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1. Introduction

In 1982, Harvey and Lawson have introduced in [5] the notion of calibrated
submanifolds in Riemannian manifold. The calibrated submanifolds are spe-
cial classes of minimal submanifolds, and they had already been well-studied
by many researchers. One of the importances of calibrated submanifolds is
the volume minimizing property, that is, every compact calibrated subman-
ifold minimizes the volume functional in its homology class.

The several kinds of calibrated submanifolds are defined in the Rie-
mannian manifolds with special holonomy. For example, special Lagrangian
submanifolds are middle dimensional calibrated submanifolds embedded in
Riemannian manifolds with SU(n) holonomy, so called Calabi-Yau man-
ifolds. In hyper-K&hler manifolds, which are Riemannian manifolds with
Sp(n) holonomy, there is a notion of holomorphic Lagrangian submanifolds
those are calibrated by the n-th power of the Kéhler form. At the same
time, hyper-Kahler manifolds are naturally regarded as Calabi-Yau mani-
folds, special Lagrangian submanifolds also make sense in these manifolds.
Hence there are two kinds of calibrated submanifolds in hyper-Kéhler man-
ifolds, and it is well-known that every holomorphic Lagrangian submanifold
becomes special Lagrangian by the hyper-Kahler rotations. The converse
may not hold although compact counterexamples have not been found.

Another importance of calibrated geometry is that some of the calibrated
submanifolds have the moduli spaces with good structure. For instance,
McLean has shown that the moduli space of compact special Lagrangian
submanifolds becomes a smooth manifold, whose dimension is equal to the
first betti number of the special Lagrangian submanifold [13].

Although the construction of compact special Lagrangian submanifolds
embedded in Calabi-Yau manifolds is not easy in general, Y-I. Lee [12], Joyce
[8][9] and D. A. Lee [I1] developed the gluing method for the construction of
families of compact special Lagrangian submanifolds converging to special
Lagrangian immersions with self-intersection points in the sense of currents.
Moreover D. A. Lee construct a non-totally geodesic special Lagrangian
submanifold in the flat torus by applying his gluing method. After these
works, several concrete examples of special Lagrangian submanifolds are
constructed by gluing method. See [6][3][4], for example.

In this paper we apply the result in [8][9] to the construction of new
examples of compact special Lagrangian submanifolds embedded in toric
hyper-Kéahler manifolds. Moreover, these examples never become holomor-
phic Lagrangian submanifolds with respect to any complex structures given
by the hyper-Kéahler rotations.
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A hyper-Kihler manifold is a Riemannian manifold (M%", g) equipped
with an integrable hypercomplex structure (I3, I2, I3), so that g is hermitian
with respect to every I, and w, := g(I,-,-) are closed. For any 6 € R, note
that eﬁe(wg +v/—1ws) becomes a holomorphic symplectic 2-form with
respect to I7. If the holomorphic symplectic form vanishes on a submanifold
L?" C M, L is called a holomorphic Lagrangian submanifold. Clearly, this
definition does not depend on 6.

Similarly, we can define the notion of holomorphic Lagrangian submani-
fold with respect to a complex structure al; + bl + cl3 for every unit vector
(a,b,c) in R3. The new complex structure aly + bl + cl3 is called a hyper-
Kaéhler rotation of (M, g, I1, I3, I3).

The hyper-Kéhler manifold M is naturally regarded as the Calabi-Yau
manifold by the complex structure I;, the Kéhler form w; and the holo-
morphic volume form (ws + v/—1ws)™. Then we can easily see that holomor-
phic Lagrangian submanifolds with respect to cos(ar/n)ls + sin(ar/n)l3
are special Lagrangian for every a = 1,...,2n. Conversely, it has been un-
known whether there exist special Lagrangian submanifolds embedded in
hyper-Kéhler manifolds never coming from holomorphic Lagrangian sub-
manifolds with respect to any complex structure given by the hyper-Kéhler
rotations. The main result of this paper is described as follows.

Theorem 1.1. Let n > 2. There exist smooth compact special Lagrangian
submanifolds {I:t}0<t<5 and {Lqa }a=1,.. 2n embedded in a hyper-Kdihler man-
ifold M*", which satisfy limy_o Ly = Ua La in the sense of currents, and
Ly is diffeomorphic to 2n(PY)"#(S' x §2=1). Moreover, each Lq is the
holomorphic Lagrangian submanifold of M with respect to cos(am/n)ly +
sin(ar/n)Is, although Ly never become holomorphic Lagrangian submani-
folds with respect to any complex structure given by the hyper-Kdhler rota-
tions whichever we choose the orientation of L.

This is one of examples which we obtain in this article. Furthermore, we
obtain special Lagrangian 2P2#2@#(S 1 x $3) embedded in a hyper-Kihler
manifold of dimension 8 and special Lagrangian (3N + 1)(P!)2#N(S! x S3)
embedded in another 8-dimensional hyper-Kéhler manifold, both of which
never become holomorphic Lagrangian submanifolds with respect to any
complex structure given by the hyper-Kéhler rotations.

Theorem has another significance from the point of the view of the
compactification of the moduli spaces of compact special Lagrangian sub-
manifolds. In general, the moduli space M(L) of the deformations of com-
pact special Lagrangian submanifolds L C M is not necessarily compact,
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consequently the study of its compactification is important problem. It is
known that a compactification of M(L) is given by the geometric measure
theory. The special Lagrangian immersion | J,, L, appeared in Theorem

is the concrete example of an element of M(L;)\M (L;). D. A. Lee also con-
sidered the similar situation, however the Calabi-Yau structures of ambient
space of L; is deformed by the parameter ¢ in [I1].

Here, we describe the outline of the proof. Let (M, J,w, ) be a Kéhler
manifold of complex dimension m > 3 with holomorphic volume form €
H°(K ), and L, C M be connected special Lagrangian submanifolds, where
a=1,...,A. Put V={1,..., A}, and suppose we have a quiver (V, &, s, ),
namely, V consists of finite vertices, £ consists of finite directed edges, and
s,t are maps € — V so that s(h) is the source of h € £ and t(h) is the target.

A subset S C € is called a cycle if it is written as S = {h1, ho,..., i}
and t(hg) = s(hg+1), t(hy) = s(h1) hold for all k=1,...,1—1. Then & is
said to be covered by cycles if every edge h € £ is contained in some cycles
of £.

If there are two special Lagrangian submanifolds Lo, L1 C M intersecting
transversely at p € Lo N L1, then we can define a type at the intersection
point p, which is a positive integer less than m. Then we have the next
result, which follows from Theorem 9.7 of [§] by some additional arguments.

Theorem 1.2. Let (V,&,s,t) be a quiver, and L, be connected compact
special Lagrangian submanifolds embedded in a Calabi- Yau manifold M of
dimension m > 3 for every a € V. Assume that L,y and Ly, intersects
transversely at only one point p if h € €, and p is the intersection point of
type 1, and Lo N Lg is empty if o # 3 and there are no edges connecting
a and B. Then, if € is covered by cycles, there exist 6 > 0 and a family of
compact special Lagrangian submanifolds {itl,...,tN Yo<ty, .. tn<s embedded in
M which satisfies limg, . ¢\, —0 IN/thth = Uaev L., in the sense of currents.
Here, N is the first betti number of (V,E,s,t).

To obtain Theorem (1.1, we apply Theorem to the case that M is
a toric hyper-Kéhler manifold and L, is a holomorphic Lagrangian sub-
manifold with respect to cos(am/n)Is + sin(an/n)ls. Accordingly, the proof
is reduced to looking for toric hyper-Kahler manifolds M and their holo-
morphic Lagrangian submanifolds L, ..., Lo, satisfying the assumption of
Theorem In particular, to find L,’s so that £ is covered by cycles is not
so easy. The author cannot develop the systematic way to find such exam-
ples in toric hyper-Kéhler manifolds, however, we can raise some concrete
examples in this article.
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In toric hyper-Kéahler manifolds, many holomorphic Lagrangian subman-
ifolds are obtained as the inverse image of some special polytopes by the
hyper-Kéhler moment maps, where the polytopes are naturally given by
the hyperplane arrangements which determine the toric hyper-Kéahler mani-
folds. We can compute the type at the intersection point of two holomorphic
Lagrangian submanifolds, if the intersection point is the fixed point of the
torus action. Finally, we can find examples of toric hyper-Kéahler manifolds
and such polytopes, which satisfy the assumption Theorem [I.2]

Next we have to show that these examples of special Lagrangian sub-
manifolds never become holomorphic Lagrangian submanifolds. Since L; is
contained in the homology class 3, (—1)%[La], we obtain the volume of L; by
integrating the real part of the holomorphic volume form over ) (—1)%[Lq].
On the other hand, if L, is holomorphic Lagrangian submanifold with respect
to some aly + bl + cl3, then the volume can be also computed by integrat-
ing (awi + bwa + cws)™ over Y (—1)*[L4], since aw; + bwa + cws should be
the Kahler form on L;. These two values of the volume do not coincide, we
have a contradiction. At the same time, we have another simpler proof if
the first betti number L, is odd, since any holomorphic Lagrangian subman-
ifolds become Kéahler manifolds which always have even first betti number.
The example constructed in Theorem satisfies b = 1, hence we can use
this proof. However, we have other examples in Section [6] whose first betti
number may be even.

This article is organized as follows. First of all we define o-holomorphic
Lagrangian submanifolds in Section [2| and review the constructions of them
in toric hyper-Kéhler manifolds in Section [3| Next we review the definition
of the type at the intersection point of two special Lagrangian submani-
folds, and then compute them in the case of toric hyper-Kéhler manifolds
in Section ] In Section [5, we prove Theorem [I.2] by using Theorem 9.7 of
[8]. In Section [6] we find toric hyper-Kéhler manifolds and their holomor-
phic Lagrangian submanifolds which satisfy the assumption of Theorem 1.2
and obtain compact special Lagrangian submanifolds embedded in some
toric hyper-Kéhler manifolds. In Section [7] we show the examples obtained
in Section [6] never become o-holomorphic Lagrangian submanifolds for any
o€ 52
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2. Holomorphic Lagrangian submanifolds

Definition 2.1. A Riemannian manifold (M, g) equipped with integrable
complex structures (I, I, I3) is a hyper-Kdhler manifold if each I, is orthog-
onal with respect to g, they satisfy the quaternionic relation Iy I3 = —1 and
fundamental 2-forms w, := g(I,-,-) are closed.

We put w = (w1, ws,ws) and call it the hyper-Kéhler structure. For each
o= (01,09,03) € §? = {(a,b,¢) e R’ ® + 1>+ = 1},

we have another Kéhler structure

3 3
(M, I7,w%) := (M,Zaifi,z:aiwi) .
i=1 i=1

Take o', 0" € 5% so that (o,0’,0”) forms an orthonormal basis in R3. Sup-
pose it has the positive orientation, that is,

o Ao’ Ao’ = (1,0,0) A (0,1,0) A (0,0,1)

holds. Then we have another hyper-Kéhler structure (w”,w"',w"”) called
the hyper-Kéahler rotation of w.

Definition 2.2. Let (M, g, I, I, I3) be a hyper-Kéahler manifold of real
dimension 4n, and L C M be a 2n-dimensional oriented submanifold. Fix
o € 8? arbitrarily. Then L is a o-holomorphic Lagrangian submanifold if
w? |1, =w?"|;, = 0 and the orientation of L is given by (w?)"|f.

It is easy to see that the above definition does not depend on the choice
of o/, 0”.

Any hyper-Kéhler manifolds can be regarded as Calabi-Yau manifolds
by considering the pair of a Kéhler manifold (M, I1,w;) and a holomorphic
volume form (wy + /—1ws3)™ € HY(M, K);), where K is the canonical line
bundle of the complex manifold (M, I;). Therefore, we can consider the
notion of special Lagrangian submanifolds in M as follows.
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Definition 2.3. Let (M, g, I1, I2, I3) be a hyper-K&hler manifold of real di-
mension 4n, and L C M be a 2n-dimensional oriented submanifold. Then L
is a special Lagrangian submanifold if wy|p = Im(wg + v/—1ws3)"™|L = 0 holds
and the orientation of L is given by Re(ws + v/—1w3)"|L.

Remark 2.4. For 6 € R, L C M is often called a special Lagrangian sub-
manifold of phase eV~ if w |, = Im{e™ V19 (wy + v/—1ws)"}|, = 0 and the
orientation is given by Re{e™V 1% (wy + v/—1ws3)"}|1. In this paper we only
consider the special Lagrangian submanifolds of phase 1.

Example 1. Let (M, g, I1, I2, I3) be a hyper-Kéhler manifold and suppose
a compact Lie group K acts on M preserving g, I1, I, I3, and there exists a
hyper-Kéhler moment map pg : M — ImH ® k*, where k is the Lie algebra
of K. For ¢ € ImH ® (k*)X, suppose that K acts on u}l(() freely, where
(k*)X C k* is the subset of fixed points under the coadjoint action. Then by
[7], the quotient space MI_(I(C )/K inherits the natural hyper-Kéhler struc-
ture from g, I1, I2, Is and becomes a smooth hyper-Kéahler manifold which
is called a hyper-Kéhler quotient.

Next we assume that a o-holomorphic Lagrangian submanifold L ¢ M
which is closed under the K-action is given. We put puxg = (,u,KJ, K2, uK,g)
and p == o1k, + o2pK,2 + o3k 3 for o € S2. We define (% € (k*)K simi-
larly. If o, 0/, 0" is an orthonormal basis, then ug; and ug is locally constant
on L. Here, we assume

pil: =¢", Wkl =¢,
then
PO NL = (uk) ' (¢7)NL

holds. Now (L, I?,w?) is a Kihler manifold and el L — k* is a Kéhler
moment map. Since we have supposed that K acts on u[_(l(C ) freely, then

~

(u%)~1(¢%) N L is a smooth submanifold of L, hence 1 (¢) N L is a smooth
submanifold of uf(l (¢). By taking quotients, we obtain a smooth submanifold

L= (ug(Q)NL)/K C ug(Q)/K.

It is easy to check that L is a o-holomorphic Lagrangian submanifold of
-1
ng (Q)/K.
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Example 2. Let pi(z) = ziz € ImH for = € H, and o,0’,0” € S? is an
orthonormal basis. Then each level set of (u{',ug") is a o-holomorphic La-
grangian submanifold of H if it is smooth. Let

(1) L(o,q,9) :={z € H; p1(x) = q+to, =6 <t <4}

for ¢ € ImH and § > 0. Since the only critical point of (4", u{") is the origin
of H, therefore L(o,q,d) is a smooth holomorphic Lagrangian submanifold
of H if ¢ # 0 and § is sufficiently small.

3. Toric hyper-Kahler manifolds
3.1. Construction

In this subsection we review the construction of toric hyper-Kéhler manifolds
briefly. Let uz, : Z% — Z™ be a surjective Z linear map which induces a homo-
morphisms between tori and their Lie algebras, denoted by @ : 7% — T™ and
u: t% — t", respectively. Throughout of this article we identify the Lie alge-
bra t% of the torus with R%. We put K := Ker & € T% and k := Ker u € t¢,
where k is the Lie algebra of the subtorus K. The adjoint map of u is denoted
by u* : (t7)* — (t7)* and it induces u* : V ® (t")* — V ® (t4)* naturally for
any vector space V', which is also denoted by the same symbol.

Next we consider the action of T% on the quaternionic vector space H¢
given by (x1,...,2q) - (91,--.,94) := (191, .. .,249q) for xz; € H and g €
S1. Then this action preserves the standard hyper-Kéhler structure on H?,
and the hyper-Kihler moment map pg : H? — ImH ® (t4)* is given by

;ud(xla s ,.fL'd) = ('Ilixila s ,J,‘diﬂ?id).

Here, ImH = R3 is the pure imaginary part of H.

Let i: K —T% and ¢ : k — t% be the inclusion maps and put pg :=
¥ o pg : H* — ImH ® k* be the hyper-Kéhler moment map with respect to
K-action on H? Then we obtain the hyper-Kihler quotient

X(u, ) = pg' (V) /K

for every A = (A1,...,\q) € ImH ® (t%)*, called toric hyper-Kihler varieties.
The complex structures on X (u,\) are denoted by Iy 1,I)2 and I3, and
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the corresponding Kéahler forms are denoted by

wy = (Wx,1,wWx2,W3)-

Although X (u, \) is not necessarily a smooth manifold, the equivalent
condition for the smoothness was obtained by Bielawski-Dancer in [I]. Let
e1,...,eq € R? be the standard basis and uy := u(ey,) € t". Put

Hy = Hg(A) == {y € ImH ® (t")%; (y,ur) + A\ = 0},
where
(Y, ur) = (Y1, ur), (Y2, ur), (Ys,ur)) € R3 = ImH
for y = (1,92, y3).

Theorem 3.1 ([1I]). The hyper-Kdhler quotient X (u, \) is a smooth man-
ifold if and only if both of the following conditions (x1)(x2) are satisfied.
(x1) For any 7 C {1,2,...,d} with #7 =n+ 1, the intersection (o, Hy
is empty. (x2) For every T C {1,2,...,d} with #1 =n, the intersection
Mrer Hi is nonempty if and only if {uy; k € 7} is a Z-basis of Z".

The T¢ action on H¢ induces a 7" = T9/K action on X (u, \) preserving
the hyper-Kéahler structure of X (u, \), and the hyper-Kéhler moment map
px = (a1, pa2s #a3) @ X(u, A) — ImH @ (7)* is defined by

w(pa([2]) = palz) = A,

where [7] € X (u, ) is the equivalence class represented by = € ! (¢*(\)).

Let 0 € S%. A T™-invariant submanifold L C X (u, \) is a o-holomorphic
Lagrangian submanifold if (L) is contained in ¢ + o ® (t")* for some ¢q €
ImH ® (t™)*.

3.2. Local model of the neighborhood of a fixed point

Let X = X (u, \) be a smooth toric hyper-Kéhler manifold of real dimension
4dn, w = wy and pu = py. Denote by X™* the maximal subset of X on whom
T" acts freely. Let p € X be a fixed point of the T™-action. Then we can see
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that
Hy, NHy, N---N Hy, ={pp)}

for some ki, ..., k,. In this subsection we consider the local structure around
p, then we may suppose without loss of generality that

ki =i, wu(p)=0, u=(I,u)cHom(z%7Z"),
where I,, is the identity matrix and u' € Hom(Z*",Z"). Moreover, recall
that the hyper-Kéhler structure on X (u,A) only depends on ¢*(\). Since
the projection to the first n components Ker * — t" is surjective, A can
be taken such that \y = Ag =--- =\, =0, then u(p) =0 implies p = [p]
for some p = (0,...,0,an41,an+t2,-..,aq), With agiar = \;. Here, ag, A, # 0

hold for all K =n+1,...,d by the smoothness of X (u, A) and Theorem [3.1
(*1). Then we have

(2) w([x1, .oy Ty Tty - - o, 2q)) = (219T7, - -+, TpiZy).
The tangent space T, X is identified with the subspace Wj C H? which
is the orthogonal complement of Tj(Kp) in Tpux' (1*(N)), where Kp = {g-
p; g € K}. Then one can see that
Wy =H" x {0} = {(v1,...,0n,0,...,0) € H},
hence we obtain the canonical isomorphism
T,X =H".
Now we put
V(o) =i (0 @ {(t1, ..., ta) € (8")* t; > 0})
for o € S%, where pp,(x1,...,2,) = (19771, . . ., TniTy). If we take
= (z,w) €C*=H
such that zix = o, then we may write

(3) V(o) = {(a1z,q1w,...,anz,aqw) € H"; (a1 ...,0p) € C"}.
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Then V(o) is a T™ invariant o-holomorphic Lagrangian subspace of H". Put

d
Ly := V(o) x H L(o, A\, 0),
k=n+1

A

Lo = (ug (¢"(N) N Lo) /K.
for sufficiently small . Then L, is a smooth holomorphic Lagrangian sub-

manifold by the argument in Examples 1 and 2, and we have the following
proposition.

Proposition 3.2. Let (X (u,\),w,un), p and L, be as above. Then there is
an open neighborhood U C L, of p and € > 0 such that

pU) =o{te ") [t <eti >0}
and
T,U =V(o)
holds under the identification T, X = H".

Proof. The first assertion follows from ([2)). The second assertion follows by
T,U =T,X N (V(e) x H¥") = V(o). O

4. Characterizing angles
4.1. Calabi-Yau manifolds

For the desingularization of special Lagrangian immersions which intersect
transversely on a point, one should consider the characterizing angles, in-
troduced by Lawlor [10].

Let (M, J,w) be a Kéhler manifold, where J is a complex structure, w
is a Kéhler form. Suppose that there is a Lagrangian immersion ¢ : L — M,
where ¢ is embedding on L\{py,p_} and ¢(L) intersects at ¢(p4) = t(p-) =
p € M transversely. We suppose L is not necessarily to be connected, and
the orientation of L is fixed.

Theorem 4.1 (Proposition 9.1 of [8]). Let (Jo,wpy) be the standard
Kdhler structure on C™. There exists a linear map v : T,M — C™ satis-
fying the following conditions; (i) v is a C-linear isomorphism preserv-
ing the Kdahler forms, (ii) there is ¢ = (¢1,...,0m) € R™ which satisfies
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0<p1 < <y <7 and

vou(Ty, L) =R"™ ={(t1,...,tm) € C"; t; € R},

vou(Tp L) =R = {(t;eV71¥, .. eV ™19m) € C™; t; € R}

(iii) v maps the orientation of v.(T,, L) to the standard orientation of R™.
Moreover, @1, ..., om and the induced orientation of R7' by v, t(Tp_L) do
not depend on the choice of v.

Here, we give an explanation for the reader’s convenience how to de-
termine the characterizing angles ¢1,..., @, in Proposition Choose a
C-linear isomorphism vg : T,M — C™ which preserves the Kéhler metrics.
Then V4 := vg o t+(Tp, L) are Lagrangian subspaces of C™, therefore we can
take g+ € U(m) such that g4 - Vi =g - V_ =R"™. We may choose g; so
that it preserves the orientations of Vi and R™. Put P = g g=' € U(m).
The eigenvalues of ! PP are written as eﬁol, R eV=10n for some 0 <6 <
-+ < 0, < 2m. Then ¢; are given by ¢; = 6;/2. Here ¢; can never be 0 since
V4 and V_ intersect transversely.

Here, ¢ = (¢1,-..,¢m) is called the characterizing angles between (L, p4)
and (L,p_). Under the above situation, assume that there is a holomorphic
volume form € on M satisfying

W™ /m! = (=1)™m=D/2(/Z1/2)mQ A Q,

where m is the complex dimension of M. Let Qg :=dz; A--- A dz,;, be the
standard holomorphic volume form on C", and assume that ¢: L — M
is a special Lagrangian immersion. Then there exists v : T,M — C™ sat-
isfying Theorem In this case we can see v*Q)y = eﬁeﬁp for some
6. Since both of 1.(T),, L) C T,M and R™ C C™ are special Lagrangian,
we have (vil)*Qplv%(TuL) = Qo|rm = dt1 A -+ - A dt,,, therefore we can see
V=10 — 1.

Since both of ¢, (T}, L) are special Lagrangian subspaces, there is a pos-
itive integer k =1,2,...m — 1 and ¢1 + - - - + ¢, = k7 holds. Then the in-
tersection point p € M is said to be of type k. Note that the type depends on
the order of p;,p_. If we take the opposite order, the characterizing angles
become m — ¢, ..., ™ — 1 and the type becomes m — k.
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4.2. Hyper-Kahler manifolds

For an oriented manifold L, we denote by L the oriented manifold diffeo-
morphic to L with the opposite orientation.
Let

o(8) = (0,cos 0,sinf) € S2.

Proposition 4.2. Suppose L is a o(6)-holomorphic Lagrangian submani-
fold in a hyper-Kdihler manifold (M*", g, I1, Is, I3). Then L is a special La-
grangian submanifold if 6 = ]%T for even k € Z, and L is special Lagrangian
if 0 = ET for odd k € Z.

Proof. Put o’
have w?'|;, =
have

(0, —sin 6, cosf) and ¢’ = (1,0,0). By the assumptions, we

| = 0. Here, w? |, = 0 implies L is Lagrangian. Since we

e ™ M wy + V=lwy)" = (W0 + V1w,
_ (wU(G))n|L’

then if we put 0 = %ﬂ, we obtain

Re(ws + vV—1ws)"|r, = (=D, Im(wy + vV—1ws)"| = 0.
O

Proposition 4.3. Suppose nfy € nZ and let Vi be T™-invariant o(04)-
holomorphic Lagrangian subspaces of H" given by

Vi:=V(o(0s)), V- :=V(o(6-)).

Then the characterizing angles between Vi and V_ are given by (0— — 04)/2
with multiplicity 2n.

Proof. By , we have
Vi = {(\/—lzl,emeiﬁ, e \/—lzn,e\/jwi%) e H"; z1,...,2, € C}

respectively. Put
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and

O A(64) O A(6-)
Since g, V; = g_V_ = R?" holds, then the characterizing angles are the ar-

gument of the square root of the eigenvalues of PP, where P = g, g~!, by
the proof of Theorem [4.1] Since

AB)AB-) AWB)AD-) T = eV 10041,

the characterizing angles turn out to be (6— — 64)/2 with multiplicity 2n.
O

Now we consider the case that
(M7 ‘]a w, Q) = (X(ua )‘)’ Il? (w)\,Q + v _1(4‘})\,3)”)
and L = Ly U L_, where Ly is embedded as (64 )-holomorphic Lagrangian
submanifolds respectively, for some 61 € R. Denote by ¢ : L — X (u, \) the
immersion. Assume that the image of L is a T™ invariant subset of X (u, \),

and p € X (u, \) is the fixed point of the torus action. In this subsection, we
see the characterizing angles between (L, p4 ) and (L_, p_) in this situation,

where 1 (p) = {p+.p-}.

Proposition 4.4. Under the above setting, assume that there is a suffi-
ciently small r > 0 and

(1(Lx) — p(p)) N B(r) = ox @ {x € (¢")"; |[zf| <r,z; > 0}

holds. Then the characterizing angles between (L4,p4) and (L_,p_) are
given by (0_ — 04)/2 with multiplicity 2n.

Proof. By Proposition [3.2] we can see that
Tp L+ = V(o(0+))

respectively. Thus we have the assertion by Proposition [4.3 O
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5. Proof of Theorem [1.2]

In this section we prove Theorem Although Theorem follows from
Theorem 9.7 of [8] essentially, we need some additional argument about the
quivers. Let Q = (V, &, s,t) be a quiver, that is, )V consists of finite vertices,
& consists of finite directed edges, and s,t : £ — V are maps. Here, s(h) and
t(h) means the source and the target of h € £ respectively. The quiver is
said to be connected if any two vertices are connected by some edges. Given
the quiver, we have operators

9: R - RY,
0" :RY - R

defined by

d (Z Ay, - h) = Ay (s(h) — (),

he& he&
0" (Z Tk - k:) = Z(ﬂfs(h) — Typ)) + b
key he&

Here, R and RY are the free R-modules generated by elements of £ and V
respectively. Since 0* is the adjoint of 0, we have

(4) ho(Q) —hi(Q) = #V — #¢,
where hy(Q) = dim Kerd* and h;(Q) = dim Kerd. Note that ho(Q) is equal
to the number of the connected components of Q).

We need the following lemmas for the proof of Theorem

Lemma 5.1. Let Q be as above. The set (Rso)® NKer(9) is nonempty if
and only if £ is covered by cycles.

Proof. Suppose that & =, Sk, holds for some cycles S1, ..., Sy. For a sub-
set S C &, define x5 € R by

(xs)n = {1 (h e S)?

Then S0, xs, is contained in (Rsq)¢ N Ker(d).
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Conversely, assume that there exists A=), o Aj-h € Ker(d) with
Ap, > 0 for every h, and take hg € £ arbitrarily. Since 9(A) = 0, we have

Z Ah: Z AhZAhO>0-

hes=1(t(ho)) het=1(t(ho))

Hence s~ (t(hg)) is nonempty, we can take hy € s~'(t(hg)). By repeating this
procedure, we obtain hg, h1, ..., h; so that t(hx) = s(hgs1) for k=0,...,01 —
1. Stop this procedure when t(h;) = s(hy) holds for some k =0, ...,[. Since
V is finite, this procedure always stops for some [ < 400. Then we have an
nonempty cycle So = {hg, hgt1,...,hi}. If ho is contained in Sp, then we
have the assertion, hence suppose hy ¢ Sp. Put Ap := minpeg, Ap > 0,

Py:={h €&; Ap= Ao},
51 = S\P()

Then we have a new quiver ((V,€&1,s,t)) and the boundary operator 0 :
RS — RY. Now, put AY := 4 — Aoxs, € RE. Then each component of AWM
is positive. Moreover we can see that

O(AD) = > Ap(s(h) —t(h) + D (An— Ao)(s(h) = t(h))
heS\So heSO\PU
=D An(s(h) —t(h)) = Y An(s(h) — t(h))
he& heSy

+ > (A — Ag)(s(h) — t(h))

heSy
37 Ao(s(h) — 1)
hES,
= —Apd(xs,) =0,

thus A is contained in (Rs)% NKer(d1). Then we can apply the above
procedure for hg € £ and we can construct Sy inductively. Since £ is finite
and #& > #&; > --- holds, there is kg such that hy € Sk, . O

Lemma 5.2. Let Q = (V,&,s,t) be as above and & = E\{h} for h e E.
Then Q' = (V, &, s,t) satisfies either (ho(Q'),h1(Q")) = (ho(Q) + 1,h1(Q))
or (ho(Q"),(Q")) = (ho(Q), h1(Q) — 1) for any h € £.
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Proof. First of all we can check that
(5) Ker(dp)) C Ker(9g)), Im(dq) C Im(dg).
It suffices to show ho(Q’) = ho(Q) or ho(Q) + 1 by (). Put
Er={he&; A, =0for any A € Ker(9)}, & =E\&.
Let h € &. Then we have Ker(9g) = Ker(Jdg ) which implies
rk(9g) = Ker(9g) + 1.
Since there are orthogonal decompositions
RY = Ker(95) ® Im(dq) = Ker(9;) ) & Im(dg),

we obtain hg(Q') = ho(Q) + 1.
Next assume h € &. By (f)), it suffices to show Ker(9),) C Ker(9)). Let
z € Ker(0p)) and A € Ker(9g). Then (05z, A) = (z,09A) =0 and

(O, A) = (@) — Ten)) A = (Tsn) — Ten)) An
h'e&

hold. Since h € &, there exists A € Ker(dg) such that Ay # 0, hence ) —
Ty(p) should be 0. Consequently we have shown that if h € & then hy(Q') =

ho(Q). O

Let L, be a compact connected smooth special Lagrangian submanifold
of the Calabi-Yau manifold (M, J,w, Q) of dimcM = m for every o € V. For
every h € £, suppose Lyp,) and Ly, intersects transversely at pj € Ly N
Ly, where py, is the intersection point of type 1. Assume that pj, # py if h #
h', and assume that |J,cy Lo \{pn; h € £} is embedded in M. Let Lg be a
differential manifold obtained by taking the connected sum of L) and Ly,
at py, for every h € £. By Theorem 9.7 of [§], if (R>0)¢ N Ker(d) is nonempty,
there exists a compact smooth special Lagrangian submanifolds L; for every
sufficiently small ¢ € (Rx0)¢ N Ker(8), which converges to |J,cy La as [t| —
0 in the sense of currents. Here, L, is diffeomorphic to Lq.

Now the assumption that (Rsg)¢ N Ker(9) is nonempty can be replaced
by the assumption that & is covered by cycles, hence the proof of Theorem!|I.2]
is completed.
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Proposition 5.3. If Q = (V,&,s,t) is a connected quiver, then Lq is dif-
feomorphic to

Ly#Lo#t - #La#N(S! x S™71),

where V = {1,..., A} and N = dim Ker(9), and the orientation of each Ly,
is determined by ReQ)|r, .

Proof. Let Q = (V, &, s,t) be a connected quiver and Q' = (V, &, s|e, t|er),
where £ = E\{h}. Let &1, &> be as in the proof of Lemmal5.2]

If h € &1, then the quiver Q' consists of two connected components Q1 =
(W17f175|]:17t‘]:1) and Q2 = (W27~F278|.7:27t|]:2)7 where V = Wl U W2 and
Fi=&N(s7YW;) Ut~1(W;)). Then we can see that Lo = Lo, #Lq,-

If h € &, then Q' = (V, &, s|e/, t|er) is also connected, hence L is con-
structed from L in the following way. Take any distinct points p4,p_ € L
and their neighborhood Bj,, C L¢ so that B, N B, is empty and B,
are diffeomorphic to the Euclidean unit ball. Now we have a polar coordi-
nate (r+,0+) € By, \{p+}, where 71 € (0,1) is the distance from p4, and
O+ € S™ 1. By taking a diffeomorphism ¢ : (r,0) — (1 — 7, (0)), we can
glue By, \{p+} and B, \{p_}, then obtain Lg. Here, ¢ : S™~1 — §m~1 is
a diffeomorphism which reverse the orientation. Note that the differentiable
structure of Lq is independent of the choice of p+, B),, and ¢. Therefore we
may suppose p4 and p_ is contained in an open subset U C Lg, where U =
B(0,10) and B,, = B(%xo, 1), respectively. Here B(x,r) = {2/ € R™; |2/ —
z|| <r} and zo = (5,0,...,0) € R™. Then (U\{zo,—x0})/¢ is diffeomor-
phic to St x S™ 1\ {pt.}, hence Ly, is diffeomorphic to Lo #St x S™~1L.

By repeating these two types of procedures, we finally obtain a quiver
Q" = (V,0,s,t), and we have (ho(Q"),h1(Q")) = (#V,0). By counting hy
and h; on each step, it turns out that we have to follow the former procedures
#)V — 1 times and the latter procedures hy(Q) times until we reach Q”.
Therefore we obtain the assertion by considering the procedures inductively.

g

6. The construction of compact special Lagrangian
submanifolds in X (u, A)

Here we construct examples of compact special Lagrangian submanifolds in
X (u, A), using Theorem We construct a one parameter family of compact
special Lagrangian submanifolds which degenerates to the union J; L; of
some o;-holomorphic Lagrangian submanifolds L; in Subsection
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Let X (u, \) be a smooth toric hyper-Kéhler manifold, and
V(g,0) = g +0 ® (t)° C TmH & (£7)°

for ¢ € ImH ® (t™)*. If the intersection of V (¢, o) and Hj, is not empty, then
one can see that V(q,0) N Hy is a hyperplane of V (g, o), and it yields two
half-spaces, namely, the closures of the connected components of V(q, o)\ H.
We call them half spaces in V(q, o) induced by Hy.

Definition 6.1. We call A C ImH ® (t")* a o-Delzant polytope if it is a
compact subset of the form A = ﬂZ:l Vi, where V} is one of the half spaces
in V(q,0) induced by Hj for some ¢ independent of k.

For a o-Delzant polytope A, La := ,u;l(A) is o-holomorphic Lagrangian
if it is smooth, since A is contained in ¢+ o ® (t")* for some ¢. Since
T"-action is closed on La, we may regard (La,I5,|r.) as a toric va-
riety, equipped with a Kahler form w§’1| . and a Kahler moment map
B La — (t™)*. In particular, L is an oriented manifold whose orien-
tation is induced naturally from IY ;. We denote by L the oriented mani-
fold diffeomorphic to L with the 6pp0site orientation. By the assumption
X (u, \) is smooth, u and A satisfies (x1)(*2) of Theorem then it is easy
to see that A is a Delzant polytope in the ordinary sense, consequently
LA turns out to be a smooth toric variety. For the definition of Delzant
polytopes, see [2] for example.

Take

TeT = {TC{l,...,d}; #1 =n, ﬂHk#(Z)}
ket

Then by Theorem ke, Hi consists of one point and we denote it
by ¢r. Supposing ¢, € A, it is a vertex of A. Now, let u|; := (ug)ker €
Hom(Z™,Z"), where Z™ = {(ny)ker; nr € Z} = Z". Note that u|, extends
to ImH ® (t7)* — ImH ® (t")* naturally. Then we may write

ul7H A = gr) C o @ {(ri)ker € RT; ey, > 0}
for some (eg)ker € {1, —1}".

Definition 6.2. For a =0,1, let A, be a o(,)-Delzant polytope. Then
we write ZAg/A\1 = 01 — Oy if there is ¢, € ANg N Ay for some 7 € T and we
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have

ul 7 (Do — gr) € 0 (00) @ {(Tk)ker € RT; ey > 0},
ul; YA —qr) C a(01) @ {(rk)ker € R gy > 0},

for the same (e )ker € {1,—1}".

Remark 6.3. Suppose ¢, € Ng N A for some 7 € T and LA = 01 —
0o ¢ 7Z holds. Then ¢, is the only point in Ay N A1, since

(¢r + 0 (60) ® (t™)*) N (¢r + 0 (01) @ (t™)*) = {g}.
For m € Z~, let
dm(ll,lz) = min{|11 — Iy + mk‘|, ke Z},

for 11,12 € Z, which induces a distance function on Z/mZ.
The main result of this article is described as follows.

Theorem 6.4. Let X (u,\) be a smooth toric hyper-Kdhler manifold, and
Ay be a o(km/n)-Delzant polytope for each k =1,...,2n mod 2n. Assume
that N VAL =0 if don(k,1) > 1, and LA Ay = w/n. Then there exists
a family of compact special Lagrangian submanifolds {Lt}0<t<5 which con-
verges to Uk, 1La, ast — 0 in the sense of currents. Moreover, Ly is dif-

feomorphic to L, #La,# - L, #La,, #(S x §271),

Proof. We apply Theorem By Propositions 4.4, we can see that the
characterizing angles between La, and La,,, are - with multiplicity 2n.
Then the intersection point La, N La, ., is of type 1.

In this case, we may put & =V = Z/2nZ and 0 is given by
a(A07 e 7A2n71) = (AO - A17A1 - A27 e 7A2n71 - AO),

hence we can see dim Ker(d) = 1, which implies we obtain a 1-parameter
family of special Lagrangian submanifolds {L;}.

Next we consider the topology of L;. When we take a connected sum, we
should determine the orientation of L, uniformly by the calibration Re(2,
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where 2 = (wy2 + v —1wy3)". Now
o(km/n)\n
Ar,, = (1 @)L,
holds, therefore L; is diffeomorphic to

LAI #ZAZ# e LA277,—1 #ZAzn#(Sl X Sznil)'
|

We will see some examples in the following subsections. To show the
given X (u, \) satisfies the assumption of Theorem the essential part is
to check the condition A, N A; = 0 if doy,(k,1) > 1.

Lemma 6.5. Fory= (y1,...,yn) € ImH® (t")* anda =1,...,n, let 7y :
ImH ® (t™)* — ImH be the projection defined by 74 (y) = yo. Denote by

Conv(Lp) C ImH ® (t")*

the convex hull of a subset Ay C ImH ® (t™)*.
(1) Let A := Conv (L) and A" := Conv(Af). If

Conv(ma (L)) N Conv(my (Ag)) = 0

holds for some «, then AN/ is empty.
(2) Let H :={y € ImH® (t")*; yo + A =0} for some X\ € ImH and «. If
=\ ¢ Conv(ma (L)), then AN H is empty.

Proof. Let V,W be vector spaces over R, and f:V — W be a linear map.
For A, AV CV, ANA is empty if f(A)N f(A) is empty. Moreover, if A
is the convex hull of Ay C V, then f(A) = Conv(f(Ap)) holds. Combining
these, we obtain (1). (2) also follows from the same argument since 7, (H) =

[=\). 0

Under the identification ImH = R & C given by (a, b, ¢) = (a,b + v/—1c),
we can identify C® V with ({0} ® C)®@V C ImH® V for any real vector
space V.

In the following subsections, we always suppose A € ImH ® (t™)* is con-
tained in C ® (t™)* for the simplicity. Then all of the o(#)-Delzant polytopes
are contained in eV ~19(t™)*  accordingly we often discuss in C ® (t)* in-
stead of ImH ® (t")*.
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6.1. Example (1)

Let
w= (I, I, --- I,) € Hom(Z*" ,Z")

and A = ()\1’1, ey )\Ln, )\271, ceey )\2’,1, e ;)\2n,17 e ,)\2n’n), where In is the
identity matrix. Suppose that A\, = Ao holds only if k = [, then we can
show that X (u, \) is smooth by Theorem as follows. Since Hy o N H 4 is
empty for k # [, k1,. .., ky should be taken without overlapping if Hy, o, N
-+ N Hyy oy is nonempty, hence (*1) of Theoremholds. By the same rea-
son, if Hy, o, N---N Hy, o, is nonempty, then we may suppose k1 = 1, ky =
2,...,k, =n. Since (U1,q, - Un,a,) = In, we obtain (x2).

We also assume that A\, € C = {0} @ C holds for every k, «, as men-
tioned above. Moreover we suppose that

g ..

n+1

(6) arg(—Ai+1,a + Mea) = 0o + kn

for some 6y € R. Note that X (u,\) is a direct product of multi Eguchi-
Hanson spaces.
Next we put g := —(Ap1,..., Akpn) € C® (t")*, and

Dk =qr + e\/jl(GOJr%kﬂ-) X D(Tk,lv v ,Tk,n)

1
cVv <qk,a (90 + “kw)) :
n

where 7 o = |Ak+1,0 — Mk,al, and a hyperrectangle O(ry,...,m,) C (t7)* =
R™ is defined by

O, .eoymn) i ={(t1,.. .y tn) ER™"; 0<t1 <711, .o, 0<t, <rp}.

By combining @, we have A\p o — Aigi,0 = rk,aemw”%lk”).
Next we study the intersection of [;_; and [g. We can check that
Ok—1 MOk = {gx} and every element in [J;_; satisfies
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oy + ¥/~ TOoF =5 (k=1)) (t1,. .. tn)
= qpg + e/ TTOFEEE=DD ()
— n+1 _
. eﬁ(60+ 2 (k—1)m) (Tk—l,l =ty Tl — tn)

=qr—1+ (M—1,1 = M5 -3 Me—in — k)
+ em(eﬁ%(k_l)ﬂ)w(rqu — 1,y Th—1n — tn)

=qi + eﬁawﬁi("ﬂj’“‘%r(

rkfl,l — tl, ey kal’n — tn).
Therefore, /0, _100; = 7/n. Of course, the same argument goes well for [y,
and Dl.

To apply Theorem Ok N O; should be empty if da,(k,1) > 1. How-
ever, this condition does not hold in general, accordingly we need to choose
Ak« carefully. Unfortunately, the author cannot find the good criterion for
Ak, satisfying the above condition. Here we show one example of A, , which
satisfies the assumption of Theorem

First of all, take aq,...,a, € R so that every a,, is larger than 1, and
put
VoIEERE am(e‘ﬁ%m7r — eﬁM”),

n

—72(m+1) —12m —72(m+1)
—pom = eV 1==—= +am(€\/ 1==m eV 1=== 7r)

—P2m-1:=¢€

for each m =1,...,n. Denote by 1 C C the segment connecting —p; and
—pr+1- Then we can easily see that 11 N1y = {—px} and

n—+ 2 n—+1
+

arg(—pr+1 + px) = 5y T - k.

Note that we can regard k € Z/2nZ and m € Z/nZ.

Proposition 6.6. Let p1, ..., poy be as above. If every ax — 1 is sufficiently
small, then loy, 1 N1 are empty for allm=1,...,nandk=1,...,2n with
dgn(k‘,2m — 1) > 1.

Proof. Let Re : C — R be the projection given by taking the real part. It

2n

suffices to show that Re(lam—_1e~ V1% ™) N Re(lye V1) is empty under
the given assumptions. Let —pam—1 + t(—p2m + p2m—1) € lom—1. Then we
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can check that

—/12mg fﬁ%g

Re(—pam—1e + t(—pam + pam—1)e

2
=(1- am)cos—w + am,
n

which implies Re(lzm_lefﬁ%”) = {—(am — 1) cos Z= + a,, }. If we can see
that

(7) Re(—pre V15 ™) < —(am — 1) cos 2% + am
for all k # 2m — 1,2m, we have the assertion. Since
Re(—pgle_ﬁzm“) =—(a;—1) cos(z(l—i_nl_m)w)
+a COS(MW),
Re(—pay_1e V10T = —(ap — 1) cos(m_z—i_m)w)
+ap COS(MW)

and dop,(20,2m) > 1, do,(2l" — 1,2m — 1) > 1 holds, we have
cos(2(l —m)m/n) < cos(2m/n), cos(2(I' —m)m/n) < cos(2m/n).

Mﬂ') > —1, we obtain

2(171'+m)7r)

By cos( > —1 and cos(

12m

— 2
Re(—pye V) < (a;—1) + a;cos il
n

2 2
— — 11 il il
(a; —1)( +c0sn)+cosn,
2m 2
Re(‘PQZ'—le_\/_TTﬂ) < (ap — 1) + ay cos il
n
27

2
= (ar — 1)(1 il il
(ay )(1 + cos n)+cos -

Now, if we assume a; — 1 < (1 — cos 22) /(1 + cos 2), then the left-hand-side
of (7)) is less than 1. Since

2 2
—(am — 1) COS =+ apy = (am — 1)(1 — cos I) +1,
n n

the right-hand-side of (7)) is always larger than 1 and we obtain the inequality
([@- O
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Now, divide {1,...,n} into two nonempty sets
{1,...,71} :A+|_|A7,

and define A\ o by Mo = pp if @ € Ay, and Mg o = pp_1e¥ 1D/ if o €
A_. Then {\; o} satisfies @ for Oy = ”2—2277. Here, we suppose ai — 1 are
sufficiently small so that Proposition [6.6] holds.

Proposition 6.7. Let Uy, ...,0oy, be as above. Then Ui NU; is empty if
don(k,1) > 1. Moreover, Oy, is a o(0y + "Tﬂkﬂ)—Delzant polytope.

Proof. 1t suffices to show 7, (0g) N7, (0;) is empty for some a by Lemma
6.5 (1). If @ € A, then mo(0y) =1, and if o € A_, then mo(0y) is equal
to eV—lntl)m/n), | Therefore To(Ok) N7 (0;) is empty for some o € Ay
if k is odd, and 7, (Og) N7 (0;) is empty for some o € A_ if k is even by
Proposition [6.6}

Let Hy o = {y € ImH ® (t")*; yo + Ago = 0}. Then Oy is a convex set
defined as the intersection of half spaces in V(gx, o (6 + k) induced
by Hi1,..., Him, Hiy1.15- - -, Hi1,n- Consequently, it suffices to show that
Ok N Hy o is empty for [ # k,k+ 1 and all a. Applying Lemma (2), it
suffices to see that —\; o & 7o (k). Suppose —\; o € mo(Og). Since one can
see that —\;  is contained in both of 7, (00;) and 74 (;—1), then 7o () N
To(Og) and 74 (0;—1) N 7o (0g) are nonempty, which implies that 1; N 1 and
1,1 N1 are nonempty. Since either dag,(k,1 — 1) > 1 or dgy(k,1) > 1 holds,
and either [ or [ — 1 is odd, it contradicts to Proposition O

Since Lp, = (PY)", and there is an orientation preserving diffeomor-
phism between (P!)” and (IP1)", we obtain the following example.

Theorem 6.8. Let X(u,)) be as above. Then there exists a 1-parameter
family of compact smooth special Lagrangian submanifolds {L;}o<t<s embed-