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Isotropic submanifolds and coadjoint

orbits of the Hamiltonian group

François Gay-Balmaz and Cornelia Vizman

We describe a class of coadjoint orbits of the group of Hamilto-
nian diffeomorphisms of a symplectic manifold (S, ω) by imple-
menting symplectic reduction for the dual pair associated to the
Hamiltonian description of ideal fluids. The description is given
in terms of nonlinear Grassmannians (manifolds of submanifolds)
with additional geometric structures. Reduction at zero momen-
tum yields the identification of coadjoint orbits with Grassman-
nians of isotropic volume submanifolds, slightly generalizing the
results in [30] and [17]. At the other extreme, the case of a nonde-
generate momentum recovers the identification of connected com-
ponents of the nonlinear symplectic Grassmannian with coadjoint
orbits, thereby recovering the result of [9]. We also comment on the
intermediate cases which correspond to new classes of coadjoint or-
bits. The description of these coadjoint orbits as well as their orbit
symplectic form is obtained in a systematic way by exploiting the
general properties of dual pairs of momentum maps. We also show
that whenever the symplectic manifold (S, ω) is prequantizable, the
coadjoint orbits that consist of isotropic submanifolds with total
volume a ∈ Z are prequantizable. The prequantum bundle is con-
structed explicitly and, in the Lagrangian case, recovers the Berry
bundle constructed in [30].
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1. Introduction and preliminaries

This paper concerns the description and prequantization of a class of in-
finite dimensional coadjoint orbits of the group Diffham(S) of Hamiltonian
diffeomorphisms of a symplectic manifold (S, ω) and of its central exten-
sion, the identity component of the group Diffquant(P ) of quantomorphisms
of the prequantum bundle P → S, when ω is prequantizable. We obtain our
results by a systematic use of the process of symplectic reduction applied to
the dual pair of momentum maps associated to the Hamiltonian description
of ideal fluids.

Several descriptions of classes of coadjoint orbits have been already
given. In [30] a foliation of the space of Lagrangian submanifolds of S, whose
leaves consist of Lagrangian submanifolds that can be joined by flowing along
Hamiltonian vector fields, is considered, together with a corresponding iso-
drastic foliation of the space of weighted Lagrangian submanifolds (here a
weight is a smooth density of total measure 1). It is argued heuristically
that the leaves that consist of positively weighted Lagrangian submanifolds
can be identified with coadjoint orbits of the group of Hamiltonian dif-
feomorphisms. All these facts are showed rigorously in [17], where these
coadjoint orbits are obtained by symplectic reduction on the manifold of
embeddings into S. More general coadjoint orbits, that consist of positively
weighted isotropic submanifolds, are also obtained. In [9] another class of
coadjoint orbits of the group of Hamiltonian diffeomorphisms was identified
with connected components of the nonlinear Grassmannian of symplectic
submanifolds of S.

In the present paper, we describe in terms of nonlinear Grassmannians
a class of coadjoint orbits of the group of Hamiltonian diffeomorphisms of
a symplectic manifold by implementing symplectic reduction for the dual
pair of momentum maps associated to the Hamiltonian description of ideal



i
i

“3-Vizman” — 2019/8/27 — 21:43 — page 665 — #3 i
i

i
i

i
i

Isotropic submanifolds and coadjoint orbits 665

fluids [19]. This class contains as particular cases the above two descriptions
of coadjoint orbits.

To obtain this result, we use the reformulation of the dual pair of ideal
fluids given in [4] that allows a rigorous proof of the dual pair properties.
This reformulation consists in restricting the action of symplectic, resp. vol-
ume preserving, diffeomorphisms to the subgroups of Hamiltonian, resp.
exact volume preserving, diffeomorphisms, and to consider the prequantiza-
tion and Ismagilov central extensions of these subgroups, respectively. As a
consequence of our approach, we need to impose an extra condition, namely,
the vanishing of the first cohomology of the submanifolds or the exactness
of the symplectic form.

The dual pair property is crucially used to identify the symplectic re-
duced space relative to one group action with coadjoint orbits of the other
group. To this end, we need to formulate two general results on dual pairs of
momentum maps, that extend the results of [2] and that apply to the ideal
fluid dual pair.

In the case of the class of coadjoint orbits of weighted isotropic sub-
manifolds obtained in [30] and [17], our approach yields much concrete ex-
pressions for the tangent spaces to the coadjoint orbits and hence, explicit
formulas for the orbit symplectic form. Assuming that the symplectic mani-
fold (S, ω) is prequantizable, with prequantum bundle P → S, we also show
that these coadjoint orbits are prequantizable whenever the total volume a
of the isotropic submanifolds is an integer, and construct explicitly the pre-
quantum bundle. It is the space of horizontal submanifolds of P that cover
isotropic submanifolds of S in the coadjoint orbit, factorized by the action
of ath roots of unity induced by the principal circle action on P . In the La-
grangian case we get Planckian submanifolds [26] (Legendre submanifolds
of the contact manifold P ), thus generalising the result from [30] that the
nonlinear Grassmannian of weighted Lagrangian submanifolds is prequanti-
zable when a = 1. In this case, the prequantum bundle recovers the Berry
bundle of [30].

Contribution of the paper. To guide the reader and provide a quick
overview of our results, we briefly list here the main contributions of the
paper.

• We present a new and systematic derivation for the identification of
coadjoint orbits of the group of Hamiltonian diffeomorphisms with par-
ticular nonlinear Grassmannians, see Theorems 4.2 and 4.3. Our ap-
proach unifies earlier identifications, given in [30] and [17] for spaces of
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isotropic volume submanifolds with volume one and in [9] for spaces of
symplectic submanifolds. We also slightly extend the class of coadjoint
orbits identified in these earlier works by considering Grassmannians
of isotropic volume submanifolds of arbitrary fixed volume and Grass-
mannians of (weighted) presymplectic submanifolds. Our approach al-
lows a concrete description of the tangent spaces of the Grassmannians
and of the orbit symplectic forms.

• This derivation is based on the recognition that certain dual pairs
of momentum maps yield, under some conditions, an isomorphism be-
tween symplectically reduced spaces and coadjoint orbits, as explained
in Section 2. The dual pair of momentum maps that is fundamental
for this work, is the dual pair associated to the Hamilton description
of ideal fluids, as explained in Section 3.

• We prove that, under natural conditions, these coadjoint orbits are
prequantizable and we concretely describe the prequantum bundle.
This result extends to the isotropic case the results obtained in [30]
for the Lagrangian case. This is the content of Section 5.

• We describe the coadjoint orbits and their prequantification for the
case of an exact symplectic manifold, see Theorem 6.3 and Proposition
6.5. In this case we can treat the case of submanifolds with nontrivial
cohomology.

Plan of the paper. In the remainder of this Introduction, we recall some
facts concerning nonlinear Grassmannians and we review two central exten-
sions of groups of diffeomorphisms. At the end of the introduction we provide
a glossary that contains a list of notations for most of the mathematical ob-
jects used throughout this article. In Section 2 we consider two situations,
relevant in the infinite dimensional setting, in which symplectic reduction in
a dual pair of momentum maps provides coadjoint orbits. In Section 3 we
review the ideal fluid dual pair on Emb(M,S) when H1(M) = 0. Symplectic
reduction with respect to the right action in the ideal fluid dual pair is done
in Section 4 and is used to identify each connected component of the nonlin-
ear Grassmannian of isotropic volume submanifolds with a coadjoint orbit.
In Section 5, we show that their connected components are prequantizable
coadjoint orbits, when S is a prequantizable symplectic manifold. Finally, in
Section 6, starting from the ideal fluid dual pair on Emb(M,S) when S is ex-
act symplectic, we redo everything for exact isotropic volume submanifolds.
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The appendix discusses the Fréchet manifold structure on several nonlinear
Grassmannians.

Nonlinear Grassmannians. Let S be a manifold, let M be a compact
k-dimensional manifold, and consider the Fréchet manifold Emb(M,S) of
all embeddings of M into S. The tangent space at f ∈ Emb(M,S) is the
space of vector fields on S along f . The group Diff(M) of diffeomorphisms
of M acts on Emb(M,S) by composition on the right. The associated quo-
tient map π : f ∈ Emb(M,S) 7→ f(M) ∈ GrM (S) defines a principal bundle
with structure group Diff(M) over the nonlinear Grassmannian GrM (S) of
(embedded) submanifolds of S of type M , which is known to be a Fréchet
manifold [16] [21] (see also the appendix).

The tangent space to GrM (S) at N = f(M) is given by the space of
smooth sections of the normal bundle TN⊥ := (TS|N )/TN . The tangent
map to the projection π reads

(1.1) Tfπ : v ◦ f ∈ Tf Emb(M,S) 7→ v|⊥f(M) ∈ Tf(M) GrM (S), v ∈ X(S).

The nonlinear Grassmannian of volume submanifolds of type (M,µ)

GrM,µ(S) :=

{
(N, ν) : N ∈ GrM (S), ν ∈ Vol(N),

∫
N
ν =

∫
M
µ

}
.

is the base manifold of a principal Diffvol(M)-bundle

(1.2) πµ : f ∈ Emb(M,S) 7−→ (f(M), f∗µ) ∈ GrM,µ(S).

The forgetting map (N, ν) ∈ GrM,µ(S)→ N ∈ GrM (S) is a fiber bundle with
fiber Vol1(M), the space of volume forms of total volume 1. Using a Rieman-
nian metric on S, the tangent space to GrM,µ(S) at (N, ν) is identified with
TN GrM (S)× dΩk−1(N). We refer to [6] for a detailed study of the Fréchet
manifold structures, together with the treatment of the more general case
when ∂M 6= ∅.

We summarise in Table 1 the list of all the infinite dimensional manifolds
occurring in the paper.

The prequantization central extension. Let (S, ω) be a prequantizable
symplectic manifold, i.e. there exists a principal circle bundle (the prequan-
tum bundle) p : P → S with principal connection α ∈ Ω1(P ) whose curva-
ture is the symplectic form ω, so dα = p∗ω. Let us denote by Diffham(S) the
group of Hamiltonian diffeomorphisms of (S, ω). Its Lie algebra is the space
Xham(S) = {Xf ∈ X(S) : iXfω = df, f ∈ C∞(S)} of all Hamiltonian vector
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fields. The quantomorphism group is the group Diffquant(P ) of connection
preserving automorphisms of P . Its Lie algebra is C∞(S), endowed with the
Poisson bracket {f, g} = ω(Xg, Xf ), under the identification of h ∈ C∞(S)
with ξh = Xhor

h − (h ◦ p)E, where E denotes the infinitesimal generator of
the circle action and hor the horizontal lift.

For connected S, the Lie algebra extension

(1.3) 0→ R→ C∞(S)→ Xham(S)→ 0

integrates to the prequantization central extension of Diffham(S) given by
[15][26]

(1.4) 1→ S1 → Diffquant(P )0 → Diffham(S)→ 1,

where Diffquant(P )0 denotes the component of the identity. A version of this
exact sequence of groups for infinite dimensional S can be found in [23]. The
universal central extension of the Lie algebra of Hamiltonian vector fields
can be found in [13]. Integrability issues were posed in [14].

Ismagilov’s central extension. Let M be a compact k-dimensional mani-
fold with volume form µ and let Diffvol(M) be the group of volume preserving
diffeomorphisms with Lie algebra Xvol(M) of divergence free vector fields.
We denote by Diffex(M) the subgroup of exact volume preserving diffeomor-
phisms with Lie algebra Xex(M), the Lie algebra of vector fields Xα admit-
ting a potential form α ∈ Ωk−2(M), i.e. iXαµ = dα [1][16]. If dimM = 2,
then the volume form is a symplectic form and we are in the previous para-
graph setting. In [10] it is shown that, when dimM = 3, the group of dif-
feomorphisms that preserve the equivalence class of a gerbe with curvature
µ also integrates the Lie algebra Xex(M).

Assume that dimM ≥ 3. If µ is integral (
∫
M µ ∈ Z), the Lichnerowicz

Lie algebra extension [25]

(1.5) 0→ Hk−2(M)→ Ωk−2(M)/dΩk−3(M)→ Xex(M)→ 0,

with Lie algebra bracket

(1.6) {[α], [β]} = [iXαiXβµ] on Ωk−2(M)/dΩk−3(M),

integrates to Ismagilov’s central extension [11]

(1.7) 1→ Hk−2(M)/L∗ → D̂iffex(M)→ Diffex(M)→ 1,
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where L∗ is the dual lattice to the lattice L ⊂ Hk−2(M,R) generated by a
fixed basis of Hk−2(M,R) consisting of co-dimension two submanifolds.

Notation Name

Diffvol(M) The group of volume preserving diffeomorphisms of the volume manifold M

Diffex(M) The group of exact volume preserving diffeomorphisms of the volume manifold M

Diffsymp(S) The group of symplectic diffeomorphisms of the symplectic manifold S

Diffham(S) The group of Hamiltonian diffeomorphisms of the symplectic manifold S

Emb(M,S) The space of embeddings of M into S

GrM (S) The Grassmannian of submanifolds of S of type M

GrMsymp(S) The Grassmannian of symplectic submanifolds of S of type M

Gr(M,µ)(S) The Grassmannian of volume submanifolds of S of type (M,µ)

Embiso(M,S) The space of isotropic embeddings of M into S

GrMiso(S) The Grassmannian of isotropic submanifolds of S of type M

Gr
(M,µ)
iso (S) The Grassmannian of isotropic volume submanifolds of S of type (M,µ)

EmbLag(M,S) The space of Lagrangian embeddings of M into S

GrMLag(S) The Grassmannian of Lagrangian submanifolds of S of type M

Gr
(M,µ)
Lag (S) The Grassmannian of Lagrangian volume submanifolds of S of type (M,µ)

Diffquant(P ) The quantomorphism group of the prequantum bundle P

Embhor(M,P ) The space of horizontal embeddings of M into P

GrMhor(P ) The Grassmannian of horizontal submanifolds of P of type M

Gr
(M,µ)
hor (P ) The Grassmannian of horizontal volume submanifolds of P of type (M,µ)

Table 1: Glossary

2. Symplectic reduction in dual pairs

In this section, we first review the definition of a dual pair by mainly focus-
ing on the particular case of dual pair of momentum maps. We first recall
from [2] that the reduced symplectic manifolds relative to one of the group
action are symplectically diffeomorphic to coadjoint orbits of the other group
(Proposition 2.2). Then, we extend this result to specific situations (Propo-
sitions 2.4 and 2.5) needed for the treatment of the dual pair associated to
the Hamiltonian formulation of ideal fluids [19], [4].

Dual pairs. Let (S, ω) be a symplectic manifold and P,Q be two Poisson
manifolds. A pair of Poisson mappings

P
JL←− (S, ω)

JR−→ Q

is called a dual pair [29] if kerTJL and kerTJR are symplectic orthogonal
complements of one another: (kerTJL)ω = kerTJR. In infinite dimensions,
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due to the weakness of the symplectic form, one has to impose also the
identity (kerTJR)ω = kerTJL [4].

Suppose now that the two Poisson mappings are momentum maps JR
and JL arising from the commuting Hamiltonian actions of two Lie groups
G and H on S. To fix ideas, we will always assume that H acts on the left
and G acts on the right on S, hence the notations JL and JR. We assume
that both momentum maps are equivariant, so that they are Poisson maps
with respect to the Lie-Poisson structure on the dual Lie algebras h∗ and
g∗. The actions are said to be mutually completely orthogonal [18] if the G-
and H-orbits are symplectic orthogonal to each other:

(2.1) gS = hωS and hS = gωS ,

where gS(s) := {ξS(s) | ξ ∈ g} with ξS denoting the infinitesimal generator.
Because kerTJR = gωS , the identities (2.1) mean that the infinitesimal ac-
tions of g resp. h on level sets of momentum maps JL resp. JR are transitive.
Hence, if G, resp. , H act transitively on (connected components of) level
sets of the momentum maps JL, resp. , JR, then the identities in (2.1) are
automatically satisfied.

Remark 2.1. In finite dimensions the identities (2.1) are equivalent to the
fact that

(2.2) h∗
JL←− (S, ω)

JR−→ g∗

is a dual pair. This is not the case in infinite dimensions: the free boundary
fluid dual pair is a counterexample with hS ( gωS , as showed in [7].

Symplectic reduction in dual pairs. We now describe the symplectic
reduced space for one of the momentum maps (say JR) of a dual pair asso-
ciated to mutually completely orthogonal actions. Throughout this section
we assume that, given σ ∈ g∗ with isotropy group Gσ and isotropy Lie alge-
bra gσ, the level set J−1

R (σ) is a submanifold of S and that Sσ := J−1
R (σ)/Gσ

can be endowed with the quotient manifold structure. In finite dimensions,
standard hypotheses can be imposed to guarantee these properties. Since we
are working in infinite dimensions, we will need to verify these properties in
each of the treated examples.

We remark that, by the symplectic orthogonality conditions (2.1), for all
x ∈ J−1

R (σ),

Tx(J−1
R (σ)) = kerTxJR = gS(x)ω = hS(x).
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Since the momentum map JR is G-equivariant,

ωx(ξS(x), ηS(x)) = −〈JR(x), [ξ, η]〉 = −〈σ, [ξ, η]〉 = 0, ∀ ξ ∈ gσ, ∀ η ∈ g,

so (gσ)S(x) ⊂ gS(x)ω = hS(x). In particular, for all x ∈ J−1
R (0), one obtains

that gS(x) is an isotropic subspace of TxS. Thus the tangent space to the
reduced symplectic manifold Sσ at the Gσ-orbit [x] of x ∈ J−1

R (σ) is given by
the quotient vector space T[x]Sσ = hS(x)/(gσ)S(x). The reduced symplectic
form on Sσ is

(2.3) (ωσ)[x]([ξS(x)], [ηS(x)]) = ωx(ξS(x), ηS(x)) = 〈JL(x), [ξ, η]〉,

for all ξ, η ∈ h. It is well defined since ω vanishes on pairs of mixed generators
for the two actions by (2.1).

The next result can be extracted from Theorem 2.8 in [2]. Although it
is shown there for Howe dual pairs of momentum maps, the proof works for
the following setting, in infinite dimensions too.

Proposition 2.2. Let G and H be Lie groups with commuting mutually
orthogonal symplectic actions on the symplectic manifold (S, ω). We assume
that these actions admit equivariant momentum maps. If the level sets of the
momentum maps of each action are the orbits of the other action, then the
symplectic reduced spaces for one action are symplectically diffeomorphic to
the coadjoint orbits for the other one.

Note that although we are interested in the coadjoint orbits of one group,
say H, we still need the transitivity hypotheses for both group actions.

In order to identify reduced symplectic manifolds with coadjoint orbits
in the context of the dual pair associated to ideal fluids (see Section 3), we
need to consider a slightly different setting, namely the case where one of
the groups does not act transitively on the level sets of the momentum map,
but acts transitively on the connected components of the level sets. We will
use the following observation:

Lemma 2.3. Consider a transitive G-action on a symplectic manifold (S, ω).
Suppose that this action admits an equivariant and injective momentum map
J : S → g∗. Then the image of J is a coadjoint orbit of G. Moreover, the
pull-back of the orbit symplectic form by J is ω.

Proposition 2.4. Let (S, ω) be a symplectic manifold with commuting mu-
tually orthogonal symplectic actions of G and H, actions that admit equivari-
ant momentum maps. We assume that G acts transitively on the level sets of
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JL, while H is connected and acts transitively on the connected components
of level sets of JR.

Then each connected component of the reduced symplectic manifold Sσ =
J−1
R (σ)/Gσ at σ ∈ g∗, with Gσ the stabilizer of σ, is symplectically diffeo-

morphic to a coadjoint orbit of H.

Proof. Since the two actions on S commute, the reduced manifold Sσ still
admits a Hamiltonian H-action with injective equivariant momentum map
given by

(2.4) J̄L : Sσ = J−1
R (σ)/Gσ → h∗, J̄L([x]) = JL(x).

It is H-equivariant by the H-equivariance of JL and injective because G
acts transitively on the level sets of JL. Indeed, J̄L([x1]) = J̄L([x2]) with
x1, x2 ∈ J−1

R (σ) implies the existence of g ∈ G with g · x1 = x2. In particular,
by the G-equivariance of JR, we have Ad∗g(σ) = σ, so g ∈ Gσ and [x1] = [x2].

Let C be the connected component of the reduced manifold Sσ containing
the element [x0]. If we show that H acts transitively on C, then Lemma 2.3
implies that C, with its reduced symplectic form, can be identified via J̄L
with a coadjoint orbit of H, endowed with the orbit symplectic form.

We know that H acts transitively on the connected components of the
level set J−1

R (σ), so, since H is connected, the decomposition of J−1
R (σ) into

H-orbits coincides with its decomposition into connected components. It fol-
lows that the bi-orbit B0 = H · x0 ·G, being H-saturated, is an open subset
of J−1

R (σ). Let π : J−1
R (σ)→ Sσ denote the canonical projection. The com-

plement B1 = π−1(C)−B0 is H-saturated, hence open in J−1
R (σ). Indeed,

for x ∈ B1 and h ∈ H, we see that h · x /∈ B0 (since s /∈ B0) and π(h · x) ∈ C
(since π(H · x) ⊂ C, for π(x) ∈ C).

We get a disjoint decomposition of the connected set C into two open
subsets π(B0) 6= ∅ and π(B1). Indeed, on one hand, B0 and B1 are both
open and G-saturated, hence π(B0) and π(B1) are open, on the other hand
they have empty intersection because B0 and B1 are G-saturated with
empty intersection. It follows that the connected component C is the H-
orbit π(B0) = H · [x0]. �

Non-equivariant momentum map. We will also need another version of
the result that relates symplectically reduced manifolds and coadjoint orbits,
in the case of a non-equivariant momentum map, but without passing to
the corresponding affine action. If JR : S → g∗ is non-equivariant, one can
always find a central extension ĝ of g such that JR extends to a ĝ-equivariant
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momentum map JR : S → ĝ∗. We shall make a weaker assumption than the
existence of a Lie group extension of G that integrates ĝ, namely we shall
assume the existence of a G-action on ĝ∗ that integrates the coadjoint action
of g on ĝ∗ (a replacement for the coadjoint action in the extended group).
In the special case when g is a perfect Lie algebra, this is equivalent to the
G-equivariance of the Lie algebra cocycle on g that describes the central
extension ĝ [22]. In the particular case where the Lie algebra extension ĝ
integrates to a Lie group extension Ĝ of G and JR is equivariant, we can
perform symplectic reduction at σ ∈ ĝ∗ for the Ĝ-action. Because of the non-
connectedness of G, the extension Ĝ might be an abelian extension that is
non-central (of course the pullback to the identity component of G is still a
central extension). Still the isotropy group of σ is a subgroup of G and the
ordinary reduced symplectic manifold at σ is the quotient of J−1

R (σ) by its
action.

One can proceed similarly even if no extension Ĝ exists. Let Gσ be the
stabilizer of σ ∈ ĝ∗ for the G-action that integrates the coadjoint action
of g on ĝ∗. If JR is G-equivariant for the action above, than the quotient
Sσ = J−1

R (σ)/Gσ can be endowed with a symplectic form ωσ whose pullback
to the level set of JR is the restriction of the symplectic form ω. In the
particular case where the Lie algebra extension ĝ integrates to a Lie group
extension Ĝ of G, then Sσ is the ordinary reduced symplectic manifold at σ
for the Ĝ-action.

Proposition 2.5. Let (S, ω) be a symplectic manifold with commuting mu-
tually orthogonal symplectic actions of G and H. On one hand we assume
that H is connected with equivariant momentum map JL. On the other hand
we assume that, although the G-action does not admit an equivariant mo-
mentum map, there is a ĝ-equivariant momentum map JR : S → ĝ∗ for the
induced action of a fixed central extension ĝ of g. Moreover we assume that,
although ĝ might not be integrable to a central extension of the (possibly
non-connected) Lie group G, the coadjoint action of g on ĝ∗ integrates to a
G-action on ĝ∗ that makes JR a G-equivariant map.

If G acts transitively on level sets of JL and H acts transitively on
connected components of level sets of JR, then the connected components of
Sσ = J−1

R (σ)/Gσ are symplectically diffeomorphic to coadjoint orbits of H.

The proof is similar to that of Proposition 2.4.



i
i

“3-Vizman” — 2019/8/27 — 21:43 — page 674 — #12 i
i

i
i

i
i

674 F. Gay-Balmaz and C. Vizman

3. The ideal fluid dual pair

A pair of momentum maps related to the dynamics of Euler equations of
a perfect fluid was presented in [19]. The construction goes as follows. Let
(S, ω) be a symplectic manifold and (M,µ) be a compact manifold endowed
with volume form µ. The manifold C∞(M,S) of all smooth maps from M
to S is naturally endowed with a symplectic form ω̄ given by

(3.1) ω̄f (uf , vf ) =

∫
M
ω(uf , vf )µ,

where uf and vf are vector fields on S along f ∈ C∞(M,S). The left action
of the group Diffsymp(S) of symplectic diffeomorphisms and the right action
of the group Diffvol(M) of volume preserving diffeomorphisms are two com-
muting symplectic actions. As explained [19], to these actions is formally
associated a pair of momentum maps

(3.2) Xsymp(S)∗
JL←− C∞(M,S)

JR−→ Xvol(M)∗.

The right momentum map JR(f) = −f∗ω represents Clebsch variables for
the Euler equations seen as a Hamiltonian system on Xvol(M)∗. The left
momentum map JL(f) = f∗µ is a constant of motion for the induced Hamil-
tonian system on C∞(M,S). It also describes point vortex solutions of the
two dimensional Euler equations on S when dim(M) = 0 and S is two di-
mensional.

A rigorous study of (3.2) has been carried out in [4]. In particular, it
was shown that, in order to verify the momentum map conditions, one
needs to restrict the action to the subgroups Diffex(M) ⊂ Diffvol(M) and
Diffham(S) ⊂ Diffsymp(S) of exact volume preserving and Hamiltonian dif-
feomorphisms, respectively (for this purpose a calculus on manifolds of func-
tions has been developed in [27]). Then, in order to obtain the equivariance
property of the momentum maps, it is necessary to consider the central ex-
tension H = Diffquant(P )0 of Diffham(S) (when ω is prequantizable) and the

Ismagilov central extension G = D̂iffex(M) of Diffex(M) (see Section 1). Fi-
nally, to show the dual pair property, one needs to restrict to the open subset
Emb(M,S) of all embeddings from M into S and assume H1(M) = 0 (in
which case Diffex(M) coincides with the identity component Diffvol(M)0).
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The resulting dual pair of Poisson maps is

Denc(S) = C∞(S)∗
JL←− Emb(M,S)(3.3)
JR−→ (Ωk−2(M)/dΩk−3(M))∗ = Z2(M),

where JL(f) = f∗µ and JR(f) = −f∗ω, see Theorem 4.5 in [4]. Recall that
both the definitions of the momentum maps and of the dual pair property
only depend on the infinitesimal actions.

In fact, the actions verify the stronger property to be mutually com-
pletely orthogonal:

Xex(M) ω̄
Emb = Xham(S)Emb, Xham(S) ω̄

Emb = Xex(M)Emb.

In other words, when H1(M) = 0, the group Diffex(M) (so G = D̂iffex(M)
too) acts infinitesimally transitively on the level sets of JL and Diffham(S)
(hence H = Diffquant(P )0 too) acts infinitesimally transitively on the level
sets of JR. As these groups are connected and all the constructions in the
proof can be performed smoothly depending on a parameter, these actions
are transitive on the connected components of the level sets of momentum
maps. It is proven in Lemma 3 [7] that, without the condition H1(M) = 0,
Diffvol(M) acts transitively on the level sets of JL (not just on its connected
components). We recall below the proofs of the transitivity results we shall
use later.

Lemma 3.1 ([7]). The group Diffvol(M) acts transitively on the level sets
of the momentum map JL : Emb(M,S)→ Denc(S).

Proof. Let f1, f2 ∈ Emb(M,S) be such that JL(f1) = JL(f2), hence
∫
M (h ◦

f1)µ =
∫
M (h ◦ f2)µ for all h ∈ C∞(S). A first consequence is that the two

embeddings have the same image in S, so there exists ψ ∈ Diff(M) such
that f2 = f2 ◦ ψ. We rewrite the identity above as

∫
M (h ◦ f2)ψ∗µ =

∫
M (h ◦

f2)µ for all h ◦ f2 ∈ C∞(M), and we deduce ψ∗µ = µ. Thus we found ψ ∈
Diffvol(M) such that f2 = f1 ◦ ψ. �

Lemma 3.2 ([4]). If H1(M) = 0, then the group Diffham(S) acts transi-
tively on each of the connected components of level sets of the momentum
map JR : Emb(M,S)→ Z2(M).

Proof. First we show that the action of the Lie algebra Xham(S) on level
sets of JR, given by (Xh)Emb(f) = Xh ◦ f , is infinitesimally transitive. This
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means to show that, for any v ◦ f ∈ Tf Emb(M,S), where v ∈ X(S) such that
TfJR(v ◦ f) = −f∗£vω = 0, there is a Hamiltonian vector fieldXh on S with
v ◦ f = Xh ◦ f . Indeed, the 1-form f∗ivω on M is closed, hence exact, since
H1(M) = 0. There exists h1 ∈ C∞(S) such that f∗ivω = d(h1 ◦ f), since f
is an embedding. Now the 1-form βf on S along M defined by

βf := iv◦fω − dh1 ◦ f ∈ Γ(f∗T ∗S)

vanishes on vectors tangent to f(M) ⊂ S. By Lemma 4.2 in [4], that is
detached from the proof of Proposition 3 in [9], we find h2 ∈ C∞(S) such that
βf = dh2 ◦ f . It follows that d(h1 + h2) ◦ f = iv◦fω, so v ◦ f = Xh1+h2

◦ f .
As in the proof of Proposition 2 in [9] we remark that all the con-

structions above can be performed smoothly depending on a parameter,
so Diffham(S) acts transitively on connected components of the level sets of
the momentum map JR. �

If S is compact, then the central extension of Diffham(S) is not needed
and we have the dual pair

(3.4) Xham(S)∗
J0
L←− Emb(M,S)

JR−→ Z2(M),

where
〈
J0
L(f), Xh

〉
=
∫
M (h0 ◦ f)µ, with h0 the unique Hamiltonian function

of Xh with zero integral on S.

4. Coadjoint orbits as nonlinear Grassmannians

The goal of this section is to carry out symplectic reduction for the right
momentum map of the ideal fluid dual pairs (3.3), resp. (3.4), in order to
describe coadjoint orbits of the group of Hamiltonian diffeomorphisms in
terms of nonlinear Grassmannians. The case of zero momentum allows us to
obtain Grassmannians of isotropic volume submanifolds as coadjoint orbits,
slightly generalizing the results in [30] and [17]. At the other extreme, the
case of a nondegenerate momentum recovers the identification of connected
components of the nonlinear symplectic Grassmannian with coadjoint orbits,
thereby recovering the result of [9]. Some comments about the intermediate
cases will be given. Our approach naturally yields concrete expressions for
the tangent spaces to the orbits and hence, explicit formulas for the orbit
symplectic form.
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Coadjoint orbits of the Hamiltonian group. Every compact 2m-dimen-
sional symplectic manifold (S, ω) is a coadjoint orbit of its group of Hamil-
tonian diffeomorphisms Diffham(S). The identification is made via the mo-
mentum map

J : S ↪→ Xham(S)∗, 〈J(s), Xh〉 = h0(s),

where h0 ∈ C∞(S) is the unique Hamiltonian function for Xh with zero
integral

∫
S h0ω

m = 0.
Another class of infinite dimensional coadjoint orbits of Diffham(S) has

been described in [9]. Let M be a compact 2n-dimensional manifold. The
connected components of the nonlinear symplectic Grassmannian GrMsymp(S)
of symplectic submanifolds of S of type M are coadjoint orbits of Diffham(S).
The identification is done via the momentum map associated to the nat-
ural Hamiltonian action of Diffham(S) on an arbitrary connected compo-
nent GrMsymp(S)0, endowed with the symplectic form naturally induced by

1
n+1ω

n+1 ∈ Ω2(n+1)(S). This momentum map is given by

J : GrMsymp(S)0 ↪→ Xham(S)∗, 〈J(N), Xh〉 =

∫
N
h0ω

n.

If S is not compact and ω is prequantizable, then GrMsymp(S)0 is a coadjoint
orbit of the quantomorphism group via the identification

(4.1) J : GrMsymp(S)0 ↪→ C∞(S)∗, 〈J(N), h〉 =

∫
N
hωn.

In [30], it was heuristically shown that the leaves of a certain foliation
(the isodrastic foliation) of the space of weighted Lagrangian submanifold
of S can be identified with coadjoint orbits of the group of Hamiltonian
diffeomorphisms of S. This fact was rigorously shown in [17] and generalized
to the leaves of a foliation of the space of weighted isotropic submanifolds
of S. Here a weight is a volume form of total measure 1.

We shall obtain below those coadjoint orbits containing isotropic sub-
manifolds N ⊂ S with H1(N) = 0, as well as new ones, in a systematic way
by using the general results in Propositions 2.4 and 2.5 applied to the ideal
fluid dual pair as formulated in [4]. In the case of coadjoint orbits stud-
ied in [17], our approach yields much concrete expressions for the tangent
spaces to the coadjoint orbits and hence, explicit formulas for the orbit sym-
plectic form. Our setting also allows us to build a prequantum bundle for
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the isotropic case (in §5), which recovers the Berry bundle of [30] in the
Lagrangian case.

More precisely, we will show below that, if (S, ω) is prequantizable, the
connected components of the nonlinear Grassmannian of isotropic volume
submanifolds of S of type (M,µ) are coadjoint orbits of Diffquant(P )0. If S
is compact, then these are coadjoint orbits of Diffham(S). If the symplectic
manifold S is exact, the connected components of the nonlinear Grassman-
nian of exact isotropic volume submanifolds of S of type (M,µ) are coadjoint
orbits of Diffquant(P )0.

Isotropic embeddings. Recall that the dual pair (3.3) consists of momen-

tum maps for the commuting mutually orthogonal actions of G = D̂iffex(M)
and H = Diffquant(P )0 on Emb(M,S), where (M,µ) is a compact k-dimen-
sional manifold endowed with volume form µ with H1(M) = 0 and (S, ω) a
prequantizable symplectic 2m-dimensional manifold.

The zero level set of the momentum map JR : Emb(M,S)→ Z2(M),
JR(f) = f∗ω is the manifold of isotropic embeddings

J−1
R (0) = {f ∈ Emb(M,S) : f∗ω = 0} =: Embiso(M,S).

The dual pair property of (3.3) ensures that the tangent space

(4.2) Tf Embiso(M,S) = kerTfJR = (kerTfJL)ω̄ = (Xham(S))Emb(M,S)(f)

is the space of infinitesimal generators at the isotropic embedding f for the
left action of Hamiltonian vector fields.

Isotropic nonlinear Grassmannian. Recall that the momentum map
JR is associated to the action of the central extension D̂iffex(M) of the
group of exact volume preserving diffeomorphisms Diffex(M) = Diffvol(M)0.
Unfortunately, symplectic reduction at zero relative to this group, namely
J−1
R (0)/D̂iffex(M) = J−1

R (0)/Diffex(M), leads to a covering space of a non-
linear Grassmannian of volume submanifolds. Moreover, the hypotheses of
Proposition 2.2 are not satisfied: Diffex(M) does not act transitively on the
level sets of JL, hence this symplectic reduced space might not be isomorphic
to a coadjoint orbit.

We shall instead consider the quotient space J−1
R (0)/Diffvol(M). Re-

markably, using Proposition 2.5, we will show that this is still a symplec-
tic reduced space, despite the fact that the central extension of the non-
connected group Diffvol(M) is not known.
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The symplectic reduced space J−1
R (0)/Diffvol(M) is given by the image

of the manifold J−1
R (0) = Embiso(M,S) by the map πµ from (1.2). It is

therefore the manifold

GrM,µ
iso (S) =

{
(N, ν) : N ∈ GrMiso(S), ν ∈ Vol(N),

∫
N
ν =

∫
M
µ

}
of isotropic volume submanifolds of S of type (M,µ). In the appendix is
shown that GrM,µ

iso (S) is a smooth manifold, the base of the principal bundle

πµ : Embiso(M,S)→ GrM,µ
iso (S) with structure group Diffvol(M) (see also

[17]).
In order to describe the reduced symplectic form on GrM,µ

iso (S), we need a

concrete realization for the tangent space T(N,ν) GrM,µ
iso (S). We first consider

the tangent space to the manifold GrMiso(S) = Embiso(M,S)/Diffvol(M) of
isotropic submanifolds of type M .

Tangent space to GrMiso(S). The Lie algebra Xham(S) acts transitively on
GrMiso(S), so the tangent space at N , as a subspace of TN GrM (S) = Γ(TN⊥),
can be written as

TN GrMiso(S)
(4.2)
= {Tfπ(v ◦ f) : v ∈ Xham(S)}(4.3)

(1.1)
= {[Xh|N ] ∈ Γ(TN⊥) : h ∈ C∞(S)},

where TN⊥ = (TS|N )/TN and f is any isotropic embedding with f(M) =
N .

In the special case dimM = 1
2 dimS = m we get the nonlinear Grass-

mannian GrMLag(S) of Lagrangian submanifolds of S of type M . Because
for any Lagrangian submanifold L of S the symplectic orthogonal TLω co-
incides with TL, the symplectic form ω defines an isomorphism between
TL⊥ = (TS|L)/TL and T ∗L, so TL GrM (S) = Γ(TL⊥) ∼= Ω1(L) and

(4.4) TL GrMLag(S) = {[Xh|L] ∈ Γ(TL⊥) : h ∈ C∞(S)} ∼= dC∞(L).

All the Lagrangian submanifolds L ∈ GrMLag(S), being of type M , satisfy
H1(L) = 0, hence this description of the tangent space agrees with the gen-
eral result TL GrMLag(S) = Z1(L) [28].

A description similar to (4.4) in the isotropic case is obtained using (4.3):

(4.5) TN GrMiso(S) = {[vN ] ∈ Γ(TN⊥) : (ivNω)|TN = dh0, h0 ∈ C∞(N)}.

To show this, we assume that vN ∈ Γ(TS|N ) is such that (ivNω)|TN = dh0

for h0 ∈ C∞(N). Let h1 ∈ C∞(S) be an extension of h0 to S. The section
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α := ivNω − (dh1)|N ∈ Γ(T ∗S|N ) verifies α|TN = 0, therefore, by Lemma 4.2
in [4], there exists h2 ∈ C∞(S) such that α = (dh2)|N . Then ivNω = (dh)|N
for h = h1 + h2, so vN = Xh|N and [vN ] = [Xh|N ]. The other inclusion is
readily verified.

Reduced symplectic form. With a choice of a Riemannian metric g on S,
the vector bundle TN⊥ is isomorphic to the orthogonal complement TN⊥g

of TN in TS|N relative to the metric g. As shown in [6], the differential of
the projection πµ in (1.2) can be written, for all v ∈ Xham(S), as

(4.6) Tfπ
µ : v ◦ f ∈ Tf Embiso(M,S) 7−→ (v|⊥gN ,£

v|‖gN
ν) ∈ T(N,ν) GrM,µ

iso (S).

The tangent space to GrM,µ
iso (S) can be identified with

T(N,ν) GrM,µ
iso (S) = TN GrMiso(S)× dΩk−1(N).

To show this we consider the Diff(M)-action on Embiso(M,S) by composi-
tion on the right. The infinitesimal generator of w ∈ X(M) at the isotropic
embedding f is given by Tf ◦ w ∈ Tf Embiso(M,S). It is mapped by (4.6) to
the pair

(
0, (N |f)∗(£wµ)

)
, where N |f is the diffeomorphism N |f : M → N .

Tangent vectors of this form clearly span {0} × dΩk−1(N).
The following proposition gives the concrete expression of the reduced

symplectic form for the description of the tangent space T(N,ν) GrM,µ
iso (S)

given above.

Theorem 4.1. The reduced symplectic form on GrM,µ
iso (S) is

(ω0)(N,ν)

(
(uN ,dγ), (vN ,dλ)

)
(4.7)

=

∫
N
ω(uN , vN )ν +

∫
N

(iuNω)|TN ∧ λ−
∫
N

(ivNω)|TN ∧ γ

=

∫
N

(
ω(uN , vN )ν + hvNdγ − huNdλ

)
,

for all uN , vN ∈ TN GrMiso(S), γ, λ ∈ Ωk−1(N), where huN and hvN are func-
tions on N associated to uN and vN as in (4.5).

Proof. First we remark the independence of this expression on the choice
of the potential forms γ and λ, because (iuNω)|TN and (ivNω)|TN are exact
1-forms by (4.5).

Now we check that ω0 defined with (4.7) is indeed the reduced symplectic
form. Let f ∈ Embiso(M,S) such that f(M) = N and f∗µ = ν, and let u, v ∈
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Xham(S) such that vN = v|⊥gN and λ = i
v|‖gN

ν resp. uN = u|⊥gN and γ = i
u|‖gN

ν.

We have

(ω0)(N,ν)

(
(uN ,dγ), (vN ,dλ)

)
= (ω0)πµ(f)

(
Tfπ

µ(u ◦ f), Tfπ
µ(v ◦ f)

)
(2.3)
= 〈JL(f), ω(u, v)〉=

∫
M
f∗ω(u, v)µ =

∫
N
ω(u|N , v|N )ν

=

∫
N
ω(u|⊥gN , v|⊥gN )ν +

∫
N

(i
u|⊥gN

ω)|TN ∧ i
v|‖gN

ν −
∫
N

(i
v|⊥gN

ω)|TN ∧ i
u|‖gN

ν

(4.6)
=

∫
N
ω(uN , vN )ν +

∫
N

(iuNω)|TN ∧ λ−
∫
N

(ivNω)|TN ∧ γ

=

∫
N

(
ω(uN , vN )ν + hvNdγ − huNdλ

)
,

using at step four the identity ω(u|‖gN , v|
‖g
N ) = 0, which follows from the fact

that N is an isotropic submanifold of (S, ω). �

The Lagrangian case. The tangent space to GrM,µ
Lag (S), the nonlinear

Grassmannian of Lagrangian volume submanifolds (L, ν) of type (M,µ), is

T(L,ν) GrM,µ
Lag (S) = TL GrMLag(S)× dΩm−1(L)

(4.4)
= dC∞(L)× dΩm−1(L).

Here dΩm−1(L) can be identified with the (regular) dual of dC∞(L) through
the pairing

(4.8) (dh,dλ) = −
∫
L
hdλ =

∫
L

dh ∧ λ.

It is always possible to choose a Riemannian metric g on S that is compatible
with ω, see, e.g., Proposition 4.1 in [20]. This means there exists an almost
complex structure J such that ω(v, Jw) = g(v, w) for all v, w ∈ TsS. Then
the reduced symplectic form (4.7) on GrM,µ

Lag (S) becomes

(ω0)(L,ν)

(
(dh1,dλ1), (dh2,dλ2)

)
(4.9)

=

∫
L

dh1 ∧ λ2 −
∫
L

dh2 ∧ λ1 +

∫
L
ω(u1L, u2L)ν

= (dh1,dλ2)− (dh2,dλ1).

Here u1L, u2L ∈ Γ(TL⊥g) are uniquely determined by (iuLω)|TL = dh. The
first term vanishes because, for s ∈ L, the subspace (TsL)⊥g = J(TsL) ⊂ TsS
is Lagrangian whenever TsL ⊂ TsS is Lagrangian.
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The space dΩm−1(L) can be identified with the regular dual of dC∞(L),
as we have seen in (4.8), thus the orbit symplectic form (4.9) is similar to
a canonical cotangent bundle symplectic form. This similarity comes from
the fact that ω0 can be obtained by symplectic reduction on the cotangent
bundle T ∗GrMLag(S) [30], as explained also at the end of Section 5.

Isotropic nonlinear Grassmannians as coadjoint orbits. On the space
of weighted Lagrangian submanifolds, the distribution corresponding to the
subspace dC∞(L) ⊂ Z1(L) of exact 1-forms integrates into a foliation, called
the isodrastic foliation. It was argued in [30] that the leaves of this foliation,
the isodrasts, are coadjoint orbits of Diffham(S). This result was generalized
in [17] to the case of isotropic submanifolds.

If H1(M) = 0, the distribution coincides with the whole tangent space
and the leaves are connected components of the space of weighted isotropic
submanifolds. We shall obtain them by symplectic reduction in the ideal fluid
dual pair, so their coadjoint orbit property follows from the general results
about dual pairs of momentum maps for mutually completely orthogonal
actions.

Theorem 4.2. Let (S, ω) be a prequantizable symplectic manifold and
(M,µ) be a compact manifold with volume form µ and with H1(M) = 0.
Any connected component O of GrM,µ

iso (S), endowed with the symplectic form
(4.7), is symplectically diffeomorphic to a coadjoint orbit of the identity com-
ponent Diffquant(P )0. The symplectic diffeomorphism reads

J̄L : O → Denc(S), 〈J̄L(N, ν), h〉 =

∫
N
h|Nν

and is a momentum map for the action of Diffquant(P )0 on O ⊂ GrM,µ
iso (S).

Proof. The result follows from Proposition 2.5 applied to the ideal fluid dual
pair (3.3), with the groups H = Diffquant(P )0 and G = Diffvol(M) (not just
its identity component Diffex(M)). Indeed, from [4] we know that the Lie
algebra actions associated to the dual pair (3.3) are completely mutually
orthogonal; from Lemma 3.1, the action of G = Diffvol(M) is transitive on
the level sets of JL(f) = f∗µ, and JL is H-equivariant. From Lemma 3.2,
the action of H = Diffquant(P )0 (connected) is transitive on each connected
component of the level sets of JR(f) = −f∗ω, and JR is G-equivariant for
the G-action on Z2(M) = ĝ∗ given by ϕ · σ = ϕ∗σ. It remains to verify that
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this action integrates the infinitesimal coadjoint action in ĝ:

〈âd
∗
ξσ, [β]〉 = 〈σ, {[α], [β]}〉 (1.6)

= 〈σ, [£ξβ]〉 = 〈£ξσ, [β]〉,

for all ξ = Xα ∈ g = Xvol(M) = Xex(M), [α] ∈ ĝ = Ωk−2(M)/dΩk−3(M),
and σ ∈ ĝ∗ = Z2(M).

The expression of J̄L follows from (2.4): for all h ∈ C∞(S),

〈
J̄L(N, ν), h

〉
=
〈
J̄L(f(M), f∗µ), h

〉
= 〈JL(f), h〉 =

∫
M

(h ◦ f)µ =

∫
N
hν,

because JL(f) = f∗µ. �

Theorem 4.3. If S is compact and H1(M) = 0, then any connected com-
ponent O of GrM,µ

iso (S), endowed with the symplectic form (4.7), is symplec-
tically diffeomorphic to a coadjoint orbit of Diffham(S). The diffeomorphism
is given by the momentum map

J̄L : O → Xham(S)∗,
〈
J̄L(N, ν), Xh

〉
=

∫
N
h0ν,

where h0 is the unique Hamiltonian function with zero integral on S associ-
ated to the Hamiltonian vector field Xh.

Proof. The result follows from Proposition 2.5 applied to the ideal fluid dual
pair (3.4), with the groups H = Diffham(S) and G = Diffvol(M). �

Proof. By the proof of Proposition 2.5, there is a Hamiltonian Diffham(S)-

action on the reduced symplectic manifold
(

GrM,µ
iso (S), ω0

)
, namely

ψ · (N, ν) = (ψ(N), ψ∗ν)

for all ψ ∈ Diffham(S). An equivariant momentum map can thus be written
for the Lie algebra action of the central extension C∞(S) of Xham(S). It is
given by

J̄L : GrM,µ
iso (S)→ C∞(S)∗, 〈J̄L(N, ν), h〉 =

∫
N

(h|N )ν, h ∈ C∞(S).

For compact S one can use zero integral Hamiltonian functions, so the con-
nected components of GrM,µ

iso (S) are coadjoint orbits of Diffham(S) too. Note
that we don’t need the symplectic manifold (S, ω) to be prequantizable. �
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Symplectic reduction at nonzero momentum. Under the hypothesis
H1(M) = 0, we shall perform the symplectic reduction from Proposition 2.5
at a nonzero element −σ ∈ Z2(M) (i.e. a presymplectic form on M). The
reduced symplectic space is J−1

R (−σ)/Diffvol,σ(M), for the stabilizer

(4.10) Diffvol,σ(M) = {ϕ ∈ Diff(M) : ϕ∗µ = µ, ϕ∗σ = σ}.

We show that the reduced space can be identified with the non-linear Grass-
mannian GrM,µ

σ (S) of all volume submanifolds of type (M,µ) which, when
endowed with the pullback of the symplectic form ω, are diffeomorphic to
the presymplectic volume manifold (M,µ, σ). Indeed,

{f ∈ Emb(M,S) : f∗ω = σ}/Diffvol,σ(M)

= {(f(M), f∗µ, f∗σ) : f ∈ Emb(M,S), f∗ω = σ}
=
{

(N, ν, i∗Nω) : (N, ν) ∈ GrM,µ(S),∃f ∈ Emb(M,S)

s.t. f(M) = N, f∗µ = ν, f∗ω = σ}
=
{

(N, ν) ∈ GrM,µ(S) : ∃ψ ∈ Diff(M,N) s.t. ψ∗i∗Nω = σ, ψ∗ν = µ
}

=
{

(N, ν) ∈ GrM,µ(S) : (M,µ, σ) ∼= (N, ν, i∗Nω)
}

=: GrM,µ
σ (S),

where iN : N → S denotes the inclusion.
Note that GrM,µ

σ (S) = J−1
R (−σ)/Diffvol,σ(M) and that Diffvol,σ(M) in

(4.10) might not be a Lie group for degenerate σ, so the space GrM,µ
σ (S)

might fail to be a smooth manifold. If it happens to be a smooth mani-
fold, then by Proposition 2.5 applied to nonzero momentum we deduce that
the connected components of GrM,µ

σ (S) are coadjoint orbits of the group of
Hamiltonian diffeomorphisms, if S is compact.

The reduced symplectic form ω−σ is formally given as in (2.3) by
(4.11)

(ω−σ)πµ(f) (Tfπ
µ(u ◦ f), Tfπ

µ(v ◦ f)) =

∫
M
f∗ω(u, v)µ = 〈JL(f), ω(u, v)〉,

where u, v ∈ Xham(S).

Nonlinear symplectic Grassmannians as coadjoint orbits. We now
consider the special case when the presymplectic form σ is symplectic and
µ is the associated Liouville volume form, i.e. µ = σn, 2n = dimM . Then
the reduced symplectic manifold GrM,µ

σ (S) becomes a union of connected
components of the nonlinear symplectic Grassmannian GrMsymp(S), namely
those components containing symplectic submanifolds of type (M,σ). In-
deed, every σ-preserving diffeomorphism also preserves µ, so Diffvol,σ(M) =
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Diffσ(M), and the reduced symplectic space becomes

{f ∈ Emb(M,S) : f∗ω = σ}/Diffσ(M)

= {(N, i∗Nω) : ∃ψ ∈ Diff(N,M), s.t. ψ∗i∗Nω = σ}
=
{
N ∈ GrM (S) : (M,σ) ∼= (N, i∗Nω)

}
⊂ GrMsymp(S).

With Proposition 2.5 we recover the result of [9] that all the connected
components of GrMsymp(S) are coadjoint orbits of Diffham(S).

In the general expression of the symplectic diffeomorphism (2.4) we rec-
ognize the momentum map (4.1):

〈J̄L(N, ν), h〉 =

∫
N
hν =

∫
N
hi∗Nω

n =

∫
N
hωn,

since the volume form on N in this case is ν = ψ∗µ = ψ∗σ
n = i∗Nω

n. One
can also compare the formula (4.11) for the orbit symplectic form with the
orbit symplectic form obtained in [9]. At the point πµ(f) = (f(M), f∗µ) =
(N, ν = i∗Nω

n), for all Hamiltonian vector fields u, v on S we have

(ω−σ)πµ(f) (Tfπ
µ(u ◦ f), Tfπ

µ(v ◦ f)) =

∫
M
f∗ω(u, v)µ =

∫
M
f∗ω(u, v)f∗ωn

=

∫
N
ω(u, v)ωn =

1

n+ 1

∫
N

iviuω
n+1.

Under the identification of GrM,µ
σ (S) with an open subset of the nonlinear

symplectic Grassmannian GrMsymp(S), this is exactly the orbit symplectic
form obtained by [9], as recalled at the beginning of Section 4.

5. Prequantizable coadjoint orbits

Let p : (P, α)→ (S, ω) be a prequantum bundle over the symplectic mani-
fold S. A horizontal submanifold of P that covers a Lagrangian submanifold
of S is called Planckian in [26]; a more familiar name is Legendre subman-
ifold of the contact manifold (P, α). The prequantization of isodrasts of
weighted Lagrangian submanifolds of S is obtained in Section 4 of [30] using
the symplectic reduction of the cotangent bundle of the space of Planckian
submanifolds of P that descend to Lagrangian submanifolds in an isodrast.
This leads to the so called Berry bundle.

In this section we will generalize this result to the case of isotropic sub-
manifolds, thereby obtaining a generalization of the Berry bundle. Given a
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prequantizable symplectic manifold S with prequantum bundle p : (P, α)→
(S, ω) and a compact manifold (M,µ) with integral total volume

(5.1) a =

∫
M
µ ∈ Z,

we will build a prequantum bundle for the coadjoint orbits of the quanto-
morphism group that are realized by connected components of GrM,µ

iso (S). In
the last part of this Section, we show that our prequantum bundle recovers
the Berry bundle in the Lagrangian case.

We first build a principal circle bundle over Embiso(M,S). For this we
define the manifold of horizontal embeddings,

Embhor(M,P ) := {F ∈ Emb(M,P ) : F ∗α = 0}.

The quantomorphism group Diffquant(P ) acts on Embhor(M,P ) by compo-
sition on the right. The infinitesimal action of the Lie algebra of connection
preserving vector fields

Xquant(P )={ξh := Xhor
h − (h ◦ p)E : h ∈ C∞(S)}

is given by (ξh)Emb(F ) = ξh ◦ F .

Lemma 5.1. If the compact manifold M satisfies H1(M) = 0, then the
principal circle action (z, F ) 7→ ρz ◦ F determines a principal circle bundle

(5.2) p∗ : Embhor(M,P )→ Embiso(M,S), p∗(F ) = p ◦ F.

Proof. Every horizontal embedding F descends to an isotropic embedding
f = p ◦ F , since f∗ω = dF ∗α = 0. Two horizontal embeddings F1 and F2

that descend to the same isotropic embedding differ by the action of some
element in S1 because F2 = ρg ◦ F1 for some function g ∈ C∞(M,S1), but
0 = F ∗2α = F ∗1α+ g−1dg = g−1dg implies that g is a constant function, so
F2 = ρz ◦ F1, z ∈ S1.

We show that each isotropic embedding f of M in S can be lifted to a
horizontal embedding F of M in P . The restricted holonomy around loops
in f(M) is trivial because f∗ω = 0. Moreover, the holonomy groups are also
trivial: the image of the holonomy homomorphism π1(f(M))→ S1 is trivial
because the abelianization of π1(f(M)) is H1(f(M)) = 0. Hence, over f(M),
the circle bundle admits a flat trivialization, which means it is foliated by
horizontal leaves, and each of them projects diffeomorphically onto f(M).
The embedding of M onto such a horizontal leaf, obtained by composition
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of the inverse of such a diffeomorphism with f , is a horizontal embedding F
with f = p ◦ F . �

We now define a principal connection on the circle bundle (5.2) whose
curvature is the closed 2-form ω̄ defined in (3.1). The form α ∈ Ω1(P ), to-
gether with the volume form µ on M , determines ᾱ ∈ Ω1(Embhor(M,P ))
given, for every vector field vF on P along F , by

(5.3) ᾱ(vF ) :=

∫
M
α(vF )µ.

If the total volume of M is equal to 1 (i.e., a = 1 in (5.1)), then ᾱ is
a principal connection 1-form with curvature ω̄. The verifications that ᾱ is
a principal connection with curvature ω̄ can be done directly or by apply-
ing the calculus on manifolds of functions developed in [27], especially the
functorial properties of the map α 7→ ᾱ. The S1-invariance of ᾱ follows from
((ρz)∗)

∗ᾱ = ρ∗zα = ᾱ. The form ᾱ reproduces the infinitesimal generators be-
cause for the infinitesimal generator EEmb of the S1-action on Embhor(M,P ),
which is induced by the infinitesimal generator E ∈ X(P ) of the circle action
on P , we have

ᾱ(EEmb)(F ) = ᾱ(E ◦ F ) =

∫
M

(α(E) ◦ F )µ =

∫
M
µ = 1,

since α(E) = 1. Finally the curvature computation is dᾱ = dα = p∗ω =
(p∗)

∗ω̄.
Later, we will use the following transitivity result.

Lemma 5.2. If H1(M) = 0, then the Lie algebra Xquant(P ) acts transi-
tively on Embhor(M,P ).

Proof. We have to show that, for any v ◦ F ∈ TF Emb(M,P ), where v ∈
X(P ) is such that F ∗£vα = 0, there is a connection preserving vector field
ξh on P such that v ◦ F = ξh ◦ F . Since p induces a diffeomorphism between
F (M) and f(M), and we are interested only in the restriction of v to F (M),
we can assume without loss of generality that v is projectable to v̄ ∈ X(S).
Hence there exists λ ∈ C∞(P ) such that v = v̄hor − λE. By differentiating
the condition F ∗£vα = 0 we get f∗£v̄ω = 0, so, by Lemma 3.2, there exists
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h ∈ C∞(S) with v̄ ◦ f = Xh ◦ f . We compute

0 = F ∗£vα = F ∗iv̄hordα− F ∗diλEα = f∗iv̄ω − F ∗dλ = d(f∗h− F ∗λ)

so F ∗λ and f∗h differ by a real constant c. Finally we get

v ◦ F = v̄hor ◦ F − (F ∗λ)(E ◦ F ) = Xhor
h ◦ F − (f∗h+ c)(E ◦ F ) = ξh+c ◦ F

thus proving the transitivity. �

The manifold Embhor(M,P ), factorized by the Diffvol(M)-action, deter-
mines the manifold (see the appendix) of horizontal volume submanifolds of
P of type (M,µ),

GrM,µ
hor (P ) := Embhor(M,P )/Diffvol(M).

The forgetting map defines a projection of GrM,µ
hor (P ) to the manifold of

horizontal submanifolds of P of type M ,

GrMhor(P ) := Embhor(M,P )/Diff(M).

Proposition 5.3 (Case a = 1). Let (S, ω) be a prequantizable symplectic
manifold and let (M,µ) be a compact manifold with H1(M) = 0 and total
volume equal to 1. Then the connected components of GrM,µ

iso (S) are prequan-
tizable coadjoint orbits of Diffquant(P )0 (and also of Diffham(S) when S is

compact). The prequantum bundle is GrM,µ
hor (P ).

Proof. The candidate prequantum bundle is the circle bundle

(5.4) p̄ : (GrM,µ
hor (P ), α0)→ (GrM,µ

iso (S), ω0), p̄(Q, ν) := (p(Q), p∗ν) ,

where the connection 1-form α0 descends from the 1-form ᾱ on Embhor(M,P )
through the quotient map πµ, while the curvature ω0 is the reduced sym-
plectic form.

We verify that ᾱ from (5.3) is a basic form for the principal bun-
dle Embhor(M,S)→ GrM,µ

hor (S) with structure group Diffvol(M), i.e. it is
Diffvol(S)-invariant and vanishes on infinitesimal generators. Let F be a
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horizontal embedding, so F ∗α = 0. Then

ᾱ(TF ◦ u) =

∫
M
α(TF ◦ u)µ =

∫
M

(F ∗α)(u)µ = 0, u ∈ Xvol(M).

The action of ϕ ∈ Diffvol(M) reads ϕ̄(F ) = F ◦ ϕ, and we have

(ϕ̄∗ᾱ)(vF ) = ᾱ(vF ◦ ϕ) =

∫
M

(α(vF ) ◦ ϕ)µ =

∫
M
α(vF )µ = ᾱ(vF ).

Hence ᾱ descends to a 1-form α0 on GrM,µ
hor (P ).

The next step is to show that α0 is a principal connection 1-form with
curvature 2-form ω0. Since the total volume of M is equal to 1, the form α0

reproduces the infinitesimal generators. Indeed, for the infinitesimal genera-
tor EGr of the S1-action on GrM,µ

hor (P ), induced by the infinitesimal generator
E ∈ X(P ) of the circle action on P , we have

α0(EGr)(π
µ(F )) = α0(TFπ

µ(E ◦ F )) = ᾱ(E ◦ F ) = 1.

The S1-invariance of α0 follows from the commutative diagram on the right

Embhor(M,P )

πµ

��

p∗ // Embiso(M,S)

πµ

��

GrM,µ
hor (P )

p̄ // GrM,µ
iso (S)

Embhor(M,P )

πµ

��

(ρz)∗ // Embhor(M,P )

πµ

��

GrM,µ
hor (P )

ρ̄z // GrM,µ
hor (P )

because (πµ)∗(ρ̄∗zα0) = ((ρz)∗)
∗(πµ)∗α0 = ((ρz)∗)

∗ᾱ = ᾱ = (πµ)∗α0. In order
to compute the curvature, we use the commutative diagram on the left. Re-
call that ω0 is the reduced symplectic form, so (πµ)∗ω0 = ω̄. We get that
(πµ)∗(dα0) = dᾱ = (p∗)

∗ω̄ = (p∗)
∗(πµ)∗ω0 = (πµ)∗(p̄∗ω0), hence the identity

dα0 = p̄∗ω0.
This finishes the proof that the circle bundle

p̄ : (GrM,µ
hor (P ), α0)→ (GrM,µ

iso (S), ω0)

is a prequantum bundle. �

To treat the general case
∫
M µ = a ∈ Z, we will make use of the following

simple lemma.

Lemma 5.4. Let (S, ω) be a symplectic manifold, base of a principal circle
bundle p : P → S endowed with an invariant form α ∈ Ω1(P ) such that dα =
p∗ω and α(E) = a ∈ Z. Then S is prequantizable.
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A prequantum bundle is pa : P/Za → S, for the pullback Za-action on P
by the natural group homomorphism

(5.5) Za = Z/aZ→ S1, [j] 7→ e
j

a
2πi,

endowed with the principal circle action

(5.6) z · [y] = [w · y], where wa = z.

Proof. First we check that the action (5.6) is well defined, i.e. it doesn’t

depend on the solution w of wa = z. Any other solution is of the form e
j

a
2πiw,

so we get the same result

[e
j

a
2πiw · y]

(5.5)
= [[j] · (w · y)] = [w · y].

We now show that the form αa that descends from α through the projection
π : P → P/Za is a principal connection. From π∗dαa = dα = p∗ω = π∗p∗aω,
we deduce that dαa = p∗aω. After noticing that the infinitesimal generators
1
aE ∈ X(P ) and Ea ∈ X(P/Za) for the action (5.6) are π-related, we get that
αa(Ea) = 1

aα(E) = 1. Now it easily follows that αa is a principal connection.
�

Proposition 5.5 (Case a ∈ Z). Let (S, ω) be a prequantizable symplectic
manifold with prequantum bundle P and let (M,µ) be a compact manifold
with H1(M) = 0 and total volume a ∈ Z. Then the connected components
GrM,µ

iso (S) are prequantizable coadjoint orbits of Diffquant(P )0 (and also of

Diffham(S) when S is compact). The prequantum bundle is GrM,µ
hor (P )/Za.

Prequantization via cotangent reduction. In this paragraph we con-
sider the special case of Lagrangian submanifolds and verify that the pre-
quantum bundle (5.4) recovers the Berry bundle constructed in [30] by cotan-
gent bundle reduction. We are still assuming H1(M) = 0, so TL GrMLag(S) =
dC∞(L). Using Lemma 5.2 we can easily describe the tangent space to the
space Planckian submanifolds of type M , see Lemma 4.1 in [29], denoted
here by GrMhor(P ).

Lemma 5.6. The tangent space at Q to the manifold of Planckian sub-
manifolds of type M is TQ GrMhor(P ) = C∞(L) for the Lagrangian manifold
L = p(Q).
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Proof. The linear surjective map

(5.7) TQ GrMhor(P )→ C∞(L), [ξh|Q] 7→ h|L

is well defined, where ξh = Xhor
h − (h ◦ p)E. Indeed, the condition [ξh|Q] = 0

for some h ∈ C∞(S) implies that ξh|Q is tangent to the Planckian manifold
Q. Since the connection form α vanishes on TQ, we have that 0 = α(ξh|Q) =
(h ◦ p)|Q and consequently h|L = 0. The map (5.7) is also injective: whenever
h|L = 0, the Hamiltonian vector field Xh|L ∈ Γ(TLω) = Γ(TL) is tangent to
the Lagrangian manifold L, so ξh|Q = Xhor

h |Q is tangent to the Planckian
manifold Q. We thus get the desired isomorphism (5.7). �

The circle action on the cotangent bundle T ∗GrMhor(P ) with canonical
symplectic form Ω = dΘ is Hamiltonian with momentum map

J : T ∗GrMhor(P )→ R, J(Q, νL) =

∫
L
νL, L = p(Q),

with νL ∈ Den(L) = T ∗Q GrMhor(P ) (by Lemma 5.6). Let µ be a volume form

on M with total volume
∫
M µ = 1. The preimage J−1(1) ⊂ T ∗GrMhor(P ) can

be identified with the nonlinear Grassmannian of weighted Planckian sub-
manifolds

(5.8) J−1(1) =

{
(Q, νL) :

∫
L
νL =

∫
M
µ

}
∼= GrM,µ

hor (P ),

since volume forms on Q are in bijection with volume forms on L = p(Q).
The symplectically reduced space at 1 is the nonlinear Grassmannian of

weighted Lagrangian submanifolds

J−1(1)/S1 = GrM,µ
hor (P )/S1 = GrM,µ

Lag (S),

endowed with reduced symplectic form Ω1 that descends from the restriction
to J−1(1) of the canonical cotangent bundle symplectic form Ω = dΘ. Thus
we also have a prequantum bundle

(5.9) (J−1(1),Θ)→ (GrM,µ
Lag (S),Ω1).

Proposition 5.7. The prequantum bundles (5.4) and (5.9) coincide for
dimM = 1

2 dimS.

Proof. It suffices to show that the 1-form α0 on GrM,µ
hor (P ), naturally induced

by the connection α ∈ Ω1(P ), as in Proposition 5.3, corresponds under (5.8)
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to the restriction of the canonical 1-form Θ on the cotangent bundle to the
level set J−1(1) ⊂ T ∗GrMhor(P ).

In the computation we make use of the transitivity of the Xquant(P )-

action on Embhor(M,P ), hence on GrMhor(P ), but also on GrM,µ
hor (P ) ∼= J−1(1).

By Lemma 5.6, the infinitesimal generator of ξh at Q ∈ GrMhor(P ) can be
identified with the restriction of h ∈ C∞(S) to L = p(Q). For all embed-
dings F ∈ Embhor(M,P ) with f = p ◦ F , F (M) = Q, f∗µ = νL, we get

(α0)(Q,νL)

(
(ξh)GrM,µhor

)
= ᾱF (ξh ◦ F ) =

∫
M

(α(ξh) ◦ F )µ =

∫
M

(h ◦ f)µ

=

∫
L
h|LνL = (νL, (ξh)GrMhor

(Q))

= Θ(Q,νL)

(
(ξh)T ∗GrMhor

)
,

where we denote by (ξh)GrM,µhor
and (ξh)T ∗GrMhor

the infinitesimal generators

for the Xquant(P )-action on GrM,µ
hor (P ) and on T ∗GrMhor(P ). �

As a consequence the explicit formula for the connection 1-form Θ on
J−1(1) in terms of the tangent space decomposition

T(Q,νL)J
−1(1) = C∞(L)× dΩm−1(L)

is simply

Θ(Q,νL)(h,dλ) =

∫
L
hνL,

while the formula for the curvature 2-form Ω1 on GrM,µ
Lag (S) in terms of

the tangent space decomposition T(L,νL) GrM,µ
Lag (S) = dC∞(L)× dΩm−1(L)

is the same as (4.9):

(Ω1)(L,νL)((dh1, dλ1), (dh2,dλ2)) =

∫
L

(dh1 ∧ λ2 − dh2 ∧ λ1).

6. Exact isotropic submanifolds

Dual pair. In the special case when the symplectic form ω on S is exact, i.e.
ω = −dθ, an ideal fluid dual pair exists on Emb(M,S) without the extra con-
dition H1(M) = 0. The left acting group is still H = Diffquant(P )0 with mo-
mentum map JL(f) = f∗µ. In this case the prequantization central extension

Diffquant(P )0 is defined with the group cocycle B(η1, η2) =
∫ η2(x0)
x0

(η∗1θ − θ),
see [12]. The cohomology class of this cocycle is independent of the chosen
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point x0 ∈ S. For the right action on Emb(M,S) it is not needed to restrict
to the subgroup Diffex(M) and to consider the Ismagilov central extension.
One takes G = Diffvol(M) and the momentum map is Jex

R (f) = [f∗θ]. The
pair of momentum maps reads
(6.1)

Denc(S) = C∞(S)∗
JL←− Emb(M,S)

Jex
R−→ Xvol(M)∗ = Ω1(M)/dΩ0(M).

Lemma 6.1 ([5]). The group Diffham(S) acts transitively on each of the
connected components of the level sets of the momentum map Jex

R for the
Diffvol(M)-action on Emb(M,S).

Since the left action of H = Diffquant(P )0 is given by composition on
the left by Diffham(S), from Lemma 3.1 and Lemma 6.1 we obtain that
the actions of Diffvol(M) and Diffquant(P )0 on Emb(M,S) are mutually
completely orthogonal. We thus obtain the following result.

Proposition 6.2 ([5]). The pair of momentum maps (6.1) is a dual pair
associated to mutually completely orthogonal actions.

Exact isotropic embeddings. The zero level set of the momentum map
Jex
R is the manifold of exact isotropic embeddings

(Jex
R )−1(0) = {f ∈ Emb(M,S) : [f∗θ] = 0} =: Embiso,ex(M,S)

which consists of embeddings f such that f∗θ is an exact 1-form. The im-
age f(M) is an exact isotropic submanifold of S of type M . The nonlin-
ear Grassmannian GrMiso,ex(S) of exact isotropic submanifolds of type M

is a submanifold of GrMiso(S) and the base of a principal Diff(M)-bundle
Embiso,ex(M,S)→ GrMiso,ex(S). Using the dual pair property of (6.1), one

verifies that the tangent space to GrMiso,ex(S) has the expression (4.5). The
notions of isotropic and exact isotropic embeddings coincide if H1(M) = 0.

The reduced symplectic manifold at zero for the Diffvol(M)-action can
be identified with the manifold of exact isotropic volume submanifolds of
type (M,µ):

(Jex
R )−1(0)/Diffvol(M) = Embiso,ex(M,S)/Diffvol(M) = GrM,µ

iso,ex(S).

Coadjoint orbits. We use again the link between symplectic reduction
in dual pairs of momentum maps and coadjoint orbits to obtain coadjoint
orbits of the quantomorphism group from the dual pair (6.1).
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Theorem 6.3. Let (S,−dθ) be an exact symplectic manifold. Each con-
nected component GrM,µ

iso,ex(S)0 of GrM,µ
iso,ex(S) is symplectically diffeomorphic

to a coadjoint orbit of Diffquant(P )0 with P = S × S1 and α = dt− p∗θ. The
diffeomorphism is given by

J̄L : GrM,µ
iso,ex(S)0 → O ⊂ Denc(S), 〈J̄L(N, ν), h〉 =

∫
N
h|Nν.

The orbit symplectic form on GrM,µ
iso,ex(S) has the same expression (4.7) as

in Theorem 4.1.

Proof. The result follows from Proposition 2.4 applied to the ideal fluid dual
pair (6.1). Indeed, from Theorem 6.2, we know that the actions are com-
pletely mutually orthogonal. From Lemma 3.1, the action of G = Diffvol(M)
is transitive on the level sets of JL. Finally, from Lemma 6.1, the action of
H = Diffquant(P )0 (connected) is transitive on each connected component
of the level sets of Jex

R . �

This result is relevant only in the case H1(M) 6= 0, since if H1(M) = 0
it is a particular instance of previous results.

Exact Lagrangian submanifolds. Let M be compact with dimM =
1
2 dimS and no condition on H1(M). Let L be an exact Lagrangian subman-
ifold of (S,−dθ) of type M . Under the identification TL GrM (S) = Ω1(L),
the tangent spaces to the nonlinear Grassmannian of (exact) Lagrangian
submanifolds become TL GrMLag(S) = Z1(L) and TL GrMLag,ex(S) = dC∞(L).

As in example 5.32 in [20] (see also [3] and [10]) we obtain the space
EmbLag,ex(M,S) of exact Lagrangian embeddings as the zero set of the mo-
mentum map Jex

R . The reduced symplectic manifold can be identified with

the manifold GrM,µ
Lag,ex(S) of exact Lagrangian volume submanifolds of type

(M,µ) in S. Theorem 6.3 ensures that each connected component of this
manifold is a coadjoint orbit of the quantomorphism group.

The basic example is the cotangent bundle S = T ∗M with canonical
symplectic form, where the image of an exact 1-form dh, h ∈ C∞(M), viewed
as a section of T ∗M , is an exact Lagrangian submanifold of T ∗M .

Prequantization. Recall that the prequantum bundle over (S,−dθ) is
P = S × S1 with connection 1-form α = dt− p∗θ. Given F ∈ Emb(M,P ),
we shall use the notation F = (f, g), f ∈ C∞(M,S), g ∈ C∞(M,S1). We
define the manifold of exact horizontal embeddings

Embhor,ex(M,P ) = {(f, g) : f∗θ = g−1dg ∈ dC∞(M)}.
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Note that the condition f∗θ = g−1dg is equivalent to F ∗α = 0.

Lemma 6.4. The circle action on Embhor,ex(M,P ) induced by the principal
circle action on P leads to the principal circle bundle

p∗ : Embhor,ex(M,P )→ Embiso,ex(M,S), p∗(F ) = p ◦ F.

Proof. The proof goes as for Lemma 5.1, except for the surjectivity of p∗
that we now show. Let f ∈ Embiso,ex(M,S) so f∗θ = dh, where h ∈ C∞(M).
We define g := eih ∈ C∞(M,S1). Because g−1dg = dh, the embedding F :=
(f, g) ∈ Embhor,ex(M,P ) descends to f . �

Embhor,ex(M,P ) factorized by the Diffvol(M)-action determines the man-
ifold of exact horizontal volume submanifolds of P of type (M,µ),

GrM,µ
hor,ex(P ) := Embhor,ex(M,P )/Diffvol(M).

We have a similar result to Proposition 5.5.

Proposition 6.5. Let (S,−dθ) be an exact symplectic manifold, and let
(M,µ) a compact manifold with total volume a ∈ Z. Then the connected com-
ponents of GrM,µ

iso,ex(S) are prequantizable coadjoint orbits of Diffquant(P )0.

The prequantum bundle is GrM,µ
hor,ex(P )/Za.

Circle embeddings. All embeddings of the circle M = S1 (endowed with
the standard volume form) into (S,−dθ) are isotropic, but not all of them
are exact isotropic. The right momentum map for the action of Diffvol(S

1) =
Rot(S1) becomes

Jex
R : Emb(S1, S)→ Ω1(S1)/dΩ0(S1) ∼= R, Jex

R (f) =

∫
S1

f∗θ,

so that symplectic reduction at zero gives the quotient space{
f ∈ Emb(S1, S) :

∫
S1

f∗θ = 0

}
/Rot(S1).

If S is simply connected, then we get the space of circle embeddings that
enclose a piece of surface in (S,−dθ) of vanishing symplectic area, modulo
circle rotations. Its connected components are coadjoint orbits of the quan-
tomorphism group, by Theorem 6.3. Moreover, they are also prequantizable
since the total volume of the circle is 1.
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7. Conclusion

In this paper we have presented a systematic way to identify and describe
a class of coadjoint orbits of the group of Hamiltonian diffeomorphisms of
a symplectic manifold (S, ω). Our systematic approach takes advantage of
the properties of a dual pair of momentum maps arising in fluid dynamics,
presented in [19] and studied in [4]. These properties are used for the iden-
tification of symplectic reduced space with coadjoint orbits. The symplectic
reduced spaces turn out to be nonlinear Grassmannians (manifolds of sub-
manifolds) with additional geometric structures. By implementing symplec-
tic reduction at the zero momentum we obtained the identification of coad-
joint orbits with Grassmannians of isotropic volume submanifolds, slightly
generalizing the results in [30] and [17]. At the other extreme, by implement-
ing symplectic reduction at a nondegenerate momentum we obtained the
identification of connected components of the nonlinear symplectic Grass-
mannian with coadjoint orbits, thereby recovering the result of [9]. We also
commented on the intermediate cases which correspond to new classes of
coadjoint orbits.

The dual pair property also turned to be advantageous to concretely de-
scribe the tangent spaces to these Grassmannians a well as the orbit symplec-
tic forms. We have also shown that, whenever the symplectic manifold (S, ω)
is prequantizable, the coadjoint orbits that consist of isotropic submanifolds
with total volume a ∈ Z are prequantizable, by constructing explicitly the
prequantum bundle. This result extends previous results obtained in [30]
for Lagrangian submanifolds. Finally, we considered in details the case of
an exact symplectic manifold, and showed that it allows the treatment of
submanifolds with nontrivial cohomology.

Appendix A. Smooth structures on nonlinear
Grassmannians

In this appendix we show that several sets of submanifolds can be endowed
with natural smooth structures modeled on Fréchet spaces. This is done
by an explicit construction of manifold charts. The manifolds M and S are
assumed to be finite dimensional.

The nonlinear Grassmannian of submanifolds of type M . If M is
a submanifold of the Riemannian manifold (S, g), then the normal bundle
TS|M/TM can be identified with the orthogonal subbundle TM⊥g ⊂ TS|M .
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A normal tubular neighborhood U ⊂ S of M can be built with the expo-
nential map, namely with the diffeomorphism

(A.1) h = exp : V ⊂ TM⊥g → U ⊂ S

that coincides with the identity on M .
An embedding of M into S, obtained from a normal vector field s ∈

Γ(TM⊥g) via the tubular neighborhood diffeomorphism as f⊥ = h ◦ s, will
be called a normal embedding. Let U denote the set of all submanifolds
of S that are images of normal embeddings. We can recover the normal
embedding from its image submanifold N ∈ U with the help of an arbitrary
embedding f : M → S such that f(M) = N , namely f⊥ = f ◦ ψ−1

f . Here

ψf = p ◦ h−1 ◦ f is a diffeomorphism of M , with p : TS → S denoting the
projection. It doesn’t depend on the choice of the embedding f : starting with
another embedding of M onto N ⊂ S, f ◦ ψ with ψ ∈ Diff(M), we get the
same normal embedding f⊥ because ψf◦ψ = ψf ◦ ψ. Of course the normal
embedding for N depends on the way M sits in S.

We recall from [16] the construction of charts for the nonlinear Grass-
mannian GrM (S) = Emb(M,S)/Diff(M) using normal tubular neighbor-
hoods. A chart around M is defined on U ⊂ GrM (S) with values in the
Fréchet neighborhood of the zero section in Γ(TM⊥g) consisting of V -valued
sections by

(A.2) χ(N) = h−1 ◦ f⊥ with inverse χ−1(s) = (h ◦ s)(M),

for f⊥ the unique normal embedding such that f⊥(M) = N .
Bundle charts on the Diff(M)-bundle π : Emb(M,S)→ GrM (S), π(f) =

f(M), can be taken of the following form:

χ̃ : π−1(U) ⊂ Emb(M,S)→ U ×Diff(M) ⊂ GrM (S)×Diff(M)

χ̃(f) = (π(f), ψf ),(A.3)

where ψf = p ◦ h−1 ◦ f . Its inverse reads χ̃−1(N,ψ) = f⊥ ◦ ψ, for f⊥ the
unique normal embedding such that f⊥(M) = N .

The nonlinear Grassmannian of volume submanifolds. We build bun-
dle charts on GrM,vol(S) =

{
(N, ν) : N ∈ GrM (S), ν ∈ Vol(N)

}
, the nonlin-

ear Grassmannian of volume submanifolds of type M , with projection the
forgetting map

π1 : (N, ν) ∈ GrM,vol(S) 7→ N ∈ GrM (S)
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and with fiber Vol(M). Bundle charts can be written using again the unique
normal embedding f⊥ such that f⊥(M) = N :

χ̄ : π−1
1 (U) ⊂ GrM,vol(S)→ U ×Vol(M) ⊂ GrM (S)×Vol(M),

χ̄(N, ν) = (N, (f⊥)∗ν).(A.4)

Its inverse reads χ̄−1(N,µ) = (N, (f⊥)∗µ). In this way we get also manifold
charts on the nonlinear Grassmannian of volume submanifolds.

The natural map

(A.5) vol : GrM,vol(S)→ R, vol(N, ν) =

∫
N
ν

is a submersion. This can be seen in the coordinate chart of type (A) since
vol ◦χ̄ =

∫
M ◦ pr2 : U ×Vol(M)→ R.

A regular value theorem (Theorem III.11 in [24]) extracted from Gloeck-
ner’s implicit function theorem (Theorem 2.3 in [8]) states that, given a
smooth map F :M→N into a Banach manifold N , if there is a continu-
ous linear splitting of each tangent map TxF for F (x) = y0, then F−1(y0)
is a submanifold of M. It can be applied to the submersion (A.5) to show
that the nonlinear Grassmannian GrM,µ(S) of volume submanifolds of type
(M,µ), the preimage of the total volume

∫
M µ by the map vol, is a subman-

ifold of GrM,vol(S).

The nonlinear Grassmannian of isotropic submanifolds. A manifold
structure can be defined on the nonlinear Grassmannian GrMiso(S) of type
M isotropic submanifolds of S, by restriction of the manifold charts χ of
GrM (S). First we rescale the tubular neighborhood diffeomorphism (A.1)
to a diffeomorphism h : TM⊥g → U ⊂ S, then we define ωM := h∗ω and the
linear subspace

Γiso(TM⊥g) = {s ∈ Γ(TM⊥g) : s∗ωM = 0}.

The chart χ is a submanifold chart: N ∈ GrMiso(S) if and only if s = χ(N) =
h−1 ◦ f⊥ ∈ Γiso(TM⊥g), since s∗ωM = (f⊥)∗ω.

The charts χ̃ from (A) for the principal bundle of embeddings restrict to
principal bundle charts on the principal Diff(M)-bundle of isotropic embed-
dings Embiso(M,S)→ GrMiso(S). Endowed with the induced smooth struc-
ture, Embiso(M,S) becomes a submanifold of Emb(M,S).

The nonlinear Grassmannian of isotropic volume submanifolds.
The manifold structure on the space GrM,µ

iso (S) = Embiso(M,S)/Diffvol(M)



i
i

“3-Vizman” — 2019/8/27 — 21:43 — page 699 — #37 i
i

i
i

i
i

Isotropic submanifolds and coadjoint orbits 699

of isotropic volume submanifolds is presented in [17]. We proceed similarly
to GrM,µ(S). We use the bundle charts χ̄ of GrM,vol(S) from (A) to show
that the space of all isotropic volume submanifolds of type M (with arbi-
trary volume forms on M allowed), denoted by GrM,vol

iso (S), is a submanifold
of GrM,vol(S). Then we use the restriction of the submersion vol to the sub-
manifold GrM,vol

iso (S) to show that GrM,µ
iso (S) is a submanifold. A similar rea-

soning works for the exact versions: GrMiso,ex(S), GrM,vol
iso,ex (S), and GrM,µ

iso,ex(S),

using the linear subspace Γiso,ex(TM⊥g) instead of Γiso(TM⊥g), and also for

the exact version GrM,µ
hor,ex(P ).

The nonlinear Grassmannian of horizontal submanifolds. Let p :
(P, α)→ (S, ω) be a prequantum bundle with connection α and curvature
the symplectic form ω. Using the rescaled tubular neighborhood diffeomor-
phism h : TM⊥g → U ⊂ P for the submanifold M of P , we define the 1-form
αM := h∗α on TM⊥g and the linear subspace

Γhor(TM
⊥g) = {s ∈ Γ(TM⊥g) : s∗αM = 0}.

Now the chart χ of GrM (P ) is a submanifold chart for GrMhor(P ): Q ∈
GrMhor(P ) if and only if s = χ(Q) = h−1 ◦ F⊥ ∈ Γhor(TM

⊥g), since s∗αM =
(F⊥)∗α.

The principal bundle charts χ̃ for Emb(M,P ) from (A) restrict to princi-
pal bundle charts on the principal Diff(M)-bundle of horizontal embeddings
Embhor(M,P )→ GrMhor(P ). Moreover, Embhor(M,P ) becomes a submani-
fold of Emb(M,S).

We use the bundle charts χ̄ of GrM,vol(P ) to show first that the space
GrM,vol

hor (P ) of horizontal volume submanifolds of type M (with arbitrary
volume forms on M allowed) is a submanifold of GrM,vol(P ). Then we use
the restriction of the submersion (A.5) to it, to show that the nonlinear
Grassmannian GrM,µ

hor (P ) of horizontal volume submanifolds of type (M,µ)

is a submanifold of GrM,vol
hor (P ).
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