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We prove an analogue of the Atiyah-Bott-Berline-Vergne local-
ization formula in the setting of equivariant basic cohomology of
K-contact manifolds. As a consequence, we deduce analogues of
Witten’s nonabelian localization and the Jeffrey-Kirwan residue
formula, which relate equivariant basic integrals on a contact man-
ifold M to basic integrals on the contact quotient M0 := µ−1(0)/G,
where µ denotes the contact moment map for the action of a torus
G. In the special case that M → N is an equivariant Boothby-
Wang fibration, our formulae reduce to the usual ones for the sym-
plectic manifold N .
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1. Introduction

Let (M,α) be a compact connected contact manifold of dimension 2n+ 1.
Then M has a natural foliation F whose leaves are the orbits of the Reeb
vector field R. If R integrates to a free S1-action, then the space of leaves
M/F is naturally a symplectic manifold of dimension 2n and via the pull-
back of the projection, we can identify differential forms on M/F with basic
differential forms Ω(M,F) ⊂ Ω(M). Usually, however, R does not integrate
to an S1-action and the space of leaves fails to be a manifold. Nevertheless,
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1022 L. Casselmann and J. M. Fisher

we can always consider the subcomplex Ω(M,F) ⊂ Ω(M) of basic differen-
tial forms. The basic cohomology of M is the cohomology of this complex,
and it behaves very much like the cohomology of a compact 2n-dimensional
symplectic manifold, at least under the K-contact assumption. Suppose now
that in addition a torus G acts on M , preserving the contact form. Then
using the Cartan model of equivariant cohomology, we obtain a subcomplex
ΩG(M,F) ⊆ ΩG(M) of Reeb basic equivariant differential forms. The cor-
responding cohomology ring HG(M,F) is a module over HG := HG(point).
In what follows, we denote by µ : M → g∗ the contact moment map defined
by 〈µ, ξ〉 := α(ξM ), by {φt} the flow of R and by T its closure. Our first
result is an analogue of the Atiyah-Bott-Berline-Vergne localization formula
[AB84, BV82].

Theorem 1.1. Suppose a torus G acts on a K-contact manifold (M,α)
such that G preserves α, and suppose in addition that the G-fixed points
have closed Reeb orbits. Then we have for all η ∈ HG(M,F) the identity

(1.1)

∫
M
α ∧ η =

∑
Cj⊆C

∫
Cj

i∗j (α ∧ η)

eG(νCj ,F)
,

where C = Crit µ, ij : Cj ↪→M denotes the inclusion of the connected com-
ponents Cj ⊆ C, and eG(νCj ,F) denotes the equivariant basic Euler class
of the normal bundle to Cj.

Remark 1.2. We note that for this result, it is sufficient to assume that all
G-fixed points have a closed Reeb orbit, an assumption that is weaker than
assuming 0 to be a regular value of Ψ and that is automatically satisfied for
total spaces in the Boothby-Wang fibration.

This theorem is closely related to results obtained in [Töb14, GNT17].

Our second main theorem is an application of Theorem 1.1 in the case
that 0 is a regular value of the contact moment map µ to obtain an in-
tegration formula relating integration of equivariant basic forms on M to
integration of basic forms on M0 := µ−1(0)/G, generalizing the results of
Witten [Wit92] and Jeffrey-Kirwan [JK95] in the symplectic case. For any
η ∈ HG(M,F), with s = dimG, define a function Iη(ε) depending on a real
parameter ε > 0 by

(1.2) Iη(ε) =
1

(2πi)svol(G)

∫
M×g

α ∧ η(φ) ∧ eidGα(φ)−ε|φ|2/2dφ.
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Localization for K-contact manifolds 1023

We denote by η0 the image of η under the natural basic Kirwan map (cf. The-
orem 2.13) HG(M,F)→ H(M0,F0), and let α0 denote the quotient contact
form on M0.

Theorem 1.3. For any η ∈ HG(M,F), there exists some constant c > 0
such that as ε→ 0+, Iη(ε) obeys the asymptotic

(1.3) Iη(ε) = 1
n0

∫
M0

α0 ∧ η0 ∧ eεΘ+idα0 + o(ε−s/2e−c/ε),

where Θ ∈H4(M0,F0) is the class corresponding to −<φ,φ>
2 ∈H4

G(µ−1(0),F)
' H4(M0,F0), with n0 denoting the order of the kernel of the action of G
on µ−1(0), that is, its regular isotropy.

A particular consequence of this theorem is the identity∫
M0

α0 ∧ η0 ∧ eidα0 = n0 lim
ε→0+

Iη(ε),

which expresses intersection pairings on M0 as limits of equivariant inter-
section pairings on M .

The main ingredients in the proof of the Theorem 1.3 are the result that
the distribution F(

∫
M α ∧ η ∧ eidGα), where F denotes Fourier transforma-

tion, is piecewise polynomial and smooth near 0, and a particular expression
for the polynomial this distribution coincides with near 0. With these prop-
erties and a result of Jeffrey-Kirwan, we then obtain the last of our main
theorems.

Theorem 1.4. Let η0 denote the image of η ∈ HG(M,F) under the Kirwan
map. Then we have

(1.4)

∫
M0

α0 ∧ η0 ∧ eidα0 =
n0

vol(G)
jkres

 ∑
Cj⊆C

e−i〈µ(Cj),φ〉
∫
Cj

i∗j
(
α ∧ η(φ) ∧ eidα

)
eG(νCj ,F)

[dφ]

 .

Remark 1.5. In §5.1 we explain in detail how Theorems 1.1 and 1.4 may
be used to deduce the analogous theorems for symplectic manifolds that
occur as M/F in the case that R induces a free S1-action. In this sense,
these theorems provide a strict generalization of their symplectic analogues,
at least in the case of an integral symplectic form and a Hamiltonian group
action that lifts to the S1-bundle in the Boothby-Wang fibration [BW58].



i
i

“3-Casselmann” — 2019/10/1 — 0:15 — page 1024 — #4 i
i

i
i

i
i
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Remark 1.6. The first named author has obtained a surjectivity result
for the basic contact Kirwan map [Cas17]. Since basic cohomology satis-
fies Poincaré duality (see Lemma 2.3), Theorem 1.4 in principle provides a
method to compute the kernel of the basic Kirwan map, and therefore allows
one to compute the basic cohomology ring of the quotient.
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2. K-contact manifolds

2.1. Contact manifolds

Let M be a smooth connected 2n+ 1-dimensional manifold. A contact form
on M is a 1-form α such that α ∧ (dα)n is nowhere vanishing. A contact
manifold is such a pair (M,α). Note that we take the contact form α, and not
just the induced hyperplane distribution kerα, as part of the data defining
a contact manifold. On any such manifold there is a distinguished vector
field, called the Reeb vector field (which we usually denote by R), which is
uniquely determined by the two conditions

ιRα = 1, ιRdα = 0.

Note that these conditions imply that LRα = 0. The contact form gives a
direct sum decomposition TM = kerα⊕ 〈R〉, and we note that kerα is a
symplectic vector bundle over M with symplectic form dα.

Definition 2.1. A contact metric g on (M,α) is a Riemannian metric
g on M , such that under the decomposition TM ∼= kerα⊕ 〈R〉, we have
g = g′ ⊕ (α⊗ α), where g′ is a dα-compatible metric on kerα. We say that
(M,α, g) is K-contact if g is a contact metric for which the Reeb vector field
is Killing, i.e., such that LRg = 0.

The Reeb vector field R generates a free R-action on M and induces
a foliation F on M . However, because the R-action is usually not proper,
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Localization for K-contact manifolds 1025

the space of leaves M/F can be badly behaved and is not necessarily a
manifold. We work with compact M . The K-contact condition then implies
the following, which is the main technical tool which allows us to overcome
this difficulty.

Since R is Killing, its flow φt generates a 1-parameter subgroup of the
group of isometries of (M, g). Since M is compact, Iso(M, g) is a compact Lie
group and, hence, the closure of φt in Iso(M, g) is a torus T . By construction,
R is the fundamental vector field of a topological generator of T . Since
φ∗tα = α, it follows that α is preserved by all of T .

2.2. Basic cohomology

We define the F-basic (or simply basic) forms on M to be

Ωk(M,F) = {η ∈ Ωk(M) | LXη = 0 = ιXη ∀X ∈ X(F)},

where X(F) denotes the vector fields which are tangent to the foliation. Then
one immediately sees that dΩk(M,F) ⊆ Ωk+1(M,F), so that Ω(M,F) is a
subcomplex of the de Rham complex of M . Recall that M is compact. There
is a natural Poincaré pairing on basic forms defined by

(ξ, η) 7→
∫
M
α ∧ ξ ∧ η.

Definition 2.2. The basic cohomology of (M,F), denoted by H∗(M,F),
is the cohomology of the complex Ω(M,F).

Lemma 2.3. The Poincaré pairing descends to a well-defined pairing on
basic cohomology. If M is a compact K-contact manifold, then the basic
cohomology groups are finite-dimensional, Hr(M,F) = 0 for r > 2n and the
Poincaré pairing is non-degenerate.

Proof. See, e.g., [BG08, Proposition 7.2.3]. �

2.3. Equivariant basic cohomology

We now define equivariant basic cohomology and give its basic properties.
See [GNT12, Töb14, GNT17, Cas17] for related constructions. We suppose
now that a torus G acts on M , preserving the contact form. Then the action
of G commutes with the flow of the Reeb vector field. In particular, the
action of G preserves the foliation F and commutes with the T -action.
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Let g denote the Lie algebra of G. For any ξ ∈ g, we let ξM denote the
corresponding fundamental vector field on M , defined as

ξM (x) = d
dt exp(tξ) · x

∣∣
t=0

.

Let S(g∗) denote the symmetric algebra of g∗ (i.e. S(g∗) is the algebra of
polynomial functions on the vector space g). The complex of equivariant
differential forms ΩG(M) is the complex with underlying vector space

ΩG(M) = (S(g∗)⊗ Ω(M))G ,

with grading deg(f ⊗ η) = 2 deg(f) + deg(η) and differential

dG(f ⊗ η)(ξ) = (dη)f(ξ)− (ιξMη)f(ξ).

(Note the sign in the differential – this is chosen to be consistent with
[JK95].)

Definition 2.4. The complex ΩG(M,F) = (S(g∗)⊗ Ω(M,F))G of equiva-
riant basic forms is the subcomplex of ΩG(M) consisting of basic equiva-
riant differential forms. The equivariant basic cohomology of M is the co-
homology of this subcomplex, denoted by HG(M,F). We also denote by
ΩG,c(M), HG,c(M), etc. the complex of compactly supported equivariant
differential forms, classes, etc.

Remark 2.5. The complexes ΩG(M,F), ΩG(M) and their cohomologies
HG(M,F), HG(M) are all naturally modules over HG := HG(point) ∼=
S(g∗).

Remark 2.6. More generally, one can define (equivariant) basic cohomo-
logy on the category of pairs (M,FM ) consisting of a manifold M with regu-
lar foliation FM , (acted upon by G s.t. Ω(M,FM ) is a G∗-algebra (cf. [GS99,
Definition 2.3.1])), and morphisms (M,FM )→ (N,FN ) given by (equivari-
ant) foliation-preserving smooth maps, i.e. smooth maps which take leaves
to leaves. In particular, the HG-module structure on HG(M,F) is induced
by the pullback of the map projecting M to the 1-point manifold with trivial
foliation.

Lemma 2.7 ([Cas17, Proposition 10]). Let A,B ⊂M be G× {φt}-in-
variant submanifolds and assume that we have G× {φt}-equivariant homo-
topy inverses f : A→ B and g : B → A. Then f∗ : HG(B,F)→ HG(A,F)
is an isomorphism with inverse g∗.
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The group G× {φt} is in general non-compact, which complicates find-
ing, e.g., invariant objects or tubular neighborhoods. As mentioned above,
the tool to overcome this obstacle is considering the closure T of {φt}, in par-
ticular, we often consider the action of the torus G× T . A closed G× {φt}-
invariant submanifold A ⊂M is automatically G× T -invariant, hence, there
exist arbitrarily small G× T -invariant tubular neighborhoods that retract
onto A. These retractions are, in particular, G× {φt}-equivariant. Lemma
2.7 and the corresponding well known statement in ordinary equivariant
cohomology then yield

Lemma 2.8. Let i : A ↪→M be the inclusion of a G× T -invariant sub-
manifold, and let U be a G× T -invariant tubular neighborhood of A in M .
Let p : U → A denote the projection map. Then i∗ : HG(U)→ HG(A) and
i∗ : HG(U,F)→ HG(A,F) are isomorphisms with inverse p∗.

Definition 2.9. Let A ⊆M be a G× T -invariant closed submanifold of
M . We define the complex ΩG(M,A,F) to be the kernel of the pullback
ΩG(M,F)→ ΩG(A,F). Since the pullback commutes with the differential,
ΩG(M,A,F) is a differential subcomplex of ΩG(M,F). We denote its coho-
mology by HG(M,A,F).

Proposition 2.10. There is a natural long exact sequence in equivariant
basic cohomology

· · · → Hk
G(M,A,F)→ Hk

G(M,F)→ Hk
G(A,F)→ · · ·

Proof. By standard homological algebra, this follows from the existence of
the short exact sequence 0→ ΩG(M,A,F)→ ΩG(M,F)→ ΩG(A,F)→ 0.

�

Proposition 2.11. We have an isomorphism

HG(M,A,F) ∼= HG,c(M \A,F).

Proof. We follow the same line of arguments as in the usual equivariant
case (see [GS99, Theorem 11.1.1]). Extending by 0 gives a natural inclusion
of equivariant basic forms Φ : ΩG,c(M \A,F)→ ΩG(M,A,F). Φ induces an
isomorphism on cohomology: First, let i : A ↪→ U be a G× T -invariant tubu-
lar neighborhood of A and let η ∈ ΩG(M,A,F) be an equivariantly closed
form. Then by Lemma 2.8, we can find ω ∈ ΩG(U,F) so that η|U = dGω.
Then i∗ω is equivariantly closed, so λ := ω − π∗i∗ω satisfies λ ∈ ΩG(U,A,F)
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and η|U = dGλ. Let ρ be a G× T -invariant smooth function which is iden-
tically 1 on some smaller neighborhood of A and which is compactly sup-
ported in U . Then η − dG(ρλ) ∈ ΩG,c(M \A,F). This shows surjectivity.
Now suppose that η ∈ ΩG,c(M \A,F) is in the kernel of the induced map
on cohomology, i.e., that there exists λ ∈ ΩG(M,A,F) such that η = dGλ.
Then since η is compactly supported on M \A, there exists a neighbor-
hood U of A on which η is identically zero. Therefore λ is closed on U .
Since i∗λ = 0 by assumption, by Lemma 2.8, as above, we have λ = dGβ for
some β ∈ ΩG(U,A,F). Now let ρ be an invariant smooth function which is
identically 1 on a neighborhood of A and which has compact support in U .
Then λ̃ := λ− dG(ρβ) ∈ ΩG,c(M \A,F) and we have η = dGλ̃. This shows
injectivity. �

2.4. The contact moment map

Recall that for any ξ ∈ g, we let ξM denote the corresponding fundamental
vector field on M . By the invariance of the contact form α, we have 0 =
LξMα = d(ιξMα) + ιξMdα. Then the contact moment map for the G-action
on (M,α) is the function µ : M → g∗ defined by

〈µ, ξ〉 = α(ξM ).

Proposition 2.12 ([Cas17, Lemmata 7 and 9]). Suppose that 0 is a
regular value of µ. Then Crit µ is the union of all 1-dimensional G× T -
orbits, and each connected component of Crit µ is a closed submanifold of
M of even codimension.

If 0 is a regular value of µ, the level set µ−1(0) is a smooth G× T -
invariant submanifold of M , on which G acts locally freely. We define the
contact reduction M0 := µ−1(0)/G, which is a contact orbifold (and an hon-
est manifold if the action of G on µ−1(0) is free). Since G and the Reeb flow
commute and the Reeb orbits are transversal to the G-orbits along µ−1(0),
Ω(µ−1(0),F) is a g-dga of type (C) (cf. [GS99, Def. 2.3.4]) and, hence, we
have HG(µ−1(0),F) ∼= H(Ω(µ−1(0),F)bas g) (cf. [GS99, § 5.1] and [GT16,
Proof of Lemma 3.18]) via the Cartan map. This implies that we have an
isomorphism HG(µ−1(0),F) ∼= H(M0,F0), where the later denotes the co-
homology of the R-basic differential forms on M0. There is a natural map

κ : HG(M,F)→ HG(µ−1(0),F) ∼= H(M0,F0),
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induced by the inclusion µ−1(0) ⊂M , which we call the basic Kirwan map,
or simply the Kirwan map when its meaning is clear from context.

Theorem 2.13 ([Cas17, Theorem 2]). If 0 is a regular value of µ, then
the basic Kirwan map H∗G(M,F)→ H∗G(µ−1(0),F) is surjective.

We will need a local normal form of the contact moment map in a neigh-
borhood of µ−1(0). In order to obtain it, we need to show the uniqueness of
certain coisotropic embeddings into contact manifolds. To this end, we first
prove an equivariant contact Darboux Theorem for submanifolds. Note that
while a contact Darboux Theorem for contact forms in a neighborhood of
a point (see, e.g., [Gei06, Theorem 2.24]) is well-known, a contact Darboux
Theorem for neighborhoods of submanifolds exists, to our knowledge, so far
only for contact structures ([Ler02, Theorem 3.6]) or submanifolds to which
the Reeb vector fields are nowhere tangent ([AG90, Theorem B]). We follow
Lerman’s approach for contact structures. Note that his proof does not gen-
erally work for contact forms because his function gt (which is ϕ∗t (α̇t(Rt))
in the notation of the upcoming proof) might not vanish. It is, however,
applicable in our case, because we make the additional assumption that the
Reeb vector fields coincide on a neighborhood of the submanifold.

Theorem 2.14 (Equivariant contact Darboux Theorem). Let Y be
a closed submanifold of X and let α0 and α1 be two contact forms on X
with Reeb vector fields Ri, i = 0, 1. Suppose that α0

x = α1
x and dα0

x = dα1
x

for every x ∈ Y and that there is a neighborhood U of Y in X such that
R0 = R1 on U . Then there exist neighborhoods U0, U1 of Y in X and a
diffeomorphism ϕ : U0 → U1 such that ϕ|Y = id |Y and ϕ∗α1 = α0.

Moreover, if a compact Lie group K acts on X, preserving Y , U , and
the two contact forms α0, α1, then we can choose U0 and U1 K-invariant
and ϕ K-equivariant.

Proof. Consider the family of 1-forms αt := tα1 + (1− t)α0, t ∈ [0, 1]. For
every x ∈ Y and every t ∈ [0, 1], we have αtx = α1

x = α0
x and dαtx = dα1

x =
dα0

x. It follows that αt are contact forms in a neighborhood of Y for every
t ∈ [0, 1]: By maximality of the degree, there is a smooth function f : X ×
[0, 1]→ R such that αt ∧ (dαt)

n = fα0 ∧ (dα0)n. f−1(R \ {0}) is open and
contains Y × [0, 1], so for every (x, t) ∈ Y × [0, 1], there exists a neighbor-
hood U(x, t) of the form Ut(x)× (t− εx,t, t+ εx,t) ∩ [0, 1], εx,t > 0 such that
f |U(x,t) 6= 0. Since [0, 1] is compact, there are t1, . . . , tN : [0, 1] = ∪Ni=1(ti −
εx,ti , ti + εx,ti) ∩ [0, 1]. Then Ũ := ∪x∈Y

(
∩Ni=1Uti(x)

)
is open, contains Y and
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f does not vanish on Ũ × [0, 1]. Thus, all αt are contact forms on Ũ . W.l.o.g.,
we assume that they are contact forms at least on all of U . αt are K-invariant
because α0 and α1 are. Let Rt denote the Reeb vector field of αt. Since Rt
is uniquely determined, Rt is also K-invariant and, on U , we have Rt = R0.
Set

α̇t :=
d

dt
αt = α1 − α0.

α̇t vanishes on Y and, on U , it is α̇t(R0) = 0. Define a K-invariant time
dependent vector field Xt tangent to the contact distribution ξt := kerαt
and vanishing on Y by

Xt := (dαt|ξt)
−1 (−α̇t|ξt).

Then we have (ιXtdαt)|ξt = −α̇t|ξt = (α̇t(Rt)αt − α̇t)|ξt and (ιXtdαt)(Rt) =
0 = (α̇t(Rt)αt − α̇t)(Rt). Hence, since Xt ∈ ξt,

LXtαt = ιXtdαt = α̇t(Rt)αt − α̇t.

Denote the time dependent flow of Xt by ϕt. ϕt is defined on a neighborhood
V of Y since Xt vanishes on Y , K-invariant because Xt is K-invariant, and
ϕt|Y = idY . Then

d

dt
(ϕ∗tαt) = ϕ∗t (LXtαt + α̇t) = ϕ∗t (α̇t(Rt)αt).

On U , 0 = α̇t(R0) = α̇t(Rt). We will find a small neighborhood U0 of Y with
ϕt(U0) ⊂ U for every t, then we have d

dt(ϕ
∗
tαt) = 0 on U0 and, hence, ϕ∗tαt ≡

ϕ∗0α0 = α0. ϕ1 : U0 → ϕ1(U0) =: U1 hence defines the desired K-invariant
contactomorphism. To find U0, note that for every (x, t) ∈ Y × [0, 1], there
exists a neighborhood U(x, t) of the form Ut(x)× (t− εx,t, t+ εx,t) ∩ [0, 1],
εx,t > 0 such that ϕ(U(x, t)) ⊂ U . Since [0, 1] is compact, there are t1, . . . , tN :
[0, 1] = ∪Ni=1(ti − εx,ti , ti + εx,ti) ∩ [0, 1]. Then U0 := ∪x∈Y

(
∩Ni=1Uti(x)

)
is

open, contains Y and ϕ(U0 × [0, 1]) ⊂ U . �

Theorem 2.15 (Contact Coisotropic Embedding Theorem). Let α
be a 1-form on a manifold Z such that dα is of constant rank. Suppose that a
compact Lie group K acts on Z, leaving α invariant. Suppose that there are
two contact K-manifolds (X1, α1), (X2, α2) and K-equivariant embeddings
ij : Z → Xj such that

(i) dij(TZ) ∩ kerαj is coisotropic in (kerαj , dαj |kerαj ),
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(ii) i∗jαj = α and K preserves αj,

(iii) there is a nowhere vanishing K-fundamental vector field XZ on Z,
generated by X ∈ k, such that dij(XZ) = Rj, where Rj denotes the Reeb
vector field on Xj, and Rj is the fundamental vector field generated by
X on all of Xj. (In particular, the Reeb flow corresponds to the action
of a subgroup of K on Xj).

Then there exist K-invariant neighborhoods Uj of ij(Z) in Xj and a K-
equivariant diffeomorphism ϕ : U1 → U2 such that ϕ∗α2 = α1 and i2 =
ϕ ◦ i1.

To prove this Theorem, we adjust the proof of the well-known Coisotro-
pic Embedding Theorem for symplectic manifolds (see, e.g., [GS84, Theo-
rem 39.2]) to the contact setting and extend it in order to obtain an equality
of contact forms, not only of their differentials. The following notation is
used. ξj := kerαj , ζj := dij(TZ) ∩ ker ξj , ωj := dαj |ξj , ⊥:=⊥dα, ⊥j :=⊥ωj .
Note that by our assumptions, ζj is K-invariant and RRj ⊂ dij(TZ) and,
hence, dij(TZ) = ζj ⊕ RRj .

Lemma 2.16. Nj := TXj/dij(TZ) ' (TZ⊥/RXZ)∗ as K-vector bundles
over Z.

Proof. Consider the maps

ϕj : TXj/dij(TZ) → (dij(TZ
⊥)/RRj)∗

[v] 7→ dαj(v, ·)|dij(TZ⊥)/RRj .

Since Rj ∈ ker dαj and dij(TZ) ⊥dαj dij(TZ⊥), the map ϕj is well-defined.

By assumption, dij(TZ) ∩ ξj is coisotropic. It follows that dij(TZ
⊥)⊥dαj ⊆

dij(TZ). This, however, yields that ϕj is injective. For dimensional reasons,
ϕj then has to be surjective, as well. Since ij is an equivariant embedding,
we have K-equivariant isomorphisms TZ⊥/RXZ ' dij(TZ⊥)/RRj . �

Proof of the Embedding Theorem. Realize Nj as a K-invariant complement
of dij(TZ) in TXj such that ξj = ζj ⊕Nj . This is possible since RRj ⊂
dij(TZ). By Lemma 2.16, we have a canonical K-equivariant vector bundle
isomorphism A : N1 → N2. Then for v ∈ N1, Av ∈ N2 is defined via

ω1(v, di1(w)) = ω2(Av, di2(w)) for every dij(w) ∈ dij(TZ⊥) ∩ ζj .

(A neighborhood of the zero section of) Nj can be identified with a K-
invariant tubular neighborhood Uj of ij(Z) in Xj via the exponential maps
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of K-invariant Riemannian metrics, where Z embeds as the zero section.
Then A yields a K-equivariant diffeomorphism Ã : U1 → U2 with i2 = Ã ◦
i1. Set α̃1 := Ã∗α2. Then α̃1 is a contact form on U1. We want to apply
Theorem 2.14. i2 = Ã ◦ i1 implies that i∗1α1 = α = i∗2α2 = i∗1α̃1. Hence, we
have (α̃1)i1(z)|di1(TZ) = (α1)i1(z)|di1(TZ). Furthermore, we have dÃ|N1

= A by

construction, so dÃ|N1
: N1 ⊂ ξ1 → N2 ⊂ ξ2, which yields (α̃1)i1(z)|ξ1 = 0 =

(α1)i1(z)|ξ1 . Thus, (α̃1)i1(z) = (α1)i1(z) on all of TX1. Since the Reeb vector

fields are fundamental vector fields of the same element of k and since Ã is K-
invariant, dÃ(R1(p)) = R2(Ã(p)). It follows that α̃1(R1) = 1 and ιR1

dα̃1 =
0, so R1 is the Reeb vector field of α̃1 on U1. It remains to show that
(dα̃1)i1(z) = (dα1)i1(z) on ξ1 × ξ1, which is seen as in the symplectic case.
By Theorem 2.14, there is a neighborhood U of i1(Z) and a K-equivariant
diffeomorphism g of U intoX1 s.t. g|i1(Z) = idi1(Z) and g∗α̃1 = α1. Then ϕ :=

Ã ◦ g, restricted to a small enough neighborhood, satisfies ϕ∗α2 = α1. �

Lemma 2.17. Suppose that 0 is a regular value of the contact moment map.
Then the natural embedding µ−1(0) ↪→M satisfies (i)–(iii) of Theorem 2.15
with K = G× T .

Proof. (ii) and (iii) are obviously satisfied. To show that the distribution
ζ := Tµ−1(0) ∩ kerα is coisotropic in (kerα, dα|kerα =: ω), recall that 0 is a
regular value of µ, hence,

Tpµ
−1(0) = ker dµp.(2.1)

v ∈ ker dµp if and only if dµXp (v) = (dιXMα)p(v) = 0 for every X ∈ g. Since
α is G-invariant, LXMα = 0, and Cartan’s formula yields that v ∈ ker dµp
if and only if dαp(XM , v) = 0 for every X ∈ g. It follows that

ker dµp = (TpG · p)⊥dα(2.2)

since the tangent space to the G-orbit consists of all fundamental vector
fields. For p ∈ µ−1(0), it is 0 = µ(p)(X) = αp(XM (p)) for every X ∈ g. In
particular, Tp(G · p) ⊂ kerαp. It follows that (TpG · p)⊥dα = (TpG · p)⊥ω ⊕
RRp. Equations (2.2) and (2.1) yield Tpµ

−1(0) ∩ kerαp = Tp(G · p)⊥ω =: ζp.
Then ζ⊥ωp = Tp(G · p). µ is G-invariant, so for every X ∈ g, dµp(XM (p)) =

0. We obtain ζ⊥ωp = Tp(G · p) ⊂ ker dµp = (TpG · p)⊥dα and, hence,

ζ⊥ωp ⊂ (TpG · p)⊥dα ∩ kerαp = (TpG · p)⊥ω = ζp,

ζ is coisotropic. �
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Lemma 2.18. Suppose that 0 is a regular value of the contact moment map.
Then the embedding µ−1(0) ∼= µ−1(0)× {0} ↪→ µ−1(0)× g∗ satisfies (i)–(iii)
of Theorem 2.15 with K = G× T , where a neighborhood U = µ−1(0)× V of
µ−1(0)× {0} ⊂ µ−1(0)× g∗ is endowed with the contact form α̃ := i∗α+
z(θ), we denote the inclusion µ−1(0) ↪→M by i, the coordinates on g∗ by
z and θ is a G-invariant R-basic connection form on µ−1(0)→ µ−1(0)/G.
Furthermore, R is the Reeb vector field of (µ−1(0)× g∗, α̃).

Remark 2.19. Note that a G-invariant R-basic connection form has to
exist: By [Mol88, Proposition 2.8], there always exists a connection that is
adapted to the lifted foliation, i.e., such that the tangent spaces to the leaves
are horizontal. Since G× T is compact, we can obtain a G× T -invariant
adapted connection form by averaging over the group. But this connection
form then has to be basic, or, as Molino calls it, projectable.

Proof. Let j : µ−1(0)→ µ−1(0)× g∗ denote the embedding given by x 7→
(x, 0). Then j∗α̃ = i∗α by construction. Choose an orthonormal basis (Xi)
of g and denote its dual basis by (ui). Then θ =

∑
θiXi and z =

∑
ziui.

With Ωs = θi ∧ · · · ∧ θs and dzs = dzi ∧ · · · ∧ dzs, at z = 0, we have

α̃ ∧ (dα̃)n = (−1)s(s+1)/2s! i∗(α ∧ (dα)n−s) ∧ Ωs ∧ dzs,

which is non-degenerate. Therefore, there is a neighborhood U = µ−1(0)× V
of µ−1(0)× {0} in µ−1(0)× g∗ on which α̃ is a contact form. θ is R-basic, so
ιRθ = 0 and ιRα̃ = ιRi

∗α = i∗ιRα = 1. dθ is R-basic, as well, so ιRdθ = 0.
R is tangent to µ−1(0), so dzi(R) = 0. We obtain ιRdα̃ = ιR(i∗dα+ dz(θ) +
z(dθ)) = 0. By uniqueness, R is the Reeb vector field of (U, α̃). It remains
to show that the distribution ζp := Tpµ

−1(0) ∩ ker α̃p is coisotropic in the
symplectic vector bundle (ker α̃, dα̃|ker α̃ =: ω). The contact moment map µ̃
on (µ−1(0)× g∗, α̃) is easily computed to be µ̃(p, z) = z, hence, µ̃−1(0) =
µ−1(0)× {0} = i(µ−1(0)). dµ̃ = dz has 0 as a regular value, so ker dµ̃(p,0) =
T(p,0)(µ

−1(0)× {0}). The rest of the proof works analogously to that of Lem-
ma 2.17. �

Applying Theorem 2.15 to the two coisotropic embeddings in Lem-
mata 2.17 and 2.18, we obtain a local normal form of µ around µ−1(0).

Proposition 2.20. Suppose that 0 is a regular value of µ. Then there
is a G× T -invariant neighborhood U of µ−1(0) which is equivariantly dif-
feomorphic to a neighborhood of µ−1(0)× {0} in µ−1(0)× g∗ of the form
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µ−1(0)×Bh, Bh = {z ∈ g | |z| ≤ h}, such that in this neighborhood the con-
tact form α is equal to q∗α0 + z(θ), where θ ∈ Ω1(µ−1(0),F , g) is a G-
invariant, F-basic connection 1-form on q : µ−1(0)→ µ−1(0)/G. In partic-
ular, on U , the moment map is given by µ(p, z) = z.

3. Localization

3.1. Basic equivariant Thom isomorphism

Let i : A ↪→M denote the inclusion of a G× T -invariant closed submanifold
of codimension d. The goal of this section is to construct a basic equivariant
pushforward i∗ : HG(A,F)→ HG(M,F) which raises cohomological degree
by d. We will follow the presentation in [GS99, Chapter 10] very closely.

To begin, let p : U → A denote the projection of a G× T -invariant tubu-
lar neighborhood. Since U is a G× T -equivariant fiber bundle over A, there
is a well-defined pushforward map p∗ : Ωk

G,c(U)→ Ωk−d
G (A), defined by fiber-

wise integration. Note that p∗ maps equivariant basic forms to equivariant
basic forms. From the definition of p∗ we immediately obtain the following,
which shows that p∗ descends to a well-defined map on equivariant (basic)
cohomology.

Lemma 3.1. Let p : U → A be the projection and let p∗ : ΩG,c(U)→ ΩG(A)
denote fiberwise integration. Then we have for all η ∈ ΩG,c(U) and for all
β ∈ ΩG(A) ∫

U
p∗β ∧ η =

∫
A
β ∧ p∗η.

The basic equivariant pushforward i∗ will be constructed as follows. An
equivariant basic Thom form is a closed form τ ∈ Ωd

G,c(U,F) satisfying p∗τ =
1. We will give a construction of equivariant basic Thom forms at the end
of this section. Suppose for now that an equivariant basic Thom form has
been constructed. Then we define the basic equivariant pushforward as the
composition

(3.1) i∗ : Ωk
G(A,F)

p∗→ Ωk
G(U,F)

∧τ→ Ωk+d
G,c (U,F)→ Ωk+d

G (M,F),

where the last arrow denotes extension by zero.
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Proposition 3.2. The basic equivariant pushforward satisfies, for all closed
forms β ∈ ΩG(A,F) and η ∈ ΩG(U,F)∫

M
η ∧ i∗β =

∫
A
i∗η ∧ β.

Proof. i∗β = p∗β ∧ τ is a form compactly supported in an invariant neigh-
borhood U of A. Therefore we have∫

M
η ∧ i∗β =

∫
U
η ∧ p∗β ∧ τ (by definition of i∗)

=

∫
U
p∗i∗η ∧ p∗β ∧ τ (by Lemma 2.8)

=

∫
A
i∗η ∧ β ∧ p∗τ (by Lemma 3.1)

=

∫
A
i∗η ∧ β (by p∗τ = 1).

�

As in [GS99], we obtain that the induced map on cohomology p∗ :
Hk
G,c(U,F) → Hk−d

G (A,F) is an isomorphism with inverse i∗.
It remains to construct the equivariant basic Thom form. We use a

variant of the Mathai-Quillen construction based on the presentation in
[GS99, Chapter 10] (see also [Töb14, GNT17] for closely related construc-
tions). First we identify U with the normal bundle N → A, equipped with a
G× T -invariant metric. Let P → A denote the bundle of oriented orthonor-
mal frames of N : it is a G× T -equivariant principal SO(d)-bundle over A.
Consider the map P × Rd → N ,

(x, (e1, . . . , ed), v)→ (x, v1e1 + · · ·+ vded).

It gives a G× T -equivariant diffeomorphism (P × Rd)/SO(d) ∼= N . Equip
P with a G× T -invariant basic connection form. Recall that such a form
has to exist, see Remark 2.19. Using the Cartan model of equivariant basic
cohomology, the Cartan map yields isomorphisms

φN : ΩSO(d)×G,c(P × Rd, E × {∗})
∼=→ ΩG,c(N,F)

φA : ΩSO(d)×G(P, E)
∼=→ ΩG(A,F),
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where E denotes the foliation induced by R on P . Let p2 : P × Rd → Rd be
the projection. We define τ by

τ := φN (p∗2(ν ⊗ 1)) ∈ ΩG,c(N,F)

where ν ∈ ΩSO(d),c(Rd) is the (modified) universal Thom-Mathai-Quillen

form as constructed in [GS99, §10.3], ν ⊗ 1 ∈ ΩSO(d)×G,c(Rd). By analogous
arguments to [GS99, §10.4], we hence have the following.

Theorem 3.3. The form τ ∈ Ωd
G,c(U,F) as constructed above is a Thom

form for the projection p : U → A. Consequently, the basic equivariant push-
forward i∗ : Hk

G(A,F)→ Hk+d
G (M,F) is well-defined.

3.2. The localization formula

In this section, we would like to derive a basic version of an Atiyah-Bott-
Berline-Vergne type localization formula. We follow the line of proof in
[AB84], adjusting it to the basic setting. We assume throughout that the
G-fixed points have closed Reeb orbits. Then Crit (µ), the minimal, 1-
dimensional G× {φt}-orbits, are the 1-dimensional G× T -orbits. This as-
sumption is obviously satisfied if all Reeb orbits are closed or if there are
no G-fixed points. Note that the later is the case if 0 is a regular value of
the contact moment map µ. Throughout this section, we work with coho-
mology with complex coefficients. Then S(g∗) = C[u1, . . . , us], where the ui
are coordinates of g∗ ⊗ C. We will make use of the notion of the support of
a finitely generated module. Recall that in the special case of a module H
over C[u1, . . . , ul], the support is the subset of Cl defined by:

SuppH =
⋂

f∈C[u1,...,ul]

fH=0

Vf ,

where Vf = {u ∈ Cl | f(u) = 0}. In particular, a free module has the whole
space Cl as support. An element h ∈ H is called a torsion element if there
is a 0 6= f ∈ C[u1, . . . , ul] with fh = 0. If all elements are torsion elements,
then H is called a torsion module. Note that H is a torsion module if and
only if Supp H is a proper subset of Cl. For more details, the reader is
referred to [AB84, Section 3] and the reference therein.
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Definition 3.4. For x ∈M we denote by gx and g̃x the stabilizer algebra
and generalized stabilizer algebra, respectively, to be

gx = {ξ ∈ g | ξM (x) = 0}, g̃x = {ξ ∈ g | ξM (x) ∈ RR(x)},

where R(x) ∈ TxM denotes the Reeb vector at x.

Then Crit (µ) = {x ∈M | g̃x = g}. By our assumption, Crit (µ) is the
union of the 1-dimensional G× T -orbits, and every connected component is
a closed submanifold of even codimension (cf. [Cas17, Lemma 9]).

Lemma 3.5. Let O = (G× T ) · x be an orbit and suppose that U ⊆M
is a G× {φt}-invariant submanifold admitting a G× {ψt}-equivariant map
p : U → O. Then

SuppHG(U,F) ⊆ g̃x ⊗ C.

Proof. First note that the S(g∗)-algebra structure on HG(U,F) factors as

S(g∗)→ HG(O,F)→ HG(U,F),

whence SuppHG(U,F) ⊆ SuppHG(O,F). Thus, it suffices to show

SuppHG(O,F) ⊆ g̃x ⊗ C.

For all h ∈ G× T , we have g̃h·x = g̃x. In particular, the generalized stabilizer
is constant along O. Let k be a complement of g̃x in g such that k is the Lie
algebra of a subtorus K of G. Since g̃x acts trivially on Ω(O,F), the Cartan
complex can be written as ΩG(O,F) = S(g̃∗x)⊗ S(k∗)⊗ Ω(O,F)K and dG =
1⊗ dK , hence HG(O,F) = S(g̃∗x)⊗HK(O,F). K acts locally freely and
transversally on O, so Ω(O,F) is a k-dga of type (C) (cf. [GS99, Def. 2.3.4])
andHK(O,F) = H(Ω(O,F)bask) (cf. [GS99, § 4.6] and [GT16, Lemma 3.18]).
It also follows that K × {φt} acts locally freely on O so that the orbits of
this action define a foliation E of O. Since G× T is compact, we can, in par-
ticular, find a metric with respect to which the K × {φt}-action is isometric.
Hence, E is a Riemannian foliation (cf. also [Mol88, p. 100]). This, however,
means that the basic cohomology H(O, E) = H(Ω(O,F)bask) is of finite di-
mension by [KSH85, Théorème 0]. Therefore, the support of HG(O,F) is
contained in g̃x ⊗ C. �

Proposition 3.6. Let X be a closed G× T -invariant submanifold of M .
Then the supports of H∗G(M \X,F) and H∗G,c(M \X,F) lie in ∪x∈M\X g̃x ⊗
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C. Note that since only finitely many different g̃x occur on M , this is a finite
union.

Proof. (cf. [AB84, Proposition 3.4] and the proof thereof in [GS99, Theo-
rem 11.4.1]) Let U be a G× T -invariant tubular neighborhood of X. By
cohomology equivalence, it suffices to proof the assertion for HG(M \ Ū ,F).
Since M \ U is compact, we can cover M \ Ū with N tubular neighborhoods
Ui of G× T -orbits of points xi ∈M \ U ⊂M \X. Let Vs = U1 ∪ · · · ∪ Us−1.
Using Lemma 3.5 together with the equivariant basic Mayer-Vietoris se-
quence for Us and Vs (cf. [Cas17, Proposition 6]; the sequence for the com-
pactly supported case is obtained analogously by adjusting the proof of
[BT13, Proposition 2.7] to the equivariant basic setting), the claim follows
by induction. �

Let C := Crit (µ). The previous result then immediately yields the fol-
lowing:

Corollary 3.7. The supports of H∗G(M \ C,F) and H∗G,c(M \ C,F) lie in⋃
g̃x 6=g g̃x ⊗ C. In particular, H∗G(M \ C,F) is a torsion module over S(g∗).

The same holds for any G× {φt}-invariant subset of M \ C and, by
exactness, for the relative equivariant basic cohomology of any pair inM \ C.

Theorem 3.8. Denote by i : C ↪→M the inclusion. Then the kernel and
cokernel of i∗ : H∗G(M,F)→ H∗G(C,F) have support in

⋃
g̃x 6=g g̃x ⊗ C. In

particular, both S(g∗)-modules have the same rank, dimH∗(C,F), and ker i∗

is exactly the module of torsion elements in HG(M,F).

Proof. From the long exact sequence for the pair (M,C), one sees immedi-
ately that ker i∗ is a quotient module of HG(M,C,F), and that coker i∗

is a sub-module of HG(M,C,F). But HG(M,C,F) is a torsion module
with support in

⋃
g̃x 6=g g̃x ⊗ C by Corollary 3.7 and Proposition 2.11. Since

H∗G(C,F) = S∗(g∗)⊗H∗(C,F) is a free S∗(g∗)-module, the rank statement
follows and every torsion element has to be mapped to zero under i∗. �

Proposition 3.9. The kernel and cokernel of the push forward i∗:HG(C,F)
→ HG(M,F) have support in

⋃
g̃x 6=g g̃x ⊗ C and are therefore torsion.

Proof. Let Uj denote a sufficiently small invariant tubular neighborhood of
the connected component Cj ⊂ C such that Uj ∩ Ui = ∅ for i 6= j and set
U = ∪Uj . Then ∂Uj is a sphere bundle over Cj , in particular, a smooth man-
ifold, and G× T -invariant. Note that Definition 2.9 and Propositions 2.10



i
i

“3-Casselmann” — 2019/10/1 — 0:15 — page 1039 — #19 i
i

i
i

i
i

Localization for K-contact manifolds 1039

and 2.11 extend to include closed subsets that are G× {φt}-invariant open
submanifolds with invariant boundary. We consider the long exact sequence
of the pair (M,M \ U). By the Thom isomorphism, HG(C,F) ∼= HG,c(U,F)
and H∗G,c(U,F) ∼= H∗G(M,M \ U,F) by Proposition 2.11. The long exact
sequence then yields that ker ι∗ is the image of a torsion module with
support in

⋃
g̃x 6=g g̃x ⊗ C and that coker ι∗ is isomorphic to the image of

H∗G(M,F)→ H∗G(M \ U,F), a submodule of a torsion module with support
in
⋃

g̃x 6=g g̃x ⊗ C. �

From the preceding two statements, it follows that i∗i∗ : HG(C,F)→
HG(C,F) is an isomorphism modulo torsion. As in [GS99, Chapter 10.5], we
obtain that i∗i∗ = eG(νC,F) is the multiplication with the basic G-equiva-
riant Euler class of the normal bundle of C (cf. , e.g., [Cas17, Definition 11]).
Hence, eG(νC,F) is invertible in the localized module.

Remark 3.10. Alternatively, it can be shown directly that eG(νC,F) is
not a zero divisor in H∗G(C,F), see [Cas17, Lemma 13].

Theorem 3.11. For all η ∈ HG(M,F) we have the exact integration for-
mula ∫

M
α ∧ η =

∑
Cj⊆C

∫
Cj

i∗j (α ∧ η)

eG(νCj ,F)
,

where Cj ⊆ C denote the connected components and ij : Cj ↪→M their in-
clusions.

Proof. The inverse of i∗ on the localized module is given by

Q :=
∑
Cj⊆C

i∗j
eG(νCj ,F)

.

We therefore obtain for every η ∈ HG(M,F)

(3.2)

∫
M
α ∧ η =

∫
M
α ∧ i∗Qη.

Now, using the definition of i∗ in terms of Thom forms we can express η as

(3.3) η = i∗Qη =
∑
j

(ij)∗
i∗jη

eG(νCj ,F)
=
∑
j

p∗j

(
i∗jη

eG(νCj ,F)

)
∧ τj ,
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where τj is an equivariant basic Thom form compactly supported in a small
G× T -invariant tubular neighborhood Uj of Cj , pj : Uj → Cj is the projec-
tion. By Lemma 2.8, we have∫

Uj

α ∧ p∗j
(

i∗jη

eG(νCj ,F)

)
∧ τj =

∫
Uj

p∗j

(
i∗j (α ∧ η)

eG(νCj ,F)

)
∧ τj

=

∫
Cj

i∗j (α ∧ η)

eG(νCj ,F)
∧ (pj)∗τj .

Since (pj)∗τj = 1, we obtain the desired integration formula by summing
over j and using the identites (3.2)-(3.3). �

4. Equivariant integration formulae

4.1. Equivariant integration

Following an idea of Witten [Wit92], Jeffrey and Kirwan [JK95] proved
analogues of Theorems 1.3 and 1.4 for symplectic quotients. By far the
most important ingredient in their proof is the Atiyah-Bott-Berline-Vergne
integration formula [AB84, BV82], as this essentially allows the problem to
be reduced to studying the properties of Gaussian integrals over the vector
space g. Armed with our localization formula (Theorem 1.1) and the local
normal form of the moment map (Proposition 2.20), we will obtain the K-
contact analogues, Theorems 1.3 and 1.4, by the same line of argumentation
as Jeffrey-Kirwan.

Let η be a form representing a class in HG(M,F) and denote by Π∗ :
HG(M,F)→ HG the basic equivariant pushforward Π∗η =

∫
M α ∧ η. We

will apply Π∗ to classes of type η ∧ eidGα, which are not equivariant basic
cohomology classes according to our definition, since they are not polynomial
but analytic in φ. This is well defined, provided one replaces the codomain
with a suitable completion of HG. With this in mind, for any closed equiva-
riant basic form η, with s = dim g and ε > 0, we consider the integral

Iη(ε) =
1

(2πi)svol(G)

∫
g

e−ε|φ|
2/2(Π∗(η ∧ eidGα))(φ)dφ,

where dφ is a measure on g corresponding to a metric on g that induces a
volume form volG on G, vol(G) =

∫
G volG. Then dφ/vol(G) is independent

of that choice. Note that Iη(ε) is well defined; η ∧ eidGα is only of mild
exponential dependence on φ so that the factor e−ε|φ|

2/2 ensures convergence
of the integral.
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Following Jeffrey-Kirwan, we will relate the ε→ 0 asymptotics of Iη(ε)
to intersection pairings on the contact quotient. First, we must rewrite Iη(ε)
in a more convenient form. For any (tempered) distribution on g, introduce
the Fourier transform

(Ff)(z) = (2π)−s/2
∫
g

f(φ)e−iz(φ)dφ.

By definition, F(f) is naturally a distribution on g∗. Set

Qη(y) = F
[
Π∗(η ∧ eidGα)

]
(y).

Let gε denote the Gaussian function gε(φ) = e−ε|φ|
2/2, with Fourier transform

(Fgε)(z) = ε−s/2gε−1(z). Note that Iη(ε) can be viewed as the L2 inner prod-
uct of the functions gε(φ) and Π∗(η ∧ eidGα)(φ). Since the Fourier transform
is an L2 isometry, we have the following identity.

Lemma 4.1.

Iη(ε) =
1

(2πi)sεs/2vol(G)

∫
g∗
Qη(y)e−|y|

2/2εdy.

Lemma 4.2. The distribution Qη(y) = F
[
Π∗(η ∧ eidGα)

]
(y) can be ex-

pressed as follows

Qη(y) = (2π)s/2
∑
J

iJ
∂

∂yJ

∫
M
α ∧ ηJ ∧ eidαδ(−µ− y),

where η =
∑

J ηJy
J , summing over multi indices J , with yj denoting an or-

thonormal basis of g∗ and ηJ ∈ Ω∗(M,F), and δ denotes the Dirac delta
distribution. In particular, Qη(y) is supported in the compact set −µ(M).

Proof. We make use of the arguments given in [JK95, § 5, 7]. Write η(φ) =∑
J ηJφ

J with φj denoting the coordinate functions yj(φ). Recalling the
definition of Qη(y), we have

Qη(y) = F
[
Π∗(η ∧ eidGα)

]
(y)

=
1

(2π)s/2

∑
J

∫
M

∫
g

α ∧ ηJφJ ∧ eidα−i〈µ,φ〉−i〈y,φ〉dφ

=
1

(2π)s/2

∑
J

iJ
∂

∂yJ

∫
M
α ∧ ηJ ∧ eidα

∫
g

ei〈−µ−y,φ〉dφ
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= (2π)s/2
∑
J

iJ
∂

∂yJ

∫
M
α ∧ ηJ ∧ eidαδ(−µ− y).

This shows that Qη(y) is the integral over x ∈M of a distribution S(x, y)
on M × g which is supported on the set {(x, y) | − µ(x) = y}. �

Proposition 4.3. The distribution Qη(y) may be represented by a piecewise
polynomial function.

Proof. Let Cj denote a connected component of the critical set C = Critµ
of codimension d. By Proposition 2.12, G× T acts in R-direction only and
its isotropy (g× t)Cj has codimension 1. Let θ be a G× T -invariant, basic
connection form on the bundle of oriented orthonormal frames of νCj and
denote by F θ its (ordinary) curvature. Choose a basis (Xi) of g× t such
that X1, . . . , Xr−1 is a basis of (g× t)Cj and Xr = R. Denote its dual basis
by ui. Then, since θ is basic, ιXrθ = 0. The basic G× T -equivariant Euler
form is then given by

eG×T (νCj ,F) = Pf

(
F θ −

∑
i

ιXiθui

)
= Pf

(
F θ −

r−1∑
i=1

ιXiθui

)
.(4.1)

Denote by (G× T )Cj ⊂ G× T the subtorus that has (g× t)Cj as Lie alge-
bra. νCj is a (G× T )Cj -equivariant vector bundle over Cj . By the splitting
principle for equivariant bundles, we may assume that the normal bundle
splits as a direct sum of line bundles νCj = ⊕iLi and (G× T )Cj acts on

Li with weight βji . Then the basic (G× T )Cj -equivariant Euler form factors

as e(G×T )Cj
(νCj ,F) =

∏
i e(G×T )Cj

(Li,F) and 2πe(G×T )Cj
(Li,F) = cji + βji ,

where cji ∈ Ω2(Cj ,F) is the (ordinary) basic Euler form of Li. Hence,

(2π)d/2e(G×T )Cj
(νCj ,F) =

d/2∏
i=1

(cji + βji ).(4.2)

But we can also compute e(G×T )Cj
(νCj ,F) as Pf

(
F θ −

∑r−1
i=1 ιYiθbi

)
, where

(Yi) denotes a basis of (g× t)Cj and (bi) its dual basis. (4.1) yields that if
we extend e(G×T )Cj

(νCj ,F) to all of g× t by setting it equal to 0 on RR, we

obtain eG×T (νCj ,F). Hence, extending βji ∈ (g× t)∗Cj and combining (4.1)
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and (4.2) yields

(2π)d/2eG×T (νCj ,F) =

d/2∏
i=1

(cji + βji ).(4.3)

The definition of the Euler form yields that eG(νCj ,F) is exactly given by
the restriction of eG×T (νCj ,F) to g so that, by (4.3),

(2π)d/2eG(νCj ,F) =

d/2∏
i=1

(cji + βji |g).(4.4)

By Theorem 1.1, we have that

(4.5) Π∗(η ∧ eidGα) =
∑
j

∫
Cj

i∗j (α ∧ η ∧ eidGα)

eG(νCj ,F)
.

It now follows with (4.4), by the same argument as [JK95, Lemma 2.2], that
the pushforward may be written as a sum

Π∗(η ∧ eidGα)(φ) =
∑
j

∑
a∈Aj

e−iµ(Cj)(φ)
∫
Cj
i∗j (α ∧ η(φ) ∧ eidα)cj,a∏

i(β
j
i |g)(φ)nj,i(a)

,(4.6)

where Aj is a finite indexing set, cj,a ∈ H∗(Cj ,F) is determined by the

cji , and nj,i(a) is a non-negative integer. In particular, for every (j, a), the
term on the right hand side of Equation (4.6) is given by the product of

e−iµ(Cj)(φ)

(
∏
i β

j
i |g)(φ)nj,i(a)

with a polynomial in φ, where the polynomial is simply a

constant if η = 1. Given this description of the pushforward, the piecewise
polynomial property of Qη(y) for η = 1 follows from the same argument as
[JK95, Theorem 4.2], making use of Lemma 4.2. For arbitrary η, it follows
from the case η = 1, noting that every (j, a)-summand contributes a piece-
wise polynomial function, applying that - up to a factor of (−i) - Fourier
transformation interchanges differentiation and multiplication by a coordi-
nate, cf. [Hör90, Lemma 7.1.3]. �

4.2. Asymptotic analysis

By Lemma 4.1 and Proposition 4.3, we are reduced to estimating the asymp-
totics of an integral of the form I(ε) =

∫
e−|y|

2/2εQ(y)dy, where Q(y) is piece-
wise polynomial. Suppose that Q(y) is regular near the origin, and let Q0(y)
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denote the polynomial which agrees with Q(y) near the origin. Set

I0(ε) =
1

(2πi)sεs/2vol(G)

∫
g∗
Q0(y)e−|y|

2/2εdy.

Lemma 4.4. Suppose that Q(y) is regular near the origin and define I(ε)
and I0(ε) as above. Then we have the asymptotic

|I(ε)− I0(ε)| = o(ε−s/2e−c/ε)

for some constant c > 0.

Proof. Let R(y) = Q(y)−Q0(y). Then R(y) is piecewise polynomial and
identically zero in a neighborhood of the origin. Pick δ > 0 so that R(y) is
identically zero for |y| < δ. Switching to polar coordinates, we have

|I(ε)− I0(ε)| ≤ c′ε−s/2
∫
Ss−1

∫ ∞
δ
|R(y)|e−r2/2εrs−1drdvSs−1 ,

where c′ is a constant that does not depend on ε. Since R(y) is piecewise
polynomial, we can find constants a0, . . . , aN so that for |y| > δ, we have
|R(y)| ≤

∑
j aj |y|j . Combining this with the previous estimate, we have

|I(ε)− I0(ε)| ≤ c′′ε−s/2
N∑
j=1

aj

∫ ∞
δ

rj+s−1e−r
2/2εdr,

where c
′′

is a constant that does not depend on ε. This reduces the problem
to estimating integrals of the form

∫∞
δ r`e−r

2/2εdr for ` ≥ 0. The following
Lemma 4.5 shows that such an integral is bounded by a function of the
form p(

√
2ε)e−δ

2/(4ε), where p is a polynomial of degree `+ 1. The result
follows. �

Lemma 4.5. The integral Iδn(a) :=
∫∞
δ xne−ax

2

dx, a, δ>0, n∈N, is bounded

from above by a function of the form pn(1/
√
a)e−

δ2a

2 , where pn is a polyno-
mial of degree n+ 1.

Proof. The claim is shown by induction on n. By substituting x =
√
a
−1
y,

we obtain

(Iδ0(a))2 =

√a−1

∞∫
√
aδ

e−y
2

dy


2

=

 1

2
√
a

∫
R\[−

√
aδ,
√
aδ]

e−y
2

dy


2
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=
1

4a

∫
R2\[−

√
aδ,
√
aδ]2

e−(x2+y2)dxdy ≤ 1

4a

∫
R2\B√aδ(0)

e−(x2+y2)dxdy,

where B√aδ(0) denotes the ball of radius
√
aδ, centered at the origin. By

passing to polar coordinates, the integral becomes

(Iδ0(a))2 ≤ 1

4a

2π∫
0

∞∫
δ
√
a

d

dr

[
−1

2
e−r

2

]
drdφ =

1

4a

2π∫
0

1

2
e−δ

2adφ =
π

4a
(e−

δ2a

2 )2.

For n = 1, we can directly compute

Iδ1(a) =

∫ ∞
δ

xe−ax
2

dx = − 1

2a

∫ ∞
δ

d

dx

[
e−ax

2
]
dx =

1

2a
e−aδ

2 ≤ 1

2a
e−

aδ2

2 .

Thus, the claim holds for n = 0, 1. Now, let n ≥ 2 and suppose the claim
holds for n− 2. We integrate by parts.

Iδn(a) =

∫ ∞
δ
−x

n−1

2a
· d
dx

[
e−ax

2
]
dx

=

[
−x

n−1

2a
· e−ax2

]∞
x=δ

+

∫ ∞
δ

(n− 1)xn−2

2a
· e−ax2

dx

=
δn−1

2a
e−aδ

2

+
n− 1

2a
Iδn−2(a) ≤

(
δn−1

2a
+
n− 1

2a
pn−2(a−1/2)

)
e−

aδ2

2 .

Setting pn(a−1/2) =
(
δn−1

2a + n−1
2a pn−2(a−1/2)

)
yields the claim. �

We now want to apply Lemma 4.4 to Qη. It remains to show that Qη(y)
is regular near 0, and to compute the polynomial Qη0(y) which agrees with
Qη(y) near the origin. We will make use of the local normal form we found
in §2. Analogous statements in the symplectic setting can be found in [JK95,
§§ 5, 7, 8].

Proposition 4.6. Suppose that 0 is a regular value of µ. Then Qη(y) is
regular in some neighborhood of 0, and on this neighborhood it coincides with
the polynomial Qη0(y) given by

Qη0(y) = is(2π)s/2
∫
µ−1(0)

q∗(α0 ∧ η0) ∧ eiq∗dα0−iy(Fθ)Ω,

where θ is a G-invariant basic connection form on the G-bundle q : µ−1(0)→
µ−1(0)/G, Fθ denotes its curvature form, Ω = θ1 ∧ · · · ∧ θs is the volume
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form on the G-orbits defined by θ, η0 ∈ H(M0,F0) represents i∗0η ∈
HG(µ−1(0),F), where the inclusion µ−1(0) ↪→M is denoted by i0, and α0

denotes the induced contact form on Ψ−1(0)/G = M0. Here, µ−1(0) is en-
dowed with the orientation induced by the volume form q∗(α0 ∧ (dα0)n−s) ∧
Ω. In particular, with n0 denoting the order of the regular isotropy of the
action of G on µ−1(0), we have∫

M0

α0 ∧ η0 ∧ eidα0 =
n0

is(2π)s/2volG
F
(

Π∗(η ∧ eidGα)
)

(0).

Proof. Recall that

Qη(y) = F
[
Π∗(η ∧ eidGα)

]
(y) =

1

(2π)s/2

∫
M

∫
g

α ∧ η(φ) ∧ eidGα−i〈y,φ〉dφ

By Lemma 4.2, when y is sufficiently small, we may replace the integral over
M by an integral over U ⊂M , where U is a neighborhood of µ−1(0). Using
the normal form of Proposition 2.20, we see that for small y

Qη(y) =
1

(2π)s/2

∫
g

∫
µ−1(0)×Bh

α ∧ η(φ) ∧ eidGα−i〈y,φ〉dφ,

where µ−1(0)×Bh is canonically oriented by the contact volume form.
Consider the projection π : µ−1(0)×Bh → µ−1(0)× {0} and the inclusion
i : µ−1(0)× {0} → µ−1(0)×Bh. Then i ◦ π : µ−1(0)×Bh → µ−1(0)×Bh is
G ×T -equivariantly homotopic to the identity and, hence, i induces an iso-
morphism

HG(µ−1(0)×Bh,F × {pt.}) ∼= HG(µ−1(0)× {0},F × {0})
= HG(µ−1(0),F).

Since [q∗η0] = [i∗0η] by definition of η0, it is [π∗q∗η0] = [η|µ−1(0)×Bh ].
Therefore, there is a γ ∈ ΩG(µ−1(0)×Bh,F × {pt.}) such that η − π∗q∗η0 =
dGγ. Set

∆ : = Qη(y)− 1

(2π)s/2

∫
g

∫
µ−1(0)×Bh

α ∧ π∗q∗η0 ∧ eidGα−i〈y,φ〉dφ

=
1

(2π)s/2

∫
g

∫
µ−1(0)×Bh

α ∧ dGγ ∧ eidGα−i〈y,φ〉dφ.
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Since dGdGα = 0 and dGφj = 0, we have

dGγ ∧ eidGα−i〈y,φ〉 = dG

(
γ ∧ eidGα−i〈y,φ〉

)
.

The integral over µ−1(0)×Bh picks up only those components of the ba-
sic form dG

(
γ ∧ eidGα−i〈y,φ〉

)
of degree 2n, so we can pass to the ordinary

differential and

(2π)s/2∆ =

∫
g

∫
µ−1(0)×Bh

α ∧ d(γ ∧ eidGα−i〈y,φ〉)dφ

=

∫
g

∫
µ−1(0)×Bh

−d
(
α ∧ γ ∧ eidGα−i〈y,φ〉

)
+ dα ∧ γ ∧ eidGα−i〈y,φ〉dφ.

The second summand is basic, hence, its top degree part is zero. Thus, the
whole summand vanishes under integration. By Stokes’ Theorem, denoting
the boundary of Bh by Sh, we obtain

(2π)s/2∆ = −
∫
g

∫
µ−1(0)×Sh

α ∧ γ ∧ eidGα−i〈y,φ〉dφ.

Write γ(φ) =
∑

J γJφ
J . As in the proof of Lemma 4.2, the previous equation

becomes

(2π)s/2∆ = −(2π)s
∑
J

iJ
∂

∂yJ

∫
µ−1(0)×Sh

α ∧ γJ ∧ eidαδ(−µ− y).

Recall that the local normal form of the moment map is given by µ(p, z) = z.
Then, for sufficiently small y, δ(−µ− y) is supported away from Sh and it
follows that ∆ = 0. This means that, for sufficiently small y,

Qη(y) =
1

(2π)s/2

∫
g

∫
µ−1(0)×Bh

α ∧ π∗q∗η0 ∧ eidα+i〈−µ−y,φ〉dφ

= (2π)s/2
∫

µ−1(0)×Bh

α ∧ π∗q∗η0 ∧ eidαδ(−µ− y)

= (2π)s/2
∫

µ−1(0)×Bh

(q∗α0 + z(θ)) ∧ q∗η0 ∧ eidq
∗α0+idz(θ)+iz(dθ)δ(−z − y).

Let j index an orthonormal basis of g resp. g∗ and set Ω = θ1 ∧ · · · ∧ θs
the volume form on the G-orbits, [dz] = dz1 ∧ · · · ∧ dzs. We only obtain a



i
i

“3-Casselmann” — 2019/10/1 — 0:15 — page 1048 — #28 i
i

i
i

i
i

1048 L. Casselmann and J. M. Fisher

non-zero contribution from eidz(θ) from the term containing

(idz(θ))s = s!is(−1)s(s+1)/2Ω ∧ [dz]

since all the factors dzj must appear. Additional factors of θ will wedge to
0 with Ω, so z(θ) does not contribute to the integral. We obtain

Qη(y) = is(−1)
s(s+1)

2 (2π)s/2(4.7)

×
∫

µ−1(0)×Bh

q∗(α0 ∧ η0) ∧ eiq∗dα0+iz(dθ)Ωδ(−z − y)[dz].

The orientation on µ−1(0)×Bh is canonically given by the contact vol-
ume form

(q∗α0 + z(θ)) ∧ (q∗dα0 + d(z(θ)))n

= (−1)
s(s−1)

2 n!
(n−s)!q

∗α0 ∧ (q∗dα0 + z(dθ))n−s ∧ Ω ∧ [dz].

For z = 0, this volume form differs by a factor of (−1)s(s−1)/2 n!
(n−s)! from the

volume form ν := q∗(α0 ∧ dαn−s0 ) ∧ Ω ∧ [dz]. Hence, when changing the ori-
entation of µ−1(0)×Bh to that induced by ν in Equation 4.7, denoting the
thusly oriented manifold by (µ−1(0)×Bh)ν , we obtain a factor (−1)s(s−1)/2

and obtain

Qη(y) = is(2π)s/2
∫

(µ−1(0)×Bh)ν
q∗(α0 ∧ η0) ∧ eiq∗dα0+iz(dθ)Ωδ(−z − y)[dz].

On Bh, we consider the orientation induced by [dz] and we endow µ−1(0)
with the orientation induced by q∗(α0 ∧ dαn−s0 ) ∧ Ω so that their product
gives the orientation of (µ−1(0)×Bh)ν . We continue our computation by
integrating over Bh and obtain

Qη(y) = is(2π)s/2
∫
µ−1(0)

q∗(α0 ∧ η0) ∧ eiq∗dα0−iy(dθ)Ω

= is(2π)s/2
∫
µ−1(0)

q∗(α0 ∧ η0) ∧ eiq∗dα0−iy(F θ)Ω,

where we have replaced the term dθ by the curvature form Fθ = dθ + 1
2 [θ, θ],

which, as above, does not change the value of the integral. Therefore we
obtain the claimed expression for Qη0(y). This is obviously a polynomial in
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y, since only finitely many terms in the power series expansion of e−iy(Fθ)

are non-zero.
µ−1(0)/G is canonically oriented by α0 ∧ dαn−s0 . Hence, together with

above orientation on µ−1(0), the projection q induces the same orientation
on the fibers as Ω. Ω integrates to vol(G)/n0 over the fiber, so, when y = 0,
the previous equation becomes

F(Π∗(η ∧ eidGα))(0) = is(2π)s/2vol(G)/n0

∫
µ−1(0)/G

α0 ∧ η0 ∧ eidα0 . �

Proposition 4.7. Let Θ ∈ H4(M0,F0) be the class corresponding to the
class −<φ,φ>

2 ∈ H4
G(µ−1(0),F) ' H4(M0,F0) under the Cartan map. Then

Iη0 (ε) = 1
n0

∫
M0

α0 ∧ η0 ∧ eεΘ+idα0 .

Proof. The Cartan map yields −|Fθ|2/2 = q∗Θ in cohomology. By Proposi-
tion 4.6,

Iη0 (ε) =
1

(2πε)s/2vol(G)

∫
µ−1(0)×g∗

q∗(α0 ∧ η0) ∧ eiq∗dα0−iy(Fθ)−|y|2/2ε ∧ Ω dy

=
1

(2πε)s/2vol(G)

∫
µ−1(0)

q∗(α0 ∧ η0) ∧ eiq∗dα0 ∧ Ω

∫
g∗

e−iy(Fθ)−|y|2/2ε dy

=
1

vol(G)

∫
µ−1(0)

q∗(α0 ∧ η0) ∧ eiq∗dα0−ε|Fθ|2/2 ∧ Ω by Gaussian integration

= 1
n0

∫
M0

α0 ∧ η0 ∧ eidα0+εΘ

since Ω integrates to vol(G)/n0 over the fiber. �

Combining Lemma 4.4 with Proposition 4.7, we obtain Theorem 1.3.

4.3. Jeffrey-Kirwan residues

We briefly recall the Jeffrey-Kirwan residue operation. Let Λ ⊂ g be a non-
empty open cone and suppose that β1, . . . , βN ∈ g∗ all lie in the dual cone
Λ∗. Suppose that λ ∈ g∗ does not lie in any cone of dimension at most
s− 1 spanned by a subset of {β1, . . . , βN}. Let {φ1, . . . , φs} be any system
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of coordinates on g and let dφ = dφ1 ∧ · · · ∧ dφs be the associated volume
form. Then there exists a residue operation jkresΛ defined on meromorphic
differential forms of the form

(4.8) h(φ) =
q(φ)eiλ(φ)∏N
j=1 βj(φ)

dφ,

where q(φ) is a polynomial. The operation jkresΛ is linear in its argument
and is characterized uniquely by certain axioms, cf. [JK97, Proposition 3.2].

Theorem 1.4 is now a consequence of our localization formula Theo-
rem 1.1 and Proposition 4.6.

Proof of Theorem 1.4. F(Π∗(η ∧ eidGα)) is compactly supported by Lemma
4.2. Hence, [JK95, Proposition 8.6] yields that the residue jkresΛ(Π∗(η ∧
eidGα)dφ) is independent of the cone Λ. Since F(Π∗(η ∧ eidGα)) is smooth
near 0 by Proposition 4.6 and compactly supported, [JK95, Proposition 8.7]
gives

i−s(2π)−s/2F
(

Π∗(η ∧ eidGα)
)

(0) = jkresΛ(Π∗(η ∧ eidGα)dφ).

By Proposition 4.6, we then obtain∫
M0

α0 ∧ η0 ∧ eidα0 =
n0

volG
jkresΛ(Π∗(η ∧ eidGα)dφ).

Using the expression for Π∗(η ∧ eidGα) provided by Theorem 1.1, namely,
Equation (4.5), we obtain the claimed formula. �

5. Examples

5.1. Boothby-Wang fibrations

We now explain how, for certain symplectic manifolds, the known results
may be recovered from our main theorems.

Theorem 5.1 (Boothby-Wang [BW58]). Suppose that (N,ω) is a sym-
plectic manifold with integral symplectic form. Then the connection 1-form
α on the prequantum circle bundle M → N is a contact form. Conversely, if
(M,α) is a compact contact manifold with Reeb vector field that induces an
S1-action, then there is an integral symplectic manifold (N,ω) such that M
is the prequantum circle bundle of N , with connection 1-form given by α.



i
i

“3-Casselmann” — 2019/10/1 — 0:15 — page 1051 — #31 i
i

i
i

i
i

Localization for K-contact manifolds 1051

We call such a principal S1-bundle M → N with connection form α a
Boothy-Wang fibration. Denote the period of the flow φt of the Reeb vector
field R by 2π/τ . We can identify a Reeb orbit {φt(x)} with S1 via eitτ 7→
φt(x). The transformation formula then yields that the integral of α over an
arbitrary Reeb orbit {φt(x)} is equal to 2π/τ .

Proposition 5.2. If p : M → N is a Boothby-Wang fibration, then H(N)
∼= H(M,F) via p∗. If a compact Lie group G acts on M , preserving α, then
the G-action descends to N and we have HG(M,F) ∼= HG(N) via p∗. For
any basic form p∗η ∈ Ω(M,F), fiberwise integration yields∫

M
α ∧ p∗η = 2π/τ

∫
N
η.

It now follows from Theorem 1.1 and Proposition 5.2 that we recover
the standard localization theorem [AB84] for integral symplectic manifolds.

Theorem 5.3. Suppose that N is a symplectic manifold with a Hamiltonian
action of the torus G and suppose furthermore that the symplectic form on
N is integral and that the G-action lifts to the S1-bundle (M,α) in the
Boothby-Wang fibration p : M → N , preserving α. Then for any η ∈ HG(N),
with eG(νF ) denoting the (ordinary) equivariant Euler class of a connected
component F ⊂ NG, we have∫

N
η =

∑
F⊆NG

∫
F

i∗F η

eG(νF )
.

Proof. Note that Critµ/S1 is exactly the fixed point set NG. Denote by Fj
the connected component of NG that is obtained as Cj/S

1. It is p∗νFj '
νCj and if θ is a G-invariant connection form on the bundle of oriented
orthonormal frames of νFj , then p̄∗θ is a basic G-invariant connection form
on the bundle of oriented orthonormal frames of p∗νFj , where p̄(x, v) := v.
The Weil homomorphism is compatible with pullback such that we obtain
p∗eG(νFj) = eG(νCj ,F), where the right hand side denotes the equivariant
basic Euler class of νCj . Applying Theorem 1.1 and Proposition 5.2, we have∫

N
η = τ/(2π)

∫
M
α ∧ p∗η = τ/(2π)

∑
Cj⊆Crit µ

∫
Cj

i∗j (α ∧ η)

eG(νCj ,F)

=
∑
F⊆NG

∫
F

i∗F η

eG(νF )
.

�
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Suppose that 0 is a regular value of the contact moment map µ. Then
0 is also a regular value of the symplectic moment map µ̃ that pulls back
to −µ and vice versa. Denote by M0 and N0 the contact and symplectic
quotients, respectively. We have the commutative diagram

HG(M,F)
∼=→ HG(N)

↓ ↓
H(M0,F0)

∼=→ H(N0)

With these identifications, in exactly the same manner as the proof of the
previous theorem, we also recover the usual Jeffrey-Kirwan residue theorem
[JK95, JK97].

Theorem 5.4. Suppose that N is a symplectic manifold with a Hamil-
tonian action of a torus G. Suppose furthermore that the symplectic form
on N is integral and that the G-action lifts to the S1-bundle (M,α) in the
Boothby-Wang fibration p : M → N , preserving α. Let µ̃ denote the sym-
plectic moment map that pulls back to −µ and assume that 0 is a regular
value of µ̃. Denote the induced symplectic form on the symplectic quotient
N0 by ω0. For any η ∈ HG(N), we denote its image under the Kirwan map
by η0. We have

∫
N0

η0 ∧ eidα0 =
n0

vol(G)
jkres

 ∑
F⊆NG

ei〈µ̃(F ),φ〉
∫
F

i∗F η(φ) ∧ eiω

eG(νF )
[dφ]

 .

Remark 5.5. Note that we obtain the residue formula as stated in [JK95,
JK97], without the sign that was added in [JK98] due to an error in [JK95,
Section 5]. The situation in [JK95, Section 5] - in the therein defined notation
- describes as follows. The only term from eidz

′(θ) that contributes to the inte-
gral is (idz′(θ))s/s! = is(−1)s(s+1)/2Ω ∧ [dz′], which causes a sign to appear
in the computation. The integral is taken over a neighborhood O of µ−1(0),
which is canonically oriented via the symplectic form q∗ω0 + d(z′(θ)). The
integral is computed by first taking the integral in k∗-direction, oriented via
[dz′], followed by fiberwise integration on µ−1(0), where the fibers are ori-
ented via Ω. An integral over the symplectic quotient MX remains; MX

is canonically oriented via ω0. The product of these orientations differs
from the canonical orientation on O by a factor (−1)s(s+1)/2. Hence, tak-
ing into account this change of orientation removes the additional sign (cf.
also the proof of Proposition 4.6). For this reason, the formula as stated in
[JK95, JK97] is the correct formula to consider.
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5.2. Weighted Sasakian structures on odd spheres

For n ≥ 1 and w ∈ Rn+1, wj > 0, consider the sphere

S2n+1 =
{
z = (z0, . . . , zn) ∈ Cn+1 |

∑n

j=0
|zj |2 = 1

}
⊂ Cn+1,

endowed with the following contact form αw and corresponding Reeb vector
field Rw

αw =

i
2

(∑n
j=0 zjdz̄j − z̄jdzj

)
∑n

j=0wj |zj |2
, Rw = i

 n∑
j=0

wj(zj
∂
∂zj
− z̄j ∂

∂z̄j
)

 .

(S2n+1, αw) is called a weighted Sasakian structure on S2n+1, cf. [BG08, Ex-
ample 7.1.12]. In particular, (M,α) = (S2n+1, αw) with the metric induced
by the embedding M ↪→ Cn+1 is a K-contact manifold. For w = (1, . . . , 1),
we obtain the standard contact form on the sphere. Notice that the un-
derlying contact structure kerαw is independent of the choice of weight w.
The flow of Rw is given by φt(z) = (eitw0z0, . . . , e

itwnzn). Furthermore, let
G = S1 act (freely) on S2n+1 with weights β = (β0, . . . , βn) ∈ Zn+1, that is,
by λ · z = (λβ0z0, . . . , λ

βnzn). The fundamental vector field X corresponding
to 1 ∈ R ' s1 is given by

X(z) = i

 n∑
j=0

βj(zj
∂
∂zj
− z̄j ∂

∂z̄j
)


and we compute the contact moment map to be

µ(z) =

∑n
j=0 βj |zj |2∑n
j=0wj |zj |2

.

Lemma 5.6. The equivariant basic cohomology of (M,α) = (S2n+1, αw) is
given, as (S(g∗) = R[u])-algebra, by

HG(M,F) ∼=
R[u, s]

〈
∏n
j=0(βju+ wjs)〉

.

Proof. To compute the equivariant basic cohomology of (M,α), consider the
diagonal S1-action on Cn+1: λ · z := (λz0, . . . , λzn). This action is Hamilto-
nian with (symplectic) moment map Ψ(z) = 1

2

∑
j |zj |2 and we obtain M
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as M = Ψ−1(1
2). The G× T -action and, hence, R can be extended to all

of Cn+1. Consider the G× T -invariant function f := ||Ψ− 1
2 ||

2. Its crit-
ical set is {0} ∪̇ M , and the critical values are f(0) = 1/4, f(M) = 0.
Hence, M+

{0} := f−1((−∞, f(0) + ε]) ∼= Cn+1 and M−{0} := f−1((−∞, f(0)−
ε]) ∼= M+

M
∼= M . The Hessian H of f at 0 is given by − id, which is non-

degenerate and has Morse index 2(n+ 1). For z ∈M , the normal direction
(to M) is spanned by Y :=

∑
zj∂zj + z̄j∂z̄j and Hz(Y, Y ) = 2, which yields

that Hz is non-degenerate in normal direction. It follows that f is a G× T -
invariant Morse-Bott function. Note that HG(M,F) ∼= Hg⊕RRw(M) as an
HG-algebra (by [GS99, § 4.6] or [GT16, Proposition 3.9]), where Hg⊕RRw(M)
denotes the g⊕ RRw-equivariant cohomology of the g⊕ RRw-dga Ω∗(M),
cf. [GS99, § 2], [GNT12, § 4] or [GT16, § 3.2]. It follows from equivariant
Morse-Theory with f (cf. [Kir84] and also [Cas17, § 5.2]) that we have a
short exact equivariant Thom-Gysin sequence

0→ H
∗−2(n+1)
g⊕RRw ({0})→ H∗g⊕RRw(M+

{0})→ H∗g⊕RRw(M−{0})→ 0

0→ H
∗−2(n+1)
g⊕RRw ({0})→ H∗g⊕RRw(Cn+1)→ H∗g⊕RRw(M)→ 0

The composition with the restriction

H
∗−2(n+1)
g⊕RRw ({0})→ Hg⊕RRw(Cn+1)

∼=→ Hg⊕RRw({0})

is multiplication by the equivariant Euler class of the negative normal bundle
to 0 ↪→ Cn+1, which is computed to be equal to ( 1

2π )n+1
∏
j(uβj + swj). The

short exact sequence then yields the claim. �

Remark 5.7. If all wj are positive integers, the Reeb vector field induces
a locally free S1-action on M and M/S1 is the weighted projective space
P(w) = (Cn+1 \ 0)/ ∼, where (z0, . . . , zn) ∼ (λw0z0, . . . , λ

wnzn) for any λ ∈
C∗ (cf. [BG08, Example 7.1.12; § 4.5]). Then

HG(P(w)) ∼= HG(M,F) ∼=
R[u, s]

〈
∏n
j=0(βju+ wjs)〉

.

Lemma 5.8. Set λj := βj
wj

and Jj := {l ∈ {0, . . . , n} | λl = λj}. Critµ con-

sists of at most n+ 1 components Dj, specified by Dj = {z ∈M | zl = 0 ∀ l ∈
{0, . . . , n} \ Jj}.

If the weights βj of the G-action are such that λj 6= λl for every j 6= l,
then Crit µ consists of n+ 1 circles Cj = {z ∈M | zl = 0 ∀ l 6= j}, and
µ(Cj) = βj/wj = λj. Furthermore, HG(Cj ,F) ∼= R[u], and the restriction
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HG(M,F) → HG(Cj ,F) is given by s 7→ −βju/wj. If we denote the inclu-
sion Cj →M by ij, then

∫
Cj
ι∗jαw = 2π

wj
. The equivariant basic Euler class

ej of the normal bundle to Cj in M is given by

ej =
( u

2π

)n∏
k 6=j

(βk − βjwk/wj).

Proof. For every z ∈ ∪Dj , we have X(z) = λjRw(z), which yields ∪Dj ⊂
Crit µ. If z ∈M \ ∪Dj , then there are k 6= j such that zk, zj 6= 0 and λk 6=
λj . It follows that, for every λ ∈ R, βj(zj

∂
∂zj
− z̄j ∂

∂z̄j
) + βk(zk

∂
∂zk
− z̄k ∂

∂z̄k
) 6=

λ
(
wj(zj

∂
∂zj
− z̄j ∂

∂z̄j
) + wk(zk

∂
∂zk
− z̄k ∂

∂z̄k
)
)

. Since ( ∂
∂zl
, ∂
∂z̄l

)nl=0 form a basis

of TzCn+1, they are linearly independent at z, hence, X(z) /∈ RR(z).
Now suppose that λj 6= λl for every j 6= l. On Cj , it is Rw = wj(xj∂yj −

yj∂xj ) and X = βj(xj∂yj − yj∂xj ) = βj
wj
Rw. dαw is a 2-form, so ι∗jdαw = 0.

In Hg⊕RRw(Cj), we compute

0 = [dg⊕RRwαw] = [dαw − ιXαwu− ιRwαws] = [− βj
wj
u− s],

thus obtaining the restriction map s 7→ −βju/wj .
νCj = span{∂xk , ∂yk | k 6= j} = Cn × Cj is a trivial bundle that is the

product of the line bundles span(∂xk , ∂yk)× Cj . Denote by θj the canonical
flat connection on the bundle of oriented orthonormal frames of span(∂xk , ∂yk)
×Cj . The g⊕ RRw-equivariant Euler class of νCj then is

eg⊕RRw(νCj) =
∏
k 6=j

eg⊕RRw(span(∂xk , ∂yk)) =
∏
k 6=j

Pf(−uιXθk − sιRwθk)

=
∏
k 6=j

1
2π (uβk + swk) =

(
1

2π

)n∏
k 6=j

(uβk + wk(−βju/wj))

=
( u

2π

)n∏
k 6=j

(βk − wkβj/wj).

On Cj , we have |zj |2 = 1, zl = 0 for l 6= j, so, we can parametrize Cj up

to a zero set by zj = eiϕ, ϕ ∈ (0, 2π). Then ι∗jαw =
i
2 (zjdz̄j−z̄jdzj)

wj
= dϕ

wj
and∫

Cj
ι∗jαw =

∫ 2π
0

1
wj
dϕ = 2π

wj
. �

With our localization formula, we can now compute the contact volume
of weighted Sasakian structures on odd spheres. This result is known and
can also by obtained by combining the observation of Martelli-Sparks-Yau
[MSY06] that the volume of a toric Sasakian manifold is related to the
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volume of the truncated cone over its momentum image and a formula by
Lawrence [Law91] for the volume of a simple polytope (cf. [GNT17, § 6.2]).
Goertsches-Nozawa-Töben also computed the same result via a basic ABBV-
type localization formula with respect to the transverse action of t/RRw,
cf. [GNT17, Corollary 6.1].

Proposition 5.9. The contact volume of (M,α) = (S2n+1, αw) is given by

vol(M,α) =
1

2nn!

∫
M
α ∧ (dα)n =

2πn+1

n!w0 · · ·wn
.

Proof. Recall that dGα = dα− µu. We insert the results of Lemma 5.8 into
our localization formula. Choose any weights βj such that λj 6= λj for j 6= l so
that Critµ = ∪nj=0Cj . Note that Cj is 1-dimensional, so only the polynomial
part of dGα enters on the right hand side; we need a top degree form on the
left hand side when integrating over M , so only dα enters.∫

M
α ∧ (dα)n =

∫
M
α ∧ (dGα)n =

∑
j

(−µ(Cj)u)n
∫
Cj

ι∗jα

ej

= (2π)n+1(−1)n
∑
j

(
βj
wj

)n 1

wj
∏
k 6=j(βk − wkβj/wj)

=
(2π)n+1(−1)n

w0 · · ·wn

∑
j

βnj∏
k 6=j(w

−1
k βkwj − βj)

.

The right hand side has to be independent of the βj , so we can take the
limit β0 →∞. Then the (j = 0)-summand tends to (−1)n, the others vanish
(cf. [GNT17]). �

Now, let us consider the special case of the odd sphere M = S3 ⊂ C2

with Sasakian structure determined by the weight (w, 1) with w > 0 irra-
tional. Let G = S1 act on M with weights β = (−1, 1). By Lemma 5.6, we

have HG(M,F) ∼= R[u,s]
〈(ws−u)(s+u)〉 . We obtain from Lemma 5.8 for this special

case that the critical set is given by Critµ = C0 ∪̇ C1, where C0 = S1 × {0}
and C1 = {0} × S1. The equivariant basic cohomology of the connected com-
ponents is HG(Cj ,F) ∼= R[u]. Furthermore, µ(C0) = −1/w, µ(C1) = 1, the
Euler classes ej of the normal bundles to Cj in M are e0 = u

2π

(
1 + 1

w

)
and

e1 = − u
2π (1 + w) and the restrictions ι∗j : HG(M,F)→ HG(Cj ,F) are given

by ι∗0 : s 7→ u/w and ι∗1 : s 7→ −u. Recall that we identified s1 with R. If
S1 is parametrized via the angle ϕ, then this identification corresponds to
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λ∂ϕ 7→ λ. We determine a metric g on S1 by g(∂ϕ, ∂ϕ) = 1 so that the vol-
ume form is given by volS1 = dϕ, vol(S1) = 2π. The induced inner product
on R ' s1 is then multiplication so that the induced measures to consider
on g∗ and g are the standard measures du and dφ, respectively.

Let us consider the Mayer-Vietoris sequence (cf. [Cas17, Proposition 6])
of the pair (M \ C1,M \ C0). Note that M \ C1 equivariantlly retracts onto
C0, M \ C0 equivariantly retracts onto C1, and (M \ C1) ∩ (M \ C0) equiv-
ariantly retracts onto µ−1(0). Basic Kirwan surjectivity yields that the long
exact Mayer-Vietoris sequence turns into short exact sequences

0→ H∗G(M,F)
ι∗0⊕ι∗1→ H∗G(C0,F)⊕H∗G(C1,F)→ H∗G(µ−1(0),F)→ 0.

Hence, we can write η ∈ HG(M,F) as η0 ⊕ η1, with ηj ∈ HG(Cj ,F) ∼=
R[u]. Considering the restriction maps, it becomes evident that η0 ⊕ η1 lies
in the image of ι∗0 ⊕ ι∗1 if and only if η0 and η1 have the same constant term,
as polynomials in u.

We compute the argument of jkres in the residue formula to be

(2π)2

(
eiφ/wη0(φ)

φ(1 + w)
− e−iφη1(φ)

φ(1 + w)

)
dφ

Note that for a rational function g and λ ∈ R \ {0}, the residue is given as
(cf. [JK97, Proposition 3.4])

jkres{t∈R|t>0}
(
g(φ)eiλφdφ

)
=

{
0 λ < 0∑

b∈C Resz=b
(
g(z)eiλz

)
else

.

Thus, we obtain∫
M0

α0 ∧ η0 ∧ eidα0 =
1

volG
jkres

(
(2π)2

(
eiφ/wη0(φ)

φ(1 + w)

)
dφ

)
=

1

2π

(2π)2η0(0)

w + 1
=

2πη0(0)

w + 1
.

In particular, ∫
M0

α0 ∧ eidα0 =

∫
M0

α0 =
2π

1 + w
.(5.1)

We will now compute the left hand side of Equation (5.1) to see that our

formula holds. Note that µ−1(0) = S1
(

1√
2

)
× S1

(
1√
2

)
. µ−1(0)/G is {φt}-

equivariantly diffeomorphic to S1 via [z] 7→ 2z1z0, where φt acts on S1 by
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φt(z) = eit(w+1)z. Under this identification, the projection p : µ−1(0)→M0

is given by (z0, z1) 7→ 2z1z0. Denote the inclusion by ι : µ−1(0) ↪→M . We
then compute ι∗α = 2i

w+1(z0dz̄0 + z1dz̄1). Since p∗( i
w+1zdz̄) = ι∗α, we obtain

α0 = i
w+1zdz̄.

Up to a zero set, M0 ' S1 is parametrized by Ψ : (0, 2π)→ S1, ψ 7→ eiψ.
In this coordinate, α0 = 1

w+1dψ. Then
∫
S1 α0 =

∫ 2π
0

1
w+1dψ = 2π

w+1 , which is
exactly the right hand side of Equation 5.1.
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