I IE [

0 > Y/ Y Y 0
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determines a canonical isomorphism
(2.4) det D = (det D') @ (det D").
For a continuous family of short exact sequences of Fredholm operators, the
isomorphisms ([2.4) give rise to a canonical isomorphism between determi-
nant line bundles.

Families of real CR-operators often arise by pulling back data from a
target manifold by smooth maps as follows. Suppose (X, J, ¢) is an almost

complex manifold with an anti-complex involution and (V] ¢) is a real bundle
pair over (X, ¢). Let V be a p-compatible connection in V' and

A € T(X; Homg (V, (T X, J)* @cV))*.

For any real map u: (X,0) — (X, ¢) and je J¢Z, let V* denote the induced
connection in v*V and

A = Ao dyu € T(S; Homg (u*V, (T2, )% @c wV)) " ¥,
The homomorphisms
av 1 u : u
au = i(v +1OV O])’
Dy = Oy + Az T(S; 0" V)™ — TPH (S0 V)™

are real CR~operators on u*(V, ¢) — (X, 0) that form families of real CR-
operators over families of maps. If ¢g,1€Z>? and B € Hy(X;7Z), let

det Dy, p) — By (X, B)*7 x JZ
denote the determinant line bundle of such a family. It descends to a fibration
det Dy, ) — Hgu(X, B)*7,

which is a line bundle over the open subspace of the base consisting of
marked maps with no non-trivial automorphisms.

Example 2.1. Let (V,¢)=(C,¢); this is a real bundle pair over (pt,id). If
g+1>2, the induced family of operators dc = D¢ ) on -MZ,Z defines a line
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bundle

det 5((: — M;l .
If (X, ¢) is an almost complex manifold with an anti-complex involution ¢
and

(Vi) = (XXC,px¢) — (X, 9),

then there is a canonical isomorphism
det D((C,c) ~ f* (det 5@)
of line bundles over H, (X, B)#°.

For a real CR-operator D on a rank n real bundle pair (V,¢) over a
symmetric surface (X, 0), we define the relative determinant of D to be the
tensor product

(2.5) det D = (det D) @ (det ds.c) ™",

where det Os.c is the standard real CR-operator on (X,0) with values in
(C, ¢). This notion plays a central role in the construction of real GW-theory
in [12].

Let (X,w, ®) be a real symplectic 2n-manifold, g,1€Z>°, B Ho(X;7Z),
JeJg, and

[u] = [u, (2,210 )s o, (z;”,zl_),j] € ﬁg,l(X,B;J)‘;S.
Denote by >, the domain of u. If

C=(Su, (21, 20) -, (5, 20)00)
is a stable curve, then the forgetful morphism (2.2)) induces an isomorphism

(26) AR (T Dyu(X, B J)*7) ~ (det Dirx.agyu) @ Ag” (Tl Mg,) -

Orientations on the two lines on the right-hand side of thus determine
an orientation on the left-hand side of . If (X,w, @) is real-orientable
and n is odd, as in the cases relevant to the present paper, the index of
D (7x 4¢);u 1s odd if and only if g€2Z. The induced orientation on the left-
hand side of then depends on the specified order of the factors on the

right-hand side of (2.6)).
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2.3. Real orientations and relative determinants

Let (X, ¢) be a topological space with an involution and (V, ¢) be a real bun-
dle pair over (X, ¢). An isomorphism © in determines orientations on
V¢ and V¥@2(L*)?". Given a real orientation on (V,¢) as in Deﬁnition
we will call these orientations the orientations determined by if © lies
in the chosen homotopy class. An isomorphism © in also induces an
isomorphism

27)  ALP(Ve2L*, p@20") = ALY (V,¢) ® (L, 6")*?
~ (L, $)*? @ (L*,¢*)¥? ~ (ExC, 0 xc),

where the last isomorphism is the canonical pairing. We will call the homo-
topy class of isomorphisms (2.7) induced by the isomorphisms © in |[(RO2)
the homotopy class determined by [(RO2)]

Proposition 2.2 ([14), Proposition 7.3]). Suppose (¥,0) is a symmetric
surface, possibly disconnected and nodal, and (V,p) is a rank n real bundle
pair over (X, 0). A real orientation on (V,¢) as in Definition|1.1] determines
a homotopy class of isomorphisms

(2.8) U (Vo2L*, p@2¢%) ~ (ExC" 2, o x¢)

of real bundle pairs over (X,0). An isomorphism ¥ belongs to this homotopy
class if and only if the restriction of W to the real locus induces the chosen

spin structure |[(RO3) and the isomorphism

(2.9)  ARPT:ARP (V2L p@2¢") — ARP(SxC™2 o x¢)
= (ExC, o xc)

lies in the homotopy class determined by |(RO2).

The only cases of this proposition relevant to [12] are for ¥ smooth and
with one real node; the only cases relevant to Theorem are for ¥ smooth
and with one pair of conjugate nodes. The proof of [I2, Proposition 5.2]
establishes Proposition under the assumption that ¥ is connected and
smooth, but it applies without the first restriction. The proof of [12], Proposi-
tion 6.2] extends [12], Proposition 5.2] to one-nodal symmetric surfaces. The
analogue of this extension for symmetric surfaces with one pair of conjugate
nodes is carried out in the proof of Lemma of the present paper. The
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principles behind the two extensions are used in [14] to establish the full
statement of Proposition

Corollary 2.3. Suppose (¥,0) is a symmetric surface, possibly discon-
nected and nodal, and D is a real CR-operator on a rank n real bundle pair
(V,) over (£,0). Then a real orientation on (V,p) as in Definition
induces an orientation on the relative determinant det D of D.

For ¥ smooth or one-nodal, this corollary is deduced from the corre-
sponding cases of Proposition in the proofs of [I2, Corollary 5.7] and
[12, Corollary 6.6], respectively. The proof of the latter readily extends to
all symmetric surfaces (X, 0).

Corollary[2.3]implies that a real orientation on a real symplectic manifold
(X,w, ¢) determines an orientation on the line

(2.10) CTG;C D(TX,qu);u = (det D(TX,d(b);u) (=) (det 5([:|Eu)®n .

By [12} Corollary 6.7] and Corollary [4.6] this orientation varies continuously
with [u].

Corollary 2.4. Suppose Q],U) is a symmetric surface, possibly discon-
nected and nodal, and (L,¢)— (X,0) is a rank 1 real bundle pair. If the
line bundle L® — X7 is orientable, there exists a canonical homotopy class
of isomorphisms

(2.11) (L®2@2L*, 62 @26%) ~ (SxC3, 0 x¢)
of real bundle pairs over (X, 0).

As explained in the proof of [I2, Corollary 5.6], there is a canonical real
orientation on the real bundle (L, $)®? over (¥, o) if L? — X7 is orientable.
In particular, there is a canonical homotopy class of isomorphisms

(T*2%?@2T%, (do*)®*®2do) ~ (ExC?, o x¢)

of real bundle pairs over (X,0) if ¥ contains no real nodes (of type (H2)
or (H3) in the terminology of [20, Section 3] and [12] Section 3.2]).

Let g,1 € Z=° be such that g+1>2 and (X, 0) be a smooth connected
symmetric surface of genus g. Combining the Kodaira-Spencer isomorphism,
Dolbeault Isomorphism, Serre Duality, and Corollaries and we find
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that the real line bundle
(2.12) ARP(TMS,)) ® (det dc) — M3,

is canonically oriented; see the proof of [12, Proposition 5.9]. If n ¢ 2Z and the
domain ¥, of u in (2.6) is smooth, the canonical orientation on and
an orientation on (2.10)) determine an orientation on the line which
varies continuously with u. Thus, a real orientation on a real symplectic
manifold (X,w,¢) determines orientations on the uncompactified moduli
spaces M, (X, B; J)?° of real J-holomorphic maps from (¥, o) to (X, ®).

By [12], Proposition 6.1], the canonical orientations of the real line bun-
dle extend across a codimension-one boundary stratum of Rﬂ%l if
and only if the parity of the number |o|y of connected components of the
fixed locus %7 of ¥ remains unchanged. By construction, the same is the
case of the orientations on M, (X, B;J )% induced by a real orientation
on (X,w,¢) if n¢2Z. In order to orient the compactified moduli spaces
M, (X, B; J)?, we multiply the orientation on M, (X, B; J)#° induced by
a real orientation on (X,w,¢) by (—1)9Fllo+t1 This does not change the
orientations whenever the fixed locus %7 of ¥ is separating.

3. Comparison of orientations

There are now standard ways of imposing orientations on the moduli spaces
M,.1(X, B; J)?7 for certain types of symmetric surfaces (¥, o). Theorems
and compare such orientations with the orientations constructed in [12]
and briefly described in Section

3.1. Canonical vs. complex

We continue with the notation and setup of Section In the setting of
Theorem each of the factors in and has a natural complex
orientation. By Lemma below, the orientations of the tensor product
in induced by a real orientation on (X,w,¢) and by the complex
orientations on the two factors are the same. By Lemma the canonical
orientation of the tensor product in and the orientation induced by
the complex orientations on the two factors differ by (—1)%+1+lsl,

The exponent of gg+1 above arises for the following reason. Let V be a
complex vector space of dimension k. The map

(3.1) Hom¢(V,C) — Homg(V,R), 6 — Re#,
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is then an isomorphism of real vector spaces. Its domain is a complex vector
space and thus has a canonical complex orientation; its image has an orien-
tation induced from the complex orientation of V. The isomorphism is
orientation-preserving with respect to these orientations if and only if & is
even. The only step in the proof of [12] Proposition 5.9] not compatible with
the natural complex orientations is taking the (real) dual in [12] (5.21)]. The
sign discrepancy of for the twists by the marked points is taken into
account earlier in the proof. The “remaining” vector space in [12 (5.21)]
has complex dimension 3gg—3 and accounts for the exponent of gp+1 in the
sign of Theorem

A rank n real bundle pair (V| ¢) over a doublet (X, 0) as in corre-
sponds to a complex vector bundle Vo — ¥y with

V=2ViuVa={1}xVou{2}xVo, o(i,z) = (3—i,v) V (i,v) €V,

where V denotes Vj with the opposite complex structure. With these iden-
tifications,

L V)? CcT(E; V) @ T(X2; Va),
F?’l(z; V)Y C F?’l(zl; Vi) & F(i’jl(EQ; Va),

and the projections
(3.2) [(%;V)? — T (Se; Vo) and  TPH(S5 V)% € I (303 Vo)

to the first component are isomorphisms of real vector spaces. Via these pro-
jections, every real CR-operator D on the real bundle pair (V, ¢) corresponds
to an operator

Do: T(S0; Vo) — T (Z0; Vo) -

The projections (3.2)) induce isomorphisms between the kernels and cokernels
of D and Dy and thus an isomorphism

(3.3) det D ~ det Dy .

Since Dy is a real linear CR-operator on Vj in the sense of [22 Defini-
tion C.1.5], det Dy has a canonical “complex” orientation obtained by ho-
motoping Dy to a C-linear Fredholm operator; see [22), Section 3.2]. We will
call the orientation on det D induced from this orientation via the isomor-
phism the complex orientation of det D.
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Lemma 3.1. Let (X,0), (V,¢), and D be as above. The orientations of the
relative determinant det D of D induced by a real orientation on (V,¢) as
in Corollary[2.3 and by the complex orientations on the two factors are the
same.

Proof. The homotopy class of isomorphisms as in (2.8)) determined by a real
orientation on (V, ¢) determines an orientation on the line

)®(n+2)

(3.4) (det D det Os.c

(V@2L*,¢@2$*)) ® (
= n+2
~ (det(D iy gare pang))o) © (det (Ds,c) ) "

Any isomorphism ¥ in (2.8) corresponds to an isomorphism
Wo: Vop@2Li —» Nox CH2

of complex vector bundles over Yy by the restriction to 31 CX. The isomor-
phism in is orientation-preserving with respect to the orientation on the
left-hand side induced by ¥ and the orientation on the right-hand side in-
duced by ¥q. Since U is a C-linear isomorphism, the operator on g x C"*2
induced by (D(V@Q L*,w@2¢~5*))0 via Wy is a real linear CR-operator. Since any
two such operators are homotopic, the orientation on the last factor in
induced from the complex orientation of the third factor in is the com-
plex orientation. Thus, the orientation on the left-hand side of induced
by a real orientation on (V,¢) is the orientation induced by the complex
orientations on the two factors.
By , there are horizontal canonical isomorphisms

(3.5)

det D £4

(det Dy ) @ (det D, 5.,)

(V@2L* 0®28*) (L*,6")

B3) lz B3) iz

( 2
det (D(V®2L*,¢®2$*))0 ~ (det (D(Vm))o) ® (det (D(L*,QZ*))O)®

Q

N
=

making the diagram commute. Thus, the top isomorphism in is orien-
tation-preserving with respect to the complex orientations on the three de-
terminants. The orientation of det D induced by a real orientation on (V, ¢)
as in Corollary is obtained by combining

(1) the orientation on LHS of (3.4) induced by,
(2) the top isomorphism in (3.5, and
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(3) the canonical orientations of (det D )®2 and (det 52;C)®2.

(L*,¢%)
By the last sentence of the previous paragraph and the sentence after (3.5),

this is the orientation induced by the complex orientations on the two factors.
O

For g€Z and 1€ Z=° with g+1>2, we denote by
RM;,; D RM?,

the Deligne-Mumford moduli space of possibly disconnected stable nodal
symmetric surfaces of Euler characteristic 2(1—g) with [ pairs of conjugate
marked points and its subspace consisting of smooth curves. If g, 1€ Z=9
with 2go+1>3 and (£,0) is a go-doublet as in (L.7), let

id,
Ejgofl,l = 9Jtiz]()fl,l(ptv 0)1 7 C IR'/\/Ggofl,l .
For each s C{1,...,1}, let
id,
Mggo—l,l;s = s):n;go—l,l(pta 0)15 7C Mggg—l,l

be the open subspace consisting of marked curves so that the second point
in the i-th conjugate pair lies on ¥ if and only if i €s. In particular,

(36) Mggo—Ll;s - Mg07l XMQOJ )

where M, ; is the usual Deligne-Mumford moduli space of smooth genus go
curves with | marked points. The projection

(37) ggo—l,l;s — Mgml

to the first factor in is a diffeomorphism. The moduli space on the
right-hand side of carries a natural complex orientation. We will call
the orientation on the left-hand side of induced by this orientation the
complex orientation of MJ, ;.

Lemma 3.2. Let go,1€Z>° with 2go+1>3 and (X, 0) be a go-doublet. The
canonical orientation on the real line bundle

(3'8) Alt&f)p (TMggo—l,l;s) ® (det 5@) — Mggo—l,l;s

constructed as in the proof of [12, Proposition 5.9] and the orientation in-
duced by the complex orientations of the factors differ by (—1)9"“*'5'.
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Proof. Since the interchange of the points within a conjugate pair reverses
the canonical orientation of (3.8]), it is sufficient to establish the claim for
s=(). Let

[CO] = [207 Zii_v s 7z[+>j] € Mgo,l and
[C] = [E, (zf,zl_), . (z;r,zl_),ju(—j)] € Mggo_ljl.

Similarly to the proof of [12, Proposition 5.9], we define

TCo=T%o(—2 —-—7"),
T*CO*T*EO(,Z;L ---—i—zf),
TC = TZ(—Z1 zl_—~~—zl+—zl_),

T C=T*S(2f + 27 +-+2 +2).

Denote by SCy the skyscraper sheaf over ¥y and by SC*, SC~, and SC the
skyscraper sheaves over X given by

SCy = T*20’2f+-~~+z,+7 SCt = T*E‘zf—&-m—&-zf’
SCT=T*%| ... . SC=SCt@sc .

The projection

(3.9) m: HY(2;8C)7 = (HY(E; SCT)eH (2, 5C7))7

— H(%;SCT) = H(Z0; SCo)
is an isomorphism of real vector spaces. In the proof of [12] Proposition 5.9],
we orient the domain of this isomorphism and its dual, i.e. the space of
homomorphisms into R, via the isomorphism

m s HO(S8CH) =T, 8@- 0T, % — (H°(%;5€)7)"
from the complex orientations of Tzf27 cee TZL+E. Thus, the isomorphism
(3.10) Homc (H°(20; 5Co), C) ~ HO(X; SCH)* — (HO(E SC)7)*
is orientation-preserving with respect to the complex orientation on the left-

hand side and the orientation in the proof of [I2, Proposition 5.9] on the
right-hand side.
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The Kodaira-Spencer map, Dolbeault isomorphism, and Serre Duality
for [Cle M3, _;asin [12] (5.20),(5.21)] and [Co] € My, ; form a commutative
diagram

TiepM$,, 1 —o= HY(STC)7 —2= HY(S;1C) — 22— (HO(S; T*CoT*%)")"

Ticg Moot —=> H(S0; TCo) —2> H'(S0; TCo) —2> Home (HO(So; T*Co@T* %), C)
with the vertical arrows given by the restrictions to ¥; =%¢. Since the iso-

morphisms in the bottom row of the above diagram are C-linear, the natural
isomorphism

(3.11)  AFP(TigM$,, 1) @ AP ((H(S; T*CeT*%)7)")
~ AP (Tie, Mgot) @ Ay (Home (HO(Zo; T*Co@T* %), C))
is orientation-preserving with respect to the orientation on the left-hand side
in the proof of [12, Proposition 5.9] and the orientation on the right-hand
side induced by the complex orientations on the factors.
Since 2go+1>3,
(3.12) HY (S0; T*Co@T*Yg) = 0,
dime H°(X0; T*Co®T*%0) = 3g0—3 + 1.

The short exact sequence of sheaves [12, (5.22)] over ¥ and its analogue
over Yo induce a commutative diagram of exact sequences

HO(S: T*S@T*)" — HO(S; T*CRT*S)” —= HO(S; SC)7 —= HL(%; T*ST*%)°

HO(Z0; T*SoRT*%g) —= HO(S0; T*Co@T*Xo) — HO(Xo; SCo) — HY (Zo; T*To@T*%0),
where we omit the zero vector spaces on the ends of the two rows. Since

the isomorphisms in the bottom row of the above diagram are C-linear, the
natural isomorphism

ARP(HO(S; T*CRT*E)7) @ det pex aoyer @ Ay (HO(Zo; SC)7)
~ AP (H(0; T*Co@T*%0),C) @ det(D(7-5,d0+)92) g @ AP (H°(Z0; SCo))
is orientation-preserving with respect to the orientation on the left-hand side

in the proof of [12, Proposition 5.9] and the orientation on the right-hand
side induced by the complex orientations on the factors.
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By the choice of the orientation on H?(Xy; SC)?, the isomorphism 7}
in is orientation-preserving with respect to the complex orientation
on its domain. Since the complex dimension of the last vector space is [, it
follows that the sign of the vertical isomorphism m; in the last commutative
diagram is (—1)". Thus, the sign of the natural isomorphism

(3.13) ARP(HO(S; T*CRTS)7) @ det (p-x do-)e?
~ Aﬁgop (HO(E(L T*CO@T*EO), (C) X det (5(T*27da*)®2)0

with respect to the orientation on the left-hand side in the proof of [12]
Proposition 5.9] and the orientation on the right-hand side induced by the
complex orientations on the factors is (—1)".

By Lemma the natural isomorphism

(314) det 5(T*E,do*)®2 ® det 52;@ =~ det (5(T*E,d0*)®2)0 ® det (52;@)0

is orientation-preserving with respect to the orientation on the left-hand
side induced by a real orientation on (7*%,do*)®? and the orientation on
the right-hand side induced by the complex orientations on the factors. The
canonical orientation on the real line bundle is obtained by combining

the canonical orientations of the left-hand sides of (3.11)), (3.13)), and (3.14])).
By the second statement in (3.12]), the sign of the canonical isomorphism

ARP((HY(S;T*CoT*%)7)") @ ARP (HO(S; T*CoT*S)7)
~ AP (Home (H(Z0; T*Co®T*%0), C)) @ AP (H(Zo; T*Co@T*S0))

with respect to the canonical orientation on the left-hand side and the orien-
tation on the right-hand side induced by the complex orientations on the fac-
tors is (—1)3973+!, Combining this with the sign of the isomorphism ,
we obtain the claim. O

Proof of Theorem Throughout this argument, we will refer to the
orientation on the moduli space 9)?590_17Z(X ,B;J )¢ determined by a fixed
real orientation on (X,w,¢) as the canonical orientation. Since the canoni-
cal orientation is compatible with orienting the fibers of the forgetful mor-
phism by the first point in the last conjugate pair, we can assume that
2go+1>3. Let [u] be an element of M3, (X, B; D27 [ug] be its image
under , and [Cle MG, ;. and [Co] € My, be their images under the
forgetful morphisms to the corresponding Deligne-Mumford moduli spaces.
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The canonical orientation of the tangent space at [u] is obtained from
the canonical isomorphism

(3.15) AP (Tig 3,1 (X, B 1)?) @ (det ds,e) “
I~ ((det D(TX,d¢) |u) X (det 52;@)(8”)
& <Af§p (T[c}MggO,Ll;s) X (det 52;@))

determined by the forgetful morphism and the canonical orientation of
(det 52;@@(”“) for n ¢ 27. The orientation of the first tensor product on the
right-hand side of is determined by the real orientation on (X, w, ¢)
as in Corollary The orientation of the last tensor product on the right-
hand side of is the canonical orientation of [12, Proposition 5.9]. The
standard complex orientation of the tangent space at [ug] is obtained from
the canonical isomorphism

(3.16) AP (T Mgy (X, Bos ) © (det (D) ) "

~ <(det(D<Tx,d¢)|u)o)® (det (52;C)o)®n)
® A" (Tie, Mgoa) @ (det(dgic),)

determined by the forgetful morphism to the Deligne-Mumford space and
the standard complex orientation of det(dc|s, )o. The orientations of all four
factors on the right-hand side of are the standard complex orienta-
tions.

The restriction to X1 =3¢ intertwines the isomorphisms and
and respects the four factors on the right-hand sides. By Lemma [3.1] the
isomorphism between the first pairs of factors on the right-hand sides is
orientation-preserving. By Lemma [3.2] the sign of the isomorphism between
the last pairs of factors is (—1)9%+1+lsl. This establishes the claim. 0O

3.2. Canonical vs. spin and relative spin

We establish Theorem [I.4]and similar statements by relating the orientations
arising from Corollary [2.3]to the orienting procedure for the determinants of
Fredholm operators over oriented symmetric half-surfaces described in [10].

An oriented symmetric half-surface (or simply oriented sh-surface) is a
pair (X% ¢) consisting of an oriented bordered smooth surface X° and an
involution c: 9% — OX.? preserving each component and the orientation
of 0%°. The restriction of ¢ to a boundary component (9%°); is either the
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identity or the antipodal map
a: St — St 2 — —2,

for a suitable identification of (9%°); with S* C C; the latter type of bound-
ary structure is called crosscap in the string theory literature. We denote by

o5l 95t c 9xb ¢ 2P

the unions of the standard boundary components of (£%, ¢) and of the cross-
caps, respectively. If 8{217 =0, (£°, ¢) is a bordered surface in the usual sense.
An oriented sh-surface (X°, ¢) doubles to a symmetric surface (X, o) so that
o restricts to ¢ on the cutting circles (the boundary of ¥.%); see [10, (1.6)]. In
particular, zazagzb. Since this doubling construction covers all topologi-
cal types of orientation-reversing involutions ¢ on 3, for every symmetric
surface (X, o) there is an oriented sh-surface (X, ¢) which doubles to (2, o).

A real bundle pair (V?,¢) over an oriented sh-surface (X°,c) consists of
a complex vector bundle V? — % with a conjugation ¢ on V?|sys lifting c.
Via the doubling construction after [I0, Remark 3.4], such a pair (V' ¢)
corresponds to a real bundle pair (V, ¢) over the associated symmetric sur-
face (3,0) so that V®=V|s» and ¢ is the restriction of ¢ to V®|gss. In
particular,

Ve = (V) Vg =V

aexb

is a totally real subbundle.

By [5, Lemma 2.4], the homotopy classes of trivializations of the real
bundle pair (V,¢) over 9¢X correspond to the homotopy classes of triv-
falizations of its top exterior power AZP(V, ). If (L,¢) is a rank 1 real
bundle pair over (,0), the real bundle pair 2(L, ¢) has a canonical homo-
topy class of trivializations over 9§%: see the proof of [5, Theorem 1.3].
Thus, a homotopy class of trivializations of (V) over 0% corresponds to
a homotopy of trivializations of (V,¢)®2(L, ¢). Furthermore, a homotopy
class of isomorphisms of real bundle pairs as in determines a homotopy
class of trivializations of the restriction of (V, ) to 9{XP. It also induces an
orientation on the real vector bundle V¥ —>882b.

If the real vector bundle V¥ — 882” is oriented, a relative spin structure
on V¥ consists of an oriented vector bundle L — 3 and a homotopy class
of trivializations of the oriented vector bundle

(3.17) VoL

gy — 882b =Y.
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Since every oriented vector bundle over ¥.? is trivializable, the vector bundle
L|s» — X admits a trivialization \Il%. Along with a trivialization of ,
the restriction of W% to L gexe induces a trivialization of V¥. If 9{X°=0
and the rank n of V is at least 3, the homotopy classes of the trivializations
of V¥ induced by two trivializations of L|y» differ on an even number of
components of 832” =0x?.

A real CR-operator on a real bundle pair (V? &) over an oriented sh-
surface (X?, ¢) is a linear map of the form

D' =9"+A:T(2 V) = {€el (2% VP): oc=Collgsn }
— TR E V) =D (% (17, 0) M e V),

where 0° is the holomorphic 0-operator for some complex structure j® on X°
and holomorphic structure in V? and

A e T(2b Homp (VP (175,19 @ V?))

is a zeroth-order deformation term. By [I0, Corollary 3.3], j® doubles to
some j€ Jy if and only if ¢ is real-analytic with respect to i. In such a
case, DY is Fredholm in appropriate completions and corresponds to a real
CR-operator D on the associated real bundle pair (V, ¢) over (X, 0); see [10,
Proposition 3.6]. In particular, there is a canonical isomorphism

(3.18) det D = (det D) ® (det J5,c) "
~ (det D*) @ (det 8.0)*" = det DY,

where n=rkcV, 52;@ is the standard real CR-operator on the trivial real
bundle pair (X xC,oxc) over (3,0) as in Example and ég;czézb;c
is the standard real CR-operator on the relative bundle pair (£°xC,cxc)
over (X°,¢).

An orientation on the right-hand side of thus determines an orien-
tation on the left-hand side of (3.18). By the proofs of [20, Lemma 6.37] and
[10, Theorem 1.1], an orientation on the former is determined by a collection
consisting of

(OC1) a homotopy class of trivializations of V¥ over 95%?;

(OC2) a homotopy class of trivializations of the real bundle pair (V)
over 8{2#’ .
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If n>3, changing the homotopy class in within its orientation class
over precisely one topological component of 682b changes the induced ori-
entation on the right-hand side of . Changing the homotopy class
in class over precisely one topological component of BfEb also changes
the induced orientation on the right-hand side of .

Let (L,¢) be a rank 1 real bundle pair over (X,0) and Dy be a real
CR-operator on (L, ¢). By the sentence above containing [(OC1)|and [(OC2)|

applied with V replaced by V@®2L, an orientation on

(3.19) (det(D*@ DY) ® (det )"+
~ (det Db) ® (det 5g;(c) ) (det Di’:) % (det 5%;((:) 2

is determined by a trivialization ¢y gor of the real vector bundle V‘P@2[L¢
over 9% and a trivialization Vygar, Of the real bundle pair (V@2L, p®2¢)
over 9§30, Since the last two factors in are canonically oriented, ¥y gor,
and 97,4, thus determine an orientation on the right-hand side of .
We will call it the stabilization orientation induced by Yygor and ¥4,
omitting 1, .y, if O’ =0 and Yy gy if 95X =0.

Via with L* replaced by L, ¥ygor also induces a trivialization
of . If afEb: (), Yy aor thus determines a relative spin structure on V%,
and another orientation on the right-hand side of . We will call the
latter the associated relative spin (or simply ARS) orientation. If L? — %7 is
orientable (but 9¢%° is not necessarily empty), then

e Yy gor and the canonical homotopy class of trivializations of 2L¢~’ deter-
mine a homotopy class of trivializations of V¥ over 88217, and

® U}, g9 and the canonical homotopy class of trivializations of 2(L, ¢) de-
termine a homotopy class of trivializations of (V, ) over 9{%°.

Thus, Yygar and w{,@ ;, determine another orientation on the right-hand
side of in this case; we will call it the associated spin (or simply AS)
orientation. Lemmas (3.3 and Corollary below compare these three
orientations on the right-hand side of .

In the case of the involutions

Pl —P, 2—1/z, and n:P' — P, 22— —1/z,

we can take ¥.? to be the unit disk around the origin in C CP'. This will be
our default choice in these settings.
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Lemma 3.3. With notation as above, suppose (X,0)= (P!, 7). If L8
is orientable, the stabilization and AS orientations on the right-hand side
of induced by a trivialization ¥y eer, of V¥®2L? are the same.

Proof. Fix a trivialization ¢y, : L? — ST xR; the canonical homotopy class
of trivializations of 2L? is the class containing 2¢. A trivialization vy
of V¥ lies in the associated homotopy class of trivializations of V¥ if and
only if Yy gor, and ¢y @29y lie in the same homotopy class of trivializations
of V¥@®2L?. In this case, the natural isomorphism 1.' is orientation-
preserving with respect to the orientation on the left-hand side induced
by v e2r, and the orientations on

(3.20) (det D) @ (det 9%.¢) “" and ((det D% ) (det 5%(;))@2

induced by vy and v, respectively. Since the last orientation is the same
as the orientation induced by the canonical orientations of (det D%)®2 and
(det 5%;(:)@27 the stabilization orientation on the first tensor product in
induced by vYygor, and the AS orientation (i.e. the orientation induced
by 1y ) are the same. O

Lemma 3.4. With notation as above, suppose (¥,0)= (P, 7). If L — S*
18 omentable the stabilization and ARS orientations on the right-hand side
of (3 induced by a trivialization Yy gar of V‘pEBQL‘b are the same if and
only zf deg Le4Z.

Proof. Let d=deg L. By [I, Proposition 4.1], we can assume that (L, ) is
the holomorphic line Op:(d) with the standard lift of 7. Since L? — S! is
orientable, d € 2Z. By [22, Theorem C.3.6], there exists a trivialization ¥4
of L|s» so that

(3.21) wh (L‘g) = {(eie,aeide/z): efest a€R} C Stxc.
Let 11, be the trivialization of Le given by
wL({\P%}_l(eie,aeide/z)) = (e, a) € S'xR.

The trivialization 1112 of L|gs» induced by 21, via 1) with L* replaced
by L is then described by

(3.22) U9 L|gsr — ST xC,
\I/‘z({\I/%}*l(ew,c)) = (eio,ce*idG/Q) v (eia,c) € S'xC.
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Thus, the homotopy classes of U2 and WY | g5 differ by d/2 times a generator
of m(SO(2)) = Z.

Let 1y and 1y, be trivializations of V¥ so that 1y ©2¢ and Y, WY |gse
lie in the same homotopy class of trivializations of VP@®2L? as ¥y gar. By
Lemma the stabilization orientation on the right-hand side of
induced by 9y gar, is the orientation induced by vy as in the proof of [7,
Theorem 8.1.1]. By definition, the ARS orientation on the right-hand side
of induced by 1vegar is the orientation induced by {,. By , vy
and 1)y, are homotopic (and thus the two induced orientations are the same)
if and only if d/2€27Z. O

Let (2,0)= (P!, 7) and deg L=1. Similarly to the proof of Lemma
[T, Proposition 4.1] and [22, Theorem C.3.6] imply that there exists a trivial-
ization \II% of L|sw» so that 1D holds with d=1. Let 1)y be the trivialization

of 2L? given by

(3.23) o ({W4 11 (e, are'/?),
{‘y%}—l(eiQ,aQeiﬁﬂ)) — (eiQ’ (a1+ia2)ew/2) e SlxC

for all a1, a9 €R.

Proposition 3.5. The orientation on det D}, =(det D4 )®? induced by the
trivialization 1y as in the proof of [1, Theorem 8.1.1] agrees with the canon-
ical square orientation.

We give three proofs. In the first one, we write out the real holomorphic
sections and the relevant trivializations explicitly. In the second proof, we
use the comparisons of different orientations on the moduli spaces of real
lines obtained in [5]. The last argument deduces the claim directly from the
fixed-edge equivariant contribution determined in [5]. In all three arguments,
we take Dy, to be the standard d-operator in Op:(1).

Proof 1. Let P =P!—{1}. The holomorphic map
h: B={teC: |t|<1} — P!, t—e",

is injective and intertwines the standard conjugation on B with 7 on P*. We
can assume that

L= (h(B)xCUP{xC)/~, (h(t),tc) ~ (h(t),c) ¥ (t,c)€(B—-0)xC,

o([t,d) = [t.¢] V (¢t,c)e BxC, 5([2’,6]) = [r(2),¢] V (2,c) eP, xC.
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The space of real holomorphic sections of L is then generated by the sec-
tions s; and so described by

1—|—z

PL.
1 ~ vV zeP,

si(z]) =1, s2([2]) =

The canonical orientation for det Dg 1, is then determined by the basis
s11 = (51,0), s12 = (52,0), s21 =(0,51), s22 = (0,52),

for the kernel of the surjective operator Dg L
We define a trivialization \IlbL of L over the unit disk ¥? around z=0 in
CcCP! by

Y ([h(t),d]) = (e, %< t_lc) VY (t,c) € BxC,

\I/%([Z, ) = (2,2i(z—1)c)  V (2,¢)€ (Pe—{o0}) xC

This trivialization satisfies 1) with d=1. The trivialization g of 2L®
over S extends to the trivialization

Py QL‘P1,{07OO} — (]P’l—{O, OO}) X (CZ,
o ([z,c1], [z, c2)) = (z,1(2—2_1)61—2_1(1—2)202,
2_1(1—2)201+i(z—z_1)02).

This trivialization intertwines 2(5 with the standard lift of 7[p1_{9 0} to a
conjugation on the trivial bundle (P —{0,c0})x C2.
We note that

{Wos11}(2) = (12 71(1—2)2),
{\Ifoslg}(z) (z 1+z 1(1—,22)),
{\1'0521}(2) = ( 27 H1=2) 1271(22—1)),
{Wosaa}(2) = (=i _1 (122 1(1—|—z)2).

The orientation on det DS ;, induced by the trivialization g is obtained from
the isomorphism

ker D5; — RGER @ {Res.—o(Wof): ecker DSL},
& — ({0} (1), Res.=o(Woé)).
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The last space above is a complex subspace of C?. Under this isomorphism,
the basis s11, S12, S21, S22 is sent to

(0,0;—-1,1), (4,0;1,i), (0,0;—1,—i), (0,4;—i,1).
Thus, an oriented basis for the target of the above isomorphism is given by
(4,0;0,0), (0,4;0,0), (0,0;—i,1), (0,0;1,1).

The change of basis matrix from the first basis to this one is given by

O R OO
— O O =

o O O
O = = O

The determinant of this matrix is +1. O
Proof 2. Define

m3: PP — PP, (21, 2o, Z3, Zs] — [Z2, 21,24, 23],
My (P = My (P, 1)77, D (PP) = My (PP, 1)™.

The inclusion ¢: P! — P3 as the first two coordinates induces an embedding
of My (P) into 9y (P?). Let

T[L,O}S)ﬁl (P3)
Tj, 09 (P1)

and A/‘[L,O]f)ﬁ =

denote the normal bundle of P! in P2 at [1,0,0,0] and the normal bundle of
M1 (PY) in 9y (P?) at ¢« with the positive marked point at z =0, respectively.
The former is a complex vector space and thus is canonically oriented. The
differential of the evaluation map ev; induces an isomorphism

(3.24) dpgevi: N g — Nyo)P.

By [0, Lemma 5.3], this isomorphism is orientation-reversing with respect to
the algebraic orientations on 9ty (P!) in 9913 (P3) defined in [5, Section 5.2].
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Since the normal bundle of (P!, 7) in (P3,73) is isomorphic to 2(L, @),
the composition

ker D3 — T, o9 (P?) — N[, )2
is an isomorphism. Combining it with , we obtain an isomorphism
(3.25) ker D, — N, g — NP
Since the canonical orientation on det Dg 1, is obtained from the isomorphism
ker D5, — 2Lg, & — £(0),

and the complex orientation on Ly, the isomorphism (3.25)) is orientation-
preserving with respect to the canonical orientation on the left-hand side.
The real vector bundle

(3.26) AL® 5 S'=RP! c P!

carries a canonical spin structure; see [5, Section 5.5]. Along with Euler’s se-
quence for P3, it determines an orientation on 9t (P?); we will call it the spin
orientation. It agrees with the orientation induced by the trivialization 2
over S'. Along with Euler’s sequence for P! and the relative spin orient-
ing procedure of [7, Theorem 8.1.1], the canonical spin structure on
determines an orientation on 901 (P!); we will call it the relative spin orien-
tation. Along with the spin orientation on 903 (P3), it induces an orientation
on N[L,O}sm; we will call it the spin orientation. Since ¥y extends over the
disk X*CP!, the first isomorphism in is orientation-preserving with
respect to the orientation on the left-hand side induced by ¢y and the spin
orientation on N, g90.

As summarized in the paragraph above [B, Remark 6.9], the algebraic
orientations on 901 (P!) and M1 (P3) are the same as the relative spin orien-
tation and the opposite of the spin orientation, respectively. Therefore, the
spin orientation on /\f[ho]ﬂﬁ is the opposite of the algebraic orientation. Since
the second isomorphism in is orientation-reversing with respect to the
latter, it follows that the composite isomorphism in is orientation-
preserving with respect to the orientation on the left-hand side induced
by 1. Since this is also the case with respect to the canonical orientation
on the left-hand side, these two orientations on ker Dlz’ 1, agree. O

Proof 8. Under a change of coordinate on 2(L, qg) which is homotopic to
the identity, the trivialization v is equivalent to the trivialization [5], (6.13)].
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By [5, Section 6.4], there are natural S'-actions on (P!, 7) and 2(L, @) so that
the evaluation isomorphism

€var.o

(3.27) kerDQL — 2Ly, & — £(0),

is Sl-equivariant. By the dy=1, i €27 case of [5, (6.21)], the S!-equivariant
Euler class of ker DgL with respect to the orientation induced by g is
given by

e(ker DgL) = _()\i_)\j) ( — >\i_>\j) = ()\z_)\]) ()\1—|—)\]) = e(2L|0) .
This establishes the claim. O

Corollary 3.6. With notation as above, let (X, 0)= (P!, 7). If LY — S* is
not omentable the stabilization and ARS orientations on the right-hand side
of (3 induced by a trivialization Yy gy, of V“"@2L¢ are the same if and
only zf deg L—1€47.

Proof. Let d=deg L. Since L% — S is not orientable, d¢2Z. Similarly to
the proof of Lemma [3.4] [Il Proposition 4.1] and [22, Theorem C.3.6] imply
that there exists a trivialization \IlbL of L|sp» so that 1' holds. Let 191, be

the trivialization of 2L? given by

@Z)QL({\I/b }—1( i0 id0/2) {\I/b }—1( i0 .a eld9/2))
_¢0(( .a e19/2) ( .a 610/2)) c SlxC.

The trivialization \Il% of L|pse induced by 1oy, via (1.11)) with L* replaced
by L is then described by

(3.28) U9 Llgsy — ST xC,
\1!2({\1/%}_1(619,0)) = (ew,ce_i(d_l)eﬂ) v (eie,c) € S'xC.

Thus, the homotopy classes of U9 and ¥4 |55, differ by (d—1)/2 times a
generator of m(SO(2))~Z.

Let 1y and 1, be trivializations of V¥ so that 1y @1)ar, and Y, eWY |5
lie in the same homotopy class of trivializations of VP @®2L? as ¥y gar. By
Proposition the stabilization orientation on the right-hand side of
induced by ¥vygor via the isomorphism is the orientation induced
by 1y as in the proof of [7, Theorem 8.1.1|. By definition, the ARS orien-
tation on the right-hand side of induced by ¥y g2y, is the orientation
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induced by v¥{,. By (3.28), ¢ and 1, are homotopic (and thus the two
induced orientations are the same) if and only if (d—1)/2 € 2Z. O

Lemma 3.7. With notation as above, suppose (Z,0)=(P',n). The stabi-
lization and AS orientations on the right-hand side of nduced by a
trivialization Yy, gop of (V@2L, p®2¢) are the same.

Proof. Fix a trivialization ¢}, of (L, gg) over (S, a); the canonical homotopy
class of trivializations of 2(L, ¢) is the class containing 2¢}. A trivializa-
tion ¢{, of (V) over (S',a) lies in the associated homotopy class of triv-
ializations of (V,¢) over (S',a) if and only if ¢{,5,, and ¥{ ®2¢} lie in
the same homotopy class of trivializations of (V@®2L, @@2&) over (S!, a).
In this case, the natural isomorphism is orientation-preserving with
respect to the orientation on the left-hand side induced by vy, and the
orientations on induced by 9, and 1}, respectively. Since the last
orientation is the same as the orientation induced by the canonical orienta-
tions of (det D%)®2 and (det 0%)®2, the stabilization orientation on the first
tensor product in 1D induced by iﬁ/@z ;, and the AS orientation (i.e. the
orientation induced by 1)y,) are the same. O

Corollary 3.8. Let (X°,¢), (3,0), (V,¢), (L,$), D, and D® be as above
Lemma[Z.3.

(1) If 520 =0 and (0X°)1,. .., (0%)m are the components of 95X =0%?,
then the stabilization and ARS orientations on the right-hand side of
induced by a trivialization of V¥ ®2L? are the same if and only if

deg L — |{i=1,...,m: wi(L?)|gxm), #0}| € 4Z.
(2) If L‘Eﬂﬁgﬂb is orientable, then the stabilization and AS orientations

on the right-hand side of induced by a trivialization of Ve@2Le
and a trivialization of (V&2L, p&2¢)

gex are the same.

Proof. For each 1=1,...,m, let

ey = 10 oLz, =0,
' 1, if wi(L?)|amm), 20

As in the proofs of [20, Lemma 6.37] and [10, Theorem 1.1], we pinch off
a circle near each boundary component (9X); to form a closed surface ¥/
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with m disks Bj, ..., B,, attached. We deform the bundles V' and L to bun-
dles Vp and Lo over the resulting nodal surface ¥y so that deg Lo|s =0.
Thus, a trivialization of Lg|gs» that extends over each disk extends over X.
The two determinants on the right-hand side of are canonically iso-
morphic to the determinants of the induced real linear CR~operators Dy and
do on Vy and Yo x C, respectively. An orientation on (det Do)® (det 9p)®™ is
determined by orientations of the analogous tensor products over ¥y and
the m disks. The former have canonical complex orientations. If 9§%° =),
the stabilization and ARS orientations of the tensor products of the deter-
minant lines over B; induced by a trivialization of V¥@®2L? are the same if
and only if

(3.29) deg LO’Bi — €i(L) € 47

see Lemma and Corollary Summing up (3.29) over i=1,...,m, we
obtain the first claim. The second claim follows similarly from Lemmas 3.3
and O

Proof of Theorem Since the fibers of the forgetful morphism
are canonically oriented, it is sufficient to establish the claims for [=2. In this
case, the moduli space is oriented via the canonical isomorphism with
(9.1)=(0,2) and o =7. By the paragraph above Theorem [1.4] the orientation
of the last factor in is the same in all three approaches to orienting
the moduli space. The orientations of the first factor on the right-hand side
of are compared by Corollary with L replaced by L*. Taking into
account that ¢ (TX)=2c;(L), we obtain Theorem O

Remark 3.9. It is not necessary to require that the rank n of the real
bundle pair (V, ) being stabilized be at least 3, since lower-rank real bundle
pairs can first be stabilized with the trivial rank 2 real bundle pair. The proof
of Theorem requires only the (3,0)=(P!,7) case of Corollary but
it is natural to formulate it for arbitrary symmetric surfaces (X, o).

Remark 3.10. Two real line bundles LY, L§ —Y are isomorphic if and
only if wy(L})=w(LY), provided Y is paracompact. In such a case, there
is a canonical homotopy class of isomorphisms between 2L and 2L5. If
VR —Y is an oriented vector bundle, a spin structure on VE@G2LY thus
corresponds to a spin structure on VE®2LE. The proofs of Proposition
and Corollaries 3.6/and |3.§(1)|imply that the stabilization orientation on the
right-hand side of ced by a spin structure on V?@2L? depends
only on wi(L?) and this spin structure, and not on (L, (E) itself.
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3.3. Some applications

We now make a number of explicit statements concerning orientations of
the determinants of real CR-operators on real bundle pairs over (P!, 7)
and (P!,n). The proofs of these statements, which are useful for compu-
tational purposes and are applied in [13], are in the spirit of Section

Let ~f — RP! denote the tautological line bundle. For f: RP* — GLiR,
define

U RP'XRY — RP'xRF by  Wy(z,0) = (2, f(2)v).

Denote by I, € O(k) the diagonal matrix with the first diagonal entry equal
to —1 and the remaining diagonal entries equal to 1.

Lemma 3.11. Let k,mecZ=°. If k>2, every automorphism U of the real
vector bundle
Vim = (RP'xRY) @ mhf — RP!

is homotopy equivalent to an automorphism of the form ¥ y@ld,, » for some
f:RP'—O(k); any two such maps f differ by an even multiple of a gener-
ator of 1 (SO(k)). If m>1, the automorphism W negating a vy component
is not homotopic to Wy®lId,, = for any constant map f. If m>2, the inter-
change U of two of the ¥§ components is not homotopic to Urdld,, & for
any constant map f.

Proof. Let I;:Ik, 2o €ERP! be any point, and

Auty (Vim) = {V€Aut(Vim): Vo, =1 &1,,5. }.

z0

Since O(k+m) has two connected components, one containing I ,j . and the
other I, it is sufficient to establish the first two claims of this lemma for
an automorphism ¥ e Auti[0 (Viem,)-

Since every line bundle over the interval =0, 1] is trivial,
(3.30) Aut (Vi) = {f€CI0(k+m)): £(0), fF()=T;,,,}-
The first claim thus follows from the map

T (O(k‘), I,:Ct) —m (O(k+m), Iki_i_m)

induced by the natural inclusion O(k) — O(k+m) being surjective for k> 2.
The second claim follows from the kernel of this map being the even multiples
of a generator of 71 (SO(k)).
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By rotating in the fibers of 2¢%, the interchange of the two components
of 247 can be homotoped to the automorphism negating the first component
and leaving the second component unchanged. Thus, the last claim of the
lemma follows from the third. It is sufficient to establish the latter for k> 1.

We first consider the (k,m)=(1,1) case of the third claim. Since every
line bundle over I is trivial,

Vii = (IxC)/~, (1,¢)~ (0,¢)V ceC.
With respect to this identification, the relevant automorphism WV is given by
U:Vig— Vi, Y([t.d) = [t ¢
For each s€R, define an automorphism V¥, of Vi ;1 by
e Vig — Vig, We(ft,d) = [t,em(1720sg].

The family (Vs)ep,1) is a homotopy from the automorphism ¥ of Vi ; to
the element of Aut, (V1) corresponding to the map

fi(1,0,1) — (0(2),I; , Iy), t—e 2™,

under the identification (3.30). Since f is a generator of m1(0(2), I, )~Z,
its image under the homomorphism

m(0(2),I; ) — m (O(k+m), I;,,,.)

induced by the natural inclusion O(2) — O(k+m) is non-trivial. This im-
plies the last claim. O

Let a€Z>°, (L, ¢) be a rank 1 degree 1+2a real bundle pair over (P!, 7),
and Dy, be a real CR-operator on (L, ¢). Fix a nonzero vector e € TyP'. The
homomorphism

eVL;O : ker DL — (1+a)L‘0’ eVL;O(g) = (5(0)7 vega ey v§a€)7

is then an isomorphism. It thus induces an orientation on det Dy, from the
complex orientation of L|p; we will call the former the complex orientation
of det D L- "

Let (Lo, o) be a rank 1 real bundle pair over (P, 7) of degree 1. If
(L1, ¢1) and (Lg, ¢2) are rank 1 real bundle pairs over (P!, 7) of odd degrees,
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the composition of the isomorphism g in (3.23) with the isomorphism
LY GLY ~ L e LY
induced by isomorphisms on each component determines an orientation on
det Dy, g1, ~ (det Dy, ) @ (det Dp,)

via the isomorphism with X2 being the unit disk around 0 € C. By the
third statement of Lemma changing the homotopy class of a compo-
nent isomorphism would change the orientation and the spin of the induced
trivialization and thus would have no effect on the induced orientation. This
is also implied by the next statement.

Corollary 3.12. Suppose ay,as €Z=°, (L1, 251) and (Lo, (Zg) are rank 1 real
bundle pairs over (P, 7) of degrees 1+2ay and 1+2ay, respectively, and Dy,
and Dy, are real CR-operators on (L, ¢1) and (L2, ¢2). The orientations on
det(Dp, ®Drp,) induced by the isomorphism 1y in and by the complex
orientations on det(Dy,) and det(Dy,) are the same.

Proof. The construction of the orientation on the determinant line induced
by a trivialization of the real part of the bundle in the proofs of [7, The-
orem 8.1.1] and [20, Lemma 6.37] commutes with the evaluations at the
interior points; these can be used to reduce the degree of the bundle. Thus,
it is sufficient to consider the case a1, as =0. The latter is Proposition [l

Suppose
331) 00— (V,0) — (Ve, 00) @ (Ver ) —> (£,) — 0

is an exact sequence of real bundle pairs over (P!, 7) such that Vi** — S*
is orientable of rank £>2 and

m m
ca@c @ 017¢cz and (L, ¢ @ za(bz

=1 =1

are direct sums of rank 1 real vector bundle pairs of odd positive degrees.
By Lemma the short exact sequence (3.31)) and a trivialization of V4"*
determine a homotopy class of trivializations of V¥ up to

(1) simultaneous flips of the orientation and the spin,

(2) composition with an even multiple of a generator of w1 (SO(k)).
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Via the isomorphism with X% being the unit disk around 0€C, a
trivialization of VJf* thus determines an orientation of the determinant of a
real CR-operator Dy on the real bundle pair (V, ). It also determines an
orientation of the determinant of a real CR-operator Dy, on the real bundle
pair (Vs, pe). A short exact sequence

(3.32) 0— Dy —Dy,&Dy, — Dy —0

of real CR-operators on the real bundle pairs in (3.31]) gives rise to an

isomorphism
(3.33) det (Dy) ® det (D) ~ det (Dy,) @ det (Dy,) .

Corollary 3.13. The isomorphism 1 orientation-preserving with
respect to

e the orientations on det(Dy) and det(Dy,) induced by a trivialization of
Ve and

e the complex orientations on det(Dy) and det(Dy,).

Proof. Since the claim is invariant under augmenting (V., ¢.) and (L, ¢) by
the same rank 1 real bundle pair of odd positive degree, we can assume that
m=2m’ for some m’'€Z=°. By Corollary the complex orientations on
det(D.) and det(Dy;) are then induced by the trivializations m/yy of £?
and V/°. The short exact sequence determines a homotopy class of
isomorphisms of real bundle pairs

(3.34) (Vip) ® (£, 0) = (Ve, o) ® (Ve, 0c)
over (P!, 7). By the above, the orientations on

det (Dy® D) = det (Dy)®det (D7)  and

(3.35) det (DV. @DVC) = det (Dv.) ®det (DVC)

specified in the statement of this corollary are induced by homotopy classes
of trivializations of the real bundles

VP@Ll, VeV — S

that are identified under the isomorphism (3.34)) restricted to the real parts of
the bundles. The isomorphism (3.33)) is orientation-preserving with respect
to these orientations. O
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We will next obtain an analogue of Corollary for real bundle pairs
over (P!, n). Define a C-antilinear automorphism of C? by

Ot C? — C2, cn(vl,vg) = (172,—171);
it has order 4. Let
7= 0p(-1) = {({,v) eP' xC?: veLCC?}

denote the tautological line bundle. For a€Z™, the involution 7 lifts to a
conjugation on 27®¢ as

A (605, w9) = (n(0), (69(w) P, (— ey (0)7°).
We denote the induced conjugations on

20p:(a) = (2¢%)" and Opi(2a) = AZ(20p:(a))

by ﬁgal) and ﬁgm), respectively. We note that ﬁﬁl e~ ﬁga).

Let a€Z=% and D, be the real CR-operator on (20p1(1+2a),ﬁ£11+2a))
induced by the standard d-operator on 20p: (142a). Fix a holomorphic con-
nection V on Op:(142a) and a nonzero vector e € TyP!. The homomorphism

eva : ker Dy — ((14a)Opi (142a)]0) @ ((14a)Opi (1+2a) o),
eva§0(§17§2) - ((61(0)7 Vel 7vé®a€1)’ (62(0)7 Vebo, ... ’v;®a§2))7

is then an isomorphism. It thus induces an orientation on det D, from the
complex orientation of Op:(1+2a)|p; we will call the former the complex
orientation of det D,.

As before, denote by S'CP! and X2 CP! the unit circle and the unit
disk around 0 € P!, respectively. Let 1§, be the trivialization of (20p: (1), 77(111))
over S' given by

i —iz7tag(1, 2
a0 o) - () ) e

N (Oél,OéQ)EQO[pl(l”Z, 2651.

This is a component of the composite trivialization appearing in the proof of
[5, Proposition 6.2]. The next statement is the analogue of Proposition
in this setting.
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Corollary 3.14. The orientation on det DS induced by the trivialization 1,
as in the proof of [5, Lemma 2.5] agrees with the complex orientation.

We give three proofs of this statement; they correspond to the three
proofs of Proposition

Proof 1. We denote by p; and py the two standard holomorphic sections
of Op1(1):

p1(4, (vi,v2)) =v1, p2(l, (v1,v2)) =va VY (£, (v1,02)) € 7.
The complex orientation for det DS is determined by the basis
s11 = (p1,p2),  s12 = (ip1, —ip2), s21 = (—=p2,p1),  s22 = (ip2,ip1),

for the kernel of the surjective operator DS.
The trivialization v, extends as a trivialization ¥, of (20p: (1), ﬁ%ll)

—{0, 00} by the same formula. We note that

) over

{whs11}(2) = (0,2),

{Whs12}(2) = (=2,0),

{Wsai }(z) = (i 27t 1+z 11— z2)),
{Wisa}(z) = (27( (1+z ))-

The orientation on det DS induced by the trivialization ¢y, is obtained from
the isomorphism

ker Dj — REBR @ {Res,—o(Vy¢): £cker DG},
€ — (Re({¥HE}(1)), Res.—o(T(E)).

The last space above is a complex subspace of C2. Under this isomorphism,
the basis s11, S12, S21, S22 is sent to

(0,2;0,0), (-=2,0;0,0), (0,0;—i,1), (0,0;1,1).
Thus, an oriented basis for the target of the above isomorphism is given by

(2,0;0,0), (0,2;0,0), (0,0;—i,1), (0,0;1,i).
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The change of basis matrix from the first basis to this one is given by

0O -1 0 O
1 0 00
0O 0 1 0
0O 0 0 1
The determinant of this matrix is +1. O

Proof 2. Define

n3: PP — P, [Z1,20,23,24) — [Zo,—Z1, Z4,—Zs5],
My (PH) = Mty (PL, )77, 90y (P3) = Dy (P3, 1),

We now proceed through the first two paragraphs of the second proof of
Propositionreplacing T, T3, and Dg 1, by n, n3, and D}, respectively. By [5]
Lemma 5.3], the isomorphism is still orientation-reversing with respect
to the algebraic orientations on 9t; (P1) in 9, (P3) defined in [5, Section 5.2].
The isomorphism is now orientation-preserving with respect to the
complex orientation on the left-hand side.

Along with Euler’s sequence for P! and the orienting procedure of [5],
Lemma 2.5], the trivialization ¢{, determines an orientation on 9 (P); we
will call it the 1)(-orientation. Since the top exterior power of the real bundle
pair
(3.37) 2((20p: (1), 7111)

)

— (S',nls1) C (P, )

is canonically a square, it admits a canonical homotopy class of trivializa-
tions; see Lemma 2.4 and Section 5.5 in [5]. Along with Euler’s sequence
for P3, it determines an orientation on 91 (P3); we will call it the square
root orientation. Along with the 1}-orientation on 9t (P1), it induces an ori-
entation on j\/‘[L7O]9ﬁ; we will call it the t)j-orientation. Since the square root
orientation on 91 (P3) agrees with the orientation induced by the trivializa-
tion 21/ of , the first isomorphism in is orientation-preserving
with respect to the orientation on the left-hand side induced by 1, and the
Yp-orientation on N, oM.

As summarized in the paragraph above [5, Remark 6.9], the algebraic
orientations on 93 (P1) and 9 (P3) are the same as the v)-orientation and
the opposite of the square root orientation, respectively. Therefore, the (-
orientation on N[L,O]sm is the opposite of the algebraic orientation. Since the
second isomorphism in is orientation-reversing with respect to the
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latter, it follows that the composite isomorphism in is orientation-
preserving with respect to the orientation on the left-hand side induced
by 1. Since this is also the case with respect to the complex orientation on
the left-hand side, these two orientations on ker D8 agree. (]

Proof 3. The reasoning in the third proof of Proposition with 7 and
Dg 1, replaced by n and Dg, respectively, applies without any changes, except
[0, (6.13)] is no longer relevant. O

By [5, Lemma 2.4], the homotopy classes of trivializations of
(208 (1+2a), 71 1)
over S! correspond to the homotopy classes of trivializations of
(3.38) AP (20p (1+2a), 7\'1Y) = AP (205 (1),717) ® (O (2a), 7))

over S'. Since the last factor in is a square, it has a canonical ho-
motopy class of trivializations over S 1. Thus, the trivialization v, of the
first factor on the right-hand side of determines a homotopy class
of trivializations of (20p:(1+2a), 77{11;r “ ) over S! and thus an orientation
on det D?. The next statement is the analogue of Corollary [3.12} it is de-
duced from Corollary in the same way as Corollary is obtained
from Proposition

Corollary 3.15. Suppose a€Z>". The orientation on det D? induced by
the trivialization 1y, as in the proof of [J, Lemma 2.5] agrees with the complex
orientation.

Suppose
(339) 00— (Vip) — (Va,a) @ (Viy o) — (L£,6) — 0

is an exact sequence of real bundle pairs over (P!,n) such that

m
C,(,DC @ 20@1 1—|—2a1 7“7{11'11‘20)) and

=1

m
= P (20s: (1+24), 7 **)
i=1

for some a;,a; 1c72°. Since the homotopy classes of trivializations of
(Ve pe)|sr correspond to the homotopy classes of trivializations of (£, )|,
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a homotopy class of trivializations of (Va,@e)|s: determines a homotopy
class of trivializations of (V,¢)|s: via the exact sequence (3.39). Via the
isomorphism with 3% being the unit disk around 0€C, a trivializa-
tion of (Ve,@e)|s: thus determines an orientation of the determinant of a
real CR~operator Dy on the real bundle pair (V| ). It also determines an
orientation of the determinant of a real CR-operator Dy, on the real bundle
pair (Va, ve). A short exact sequence of real CR~operators on the real

bundle pairs in (3.39)) gives rise to an isomorphism as in (3.33)).

Corollary 3.16. The isomorphism is orientation-preserving with
respect to

e the orientations on det(Dy) and det(Dy,) induced by a trivialization of
(Ve, o) over St and

e the complex orientations on det(Dy) and det(Dy;,).

Proof. By Corollary[3.15] the complex orientations on det(D,) and det(Dy; )
are induced by the trivializations m), of (£, ¢) and (Ve,p.) over St. The
short exact sequence determines a homotopy class of isomorphisms
(3.34) over (P!, 7). Thus, the orientations on specified in the statement
of this corollary are induced by homotopy classes of trivializations of the real

bundle pairs

(V7 90)@(‘67 QAZ;), (VM 90')@(‘/07 SDC) — (S1777|Sl)

that are identified under the isomorphism (3.34)) restricted to S'. The iso-
morphism (3.33)) is orientation-preserving with respect to these orienta-
tions. N

4. The compatibility of the canonical orientations

In this section, we establish Theorem In order to do so, we study how
each step in the construction of the orientation on M, ;(X, B; J)? in [12} Sec-
tion 5] extends across the strata consisting of maps from symmetric surfaces
with a pair of conjugate nodes. The argument is similar to [12, Section 6],
which studies the extendability of the orientation on M, (X, B; J)? induced
by a real orientation on (X, w, ¢) across the codimension-one strata. We also
compare the resulting extensions with the corresponding objects over the
normalizations.
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4.1. Two-nodal symmetric surfaces

We begin by establishing Proposition for symmetric surfaces with one
pair of conjugate nodes. If (3, o) is a symmetric surface, possibly nodal and
disconnected, and G is a Lie group with a natural conjugation, such as C*,
SL,C, or GL,,C, denote by C(X,0;G) the topological group of continuous
maps f: X — G such that f(o(z))=f(z) for all z€X. The restrictions of
such functions to the fixed locus %% C X take values in the real locus of G,
i.e. R*, SL,R, and GL,R, in the three examples.

Lemma 4.1. Suppose (X,0) is a symmetric surface, possibly nodal and
disconnected, x> —X%, and G is a connected Lie group with a matural
conjugation. For every feC(3,0;G) and an open neighborhood U CY of z,
there exists a path fr€C(X,0;G) such that fo=f, fi(z)=I1d, and fi=f on
Y-Uuo(U).

Proof. By shrinking U, we can assume that UNo(U)=0. Let p: ¥ —[0,1]
be a smooth o-invariant function so that p(z)=1and p=0 on X—-UUc(U).
Choose a path g, € G such that go=1d and g; = f(x). The path f; €C(X,0;G)
given by

p(z
Ji(z) = Q9,00 1 f(2), if zea(U);
f(2), if 2¢UUo(U);
has the desired properties. O

We will denote the nodes of a connected symmetric surface (X, o) with
one pair of conjugate nodes by xﬁ. A normalization of such (E,xliz,o) is
a smooth, possibly disconnected, symmetric surface (i, o) with two distin-
guished pairs of conjugate points, (xf, xy) and (x; , Ty ); the normalization

map takes xj to xfz and x; to zq,.

Lemma 4.2. Suppose (X,0) is a connected symmetric surface with one
pair of conjugate nodes, n€Z", and f€C(X,o;SL,C). If

flso: £7 — SL,R

is homotopic to a constant map, then f is homotopic to the constant map 1d
through maps fy €C(3, 0; SL,C).
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Proof. By Lemma we can assume that f(z],)=Id. Let fec(2,5;SL,C)
be the function corresponding to f€C(%, 0;SL,C). In particular,

flat), flaz) =1d

We proceed as in the proof of [12, Lemma 5.4], which contains a picture
illustrating a similar argument. Choose a symmetric half-surface »bc Y and a
neighborhood U C 2 of 93 so that either xf, x; exl—Uor xf, Ty € »—U.
Let a9 :x; in the first case, zo =25 in the second case, and x1 :xf in both
cases. Take the cutting paths C; so that z1, 22 ¢ C; and the extensions of the
homotopies of f from C; to 3° so that they do not change f at z1 or z2. The
surface D obtained by cutting X° along these paths is either a disk D? or
two disjoint copies of D?. Choose disjoint embedded paths v; and 7 in D as
in the last paragraph of the proof of [12, Lemma 5.4] from 9D to x1 and xa,
respectively. Since f(z;)=Id in this case, we can homotope f to Id over ~;
while keeping it fixed at the endpoints. Similarly to the second paragraph in
the proof of this lemma, this homotopy extends over D without changing f
over OD or v3_; and thus descends to X°. We then cut D along v; and 7,
into another disk or a pair of disks and proceed as in the second half of
the last paragraph in the proof of [12, Lemma 5.4]. The doubled homotopy
in the proof of this lemma then satisfies fi(zi)=f;(zF) and so descends
to X. ]

Corollary 4.3. Let (3,0) be a connected symmetric surface with one pair
of conjugate nodes and

P, W: (V,p) — (ExC", 0x¢)
be isomorphisms of real bundle pairs over (X, 0). If the isomorphisms

@’ch,\l/"/v: VSD — EXRn,
AZPR ALY AP (V) — AP (EXC™ o x¢) = (ExC,0x¢)

are homotopic, then so are the isomorphisms ® and V.

Proof. The first paragraph of the proof of [12, Corollary 5.5] applies without
any changes. The second paragraph applies with [12, Lemma 5.4] replaced
by Lemma above. O

Lemma 4.4. Proposition holds for connected symmetric surfaces with
one pair of conjugate nodes.



1132 P. Georgieva and A. Zinger

Proof. Let ‘7, L—3Y be complex vector bundles and
¢1V’x1i —>V’x2,i and ¢2L‘xli —)L‘xg
be isomorphisms of complex vector spaces such that

V= Vjms omtis(0) Voe | o, and L= L/m, vn(v) Voek| ..

Denote by @1 and @9 the lift of ¢ to V and the lift of (E to E, respectively.
Define

(W, 312) = (VO2L*, 51®0233), 1o = ¢1 & 2(¢hy )" W’ﬁ — W -

Thus, (V,31) and (L, @) are real bundle pairs over (,5) that descend to
the real bundle pairs (V,¢) and (L, $) over (X,0). Furthermore,

(4.1) Y120 Q12 = P12 012
For any feC(f), 7; GLy42C), let

Up: (DxC2,5x¢) — (SxC" 2 Fxc), Up(z,0) = (2 f(2)v).
Let &' (z)=xf ; for i=1,2.

The choices [(RO2)| and |(RO3)| in Definition [1.1| for (2, ¢) lift to (3, ).
By [12], Proposition 5.2], there thus exists an isomorphism

O: (W, $19) — (ExC2,5xc)

of real bundle pairs over (i o) that lies in the homotopy class determined
by the lifted real orientation. It satisfies the spin structure requirement of
Proposition [2.2| By the proof of [12 Proposmon 5.2], ® can be chosen so
that it mduces the isomorphism in over (Z, o) determined by the lift
of a given isomorphism in over (Z, o). This implies that

(4.2) {7/ xid} o {ARPD} = {ALPB}o (AL Y1n}: AFPW|

— {2} x ARPC" 2= {zF} xC.
In the next paragraph, we homotope ® near ZCit so that it descends to an
isomorphism W over 3; the latter satisfies the two properties in the last

sentence of Proposition By Corollary any two such isomorphisms ¥
are homotopic.
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Define ¢* € GL,;2C by
(4.3) idxy® = {5 xId}oBoyp1p087 ! {af} xC"2 — {2} xC™H2.

By (4.2), detcyp®=1, i.e. ¥ €SLy42C. By (.1), ¥ =4~ Since SL,12C is
connected, there exist f €C(X, 7; SLy,+2C) and a neighborhood U of ] in %
such that

o, if z::zf;

+ ~ —
W, ifzgUusU); U, Una(U)=0.

(44)  f(z) = {

By (3) and (1)

{&/de}o(flfo&) = (Iv’fofimﬁlg: /W\-/:|x1i — {xzi}XCn+2.

Thus, v foti descends to an isomorphism ¥ in 1’ of real bundle pairs
over (3,0) that induces the isomorphism in (2.9) determined by a given

isomorphism in (|L.1]). O

Suppose (%, mi, o) and (i, xli, a:éc, o) are as above. A rank n real bundle

pair (V,¢) over (X, 0) lifts to a rank n real bundle pair (Y:/, @) over (,5).
A real orientation on (V) lifts to a real orientation on (V, ). A real CR-
operator D on (V, ) lifts to a real CR-operator D on (V, ). There is a
short exact sequence of Fredholm operators

0——=T(Z; V)% L(3%V)? —2= V¢ 0
(4.5) lD iﬁ l
0,1/, 0,1/, TH\G
0—=TI}" (5 V) —=T (5 V)% 0 0

with the last homomorphism in the top row given by
ev,s (€) = () —E(x3) € Vo =V, =V, .

Thus, there is a canonical isomorphism

(4.6) det D & det D @ AZ"V,+

of real lines.
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If ¥ is an isomorphism as in (2.8) and VU is its lift to (2, 5), then the
diagram

0 —=T(%;Va2L*)*®% — T (S; Vo2lr)?®% H”VE@M; ——0

w oLk

- o+
0 ——C(X,0;C"*2) C(X,7;C"2)

12 Cn+2 0

commutes. If ¥ is an isomorphism as in in the homotopy class deter-
mined by a real orientation on (V, ), then the lift ¥ of ¥ to (V, ) lies in
the homotopy class of isomorphisms determined by the induced real orien-
tation on (V, ). These two observations yield the following comparison of
the orientations on the relative determinants provided by Corollary 2.3

Corollary 4.5. Let (3,0), (3,5), (V,p), and (V,3) be as above. The iso-
morphism

(4.7) det D ~ (det D) ® AF"V, @AZ'C"

induced by the isomorphisms ({.6) for (V,¢) and (X x C" 0 x¢) is orien-
tation-preserving with respect to the omentatwn on det D determined by a
real orientation on (V, ), the orientation on det D determined by the lifted
real orientation on (V, ©), and the complex orientations of Vx;g and C™,

4.2. Smoothings of two-nodal symmetric surfaces

For a disk A CC centered at the origin, let

A*=A-{0}, AZ={(t1D):teA}, AF=A"NAZ
A A2 — A2 TA(t+,t_) = (F,F)
Thus, A2 is the fixed locus of the anti-complex involution 7ao on A2
Let C=(X%, 21, ..., 2) be a marked Riemann surface with two nodes and

7: U — A? be a holomorphic map from a complex manifold with sections
51,...,5: A> —U. We will call the tuple (7, s1,...,5;) a smoothing of C if

e Yy =7 !(t) is a smooth compact Riemann surface for all t € A*?;
o si(t)#£s;(t) for all te A% and i#j;
® (20, 81(0), . ,81(0))20.
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Suppose C= (3, (2, 20 ), (zl+, 2z )) is a marked symmetric Riemann sur-
face with involution o and a pair of conjugate nodes, (m,si,...,s;) is as
above, and Tao:U —U is an anti-holomorphic involution lifting the in-
volution 7a. We will call the tuple (m,7a,s1,...,5;) a smoothing of C if
(m,81, TAOSL, ..., S1,TA0S;) is a smoothing of C and Ta|y,=o. In such a
case, let oy =7aly, for each tGAﬁ.

With (7, 7a, s1, ..., 5;) as above, denote by xliz €Y and ¥ — ¥ the nodes
and the normalization of X, respectively, and set X* :E—{xﬁ}. Let

Ut = {(t*,t*,zf,z;)€A2xC2: |zﬂ,\z§]<1, zfz;:fr},
Uy = {(tTt, 21,25 ) EA?XC?: |27 |, |25 | <1, 2725 =t~ }.

As fibrations over A,

— t,27), if [255] > |25 );
4.8 U~ u+|_|u LU’ ~, t,Zi,Zi ~ ( y <1 )y 1 2 1
(48 U )]~ )~ T T

for some family U’ of deformations of ¥* over A2, a choice of coordinates
zii on X centered at xzc, and their extensions to . The local coordinates

zii and the family ¢’ in (4.8) can be chosen so that U’ is preserved by 7a
and the identification in (4.8) intertwines 7o with the involution

(4.9) 2/15t — U7, (t"',t_,zf[,zg[) — (F, t+, z%,z;).

In particular, U retracts onto Xy respecting the involution 7a.

Suppose 7: U — A2 and Ta are as above, (V,p)— (U, 7a) is a real
bundle pair, and V and A are a connection and a 0-th order deformation
term on (V, ¢) as in Section The restriction of V and A to (V,¢)|(s, 0,
with t € A2 determines a real CR-operator Dy. By [16, Appendix D.4] and
[4, Section 3.2], the determinant lines of these operators form a line bundle

(4.10) det Dy, ) — AR -

We denote by det éc—>A]%{ the determinant line bundle associated with
the standard holomorphic structure on (U x C, 7a x ¢). The proof of the next
statement is essentially identical to the proof of [12, Corollary 6.7], with
Lemma replacing the use of [12 Proposition 6.2].

Corollary 4.6. Let (m,7a), (V,¢), and (V,A) be as above. Then a real
orientation on (V, ) as in Deﬁnition induces an orientation on the line
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bundle
(4.11) (Igt D(V#,) = (det D(V780)) ® (det 5@)®n — Aﬁ,

where n=1kcV. The restriction of this orientation to the fiber over each
tGA]’fg is the orientation on det Dy induced by the restriction of the real

orientation to (V,¢)|(s,.s) as in Corollary .

Let (X,0) be a smooth symmetric surface and (L, ¢) be a rank 1 real
bundle pair over (X, ). For a pair x=(z", 27) of conjugate points of (X, ),
define

L(x) = L(z*+27), L®(x) = L®cL(x),
0 $&2
{LE®}, = (Lo L) ]-) ",
(L)®2)) = [L(x0)®2} @ (L2*(x) o+ L2 (%)), ).
The projection
{L(x)®2), — {L(x)®?}], = L(x)®?;+ L% (%),

is an isomorphism of real vector spaces and thus induces an orientation on its
domain from the complex orientation of its target. This induced orientation
is invariant under the interchange of ™ and z~; we will call it the canonical
orientation of {L(x)®?}1. _

For a real CR-operator Dy 2 on (L(x),$)®?, there is a short exact
sequence

0 —— (% L2(x))” — =T (S L(x)%2)° — {L(x)%2)° —0
\LDL‘@Q(x) lDL(x)®2

0.1 (. b 0.1 (5. ?
0—— I (% L% (%)) —— TV (8 L(x)#?)” ———0
of Fredholm operators. By ([2.4)), it induces a canonical isomorphism
(4.12) det D (ye2 = (det Dyes () @ A2 ({L(x)®?}0) .

The analogous exact sequence for an operator Dpezx) on (L#2(x), $%2)
yields an isomorphism

(413)  det Dyes ~ (det Dpes) ® AZ((LZ2(x0) |y &L (x)]a- )" ).
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Combining these two isomorphisms with the identity isomorphism on
det Os.c, we obtain an isomorphism

(4.14) det Dy ez ~ (det Dpez) @ A% ({L(x)**},).

Corollary 4.7. With notation as above, suppose the real vector bundle
L? —X° is orientable. The isomorphism ﬁl} s orientation-preserving
with respect to the orientations induced by Corollaries [2.5 and on
det D xys2 and det Dye> and the canonical orientation on {L(x)®?}1.

Proof. Let (£,5) be the two-nodal symmetric surface consisting of (,0)
with a O-doublet P} LIPL attached at xt and x7; see . Let x=(z",27)
be a pair of conjugate points on S ¥, with 2+ G]P’1 ,and (L qb) be the rank 1
real bundle pair over (3,3) such that

L @‘2 (Z ¢) (L@}P}Fupi = (OMUOP&’E‘MuPi xc).
Choose a smoothing
U — AN TAU—U, s: A —U

of (,(z,77),5). For te A2, (3¢, 0¢) ~ (2, 0). o ~
Let (V, ¢) be areal bundle pair over (U, Ta) that restricts to (L, ¢) over X
and
V(s) =V (s+7aos).

For t€Aj2, the restrictions of the real bundle pairs (V,¢) and (V(s), )
to (X, o) are isomorphic to (L, ?) and (L(x), @), respectively. The canoni-
cal real orientations on (L7 ¢)®2 and (L(X), $)®? provided by Corollary [2
(like all other real orientations) extend to real orientations on (V, ¢)®? and
(V(s), 9)®2, respectively. The restrictions of the latter to

® (X, 0¢) with t € A2 are the canonical real orientations on (L, q~5)®2 and
(L(x), $)®2, respectively,
e Y CY are the canonical real orientation on (L, gz~5)®2,

° ]P’}FUIF’l_ are the canonical real orientations on

~ ®2 ~ ~ ~ ®2
(O[P}*_I—IOPL’OWP}*_UPI_ XC) and (OP}F (1E+)|_|O]p1_ (.I,),O'|P}*_upl_ XC) s

respectively.



1138 P. Georgieva and A. Zinger

Let Dy,)e2;¢ be a family of real CR-operators on (V, g0)®2 as above
Corollary we can assume that it restricts to the standard d-operator
over the O-doublet. It induces a family D(y () )@z, of real CR-operators on
(V(s), p)“?. Let

Diee = Dvpyero and Dy ge = Div(s) p)220

be the restrictions of these operators to (£,). Similarly to (4.12),
Tt PV 1
det D(y(s).g)e2 ~ [det Diyg)e2) ® Ag({V(5)*%})

as real line bundles over t EA?R. By the first bullet point above and Corol-
lary [4.6] it is thus sufficient to show that the isomorphism

(4.15) detDA( o2 & @et Ds..) @ AL ({L(®)%?}1)

is orientation-preserving with respect to the orientations on detD L(®)®>

and det D~ 72 induced by the canonical real orientations on (L(x), d>)®2 and
(L, ¢)®2 Tespectively, and the complex orientation on {L( )O2HL.

Let (L, ) be the lift of (L gf)) to the normalization (3,5) of (3,5); the
latter consists of (3, 0) and the O0-doublet P} LUP! . The 1somorphlsms

induce a commutative diagram

det Dy 4 cn det D7 g1c0 ® A2 L+ ®AZC
(det D7.,) ® Ak ({L(%)®?}1) — (det Do) © AZL,+ ®AZC ® AL ({L(%)%2)5).

By the second and third bullet points above and Corollary [£.5] the horizontal
isomorphisms in this diagram are orientation-preserving with respect to the
orientations on the relative determinants induced by Corollaries 2.3 and [2.4]
and with respect to the complex orientations on the remaining lines.

The left vertical isomorphism in the diagram is the tensor product of
the isomorphisms

and
X)®2|x L&2[s

CEDE(A  ~det D~
(4.16) _
detD~(

L §)®2|IP’1+MP’£

~ (@t Dpy, ) @ A{LEO).

The first of these isomorphisms is orientation-preserving with respect to
the canonical real orientations because L(X)|s,=L|x. Under the restrictions
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to Pi as in 1’ the second isomorphism in 1} corresponds to an iso-
morphism induced by two short exact sequences of C-linear homomorphisms.

Thus, it is orientation-preserving with respect to the complex orientations
on detD R and detD R as in Section (3.1 By Lemma (3.1
L(Z)®?|p1 Lp1 ) L®2|p1 p1

these complex orlentatlons are the samé as the orientations induced by any
real orientations on the squares. Thus, the second isomorphism in and
the left vertical isomorphism in the commutative diagram are orientation—
preserving with respect to the orientations on the relative determinants in-
duced by Corollaries [2.3] and [2.4] Along with the last sentence of the pre-
vious paragraph, this 1mphes that the right vertical isomorphism is also
orientation-preserving with respect to these orientations. [l

Let ¥ be a smooth Riemann surface and zeX. A holomorphic vector
field £ on a neighborhood of x in ¥ with {(z)=0 determines an element

Ve € iR ®c TL,E=C.

Similarly, a meromorphic one-form 7 on a neighborhood of z in 3 has a
well-defined residue at z, which we denote by ;7. For a holomorphic line
bundle L — ¥, we denote by Q(L) the sheaf of holomorphic sections of L.

If (X,0)isa symmetnc Riemann surface with a pair of conjugate nodes
x12 € and $1i, x5y €Y are the preimages of the nodes in its normalization,
let

Tf](— ) = TE(—a:l xl_—x;—:zg),
T*5(x) = T*Z(ml o]y +ay).

The next statement is the analogue of [I12] Lemma 6.8] in the present situ-
ation.

Lemma 4.8. Suppose (m: U — A2, 7) is a smoothing of (¥,0) as above.
There exist holomorphic line bundles T, T —U with involutions ¢, p lift-
ing Ta such that

(T, ‘P)‘Et = (TS, d7alrs,), (T, @|Zt = (T*S¢, (d7alrs,)*) ¥V teA™,
Q(Tls,) = {€€Q(TE(—x)): VE|,=+VeE],z =0},
Q(Tls,) = {n€QT"S(x)): R,2n+R,n=0}.

Furthermore, (7\', o)=(T,p)*.
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Proof. We continue with the notation as in (4.8) and (4.9). Denote by
TV''Y' — U’ the vertical tangent bundle. Let

T = (U xCuUy xCuT™U")/ ~,
T = (U xCUUy xCU (T UY) [ ~,

+ 0 L .
(t, zli,zéc,c) N cz i?la‘(t’zli), if ’Zl‘>‘zi"
—Cc 2z a?f'(mf)’ if [277] <[5 [;

c%i“’zli)z# if |25 > |25
+ + 7 1 2
AT

A !

Under the identifications (4.§] , the vector ﬁeld and one-form on a neighbor-
hood of the node in U assomated with (¢, 21 ,z2 , )GUO x C correspond to
the vector field and one-form on LIO given by

+
+ 0 + 0 le ’Et dz? ’Zt
cl z . e and c = —c
1 3.+ 2 5. F == +
0] 02z 2] 25

respectively (the above equality of one-forms holds for t*+£0). Thus, T
and 7 have the desired restriction properties. The identifications in the
construction of 7 and 7 above intertwine the trivial lift of to a con-
jugation on (U LUy ) xC with the conjugations on TV*U’ and (TV*''U’)*
induced by d7a. Thus, they induce conjugations ¢ and @ on 7 and T. By
the same reasoning as in the proof of [12, Lemma 6.8], (7,®) and (T, ¢)*
are isomorphic as real bundle pairs over (U, 7a). O

Corollary 4.9. Let (3,0), (7,7a), and T,7A'—>L{ be as in Lemma .

The orientation on the restriction of the real line bundle

(4.17) cfe\té(?’@m = (det 8(?@)@2) ® (detdc) — AZ

to AR determined by the canonical isomorphisms of C’orollam'es and
extends across t=0 as the orientation determined by the canonical isomor-
phism of Corollaries and for the nodal symmetric surface (X, 0).
Proof. By Corollaries 2.3] and [2.4] the restriction of the real bundle pair

(4.18) (T®2@2T, %2 ®2p) — (U, 7a)
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to the central fiber (X,0) has a canonical real orientation. Since U retracts
onto X respecting the involution 7a, this real orientation extends to a real
orientation on which restricts to the canonical real orientation over
each fiber (3¢, 0¢) with t€ A2 By Corollary the extended real orien-
tation induces an orientation on the real line bundle @ over A%. The
restriction of this orientation to the fiber over each t €A% is the orienta-
tion induced by the restriction of the extended real orientation to the fiber
of as in Corollary i.e. the canonical orientation on each fiber

of (417 O

The next two statements are the analogues of [12, Lemmas 6.9,6.10] for
smoothings of two-nodal Riemann surfaces and hold for the same reasons.

Lemma 4.10 (Dolbeault Isomorphism). Suppose (¥,0) and (7,7a)
are as i Lemma and (L,p)— (U,TA) is a holomorphic line bundle
so that deg L|x, <0 and deg L|sy <0 for each irreducible component X' CX.
The families of vector spaces H(%(Et;L) and H'(X¢; L) then form wvector
bundles R(lémL and R'm,L over A? with conjugations lifting Ta which are
canonically isomorphic as real bundle pairs over (A%, 7A).

~

Lemma 4.11 (Serre Duality). Suppose (£,0), (7,7a), and (T, ) are
as in Lemma and (L, ) — (U, TA) is a holomorphic line bundle so that
deg Ly, >2g,(X)—2 and deg L|sy >2g,(X')—2 for each irreducible compo-
nent X' CX. The family of vector spaces Hg(Et; L) then forms a vector bun-
dle R%W*L over A with a conjugation lifting Ta and there is a canonical
isomorphism

(4.19) Rim. (L*®T) ~ (Rym.L)"
of real bundle pairs over (A% TA).

4.3. Canonical isomorphisms and canonical orientations

Let (Z,xﬁ,a} be a symmetric surface with a pair of conjugate nodes. We
will next compare the orientations of isomorphisms of determinant lines
associated with (¥,0) which are induced via its smoothings (¥¢,0¢) as in
Section and via its normalization (X, 0). We continue with the notation
introduced in Section (4.2
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Let Cy, Sx — 5 denote the skyscraper sheaves with fibers C at the
preimages xzi of the nodes of ¥ and fibers T;E 3., respectively. The projections

(w20 H(S;Cx)” — C? = HY(5;C, )@ HO(S5C ),
' HY(S:8)" — TiS @ 15 = HO(5; 8, ) o HO (5 5,1 )

to the values at xf and x; are isomorphisms. We use the first isomorphism

to orient H%(3; Cy)? from the standard orientation on C. We use the second

isomorphism to orient H O(f]' Sy)? from the orientations on T* S and T* by

induced from the complex orientations on 7T}, +E and T, +Z respectlvely, as
in the proof of Lemma[3.2] As indicated at the begmmng of Section [3.1} the
orientation on each T;E induced from the complex orientation of 7+ is the

opposite of the complex orientation of T;i Thus, the induced orientation
on T;i@T;i agrees with the complex orientation.
1 2

The residues of meromorphic one-forms on ¥ provide canonical identifi-
cations

T*i(xﬂ%+ ~C.
With the notation as in Corollary [£.7], we thus have
{T*i(x)@}i = {T*f] ®2} ot 20
— HO(5;C) o HO(S; S)°.

@{T*Z@Q )}(x:{,x;)

With L=T*% - becomes
(4.21) et .5 (143) )22 = (A€t 1.5 (45))e2) o
® AFCRAFC ® Ag (HO(Z; S%)7).

Let C,+ — X be the skyscraper sheaf over xﬁ. By Lemma there is
an exact sequence

0 — O(T®?) — O(T*E(x)%?) — C,: ®C,. — 0

of sheaves over ¥. Thus, (4.6) applied with (7,3)®2|y; and (SxC,0o xc)

determines an isomorphism
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Combining this isomorphism with (4.21]), we obtain an isomorphism

(4.23) (At 07 5)02),) @ AZCRAZC
R (et Dp.ss (az)eye2) © ARCOARC ® A (HO(%59%)7).

Corollary 4.12. Suppose (X,0), (i&), (m,7a), and 7',7\'—%/{ are as in
Lemma . The isomorphism is orientation-preserving with respect to

e the canonical orientation of Corollary on (Ie;cé(?’@@%,

e the canonical orientation of Corollaries and on det 5(T*§ (d5))@2”

o the orientation on Ho(i; Sy )? described above and the complex orientation

on C.

Proof. The canonical orientation of Corollary on &e\té(?@m‘z is the
orientation induced by the canonical real orienfafion on the restriction of
(T,) to X. The latter lifts to the canonical real orientation on the real
bundle pair

(4.24) (T*E(x), (d5)")*? — (£,5).

By Corollary the isomorphism is thus orientation-preserving with
respect to the orientation in the first bullet item above, the complex orienta-
tion on C, and the orientation on det 5(T*i(x) dz))e2 induced by the canon-
ical real orientation on . By Corollary the isomorphism is
orientation-preserving with respect to the latter and the orientations in the
second and third bullet items above. The last two statements together imply

the claim. O
Let (7, 7Ta,S1,...,5;) be a smoothing of a marked symmetric Riemann

surface

(4.25) C= (E, (2, 20)s o, (zf,zl_))

with a pair of conjugate nodes, T, T —U be the holomorphic line bundles
with involutions ¢, ¢ as in Lemma and

TC=T(—s1—-Ta081—-—85—TA0S),
’?C = ?(81+?A081+‘ : '+Sl+?AOSl).
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By the last statement of Lemma TC*=TC. Let

(426)  C= (5, (:F\ ) (5o 20), (@ s07), (aF 1 27),
TC = TE( zl -z —"-—zl"'—zl_—xi"—xl_ —x;—xQ_),
T*C = TS (2 427+ 42 42 +af +ay +af +23).
Let SC— Y and SC— ¥ be the skyscraper sheaves of the cotangent bun-
dles at the marked points as in the proof of Lemma [3.2l We also denote by
SCCH SC the lift of SC to E i.e. the natural complement of the subsheaf Sx
of SC.

By Lemma taking the (second order) residues of sections of TCRT
at :E;r €Y induces an isomorphism

_ - _ B N 2 ~.
(427) det 8(’7—C®7\—,$®2) |E ~ det a(T*C@T*Z,(d&)*®2) ® ARC,

it corresponds to the isomorphism for the short exact sequence of
Fredholm operators represented by the middle column in Figure I Com-
bining with the isomorphism for the trivial rank 1 real bundle
pair (V, ), we obtain an isomorphism

(4.28) (Aot dFog7 sony,) © ARC & (A0t O ggr-5: (q5yen)) @ ARC.

The exact sequence represented by the middle row in Figure [I| and its ana-
logue for C determine isomorphisms

a to o
det O 7ca7 ponls = (det 97 5es) ) © AT (HO(355C)7),

(4.29) _ . -
det 0 % (det O s (qzeyyer) @ Ax” (HO(5;.5C)7).

(T+CRT*%,(d5*)®2) ~

The isomorphisms (4.29)) induce orientations on the first factors on the two

sides of (4.28) from

(1) the orientations of HO(2;SC)” and H(;SC)? described in the proof
of Lemma and

(2) the canonical orientations on

(4.30) . (} O gyery = (det (?(fﬁ@)@zb) ® (det 5@27) and
det 0.5 (az)eyee = (det 05 (az)ye2) © (det Ocls)

provided by Corollaries [2.3] and [2.4]
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0—=T(5TE(x)eT*S)” —T (5 T*CoT*s)’ —= HO(X; 5C)7 —=0

(S 7CRT)° HO(%;8C)” —=0

12 12

Figure 1: Commutative diagram for the proof of Corollary

Corollary 4.13. The isomorphism 15 orientation-preserving with
respect to the two orientations described above and the complex orientation
on C.

Proof. The exact sequence represented by the first row in Figure [1| and the
[=0 case of the second isomorphism in (4.29) determine isomorphisms

det 5(T*5®T*i(d5*)®2) ~ (det 5(T*i(x)®T*i(da*)®2))
(4.31) @ ARP (HO(3;5C)7),
) ~ 5 4 (70(. @ \&
det (- S (x)e1 5, (d5)e2) & (det a(T*i,da*)m) @ Ag (H°(3; 5%)7).

The second isomorphism in is the composition of the first isomorphism
in and the second one tensored with the identity on AP (HO(3; SC)7).

Combining the analogue of for {=0 (i.e. the isomorphism induced
by the left column in Figure [1) with the isomorphism for the trivial
rank 1 real bundle pair (V,¢), we obtain an isomorphism

EPVIE ~ (Aot D 2
(4.32) et 07 )02, ) © ARC = ([det 8 1.5, 07+5 (a5)22)) @ ARC.

The canonical orientation on the second line in (4.30]) and the second isomor-
phism in (4.31]) induce an orientation on the first factor on the right-hand
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side of . By the commutativity of the squares in Figure (1}, it is suf-
ficient to show that the isomorphism is orientation-preserving with
respect to the canonical orientation on det 5(?7(2)@2'2, the above orientation
on det 5(T*i(x)®T*i,(d&*)®2)7 and the complex orientation on C.

The composition of the isomorphism (4.32)) tensored with the identity
on A%R(C and the second isomorphism in (4.31]) tensored with the identities
on det 52;(: and two copies of AZC is homotopic to the isomorphism .
By the previous paragraph, the claim is thus equivalent to the isomor-
phism being orientation-preserving with respect to the canonical ori-
entations on the first factors on the two sides, the complex orientation on C,
and the orientation on Aj(H°(X;Sx)%) induced as in the paragraph con-

taining (4.20). This is indeed the case by Corollary O

The next two statements are obtained from Lemmas .10 and [£.11] in
the same way as [12], Corollary 6.12] is obtained from [I2), Lemmas 6.9,6.10].

Corollary 4.14. If the marked curve is stable, the orientation on
the restriction of the real line bundle

ARP((R'm.TC)7) @ AP ((Rym.TC)7) — AR

to A2 induced by Dolbeault Isomorphism extends across t=0 as the ori-

entation induced by Dolbeault Isomorphism for the nodal symmetric sur-
face (3,0).

Corollary 4.15. If the marked curve is stable, the orientation on
the restriction of the real line bundle

AP ((REmTC)7) @ ARP (((Remu(TC2T))?)") — AR

to Aﬁ‘g induced by Serre Duality as in the proof of [12, Proposition 5.9]
extends across t=0 as the orientation induced by Serre Duality for the nodal
symmetric surface (X, 0).

We continue with the setup for (4.26)). By Lemma there is an exact
sequence

(4.33) 0 — O(TC|g) — O(TC) — C,:®C,- —0

of sheaves with lifts of the involution ¢ over ¥. The projection of

(4.34) I:IO(E; CxE@CJC;2)U C I:IO(E; CxE)@HO(E; (Cmfg) =CoC
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to the first component induces an isomorphism of real vector spaces.

If C is stable, the real part of the cohomology sequence induced by ,
its analogue in Dolbeault cohomology, and Dolbeault Isomorphism induce a
commutative diagram

0—=C—— A (30(TCly)) —= H'(;0(1C))” —=0

(4.35) Lid iDI lDI

0 C HY(Z;7C)°7 H'(Z;7C)°

0

of exact sequences. In particular, there are canonical isomorphisms

AP (H (35 0(TCls))”) = A (' (350(TC))7) @ AZ™C,

4.36 ~
(439 ARP(H' (2;7C)7) ~ AZP (H' (5,7C)7) ® AgPC.

Combining them together, we obtain an isomorphism

(4.37)  ARP(H'(Z;0(TCly))7) @ AR (HY (25 7C)7)
~ (Agp (H'(Z;0(1C))7) @ AR® (H' (2 T[f)ff)) ® AFC®AZC.

Corollary 4.16. The isomorphism is orientation-preserving with
respect to the canonical orientation of Corollary[{.1]) on the left-hand side,
the orientation on the first tensor product on the right-hand side induced
by Dolbeault Isomorphism, and the canonical orientation on the last tensor
product.

Proof. By the commutativity of the diagram , the isomorphism
is orientation-preserving with respect to the orientations on the left-hand
side and on the first tensor product on the right-hand side induced by Dol-
beault Isomorphism. The former is the orientation of Corollary O

Combining the dual of (4.27) with the second isomorphism in (4.36), we
obtain an isomorphism
(4.38) AP (HYN (S TC)T) AP (HO(Z; TCoT)?))
~ (AP (' (S 70)7) @ AP (HO (S TCaT*S)) ") )
® AZC®A:(CY),
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where C¥=Hom¢(C, C). The complex orientation on C induces an orienta-
tion on CY under the isomorphism ([3.1)). The latter is the opposite of the
complex orientation of CV.

Corollary 4.17. The isomorphism 18 orientation-preserving with
respect to the canonical orientation of Corollary[{.15 on the left-hand side,
the orientation on the first tensor product on the right-hand side induced by
Serre Duality, and the complex orientations on C and CV.

Proof. Since the diagram

0——=C

HY(z;7C)° H'(%;1C)7
® ® ®
0<~—C~—H(3; ’?‘C@?\')U ~— HYS; T*CRT*X)” <—0

| | |

R R R

induced by the imaginary parts of the Serre Duality pairings commutes, the
isomorphism is orientation-preserving with respect to the orientations
on the left-hand side and on the first tensor product on the right-hand side
induced by Serre Duality and the complex orientations on C and CV. The
former is the orientation of Corollary The first pairing in the above
diagram is the real part of a C-linear pairing and thus identifies the oriented
real vector space C in the first row with the complex dual CV of the vector
space C in the second row. O

4.4. Comparison of the canonical orientations

Before establishing Theorem [1.2]at the end of this section, we obtain its ana-
logue for the real Deligne-Mumford moduli spaces; see Proposition be-
low. This is done after comparing the behavior of the Kodaira-Spencer (KS)
map under the smoothings and normalization of a symmetric surface (X, o)
with a pair of conjugate nodes; see Lemma [£.19]

Let g€Z and [ €Z=° be such that g+1>2. The identification of the last
two pairs of conjugate marked points induces an immersion

(439) L Rﬂ;—?,l'f‘z — R g,l 5
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the image R/\/'g’ ; of RM;_Q 142 under this immersion consists of symmetric
surfaces with one pair of conjugate nodes. There is a canonical isomorphism

*T]RM
TRM, g—2,1+2

L ~ L111@cLiy2

of the normal bundle of + with the tensor product of the universal tangent
line bundles for the first points in the last two conjugate pairs. Thus, there
is a canonical isomorphism

(4.40) S (ARP(TRM;))) ~ AgP(TRM; 5,45) ® A% (Li1@cLigo)

of real line bundles over Rﬂ;,wﬁ.
Combining the isomorphism :4.40) with the isomorphism (4.6)) for the
trivial rank 1 real bundle pair (V, ), we obtain an isomorphism

(4.41) (ARP(TRM 5 140)®(det Oc)) ® AZ (Li1@cLiva)
~ U (ARP(TRM; ) @(det c)) ® (ARC)

of real line bundles over ]R./\/lg 9.14+2- Since the complement of RN ', ina

small neighborhood in RMgl is connected and con31sts of smooth curves,
the canonical orientation on the real line bundle provided by [12|
Proposition 5.9] extends across R/\/ ', and thus 1nduces an orientation on
the first tensor product on the right- hand side of (4

Proposition 4.18. Let geZ and 1€ Z=° be such that g+1>2. The isomor-
phism 1s orientation-reversing with respect to the orientations on the
real line bundles provided by [12, Proposition 5.9] and the complex
orientations of L1411 Rc Li+o and C.

Suppose c,C, (7, TA, 815+, 81), (T, ), and (7\', p) are as in 4.25) and
with U ] A2 — A% embedded inside of the universal curve fibration

over ]RM . Combining the first isomorphism in 1) and 1' we obtain

an 1somorphism
(442) AP (TigRM ) @ AR (H' (Z50(TCls)))
~ (AP (T BN o) AP (1 (5. 0(10))7)
® AR (L141®c Li42) ®ARC.

The KS map induces an orientation on the left-hand side of (4.42)) whenever
C is a smooth curve. Since the complement of R/\/; ; in a small neighborhood
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in Rﬂ;l is connected and consists of smooth curves, this orientation extends
over g.,l’

Lemma 4.19. The isomorphism s orientation-preserving with re-
spect to the orientations on the left-hand side and the first tensor product on
the right-hand side determined by the KS map and the canonical orientations
of L111®cLire and C.

Proof. The proof is similar to that of [I2] Lemma 6.16]. The complex pa-

rameter t* in Section can be viewed as an element of the complex line

bundle £;11®c L2 and parametrizes the smoothings of the marked sym-

metric surface C as in . In the notation of Section they are de-

scribed by t=(t+,t7) with t~=tF. Denote by 7C —Ug_2,142 the twisted

down vertical tangent bundle over the universal curve : ag,g,prg —>R/\fg”l.
As in the proof of [12, Lemma 6.16], the vector bundles

TRND,, (R'm(TC))T — RN,

extend over a neighborhood of RN, gl Rﬂ;l as a subbundle of TRM;,Z
and a quotient bundle of (R'7,7C)?. The KS map induces an isomorphism
between these two extensions and gives rise to a diagram

TeRMG 5112 Te,RMy,, L1®cLa|z

Ksl% Kslz Ksiz

HY(3;0(TC))" <— H'Y (2 O(TCls,)) ™ C

commuting up to homotopy of the isomorphisms given by the vertical arrows.
The crucial point is that the KS map sends the deformation parameter
tT € L1®c Ly to the C-factor in in an orientation-preserving fashion.
This is shown in the next paragraph.

Similarly to the last part of the proof of [I12] Lemma 6.16], we cover a
neighborhood of ¥ in U by the open sets

u = {(tﬂtﬂzfc,zéc)euoi: 2|25 | <1} and
Z/IQi = {(t+,t_,zf[,z§t)62/loi: 2|zf[|<1},
along with coordinate charts each of which intersects at most one of Z/lljE

and Z/lgi. By the same computation as before, the Cech 1-cocycle correspond-
ing to the radial vector field [12, (6.25)] for the smoothing parameter t=t"
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is given by

i 8 A:I: :ta ia

(4.43) 0, =zt e 91 =—4 —F + % —F
0;12 1 82%: 2 822i7 0;21 1 82%: 2 az2i

on UENU; after re-scaling by |t|~! and vanishes on all remaining overlaps.
In order to determine the image of the angular vector field, we replace ¢t with
¢\t in the computation in the proof of [12, Lemma 6.16] and differentiate the
resulting overlap maps fli2 and fQjE1 with respect to 6 at #=0. Over Z/lgc, we
then obtain the right-hand sides of the two expressions in multiplied
by #i. Thus, the KS map sends ¢ € £1®¢ L to the C-factor in in an
orientation-preserving fashion. O

Proof of Proposition Let (C,5) be an element of RM;—ZH—Z Its
image under ¢ is a marked symmetric curve (C,o) with a pair of conjugate
nodes. We continue with the notation and setup in the proof of Lemma [£.19]
The isomorphisms (4.40|) and (4.27)) induce an isomorphism
(444)  ARP(TigRMG,) © AZP((HO(Z: TCoT)")")
~ (AP (T RMy o ) AL (15 T CoTS)) )
® Af (L1411 ®cLiya) ® AR(CY).
Orientations on the left-hand side of (4.44) and the first tensor product

on the right-hand side are obtained by tensoring the orientations on the
corresponding terms

(1) in (4.42)) determined by the KS map,
(2) in (4.37)) determined by Dolbeault Isomorphism and Corollary

(3) in (4.38]) determined by Serre Duality and Corollary
By Lemma and Corollaries and the isomorphism (4.44]) is

orientation-preserving with respect to these two orientations and the com-
plex orientations on £;,1®c L2 and CV.
The orientations on

AEQOP (T[C]]Rﬂ;’l) &® (det 5@“@]) and
A]%Op (T[g] RM;,Q’ZJFQ) & (det 8((: | [a)

provided by [12, Proposition 5.17] are the tensor products of the orienta-
tions on
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(1) the left-hand side of (4.44)) and the first tensor product on the right-hand
side described above and

(2) the first tensor products on the two sides of (4.28]) described below (4.29)).

The isomorphism (3.1)) with V' =C induces a homotopy class of identifi-
cations of (A2C)*®A%(CY) with R. By the previous paragraph and Corol-
lary [£:13] the isomorphisms

(A%Op (T[C] RM;J) ® (det 5(2;((:) *) ® (A]%R(C) "
e (R o 102 )
® A% (L141®c Li+2) © (ARC) "®AZ(CY)

induced by the isomorphism , the isomorphism for the trivial
rank 1 real bundle pair (V,¢), and trivializations of (AZC)*®A%(CY) in
the above homotopy class are orientation-preserving with respect to the
orientations of Proposition and the complex orientations of C and CV.
Since the isomorphism with V' =C is orientation-reversing with respect
to the complex orientations of C and CV, the isomorphism is also

orientation-reversing with respect to the orientations of Proposition [4.18
O

Proof of Theorem [1.2. Throughout this argument, we omit (X, B, J)?
from the notation for the moduli spaces of maps and let

L=L1®cLiyz.

By the construction of the orientations in the proofs of Corollary 5.10 and
Theorem 1.3 in [12], it is sufficient to verify the claim over an element
[u] Gﬁg_w 49 with a smooth stable domain. Let u be the induced real map
from the corresponding nodal symmetric surface. We denote the marked
domains of u and u by C and C, respectively, and let g=ev;1(u).

The forgetful morphisms induce the short exact sequences repre-
sented by the left and middle columns in the two diagrams of Figure [2| The
top row in the first diagram is the exact sequence on the indices of Fredholm
operators determined by the exact sequence (4.5) with (V, ¢)=u*(TX,d¢);
the middle row is the exact sequence above . The middle and bottom
rows in the second diagram are the exact sequences associated with the

normal bundles N above (1.5 and (4.40]), respectively.
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0 0 0
ev_+
0 ——Ind D, Ind D — =T, X 0
id
—/e Py ] dﬂeVl 1
00— Tﬂmg72,l+2 Tﬂmg72,l+2 : TqX 0
df df
—e 'd PR
0——TzRM, 5,19 ——=TzRMy_ 5140 —0
0 0
0 0
0— >IndD, i Ind D, 0
/e d <=®
0——=TaMy 9 40— Mg, Llg 0
df df id
——e d ——
0 0 0

Figure 2: Commutative diagrams for the proof of Theorem

The middle row and column in the first diagram in Figure [2| determine
isomorphisms

(4.45) AP (Tady sy 140) © AR (T, X) ® AR (L)
~ AR (T o 142) © AR (L))
~ (det Dg) ® A%{Op (Tg]RM;—Q,l+2) ® AR (515) :
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By the commutativity of the squares in this diagram, the composition of the
two isomorphisms in (4.45)) equals to the composition of the isomorphism

(4.46) AP (T30, 5,.0) © A%glqu) ® A2(L]5)
~ (det Dy) @ AP (TARM; 5,15) ® AFN(T,X) ® A% (L])

induced by the first column and the isomorphism with (V, ¢) replaced
by u*(T'X,d¢); the latter is induced by the first row.

The middle row and column in the second diagram in Figure [2| determine
isomorphisms

/e
(4.47) AFP(TaM,o110) ® AFH(TyX) ® A% (L]7)
~ AP (T ) ® AR (T, X)
~ (det D) ® AP (TeRM; ) @ AFN(T,X) .
By the commutativity of the squares in this diagram, the composition of

the two isomorphisms in (4.47) equals to the composition of the isomor-
phisms (4.46)) and (4.40)); the latter is induced by the bottom row. Thus, the

isomorphism

(4.48) (det D7) ® AP (TzRM; _5,.5) ® AZ(L]5)
~ (det D) @ AP (TeRM; ) @ A (T, X)

induced by (4.45)) and (4.47) is the tensor product of the isomorphism (|4.6))
with (V, p)=u*(TX,d¢) and the isomorphism (4.40)).
The isomorphism (4.45)) induces an isomorphism

(449) AR (T )00) © AF(T,X) © AR (£]g) © (det g ) *"
~ ((det Dg) @ (det B;.) ")
® (ARP(TRMy g10) @ (det B5,.) ) @ AR (L)

The isomorphism (4.47)) and the isomorphisms (4.6)) with

(V) =u*(TX,do), (ExC, 0o xc)
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induce an isomorphism

(450)  ARP (T 100) @ AF(T,X) @ AF(L]g) ® (det dg,c) "
~ ((det D) ® (det 52;(;)@”) QAF(T,X)@AZFC"

® <A]§§p (TCRM;Z) ® (det 5@;2)) ®A]§C .
A real orientation on (X,w, ¢) induces orientations on

(4.51) det D; = (det Dg) @ (det 5§;C)®n and
det D, = (det Du) ® (det 52;((;) o,

The isomorphisms and induce orientations on their common
domain from the orientations in , the orientation of provided by
[12, Proposition 5.9], and the canonical orientations on £, TX, and C. The
substance of Theorem is that the two induced orientations are different.

The two induced orientations are different if the composition of the
inverse of the isomorphism in (4.49) with the isomorphism in is
orientation-reversing. By the sentence containing , this composition
is the tensor product of

(1) the isomorphism (4.7) with (V,¢)=u*(TX,d¢) and
(2) the isomorphism (4.41)).

By Corollaries and the first isomorphism is orientation-preserving.
By Proposition the second isomorphism is orientation-reversing.  [J

Remark 4.20. A real orientation on a 2n-dimensional manifold X deter-
mines orientations on the moduli spaces of real spaces if n is odd. If n is
even, a real orientation on X determines orientations on the tangent bun-
dles of the moduli spaces of real maps twisted by the tangent bundles of the
moduli spaces of real curves; the real spaces in this case are generally not ori-
entable. If n €27 and 2g+1> 3, the comparison of Theorem should thus
be made with the tangent bundles of the moduli spaces of maps twisted
by the tangent bundles of the moduli spaces of curves as in [12] (1.3)].
The isomorphism is then replaced by its tensor product with the in-
verse of . The proof of Theorem implies that this isomorphism
is orientation-preserving, since the orientation-reversing isomorphism
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now enters twice. This n € 2Z analogue of Theorem is also invariant un-
der the reordering of the nodes, since it now preserves the orientation of T'X
and L1 ®c Lo appears twice.
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