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We show that the infinite-dimensional space of reversible Zoll
Finsler metrics on the projective plane strongly deformation re-
tracts to the canonical round metric. In particular, this space of
reversible Zoll Finsler metrics is connected. Moreover, the strong
deformation retraction arises from a deformation of the geodesic
flow of every reversible Zoll Finsler projective plane to the geodesic
flow of the round metric through a family of smooth free circle ac-
tions induced by the curvature flow of the canonical round projec-
tive plane. This construction provides a description of the geodesics
of the reversible Zoll Finsler metrics along the retraction.
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1. Introduction

A Zoll metric on a closed manifold M is a Riemannian or Finsler metric
all of whose geodesics are simple closed curves of the same length. (By as-
sumption, all Finsler metrics are reversible and quadratically convex, see
Definition 2.1.) We refer to the classical reference [Be78] for an introduc-
tion to the subject and historical comments, see also [B03]. Zoll manifolds
have finite fundamental groups. Thus, in the two-dimensional case, they are
diffeomorphic to either the sphere or the projective plane. Note that the
orientable double cover of a Zoll Finsler projective plane is a Zoll Finsler
two-sphere, see Proposition 3.1 or Remark 3.2.

The canonical round metric on the two-sphere or the projective plane is
a Zoll Riemannian metric. However, there exist Zoll Riemannian two-spheres
which are not round; some are rotationally symmetric, see [Z03], [Be78, §4],
while others have no symmetry at all, see [Be78, Corollary 4.71]. Actually,
Zoll Riemannian metrics on the two-sphere (modulo isometries and rescal-
ing) form an infinite-dimensional space. Contrariwise, a Riemannian metric
on the projective plane is a Zoll metric if and only if it has constant curva-
ture, which follows from Green’s theorem, see [Be78, Theorem 5.59], since
the orientable double cover of a Zoll projective plane is a Blaschke sphere.
This also follows from the fact that round metrics are the only minimizers of
the systolic area on the projective plane, see [P52], and that all Zoll metrics
share the same systolic area, see [W75], [Be78, §2.C]. This result also holds
true in higher dimension, see [Be78, Appendix D]. However, this rigidity
result fails in the Finsler case. Indeed, Zoll Finsler metrics on the projective
plane (modulo isometries and rescaling) form an infinite-dimensional space,
see Appendix.

The goal of this article is to study the space of Zoll Finsler metrics on the
projective plane and the dynamics of their geodesic flow. More specifically,
one can ask the following question about the topology of such space:

Is the space of all Zoll Finsler metrics on any closed manifold connected
(when nonempty)?

In the Riemannian case, this is a famous question whose answer is only
known for the projective plane: the canonical round metric is the only Zoll
Riemannian metric on the projective plane modulo isometries and rescaling.
Even on the two-sphere, the question is wide open, see [B03, Question 200].
(Observe that an approach through the Ricci flow does not work as shown
in [J17].) Now, in the Finsler case, Zoll metrics are much more flexible (as
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forementionned, their moduli space — if nonempty — is always infinite-
dimensional, see Appendix) and the question still makes sense.

Our main result shows that the topology of the space of Zoll Finsler
metrics on the projective plane is homotopically trivial. This provides the
first (positive) answer to the question above for Zoll Finsler metrics on the
projective plane.

Theorem 1.1. The space of Zoll Finsler metrics on the projective plane
whose geodesic length is equal to π strongly deformation retracts to the
canonical round metric on the projective plane.

The strong deformation retraction is not given by some abstract exis-
tence theorem but proceeds from a natural geometric construction relying
on the curvature flow (also referred to as the curve-shortening flow) of the
canonical round metric contracting simple closed curves to points or great
circles. The construction of the deformation retraction is fairly concrete. It
relies on Theorem 1.3 below (and the material developed in the first part of
the article) and a construction of Finsler metrics through the Crofton for-
mula due to Álvarez Paiva and Berck [AB]. It follows from this construction
that the geodesics of the Zoll Finsler metric Fτ along the deformation (Fτ )
of a given Zoll Finsler metric F are obtained by applying the curvature flow
of the canonical round metric to the geodesics of the given Zoll Finsler met-
ric F . This approach would carry over to the case of Zoll Finsler metrics
on the two-sphere if one could deform the geodesics of these metrics to the
equators of the canonical round sphere while preserving their intersection
pattern.

The following result is a straightforward consequence of Theorem 1.1.
It immediately follows from a construction of [W75] (see also [G76, Ap-
pendix B] for a more explicit statement) relying on Moser’s trick.

Corollary 1.2. Let (Fτ ) be the family of Zoll Finsler metrics on the projec-
tive plane RP2 given by applying the retraction constructed in Theorem 1.1
to a Zoll Finsler metric F with geodesic length π. There exists a natural
one-parameter family of (homogeneous) symplectomorphisms

φτ : T ∗RP2 \ {0} → T ∗RP2 \ {0}

with F ∗τ ◦ φτ = g∗0. In particular, the cogeodesic flows of F and g0 are sym-
plectically conjugate.
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The symplectic conjugacy of the cogeodesic flows of Zoll Finsler two-
spheres (and Zoll Finsler projective planes by taking their quotient) has
recently been established in [ABHS17] by other means. Therefore, the state-
ment about the symplectic conjugacy in Corollary 1.2 is not new, but our
approach yields an alternative proof. Furthermore, it provides extra infor-
mation on the symplectomorphism φτ . Indeed, by construction, the symplec-
tomorphism φτ takes the cogeodesics of g0 to the curves obtained from the
(co)-geodesics of F by applying the curvature flow of the canonical round
metric.

In the proof of our main theorem, we will need the following theorem
connecting the geodesic flows of Zoll projective planes RP2. In this result,
we identify the unit tangent bundle URP2 of any Finsler metric on RP2 with
the unit tangent bundle U0RP2 of the canonical round metric g0 by radial
projection.

Theorem 1.3. Let F be a Zoll Finsler metric on the projective plane RP2.
There exists a natural one-parameter family of smooth free S1-actions
(ρτ )0≤τ≤1 on U0RP2

ρτ : S1 × U0RP2 → U0RP2

between the geodesic flows of F and g0 such that every ρτ -orbit projects to
an embedding of S1 into RP2 under the canonical projection U0RP2 → RP2.
Here, the convergence with respect to τ is in the Ck-topology for any given k.

Here again, the family of circle actions (ρτ ) connecting the two geodesic
flows proceeds in a natural way from the curvature flow: the ρτ -orbits corre-
spond to the curves obtained from the F -geodesics by applying the curvature
flow of the canonical round metric. This construction makes the family (ρτ )
more trackable.

Actually, Theorem 1.3 directly follows from [H] once the intersection pat-
tern of closed geodesics on Zoll Finsler surfaces is established, see Section 3.
More precisely, the construction of the family of actions (ρt) follows from
Theorem 4.7, which is a particular case of a result of [H] on the curvature
flow. Still, we decided to present a proof of Theorem 4.7, since the estimates
required in our case are weaker than those established in [H].

Specifically, the construction of the family of actions (ρτ ) proceeds as fol-
lows. First, we examine the infinitesimal and non-infinitesimal intersection
properties of the closed geodesics of Zoll Finsler two-spheres, see Section 3.
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Then, we apply the curvature flow of the canonical round sphere to simulta-
neously deform these simple closed curves into equators of the round sphere.
Here, we need to assume that the geodesics of the Zoll Finsler sphere di-
vide the sphere into two domains of the same g0-area, otherwise the curves
shrink to points under the curvature flow of the canonical round sphere,
see Theorem 2.3. (This is the case on the orientable double cover of a Zoll
Finsler projective plane.) Note also that for arbitrary metrics on the two-
sphere, the curvature flow may not converge as it may oscillate between
closed geodesics. However, it does converge to equators of the round sphere
when applied to simple curves dividing the round sphere into domains of the
same area, see Theorem 2.3 for a discussion about the convergence of the
curvature flow. Lifting the curve deformations given by the curvature flow
to the unit tangent bundle, we connect the geodesic flow of the Zoll Finsler
metric to the geodesic flow of the canonical round metric g0.

We do not know whether our results extend to non-reversible Finsler
metrics as several arguments only work in the reversible case. It would be
interesting to clarify this point.

Acknowledgment. We are indebted to Juan-Carlos Álvarez Paiva for
bringing the preprint [H] to our attention after we sent him a first version of
our paper at the end of the summer 2015. The author would like to thank
the referee for his or her careful reading and suggestions, and for pointing
out some inaccuracies.

2. Preliminaries

In this preliminary section, we go over constructions related to the geodesic
flow of a Zoll Finsler metric and review the main features of the curvature
flow on the canonical round two-sphere.

Definition 2.1. A (reversible) Finsler metric on a closed manifold M is
a continuous function F : TM → [0,∞) on the tangent bundle TM of M
satisfying the following properties (here, Fx := F|TxM for short):

1) Smoothness: F is smooth outside the zero section;

2) Homogeneity: Fx(tv) = |t|Fx(v) for every v ∈ TxM and t ∈ R;

3) Quadratic convexity: for every x ∈M , the function F 2
x has positive

definite second derivatives on TxM \ {0}, that is, for every p, u, v ∈
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TxM , the symmetric bilinear for

gp(u, v) =
1

2

∂2

∂s∂t
F 2
x (p+ tu+ sv)|t=s=0

is an inner product.

The metric F induces a Minkowski norm Fx on each tangent space TxM .
We will denote by F ∗ : T ∗M → R the function whose restriction to each
cotangent space T ∗xM is given by the dual norm F ∗x . The function F ∗ is the
Fenchel-dual of F and satisfies the same properties (1), (2) and (3) as F .

The quadratically convex condition (as opposed to a mere convex con-
dition) allows us to define a geodesic flow for F acting on the unit tangent
bundle UM of M , see [Be78, §1]. The geodesic flow of a Zoll Finsler met-
ric F on M of geodesic length 2π is periodic and defines a smooth free action
of S1 = R/2πZ on UM

ρF : S1 → Diff(UM)

given by

ρF (θ)(v) = γ′v(θ)

where γv is the (arclength parametrized) F -geodesic induced by v.
Recall that the quotient manifold theorem asserts that if G is a Lie

group acting smoothly, freely and properly on a smooth manifold N , then
the quotient space N/G is a topological manifold with a unique smooth
structure such that the quotient map N → N/G is a smooth submersion.
This result applies to the S1-action ρF of the geodesic flow of F on UM .

Denote by

ΓF = UM/ρF

the quotient manifold and by

(2.1) qF : SM → ΓF

the quotient submersion. The quotient manifold ΓF represents the space of
unparametrized oriented geodesics of the manifoldM with the Zoll Finsler F .
When M is a two-sphere, the space ΓF is diffeomorphic to S2 as it follows
from the homotopy exact sequence of the fibration qF , [Be78, §2.10].

Let us review the main features of the curvature flow on the canonical
round two-sphere.
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Definition 2.2. Let γ : S1 → S2 be a smooth embedded curve on the
canonical round sphere S2. There exists a homotopy γt : S1 → S2 evolving
according to the equation

∂γt
∂t

= κ n

where κ is the curvature of γ in S2 and n is its unit normal vector.
This flow, referred to as the curvature flow on the canonical round two-

sphere, is defined for a maximal time interval [0, T ), where T is finite if and
only if (γt) converges to a point when t tends to T , see [Gr89].

We summarize the properties of the curvature flow on the canonical
round two-sphere that we will need in this article as follows.

Theorem 2.3 ([A91], [Ga90], [Gr89]). The curvature flow (γt) of an
embedded closed curve γ on the canonical round two-sphere satisfies the fol-
lowing properties:

1) the length of γt decreases unless γ is a geodesic, in which case the flow
is constant;

2) the curves γt remain embedded, cf. [Ga90, Theorem 3.1] (see also [A91,
Theorem 1.3]);

3) two disjoint smooth simple curves γ1 and γ2 remain disjoint through
the curvature flow, that is, γ1,t and γ2,t are disjoint, unless one of them
shrinks to a point, cf. [A91, §1].

4) the curvature of γt converges to zero in the C∞-norm unless γt con-
verges to a point, cf. [Gr89];

5) if γ divides the round sphere into two domains with the same area
then the curves γt also divide the round sphere into two domains with
the same area, cf. [Ga90, Proof of Theorem 5.1], and converge to an
equator as unparametrized curves.

6) if γ does not divide the round sphere into two domains with the same
area then the curvature flow (γt) converges to a point.

Proof. The second part of the point (5) on the convergence of the curva-
ture flow to an equator follows by combining the works of Gage [Ga90] and
Grayson [Gr89]. Indeed, from the first part of the point (5), the curves γt
divide the round sphere into two domains with the same area. In partic-
ular, the curvature flow (γt) of γ does not converge to a point. From the
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point (4), its curvature converges to zero in the C∞-norm and, since the
loops γt are simple, its length tends to 2π. In particular, its total geodesic
curvature

∫
γt

√
κ2 + 1 ds tends to 2π, and so, is less than 3π for t large

enough. This ensures that the two conditions of Theorem 5.1 in [Ga90] are
satisfied. Therefore, we conclude that the curvature flow (γt) converges to
an equator as unparametrized curves.

For the point (6), let Dt be the domain of the round two-sphere bounded
by the simple closed curve γt such that the orientation of Dt induces the
same orientation as γt on its boundary. By the Gauss-Bonnet formula, the
area of Dt satisfies

|Dt| = 2π −
∫
γt

κt ds.

From [Ga90, Lemma 1.3], we have

d

dt
|Dt| = −

∫
γt

κt ds = |Dt| − 2π.

Therefore, |Dt| = (|D0| − 2π)et + 2π. Since |D0| 6= 2π, it follows that the
curvature flow of γ is only defined on a finite time interval. Hence, the
result. �

3. Geodesic intersections on Zoll Finsler two-spheres

In this section, we examine some features satisfied by the geodesics of Zoll
Finsler two-spheres.

The following result is established in [LM02] for Riemannian metrics but
the proof carries over to Finsler metrics.

Proposition 3.1 ([LM02, Proposition 2.21]). Let F be a Finsler metric
on S2. The following assertions are equivalent:

(i) all the geodesics of F are simple closed curves;

(ii) all the geodesics of F are simple closed curves of the same length.

In particular, the orientable double cover of a Zoll Finsler projective
plane of geodesic length π is a Zoll Finsler two-sphere of geodesic length 2π.

Remark 3.2. One could directly prove the last statement of Proposi-
tion 3.1. Simply observe that a noncontractible geodesic on a Finsler projec-
tive plane cannot be approached by a contractible one of the same length.
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Thus, all the simple closed geodesics on a Zoll Finsler projective plane lift
to simple closed geodesics of twice their length.

The following result clarifies the intersection pattern of geodesics on Zoll
Finsler surfaces. Although the result is not surprising, we were unable to find
a reference for it in the literature.

Theorem 3.3. Let F be a Finsler metric on S2. Every pair of distinct
(closed) geodesics has exactly two (transverse) intersection points.

Proof. Let G = ΓF /± be the space of unparametrized geodesics of F . From
[Be78, §2.10], the space G is diffeomorphic to RP2. Two distinct (unparame-
trized) closed geodesics have only transverse intersection points. Thus, the
function defined on G × G \∆, where ∆ is the diagonal, which gives the
number of intersection points of a pair of distinct (unparameterized) closed
geodesics is locally constant. Since G × G \∆ is connected, this function is
constant.

Thus, every pair of distinct closed geodesics has exactly k (transverse)
intersection points, where the integer k only depends on the dynamics of the
geodesic flow of F . This integer is at least two for topological reasons.

Let γ1 and γ2 be two distinct closed geodesics. Since the closed geodesics
γ1 and γ2 are simple, there exists a connected component D of S2 \ (γ1 ∪ γ2)
bounded by exactly two geodesic arcs (one lying in γ1 and the other lying
in γ2). This connected component forms a bigon with endpoints p and q.
Changing the parametrization of γ1 and γ2 if necessary, we can assume
that the tangent vectors v1 = γ′1(0) and v2 = γ′2(0) based at p span a sector
in TpS

2 pointing inside D, see Figure 1.

D

v1

v2
γ2

γ1

p q

Figure 1: The digon D.

Observe that the connected component D continuously varies with γ1

and γ2 as long as v1 and v2 are not collinear. In particular, by rotating v1

to v2 and v2 to −v1, we deform γ1 to γ2 and γ2 to −γ1 through two ho-
motopies of simple closed geodesics γt1 and γt2. Through this process, the
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digon D bounded by the two arcs of γ1 and γ2 joining p to q and directed
by v1 and v2 deforms through a family of digons Dt bounded by the two arcs
of γt1 and γt2 joining p to some point qt ∈ γt1 ∩ γt2 and directed by vt1 and vt2.
The digon Dt is a connected component of M \ (γt1 ∪ γt2). By construction,
the point qt is the first point of intersection of γt1 and γt2 when travelling
along these two geodesics from p in the directions of vt1 and vt2. At the fi-
nal time t = 1, when the geodesics γ1

1 and γ1
2 agree with γ2 and −γ1, the

first point of intersection between the geodesics when travelling from p agree
with q. That is, q1 = q. As the first point of intersection between γ2 and −γ1

agrees with the last point of intersection between γ2 and γ1 along γ1, it fol-
lows that γ1 and γ2 have exactly two intersection points, namely p and q.
Hence, k = 2. �

In the rest of this section, we introduce the (non-metric) notion of normal
vector fields along simple loops on a surface. We also determine the number
of zeros of nontrivial normal vector fields defined by geodesic variations on
a Zoll Finsler two-sphere.

Definition 3.4. Given a closed surface M , let c : S1 × (−ε, ε)→M be a
smooth map inducing a smooth variation of embedded curves cλ = c(., λ)
with λ ∈ (−ε, ε). Here, the curves cλ are not necessarily geodesics. Define
the following vector field Y ∈ Γ(c∗0TM) along c0 as

Y (θ) =
∂c

∂λ
(θ, 0)

for every θ ∈ S1. When the curves cλ are geodesics for some Finsler metric F
on M , the vector field Y represents the Jacobi field along c0 generated by
the geodesic variation (cλ), see [S01, §11.2]. The vector field Y induces a
normal vector field Y⊥ along c0 defined as

Y⊥(θ) ≡ Y (θ) mod R.c′0(θ)

for every θ ∈ S1, where Y⊥(θ) lies in the quotient of the plane Tc0(θ)M by the
vector line R.c′0(θ) generated by c′0(θ). On an orientable surface, a normal
vector field along c0 is merely a function.

We start with the following observation showing that the notion of nor-
mal vector field extends to variations of unparametrized (oriented or unori-
ented) embedded curves.
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Lemma 3.5. Let c0 be a curve in a closed manifold M . The normal vector
field Y⊥ along c0 induced by a curve variation (cλ) does not depend on the
parametrization of the curves cλ.

Proof. Consider a variation of curves c̄λ(·) = cλ(θ(·, λ)), where θ(·, λ) repre-
sents a regular change of parameter. At θ = θ(θ̄, 0), the points c̄0(θ̄) and c0(θ)
agree as well as the lines generated by c̄′0(θ̄) and c′0(θ). Now, the vector field Ȳ
induced by the curve variation (c̄λ) satisfies

Ȳ (θ̄) =
∂c̄

∂λ
(θ̄, 0)

=
∂c

∂λ
(θ, 0) +

∂θ

∂λ
(θ̄, 0) c′0(θ)

≡ Y (θ) mod R.c′0(θ)

Hence, Ȳ⊥(θ̄) = Y⊥(θ) at the point c̄0(θ̄) = c0(θ). �

The following property satisfied by every normal Jacobi vector field Y⊥
of a Zoll Finsler two-sphere can be seen as an infinitesimal version of Theo-
rem 3.3.

Theorem 3.6 ([LM02, Theorem 2.15]). Let F be a Zoll Finsler metric
on S2. Every nontrivial normal Jacobi vector field Y⊥ induced by a variation
of an unparametrized (oriented or unoriented) geodesic γ has exactly two
zeros.

Furthermore, the zeros of Y⊥ are simple, that is, the vector fields Y⊥ and
(Y⊥)′ do not simultaneously vanish.

Proof. The first statement of the proposition is established in [LM02, The-
orem 2.15] for Zoll torsion-free affine connexions on the two-sphere. The
arguments carry over in our setting. For the sake of the reader and since the
arguments are so elegant, we briefly reproduce them.

Without loss of generality, we can assume that γ is an unparametrized
oriented geodesic. Consider the quotient submersion q : US2 → Γ induced by
the geodesic flow of F , where Γ = ΓF represents the space of unparametrized
oriented geodesics of F , see (2.1). Denote by PTΓ the projectivized tangent
space of Γ. The submersion q : US2 → Γ factors through a map ϕ : US2 →
PTΓ under the canonical projection PTΓ→ Γ. That is, the following dia-
gram is commutative
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PTΓ

��
US2

ϕ
;;

q
// Γ

The map ϕ can be defined as follows. Identify the tangent plane of Γ at γ
with the space of normal Jacobi fields along γ, see [Be78, Proposition 2.13].
With this identification, the map ϕ takes a unit vector v ∈ UxS2 with base-
point x ∈ S2 to the class of normal Jacobi vector fields along γv vanishing
at x. Note that the map ϕ takes every orbit of the geodesic flow of F to a
different fiber of the projection PTΓ→ Γ. Observe also that the map ϕ is
a local diffeomorphism and so a covering since US2 is compact.

The index of the covering is given by

|π1(PTΓ)|
|π1(US2)|

=
4

2
= 2

since Γ ' S2 and US2 ' RP3.
Now, two vectors u and v of US2 are sent by ϕ to the same class [Y⊥]

of a nontrivial normal Jacobi field Y⊥ along a geodesic γ if and only if γu
and γv represent the same unparametrized oriented geodesic γ, and their
basepoints are zeros of Y⊥.

By definition of the index of a covering, every class of a nontrivial normal
Jacobi field along γ has two preimages by ϕ. It follows that Y⊥ has exactly
two zeros.

For the second statement, recall that every Jacobi field Y along c0 satis-
fies a second-order linear differential equation, and so does the normal vector
field Y⊥, see [LM02, Equation (3)] or [S01, §11.2], namely

Y ′′⊥ + κY⊥ = 0

where κ is a smooth function. Hence, the zeros of Y⊥ are simple unless Y⊥
is trivial. �

4. Curvature flow and circle action deformations on the unit
tangent bundles of Zoll Finsler two-spheres

By analyzing the parabolic partial differential equation satisfied by the cur-
vature flow of the canonical round two-sphere, we show that this flow induces
an isotopy of diffeomorphisms of the unit tangent bundles of balanced Zoll
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Finsler spheres. As mentioned in the introduction, several results of this
section can be derived from [H].

Let F be a Zoll Finsler metric on S2. The unit tangent bundle US2 of S2

with the metric F naturally identifies with the unit tangent bundle U0S
2 of

the canonical metric g0 on S2 by radial projection on each tangent plane.
With this identification, the smooth free action of S1 on US2 given by the
geodesic flow F induces a smooth free action on U0S

2 by conjugacy. This
S1-action is denoted by

ρ : S1 → Diff(U0S
2)

and defined as

(4.1) ρ(θ)(v) = γ′v(θ)

for every θ ∈ S1 and v ∈ U0S
2. In this expression, the vector v of U0S

2

is identified with a vector of US2 by radial projection. Similarly, the vec-
tor γ′v(θ) of US2 is identified with a vector of U0S

2 by radial projection.
Observe that the orbits of the actions of S1 on U0S

2 project down to em-
bedded closed curves in S2, namely the F -geodesics γv.

Definition 4.1. A Zoll Finsler metric F on S2 is balanced if every F -
geodesic of S2 divides the round sphere into two domains D1 and D2 with
the same g0-area, where g0 is the canonical round metric. This property
is satisfied if F is invariant under the antipodal map, that is, if it is the
orientable double cover of a Zoll Finsler projective plane.

Remark 4.2. We introduce the notion of balanced Zoll Finsler metrics for
the following reason. For a balanced Zoll Finsler metric F on S2, the simple
closed geodesics γv induced by the vectors v ∈ US2 converge to the equators
of S2 with the canonical round metric g0 through the curvature flow γtv of g0,
see Theorem 2.3.(5). While if F is not balanced, the convergence does not
hold anymore since a simple closed curve not dividing the round sphere into
two domains with the same area shrinks to a point through the curvature
flow of the round sphere, see Theorem 2.3.(6).

For every balanced Zoll Finsler metric F on S2, consider the map

Ψt : U0S
2 → U0S

2

defined as

Ψt(v) = (γtv)
′(0)
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for every v ∈ U0S
2 and t ∈ [0,∞). Here, γv is the F -geodesic induced by v

and (γtv) is the curvature flow of γv on the canonical round sphere, see Def-
inition 2.2. As previously, we identify the vector v of U0S

2 with a vector
of US2 and the vector (γtv)

′(0) of TS2 \ {0} with a vector of U0S
2 by radial

projection. Note that Ψ0 is the identity map on U0S
2.

We will need the following classical result about the number of zeros of
a parabolic partial differential equation.

Theorem 4.3 (see [A88, Theorem C]). Let u : S1 × [0, T ]→ R be a
bounded solution of the equation

ut = a(x, t)uxx + b(x, t)ux + c(x, t)u

where a, a−1, at, ax, axx, b, bt, bx and c are bounded functions. Then, for
every t ∈ (0, T ), the number z(t) of zeros of u(., t) is finite.

Furthermore, if both u and ux vanish at (x0, t0) then z(t−) > z(t+) for
every t− < t0 < t+. That is, the number of zeros decreases whenever a mul-
tiple zero occurs.

We can now show the following result.

Proposition 4.4. Let F be a balanced Zoll Finsler metric on S2. For every
t ∈ [0,∞), the map Ψt : U0S

2 → U0S
2 induced by the curvature flow of the

canonical round sphere is a local diffeomorphism.

Proof. Let us show first that the map

Ξt : US2 → TS2 \ {0}

defined as Ξt(v) = (γtv)
′(0) is an immersion for every t ≥ 0.

For t = 0, this clearly holds true. Indeed, by construction,

Ξ0(v) = (γ0
v)′(0) = v

for every v ∈ US2. That is, the map Ξ0 is the inclusion map and so is an
immersion.

Fix v ∈ US2 and τ ∈ (0,∞). Let w = w(λ) be a smooth curve in US2

with w(0) = v. Denote ν = w′(0). For the sake of simplicity, we will some-
times write γλ for γw(λ). Note that γ0 = γv. We want to show that the dif-
ferential dΞτ (v) of Ξτ at v is injective. That is, if the derivative dΞτ (v)(ν)
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of Ξτ (w(λ)) vanishes at λ = 0 then the vector ν = w′(0) of TUS2 is zero.
The idea is to write down in local coordinates the partial differential equa-
tion satisfied by Ξτ (w) and to study the evolution of the normal Jacobi field
given by the geodesic variation (γw).

By Theorem 2.3.(2), the curve γτv defines an embedding of S1 into S2.
This embedding extends to an embedding h : S1 × (−1, 1)→ S2 of a cylinder
onto a collar neighborhood of γτv , which gives rise to a normal coordinate
system with h(., 0) = γτv in the canonical round sphere.

In this normal coordinate system around γτv , every curve γtλ with (λ, t)
close enough to (0, τ) can be represented in a nonparametric way as the
graph

{(x, u(x, t, λ)) ∈ S1 × (−1, 1) | x ∈ S1}

of a function u(., t, λ) over S1. Observe that u(x, τ, 0) = 0 for every x ∈ S1.
From [A90, Eq. (3.2)] or [Ga90, Appendix], the function

u : S1 × (τ − δ, τ + δ)× (−ε, ε)→ (−1, 1)

satisfies the following parabolic partial differential equation of the curvature
flow:

ut = F(x, u, ux, uxx)

where F is a smooth function defined on S1 × (−1, 1)× R2 with

Fq(x, u, p, q) > 0

which can be expressed in terms of the coefficients of the canonical round
metric in the normal coordinate system. Here, the subscript notations refer
to partial differentiations.

In a parametric representation, the abscisse of γtλ is a function of the
parameter θ, that is, x = x(θ, t, λ) with x(θ, τ, 0) = θ. Thus,

γtλ(θ) = (x(θ, t, λ), u(x(θ, t, λ), t, λ)).

Differentiating this expression with respect to θ yields the tangent vec-
tor (γtλ)′(θ) which can be represented as

(γtλ)′(θ) = (x(θ, t, λ), u(x(θ, t, λ), t, λ), xθ(θ, t, λ), ux(x(θ, t, λ), t, λ)xθ(θ, t, λ))

or

(4.2) (γtλ)′(θ) = (x, u, xθ, ux xθ)
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for short.
Note that Ξt(w) = (γtw)′(0). Thus, the differential of Ξt at v in the direc-

tion ν = w′(0) is obtained by differentiating the relation (4.2) with respect
to λ at λ = 0. That is,

dΞt(v)(ν) = (xλ, ux xλ + uλ, xθλ, uxx xθ xλ + uxλ xθ + ux xθλ)

evaluated at (0, t, 0). Observing that xθ(0, τ, 0) = 1, we simplify this expres-
sion as follows

dΞτ (v)(ν) = (xλ, ux xλ + uλ, xθλ, uxx xλ + uxλ + ux xθλ).

Now, suppose that ν lies in the kernel of the differential dΞτ (v) of Ξτ
at v, that is, dΞτ (v)(ν) = 0. In this case, the functions xλ, uλ, xθλ and uxλ
vanish at (0, τ, 0). Hence, both v and vx vanish at (0, τ, 0), where v = uλ.
That is, the function v has a multiple zero at (0, τ, 0).

Now, in a more intrinsic way, the zeros of v can be related to the zeros of
the normal vector field induced by the curve variation (γtλ) as follows. The
vector field along γtv induced by the curve variation (γtλ), see Definition 3.4,
is given by

(4.3) Y t(θ) =
∂

∂λ
γtλ(θ)|λ=0 = (x, u, xλ, ux xλ + uλ)

evaluated at (θ, t, 0). As xθ(θ, t, 0) 6= 0 for t close enough to τ , it follows from
the expression of (γtv)

′ and Y t, see (4.2) and (4.3), that the normal vector
field Y t

⊥ defined in Definition 3.4 vanishes if and only if v = uλ vanishes.
More precisely,

(4.4) Y t
⊥(θ) = 0⇔ v(x, t) = 0

where v(x, t) = uλ(x, t, 0) and x = x(θ, t, 0).

The number of zeros of Y t
⊥ is given by the following result.

Lemma 4.5. The normal vector field Y t
⊥ has exactly two zeros along γtv for

every t ≥ 0.

Proof. At t = 0, the curves γ0
λ are geodesic for the Zoll Finsler metric F . It

follows from Theorem 3.6 that Y 0
⊥ has exactly two zeros along γv. Moreover,

these zeros are simple. By the implicit function theorem, we deduce that Y t
⊥

has exactly two zeros along γtv for every t > 0 small enough.
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Let us examine how the number of zeros of Y t
⊥ evolves with t for every

t > 0. Differentiating the partial differential equation

ut = F(x, u, ux, uxx)

with respect to λ yields the following expression

uλt = Fu(x, u, ux, uxx) uλ + Fp(x, u, ux, uxx) uλx + Fq(x, u, ux, uxx) uλxx.

Thus, the function v = uλ satisfies the parabolic partial differential equation

(4.5) vt = a(x, t, λ) vxx + b(x, t, λ) vx + c(x, t, λ) v

where a = Fq(x, u, ux, uxx), b = Fp(x, u, ux, uxx) and c = Fu(x, u, ux, uxx).
By Theorem 4.3, the number of zeros of v(., t) is nonincreasing with t.

Therefore, the number of zeros of the normal vector field Y t
⊥ along γtv is

nonincreasing too from the relation (4.4). Since Y t
⊥ has exactly two zeros for

t small enough, it follows that Y t
⊥ has at most two zeros for every t > 0.

Now, if Y t
⊥ had less than two zeros, then all the curves (γtλ) would be on

one side of the simple loop γtv for every λ > 0 small enough (at least to the
first order). This is impossible since γtv and γtw divide the round sphere into
two domains of the same area. Therefore, the vector field Y t

⊥ has exactly
two zeros along γtv for every t. �

Let us continue the proof of Proposition 4.4. Combined with (4.4),
Lemma 4.5 shows that the function v(., t) has a constant number of zeros,
namely two, for every t ≥ 0. Since v satisfies the parabolic partial differen-
tial equation (4.5), we deduce from Theorem 4.3 that the functions v and vx
do not simultaneously vanish. Thus, the differential of Ξτ at v is injective.
Hence the map Ξt : US2 → TS2 is an immersion.

Let us show now that the map Ξτ : US2 → TS2 \ {0} is transverse to the
rays R∗+u = {su | s > 0}, where the vector u runs over TS2 \ {0}. We argue
by contradiction and assume that there exists v ∈ US2 and ν ∈ TvUS2 such
that the vector ~u tangent to the ray passing through Ξτ (v) and the image
vector dΞτ (v)(ν) are colinear in the tangent space to TS2 \ {0} at Ξτ (v). In
the previous normal coordinate system, the two vectors can be written as

~u = (0, 0, xθ, ux xθ)

and

dΞτ (v)(ν) = (xλ, ux xλ + uλ, xθλ, uxx xλ + uxλ + ux xθλ)
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where the expressions are evaluated at (0, τ, 0). Since the two vectors are
colinear, the functions xλ and uλ, and the determinant∣∣∣∣ xθ xθλ

ux xθ uxx xλ + uxλ + ux xθλ

∣∣∣∣ = (uxx xλ + uxλ)xθ

vanish at (0, τ, 0). So does the function uxλ (recall that xθ(0, τ, 0) = 1).
Hence, both v and vx vanish at (0, τ, 0), where v = uλ. That is, the func-
tion v has a multiple zero at (0, τ, 0), which is impossible from the previous
argument. Thus, the map Ξτ : US2 → TS2 \ {0} is transverse to the rays
of TS2 \ {0}.

Therefore, the map Ψt : U0S
2 → U0S

2 defined from Ξt by identifying
U0S

2 ' US2 and taking the radial projection TS2 \ {0} → U0S
2 is a local

diffeomorphism. �

The previous propositions yield the following result.

Theorem 4.6. Let F be a balanced Zoll Finsler metric on S2. For every
t ∈ [0,∞), the map Ψt : U0S

2 → U0S
2 induced by the curvature flow of the

canonical round sphere is a diffeomorphism.

Proof. From Proposition 4.4 and since U0S
2 is compact, the map Ψt is

a proper local diffeomorphism. Therefore, it is a covering map. Now, the
map Ψt is π1-injective (this is clearly the case for Ψ0 and this property is
preserved under homotopy). Hence, the covering Ψt is a diffeomorphism for
every t ≥ 0. �

This isotopy of diffeomorphisms allows us to define a deformation ρt of
the geodesic flow ρ0 = ρ of balanced Zoll Finsler spheres, cf. (4.1), to the
geodesic flow of the canonical round sphere as follows.

Let F be a balanced Zoll Finsler metric on S2. For every v ∈ U0S
2,

consider the unique curve γtu tangent to v at θ = 0 and pointing in the same
direction as v. That is, u = Ψ−1

t (v) under the identification U0S
2 ' US2.

Reparametrize this curve proportionally to its g0-arclength preserving both
its initial point and its orientation. Define the S1-action

ρt : S1 → Diff(U0S
2)

such that ρt(θ) takes v to the tangent vector of this new curve at the point
of parameter θ. Since Ψt is a diffeomorphism, the map ρt(θ) is also a dif-
feomorphism of U0S

2. Clearly, the S1-action ρt on U0S
2 is free and satisfies
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the symmetry property :

(4.6) ρt(θ)(−v) = −ρt(−θ)(v)

for every t ∈ [0,∞), θ ∈ S1 = R/2πZ and v ∈ U0S
2. Moreover, every ρt-orbit

projects to an embedding of S1 into S2 by the canonical projection U0S
2 →

S2. It is also worth pointing out that the expression of ρt(θ)(v) vary smoothly
with respect to t ∈ [0,∞), θ ∈ S1 and v ∈ U0S

2.

Thus defined, the actions ρt satisfy the following convergence result
which implies Theorem 1.3 by passing to the quotient.

Theorem 4.7. Let F be a balanced Zoll Finsler metric on S2. Then the
smooth free S1-actions

ρt : S1 × U0S
2 → U0S

2

C2-converge to the action ρ∞ induced by the geodesic flow of the canonical
round sphere.

Furthermore, for t ∈ [0,∞], every ρt-orbit projects to an embedding of S1

into S2 under the canonical projection U0S
2 → S2.

Proof. It follows from Theorem 2.3 that for every ε > 0 and every t ≥ 0
large enough, the unparametrized loops γtu have curvature at most ε on the
canonical round sphere. In particular, these loops are uniformly close to
the equators to which they are tangent (for the C2-Fréchet topology). By
construction, this implies that the action ρt is C2-close to the action ρ∞
induced by the g0-geodesic flow for t large enough.

The last statement about the orbits of ρt is also satisfied since these
orbits are transverse to the fibers of U0S

2 → S2 and project to the images
of the F -geodesics under the curvature flow (which do not self-intersect). �

Remark 4.8. The convergence result of Theorem 4.7 shows that the one-
parameter family of S1-actions (ρt) is defined for t ∈ [0,∞]. The proof of
Theorem 4.7 only yields a C2-convergence. However, the more precise esti-
mates of [H] give rise to a uniformly exponential Ck-convergence, see [H,
Theorem 3.1]. Thus, the reparametrization (ρτ ) of this family with τ =
1− e−t provides a Ck-convergence of (ρτ ) with respect to τ . We will consider
this reparametrization in the rest of the article.

Passing to the quotient, we derive a similar result on RP2, namely The-
orem 1.3.
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Proof of Theorem 1.3. Apply Theorem 4.7 to the lift of the Zoll Finsler met-
ric of RP2 to the orientable double cover S2 (which is balanced). By con-
struction, the simple closed curves γtu on S2 are equivariant with respect to
the antipodal maps on S1 and S2, that is, γtu(θ + u) = −γtu(θ). As a result,
the free S1-action ρt on U0S

2 passes to the quotient and gives rise to a free
S1-action on URP2 whose orbits project to simple closed curves in RP2.
From Remark 4.8, the convergence of the induced S1-action on URP2 with
respect to τ is in the Ck-topology. �

5. Crofton formula on Zoll Finsler two-spheres

We review some constructions on the sphere S2 equipped with a Zoll Finsler
metric F all of whose geodesics are of length 2π, including a general Crofton
formula.

Consider the Legendre transform

L : TS2 → T ∗S2

of the Lagrangian 1
2F

2. Since F is quadratically convex, the Legendre trans-
form is a diffeomorphism between TS2 \ {0} and T ∗S2 \ {0}. By homogene-
ity of F , it preserves the norm on each fiber of the bundle vectors TS2

and T ∗S2. In particular, it induces a diffeomorphism between the unit sphere
bundle and the unit co-sphere bundle US2 and U∗S2. Geometrically, this dif-
feomorphism is defined as follows: for every vector v ∈ UxS2, the image L(v)
of v is the unique covector of U∗xS

2 such that L(v)(v) = 1.

From now on, we will identify TS2 with T ∗S2 and US2 with U∗S2 via the
Legendre transform. With these identifications, the action ρF of S1 on US2

given by the geodesic flow of F induces an action on U∗S2 by conjugacy by
the Legendre transform, namely the co-geodesic flow of F . Despite the risk
of confusion, both S1-actions will be denoted by ρF .

Let α be the tautological one-form on T ∗S2. By definition,

αξ(V ) = ξ(dπξ(V ))

for every ξ ∈ T ∗S2 and V ∈ TξT ∗S2, where π : T ∗S2 → S2 is the canonical
surjection. From the Liouville theorem, the tautological one-form α (and so
the symplectic form ω0 = dα) is invariant under the co-geodesic flow of any
Finsler metric. Observe also that the S1-orbits of ρF on U∗S2 are transverse
to the contact structure given by the kernel of α. Now, the pull-back of
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the 3-form α ∧ dα under the inclusion map U∗S2 ↪→ T ∗S2 defines a volume
form on U∗S2. (More generally, the pull-back of α is a contact one-form
on U∗S2.) Since U∗S2 is the unit cotangent bundle of a Finsler sphere all
of whose geodesics are closed of lengh 2π, the integral of this volume form
on U∗S2 does not depend on the Finsler metric and is equal to ± 8π2 by a
result of A. Weinstein, cf. [Be78, §2.C]. That is,

(5.1)

∫
U∗S2

α ∧ dα = ± 8π2.

By the quotient manifold theorem, the S1-action on U∗S2 given by the
co-geodesic flow ρF gives rise to a quotient manifold

ΓF = U∗S2/ρF

diffeomorphic to S2, representing the space of unparametrized oriented geo-
desics of the Zoll Finsler metric F on S2, and a quotient submersion

(5.2) qF : U∗S2 → ΓF .

By construction, the map qF takes a unit cotangent vector of S2 to the
unparametrized oriented F -geodesic of S2 with the Legendre transform of
this unit cotangent vector as initial condition. Thus, the projection π(q−1

F (γ))
of a fiber over γ represents the unparametrized closed geodesic of F on S2

given by γ ∈ ΓF . We will sometimes identify γ with π(q−1
F (γ)).

Consider the double fibration

U∗S2

π

||

qF

##

i // T ∗S2

S2 ΓF

where i : U∗S2 ↪→ T ∗S2 is the canonical injection and π : U∗S2 → S2 is the
canonical surjection. Note that the product map π × qF : U∗S2 → S2 × ΓF
is an embedding. From [Be78], there exists a unique symplectic form λF
on ΓF such that

(5.3) q∗F λF = i∗ω0.

The general Crofton formula on Finsler surfaces can be stated as follows.
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Theorem 5.1 ([AB06, Theorem 5.2]). With the previous notations, the
length of every smooth curve c on S2 with the Zoll Finsler metric F satisfies

(5.4) lengthF (c) =
1

4

∫
γ∈ΓF

#(γ ∩ c) |λF |

where |λF | is the smooth positive area density on ΓF induced by the sym-
plectic form λF .

Remark 5.2. Strictly speaking, the integrand in the formula (5.4) should
be #(π(q−1

F (γ)) ∩ c) instead of #(γ ∩ c), but as aforementioned, we identify
the elements γ in ΓF with the unparametrized geodesics π(q−1

F (γ)) they
represent.

Remark 5.3. The Crofton formula (5.4) shows that the Zoll Finsler met-
ric F is uniquely determined by the submersion qF : U∗S2 → ΓF (and the
symplectic form λF on ΓF derived from qF ).

6. Deforming Zoll Finsler two-spheres

In this section, we construct a natural deformation of Zoll Finsler metrics
on S2 to the canonical round metric by applying the Crofton formula to the
orbits of the converging family of the circle actions given by the curvature
flow, see Theorem 4.7.

Consider a Zoll Finsler metric F on S2 all of whose geodesics are of
length 2π. Let ρ be a smooth free S1-action on U∗S2 whose orbits are trans-
verse to the contact structure given by the kernel of the tautological one-
form α on U∗S2 and project to embeddings of S1 into S2. The action ρ
induces a Legendrian action ρ̄ defined as follows. Consider the map

R : US2 → U∗S2

sending every vector v ∈ UxS2 to the unique covector ξ ∈ U∗xS2 such that
ξ(v) = 0 with (v,L−1(ξ)) positively oriented. The mapR : US2 → U∗S2 and
its restrictions Rx : UxS

2 → U∗xS
2 are diffeomorphisms. Thus, the free S1-

action ρ on U∗S2 induces a free S1-action ρ̄ on U∗S2 by conjugation by

Υ = L ◦ R−1 : U∗S2 → U∗S2

namely

ρ̄(θ) = Υ−1 ◦ ρ(θ) ◦Υ
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for every θ ∈ S1. Denote by

qρ̄ : U∗S2 → Γρ̄

the submersion induced by the free S1-action ρ̄, where Γρ̄ = U∗S2/ρ̄. Since
the actions ρ and ρ̄ are conjugate, we have Γρ̄ ' Γρ, where Γρ = U∗S2/ρ.

In order to apply the results of [AB], we will need the following basic
results regarding the submersion qρ̄.

Lemma 6.1. The fibers of the map qρ̄ : U∗S2 → Γρ̄ are Legendrian with
respect to the contact structure induced by α on U∗S2.

Proof. For every γ∈Γρ̄, let ξ∈q−1
ρ̄ (γ) and V ∈Tξq−1

ρ̄ (γ). The vector dπξ(V ),
based at π(ξ), is tangent to γ. By definition of qρ̄, the vectors tangent to γ
at π(ξ) lie in the kernel of ξ. Hence, ξ(dπξ(V )) = 0, that is, αξ(V ) = 0. �

Lemma 6.2. The product map φρ̄ = π × qρ̄ : U∗0S
2 → S2 × Γρ̄ is an em-

bedding.

Proof. Consider ξ ∈ U∗S2 and V ∈ TξU∗S2 such that dφρ̄(ξ)(V ) = 0. This
implies that the vector V lies in the kernel of the differential of the sub-
mersion qρ̄ at ξ. By construction, it follows that the vector V is tangent
to the ρ̄-orbit of U∗S2 at ξ. As π defines an embedding of each ρ̄-orbit
of U∗S2 into S2, we deduce from the relation dπξ(V ) = 0 that V = 0. Thus,
the map φρ̄ is an immersion.

Let ξ1, ξ2 ∈ U∗S2 such that φρ̄(ξ1) = φρ̄(ξ2). As π(ξ1) = π(ξ2), the cov-
ectors ξ1 and ξ2 are based at the same point x of S2. Since the projections
of the ρ̄-orbits to S2 are embeddings of S1 into S2, for every γ ∈ Γρ̄ pass-
ing through x, i.e., x ∈ π(q−1

ρ̄ (γ)), there is a unique ξ ∈ U∗xS2 such that
qρ̄(ξ) = γ. Thus, the relation qρ̄(ξ1) = qρ̄(ξ2) implies that ξ1 = ξ2. As a re-
sult, the map φρ̄ is injective, and so gives rise to an embedding. �

Define the volume form Ω on U∗S2 as follows

(6.1) Ω = Υ∗(α ∧ dα).

The actual expression of Ω only matters for Remark 6.7. Along with the
S1-action ρ̄, this volume form gives rise to a two-form ω = ωρ̄ on U∗S2 by
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the following averaging construction:

(6.2) ωρ̄ =
1

2π

∫
S1

ρ̄(θ)∗[iν(Ω)] dθ

where ν = νρ̄ is the vector field on U∗S2 generating the S1-action ρ̄, that is,

(6.3) ν(ξ) =
d

dθ |θ=0
ρ̄(θ)(ξ)

for every ξ ∈ U∗S2. Thus,

(6.4) ωξ(u, v) =
1

2π

∫
S1

Ωρ̄(θ)(ξ)(dρ̄(θ)|ξ(u), dρ̄(θ)|ξ(v), ddθ ρ̄(θ)(ξ)) dθ

for every ξ ∈ U∗S2 and u, v ∈ TξU∗S2. Here, despite the ambiguity in the no-
tation, dρ̄(θ)|ξ denotes the differential of the diffeomorphism ρ̄(θ) : U∗S2 →
U∗S2 at ξ. By construction, the two-form ωρ̄ is ρ̄-invariant and projects to
a two-form λρ̄ on the quotient surface Γρ̄ = U∗S2/ρ̄ with

ωρ̄ = q∗ρ̄ λρ̄.

Up to the multiplicative factor 1
2π , the form λρ̄ is the two-form induced by Ω

by integration along the fibers of qρ̄ (that is, the push-forward of Ω by the
fibration qρ̄). Note that both two-forms ωρ̄ and λρ̄ are determined by ρ̄ (and
so ρ).

We have the following straightforward result.

Lemma 6.3. The two-form λρ̄ does not vanish (and so defines an area-
form on Γρ̄). Furthermore, ∫

Γρ̄

|λρ̄| = 4π.

Proof. Consider two independent vectors ū and v̄ based at the same point
tangent to Γρ̄. Let u and v be two lifts of ū and v̄, based at the same point ξ ∈
U∗S2, under the submersion qρ̄. That is, the vectors u and v tangent to U∗S2

at ξ project to ū and v̄ under dqρ̄. By construction, we have

λρ̄(ū, v̄) = ωξ(u, v).

Furthermore, for every θ ∈ S1, the vectors dρ̄(θ)|ξ(u) and dρ̄(θ)|ξ(v) also

project to ū and v̄ under dqρ̄. Now, since the vector d
dθ ρ̄(θ)(ξ) is tangent
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to the fibers of qρ̄, it follows that the three vectors dρ̄(θ)|ξ(u), dρ̄(θ)|ξ(v)

and d
dθ ρ̄(θ)(ξ) form a basis of Tρ̄(θ)(ξ)U

∗S2. Thus, the value of the volume
form Ωρ̄(θ)(ξ) at these vectors is nonzero (and so of constant sign) for ev-
ery θ ∈ S1. From the expression (6.4), we conclude that both ωξ(u, v) and
λρ̄(ū, v̄) are nonzero. Hence λρ̄ does not vanish.

By fiber integration, Fubini’s theorem and change of variables, we have
the following relation ∫

U∗S2

Ω = 2π

∫
Γρ̄

λρ̄.

In particular, the integral of the (non-vanishing) area-form |λρ̄| over Γρ̄ is
equal to 4π, see (5.1). �

We can now apply the results of [AB] asserting that a (non-vanishing)
area-form on Γρ̄ gives rise to a Finsler metric on S2 via the Crofton formula.
Indeed, the assumptions of [AB, Theorem 2.2] are satisfied from Lemma 6.1,
Lemma 6.2 and Lemma 6.3. Thus, the existence and uniqueness of the
Finsler metric follow from [AB, Theorem 2.2], while the expression of the
metric is given by Lemma [AB, Lemma 2.3].

Theorem 6.4 ([AB]). With the previous notations, there exists a unique
Finsler metric Fρ on S2 satisfying the Crofton formula

(6.5) lengthFρ(c) =
1

4

∫
γ∈Γρ̄

#(γ ∩ c) |λρ̄|

for any smooth curve c on S2.
Morevover, the Finsler metric Fρ admits the following expression: for

every x ∈ S2, there exists a unique non-vanishing one-form βx on U∗xS
2

such that

(6.6) Fρ(x; v) =

∫
ξ∈U∗

xS
2

|ξ(v)|βx

for every v ∈ TxS2, where the non-vanishing one-form βx is defined for every
ξ ∈ U∗xS2 by the relation

(6.7) (ωρ̄)(x,ξ) = π∗ξ ∧ β(x,ξ).

Furthermore, the one-form βx smoothly depends on x.

Note that the relation (6.7) allows us to define the one-form β(x,ξ) in a
unique way only on TξU

∗
xS

2, not on T(x,ξ)U
∗S2.
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Before making use of Theorem 6.4, let us mention three important ob-
servations that will be useful in the proof of Theorem 6.8 below.

The first one deals with the dependance of Fρ with respect to ρ.

Remark 6.5. By construction, both forms ωρ̄ and β = βρ̄, see (6.2) and
(6.7), continuously vary with the S1-action ρ. It follows from the expression
of Fρ, see (6.6), that the Finsler metric Fρ continuously varies with ρ too.

The second observation is about the geodesics of Fρ.

Remark 6.6. When ρ is symmetric, see (4.6), it follows from the Crofton
formula that the geodesics of Fρ are exactly the curves π(q−1

ρ̄ (γ)) given
by γ ∈ Γρ̄, see [AB, Theorem 3.3]. Note that ρ is symmetric when it is given
by the co-geodesic flow of the (reversible) Zoll Finsler metric F , and more
generally, by its one-parameter family of deformations (ρτ )0≤τ≤1 defined at
the end of Section 4, assuming, in this case, that F is balanced.

The third observation deals with S1-actions arising from the co-geodesic
flow of the Zoll Finsler metric F on S2.

Remark 6.7. In the special case when ρ is given by the co-geodesic flow
of F , that is, ρ = ρF , the following properties hold. The vector field ν,
see (6.3), agrees with the co-geodesic vector field XF of F on U∗S2 through
the diffeomorphism Υ. Since iXF (α) = 1, we deduce that iν(Ω) = dᾱ from
the expression of the volume form Ω, see (6.1), where ᾱ = Υ∗α. Now, by the
Liouville theorem and conjugation, the symplectic form dᾱ is ρ̄F -invariant,
that is, ρ̄F (θ)∗(dᾱ) = dᾱ for every θ ∈ S1. This shows that ω = dᾱ. Hence,
λρ̄ = Υ∗ΓλF by definition of λF , see (5.3), where ΥΓ : Γρ̄ → ΓF is the diffeo-
morphism induced by Υ. It follows from the Crofton formulas (5.4) and (6.5)
that Fρ = F .

We can now proceed to the proof of the following result.

Theorem 6.8. The space of balanced Zoll Finsler metrics on the two-sphere
whose geodesic length is equal to 2π strongly deformation retracts to the
canonical round metric on the two-sphere.

Furthermore, this strong deformation retraction is induced by the curva-
ture flow on the canonical round two-sphere.

Proof. Let F be a balanced Zoll Finsler metric on S2 all of whose geodesics
are of length 2π. The unit tangent bundles US2 and U0S

2 are identified
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by radial projection, and are identified to the unit cotangent bundles U∗S2

and U∗0S
2 via the corresponding Legendre transforms. Consider the deforma-

tion (ρτ )0≤τ≤1 of S1-actions on U∗0S
2 defined at the end of Section 4, where

ρ0 is given by the co-geodesic flow of F and ρ1 agrees with the co-geodesic
flow of the canonical round metric g0. Note that the S1-action given by ρτ
is symmetric, see (4.6). The space U∗0S

2 is endowed with the tautological
one-form α of the unit cotangent bundle U∗S2 of F via the identification
U∗0S

2 ' U∗S2. By construction, the ρτ -orbits are the images by the Legen-
dre transform of the lifts to US2 of simple closed curves in S2. Therefore,
the ρτ -orbits are transverse to the contact structure given by the kernel of
the contact form on U∗0S

2 induced by α and project to an embedding of S1

into S2 by the canonical projection U∗0S
2 → S2.

Define a one-parameter family of Finsler metrics Fτ = Fρτ , for 0 ≤ τ ≤ 1,
from the volume form induced by the contact form on U∗0S

2, as in Theo-
rem 6.4. We will also write qτ , Γτ and λτ for qρ̄τ , Γρ̄τ and λρ̄τ . From Re-
mark 6.7, the metric deformation (Fτ ) starts at F , that is, F0 = F , since
ρ0 is conjugate to the co-geodesic flow of F via the contactomorphism
U∗0S

2 ' U∗S2 (for our choice of contact form on U∗0S
2). By Remark 6.6,

the geodesics of Fτ are precisely the simple closed curves represented by Γτ ,
namely, the curves π(q−1

τ (γ)) where γ runs over Γτ . Thus, the geodesics
of Fτ agree with the images of the geodesics of F under the curvature flow
at some time depending on τ . In particular, the metrics Fτ are balanced
Zoll Finsler metrics, see Proposition 3.1, and the metric F1 has the same
geodesics as the canonical round metric g0.

At this point, we do not claim that F1 agrees with g0. Indeed, by con-
struction, the metric F1 is determined by its space of geodesics Γ1 = Γg0

and a smooth positive measure |λ1| on it, which, in this case, may dif-
fer from |λg0

|. The reason is that, though ρ1 is the co-geodesic flow of the
canonical round metric g0, the volume form considered on U∗0S

2 is not in-
duced by the tautological one-form of U∗0S

2, but of U∗S2. Thus, we cannot
apply Remark 6.7 to the action ρ1. This leads us to extend the metric de-
formation (Fτ ) in a natural way as follows. For every 1 ≤ τ ≤ 2, define a
Finsler metric Fτ as in Theorem 6.4 with Γτ = Γ1, qτ = q1 and

|λτ | = (2− λ)|λ1|+ (τ − 1)|λg0
|.

As previously, the geodesics of these new metrics agree with those of the
canonical round sphere, but now, F2 is equal to g0, since |λ2| = |λg0

|.
We can also estimate the lengths of the geodesics of Fτ as follows. Let c0

be a geodesic of Fτ . By Theorem 3.3, every pair of distinct closed geodesics
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of Fτ has exactly two intersection points. Hence, #(γ ∩ c0) = 2 for almost
every γ ∈ Γτ . Since the integral of |λτ | equals 4π, it follows from the Crofton
formula (6.5) that the length of c0 is equal to 2π.

In conclusion, the metric deformation (Fτ ) gives rise to a retraction from
the space of balanced Zoll Finsler metrics on the two-sphere with geodesic
length 2π to the canonical round metric g0 on the two-sphere. �

Remark 6.9. Theorem 1.1 follows from Theorem 6.8 by taking the ori-
entable double cover of the Zoll Finsler projective plane since, by construc-
tion, the strong deformation retraction on the two-sphere passes to the quo-
tient by the antipodal map.

7. Appendix

In this appendix, we show how flexible Zoll Finsler metrics are. Given a
closed Zoll Finsler n-manifold M , we construct an infinite-dimensional fam-
ily of Zoll Finsler metrics on M with the same geodesic length. The results
in this section are not new, but we provide details we were unable to find in
the literature.

A classical way to perturb a Zoll Finsler metric F on a closed man-
ifold M within the space of Zoll Finsler metrics with the same geodesic
length is to deform the unit cotangent sphere bundle U∗M by a symplecto-
morphism of T ∗M , symmetric in restriction to each fiber of the cotangent
bundle and close to the identity in the smooth topology so as to preserve
the quadratic convexity. This symplectomorphism can be chosen in such a
way that the image of U∗M differs from the image of U∗M by the cotangent
lift of any diffeomorphism of M . Indeed, the symplectomorphisms given by
the cotangent lifts of diffeomorphisms of the base manifold M have a very
special form: they are linear on each fiber of the cotangent bundle T ∗M .
For generic symplectomorphisms not of this form, the resulting Finsler met-
rics are not isometric to F , though their geodesic flows are symplectically
conjugate to the one of F , in particular the metrics are Zoll with the same
geodesic lengths as F (and have the same Holmes-Thompson volume).

Our presentation follows a more hand-on approach inspired by [I13] and
[BI16] regarding boundary rigidity problems (and used in [C19] to study
Finsler tori without conjugate points) and sheds a different light on this
problem. It largely borrows from [C19]. The construction — proceeding by
local perturbations of the initial metric — is loosely constrained and fairly
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easy to implement. Furthermore, all local Zoll perturbations are obtained
by following this construction.

Let M be a closed n-manifold with a Finsler metric F . Fix an open
ball D in M of radius less than 1

4 inj(M) centered at x0 . For every p ∈ ∂D,
the arclength parametrized geodesic γp with γp(0) = x0 and γp(r) = p defines
a point γp(−r) lying in ∂D denoted by −p. The set of points of D equidistant
from p and −p forms a hypersurface Hp passing through x0 which divides D
into two connected components: H+

p containing p and H−p containing −p.
Define a smooth function f : ∂D ×D → R as

f(p, x) =

{
d(Hp, x) if x ∈ H+

p

−d(Hp, x) otherwise

For every p ∈ ∂D, denote fp = f(p, ·). The function f is an enveloping func-
tion, that is, it satisfies the following conditions:

1) for every x ∈ D, the map p 7→ dfp(x) is a diffeomorphism from ∂D to
the boundary of a quadratically convex body of T ∗xM containing the
origin;

2) for every p ∈ ∂D, we have f−p = −fp.

In our case, the boundary of the quadratically convex body in (1) is U∗xM
since F ∗(dfp(x)) = 1 for every p ∈ ∂D and x ∈ D. The condition (2) ensures
that the convex bodies in (1) are symmetric with respect to the origin.

The distance function induced by F can be written as

(7.1) dF (x, y) = sup
p∈∂D

fp(x)− fp(y)

for every x, y ∈ D. Similarly, the Finsler metric F can be expressed as

F (v) = sup
p∈∂D

dfp(v)

for every v ∈ TD.

Consider a sufficiently small C∞-perturbation f̃ of f such that f̃ is an
enveloping function which agrees with f on ∂D × U , where U is a tubular
neighborhood of ∂D in D. Note that if the perturbation is small enough,
the condition (1) is immediately satisfied by f̃ .



i
i

“5-Sabourau” — 2019/7/23 — 22:16 — page 472 — #30 i
i

i
i

i
i
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Define a new Finsler metric F̃ on D as

F̃ (v) = sup
p∈∂D

df̃p(v)

for every v ∈ TD. The induced distance is given by

(7.2) dF̃ (x, y) = sup
p∈∂D

f̃p(x)− f̃p(y)

for every x, y ∈ D. Here, the reversibility of F̃ (and symmetry of dF̃ ) follows

from the condition (2). Also, the function f̃p satisfies F̃ ∗(df̃p(x)) = 1 for
every x ∈ D. Moreover, for every x ∈ D, there exists a unique F̃ -unit tangent
vector v ∈ TxD such that df̃p(v) = 1. This tangent vector smoothly depends
on x (and p) and defines an F̃ -unit vector field ∇̃f̃p on D, called the F̃ -
gradient of f̃p. Since F and F̃ agree on U (as do f and f̃ on ∂D × U), we
can extend F̃ by letting F̃ = F outside D.

The geodesics of F̃ can be described as follows.

Proposition 7.1. The geodesics of F̃ agree with the integral curves of ∇̃f̃p
on D, with p ∈ ∂D. Furthermore, these curves are F̃ -minimizing on D.

Proof. Consider an integral curve γ of ∇̃f̃p. By construction, the curve γ is
parametrized by its F̃ -arclength and df̃p(γ

′(t)) = 1 for every t ∈ [a, b]. Thus,

b− a =

∫ b

a
df̃p(γ

′(t)) dt = f̃p(γ(b))− f̃p(γ(a)) ≤ b− a

since f̃p is F̃ -nonexpanding. This implies

dF̃ (γ(b), γ(a)) = f̃p(γ(b))− f̃p(γ(a)) = b− a

Hence, the arc γ is a minimizing F̃ -geodesic on D.
Conversely, let γv be the F̃ -geodesic induced by some F̃ -unit tangent

vector v ∈ TxD based at x. From the condition (1), there exists a (unique)
p ∈ ∂D such that v agrees with ∇̃f̃p at x. The integral curve of ∇̃f̃p passing
through x is an F̃ -geodesic with the same initial condition v as the F̃ -
geodesic γv. Therefore, the two F̃ -geodesics agree on D. �

Let γ̃ be an F̃ -geodesic arc of D. Since γ̃ is F̃ -minimizing, it leaves D
through two points x and y in ∂D.
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Proposition 7.2. Let γ be the F -geodesic arc of D with the same end-
points as γ̃. Then, the arcs γ and γ̃ satisfy `F̃ (γ̃) = `F (γ) and have the
same tangent vectors at their endpoints x and y.

Proof. Let us show this latter statement holds for the tangent vectors of γ
and γ̃ at y (and so at x, by symmetry). Fix a point y+ close to y lying slightly
outside D̄ on the F -geodesic extension of γ. Denote by α the F -minimizing
arc (lying on the F -geodesic extension of γ) joining y to y+, see Figure 2.
The arc α is also minimizing for F̃ since F̃ = F in the neighborhood of y.

x y

α

y+

γ̃

γ

D

Figure 2: Geodesics of D for F and F̃ .

Since f and f̃ agree on ∂D × U , we deduce from the expression of dF
and dF̃ , see (7.1) and (7.2), that dF = dF̃ not only for pairs of points in a
neighborhood of y but on ∂D × ∂D. Thus, for every z ∈ ∂D close enough
to y, we have

dF (x, z) + dF (z, y+) = dF̃ (x, z) + dF̃ (z, y+).

The infimum of the left-hand side of this equation over such z is attained
for z = y. By a first variation argument applied to the right-hand side of the
equation, we deduce that γ̃ ∪ α is smooth. (Recall that γ̃ is an F̃ -minimizing
arc joining x to y, and that α is an F̃ -minimizing arc joining y to y+.) Thus,
the unit tangent vectors of γ̃ at y is the same as the unit tangent vector of α
(and so γ) at y.

Now, since γ and γ̃ are minimizing with respect to F and F̃ , the rela-
tion dF = dF̃ on ∂D × ∂D also implies

`F̃ (γ̃) = dF̃ (x, y) = dF (x, y) = `F (γ).

�

Suppose now that F is a Zoll Finsler metric and that, in addition, the
radius of D is small enough so that the geodesics of F pass at most once
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through D. We derive from Proposition 7.2 that the geodesics of F̃ are closed
and agree with those of F outside D. Furthermore, they are simple and have
the same length as those of F . In other words, F̃ is also a Zoll Finsler metric
with the same geodesic length as F .

Moreover, it is possible to choose the perturbation f̃ so that the Finsler
metrics are not pairwise isometric as follows. Fix a point x0 in M . Con-
sider an ε-deformation || · || of the Minkowski norm F ∗x0

on T ∗x0
M in the

C∞-topology for ε small enough. Recall that the map p 7→ dfp(x0) is a dif-
feomorphism from ∂D to the boundary ∂BF ∗

x0
of the F ∗-unit tangent ball

in T ∗x0
M . It is possible to deform f into an enveloping function f̃ which agrees

with f in a neighborhood of ∂D × ∂D such that the map p 7→ df̃p(x0) is a
diffeomorphism from ∂D to the boundary of the unit ball || · || in T ∗x0

M .

Moreover, the deformation f̃ can be chosen arbitrarily close to f for the
C∞-norm if ε is small enough (the main point is to be able to set df̃p at x0).
This gives rise to a Zoll Finsler metric F̃ with the same geodesic length as F
whose restriction of the Fenchel-dual to T ∗x0

M agrees with || · ||, that is,

F̃ ∗x0
= || · ||. Now, the norm || · || describes an infinite-dimensional subspace

in the Banach-Mazur compactum Q(n) of isometry classes of n-dimensional
normed spaces. By choosing || · || not lying in the finite-dimensional sub-
space of Q(n) given by the norms F ∗x on T ∗xM where x runs over M , we
ensure that F̃ is not isometric to F . A similar dimension argument shows
that the Zoll Finsler metrics F̃ obtained from the perturbed norms || · ||
form an infinite-dimensional space.
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E-mail address: stephane.sabourau@u-pec.fr

Received March 28, 2016

Accepted November 29, 2017


	Introduction
	Preliminaries
	Geodesic intersections on Zoll Finsler two-spheres
	Curvature flow and circle action deformations on the unit tangent bundles of Zoll Finsler two-spheres
	Crofton formula on Zoll Finsler two-spheres
	Deforming Zoll Finsler two-spheres
	Appendix
	References

