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Quaternionic toric manifolds

GRAZIANO GENTILI, ANNA GORI, AND GIULIA SARFATTI

In the present paper we introduce and study a new notion of toric
manifold in the quaternionic setting. We develop a construction
with which, starting from appropriate m-dimensional Delzant poly-
topes, we obtain manifolds of real dimension 4m, acted on by m
copies of the group Sp(1l) of unit quaternions. These manifolds,
are quaternionic regular in the sense of [I1] and can be endowed
with a 4-plectic structure and a generalized moment map. Con-
vexity properties of the image of the moment map are studied.
Quaternionic toric manifolds appear to be a large enough class of
examples where one can test and study new results in quaternionic

geometry.
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1. Introduction

Toric varieties are geometric objects that can be defined by combinatorial
information encoded in convex polyhedra. They provide a large and inter-
esting class of examples in algebraic geometry and many notions in this field
such as singularities, birational maps, cycles, homology, intersection theory

267
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can be interpreted in terms of properties of the convex polyedra on which
these varieties are modeled. An exahustive introduction to this topic can be
found in the book [7] by Cox, Little and Schenck.

The study of toric manifolds (i.e., smooth toric varieties) has many dif-
ferent motivations and a wide spectrum of applications. In particular, in
symplectic geometry, toric manifolds provide examples of extremely sym-
metric and completely integrable Hamiltonian spaces. Properties of sym-
plectic toric manifolds are extensively studied, and are in the mainstream of
current mathematical research.

The term moment map was introduced by Souriau, [18], under the French
name application moment, to indicate one of the main tools used to study
problems in geometry and topology when there is a suitable symmetry, as
illustrated in the book by Gelfand, Kapranov and Zelevinsky [10]. The role
of the moment map is fundamental in the symplectic setting: in fact the
geometry encoded in its image, the so-called moment polytope, identifies
the symplectic toric manifold.

Recent developments in the theory of regular functions over the quater-
nions encourage to go through the already existing approaches and to elabo-
rate new tools to study quaternionic toric manifolds. This class of manifolds
seems suitable to become large enough to give interesting examples, where
to test and develop new results of quaternionic differential (and 4-plectic)
geometry.

The purpose of the present paper is to introduce the notion of quater-
nionic toric manifolds. The starting point is the definition of 4-plectic man-
ifold, originally introduced by Foth in [9], as a natural generalization of
symplectic manifold. In the symplectic case, whenever a compact Lie group
acts on the manifold in a Hamiltonian fashion it is possible to define a mo-
ment map which takes values in the dual of the Lie algebra of the acting
group; in particular when the group is a torus 7™ and the action is effective
the moment map takes values in R”. These manifolds are called symplectic
toric manifolds. We consider 4-plectic manifolds, i.e. 4m-dimensional real
manifolds endowed with a non degenerate closed 4-form, acted on by the
group Sp(1)™ in a generalized Hamiltonian fashion so that it is possible to
define a tri-moment map which takes values in (A3sp(1)*"™) =2 R™. Inspired
by the symplectic setting we give the following

Definition 1.1. Let M be a connected, compact 4m-dimensional 4-plectic
manifold on which Sp(1)™ acts effectively in a generalized Hamiltonian fash-
ion with discrete principal isotropy. Then M is called a quaternionic toric
manifold.
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The celebrated Atiyah’s convexity Theorem, [2], establishes the convex-
ity of the image of the moment map for symplectic toric manifolds.

In some cases we are able to prove that the image of the tri-moment map
is a convex polytope. More generally, when a 4-plectic manifold (M, 1), acted
on in a generalized Hamiltonian fashion by Sp(1)™ with tri-moment map
o, is equipped with a partitioned strongly non degenerate form 1, we prove
that o(M) is contained in the convex envelope of a finite set of points, see
Theorem [3.2

In the other direction, in the symplectic setting the Theorem of Delzant
proves that there is a one-to-one correspondence between symplectic toric
manifolds and a special class of polytopes, the Delzant polytopes; in partic-
ular in its well known paper [§] the author provides a procedure to recover
the symplectic manifold starting from a Delzant polytope. In the quater-
nionic setting the idea of defining toric manifolds starting from polytopes
can already be found in [I7] where the author begins the study of a new class
of topological spaces analogous to real and complex toric varieties, but with
the underlying structure provided by the skew field of quaternions. Starting
from a m-dimensional convex polytope P and a characteristic function he
defines a quaternionic toric variety to be a certain topological quotient of
P x (8%)™, where S3 is the unit sphere of the quaternionic space H. The
author emphasizes that these are not algebraic varieties, and moreover he
observes that the notion of “quaternionic variety” is unclear, because quater-
nions are non-commutative and general polynomials are not well behaved.
The author studies the topology and the homology Betti numbers of the
resulting objects.

In the present paper we introduce a procedure that, starting from a m-

dimensional Delzant polytope with appropriate hypotheses, leads to obtain
a compact manifold acted on effectively and with trivial principal isotropy
by Sp(1)™. The advantage of our construction is that it suggests a way, in
the spirit of the symplectic cut [I5], to equip the resulting manifold with a
non-degenerate 4-form.
Indeed we define the 4-plectic cut as follows. Let (M, 1) be a 4-plectic man-
ifold equipped with a generalized Hamiltonian Sp(1)™-action. Consider the
restricted Sp(1)-action, and let h : M — R be the corresponding tri-moment
map. Let € be a regular value of h. For simplicity we assume that the Sp(1)-
action on h=1(e) is free. We denote by Mp~c, Mp>. the pre-images of (&, 00)
and [e,00) under h: M — R, and denote by Mp,>. the 4-plectic cut, i.e. the
manifold which is obtained by collapsing the boundary h=1(¢) of M} along
the orbits of the Sp(1)-action.
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Let g be the standard 4-plectic form on H. With the above notations we
prove

Theorem 1.2. Let (M,v) be a 4-plectic manifold. Whenever the induced
form ¥ @ 1pg on M x H is horizontal along (h — %|q[4)_1(5), there is a natu-
ral 4-plectic structure ¥, on Mp>. such that the restriction of Y. to Mp~. C
Mp>. equals 1.

As an application we find a correspondence between a special class of Delzant
polytopes and some quaternionic toric manifolds. In these cases we are also
able to show that the involved manifolds admit an action of (H*)™ with
an open dense orbit, in analogy with what happens in the complex setting.
We observe that all these examples, together with quaternionic tori, [4], and
Hopf surfaces, [1], enrich the class of quaternionic regular manifolds in the
sense of [I1].

The paper is organized as follows. In the second section we give the basic
definitions and notions of 4-plectic manifolds and generalized Hamiltonian
actions. In Section 3 we present a sub-convexity result, Theorem [3.2] and
in Section 4 we describe the above mentioned procedure, providing neces-
sity and sufficiency conditions under which it can be applied. Section 5 is
devoted to study the 4-plectic reduction and the 4-plectic cut. In the last
section we collect the obtained examples, we give the explicit form of the
tri-moment map and consequently we obtain a convexity theorem for this
class of examples. We finally make some remarks on the H* action and on
the manifold G2/SO(4) which deserves further investigation.
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2. The 4-plectic viewpoint

We begin this section by introducing a possible counterpart of symplectic
forms and structures on 4m-dimensional real manifolds.

Definition 2.1. Let M be real manifold of dimension 4m. A 4-form ) on
M is said to be 4-plectic if

1) 4 is closed, i.e. dip = 0;

2) 1 is non-degenerate, i.e. the map v — 1,9 that contracts ¢ along a
tangent vector field v has trivial kernel.

A 4-plectic form defines a 4-plectic structure on M, and M equipped with
such a form is called a 4-plectic manifold.

A natural class of examples of 4-plectic manifolds is given by 4m-dimen-
sional symplectic manifolds. Indeed starting from a manifold with symplectic
form w we obtain a 4-plectic manifold by endowing it with the 4-form w A w.
Quaternion Kéhler manifolds equipped with the Kraines form, [13], give a
class of examples of non-symplectic 4-plectic manifolds; a particularly large
class of 4-dimensional 4-plectic manifolds is given by the Kulkarni four-folds,
[14].

An interesting basic example that we will use in the sequel is the quater-
nionic space H™, naturally identified with R*™, endowed with the 4-plectic
form ¢y defined by

m
o = Z dxgi—3 N drgi—2 N drai—1 N dxy
p)

where x1,..., 24y are the coordinates on R*"™. Note that (H™, 1) is not
symplectic for m > 1; indeed the form 1)y cannot be obtained as the square
of a symplectic form.

The notion of Hamiltonian action in the symplectic setting is very useful
and powerful. Indeed, whenever a Lie group G acts on a symplectic man-
ifold in a Hamiltonian fashion, it is possible to define a map u: M — g*,
commonly known as moment map, which encodes many geometric informa-
tion on the manifold and on the action. Whenever the action of the group
G = Sp(1)* on a 4-plectic 4m-dimensional manifold M is generalized Hamvil-
tonian, our aim is to define an analog of the moment map also in the 4-plectic
setting, following the path indicated by Foth in [9].
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Whenever a Lie group G acts on a manifold M, it is possible to de-
fine a canonical map g — I'(M,T'M) which sends the vector X € g to the
fundamental vector field X in M, such that at a point p € M,

= d
=— exptX -p.
D dt oo Xp p

Now, if M is equipped with a 4-plectic form ¢, there is also a natural map

g— A?’A(M ) which sends the generic vector X € g to the contraction of

along X, i.e. to a 3-form on M. Given a tangent vector field Y € I'(M,TM),

if the 3-form ty 1) is closed we say that Y is a locally Hamiltonian vector

field; if moreover ty1) is exact we say that Y is a Hamiltonian vector field.
From now on we assume M is a 4m-dimensional real manifold.

Definition 2.2. Let (M,%) be a 4-plectic manifold on which the group
Sp(1)F acts preserving 1. We say that this action is generalized Hamiltonian
if for any X € sp(1)* the fundamental vector field X is Hamiltonian.

The standard basis of sp(1) = su(2) is given by

i 0 0 1 0
me(o 5) o= (ha) =)

which represent respectively the quaternion imaginary units i, j, k.

The space of 3-vectors A3(sp(1)) can be identified with R by the isomor-
phism that sends X A Y A H — 1.

Any

5= (01,62,...,08) = (UL AVi AW, ..., Ux A Vi A Wy) € (APsp(1))*
induces a k-tuple of 3-vector fields on M
g: (51,52,...,5]& = (ﬁlA‘/}lA/Wl,...,ﬁk/\‘?k/\Wk) € (AS(TM))k

Definition 2.3. Let Sp(1)* act on a 4-plectic manifold (M, 1)) in a gener-
alized Hamiltonian fashion. A tri-moment map o is a map

o M = (APsp(1)F)" 2 (A%sp(1))")" = R

satisfying the following conditions:

1) o is Sp(1)*-invariant, i.e. o(g - p) = o(p) for all g € Sp(1)¥, p € M;
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2) for any 6 = (1,92, ...,6) in (A%sp(1))*, p € M and v € T, M we have
k
dop(v)(8) =Y 15 b(v) =t 15 ¥(v)
i=1

where g, is the tri-vector field induced by ;.

*

Since the coadjoint action of Sp(1) on sp(1)* induces the trivial action on

(A3sp(1))*, the action is indeed equivariant.
A further property of the tri-moment map is that for any p € M such
that o(p) is regular, setting V = (A3(T,(Sp(1)* - p)))*,

ker do, = Ve,
In fact
ker do, = {v € T,M |0 = do,(v)(d) = Lgpl/)(v) for any 6 € (A®sp(1))*}
equals
Ve = {v e T,M | iz 9(v) = 0 for any § € (A*(T,(Sp(1)* - p))*},

since (A3sp(1))* and (A3(T,(Sp(1)* - p)))* are isomorphic.

Notice that the tri-moment map o is defined up to a constant C' € R¥: the

Sp(1)*-invariance of ¢ implies that there is no further hypothesis on C.
We are now ready to prove

Proposition 2.4. Let (M,) be a 4-plectic manifold acted on by Sp(1)*
i a generalized Hamiltonian fashion. The tri-moment map exists when

by (M) = 0.

Proof. 1t is enough to prove the statement for a component of the tri-moment
map. Consider the standard basis X,Y, H of the Lie algebra sp(1) defined
above. Recall that

[X,Y]=2H, [Y,H]=2X and [H,X]=2Y.

The element

i—th component

—_—l
6 =(0,0,...,0, XAY AH ,0,...,0) € (A3(sp(1)))*
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is identified with the usual canonical basis vector e; € R¥. For each i-th
component of the tri-moment map, and any tangent vector Z we have

<do(Z2),8; >=doi(Z) = v(X,Y,H,Z) = 1g1515%(Z).

So a necessary and sufficient condition for the existence of a map satisfying
condition (2) of Deﬁnitionis that the 1-form ¢ 1515 is closed. We prove
the closedness of this form by applying the well known relations involving
the Lie derivative £ and valid for any tangent vector fields U, W

(2.1) Ly =dy + pd
and
(2.2) (Lo, ww] = tww-

We compute
d(L)A(Lf,Lﬁw) = —L)?dL?Lﬁi/J + E)?L?Lﬁw
= *L)?dL?Lﬁ’gb + L);,C)A(Lﬁ’gb + L[)A(AA,}LI?’QD.
Now the last term of the equality is zero since [X,Y] = 2H. Applying again
equation (2.2)) the equality above becomes
—Lidb?bﬁlb + L?ﬁ)?bﬁlb = —L)?dbf,bﬁw + L?Lﬁﬁ)?w + L?L[_iﬁ]zﬂ.

Both the last two terms are zero: L1 = 0 since the action is via 4-plecto-
morphisms, and [H, X] = 2Y. Applying twice equation ([2.1]) and once equa-
tion (2.2) and using the closeness of ¢ we get that — ¢dipizy equals

tgtpdig —ig Loty = 15 L — tptptgdy
— gl — L)A(L[f,JfI]’(/J = 0.

Now by averaging over the group, which is compact, we get an invariant
tri-moment map. O

Proposition 2.5. The multiplicative action of Sp(1)™ on (H™, 1) given
by
(At A2s - Am) (@1, 42,5 Gm) 2= (A1 @1, A2 @2, A G

1s generalized Hamiltonian, and the tri-moment map is given by

1
U(Qla‘]%- . ~an) = *7(|q1|4a |Q2|4, IR |qm’4) + C.
4
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Proof. 1t is sufficient to compute the tri-moment map for m = 1 since each
factor of Sp(1)™ acts on each copy of H separately. We firstly determine
the fundamental vector fields, starting from H, X,Y previously defined, at
q =x1 +ire + jrz + kry € H:

N 0 0 0
L P LI
BN 8 0 0 0
@ *iL“:z(9 +x 46 2+56187$3* 287:64;
}//\;J = —az;i — 0 + To— 0 +x1— 9
! 8$1 8 X9 6 €T3 8234

Denoting by e;jx = 8%i A a%j A a%k the 3-vector H A X AY at q1 is therefore
given by

-
—~
8
N

(_$46123 + x3€124 + T1€234 — $26134) :
=1

Thus, the contraction of ¥y along ﬁql A )A(ql A }A/ql, is

4
o S = — 2 . .
R o )
1=

By the definition of the tri-moment map we get that

()=dog, (Y HAXAY) =) %dw
i=1 "

SIS AL
thus we conclude that the first component of the moment map is

1
o(q1) = —Z\Q1|4 + G4

and so we get the claim. O

Note that also (A, q) — ¢-A~! defines a multiplicative action of Sp(1) on
H which is still generalized Hamiltonian with the same tri-moment map
o(q) = —|q|*/4 + C. Hence all the actions of the type

()\17)\27 .. '7)\m)(QI>Q27 s 7Qm)
= ()\1 'q17'~-a)‘k “qky gk+1 ° )‘];_|1_17"'an )\;11)

are generalized Hamiltonian as well.
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Inspired by the definition of toric symplectic manifolds we give the fol-
lowing

Definition 2.6. Let M be a connected, compact, 4m-dimensional, 4-plectic
manifold on which Sp(1)™ acts effectively in a generalized Hamiltonian fash-
ion with discrete principal isotropy. Then M is called a quaternionic toric
manifold.

3. Towards a convexity theorem

In this section we prove a theorem on the sub-convexity of the image of
the tri-moment map. This can be done under some additional hypotheses
on the 4-plectic form. The Darboux Theorem, that allows a local canoni-
cal expression for symplectic forms, does not hold in general for 4-plectic
forms. Our assumptions in Theorem compensate for this lack. A general
convexity result can be proven for quaternionic Flag manifolds, [9], and in
particular for quaternionic projective spaces, quaternionic Grassmannians
and moreover for the Blow-ups of HP™ (see Remark [6.1]). We do not know
if a convexity result holds for every 4-plectic manifold acted on by Sp(1)*.
Recall that in Atiyah’s proof of the convexity of the image of the moment
map for a toric manifold, [2], a key ingredient is the fact that the moment
map is a Morse-Bott function, i.e. a function with non-degenerate Hessian
at the critical points. This does not hold in general for the tri-moment map;
indeed for example the tri-moment map ¢ — —|q|*/4 for the action of Sp(1)
on (H, ) has degenerate Hessian at the critical point. Moreover observe
that even if the components of the tri-moment map are minimally degenerate
in the sense of Kirwan, [12], we cannot conclude that the image is convex.
To see this consider the usual moment map of the complex projective space
CP?, whose image is the standard simplex A, C R?; taking the square of
the components of this map (which are Morse-Bott) we get minimally de-
generate functions (see p.290 in [12]), whose image is not convex, but still
contained in the convex envelope of the three vertices of the simplex As.

Take (M, ) a 4-plectic 4m-dimensional manifold acted on in a general-
ized Hamiltonian fashion by Sp(1)™ with tri-moment map o. Denote by o,
for i =1,...,m, its components. The critical set of each o; will be denoted
by C; = Crit 0;. The function o; is constant on each connected component
of Crit o;.

Consider, for each point p € M, the set of linearly independent tangent
vectors {ﬁ;, XLyl ... ,ﬁl’?, )/(\';”, }A/;Dm where for each H?, X*, Y in the i-th

P ipo
term of the Lie algebra @& sp(1) we have defined the fundamental vector
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fields H' )A( ‘ }A” We assume that it is possible to decompose the tangent
space at each point p € M as the direct sum of m 4-dimensional subspaces
{Vi}ir, with HZ X;), YI;‘ C V; in such a way that the restriction of the form
1 to V; is non degenerate In this case we call ¥ strongly non degenerate.
Under this assumption it is possible to define an 1som0rphlsm L¢, AS(V) —
Vi that allows to construct a basis of T,M given by {H’ X;,Y;,&’ n=
{vt, vl 08 v}, where (5’ Lw(ﬁ; A )A(I’;, /\}//\;) for all 4.

The critical points of each component of the tri-moment map o; can be
easily found using the defining properties of ¢. Indeed a critical point ¢ of
o; is such that

0=doi(q)(v) = Lgﬂ/)q(v) = y(v, ﬁév)?;7?;)

for all v € T;, M. Therefore g is a fixed point of at least one of the 1-parameter
subgroups generated by H?, X* or Y. Hence a point ¢ in M is critical for each
component o; if and only if the isotropy of ¢ has maximal rank (i.e. contains
a maximal torus 7" C Sp(1)™). The previous fact implies that N*,C; is a
closed submanifold of the compact manifold M, and therefore it has a finite
number of connected components. Since o is constant on the connected
components of N, C; , then A = o(N™,C;) is a finite set. Our aim is, now,
to show that the image of M via o is contained in the convex envelope of
A, Conv(A) . The key ingredient, inspired by [12], is the following

Lemma 3.1. Let F = (f1,..., fm) with f; real-valued differentiable func-
tions on a compact manifold M such that their gradient vector fields com-
mute. Assume that Crit f; is a submanifold for i =1,...,m. Setting B =
F (N, Crit f;), then we have F(M) C Conv(B).

Proof. In view of the Hyperplane Separation Theorem, it is sufficient to
prove that, for a generic (A1, Ao, ..., Ay) € R™, the restriction of the linear
functional y — >, Ajyi, to F(M) takes its maximum value at a point of
B. Equivalently, it is enough to prove that, for a generic (A1, A, ..., A ), the
maximum of the differentiable function ¢ = Z:il Aifi defined on M is at-
tained in Z = N, Crit f;. The set Z of common critical points of f1,..., fm
is also the fixed-point set of the torus T generated by the vector fields
grad fi,...,gradf,. Moreover if Y " \;f; is a generic linear combination,
so that the corresponding gradient vector field generates T, then its critical
set is precisely Z, and in particular ¢ takes its maximum on Z. Il

Let us assume, as a further hypothesis, that the form v is zero whenever
computed on at least two vectors v* € Vi, and v/ € V; belonging to two
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different 4-dimensional subspaces of the tangent space T,M. Then we can
define a diagonal metric ¢g in terms of v in the following way:

] k k k i .k k Kk
gp(v;leb(vt N vg AUT)) - wp(/U;ﬁ’Ut 7vsvvr>

for any i,k =1,...,m and j,t,s,7r =1,...,4. Hence
i R N N . .
Gp(5, Ly (vi ANvg Avy)) =0 fori £k or j=t,s,r.

Observe that the metric g is non degenerate since v is strongly non degen-
erate. Whenever the form 1 satisfies all the previous assumptions we call it
partitioned strongly non degenerate.

With the previous notations and with an additional algebraic assump-
tion, we can prove

Theorem 3.2. Let (M,1)) be a compact, connected, 4m-dimensional mani-
fold equipped with a partitioned strongly non degenerate 4-plectic form, acted
on in generalized Hamiltonian fashion by Sp(1)™ with tri-moment map o =
(01,...,0m). Suppose that v}(gy(vk,v5)) =0 for all j k=1,...,m. Then
o(M) is contained in the convex envelope of the points of A = o (N™,Crit o;).

Proof. In order to prove the theorem we show that [grado;, grado;] = 0 for
all i, j. We fix a basis in R™ = (A3sp(1))™ given by 61,62, ..., 8™ where §° =
H'A X ANY? for all i. We have that the differential of the i-th component
of the tri-moment map is such that

(d0)5(v) = doy()(6') = 1y tugtag iy (0)
= (0,01, 05,05) = gyl(v,v5) = gy(v, &)
so that (grado;), = 5~ip foralli=1,...,m, and
[grado;, grado;] = [g”, B ].
Let us now prove that [(5~’, 6~J] =0, i.e. that
L[&gj]d}p(a, b,c) =0

for any three vectors a, b, c € T, M. First observe that if a, b, c do not belong
to the same V}, in the decomposition of the tangent space or if k #£1i,j
then the equality is trivially true. Then, assuming that k£ = i there are two
possibilities: without loss of generality, either a = % or (a, b, c) = (v}, v}, v%).
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The fact that ¢ is diagonal combined with compatibility of the metric with
the Levi Civita connection, gives El thi,ﬁ}nft case L[g’&lzpp(a, b,c) = 0, while
in the second L[gi75~j]1/1p(a, b,c) = =7 gp(06",8") = v}(gp(vh,v})) which vanishes
by the hypothesis. We can now apply Lemma [3.1 and get the claim. 0

In the particular case of a toric quaternionic manifold, we can find a bound
on the cardinality of the set A. To prove this we give the following definition

Definition 3.3. Let G be a compact Lie group acting on a manifold M
with principal isotropy Gprinc. We call the homogeneity rank the numerical
invariant of the action

hrk(M,G) := rank(G) — rank(Gprinc) — dim M + dim G — dim(G princ)
where rank(G) is the dimension of a maximal torus 7" in G.

Theorem 3.4 ([5]). If MT is not empty and hrk(M,G) < 0 then MT is
finite, and moreover its cardinality is equal to the Euler Characteristic of M .

Note that for quaternionic toric manifolds the homogeneity rank is 0, thus
the fixed point set M7 is finite and its cardinality #M7T = y(M). Using this
property, the isometric actions of compact Lie groups on quaternion Kéhler
projective spaces with vanishing homogeneity rank have been classified in
[3].

Remark 3.5. The Maximal Tori Theorem states that, in a compact Lie
group, all maximal tori are conjugate; so the cardinality of the set M7T, when
finite, does not depend on the chosen torus 7.

In particular for quaternionic toric manifolds, endowed with a strongly non
degenerate 4-plectic form, the cardinality of A = o (N[, Crit o;) is bounded
above an below respectively by the cardinality of the set M7 of points in M
fixed by a maximal torus T' C Sp(1)™, and the cardinality of the set M Sp(1)™
of points fixed by Sp(1)™.

We have therefore proved the following

Proposition 3.6. If (M,1) is a quaternionic toric manifold, and v is
strongly non degenerate, the cardinality #A of A satisfies the inequalities

#MPO" < g A < #MT.
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4. From polytopes to manifolds

The introduction of the tri-moment map for the multiplicative action of
Sp(1)™ on H"™ can be used to construct, starting from appropriate Delzant
polytopes in R™*, real manifolds of dimension 4m acted on by Sp(1)™ with
trivial principal isotropy.

Our procedure is inspired by the Delzant construction that associates a
symplectic manifold with a polytope. We recall the following, [§]

Definition 4.1. A Delzant polytope P in R™ is a convex polytope such
that

1) P is simple, i.e., there are n edges meeting at each vertex;

2) P is rational, i.e., the edges meeting at a vertex p are rational in the
sense that each edge is of the form p 4+ tu;,t > 0, where u; € Z™;

3) P is smooth, i.e., for each vertex, the corresponding uq, ..., u,, can be
chosen to be a Z-basis of Z™.

In what follows, we will always consider polytopes in the dual space R™*.
Let P C R™* be a Delzant polytope with d facets, i.e. (m — 1)-dimensional
faces. Let v; € Z™ with ¢ = 1,...,d be the primitive outward-pointing nor-
mal vectors to the facets. For some A\; € R we can write

P={zeR™| <z,v;, >< )\, i=1,...,d}.

Let {e1,...,eq} be the standard basis of R%. Consider the map 7 : R? — R™
defined by e; — v;. By Lemma 2.5.1 in [6] we know that the map 7 is onto
and maps Z? onto Z™. Therefore 7 induces a surjective map, still called 7,
between tori

(4.1) T A L

The kernel N of 7 is a (d — m)-dimensional Lie subgroup of T¢, with inclu-
sion map i : N — T%. The exact sequence of tori

15 NSTI LT
induces an exact sequence at the Lie algebra level

0—=n-5RIILR™ 50
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with dual exact sequence
0— (R™)* I (RY* 5 n* - 0.

Now consider H? with the 4-plectic form 1y and the standard general-
ized Hamiltonian action of Sp(1)?. In Proposition we have computed
the tri-moment map o for this action. The subtorus N = (Sl)d_m acts

on H¢. Our procedure works whenever the action of N on H? extends to
N = Sp(l)dfm o~ (53)d7m'

4.1. Extendibility of the action of NV

Due to the non-commutativity of quaternions, it is not always possible to
extend the action of the subtorus N. In fact the only way to define a mul-
tiplicative action of Sp(1)¥~™ on H is the following

(it haem) (@1, s a) = (B b2 B qah)

with kg, je € {1,...,d —m} and ay € {0,1}, B, € {0, —1}.

We want to collect some necessary and sufficient conditions under which
the action of N can be extended to an action of N on H"™. We state these
conditions in terms of the basis of the Lie algebra n of V.

Proposition 4.2. A necessary condition for the action of N to be extend-
able to N is that there exists a basis B = {b1,...,bg_m} of n C R? such that
the d x (d — m) matriz Ag = (b1|...|bg—m), whose columns are by, ..., bg_m,
has the following properties:

1) its only possible entries are 1,—1 and 0;

2) in each of its rows at most two entries are not zero.

In this case we say that n admits a reduced basis.

Proof. Suppose that d —m > 3 and that there exists no basis of n satisfying
(2). Then for any B there exists at least one row of Ag that has (at least) 3
entries which are non-vanishing. This means that one of the defining equa-
tions of n is of the form x; = ax; + By + yx;. In terms of N this becomes
a multiplicative relation involving 4 unitary quaternions h; = hfj‘hf b}, and
this equation does not allow to define a multiplicative action of Sp(1)d~™
on H? since at least two (not commuting) factors have to be placed on the

same side of g;.
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Suppose now that for any basis satisfying (2) condition (1) is not fulfilled.
This means that one of the defining equations of n is of the form z; = ax; +
By with a or (3 different from 0,1, — 1 As before we have a relation between
elements of N of the form h; = hah which does not define a multiplicative
action. O

A basis satisfying condition (1) exists if and only if the starting polytope
facets form angles which are multiple of 7, otherwise entries different from
1 or —1 necessarily occur.

The necessary condition given in the previous proposition is not suffi-
cient, indeed

Example 4.3. Assume that m = 2, d = 4 and consider the polytope whose
normals are {(—1,0),(0,—1),(1,1,),(—=1,1)}. The matrix Ag is given by a
4 x 2 matrix whose columns are (1,1,1,0) and (—1,1,0,1) and correspond-
ingly (h1, h2)(q1,q2,-,-) = (h1q1he, h1q2h2_1, -,-) which does not define an ac-
tion of Sp(1)? on H*.

The previous fact is general, indeed by direct computation we can prove

Theorem 4.4. Let P be a Delzant polytope in R™* with d facets, let 7 :
T = T™ be defined as in and let N =kerw. The action of N can
be extended to an action of N on H? if and only if one can find a reduced
basis B of the Lie algebra n of N in such a way that the matriz Ag does not
contain a sub matrixz of the form

M:(}f>.

Theorem [£.4) applies in particular to polytopes obtained by cutting the stan-
dard simplex by means of hyperplanes parallel to the facets of the simplex,
but these do not cover all the polytopes for which the action of N can be
extended, indeed

Example 4.5. Consider the polytope in R3" whose primitive outward-
pointing normals to the facets are

{(0,-1,0), (0,0,-1),(0,1,0), (—1,0,0), (1,1,0), (1,1, 1)}.

In this case, the vector (1, 1,0) is not orthogonal to any facet of the simplex,
but a reduced basis for N given by

B =1{(1,0,1,0,0,0), (0,1,0,0,—1,1),(1,0,0,1,1,0)}
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is such that Ap does not contain the matrix M. Hence, thanks to Theo-
rem the action of N can be extended. For any n = (hy, ha, hs) € N and

q=1(q1,---,9)
(4.2) n-q:= (higihy' qahy ' hags, aahy ' hagshy ', qshy ).
4.2. Towards the construction of the manifold
Let P be the Delzant polytope defined by
P={zeR™| <z,v;, >< )\, i=1,...,d}.

From now on we will assume that the action of N can be extended to N.
The tri-moment map for the action of N 2 Sp(1)(4=™) on H is given by
i* oo where o(q1,q2,...,q4) = —%(\q1|4, \g2|*, ..., ]qal*) + O, for some C =
(C1,...,Cyq), is the tri-moment map for the standard action of Sp(1)? on H?
and

i RY 2 (A%sp(1))7)" — ((A%sp(1))"~™)* = RO
is the dual of the inclusion map. Now we choose the constant C' to be

My os M)

Lemma 4.6. Let Z = (i* o 0)_1(0). Then Z is compact and, if we assume
that the action of N extends to N, the action of N on Z is free.

The proof of the first part of the statement is the same as in the symplectic
case (see, e.g., [6]). We present it here for the convenience of the reader.

Proof. 1t is sufficient to show that Z is bounded, since it is clearly closed.
Let P/ = 7*(P). We want to show that ¢(Z) = P’. Observe that if y € R%"
then y € P’ if and only if y is in the image of Z via 0. Indeed, we have that
y € 0(Z) if and only if

e y is in the image of o;
o i*(y) = 0.

Now we use the expression of ¢ and the fact that Im 7* = ker ¢*, so we have
that these two conditions are equivalent to

1) <wy,ep >=yg=—%’qg‘4+)\g§)\g forall£=1,...,d;

2) y = w*(z) for some z € R™*.
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From this we have, for all ¢,

<y,ep >< N = <7 (x),e0 >< N =
<z,mley) >N <= <z,0y>< N\ < z€P

thus y € 0(Z) <= y € n*(P). Thanks to the properness of ¢ and the com-
pactness of P’ we get that Z is bounded, and therefore compact.

A key ingredient to prove the freeness of the action of N on Z is the
fact that N acts freely on Z, as proven in Proposition 29.1 in [6]. Consider
avertex p € P and let I = {iy,...,iy} be the set of indices for the m facets
meeting at p. Pick ¢ € Z such that o(q) = 7*(p). Then p is characterized by
m equations < p,vp >= Ay with ¢ € I. Now

<pug >= N = <p,m(eg) >= N\ <= <7°(p),er >=N\¢

1
= < o(q), e >= N = —Z‘qz‘4+)\g:)\g — ¢ =0.

Hence those ¢ € Z wich are sent to vertices in P are points whose coordinates
in the set I are zero. Without loss of generality, we can assume that I =
{1,...,m} so that the stabilizer of ¢ is (Sp(1)%), = {(h1,-- -, hm,1,...,1) €
Sp(1)} = Sp(1)™.

The group N = Sp(1)4~™ acts on Z and its action on non-zero coor-
dinates is of the form hZZQgh?; where ay =0 or 1 and 5, =0 or —1. Each
hi,, hj, for ke, je € {1,...,m} acts on at least a non-zero coordinate of g,
since otherwise N would not act freely on Z.

If the action on the /-th coordinate of ¢ is g, +— hkeqmj;l we say that
(K¢, j¢) form a couple. We use all the couples to construct a graph I'" with
m distinct vertices labeled 1,...,m in the standard way. We want to show
that each connected component of I" contains a vertex s such that hs acts as
a simple multiplication on a non-zero coordinate of g. On the contrary sup-
pose that there is a connected component of I' whose vertices are Vi,..., V;
such that hy,, ..., hy, do not act as simple multiplication on any coordinate
of g. This implies that setting hy, = --- = hy, = —1 identifies a non-trivial
element in the stabilizer of ¢ in NV, contradicting the freeness of the action
of N on Z. This allows us to conclude that for each connected component
of I' at least a vertex s is such that hs acts as a simple multiplication on a
non-zero coordinate of q. Therefore hy; = 1 and the same holds true for all
hy, in the same connected component. Note that for all other ¢’ € Z, which
are not sent to vertices, the stabilizer is necessarly smaller and therefore
trivial. O



Quaternionic toric manifolds 285

Thanks to the previous lemma we can consider the orbit space
Mp = Z/N
which is a compact manifold of (real) dimension
dimZ —3(d—m) =4d — (d —m) — 3(d —m) = 4m.

In the complex setting the group N is normal in (Sl)d so that one can
directly define the group G that acts on Z/N as the quotient group (S l)d /N.
In the present setting we have to define appropriately the group G as a 3m-
dimensional group, isomorphic to Sp(1)™, acting on Z/ N. And this is not
always possible. In particular, this can be done when N acts by simple
multiplication (either on the right or on the left) on at least m coordinates
in H?. We now state some conditions under which the action of G is effective
and has trivial isotropy.

Proposition 4.7. If a polytope in R™* is obtained by cutting the standard
simplex by means of hyperplanes parallel to the facets of the simplex, then
the group G can be defined in such a way that its action on Z/N is effective
and with trivial isotropy.

Proof. Since we start from the simplex in R™*, the m + 1 oriented vectors
orthogonal to the facets are given by {—ej, —ea,...,—em,e1 +e2+ -+
em }. If we cut our simplex with m + 1 hyperplanes parallel to its facets, we
can get a polytope with d = 2m + 2 facets. The matrix associated with  is
anm X (2m + 2) matrix given by (—Idy, Crnt1, —Cmt1, Idy,) where Cp i1 is
the column vector ey + es + - -+ + €, and Id,, is the identity matrix of order
m. The kernel n C R? of 7 is defined by the linear system of m equations

T1 = Tm+1 — Tm+2 + T3
To =2 - +x
(43) 2 m—+1 m—+2 m+4

Tm = Tm4l — Tma2 + T2am42
' _
We now choose the new parameters x,, | = Tmi2 — Tmt1, Tmt2, - - - T2m+2

instead of Xy 41, Tm+2, ..., Tam+2 and we get a basis B for n, given by the
m + 2 vectors

{=fi—=Ffo— = fm+ font1s frs2s f1 + g fo + fongas - fon + foma2}
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where f; are the elements of the standard basis in R?™*+2. This basis is re-
duced and the corresponding Ap does not contain the sub matrix M. Thanks
to Proposition we can extend the action ofAN to N on H2™*+2, For a
generic element n= (11, bimt2, - - - homy2) in N and ¢=(q1, G2, - - - , G2m+2)
in H?*"*2 we have

“1
Pt 2Gm+1bo, 15 Pt 2@m2s - - - Pam+2q2m+2);

Then we say that a generic element g = (g1, 92, ..., 9m) of G C Sp(1)? acts
on the orbit (N - q) as

g (N q) = (hnysqrhy !y, oo homao@mhi oy, Bo2@mia byt

“1 “1
hmt2@m+291 s -« - hoam+1G2m+29m > P2m+202m+2)-

It is clear that G takes N-orbits to N-orbits. Moreover its action is effective
and has trivial principal isotropy. Indeed suppose the group G fixes an orbit
through a point ¢, whose coordinates are all non-vanishing, thus from the
relation hopmi2Gomie = @omie we deduce that honio =1 and consequently

that hpm+1 = hpgo = -+ = homya = 1. To conclude note that the previous
argument (slightly modified) can be applied also if we cut by means of less
than m + 1 hyperplanes. U

Note that Example shows that the assumption in Proposition [£.7] on the
way the simplex is cut to construct the polytope, is not necessary to define
an action of G on the quotient manifold. Indeed in this case the action of G
given by

9-Nq:= (mahs', gra2hy ' hagsgy s gsaahs ', hagshs ', gehy ')
has trivial principal isotropy (and hence is effective).
4.3. Examples of the procedure

We now collect some useful examples of manifolds constructed starting from
a given polytope.

Example 4.8. Starting from the standard simplex A, in R™* we obtain the
quaternionic projective space HP™. Indeed, the kernel n of m: R™tL 5 R™
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is defined by the linear system

1 = Tm+1

Tm = Tm+1
So the action of]/\} s given by

n-q:= (hCIh .. -7th+1)7

and the corresponding tri-moment map s

1 m—+1
foolq) == 3 lal + 1
i=1

Thus Z = (i* o ) ~1(0) is diffeomorphic to the (4m + 3)-dimensional sphere
in RY™ 4. Recalling the classical Hopf fibration N g3 5 gim+3 _, HP™,
we get that Ma = HP™. The action ofé > Sp(1)™ can be defined on N-
orbits as

9-Ng=(haigy ", hamgp' s hm1)
and it has clearly trivial isotropy (and hence it is effective).
Example 4.9. If the polytope P is a square [0,1] x [0,1] € R*" the corre-

sponding manifold Mp is HP' x HP'. Indeed in this case d = 4 the kernel n
of m: R* = R? is defined by the linear system

(4.5) { L

Ty =24
So the action of]v s given by
n-q = (h1q1, h2q2, h1g3, haqa),
and the corresponding tri-moment map s

« 1 1
#oota) = (~ gl +laol") + 1l + lanl) + 1)

Thus Z = (i* o o) ~1(0, 0) is diffeomorphic to the product of two 7-dimensional
spheres in R® on which N = Sp(1)? acts separately on each factor. Thus, us-
ing again the Hopf fibration S3 — ST — S*, we find that the quotient space is
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the above mentioned product. The action of G = Sp(1)2 which can be defined
on N-orbits as

g-Nq= (hiqrg; ', hagegy ', higs, haqa),

has clearly trivial isotropy (and hence is effective).

This procedure can be naturally generalized to prove that, starting from
the m-dimensional cube [0,1] x --- x [0,1] € R™, we find the product of m-
copies of HP' acted on by G = Sp(1)™ whose action is defined on N =
Sp(1)™-orbits as

g- Nq = (hlqlgl_17 hQQQ.gQ_lv e 7hmqmg;zla hlqm+17 ey hqum)

Note that the m-dimensional cube can be obtained by cutting the standard

stmplex by means of m hyperplanes parallel to the coordinate hyperplanes of
R™*,

Example 4.10. We here start from the trapezoid T in R?", defined by
T={zeR¥| <z v ><0,<z,v3 ><0,< z,v3 >< 1, < x,v4 >< 2}

with v1 = —eg, v9 = —e1,v3 = €3 and v4 = e1 + ea. The kerneln of 7 : R* —
R? is defined by the linear system

(4.6)
Xro = X4

{:El =23+ X4

so the action of]v =~ Sp(1)? is given by
n-q:=(hiqihy"', q2hy ", higs, qshy )

and the corresponding tri-moment map is

o 1 1
i*oo(q) = —~(la|* +las*) + 1, =~ (|l@a[* + |g2|* + |qa|*) + 2 ) .
1 1

Thus Z = (i* 0 ) 71(0,0) is is given by

g |* + |gs* =4
a1 |* + [q2|* + |aa]* = 8.

It is not difficult to show that the orbit space My = Z/N is a (non-trivial)
HP!-bundle on HP! and hence coincides with the blow-up of HP? at a point.
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The action of G = Sp(1)? which can be defined on N-orbits as

g-Nq= (haqrhy', 919205t higzgy ', quhyt)

has clearly trivial isotropy (and hence is effective).

As proved in, e.g., [I1], the blow-up of HP? at a point, i.e. the manifold
My, is the connected sum HP?# HP? where the symbol HP? denotes the
quaternionic projective space with the reversed orientation.

The trapezoid T is obtained via a cut by means of a hyperplane (a
straight line) of the standard simplex As, and the corresponding manifold
My is the blow-up at a point of Ma, = HP?. The fact that cutting cer-
tain polytopes corresponds to blowing-up the associated manifolds is indeed
general as shown in the following section.

Remark 4.11. Note that if one considers the trapezoid whose vertices
are (0,0); (I +1,0);(0,1); (1,1) the action of N cannot be extended to N =
Sp(1)? for I > 1. Indeed in this case the kernel n of 7 : R* — R? is spanned
by the vectors {(1,0,1,0),(1,7,0,1)} and does not admit a basis B such that
condition (1) in Proposition is satisfied. Therefore we cannot apply the
procedure starting from this Delzant polytope.

5. 4-plectic reduction and 4-plectic cut

Starting from a symplectic manifold (M,w) acted on by a compact Lie group
K in a Hamiltonian fashion with moment map p, the Marsden-Weinstein
reduction is a tool that permits to equip the manifold p~'(x)/K, when
x € £ (€ is the Lie algebra of K) is a regular value of u, with a symplectic
form wyeq (see e.g. [16]).

In the 4-plectic setting the procedure holds under stronger hypotheses.
Indeed, let (M*™, 1)) be a 4-plectic manifold on which the group G = Sp(1)™
acts with tri-moment map o. Let = be a regular value in R™* for the map o.
Consider the G-invariant and smooth Z, = ¢~1(x). The stabilizers of points
in Z, form a group bundle over it, which we assume to be smooth. We say
that these stabilizers form a spheroid bundle if they are isomorphic to the
product of copies of Sp(1). Then the quotient space Y, := Z,/G, usually
known as reduced space is a smooth manifold. We say that the 4-plectic
form ¢ is horizontal on Z, if and only if the contraction of ¢ along every
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fundamental vector field 3 (for each § € g) is zero along Z,. Formally

LB¢|Zz =0 VBe g.
With this notation we recall

Theorem 5.1 (Theorem 3.1 [9]). Let (M*™ 1)) be a 4-plectic manifold
on which the group G = Sp(1)™ acts with tri-moment map o and let x be
a reqular value of o. Assume that the stabilizers of all points in Z, form a
smooth spheroid bundle over Z,, and that v is horizontal. Then the reduced
space Y, s a smooth manifold admitting a 4-plectic form ,.q, such that

" (¢red> = (¢)

wherew = Z, — Y, and i := Z, — M denote respectively the projection and
the inclusion map.

Example 5.2. Let X = H? with the standard diagonal action of Sp(1) and
let the 4-form 1, be given by

Y = d(|q|* — |g2|*) Ad(ar — az) Ad(B1 — B2) Ad(v1 — 72),

where ¢, = z, + a1 + 6] + -k for r:=1,2. The form ), is horizontal.
The reduced space is isomorphic to HP', with an appropriate 4-plectic form
Yreq. Similarly we can obtain an invariant 4-plectic form on HP™ that we
will denote again by 1.4, [9].

We would like to define a 4-plectic analog of blowing-up M at a point p.
In [11] we have proved that if M is a regular quaternionic manifold of real
dimension 4m, then the blow-up of M at one point is a 4m-dimensional reg-
ular quaternionic manifold which is diffeomorphic to M#HP™. Note that
topologically M#HP™ can be obtained by removing a ball centered at p
and then collapsing the boundary S*™~3 along the fibers of the Hopf fibra-
tion S3 — §4m=3 — HP™. The generalization in the 4-plectic setup of the
so-called symplectic cutting due to E. Lerman is a particular case of the
quaternionic blow-up. Let (M*™, 1)) be a 4-plectic manifold equipped with
a generalized Hamiltonian Sp(1)™-action. Consider the restricted diagonal
Sp(1)-action, and let h : M — R be the corresponding tri-moment map. Let
¢ be a regular value of h. Assume that the Sp(1)-action on h=1(g) is free.
We introduce the following notations: we denote by My, Mp>. the
pre-images of (g,00) and [e,00) under h : M — R, and denote by M},>. the
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manifold which is obtained by collapsing the boundary h~!(g) of M, h>e along
the orbits of the Sp(1)-action. The manifold M},>. can be therefore identified
with the blow-up of M at a point and is called the 4-plectic cut of M.

Theorem 5.3. Let (M*™ v) be a 4-plectic manifold equipped with a gener-
alized Hamiltonian Sp(1)™-action. Consider the restricted action of a single
Sp(1), and let h : M — R be the corresponding tri-moment map. Let £ be
a regular value of h. We assume that the Sp(1)-action on h='(g) is free.
Whenever the form 1 @y on M x H is horizontal along (h — i\q|4)_1(6),
there is a natural 4-plectic structure Y. on Mp>. such that the restriction
of Vo to My~ C WZE equals 1 .

Proof. Consider the product (M x H,® =1 @ 1)y) and the Hamiltonian
Sp(1)-action

A(m,q) = (A(m), Aq); A€ Sp(l), me M, g€ H.

The tri-moment map is
14
F(m,q) = h(m) — - |a|".
Observe the following identification
F~l(e) = {(m,q) |h(m) > &, ] = 2¢/(h(m) — e)} U {(m, 0)|h(m) = ¢}

= Mh>€ X S3 U hil(E).
So that

F'(e)/Sp(1) = (My=e x 3 UL (e)) /Sp(1) = Mpse

since a fundamental set in Mp~. x S for the action of Sp(1) is given by
My~ x {1}. The assumption on the horizontality of ® implies that we can
apply Theorem and equip F~1(¢)/Sp(1) with a 4-plectic structure that
equals 1) when restricted to the open submanifold Mj-~.. Il

Definition 5.4. Let M be a 4m-dimensional manifold obtained as a re-
duced space from the 4-plectic manifold (N, ) acted on in a generalized
Hamiltonian fashion by a group Sp(1)¥, with tri-moment map o, and let 1,
be horizontal on o~1(x) for some regular value = of 0. Then M equipped
with the natural 4-plectic form ¢ ; such that 7*(¥ ;) = i*(¢3,), is said to
be obtained by reduction.
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Those manifolds M obtained by reduction are special: as an application of
Theorem [5.3| we will see that any 4-plectic cut of such an M can be equipped
with a canonical 4-plectic structure.

5.1. 4-plectic form on the blow-up

We here do explicit calculations for the case M = HP?, using the notation
established in the proof of Theorem

We want to prove that the form ® = +7_, ® 1 on HP? x H is horizontal
on F~!(e) so that, applying Theorem we can equip the blow-up of HP?
with a 4-plectic form. More precisely we show that LB<I>] F-1(e) = 0, for all
B € sp(l). .

First note that the contraction of the form ® along 3, for ¢ € S® is zero.
Indeed for example, using the standard basis of sp(1), if § = H, then

B 0 09D
¢ 281‘1 16.%’2 40:63 361’4

and the contraction of ® along it is therefore given by

tg @ =15 o = xodry Ndxs A dry + x1d21 A drs A doy
q q
— x3dr1 N dxo A drs — xadxy N\ dxo A dxy.

The claim follows since

S3 ={q =1 +ivy + joz + kxy€H ‘ lqI* = |1 ]? + |z2]® + |2s]® + |zaf* = ¢}

and thus z1dr1 = — Z?:Q x;dx; on it. Analogously for )A(q and 17(1 we have
on S3, 13, ®=1p®=0 In [9, p. 337] it is proven that (HP? ¢¢_;) can be

obtained via reduction from (H?,y), acted on by Sp(1) with tri-moment
map o, where vy, is horizontal.

Note that Sp(1)? acts on o~ '(¢) and on HP? Here we use the fact
that the projection 7: 0~ 1(e) CH? — o~ 1(¢)/Sp(1) is Sp(1)%-equivariant.
By the equivariance, for every m € o~1(¢)

Take a point p = 7(m) in HP? = ¢~ (g)/Sp(1),

Ly @ =15 Y° =15 e =1 .5 S )
B |F—1(6) ﬁpred|HJP’[2r>E ﬁw(m)wred‘u-npi>5 W*(ﬁT,L)¢Ted|HP§>E
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The tangent space of H}P’zzg at p = m(m) corresponds via 7, to a subspace
of the tangent space of 0~ 1(g) at m. Now

g

LW*(Bm) red — L 7T wred - L )d)h
since the contraction of ¢7_; along (Bm) is given by the pull back

U (wied) = i*wh‘

The fact that v, is appropriately chosen horizontal on o~ !(¢) implies that
L )zph = 0. We can give the following general definition.

Definition 5.5. A 4-plectic manifold M, obtained by reduction from (N, vy,)
with tri-moment map o : N — R¥” for the action of G = Sp(1)¥, is said to be
obtained by an Sp(1)™-equivariant reduction if the projection 7w : o0~ (x) —
o~ 1(2)/G is Sp(1)™-equivariant.

With the above notations, with the same argument used for M = HP?, it is
not difficult to prove

Theorem 5.6. Let M be a 4-plectic manifold obtained via an Sp(1)™-
equivariant reduction from (N,y). Then the blow-up of M at a point can
be endowed with a 4-plectic form reduced from the horizontal form y,.

In [9] it is proven that all quaternionic flag manifolds can be obtained by
equivariant reduction. Therefore the previous theorem can be applied to this
class of examples, showing that it is possible to equip their blow-up with a
4-plectic structure.

5.2. Polytopes vs quaternionic toric manifolds

Let P C R™* be obtained by cutting the standard simplex A,, with d —
m — 2 hyperplanes parallel to the original facets (in order to have d — 1
facets), and let Mp be the corresponding manifold. We prove here that if
we cut another time P with a hyperplane parallel to one of its facets then
the manifold that we get is the blow-up at a point of Mp.

With the notation of Section [4] the kernel Ny = kerm of the map 7 :
(81)4=1 — (S1)™ has real dimension d —m — 1. Let Nj 2 Sp(1)4=™=1 be
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its extension and let

_ 1%
Uﬁ:HdlﬁRdm 1
1

be the tri-moment map associated with the action of Ny on HeL, By con-
struction, the manifold Mp is given by

(51) MP :O-]%\ll(abCLQ,"'?ad—m—l)/]/\}l

where (ay,as,...,a4—m—1) € R is determined by the polytope P. Cut-
ting P with a hyperplane parallel to one of its facets to obtain a new poly-
tope P with d facets, we get that the kernel of the new projection 7 is
isomorphic to N = N; x Ny where Ny = S1. Since the action of Ny is triv-
ial on the d-th coordinate of Hd it is possible to define the action of the
extension N = N1 X N2 where N2 Sp(1). If we enumerate the facets of
Pasj=1,...,d—1 and the cut is parallel to the j-th facet, then the tri-
moment map oy : H! x H — RI-—m" corresponding to the action of N on
H? is given by

1
0]\7(Q17 <y qd—1, Qd) = (O-K[\I (Q17 ey qd—1)7 <U(Q17 cee 7Qd—1)7 6]> - Z|qd|4)

where ¢ is the tri-moment map associated with the standard action of
Sp(1)@=1 on H?! and e; is the j-th element of the standard basis of R4~L.
Therefore, given (ay, as, ..., a4_m) € R, we get

0']:\[\11(&1,&2, ceey ad,m,l) x H
(5.2) 0;71(@1, Ay ...y Ag—pm) = 1, .
(o(@). )~ {laal* = @i

where ¢ = (¢1,92,---,qd—1)- Following the procedure, the manifold Mg is
obtained as the quotient of o5 Yay, a9, ..., a4_m) via the action of N x N2

Now N; acts only on the ﬁrst (d — 1)-coordinates. So the quotient

M]; = O-]%[l(alyaay SRR ad—m)/N

is given by
(5.3) Mz ={(g,q4) € Mp x H | {0(q),¢;) — |gal* = aa_n}/No.

If we denote by h(q) = (0(q), e;), we get that Mz = (Mp);>,, . This fact
is relevant, indeed it implies that the manifold My is obtained via 4-plectic
cut from Mp. Since P is obtained by cutting appropriately the standard
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simplex, applying iteratively Theorem at each cut, we can conclude that
Mg admits a 4-plectic form.

Theorem 5.7. The manifold corresponding to a polytope with m + k + 1
facets, obtained via cutting the standard simpler A,, in R™* by means of
k-hyperplanes parallel to facets of A, is the blow-up at k points of HIP™.
Moreover it admits a 4-plectic form.

We observe here that this class of manifolds, thanks to Theorem 3.12 in [I1],
has also the property of being quaternionic regular.

6. Quaternionic toric manifolds

In the symplectic setting, the Delzant Theorem establishes a one-to-one cor-
respondence between symplectic toric manifolds and Delzant polytopes (up
to symplectomorphisms). In the 4-plectic case, in Theorem we obtained
a sub-convexity result on the image of the tri-moment map. For the class of
4-plectic manifolds, associated with polytopes obtained by cutting the stan-
dard simplex by means of hyperplanes parallel to its facets, the image of the
tri-moment map turns out to be convex and it coincides with the starting
polytope. This establishes, for this class of 4-plectic manifolds, a correspon-
dence completely analogous to the one stated by the Delzant Theorem in
the symplectic case.

We here present some significant examples in the 4-plectic setting; we
explicitly describe the generalized Hamiltonian action and the corresponding
tri-moment map.

Quaternionic projective spaces

We recall that if (g1, ..., qne1) € H* 1\ {0}, then [q1,. .., ¢ut1] denotes the
(right) vector line {(q1)\, - . ., gnt1A) € H"™ 2 X € H} of H*™!. As usual HP"
denotes the set of (right) vector lines in H"™!. Using the reduced form
obtained in [9, p. 337] on HP™ acted on freely by the group Sp(1)™ as

AL A2, A @2 s gmg1] = A s Aege - At Gt ]

the tri-moment map turns out to be

4 4 4
q1 q2 q
a([qlzqzz---:qmﬂ]):—( i TS H)mm*.

1 1 : 1
S @t S gt S g
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The image, which is an m-simplex, is given by the convex envelope of the
images of the points fixed by the group Sp(1)™ that coincide, in this case,
with the common critical points of the components of the tri-moment map.

Blow up of HP?

In general the idea is the following: we start with the quaternionic projectve
space HP? acted on by the group Sp(1)?

(A, A2)[aq1 1 g2 2 q3) = [Miq1 = Aaga : gs3).

At each blow-up corresponds an extended action. We blow-up first at the
point [0 : 1:0], then at [1: 0: 0] and finally at [0: 0 : 1]. Thus the action at
the third step (after three blow-ups) is the following

(6.1) (A1, A2)([q1 @ g2 = gss [p1 2 p2]s [r1 2 2], [s1 0 s2))
(6.2) = ([Mq1 = A2q2 = @3], [Mp1 2 pa], [Aar = 72], [A1s1 = Aesa)).

If (¢1),0q) (¥2),.4 denote the reduced 4-plectic structures on HP! and HP?
respectively (see [9] for the precise expression), we can equip the exceptional
divisors F; = HP! with the 4-plectic structures a;(%1),., with i = 1,2, 3.
Thus the tri-moment map is given by (o1, 02) where

lq1]* + |g2|* + |g3|* Ip1]* + |p2|* |s1]4 + |s2]4
4 4 4
6.4)  doy = a2 NP1 52

— — .
I N N T e

Note that if a; =0 for ¢ = 1,2,3 we find again the tri-moment map of the
quaternionic projective space, and for as = ag = 0 we find the tri-moment
map of the blow-up at [0:1: 0] (the first step), and analogously for a; =
a3 = 0 the blow-up at [1:0:0] and for a; = a3 =0 at [0: 0 : 1]. Moreover
all the a; must be less or equal to 1. We finally observe that, in order to
obtain an image which is a polytope to which one can apply our procedure
necessarily a; equals ag, otherwise the slope of the edge is not a multiple
of 7. Looking at the action in equation , we can observe that the fixed
points are more than 6. However, the image is given by the convex envelope
of all the fixed points, and is an hexagon (admissible for our procedure only
if o] = 042).
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Remark 6.1. One can observe that in all the cases considered so far i.e.
when M equals H”, HP™~! and their iterated blow-ups, the tri-moment map
o for the Sp(1)™ action is given by the composition of the usual moment
map v for the (S1)™ action on the complex manifolds C™, CP™~! and their
iterated blow-ups, with the surjective map « defined on H™ with values in
C™ as

O‘(xl +uyidy, .o+ ymIm) = ((1‘1 + y1i)2, ceey (xm + yml)2)
and on HP" ! with values in CP™ 1 as
ofey +yilh oo @+ ymn]) = [(21 +y19)? 1 oot (T 4 Yimd)?]

where zp,ys € R, yp > 0 and Iy is a purely imaginary unit in H for any
¢=1,...,m. Therefore in all these cases the image o(M) = v o a(M) is the
same of its complex analog and thus it is a Delzant polytope.

Remark 6.2. Action of (H*)™. It is easy to show that the examples
considered so far admit an (H*)™ action with an open dense orbit. We point
out this fact since it is in complete analogy with what happens for the action
of (C*)™ on the corresponding complex manifolds.

In particular,

1) the action of (H*)™ on HP™ is given by
(a1, am)qr oot @m t Gma1] = [a1q1 1o @Gt Q]
and it has an open dense orbit since the generic stabilizer is trivial.
2) The group (H*)? acting on the base space H2 as
(a1,a2)(q1, q2) := (a1q1, az2qz)

has an open dense orbit and lifts to the blow up Blp(]HI]P’Q), naturally:
the group acts taking a direction in the exceptional fiber HP' to an-
other direction in HP'. Indeed the action of (H*)* on Bl,(HP?) is given
by

(a1,a2)([q1 = g2 : 3], [p1 2 p2]) := ([a1q1 + a2q2 : 3], [a1ps : p2))

and the generic orbit is open and dense.

3) The same argument also applies for (H*)™ on HP™#kHP .
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The manifold G2/S0(4)

Going through the list of quaternion K&hler manifolds, endowed with the
Kraines form, the only one admitting a generalized Hamiltonian action of
Sp(1)™ with discrete principal isotropy is the 8-dimensional quotient M =
%(24) with n = 2. Thus it is a toric quaternionic manifold.

We can actually compute the number of fixed points for the action of
Sp(1)% on 5854) proving that the fixed point set is given by a single point.
Indeed the Euler characteristic of M is 3, given by the quotient of the order
of the Weyl group of Ga, |[W(G2)| = 12, over the order of the Weyl group of
SO(4), |W(SO(4))| = 4. Since the action is polar, the Euler characteristic
is equal to the number of points fixed by a maximal abelian subgroup 7' in
Sp(1)2. Let H be the normalizer of K = SO(4) in G5. The order of the fixed
point set of K on M equals the order of % The quotient % has order 1 or
3. If the order is 3 then G2/ H would have fundamental group Zs (we here
use the homotopy sequence and the connectedness of SO(4)) and would be
therefore orientable (since it does not admits subgroups of index two), so
that its Euler characteristic should be strictly greater than 1 and therefore
equal to 3. Hence % would have order 1 which is a contradiction. So the
image, via the moment map, is in this case contained in the convex envelope
of a set of points whose cardinality runs from 1 to #M7 = x(M) = 3.

A further investigation could clarify whether (H*)? acts on this manifold
with an open dense orbit and whether the manifold is quaternionic regular
(in the sense of [I1]). Moreover it would be interesting to understand if the
image of %&) via the tri-moment map is related with the moment map
image of its twistor space.
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