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Hamiltonian stationary Lagrangian submanifolds (HSLAG) are a
natural generalization of special Lagrangian manifolds (SLAG).
The latter only make sense on Calabi-Yau manifolds whereas the
former are defined for any almost Kähler manifold. Special La-
grangians, and, more specificaly, fibrations by special Lagrangians
play an important role in the context of the geometric mirror sym-
metry conjecture. However, these objects are rather scarce in na-
ture. On the contrary, we show that HSLAG submanifolds, or fi-
brations, arise quite often. Many examples of HSLAG fibrations
are provided by toric Kähler geometry. In this paper, we obtain
a large class of examples by deforming the toric metrics into non
toric almost Kähler metrics, together with HSLAG submanifolds.
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1. Introduction

Let M be a closed smooth manifold endowed with a symplectic form ω and
an almost complex structure J . If the bilinear form defined on each tangent

753



✐

✐

“5-Legendre” — 2019/9/3 — 12:05 — page 754 — #2
✐

✐

✐

✐

✐

✐

754 E. Legendre and Y. Rollin

space at m ∈M

gJ(v, w) = ω(v, Jw), ∀v, w ∈ TmM

is a Riemannian metric, we say that J is a compatible almost complex struc-
ture on the symplectic manifolds (M,ω). Such a triplet (M,ω, J) is then
called an almost Kähler manifold. If in addition J is integrable, (M,ω, J)
is a Kähler manifold. The space of all compatible complex structures on a
given symplectic manifold will be denoted ACω.

Let L be a closed manifold and ℓ : L→M a Lagrangian embedding. In
other words, dimM = 2dimL and ℓ∗ω = 0. Hamiltonian transformations
u ∈ Hamω of (M,ω) act on such Lagrangian maps by composition on the
left

u · ℓ = u ◦ ℓ.

Sometimes we shall use a different, yet equivalent, point of view where Hamω

leaves ℓ : L→M fixed and acts instead on the space ACω by

u · J = u∗J.

Given an almost Kähler manifolds (M,ω, J), a Lagrangian embedding
is called Hamiltonian stationary if it is a critical point of the volume func-
tional under Hamiltonian deformations. As a short hand, such an embedding
will be called a HSLAG embedding and its image a HSLAG submanifold of
(M,ω, J). These Lagrangians were introduced by Oh [10] and may be under-
stood as a natural generalization of special Lagrangian manifolds (SLAG),
defined in the case of a Calabi-Yau manifolds.

More concretely, for J ∈ ACω and a Lagrangian embedding ℓ : L→M ,
the volume vol(ℓ, J) := vol(ℓ(L), gJ) is the volume of L endowed with the
pull-back metric ℓ∗gJ . By definition of the the action of Hamω, we have

vol(u · ℓ, J) = vol(ℓ, u · J),

so that finding critical points of the volume functional under the action of
Hamω on either ACω or the space of Lagrangian embeddings are equivalent
problems.

The group Diff(L) of diffeomorphisms of L also acts on the space of
Lagrangian embeddings on the right by

ℓ · v = ℓ ◦ v, where v ∈ Diff(L).
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However the volume is invariant under this action so that the problem
of finding a stationary Lagrangian embeddind is greatly underdetermined.
Sometimes we may think of Lagrangian submanifold rather than embed-
dings to avoid this infinite dimensional degree of freedom in the equation.

1.1. The case of a single Lagrangian

We shall prove the following existence theorem for rigid HSLAG embeddings
upto small deformations of the compatible almost complex structure:

Theorem A. Let (M,ω, J0) be a closed Kähler manifold and L a closed
manifold. Let G be the group of Hamiltonian isometries of (M,ω, J0) and
ℓ : L→M be a rigid HSLAG embedding.

There exists a G-invariant neighborhood W of J0 in ACω and a map
ψ :W → Hamω such that ψ(J0) = id, with the property that every G-orbit in
W contains a representative J , such that the Lagrangian embedding ψ(J) · ℓ :
L→M is HSLAG with respect to J .

Remarks 1.1.1. 1) As we shall see, the map ψ is in fact continuous
once suitable Hölder topologies are introduced.

2) The rigidity assumption of Theorem A means that infinitesimal defor-
mation of the given HSLAG can only come from Hamiltonian isome-
tries. This property will be introduced precisely at Definition 2.2.1.

3) If the group of Hamiltonian isometries G is trivial, the above theorem,
in particular the construction of the map ψ, follows from the implicit
function theorem. If G is not trivial, the problem becomes obstructed
and this is more tricky. In this case the solution J in a given G-orbit
comes from the minimization of a finite dimensional problem in a G-
orbit.

A large pool of examples is provided by toric Kähler manifolds which
typically have a non trivial group G. It turns out that Lagrangian tori of
standard toric Kähler manifolds are automatically rigid and stable HSLAG.
More precisely, we have the following result:

Theorem B. Let (M,ω, J0) be a closed toric Kähler manifold endowed
with the Guillemin metric. Let µ :M → P be the moment map with image
the moment polytope P . Then for any interior point p of P , the Lagrangian
torus Lp = π−1(p) is HSLAG, rigid and stable in (M,ω, J0).
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A special case of this result concerns CPn endowed with its standard
toric action and the Fubini-Study metric, was proved by Ono in [12]. The-
orem A applies in this context for each regular fiber. Notice that in the
one dimensional case, CP1 is the round sphere and complex dimension one
HSLAG submanifolds are just curves of constant curvature.

Remark 1.1.2. Few constructions of HSLAG submanifolds are known.
By variationnal methods, Schoen and Wolfson provided an existence the-
orem for HSLAG submanifolds with singularities, on 4-dimensional almost
Kähler manifolds (cf. [13, 14]). Joyce, Schoen and Lee constructed micro-
scopic HSLAG tori in almost Kähler manifolds (cf. [7, 8]). More recently,
Biquard and Rollin constructed HSLAG representative of vanishing cycles in
the smoothing of extremal Kähler surfaces with Q-Gorenstein singularities
in [3].

We point out that the above constructions all deal with small or pos-
sibly singular Lagrangian submanifolds, whereas the construction proposed
in the current paper addresses the case of large and smooth Lagrangian sub-
manifolds. We point out that special equivariant deformations of HSLAG
were investigated in [2].

1.2. Toric fibrations

SLAG fibrations are a conerstone of geometric mirror symmetry but seem
to be rather scarce in nature. Our initial motivation for this work was to
exhibit various fibrations by HSLAG submanifolds and show that contrarily
to the SLAG case, they arise quite often.

A local Lagrangian toric fibration of a Kähler manifold (M,ω, J0) is a
smooth family of Lagrangian maps ℓt : L→M , with parameter t ∈ B(0, r) ⊂
Rn, for some r > 0, where n = dimCM and L = Tn is a real n-dimensional
torus, such that the map B(0, r)× L→M defined by (t, x) 7→ ℓt(x) is a
smooth embedding. If every torus ℓt : L→M is HSLAG, we say that the
local fibration is HSLAG.

Example 1.2.1. Toric Kähler manifolds provide natural examples of local
toric HSLAG fibrations according to Theorem B. The fibration does not
extend globally since tori collapse at the boundary of the moment polytope.

Other interesting (singular) HSLAG toric fibrations also occur as part
of the SYZ mirror symmetry conjecture. In this case, tori are SLAG hence
HSLAG.
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Remark 1.2.2. The reader may wonder why we restric to Lagrangian
fibrations with toric fibers as above: let (M,ω) be a 2n-dimensional man-
ifold endowed with a submersion π :M → Bn, where Bn is an open ball
in Rn, such that the fibers are Lagrangian compact submanifolds of M .
An elementary argument shows that in such a situation, the fibers must
be n-dimensional manifolds diffeomorphic to the real torus Tn. Indeed, let
x1, . . . , xn be the standard coordinate functions on Rn understood as func-
tions on M . These functions induce Hamiltonian vector fields Y1, . . . , Yn on
M . Since the fibers are Lagrangian, the vector fields Yj must be tangent to
the fibers of π. The fact that the functions xi are invariant along the fibers
and that Yj leave the symplectic form invariant imply that the Lie brack-
ets [Yi, Yj ] vanish. We have n globally defined linearly independent vector
fields Yj along each Lagrangian fibers. As they are compact, any connected
component of the fibers must be diffeomorphic the real torus.

Definition 1.2.3. Given a HSLAG embedding ℓ : L→M into a Kähler
manifold (M,J0, ω), where L and M are closed, let Gℓ be the subgroup
of Hamiltonian isometries G preserving the image of ℓ : L→M . In other
words u ∈ Gℓ if and only if u ◦ ℓ(L) = ℓ(L). We denote by Go

ℓ the identity
component of Gℓ.

Let ℓt : L→M be a local Lagrangian toric fibration such that ℓ0 = ℓ.
Such fibration is said to be Go

ℓ-invariant if the action of Go
ℓ preserves the

image of each embedding ℓt : L→M .

Notice that with the above definition, Go
ℓ acts trivially on the parameter

space t ∈ B(0, r).
Our next result is an existence theorem for local HSLAG toric fibrations:

Theorem C. Let (M,ω, J0) be a closed Kähler manifold and ℓt : L→M
a Go

ℓ0
-invariant local toric HSLAG fibration for t ∈ B(0, r) ⊂ Rn such that

ℓ0 is rigid.
Then for all sufficiently small positive perturbation of J , there exists

a Hamiltonian transformation v of M and δ ∈ (0, r) such that ℓ̃t = v ◦ ℓt
defines a local HSLAG fibration in (M,ω, J) for t ∈ B(0, δ).

The definition of positive perturbations of J0 shall be given at §6.2.
Although we need this technical assumption for the proof of Theorem C,
we conjecture that every generic almost complex structure is positive. By
definition, the set of positive almost complex structures is open, once an ap-
propriate topology is introduced on ACω. In Theorem D and Theorem 6.2.3,
we manage to prove that if ℓ0 :M → L is rigid and stable, then the space



✐

✐

“5-Legendre” — 2019/9/3 — 12:05 — page 758 — #6
✐

✐

✐

✐

✐

✐

758 E. Legendre and Y. Rollin

of positive almost complex structure form a non-empty open set of AC with
J0 in its closure. To avoid technical aspects of the statement, we state the
result as follows:

Theorem D. Let (M,ω, J0) be a Kähler manifold and ℓ : L→M be a rigid
and stable HSLAG, where M and L are closed.

Then, the open set of positive deformations is not empty and has J0
in its closure. More precisely, there exists a smooth path of almost complex
structures J̃s ∈ ACω defined for s ∈ [0, ε) with ε > 0, such that J̃0 = J0 and
Js is positive for all s > 0.

In particular, Theorem D shows that the statement in Theorem C, with
the additional assumption of stability of ℓ0, is not empty. This applies to the
case of toric HSLAG fibrations coming from toric Kähler manifolds given
by Theorem B.

Remark 1.2.4. Considering Go
ℓ -invariant HSLAG toric fibration is not

really restrictive. Indeed, we shall prove in Theorem 6.3.2 that given a rigid
HSLAG embedding ℓ : L→M into a Kähler manifold (M,ω, J0), where L
is a real torus, it is always possible to find a Go

ℓ -invariant HSLAG local
fibration ℓt : L→M such that ℓ0 = ℓ, under some mild assumptions. In
particular, these assumptions apply in the context of toric Kähler manifolds
(cf. Proposition 6.3.1), which constitute our main class of examples and
applications.

Remark 1.2.5. The Hamiltonian transformation v provided by Theo-
rem C may not be close to the identity as it comes from an auxiliary fi-
nite dimensional minimization problem in the spirit of Theorem A. Some
evidence of this fact are illustrated with a particular example (cf. Exam-
ple 6.1.1).

Theorem C applies to the case of CPn with its Fubini-Study metric. The
result only deals with positive pertubation of the metric, but we expect it
to hold under softer genericity assumptions.

More generally, we would expect that the standard singular HSLAG
fibration by Lagrangian tori of CPn can be globally deformed for a generic
choice of Kähler metric close to the Fubini-Study metric on CPn.

We gather our results in the case of toric manifolds in the following
corollary:
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Corollary E. Let (M,ω, J0) be a closed toric Kähler manifolds endowed
with the Guillemin metric and µ :M → P the corresponding moment map.
Let t0 be a point in the interior of the moment polytope P . Then

1) for every compatible almost complex structure J sufficiently close to
J0, there exists a Hamiltonian transformation v of (M,ω) such that
v(µ−1(t0)) is a HSLAG submanifold of (M,ω, J).

2) The space of positive deformations J of the almost complex structure
of (M,ω, J0) with respect to µ−1(t0) is a non empty open set with J0
in its closure. Is J is positive and sufficiently close to J0, there exists a
Hamiltonian transformation v with the property that each submanifold
v(µ−1(t)) is HSLAG in (M,ω, J) for t sufficiently close to t0 in P .

Acknowledgements
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authors are partially supported by the french ANR project EMARKS No
ANR-14-CE25-0010. The first author visited the second on a Labex CIMI
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2. Basic theory of HSLAG

In the rest of this paper, M and L are always a closed (i.e. compact with-
out boundary) manifolds, unless specified otherwise. In addition dimM =
2dimL, ω is a given symplectic form on M and ℓ : L→M is a Lagrangian
embedding, that is an embedding such that ℓ∗ω = 0.

2.1. The Euler-Lagrange equation of HSLAG

HSLAG manifolds are defined by a variational problem. The corresponding
Euler-Lagrange equation is easily recovered as we shall explain now. Let
H be the mean curvature vector field along ℓ : L→M defined using the
metric gJ . The Maslov form is the 1-form αH ∈ Γ(Λ1L) defined by

αH = ℓ∗ω(H, ·).

Let ft ∈ Hamω be a family of Hamiltonian transformations such that f0 =
id|M . Then

V =
d

dt
ft

∣∣∣∣
t=0
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is a Hamiltonian vector field on (M,ω). Let v :M → R be a Hamiltonian
function for V (i.e. such that dv = ιV ω). The family ft induces a Hamil-
tonian deformation of the map ℓ : L→M defined by ℓt = ft ◦ ℓ. The resc-
triction of the vector field V along ℓ : L→M is precisely the infinitesimal
variation of the family ℓt at t = 0. The usual first variation formula of the
volume gives

d

dt
vol(ℓt, gJ)

∣∣∣∣
t=0

= −

∫

L

〈H,V 〉volgL

= −

∫

L

〈αH , αV 〉vol
gL

= −

∫

L

〈αH , ℓ
∗dv〉volgL

= −

∫

L

〈d∗αH , ℓ
∗v〉volgL

where gL = ℓ∗gJ .
A critical point is obviously given by the equation

d∗αH = 0,

where d∗ is the operator defined on the space of differential forms on L,
using the metric gL.

The second variation of the volume is obtained by differentiating the
t-dependent quantity d∗αH along the deformation ℓt. It turns out that the
second variation is of the form

✷ℓ∗v

where ✷ is an elliptic operator of order 4 acting functions on L. More pre-
cisely, we have the following formula (cf. [7]), which holds for any Lagrangian
embedding (not necessarily stationary) in a Kähler manifold

(2.1) ✷u = ∆2u+ d∗αRic⊥(J∇u) − 2d∗αB(JH,∇u) − JH · JH · u.

Here∆ is the Riemannian Laplacian on (L, gL), B is the second fundamental
form of ℓ : L→M and Ric⊥ is defined by Ric(x, y) = 〈Ric⊥(x), y〉 for x, y
normal vectors to L. If the almost complex structure is not integrable, the
formula is more complicated, but the leading term ∆2 remains unchanged.

We introduce the Kernel of this operator

KL = ker✷.
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Remark 2.1.1. If ℓ : L→M is a minimal submanifold (i.e. H = 0), the
operator ✷ is simpler. In particular, we have

〈✷u, u〉 =

∫

L

|∆u|2 − Ric(J∇u, J∇u)volgL

and it follows that KL = R for any Kähler manifold of non positive Ricci
curvature. These conditions are fullfield in the case of

• special Lagrangians in Calabi-Yau manifolds,

• standard Lagrangian tori in the flat torus C2/Γ.

Generally, KL is not reduced to R and ✷ need not be selfadjoint. How-
ever, we have the following lemma:

Lemma 2.1.2. Given a Kähler manifold (M,ω, J) and a Lagrangian em-
bedding ℓ : L→M , the operator ✷ on L can be written

✷v = Dv − JH · JH · v

where D is selfajoint.
In particular, if ℓ : L→M is HSLAG, the vector field JH is divergence

free on L and ✷ is selfadjoint.

Proof. Using L2 inner product on L with gL the induced metric, we see that
〈∆2v, w〉 = 〈v,∆2w〉. Using the fact that αJ∇w = dw on L, we find

〈d∗αRic⊥(J∇v), w〉 = 〈αRic⊥(J∇v), αJ∇w〉 =

∫

L

Ric(J∇v, J∇w)volgL

Since the Ricci tensor is symmetric, we deduce that

〈d∗αRic⊥(J∇v), w〉 = 〈v, d∗αRic⊥(J∇w)〉

Similarly, we compute

〈d∗αB(JH,∇v), w〉 = 〈αB(JH,∇v), αJ∇w〉 = 〈αB(JH,∇v), J∇v〉.

The tensor S(u, v, w) = 〈JB(u, v), w〉 is symmetric. We deduce that

〈d∗αB(JH,∇v), w〉 = 〈v, d∗αB(JH,∇w)〉.

This proves the first statement of the lemma.
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Integration by part gives

〈−JH · JH · v, w〉 = 〈JH · v, JH · w〉+

∫
vwJH · volgL .

If the embedding is HSLAG, then d∗αH = 0. But this equation is equivalent
to the fact that div(JH) = 0 and in turns JH · volgL = div(JH)volgL = 0.
It follows that the operator v 7→ −JH · JH · v is also selfadjoint. �

2.2. Hamiltonian isometries, rigidity and stability

Suppose that (M,ω, J0) is a Kähler manifold and and ℓ : L→M is a HSLAG
embedding. Let G be the group of Hamiltonian isometries of the Kähler
manifold. Any one parameter subgroup ft :M →M of G gives rise to a
deformation ℓt := ft ◦ ℓ of ℓ. However

gL,t = ℓ∗t gJ0
= ℓ∗f∗t gJ0

= ℓ∗gJ0
= gL

since ft is an isometry. In particular the quantity d∗αH is independent of
t, therefore ✷ℓ∗v = 0, for a Hamiltonian function v :M → R given by the
variation ft.

The space of Hamiltonian functions induced by 1-parameter families
of Hamiltonian isometries of (M,ω, J0) is the space of Killing potentials
denoted KM . Our observation shows that there is a canonical restriction
map

ℓ∗ : KM → KL

v 7→ v ◦ ℓ

where KL is the kernel of the operator ✷.

Definition 2.2.1. For a Kähler manifold (M,ω, J0), a Hamiltonian sta-
tionary Lagrangian embedding ℓ : L→M is called rigid if the associated
restriction map KM → KL is surjective.

If in addition, the operator ✷ is positive on a complement of the kernel
KL, we says that ℓ : L→M is stable.

According to Definition 2.2.1, a Hamiltonian Lagrangian embedding is
rigid if, and only if, infinitesimal Hamiltonian stationary deformations of the
Lagrangian can only come from of (globally defined) infinitesimal Hamilto-
nian isometry of the Kähler manifold (M,ω, J0).
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Examples 2.2.2.

1) If KL = R, the Lagrangian embedding ℓ : L→M must be rigid.

2) In particular all examples given by Remark 2.1.1 (SLAG in Calabi-
Yau manifolds, Lagrangian tori in the flat torus, HSLAG with H = 0
in nonpositive Ricci-curvature Kähler manifolds) are rigid.

3) It is also known that the Clifford torus in CPn is rigid and stable
[10, 11].

3. Examples of Lagrangians toric fibrations

Fibrations of Calabi-Yau manifolds by special Lagrangian (SLAG) tori play
a central role in mirror symmetry. Unfortunately, these fibrations seem to be
scarce in nature. Hamiltonian stationary Lagrangians (HSLAG) are a nat-
ural generalization of SLAG and they make sense on every (almost) Kähler
manifold. We then turn to the question of existence of HSLAG fibrations
for Kähler manifolds.

A large pool of examples of such fibrations arise from toric Kähler ge-
ometry. A toric Kähler manifold is endowed with a Hamiltonian isometric
toric action. Generic orbits of the torus action are Lagrangian tori. Since
the metric is invariant under the torus action, it follows that the mean cur-
vature of the orbits is also invariant and, in turn, that the Maslov form αH

must be parallel. In particular d∗αH = 0 and we have the following lemma:

Lemma 3.0.1. The fibration by Lagrangian tori of a toric Kähler manifold
has the property that each smooth fiber (i.e. corresponding to an interior
point of the polytope) is Hamiltonian stationary with respect to the toric
metric.

3.1. Kähler reductions

Let (M̃, ω̃) be a symplectic manifold andG a connected compact subgroup of
Hamiltonnian diffeomorphisms. Assume that µ : M̃ → g∗ is a G–equivariant
momentum map and that 0 ∈ g∗ is a regular value of µ. Then N = µ−1(0) is
a G–invariant submanifold and G–orbits are coisotropic, so the quotient π :
M̃ →M = µ−1(0)/G inherits of a symplectic structure ω defined as π∗ω =
ω̃|TN . The symplectic orbifold obtained this way is called the symplectic

reduction of (M̃, ω̃).
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Whenever there is a G–invariant compatible Kähler metric g̃ on
(M̃, ω̃) then the whole Kähler structure descends on M making the quo-
tient map

π : µ−1(0) −→M

a Riemannian submersion. The resulting structure (M,ω, g) is called the
Kähler reduction of (M̃, ω̃, g̃).

It would be interesting to see if the statonnary properties (being HSLAG,
stable, rigid.) of a G–invariant Lagrangian lying in µ−1(0) ⊂ M̃ are pre-
served under this operation. We prove below it is the case for toric manifold.

Lemma 3.1.1. L̃ is a G–invariant Lagrangian of (M̃, ω̃) lying in µ−1(c)
if and only if π(L̃) = L is a Lagrangian in (M,ω). Suppose that g̃ is a G–
invariant compatible Kähler metric on (M̃, ω̃) such that there exists a posi-
tive constant κ depending only on (M̃, ω̃, g̃) and G such that vol(π−1(L)) =
κ vol(L) for every Lagrangian L in M . Then L is HSLAG whenever L̃ is
and is stable whenever L̃ is.

Proof. Put N = µ−1(c). The first statement follows the fact that for every
p ∈ N , the kernel of ωp in TpN (i.e those v ∈ TpN such that ωp(v, w) = 0
for all w ∈ TpN)) coincides with the tangent space of the orbit of G.

Given a function f ∈ C∞(M), take any f̃ ∈ C∞(M̃) which is a G–
invariant extension of the function π∗f ∈ C∞(N)G. Let X̃ be the Hamil-
tonian vector field associated to f̃ . Observe that X̃ is tangent to N since
for each a ∈ g

〈dµ(X̃), a〉 = −ω̃(Xa, X̃) = df̃(Xa) = 0.

Hence, for any Lagrangian L ⊂M and L̃ = π−1(L) the variation φ̃t(L̃)
induced by tX̃, stays in N and φ̃t(L̃) = π−1(φt(L)). Thus, vol(φ̃t(L̃)) =
κvol(φt(L)). So that L is HSLAG if L̃ is.

Moreover, for any Lagrangian L ⊂M , the G–invariant submanifold L̃ =
π−1(L) is Lagrangian in (M̃, ω̃) via the composition of inclusions ι̃ : L̃ →֒
N →֒ M̃ and

ι̃∗ω̃(X̃, ·) = π∗(ι∗ω(Xf , ·))

where df = −ω(Xf , ·). Hence, κ✷(f|L) = ✷(π∗(f|L)). �

Corollary 3.1.2. Assume, in addition to the hypothesis of Lemma 3.1.1,
that L̃ is rigid then, for any function f ∈ C∞(L) such that ✷f = 0, there
exists a Killing potential f̃ ∈ C∞(M̃) such that f̃|L̃ = π∗f .
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3.2. Case of (CPn
, ωFS) and Kähler toric manifolds

Oh observed that each Lagrangian torus of Cn+1 of the form

(3.1) Tr0,...,rn = {z ∈ Cn+1 | |zi| = ri}

is a critical point of the volume under Hamiltonian deformations (HSLAG).
He proved also that it is rigid and stable by direct computations. One way
to state his result is the following

Proposition 3.2.1 (Oh, [11]). Let φt ∈ Ham(Cn+1, ωFS) be a path of
Hamiltonian diffeomorphisms with

π0 = Id and X̃ =

(
d

dt
φt

)

t=0

∈ ham(Cn+1, ωFS).

Let f̃ be a smooth Hamiltonian function for X̃. Then, L = Tr0,...,rn is a
HSLAG and

d2

dt2
vol(φt(L)) ≥ 0

Moreover, d2

dt2 vol(φt(L)) = 0 if and only if f̃|L lies in the span of

{sin θi, cos θi, sin(θi − θj), cos(θi − θj)}
n
i,j=0.

Remarks 3.2.2. The hypothesis of Oh’s result can be replaced by “given
a function f ∈ C∞(L), or equivalently an exact 1–form αV = ι∗ω(V, ·) ∈
Ω1(L),. . . ”.

By Delzant–Lerman–Tolman theory, see [4, 9], any compact toric sym-
plectic orbifold (M,ω, T ) is the symplectic reduction of (Cd, ωstd) with re-
spect to a subtorus G ⊂ Td. Via this construction the manifold inherits of
a Kähler metric ωG, called the Guillemin metric [6].

We recall the Delzant construction which is determined by the rational
labelled polytope (P, ν,Λ) associated to (M,ω, T ). Denote the Lie algebra
t = Lie T and the momentum map x :M → P ⊂ t∗. We use the convenient
convention that ν = {ν1, . . . , νd} is a set of vectors in t so that if F1, . . . , Fd

are the codimension 1 faces (the facets) then νk is normal to Fk and inward
to P . The lattice Λ defines the torus as T = t/Λ. Being rational1 means

1To recover the original convention introduced by Lerman and Tolman in the
rational case, take mk ∈ Z such that 1

mk
νk is primitive in Λ so (P,m1, . . . ,md,Λ)

is a rational labelled polytope.
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ν ⊂ Λ. From the rational pair (P, ν), the torus G is determined by its Lie
algebra g = kerq where q : Rd → t is

q(x) :=

d∑

i=1

xiνi.

Hence, the compactness of P implies that q is surjective and that T = Rd/G.
The defining affine functions of (P, ν) are the ℓ1, . . . , ℓd ∈ Aff(t∗,R) such

that P = {x ∈ t∗ | ℓk(x) ≥ 0} and dk = νk. Denote the inclusion ι : g →֒ Rd

and µo : C
d → (Rd)∗ the (homogenous of degree 2) momentum map of the

action of Td on Cd so that ι∗µo is a momentum map for the action of G
on Cd. One side of the Delzant–Lerman–Tolman correspondence states that
(M,ω, T ) is T–equivariently symplectomorphic to the symplectic reduction
of (Cd, ωstd) at the level c = ι∗(ℓ1(0), . . . , ℓd(0)) ∈ g∗. In the following, we
identify (M,ω, T ) with this reduction.
Note that since µo(z) =

1
2(|z0|

2, . . . , |zn|
2) the defining equations of N =

(ι∗µo)
−1(c) involve only the square radii r2i = |zi|

2 and, thus, N is foliated by
tori (of various dimension between dimG and d) of the form (3.1). Moreover,
for each x ∈ P̊ the interior of P , Lx = µ−1(x) ⊂M is a Lagrangian torus
such that π−1(Lx) = L̃x is a d–dimensional torus of the form (3.1). Finally,
observe that if f̃ is a Killing potential of (Cd, ωstd) which is G–invariant on
some d–dimensional torus of the form (3.1) then f̃ is G–invariant on any
d–dimensional torus of the form (3.1).

Lemma 3.2.3. Let G be a subtorus of Td and ι : G →֒ Td the inclusion.
The volume, with respect to the standard flat metric of Cd, of the orbits of
G is constant on the regular level set of the momentum map ι∗µo : C

d → g∗.

Proof. Let g be the standard metric on Cd. We have

g =

d∑

i=1

dµ2i
2µi

+ 2µidθ
2
i

where µi =
1
2 |zi|

2 and θi is the angle coordinates. Hence, for z ∈ Cd such that
G · z is of full dimension, the action identifies G · z with G and the metric
induced on the orbit is ι∗h where h = 2µidθ

2
i . Clearly ι

∗h only depends on
ι∗(µo(z)). �

This last lemma implies that the present situation fulfill the hypoth-
esis of Lemma 3.1.1 which we combine with Corollary 3.1.2 and Proposi-
tion 3.2.1, to get the following Proposition.
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Proposition 3.2.4. Any Lx ⊂M Lagrangian torus obtained as level set of
the momentum map µ :M → t∗ is HSLAG, stable and rigid for the Guillemin
metric ωG.

Remark 3.2.5. Lemma 3.2.3 applies more generally to toric rigid metrics
in the sense of [1]. Therefore there is a bigger class of metric on which
Proposition 3.2.4 extends.

The complex projective space with its Fubini-Study metric (CPn, ωFS)
is a case of that last Proposition. Indeed, one way to see CPn is as a Kähler
reduction of Cn+1 with respect to the diagonal Hamiltonian action of S1.
This coicides with the Hodge fibration π : S2n+1 → CPn and fits with the
toric structure of (CPn, ωFS) obtained by quotient of the isometric toric
action of Tn+1 on (Cn+1, ωstd). We denote this quotient T = Tn+1/S1, t =
Lie T and the momentum map µ : CPn → t∗. For any Lx ⊂ CPn Lagrangian
torus obtained as level set of the moment map, π−1(Lx) is a torus of the
form (3.1). It may be more convenient to take the (more natural) momentum
map

[Z0 : · · · : Zn] 7→

(
|Z0|

2

∑n
i=0 |Zi|2

, . . . ,
|Zn|

2

∑n
i=0 |Zi|2

)
∈ Rn+1

so that the ri’s in (3.1) are just the |Zi|’s.
The S1 invariant functions on Tr0,...,rn in the kernel of ✷ are {sin(θi −
θj), cos(θi − θj)}

n
i,j=0 so Proposition 3.2.4 holds in this case and reads as

follow.

Proposition 3.2.6 ([12]). Any Lx ⊂ CPn Lagrangian torus obtained as
level set of the moment map µ : CPn → t∗ is HSLAG, stable and rigid for
the Fubini-Study metric.

4. Deformation theory

In this section, we are assuming that ℓ : L→M is a Hamiltonian stationary
Lagrangian embedding, where (M,ω, J0) is a Kähler manifold. For each
almost complex structure J ∈ ACω sufficiently close to J0, we would like to
find a Hamiltonian deformation ℓ̃ : L→M of the Lagrangian embedding ℓ :
L→M which is Hamiltonian stationary with respect to (M,ω, J). It turns
out that this problem can not be solved directly by the implicit function
theorem since the equations are generally overdetermined.
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4.1. Diffeomorphisms of the source space

The group of diffeomorphisms Diff(L) acts on Lagrangian embeddings ℓ :
L→M by composition on the right. Such an infinite dimensional group
action gives a huge group of symmetries which preserves the equation for
HSLAG embeddings. This indeterminacy of the equations is easily removed
by seeking Hamiltonian deformations of the image

L = ℓ(L)

as a Lagrangian submanifold of M instead. This boils down to consider the
space of Lagrangian embeddings upto reparametrizations.

4.2. Group of isometries

From now on, we are assuming that ℓ : L→M is a HSLAG embedding with
respect to (M,ω, J0) and that it is rigid.

The group G of Hamiltonian isometries of (M,ω, J0) has a corresponding
space of Hamiltonian potentials KM ⊂ C∞(M). Their restriction to L is
ℓ∗(KM ) ⊂ C∞(L) and agrees withKL = ker✷ℓ,J0

by the rigidity assumption.
An issue when trying to apply directly the implicit function theorem is that
the linearization of the HSLAG equations given by the operator ✷ℓ,J0

is
generally neither injective nor surjective.

4.3. Lagrangian neighborhood theorem

A sufficiently small tubular neighborhood V of L = ℓ(L) in M is symplecto-
morphic to a neigborhood U of the zero section ℓ0 : L→ T ∗L endowed with
its canonical symplectic form. In addition ℓ is identified to ℓ0 via the sym-
plectomorphism. Small Lagrangian deformations of L are given by graphs
of sections α of T ∗L→ L, where α is a sufficiently small closed 1-form on L.
Furthermore, Hamiltonian deformations are given by exact 1-forms. Thus,
every smooth function f on L, defines a Lagrangian submanifold of T ∗L
which is the graph of df : L→ T ∗L and this graph is a Hamiltonian defor-
mation of the zero section ℓ0 : L→ T ∗L. If f is sufficiently small (in C1-
norm), using the symplectomorphism between the tubular neighborhoods U
and V , each section df defines a Lagrangian embedding ℓf : L→M which
is a Hamiltonian deformation of ℓ : L→M .
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4.4. Vector bundles

The image of the map ℓ∗ : KM → C∞(L) is KL = ker✷ℓ,J0
by rigidity, but

it may not be injective. After passing to a subspace Ko
M ⊂ KM , we obtain

an isomorphism

ℓ∗ : Ko
M → KL.

For any embedding ℓ̃ : L→M sufficiently close to ℓ : L→M , the map
ℓ̃∗ : Ko

M → C∞(L) remains injective. Using this observation, we are going to
introduce vector bundles of finite rank over the space of functions.

However, the space of smooth functions C∞(L) is not suited to apply
the implicit function theorem. Instead, we shall work with Hölder spaces
Ck,η(L), where 0 < η < 1 is the Hölder parameter and k is the number of
derivatives accounted for. For any function f ∈ C4,η(L) sufficiently small,
the map ℓ∗f : Ko

M → C3,η(L) remains injective. Its image is a finite dimen-
sional vector space denoted

Kf ⊂ C3,η(L).

The spaces Kf are the fibers of a smooth vector bundle K over a neighbor-
hood of the origin in C4,η(L).

Let H′ be the orthogonal complement of KL = K0 in C3,η(L), where the
L2 inner product is induced by ℓ and J0. For any f ∈ C4,η(L) sufficiently
small, we have a splitting of vector bundles

C3,η(L) = Kf ⊕H′,

and the projection on the first factor parallel to H′ is denoted

πf : C3,η(L) → Kf .

Similarly, we will need to consider the L2-orthogonal complement H of KL

in C4,η(L) which gives the splitting

(4.1) C4,η(L) = KL ⊕H.

4.5. Implicit function theorem

We introduce the map

(4.2) Ψ : C4,η(L)× C4,η(L)×AC2,η
ω → C0,η(L)
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defined as follows: let (f, k, J) be an element of C4,η(L)× C4,η(L)×AC2,η
ω .

The function f admits a decomposition f = fL + h where fL ∈ KL and h ∈
H according to the splitting (4.1). For f and k sufficiently small, we may
use the Lagrangian embedding ℓk+h : L→M . We define

Ψ(f, k, J) = d∗αH + πh+k(f)

where d∗αH is computed with respect to the Lagrangian embedding ℓh+k :
L→M and the almost complex structure J .

The differential of Ψ at (0, 0, J0) is given by

∂Ψ

∂f

∣∣∣∣
(0,0,J0)

· ḟ = ḟL +✷ℓ,J0
ḣ

where we used the decomposition ḟ = ḟL + ḣ ∈ KL ⊕H. This operator is
clearly an isomorphism.

By the implicit function function theorem, we deduce the following
proposition

Proposition 4.5.1. There are open neighborhoods U, V of 0 in C4,η(L)
and a G-invariant open neigborhood W of the almost complex structure J0
in AC2,η

ω together with a smooth map

φ : V ×W → U

such that

Ψ(φ(k, J), k, J) = 0

for all (k, J) ∈ V ×W . Furthermore φ(k, J) is the only solution f ∈ U of
the equation Ψ(f, k, J) = 0 where (k, J) ∈ V ×W .

By definition, a solution of the equation Ψ(f, k, J) = 0 provides a La-
grangian embedding ℓh+k : L→M satisfying the equation

(4.3) d∗αH ∈ Kh+k.

Thus, our problem of finding a HSLAG embedding is solved up to a
finite dimensional obstruction. The solution of this type are called relatively
HSLAG embeddings.

Definition 4.5.2. A Lagrangian embedding ℓ : L→M into an almost
Kähler manifold (M,ω, J) such that d∗αH is the restriction of a Hamil-
tonian potential in KM is called a relatively HSLAG embedding.
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More information on the regularity of (k, J) ∈ V ×W provide more reg-
ularity on f = φ(k, J) by standard bootstrapping argument for elliptic equa-
tions. In particular, we have the following lemma:

Lemma 4.5.3. If (k, J) ∈ V ×W are smooth, then f = φ(k, J) is smooth
and so is d∗αH for the corresponding relatively HSLAG embedding.

It is worth pointing out that many cases are dealt with using the fol-
lowing corollary:

Corollary 4.5.4. Let ℓ : L→M be a rigid HSLAG embedding into (M,ω, J0)
with KL = R. Then for all compatible almost complex structure J sufficiently
close to J0 in C

2,η-norm, there exists a Hamiltonian deformations l̃ : L→M
of ℓ which is a HSLAG embedding with respect to (M,ω, J).

Proof. For J sufficiently close to J0, we use the decomposition φ(0, J) =
fL + h given by the splitting (4.1). By assumption fL must be a constant.
The embedding ℓh : L→M satisfies the equation d∗αH = c, for some con-
stant c ∈ R, with respect to the almost Kähler structure (M,ω, J). Since
d∗αH is L2-orthogonal to constants, we deduce that c = 0. �

4.6. Residual isometry group action and killing the obstruction

The next step is to look for solutions of the equation Ψ = 0 such that the
finite dimensional obstruction (4.3) vanishes. The residual group action of
G on W is the key to achieve this goal. Indeed, we have a modified volume
functional

ṽol :W → R

defined by

(4.4) ṽol(J) = vol(L, ℓ∗hgJ).

where φ(0, J) = f = fL + h ∈ KL ⊕H is given by Proposition 4.5.1.

Notice that ṽol is a perturbation of the volume functional

vol :W → R

of ℓ : L→M defined by vol(J) = vol(L, ℓ∗gJ). Nevertheless, ṽol and vol need
not to agree generally.

Each G-orbit of almost complex structure in W , is compact, since G
is. Thus the modified volume functional ṽol restricted to a G-orbit admits
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critical points, for instance a minimum. Let J be such a point in a given
orbit. Then we have the following result.

Proposition 4.6.1. Let J be a smooth almost complex structure, which is a
critical point of the modified volume functional ṽol given by (4.4), restricted
to a G-orbit of W . Then, the Lagrangian embedding ℓh : L→M deduced
from φ(0, J) = fL + h via Proposition 4.5.1 is HSLAG.

As a direct consequence, we obtain a proof of one of our main results:

Proof of Theorem A. We have a map W → U given by J 7→ φ(0, J). For
each J the decomposition φ(0, J) = fL + h ∈ KL ⊕H provides a Lagrangian
embedding ℓh, which is a Hamiltonian deformation of ℓ. An easy exercice
of symplectic geometry shows that one can define a smooth map ψ on W
such that ψ(J) is a Hamiltonian transformation of (M,ω) with the property
that ψ(J) ◦ ℓ = ℓh and ψ(J0) = id as in Theorem A. We give an outline of
the argument to keep this paper self-contained. The function h is a priori
defined on L. However a tubular neighborhood of L = ℓ(L) is identified
with a neighborhood V of the 0-section of the contangent bundle T ∗L→ L.
The function h can be understood as a function on V by pull back. We
fix a suitable smooth compactly supported cut-off function ϕ on V equal
to 1 in a neighborhood of L. Then ϕh makes sense as a globally defined
function on M . The corresponding Hamiltonian vector field Xϕh is well
defined on (M,ω). By integrating upto time 1, the flow of the vector field
defines Hamiltonian transformation ψ(J) of (M,ω), with regularity a C4,η.
If J is sufficiently close to J0, the function h is very close to 0 in C3,η-norm.
In particular we have ψ(J) ◦ ℓ = ℓh, by construction.

By assumption J is smooth here, hence by Lemma 4.5.3 so is h. Thus
ψ(J) is also a smooth Hamiltonian transformation so that we can avoid the
complication of introducing a group of Hamiltonian transformations with
suitable Hölder topology.

For the second part of the theorem, given J ∈W , it suffices to find
u ∈ G such that u · J is a critical point of the functional ṽol (such u exists
by compactness of G). Then u · J satisfies the claim of Theorem A thanks
to Proposition 4.6.1. �

The rest of this section is devoted to the proof of the proposition.

Proof of Proposition 4.6.1. Let f = φ(0, J). Notice that by Lemma 4.5.3,
the function f is smooth and so is h. The smooth embedding, ℓh : L→M ,
satisfies the equation d∗αH = ψ for some ψ ∈ Kh, which is also smooth. By
definition, ψ = v ◦ ℓh for some function v ∈ KM , by rigidity.
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Let ut ∈ G be a 1-parameter subgroup of G such that u0 = id and
dut(x)

dt |t=0 = Xv(x). In other words, the tangent vector to the 1-parameter
subgroup is the Hamiltonian vector field Xv associated to v.

We consider the orbit J̃t = u∗tJ under the 1-parameter subgroup action.
Since J is a critical point of the modified volume functional on its G-orbit,
we have

d

dt

∣∣∣∣
t=0

ṽol(J̃t) = 0.

Looking more closely at the modified volume functional, this means that the
volume is critical for the 1-parameter family of Lagrangian embeddings ℓh̃t :

L→M with respect to the almost complex structures J̃t, where φ(0, J̃t) =
f̃t = f̃L,t + h̃t ∈ KL ⊕H. By Lemma 4.5.3, the functions f̃t, h̃t and f̃L,t are
all smooth. Furthermore, they depend smoothly on t.

Changing the point of view, this means that the volume of the La-
grangian embeddings ℓ̃t := ut ◦ ℓh̃t : L→M is critical with respect to the
fixed almost complex structure J .

Since the volume of a Lagrangian embedding depends only on the volume
of its image, we may work upto the action Diff(L). Hence, we may assume
after composing ℓ̃t on the right by a suitable family of diffeomorphism that
they are given by ℓh̃t+kt

: L→M , where kt is a smooth family of functions

on L such that ∂kt
∂t |t=0 = ψ.

The solution of the relative HSLAG equations are invariant under the
action of Diff(L), therefore we have a one parameter family of solutions of
the equation

Ψ(f̃t, kt, J) = 0,

with critical volume at t = 0.
Differentiating at t = 0 gives the identity

(4.5)
∂Ψ

∂f

∣∣∣∣
(f,0,J)

· ḟ = −
∂Ψ

∂k

∣∣∣∣
(f,0,J)

· k̇

where

ḟ =
∂f̃t
∂t

∣∣∣∣∣
t=0

and k̇ =
∂kt
∂t

∣∣∣∣
t=0

= ψ.

The computation of the operator ∂Ψ
∂k is similar to ∂Ψ

∂h and we find

∂Ψ

∂k

∣∣∣∣
(f,0,J)

· k̇ = Lf,J · k̇ +✷ℓh,J k̇.



✐

✐

“5-Legendre” — 2019/9/3 — 12:05 — page 774 — #22
✐

✐

✐

✐

✐

✐

774 E. Legendre and Y. Rollin

where Lf,J · k̇ = d
dtπh+kt(f)|t=0. We choose ε0 > 0 sufficiently small, to be

fixed afterward. According to Lemma 4.6.3, upto passing to sufficiently small
open sets U and W , we have the estimates

‖Lf,J · k̇‖L2 ≤ ε0‖k̇‖L2

and since k̇ = ψ ∈ Kh, by Lemma 4.6.4

‖✷ℓh,J k̇‖L2 ≤ ε0‖k̇‖L2 .

We deduce that the L2-norm of the LHS of (4.5) is bounded by 2ε0‖ψ‖L2 .
Applying Lemma 4.6.2, we obtain the estimate

‖ḟ‖L2 ≤ 2Cε0‖ψ‖L2 .

In particular we have an estimate

‖ḣ‖L2 ≤ 2Cε0‖ψ‖L2 .

If we choose ε0 =
1
4C , we have

‖ḣ‖L2 ≤
1

2
‖ψ‖L2 .

By the first variation formula, we have

˙vol = 〈αH , dḣ+ dψ〉 = 〈d∗αH , ḣ+ ψ〉 = 〈ψ, ḣ+ ψ〉 = ‖ψ‖2 + 〈ψ, ḣ〉.

By Cauchy-Schwartz inequality, it follows that

˙vol ≥ ‖ψ‖2 − ‖ψ‖‖ḣ‖ ≥
1

2
‖ψ‖2.

This is a contradiction unless ψ = 0. �

Here are the technicals lemmata used in the proof of Proposition 4.5.1.
These results are standard and some proofs may be omited.

The operator ∂Ψ
∂h |0,0,J0

is an isomorphism. The first eigenvalue of small
perturbations of this operator remain uniformly bounded away from 0 in
the sense of the following lemma:
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Lemma 4.6.2. For all neighborhood U and W of Proposition 4.5.1 chosen
sufficiently small, there exists a constant C > 0 such that all (f, J) ∈ U ×W
and F ∈ C4,η(L)

‖F‖L2 ≤ C

∥∥∥∥∥
∂Ψ

∂h

∣∣∣∣
(f,0,J)

· F

∥∥∥∥∥
L2

.

Lemma 4.6.3. For all ε > 0 there are sufficiently small open sets U and
W in Proposition 4.5.1 such that for all (f, J) ∈ U ×W and all function
F ∈ Kh

‖Lf,JF‖L2 ≤ ε‖F‖L2 .

Proof. The proof is easily done by contradiction. If the lemma is not true,
there exists ε > 0 and a family (fj , Jj) ∈ U ×W converging toward (0, J0)
and Fj ∈ Khj such that ‖Fj‖L2

= 1 while ‖Lfj ,JjFj‖L2 > ε.
Using the fact that K is a finite rank bundle over U ×W with a smoothly

varying L2-inner product, we may assume, after passing to a subsequence,
that Fj converge to F ∈ K0 = KL with the property that ‖F‖L2 = 1 and
L0,J0

F 6= 0. But this is impossible since πh(0) is identically 0, so that L0,J0
≡

0. �

Lemma 4.6.4. For all ε > 0 there are sufficiently small open sets U and
W , as in Proposition 4.5.1, such that for all function F ∈ Kh, we have

‖✷ℓh,JF‖ ≤ ε‖F‖L2 .

5. The volume functional

This section gathers some results and observations on the volume functional
that will be needed to show that the space of positive perturbations, intro-
duced at §6.2 in not empty, under mild assumption, in particular for the
proof of Theorem D and Theorem 6.2.3.

5.1. Main technical result

We start with a Kähler manifold (M,ω, J0). Let G be its group of Hamil-
tonian isometries. We consider a rigid HSLAG embedding ℓ : L→M as in
Theorem A.

Let Gℓ be the subgroup of isometries of G preserving the image of ℓ :
L→M . In other words u ∈ Gℓ if and only if u ◦ ℓ(L) = ℓ(L). We denote by
Go

ℓ the identity component of Gℓ.
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We consider the subspace of compactible almost complex structures
which differ from J0 by a diffeomorphism of M . The connected component
of J0 in this space is denoted Jω ⊂ ACω.

The standard volume functional here refers to the map

volJ : G/Go
ℓ → R

defined by volJ([u]) = vol(L, ℓ∗gu·J).
The variational formulas for the volume functional are much easier to

carry out assuming the base complex structure is integrable but the result
is likely to hold for almost Kähler metrics. Of course, it holds for any almost
Kähler metric (J, ω) in a sufficiently small neighborhood of the Kähler metric
(J0, ω). Then main technical result of this section is the following theorem:

Theorem 5.1.1. There exists a smooth 1-parameter family of complex
structures Js ∈W defined for s ≥ 0 such that

1) J0 is our given complex structure

2) ℓ : L→M is HSLAG with respect to Js for all s ≥ 0

3) volJs : G/G
o
ℓ → R admits a non-degenerate local minimum at u = id

for all s > 0.

5.2. Some variational formulae

First, we have to carry out some variational formulas. In order to do that
we identify a neighborhood of L with a neighborhood of the zero section in
T ∗L and a set of coordinates x1, . . . , xn on L is completed on T ∗L to give
Darboux coordinates ω =

∑n
i=1 dxi ∧ dyi. In these coordinates, dyi vanishes

on TL, so the volume form dvJ on L is

dvJ =
√

|gL|dx1 ∧ · · · ∧ dxn

where gL = gijdxi ⊗ dxj is the restriction of the metric g on L, |gL| the
determinant of (gij). The variation of Φ along a path {id} × Jt starting at
J is then given by

(5.1)
d

dt t=0
volJt(id) =

∫

L

tr(g−1
L ġL)dvJ =

∫

L

tr(g−1
L ġ)dvJ .
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More generally, for a given u ∈ G,

dJΦ(J̇) (u) =
d

dt t=0
volJt(u) =

∫

u(L)
tr(g−1

u(L)ġ)dvJ .

For J ∈ Jω, the tangent TJJω is a subspace of endormorphism of TM
and has a natural complex structure J given by

JA = J ◦A

for A ∈ TJJω. Denoting the orbit of J by under Symp0 by G.J = Symp0(ω) ·
J , one can prove, see [5], that

(5.2) TJJω = {−LZJ |Z ∈ symp(ω) + Jham(ω)} ≃ TJG.J + JTJG.J.

The last equality uses LJZJ = JLZJ which holds thanks to the integrability
of J . Note that the right hand side of (5.2) is not a direct sum in general.

Let Jt be a path in Jω defined for small t such that gt = ω(Jt·, ·) be the
corresponding variation of Riemannian metrics, so that g0 = g.

For φ ∈ C∞(M), let Xφ ∈ ham(ω) be the corresponding Hamiltonian
vector field that is dφ = −ω(Xφ, ·). We denote by D the Levi-Civita con-
nection and dcφ = −dφ ◦ J . Recall that for a 1–form α ∈ Ω1(M), the Levi-
Civita is defined as Dα (X,Y) = X.α(Y )− α(DXY ) and the Hessian of φ
is Ddφ, a symmetric tensor since D has no torsion. The J–invariant and
anti-invariant parts of Dα are

D±α (X,Y) =
1

2
(Dα (X,Y)±Dα (JX, JY)).

Lemma 5.2.1. Let φ ∈ C∞(M),

a) if J̇ = −LXφ
J , then ġ = −2D−dcφ.

b) if J̇ = −JLXφ
J , then ġ = 2D−dφ.

Proof. Since ω does not vary along the path (ω, gt, Jt) and that LXφ
ω = 0,

in the case a), we have, using [5, Lemma 1.20.2], that

(5.3) ġ = −ω(J̇ , ) = ω(LXφ
J(·), ·) = −2D−(X♭

φ) = −2D−dcφ

since g(Xφ, ·) = dcφ. In case b), we have

ġ = −ω(J̇ , ) = ω(JLXφ
J(·), ·) = −g(LXφ

J ·, ·)

= −(LXφ
ω) + LXφ

g(J ·, ·) = LXφ
g(J ·, ·).
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Since (g, J) is Kähler, DJ = 0 and so, for Z, Y ∈ Γ(TM), we have

ġ(Y, Z) = LXφ
g(JY, Z) = g(DJYXφ, Z) + g(JY,DZXφ)(5.4)

= (JY ).g(Xφ, Z)− g(Xφ, DJY Z)

+ (Z).g(JY,Xφ)− g(DZJY,Xφ)

= (JY ).dcφ(Z)− dcφ(DJY Z) + Z.dcφ(JY )− dcφ(DZ(JY ))

= −(JY ).dφ(JZ) + dφ(DJY JZ) + Z.dφ(Y )− dφ(DZ(Y ))

= −Ddφ (JY, JZ) +Ddφ (Z, Y)

= −Ddφ (JY, JZ) +Ddφ (Y, Z) = 2D−dφ(Y, Z)
�

Consequently, taking a variation J̇ = −LXφ
J − JLXψ

J we have

(5.5) dJΦ(J̇)(u) = −2

∫

u(L)
tr

(
g−1
u(L)(D

−dcφ−D−dψ)
)
dvJ .

Lemma 5.2.2. Let φ ∈ C∞(M) and X,Y ∈ TpM then

a) D−dcφ(X,Y ) = −D−dφ(JX, Y ),

b) 2D+dφ(X,Y ) = ddcφ(X, JY ),

c) 2(D−dφ(JX,X) +D−dφ(X,X)) = ddcφ(X, JX).

Proof. For a), recall that dcφ = −dφ ◦ J . We use that DJ = 0 as follow

2D−dcφ(X,Y ) = Ddcφ(X,Y )−Ddcφ(JX, JY )(5.6)

= X.dcφ(Y )− dcφ(DXY )− (JX).dcφ(JY ) + dcφ(DJXJY )

= −X.dφ(JY ) + dφ(DXJY )− (JX).dφ(Y ) + dφ(DJXY )

= −Ddφ(X, JY )−Ddφ(JX, Y )

= Ddφ(J2X, JY )−Ddφ(JX, Y )

= −2D−dφ(JX, Y )

For b), note that Ddφ is the Hessian, thus symmetric, hence

2D+dcφ(X,Y ) = Ddφ(X,Y ) +Ddφ(JX, JY )(5.7)

= X.dφ(Y )− dφ(DXY ) + (JY ).dφ(JX)− dφ(DJY JX).
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Using that D has no torsion, we see it coincides with

ddcφ(X, JY ) = X.dcφ(JY )− (JY ).dcφ(X)(5.8)

− dcφ(DXJY −DJYX)

= X.dφ(Y ) + (JY ).dφ(JX)

− dφ(DXY )− dφ(DJY JX).

For c), using again that Ddφ is symmetric we have

2(D−dφ(JX,X) +D−dφ(X,X))(5.9)

= Ddφ(JX,X) +Ddφ(X, JX)

+Ddφ(X,X)−Ddφ(JX, JX)

= Ddφ(X,X + JX) +Ddφ(JX,X − JX)

= 2D+dφ(X,X − JX)

Now, using formula b) just above, we have

2D+dφ(X,X − JX) = ddcφ(X, J(X − JX))

= ddcφ(X, JX) + ddcφ(X,X) = ddcφ(X, JX).
�

5.3. Particular variations

Let ϕ be a real smooth function on M . We consider a family of almost
complex structures Js ∈ Jω, defined for s ∈ R sufficiently close to zero and
such that

(5.10)
∂

∂s
Js = −LXϕ

Js + JsLXϕ
Js

for all s sufficiently small, where Xϕ is the Hamiltonian vector field deduced
from ϕ.

We have the following variation formula for the volume:

Proposition 5.3.1. Let ϕs be a smooth family of real smooth functions
on M for small s ∈ R and consider the corresponding of Js ∈ Jω satisfying
(5.10). Then

∂

∂s
volJs(u) =

∫

L

((∆gsϕ) ◦ u ◦ ℓ) vol((u ◦ ℓ)∗gJs).
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Proof. Using the first and last formulas of Lemma 5.2.2, we get that

(5.11) dJΦ(J̇)(u) = −2

∫

u(L)
tr(g−1

u(L)dd
cφ(·, J ·))dvJ = −2

∫

u(L)
∆gφ dvJ

where ∆gφ is the Laplacian of φ on M with respect to the Kähler metric g.
Indeed, taking {vi}

n
i=1 an orthonormal basis of TpL, the trace

tr(g−1
u(L)dd

cφ(·, J ·)) =

n∑

i=1

ddcφ(vi, Jvi)

is the symplectic trace of ddcφ which turns out to be the Laplacian of φ at
p up to a sign, see for e.g. [5, p.33]. Observe that to obtain (5.11) we didn’t
use the fact that G fixes J so the formula holds at any point of Jω. �

The variation of Js depends on first derivatives of φ. If φ vanishes upto
order 1 along the image of ℓ : L→M , the almost complex structures Js
are independent of s along ℓ as well. The metric gs deduced from ω and gs
must also be independent of s along ℓ. Is ϕ vanishes to a higher order, say
upto order 2 along ℓ, the mean curvature along ℓ will also be independent
of s. Since the metric, the mean curvature are independent of s we have the
following lemma

Lemma 5.3.2. Let ϕ :M → R be a smooth function vanishing upto order
2 along the image of ℓ : L→M , and Js be a family of almost complex struc-
tures defined from ϕ as above. Then ℓ : L→M is HSLAG with respect to
Js for all s sufficiently small.

For s = 0, since u acts by isometry on gJ0
we deduce from Proposi-

tion 5.3.1 that

∂

∂s
volJs(u)|s=0 =

∫

L

((∆g0ϕ) ◦ u ◦ ℓ) vol(gL).

Lemma 5.3.3. Let (Nk, g) be a smooth compact Riemannian manifold of
dimension k and p ∈ N . Let r : N → R be the Riemannian distance to p in
N . The function r4 is a smooth function in the neigborhood of p ∈ N with
the property that

∆(r4) = −4r2(k + 2) + o(r3),

where ∆ is the Laplacian associated to the metric g.
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Proof. It is well-known that r2 is smooth, so does r4. Taking normal coordi-
nates (r, θ) centered at p we know the metric tend up to order 1 to the Eu-
clidean metric at p. Then |∇r|2 → 1 and ∆r2 → −2k when r → 0. It suffices
to use the formula ∆r4 = 2r2∆r2 − 2g(∇r2,∇r2) = 2r2(∆r2 − 4g(∇r,∇r))
to get the result. �

All the ingredients above can be used to give a proof of the main result
of this section.

Proof of Theorem 5.1.1. Returning to our setup, still identifying a neigbor-
hood of ℓ(L) in M with a neigborhood V of the 0–section in T ∗L and
considering the Kähler metric induced by g on V . Denote the natural pro-
jection T ∗L→ L. We consider the function ϕ : V → R defined by ϕ(α) =

1
−4(n+2)d

g(π(α), α)4 where dg is the distance induced by g. Then, when re-
stricted on a fiber T ∗

pL ∩ V , ϕ is the 4-th power of the distance function to
p up to a constant factor and satisfies the last lemma. If (rp, θp) are normal

coordinates of T ∗
pL ∩ V centered at p then ϕ(p, rp, θp) =

r4p
−4(n+2) . The lemma

above (see the proof to be convinced it works as well) gives then

∆gϕ = r2p +O(r3p).

Let ut ∈ G be a one parameter subgroup of G such that u0 = id. Since ϕ
vanishes upto order 3 along ℓ : L→M we have ∆g0ϕ = 0 upto order 1 along
ℓ, where g0 is the Riemannian metric deduced from J0 and ω. Therefore

∂

∂t
((∆g0ϕ) ◦ ut ◦ ℓ) |t=0 = 0

on L. In particular

∂

∂t

∂

∂s
volJs(ut)|(s,t)=0 = 0.

The second order t-derivative is given by

∂2

∂t2
∂

∂s
volJs(ut)|(s,t)=0 =

1

2

∫

L

Q(X,X)vol(gL)

where Q is the Hessian quadratic form of ∆g0ϕ and X is the Hamiltonian
vector field tangent to ut at t = 0 along ℓ. If ∆g0ϕ = r2p +O(r3p), we deduce
that Q is definite positive in directions transverse to ℓ. If ut is transverse to
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G0
ℓ , then X is not everywhere tangent to ℓ. Hence we have proved that

∂2

∂t2
∂

∂s
volJs(ut)|(s,t)=0 > 0

unless ut is tangent to G
o
ℓ at t = 0.

We deduce that if ut is transverse to G0
ℓ at t = 0

volJs(ut) = c+ bst
2 + o(t2)

where the constant bs is strictly positive for s > 0. This completes the proof
of Theorem 5.1.1. �

5.4. Other properties of the volume functional

Our variationnal formulas can be used to show that the standard volume
functional has Morse properties for generic almost complex structures. Un-
fortunately we are interested in the modified volume functional (4.4) in this
paper, and this is why we relied on Theorem 5.1.1 instead. For the interested
reader, we state the following result, which is in the spirit of the proof of
existence of Morse function in the finite dimensional setting, although it is
not used in the rest of the paper:

Proposition 5.4.1. Given a compact Kähler manifold (M,ω, J0) and a
compact Lagrangian ℓ : L →֒M . The map Φ : Jω −→ C∞(G

/
Gℓ), defined

as

(5.12) Φ(J) := volJ

is a submersion in a neigborhood of J0.

Proof. The map u 7→ u(L) is injective on G
/
Gℓ so there exists a point p ∈ L

such that there is a neighborhood V of id ∈ G satisfying the condition:

(5.13) ∀u ∈ V, u(p) ∈ L if and only if u ∈ Gℓ.

The neighborhood V depends on p but since it is an open condition on p
we can choose a neighborhood U of p in L such that condition (5.13) holds.
Then the orbit map ψ(q, γ) = γ(q) induces a smooth foliation of the image
W := ψ(U × V ), in M . The leafs of W are u(L) ∩W ≃ U for u ∈ G/Gℓ.
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Actually, we have a diffeomorphism

(5.14) τ : W
∼

−→ U × Vℓ

where Vℓ ⊂ G/Gℓ denotes the image of V via the quotient map G→ G/Gℓ.
We can easily pushforward any bump function ψU from U to the whole

W via the action of G and any function f on Vℓ defines a Gℓ–invariant
function on V . The pull-back τ∗(ψU × f) on W may be extended to M so
that it integrates to 0. Taking the Green function of this extension to be
the variation J̇ as above, we get that (5.11) becomes

dJΦ(J̇)(u) = f(u)

for all u ∈ Vℓ. From which we conclude that dJΦ is surjective on C∞(Vℓ). �

6. Deformation theory for local HSLAG toric fibrations

6.1. Obstacles to overcome

So far, we only considered the case of a single HSLAG embedding ℓ : L→M .
We would like to extend the theory to the case of a local HSLAG toric
fibration ℓt : L→M as defined in §1.2. There are several issues for extending
Theorem A to a Lagrangian fibration:

1) The fibration becomes singular at the boundary of the polytope in
the case of the standard fibration by Lagrangian tori of a toric Kähler
manifold. In the case of a SLAG fibration of a K3 surface, certain
fibers have several irreducible components. Such issues related involve
complicated analytical problems that we shall not tackle at this paper.
This is why we restrict our attention to local fibrations by smooth
Lagrangian tori as in §1.2.

2) Proposition 4.6.1 involves the choice a local minimum of the volume
functional seen as a function on G. One cannot make a consistent
choice a minimum for a family of tori, unless the volume has some
special properties. We shall prove that for a generic choice of metric
the volume functional is non degenerate, which allows to get around
this issue.

Example 6.1.1. The fact that the Hamiltonian transformation v of The-
orem C is not necessarily small can be readily observed in an example.
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We consider the unit 2-dimensional sphere in R3 with a given axis go-
ing from the north to the south pole and its standard complex structure
obtained by rotating each tangent plane by an angle π/2.

Every embedded circle C is automatically Lagrangian in such a low
dimensional case. Furthermore, the HSLAG property is equivalent to the
fact that the circle has constant curvature. There is a standard fibration
ℓt : S

1 → S2, for t ∈ (−1, 1) of the sphere by circles of constant curvature,
known as the parallels, obtained by rotating the sphere about its axis

We pick an axis (D) going through the shere center, wich is distinct
from the given axis, and does not belong to the equator plane. We consider
a deformation of the sphere, with prescriped area, into an ellipsöıd of rev-
olution, with axis (D). As shown by the picture below, there is an obvious
fibration by circle of constant curvature. However this fibration is far from
the original fibration which suggests that a jump must occur.

However, this only a heuristic argument since we do not have a proof that
this HSLAG fibration is the only one on an ellipsöıd of revolution.

We now give a correct argument. The equator ℓ0 : S
1 → S2 is a geodesic,

hence its Maslov form α0 vanishes. On the other hand, the sign of the integral∫
S1 αt of the Maslov form αt of ℓt changes when t goes through 0.



✐

✐

“5-Legendre” — 2019/9/3 — 12:05 — page 785 — #33
✐

✐

✐

✐

✐

✐

Hamiltonian stationary Lagrangian fibrations 785

We consider a variation Js of the standard complex structure J0 on the
sphere S2, compatible with the symplectic form. The Maslov form of ℓt now
depends on s as well, and we denote it by αt,s. By continuity, there exists ts
for each sufficiently small deformation Js such that

∫
S1 αts,s = 0. If there is

a Hamiltonian transformation vs of the sphere such that v ◦ ℓ is a HSLAG
fibration with respect to Js, then v ◦ ℓts has constant curvature with exact
Maslov form and it must be a geodesic.

Now, we pick a particular variation Js, where each Js induces the met-
ric of an ellipsöıd of revolution with three distinct axis unless s = 0. Such
surfaces are known to have only three closed geodesics. Upto a rotation, we
may assume that none of the three geodesics agree with the equator of the
starting round sphere. This shows that vs is not close to the identity for s
close to 0.

6.2. Positive perturbations

We start with a Kähler manifold (M,ω, J0). Let G be its group of Hamil-
tonian isometries. We consider a rigid HSLAG embedding ℓ : L→M as in
Theorem A.

Let Gℓ be the subgroup of isometries of G preserving the image of ℓ :
L→M . In other words u ∈ Gℓ if and only if u ◦ ℓ(L) = ℓ(L). We denote by
Go

ℓ the identity component of Gℓ.
Using the notation of §4.6, we consider almost complex structures J ∈W

sufficiently close to J0 and the corresponding relatively HSLAG embedding
ℓh : L→M on (M,ω, J).

The modified volume functional ṽol :W→R is generally notG-invariant.
However Gℓ leaves L = ℓ(L) invariant by definition. It follows that the map
Ψ defined at (4.2) is Gℓ-equivariant, and so is the map φ defined in Propo-

sition 4.5.1. In turn, the modified volume functional ṽol :W → R is Gℓ-
invariant. Hence, the modified volume functional may be understood as a
map

ṽolJ : G/Go
ℓ → R

defined by ṽolJ([u]) = ṽol(u · J). By Proposition 4.6.1, critical points of this
functional correspond to HSLAG embeddings. Such critical points are gener-
ally not non-degenerate. For instance, the choice J = J0 provides a constant
function ṽolJ0

since J0 is G-invariant and all critical points are degenerate.
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Definition 6.2.1. An almost complex structure J ∈W is called a positive
deformation of J0 with respect to the rigid HSLAG ℓ : L→M if the cor-
responding functional ṽol : G/Go

ℓ → R admits a non degenerate local min-
imum. The subset of W that consists of positive deformations is denoted
W+.

We have the following obvious result, by stability of non-degenerate local
minimum:

Lemma 6.2.2. The set of positive deformationsW+ of J0 is an open subset
of W , endowed with its C2,η-topology.

The openness result does not insure that W+ is non-empty. Although
we suspect that it is never empty, we shall prove it under some reasonnable
technical assumptions:

Theorem 6.2.3. Let (M,ω, J0) be a Kähler manifold and ℓ : L→M be a
rigid and stable HSLAG.

Then, the open set of positive deformationsW+ ⊂W of J0 is not empty.
Furthermore, there exists a smooth family of complex structure Js ∈W , de-
fined for s ≥ 0, such that Js ∈W+ for all s > 0. In other words, J0 is in
the closure of W+.

Notice that Theorem D is a less technical restatement of the above
theorem.

Proof. Let Js be a family of complex structures as in the above proposition.

Lemma 6.2.4. Under the stability assumption of Theorem 6.2.3, the func-
tional

ṽolJs : G/G
o
ℓ → R

admits non-degenerate local minimum at the identity for every s > 0 suffi-
ciently small.

Proof. The fact that ṽol admits a critical point at the identity is clear, since
ℓ : L→M is a HSLAG in (M,ω, Js).

The only thing to be proved is the fact that it is non-degenerate. Let
ut ∈ G be a one parameter subgroup of G transverse to Gℓ, with u0 = id
and k̇ ∈ KM a corresponding Hamiltonian function such that d

dtut|t=0 = Xk̇.
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Let Js,t = u∗tJs and ℓt,s = ℓhs,t : L→M be the corresponding solution,
a relatively HSLAG embedding, provided by the implicit function theorem
as in Proposition 4.5.1.

By definition ℓs,0 = ℓ. We can switch our point of view using ℓ̃s,t = ut ◦
ℓs,t with a fixed complex structure Js. By the second variation formula, we
have

d2

dt2
vol(ℓ̃s,t, gJs)|t=0 = 〈✷Js(k̇ + ḣ), k̇ + ḣ〉.

where ḣ ∈ H is the projection of ∂
∂kφ|(0,Js) · k̇ on H. Expanding the above

inner product and integrating by part we obtain

〈✷Js k̇, k̇〉+ 〈✷Js ḣ, ḣ〉+ 2〈✷Js k̇, ḣ〉

For s > 0, since Js is provided by Theorem 5.1.1 and we have the non-
degeneracy property (3). The second term is non negative for s sufficiently
small by the stability assumption of ℓ : L→M into (M,ω, J0). The third
term is controlled by the first two terms since ✷Js k̇ converges to 0 as s goes
to 0 and the eigenvalues of ✷Js are uniformly bounded from below in the
direction ḣ. Hence the second variation of the volume must be positive for
s > 0 sufficiently small. �

In conclusion, the complex structures Js belong to W+ for s > 0 suffi-
ciently small. This completes the proof of Theorem 6.2.3. �

6.3. Invariant Lagrangian fibrations

We would like to extend the deformation theory of §4 to the case of a fi-
bration. For this purpose, we choose to restrict to the case of Go

ℓ -invariant
fibrations in the sense of Definition 1.2.3. This technical assumption is not
too demanding as it is satisfied by examples provided by toric Kähler geom-
etry. We state few observations on Go

ℓ -invariant fibrations in the following
Proposition.

Proposition 6.3.1. Let ℓt : L ≃M2n be a Lagrangian fibration with ℓ0 = ℓ
and t ∈ B(0, ε) and such that L is compact.

1) If Go
ℓ acts effectively on ℓ(L) then Go

ℓ is a torus of dimension at most
n.

2) If ℓt is a Go
ℓ-invariant fibration then Go

ℓ is a torus of dimension at
most n.
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3) If Go
ℓ = Tn then there exists a Go

ℓ-invariant fibration ℓ̃t : L→M such
that ℓ̃0 = ℓ is a neigborhood of ℓ(L).

4) If (M, g, ω, J) is a toric Kähler manifold with momentum map µ :
M → P ⊂ Rn, then {µ−1(p) | p ∈ P̊} is a Tn–invariant fibration.

Proof. The first affirmation follows the observation that the orbit of Go
ℓ in

ℓ(L) must be isotropic, thus a torus, thanks to the formulas

(6.1) dω(Xa, Xb) = −ω([Xa, Xb], ·) = −ω(X[a,b], ·)

where Xa is the vector field induced on M by a ∈ Lie Go
ℓ . The second

affirmation is a consequence of the observation that in the case of Go
ℓ -

invariant fibration we have Go
ℓ ⊂ Go

ℓt
and there is an open and dense subset

of t ∈ B(0, ε) such that Go
ℓt

acts effectively on ℓt(L). For the third one, we
consider the generic orbits of Go

ℓ = Tn, which must be Lagrangian by the
formula (6.1) above. The fourth affirmation is obvious. �

Theorem 6.3.2. Let (M,ω, J0) be a Kähler manifold and ℓ : L→M a
rigid HSLAG embedding, where L is a real torus.

Assume that non-trivial harmonic forms on L for the induced metric do
not vanish at any point. Then there exists a Go

ℓ-invariant HSLAG fibration
ℓt : L→M such that ℓ0 = ℓ.

Proof of Theorem 6.3.2. The compact group Gℓ preserves the image of ℓ :
L→M . Thus Gℓ has an induced action on L by diffeomorphism. This action
also induces a symplectic Gℓ-action on T ∗L. The starting point of our setup
to apply the implicit function Theorem (cf. §4) requires the choice of a
symplectic diffeomorphism between a neighborhood of the image of ℓ in M
and a neighborhood of the zero-section in T ∗L. This symplectomorphism
can be chosen to be Gℓ-equivariant.

We have a Riemannian metric gL on L induced by gJ0
. Since Gℓ acts

isometrically on (M, gJ0
), the induced action on (L, gL) is also isometric. In

particular, Gℓ acts on the space H1(L, gL) of harmonic 1-forms of (L, gL).
Since elements of Go

ℓ are homotopic to the identity in Diff(L), they act
trivially on the cohomology of L, hence on the space of harmonic 1-forms
H1(L, gL).

One can construct a standard Lagrangian toric fibration

H1(L, gL)× L→ T ∗L
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given by (α, x) 7→ αx. This construction is Gℓ equivariant, by definition.
Using the Gℓ-equivariant indentification between a neighborhood of the 0-
section of T ∗L and a neighborhood of the image of ℓ, we deduce a local
lagrangian toric fibration

ℓ̂ : K × L→M

where K is a Gℓ-invariant neighborhood of the origin in H1(L, gL). For K
sufficiently small, this map is indeed an embedding since by assumption,
harmonic 1-forms do not vanish at any point. We use the notation ℓ̂α =
ℓ̂(α, ·) in the sequel.

By definition ℓ̂0 = ℓ so it must be HSLAG. However ℓ̂α may not be
HSLAG for α ∈ K. By construction the fibration is Gℓ-equivariant and the
action induced by Go

ℓ is trivial on the parameter space α ∈ K.
Using a version of the implicit function theorem with parameter as in

Proposition 4.5.1, one can perturb each map ℓ̂α for α ∈ K by a Hamiltonian
deformation, provided K is sufficiently small, in order to get a relatively
HSLAG Lagrangian embedding. More precisely, there exists a smooth map

φ : K → U,

with the notations of Proposition 4.5.1, such that the lagrangian embedding
ℓα defined by the 1-form α+ dhα, where hα = φ(α) is relatively HSLAG.

By uniqueness of the solution of the IFT and the fact that G acts by
isometries on gJ0

we obtain that φ is a Gℓ equivariant map. In particular,
the Lagrangian fibration ℓα : L→M is also Go

ℓ -invariant.
The invariance of the metric also implies that the volume of ℓα is invari-

ant under the action of G. This forces the equation d∗αH = 0 by the first
variation formula for the volume. Therefore, each ℓα must be HSLAG. �

6.4. Fibrations and positive perturbations

At this stage, all the tools necessary to handle the case of HSLAG fibrations
have been introduced.

Let ℓt : L→M be a HSLAG toric fibrations into a Kähler manifold
(M,ω, J0), with G its the group of Hamiltonian isometries. We are assuming
that ℓt is G

o
ℓ0
-invariant.

We are assuming that J ∈W+ is a positive perturbation with respect
to ℓ = ℓ0. By stability of non-degenerate minimum, we deduce that J is
positive with respect to every ℓt, for t sufficiently small.

Provided ℓ0 is rigid, using the implicit function theorem, we deduce a
family of Hamiltonian deformations ℓt,ht,u of ℓt which are relatively HSLAG
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with respect to the complex structures u · J for all u ∈ G. Equivalently,
u · ℓt,ht,u is relatively HSLAG with respect to J . For each t, there exists a

non-degenerate local minimum of the modified volume functional ṽol. Since
it is non degenerate, we may choose ut, depending smoothly on t such that
ut · ℓt,ht,ut achieve such a local minimum of ṽol.

By Proposition 4.6.1, ut · ℓt,ht,ut : L→M must be HSLAG with respect
to J . We deduce the following proposition:

Proposition 6.4.1. Let ℓt : L→M be a Go
ℓ-invariant HSLAG toric fibra-

tion in a Kähler manifold (M,ω, J0) such that ℓ0 is rigid.
For each positive almost complex structure J compatible with ω and suf-

ficiently close to J0, there exists a smoothly varying family of Hamiltonian
transformations vt such that vt ◦ ℓt is HSLAG with respect to (M,ω, J).

Since we have a local smooth fibration, we readily deduce

Corollary 6.4.2. Under the assumptions of Proposition 6.4.1, there exists
Hamiltonian transformations v such that v ◦ ℓt is a HSLAG toric fibration
with respect to (M,ω, J).

This proves Theorem C.
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