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On the Chern numbers for pseudo-free

circle actions
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Let (M,ψ) be a (2n+ 1)-dimensional oriented closed manifold with
a pseudo-free S1-action ψ : S1 ×M →M . We first define a local
data L(M,ψ) of the action ψ which consists of pairs (C, (p(C);
−→q (C))) where C is an exceptional orbit, p(C) is the order of
isotropy subgroup of C, and −→q (C) ∈ (Z×

p(C))
n is a vector whose en-

tries are the weights of the slice representation of C. In this paper,
we give an explicit formula of the Chern number 〈c1(E)n, [M/S1]〉
modulo Z in terms of the local data, where E = M ×S1 C is the
associated complex line orbibundle over M/S1. Also, we illustrate
several applications to various problems arising in equivariant sym-
plectic topology.
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1. Introduction

Let N be a 2n-dimensional oriented closed manifold and S1 = {z ∈ C | |z| =
1} be the unit circle group acting on N effectively where we denote the
action by φ : S1 ×N → N . The localization theorem due to Atiyah-Bott
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2 B. An and Y. Cho

[AB] and Berline-Vergne [BV] is a very powerful technique for computing
global (topological) invariants of N in terms of local data

L(N,φ) = {(F, νS1(F ))}F⊂NS1

where F is a connected component of the fixed point set NS1

and νS1(F )
is an S1-equivariant normal bundle of F in N . In particular if N admits
an S1-invariant almost complex structure, then we can compute the Chern
numbers of the tangent bundle TN in terms of the local data L.

In this paper, we attempt to find an odd dimensional analogue of the
ABBV-localization theorem in the sense that if we have a (2n+ 1)-dimen-
sional oriented closed manifold M equipped with an effective fixed-point-free
S1-action ψ : S1 ×M →M , then our aim is to find a method for computing
global invariants in terms of local data. Here, local data means

L(M,ψ) = {(MZp , νS1(MZp))}p∈N,p>1

where Zp is the cyclic subgroup of S1 of order p, MZp is a submanifold of
M fixed by Zp, and νS1(MZp) is an S1-equivariant normal bundle of MZp in
M . To do this, let us consider the following commutative diagram

M × C q

/S1

//

π

��

M ×S1 C = E

π
��

M q

/S1

//M/S1 = B

where S1 acts on M × C by

t · (x, z) = (t · x, tz)

for every t ∈ S1 and (x, z) ∈M × C.
If the action is free, then B is a smooth manifold and E becomes a

complex line bundle over B with the first Chern class c1(E) ∈ H2(B;Z).
In particular, the Chern number 〈c1(E)n, [B]〉 is an integer where [B] ∈
H2n(B;Z) is the fundamental homology class of B.

On the other hand, if the action is not free, then B is an orbifold with
cyclic quotient singularities and E becomes a complex line orbibundle over
B. Then the first Chern class c1(E) ∈ H2(B,R) is defined, via the Chern-
Weil construction, as a cohomology class represented by a differential 2-form
Θα on B where α is a normalized connection 1-form on M and Θα is a 2-form
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On the Chern numbers for pseudo-free circle actions 3

on B such that dα = q∗Θα. Then the Chern number of E is given by

〈c1(E)n, [B]〉 =

∫
B

Θα ∧Θα ∧ · · · ∧Θα =

∫
M
α ∧ (dα)n

which is a rational number in general (see [W, Theorem 1]). However, the
local data L(M,ψ) does not detect any information about free orbits by
definition of L(M,ψ). In fact, if the S1-action is free, then the local data
L(M,ψ) is an empty set. Thus to make our work to be meaningful, we will
construct an invariant, namely e(M,ψ), of (M,ψ) which is zero if ψ is a free
action, and it measures the contributions of exceptional orbits to the Chern
number of the complex line orbibundle associated to (M,ψ).

Now, let us define

e(M,ψ) = 〈c1(E)n, [B]〉 (modZ).

This number is well-defined up to S1-equivariant diffeomorphism. Also, we
have e(M,ψ) = 0 if ψ is a free action. Thus the invariant e(M,ψ) is a good
candidate which can be computed in terms of the local data L(M,ψ).

Now, consider an S1-manifoldM and fix a point x in the interior M̊ ofM .
Let C be an orbit of x whose isotropy subgroup is Zp(C) where p(C) be the
order of the isotropy subgroup of C. By the slice theorem (see Theorem 2.1),
there exists an S1-equivariant neighborhood U of C such that

U ∼= S1 ×Zp(C)
Vx

where Vx is the slice representation of Zp(C) at x.

Proposition 1.1. Let (M,ψ) be a (2n+ 1)-dimensional fixed-point-free S1-
manifold. Suppose that C ⊂ M̊ is an orbit with the isotropy subgroup Zp,
which is possibly trivial. Then there exists an S1-equivariant tubular neigh-
borhood U of C which is S1-equivariantly diffeomorphic to S1 × Cn where
S1 acts on S1 × Cn by

t · (w, z1, z2, . . . , zn) = (tpw, tq1z1, t
q2z2, . . . , t

qnzn)

for some integers q1, q2, . . . , qn. Moreover, the (unordered) integers qj’s are
uniquely determined modulo p.

In other words, Proposition 1.1 says that an S1-equivariant tubular
neighborhood of the form S1 ×Zp(C)

Vx can be trivialized as a product space
and the given action can be expressed as a linear action.
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4 B. An and Y. Cho

In this paper, we deal with the case where the action is pseudo-free.
Recall that an S1-action on a smooth manifold M is called pseudo-free if
there is no fixed point and there are only finitely many exceptional orbits.
Equivalently, the action on M is pseudo-free if the quotient space M/S1

has only isolated cyclic quotient singularities. Let E = E(M,ψ) be the set of
exceptional orbits of (M,ψ). Then Proposition 1.1 implies that each C ∈ E
with the stabilizer Zp(C) assigns a vector

−→q (C) = (q1(C), q2(C), . . . , qn(C)) ∈ (Z×p(C))
n,

where Z×p is a multiplicative group consisting of elements in Zp which are
coprime to p. We call −→q (C) the weight-vector, and say that C is of (p(C);
−→q (C))-type.

Remark 1.2. Note that −→q (C) is unique up to ordering of qi(C)’s.

Thus if the action ψ : S1 ×M →M is pseudo-free, then the local data
of (M,ψ) is given by

L(M,ψ) = {(C, (p(C);−→q (C)))}C∈E .

In Section 4, we give an explicit formula (Theorem 1.4) of e(M,ψ) in terms
of the local data L(M,ψ) if ψ is a pseudo-free S1 action on M . As a first
step, we prove the following.

Proposition 1.3. Let p > 1 be an integer and let −→q = (q1, . . . , qn) ∈ (Z×p )n.
Then there exists a (2n+ 1)-dimensional oriented closed pseudo-free S1-
manifold (M,ψ) having exactly one exceptional orbit C of (p;−→q )-type. More-
over,

e(M,ψ) =
q−1

1 q−1
2 · · · q−1

n

p
(modZ)

where q−1
j is the inverse of qj in Z×p .

Using Proposition 1.3, we prove our main theorem as follows.

Theorem 1.4. Suppose that (M,ψ) is a (2n+ 1)-dimensional oriented
closed pseudo-free S1-manifold with the set E of exceptional orbits. Then

e(M,ψ) =
∑
C∈E

q1(C)−1q2(C)−1 · · · qn(C)−1

p(C)
(modZ)

where qj(C)−1 is the inverse of qj(C) in Z×p(C).
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On the Chern numbers for pseudo-free circle actions 5

Theorem 1.4 has particularly interesting applications when we consider
a pseudo-free S1-manifold (M,ψ) such that e(M,ψ) = 0. In this case, our
theorem gives a constraint on the local data L(M,ψ) given by

∑
C∈E

q−1
1 (C)q−1

2 (C) · · · q−1
n (C)

p(C)
≡ 0 (modZ).

As immediate applications, we can obtain the following corollaries where the
proof will be given in Section 5.

Corollary 1.5. Suppose that (M,ψ) is an oriented closed pseudo-free S1-
manifold with e(M,ψ) = 0. If the action is not free, then M contains at
least two exceptional orbits. If M contains exactly two exceptional orbits,
then they must have the same isotropic subgroup.

Corollary 1.6. Suppose that (M,ψ) is an oriented closed pseudo-free S1-
manifold with e(M,ψ) = 0. If C is an exceptional orbit with the isotropy
subgroup Zp for some p > 1, there exists an exceptional orbit C ′ 6= C with
the isotropy subgroup Zp′ for some integer p′ such that gcd(p, p′) 6= 1.

Now, we illustrate two types of such examples. One is a product manifold
equipped with a pseudo-free S1-action.

Proposition 1.7. Let (M,ψ) be a (2n+ 1)-dimensional oriented closed
fixed-point-free S1-manifold. If M = M1 ×M2 for some closed S1-manifolds
M1 and M2 with positive dimensions, then e(M,ψ) = 0.

By using Theorem 1.4 and Proposition 1.7, we can prove the following.

Corollary 1.8. Let (M,J) be a closed almost complex S1-manifold. Sup-
pose that the action preserves J and that there are only isolated fixed points.
Then, ∑

z∈MS1

1∏n
i=1 qi(z)

= 0

where q1(z), . . . , qn(z) are the weights of the S1-representation on TzM .

Remark 1.9. Note that Corollary 1.8 also can be obtained by the ABBV-
localization theorem (see Section 5 for the detail). Thus the authors expect
that there would be some equivariant cohomology theory which covers both
the odd-dimensional theory (Theorem 1.4) and the even-dimensional theory
(ABBV-localization theorem). This work is still in progress.



i
i

“1-Cho” — 2019/4/30 — 11:51 — page 6 — #6 i
i

i
i

i
i

6 B. An and Y. Cho

The other type of examples comes from equivariant symplectic geometry
as follows. Recall that for a given symplectic S1-action ψ on a closed sym-
plectic manifold (M,ω) where [ω] ∈ H2(M ;Z), there exists an S1-invariant
map µ : M → R/Z ∼= S1 called a generalized moment map defined by

µ(x) :=

∫
γx

iXω (modZ)

where x0 is a base point, and γx is any path γx : [0, 1]→M such that γx(0) =
x0 and γx(1) = x. When ψ has no fixed point, then M becomes a fiber bundle
over S1 via µ (see [CKS] for the details).

Proposition 1.10. Let (M,ω) be a closed symplectic manifold equipped
with a fixed-point-free S1-action ψ preserving ω. Let µ : M → R/Z be a gen-
eralized moment map and let Fθ = µ−1(θ) for θ ∈ R/Z. Then e(Fθ, ψ|Fθ) =
0.

Finally, here we discuss the Weinstein’s theorem [W, Theorem 1] and
pose some conjecture.

Theorem 1.11. [W] Let (M,ψ) be a (2n+ 1)-dimensional closed oriented
fixed-point-free S1-manifold. Let α be a normalized connection 1-form on
M . Then

`n ·
∫
M
α ∧ (dα)n ∈ Z

where ` is the least common multiple of the orders of the isotropy subgroups
of the points in M .

Let (M/S1)sing be the set of singular points in M/S1. Our main theo-
rem 1.4 implies that if dim(M/S1)sing = 0, then we have

` ·
∫
M
α ∧ (dα)n ∈ Z.

We pose the following conjecture.

Conjecture 1.12. Under the same assumption of Theorem 1.11, we have

`k+1 ·
∫
M
α ∧ (dα)n ∈ Z.

where k = dim(M/S1)sing.
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On the Chern numbers for pseudo-free circle actions 7

It is obvious that Conjecture 1.12 is true when k = 0 by Theorem 1.4.
One can verify that Conjecture 1.12 is true when M is an odd-dimensional
sphere with a fixed-point-free linear S1-action (see Proposition 3.8).

This paper is organized as follows. In Section 2, we define a local data
for a fixed-point-free S1-action. In Section 3, we define a Chern class of a
closed fixed-point-free S1-manifold and give the explicit computation of the
Chern class of an odd-dimensional sphere equipped with a linear S1-action.
In Section 4, we give the complete proof of Proposition 1.3 and Theorem 1.4.
Finally in Section 5, we discuss several applications of Theorem 1.4 and give
the proofs of Corollary 1.5, 1.6, and 1.8. Also, we deal with the examples
illustrated above and give the complete proof of Proposition 1.7 and 1.10.

2. Local invariants

The main purpose of this section is to define a local invariant for each ex-
ceptional orbit, which is invariant under S1-equivariant diffeomorphisms. To
do this, we first describe a neighborhood of each orbit.

Theorem 2.1 (Slice theorem). [Au] Let G be a compact Lie group acting
on a manifold M . Let x ∈M be a point whose isotropy subgroup is H. Then
there exist a G-equivariant tubular neighborhood U of the orbit G ·m and a
G-equivariant diffeomorphism

G×H Vx → U

where G acts on G×H Vx by

g · [g′, v] = [gg′, v]

for every g ∈ G and [g′, v] ∈ G×H Vx. Here Vx, called a slice at x, is the
vector space TxM/Tx(G · x) with the linear H-action induced by the G-action
on TxM .

In our case, G = S1 and the isotropy subgroup H of x is isomorphic to
Zp for some p ≥ 1 if x is not fixed by the S1-action. The following lemma
will be used frequently throughout this paper.
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8 B. An and Y. Cho

Lemma 2.2. Let m > 1 be a positive integer and let (w0, w1, . . . , wn) be
the coordinate system of S1 × Cn. Define an S1-action on S1 × Cn given by

t · (w0, w1, . . . , wn) = (tx0w0, t
x1w1, . . . , t

xnwn)

for some (x0, x1, . . . , xn) ∈ Zn+1 with gcd(x0,m) = 1. Similarly, for ξ = e
2πi

m ,
define a Zm-action on S1 × Cn by

ξ · (w0, w1, . . . , wn) = (ξm0w0, ξ
m1w1, . . . , ξ

mnwn)

for some (m0,m1, . . . ,mn) ∈ Zn+1 with gcd(m,m0) = 1. Then,

1) the S1-action and the Zm-action commutes,

2) the Zm-quotient S1 ×Zm Cn with the induced S1-action is S1-equivar-
iantly diffeomorphic to S1 × Cn with an S1-action given by

t · (z0, z1, . . . , zn) = (tx0mz0, t
−x0a1+x1z1, . . . , t

−x0an+xnzn),

where ai = m−1
0 mi modulo m, and

3) if Zm act as a subgroup of S1 on S1 × Cn, or equivalently, if mi = xi
for every i = 0, 1, . . . , n, then S1 ×Zm Cn with the induced S1/Zm-
action is equivariantly diffeomorphic to S1 × Cn with an S1-action
given by

t · (z0, z1, . . . , zn) = (tx0z0, t
siz1, . . . , t

snzn),

where si = m−1xi modulo x0.

Proof. The first claim (1) is straightforward by direct computation. For (2),
since m0 is coprime to m, for each i ≥ 1, there exist integers ai and si such
that

m0ai +msi = mi.

Then we can easily see that ai = m−1
0 mi modulo m.

Now, we define a map Φ : S1 ×Zm Cn → S1 × Cn as

φ([w0, . . . , wn]) = (wm0 , w
−a1

0 w1, . . . , w
−an
0 wn).
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On the Chern numbers for pseudo-free circle actions 9

Then Φ is well-defined since

Φ([ξm0w0, ξ
m1w1, . . . , ξ

mnwn])

= (ξm0mwm0 , ξ
−m0a1+m1w−a1

0 w1, . . . , ξ
−m0an+mnwan0 wn)

= (wm0 , ξ
ms1w−a1

0 w1, . . . , ξ
msnw−an0 wn)

= (wm0 , w
−a1

0 w1, . . . , w
−an
0 wn) = Φ([w0, w1, . . . , wn]).

The surjectivity of Φ is obvious so that it is enough to show that Φ is
injective. If

Φ([w0, . . . , wn]) = Φ([w′0, . . . , w
′
n]),

then

• wm0 = (w′0)m and

• w−ai0 wi = (w′0)−aiw′i for every i = 1, 2, . . . , n.

These imply that

• w′0 = ξkm0w0 for some k ∈ Z (since ξm0 is also a generator of Zm), and

• w−ai0 wi = ξ−km0aiw−ai0 w′i.

Thus we have w′i = ξkm0aiwi for every i = 1, 2, . . . , n. Therefore, we have

[w0, w1, . . . , wn] = [ξkm0w0, ξ
km1w1, . . . , ξ

kmnwn]

= [ξkm0w0, ξ
k(m0a1+ms1)w1, . . . , ξ

k(m0an+msn)wn]

= [ξkm0w0, ξ
km0a1w1, . . . , ξ

km0anwn] = [w′0, w
′
1, . . . , w

′
n].

To show that Φ is S1-equivariant, we define an S1-action on S1 × Cn as

t · (z0, z1, . . . , zn) = (tmx0z0, t
−x0a1+x1z1, . . . , t

−x0an+xnzn).

Then the S1-equivariance of Φ is as following.

Φ(t · [w0, w1, . . . , wn]) = Φ([tx0w0, t
x1w1, . . . , t

xnwn])

= (tmx0wm0 , t
−x0a1+x1w−a1

0 w1, . . . , t
−x0an+xnw−an0 wn)

= t · (wm0 , w
−a1

0 w1, . . . , w
−an
0 wn)

= t · Φ([w0, w1, . . . , wn]).
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10 B. An and Y. Cho

To show (3), suppose that Zm acts on S1 × Cn as a subgroup of S1, i.e.,
mi = xi for every i = 0, 1, . . . , n. By definition of ai and si, we have

−x0ai + xi = −m0a0 +mi = msi.

Then si = m−1xi modulo x0 since x0 is coprime to m. Thus for every i =
1, 2, . . . , n, the number −x0ai + xi is a multiple of m. Hence the S1-action
given as above is non-effective and it has a weight-vector (mx0,ms1, . . . ,
msn). Therefore, after taking a quotient by Zm which acts trivially on S1 ×
Cn, the residual S1/Zm-action is given as in (3). �

Now, let us consider a (2n+ 1)-dimensional S1-manifold (M,ψ). Then
for each x ∈ M̊ , Theorem 2.1 implies that Vx ∼= R2n and the orbit S1 · x
has an S1-equivariant tubular neighborhood diffeomorphic to S1 ×H R2n

where H is the isotropy subgroup of x. The following proposition states
that S1 ×H R2n is in fact S1-equivariantly diffeomorphic to the product
space S1 × Cn with a certain linear S1-action.

Proposition 2.3 (Proposition 1.1). Let (M,ψ) be a (2n+ 1)-dimensional
fixed-point-free S1-manifold. Suppose that C ⊂ M̊ is an orbit with the isotropy
subgroup Zp, which is possibly trivial. Then there exists an S1-equivariant
tubular neighborhood U which is S1-equivariantly diffeomorphic to S1 × Cn
where S1 acts on S1 × Cn by

t · (z0, z1, z2, . . . , zn) = (tpz0, t
q1z1, t

q2z2, . . . , t
qnzn)

for some integers q1, q2, . . . , qn. Moreover, the (unordered) integers qj’s are
uniquely determined modulo p.

Proof. Let x ∈M be a point in M with the isotropy subgroup Zp ⊂ S1,
and let Vx ∼= R2n be the slice at x. Recall that any orientation preserving
irreducible real representation of Zp is two-dimensional, and it is isomorphic
to a one-dimensional complex representation of Zp determined by a rotation
number modulo p. Thus Vx ∼= Cn and a Zp-action on S1 × Vx is given by

ξ · (w0, w1, . . . , wn) = (ξw0, ξ
−q1w1, . . . , ξ

−qnwn)

for every (w0, w1, . . . , wn) ∈ S1 × Vx where ξ = e
2πi

p and qi’s are integers
uniquely determined modulo p, see [Ko, p.647] for more details.

Let C be an orbit containing x. By the slice theorem 2.1, there exists an
S1-equivariant tubular neighborhood U of C which can be identified with
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On the Chern numbers for pseudo-free circle actions 11

S1 ×Zp Vx where the S1-action on S1 ×Zp Vx is induced from the S1-action
on S1 × Vx given by

t · (w0, w1, . . . , wn) = (tw0, w1, . . . , wn)

for every t ∈ S1 and (w0, w1, . . . , wn) ∈ S1 × Vx.
Now we apply Lemma 2.2 with m = p, x0 = m0 = 1 and xi = 0, mi =

−qi for i ≥ 1. Then we may choose ai = −qi and si = 0 for i ≥ 1 so that

m0ai +msi = 1 · (−qi) +m · 0 = −qi = mi.

Therefore, we obtain an S1-equivalent diffeomorphism

Φ : S1 ×Zp Vx → S1 × Cn,

where S1-action on the target is given by

t · (z0, z1, . . . , zn) = (tmx0z0, t
−x0a1+x1z1, . . . , t

−x0an+xnzn)

= (tpz0, t
q1z1, . . . , t

qnzn).

This completes the proof. �

By Proposition 2.3, each exceptional orbit C assigns a vector

−→q (C) = (q1(C), q2(C), . . . , qn(C)) ∈ (Zp(C))
n

which is uniquely determined up to ordering of qi(C)’s where p(C) is an
order of the isotropy subgroup of C. We call −→q (C) a weight-vector of C.

Now, assume that (M,ψ) is a (2n+ 1)-dimensional closed pseudo-free
S1-manifold and let E be the set of exceptional orbits. Then each C ∈ E is
isolated so that gcd(p(C), qi(C)) = 1 for every i = 1, 2, . . . , n, i.e.,

−→q (C) ∈ (Z×p(C))
n.

Definition 2.4. Let (M,ψ) be a (2n+ 1)-dimensional pseudo-free S1-
manifold with the set E of exceptional orbits.

1) A local data L(M,ψ) is defined by

L(M,ψ) =
{

(C, (p(C);−→q (C)))
∣∣∣ p(C) ∈ N,−→q (C) ∈

(
Z×p(C)

)n}
C∈E

.

2) We call (p(C);−→q (C)) the local invariant of C, and we say that C is of
(p(C);−→q (C))-type.
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12 B. An and Y. Cho

3. Chern numbers of fixed-point-free circle actions

In this section, we give a brief review of the definition of the first Chern
class of fixed-point-free S1-manifolds. Also we give an explicit computation
of the Chern number of an odd-dimensional sphere equipped with a linear
action and explain how the Chern number (modulo Z) can be computed in
terms of a local data.

We first review the classical result about a principal bundle over a
smooth manifold.

Definition 3.1. Let G be a compact Lie group and g be the Lie algebra of
G. Let M be a principal G-bundle. A connection form α on M is a smooth
g-valued 1-form such that

• α(X) = X for every X ∈ g, and

• α is G-invariant

where X is a vector field on M , called the fundamental vector field of X,
defined by

Xx :=
d

dt

∣∣∣∣
t=0

(exp(tX) · x)

for every x ∈M .

For a given connection form α on M , the curvature form Ωα associated
to α is a g-valued 2-form on M defined by

Ωα = dα+ [α, α].

In particular, if G is abelian, then the Lie bracket [·, ·] vanishes so that we
have Ωα = dα.

Suppose that G = S1 ∈ C be the unit circle group with the Lie algebra
s1. Also, let (M,ψ) be a fixed-point-free S1-manifold with a connection form
α. Then α can be viewed as an R-valued 1-form via a linear identification
map ε : s1 → R. Note that ε is determined by the image ε(X) ∈ R where X
is the generator of the kernel of the exponential map exp: s1 → S1. We say
that α is normalized if an identification map ε is chosen to be

ε(X) = 1.

Equivalently, α is normalized if S1 =s1/ ker(exp)∼=R/Z and α(X)=1 where
X = ∂

∂θ and θ is a parameter of R. In particular, if α is normalized, then we



i
i

“1-Cho” — 2019/4/30 — 11:51 — page 13 — #13 i
i

i
i

i
i

On the Chern numbers for pseudo-free circle actions 13

have ∫
F
α = 1

for any free orbit F (see also Remark 3.6).
The following proposition is well-known and the proof is given in [Au].

But we give the complete proof here to show that it can be extended to the
case of a fixed-point-free action.

Proposition 3.2. [Au] Let M be a principal S1-bundle over a smooth man-
ifold B and let α ∈ Ω1(M) be a normalized connection 1-form on M . Then,

• there exists a unique closed 2-form Θα on B such that q∗Θα = dα
where q : M → B is the quotient map,

• [Θα] ∈ H2(B;R) is independent of the choice of α, and

• [Θα] is equal to the first Chern class of the associated complex line
bundle M ×S1 C over B where S1 acts on M × C by

t · (x, z) = (t · x, tz)

for every t ∈ S1 and (x, z) ∈M × C.

Proof. Recall the Cartan’s formula which is given by

LX = iX ◦ d+ d ◦ iX .

By applying the Cartan’s formula to α, we have

LXα = iX ◦ dα+ d ◦ iXα = 0.

Since iXα ≡ 1, we have iXdα = 0, i.e. dα is horizontal. Also, by applying
the Cartan’s formula to dα, we have

LXdα = iXd
2α+ diXdα = 0.

Therefore, there exists a push-forward of dα, namely Θα, on B such that
q∗Θα = dα. It is straightforward that such a Θα is unique.

To prove the second statement, let β be another connection form on
M . Then it is obvious that α− β is S1-invariant and iX(α− β) = 0. Thus
there exists an 1-form γ on B such that q∗γ = α− β. In other words, dγ =
Θα −Θβ so that [Θα] = [Θβ] in H2(B;R).
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14 B. An and Y. Cho

To prove the third statement, recall that for a given smooth manifold
N , there is a one-to-one correspondence between the set of principal S1-
bundles over N and the set of homotopy classes of maps [N,BS1] where
ES1 is a contractible space on which S1 acts freely, and BS1 = ES1/S1 is
the classifying space of S1. By applying this argument to M , we have a map
f : B → BS1 and an S1-equivariant map f̃ : M → ES1 such that

M
f̃ //

q

��

ES1

q̃
��

B
f // BS1

commutes.
Now, let α0 be a normalized connection form on ES1. Since f̃ is S1-

equivariant, the pull-back f̃∗α0 is also a normalized connection form on M
so that we have f∗Θα0

= Θ
f̃∗α0

. Furthermore, the above diagram induces a
bundle morphism

M ×S1 C f̃C //

qC

��

ES1 ×S1 C

q̃C
��

B
f // BS1

for any fixed linear S1-action on C where qC (q̃C, respectively) is an extension
of q (q̃, respectively). Therefore, by the naturality of characteristic classes, it
is enough to show that [Θα0

] is equal to the first Chern class of the complex
line bundle

O(1) := ES1 ×S1 C→ BS1

where S1 acts on ES1 × C by

t · (x, z) = (t · x, tz)

for every t ∈ S1 and (x, z) ∈ ES1 × C. Then it follows from Corollary 3.9.
�

Let us consider a fixed-point-free S1-manifoldM . Even though the action
is not free, we can find a connection form as follows.

Proposition 3.3. Let (M,ψ) be a closed fixed-point-free S1-manifold. Then
there exist an s1-valued 1-form α, called a connection form on M , such that

• α(X) = X for every X ∈ s1, and



i
i

“1-Cho” — 2019/4/30 — 11:51 — page 15 — #15 i
i

i
i

i
i

On the Chern numbers for pseudo-free circle actions 15

• α is S1-invariant.

Proof. Let ` be a least common multiple of the orders of the isotropy sub-
groups of the elements in M and let Z` be the cyclic subgroup of S1 of order
`. Then we have a quotient map π` : M →M/Z` and the quotient space
M/Z` becomes an orbifold. Note that S1/Z` acts on the quotient space
M/Z` freely so that M/Z` is a principal S1/Z`-bundle over B = M/S1. The
slice theorem 2.1 implies that the quotient space B is an orbifold, in particu-
lar, B is paracompact, see [Sa] for the detail. Since any principal S1-bundle
over a paracompact space admits a connection form(c.f. [KN, Chap II]),
there exists a connection form α′ on M/Z`. Then it is not hard to check
that

α =
1

`
π∗`α

′

is our desired 1-form. �

Lemma 3.4. Let α be a normalized connection form on M . There exists
a unique closed 2-form Θα on M/S1 such that q∗Θα = dα where q : M →
M/S1 is the quotient map. Moreover, [Θα] ∈ H2(M/S1;R) does not depend
on the choice of α.

Proof. The proof is exactly same as in the proof of Proposition 3.2. �

Now, we define the first Chern class of a fixed-point-free S1-manifold as
follows.

Definition 3.5. Let (M,ψ) be a closed fixed-point-free S1-manifold. Let
α be a normalized connection form on M . Then we call [Θα] ∈ H2(M/S1;R)
the first Chern class (or the Euler class) of (M,ψ) and we denote by c1(M,ψ).

Remark 3.6. [CdS, page 194] The reader should keep in mind that a
connection form α is an s1-valued 1-form, and we need to identify s1 with R
via ε to regard α as a usual R-valued differential form. For example, Audin
[Au, Example V.4.4] used an identification map ε( ∂∂θ ) = 2π and defined the
Chern class by [ 1

2πΘα]. In [CdS], Cannas da Silva used the same identification
map as in our paper.
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16 B. An and Y. Cho

Note that since α is normalized, we have
∫
S1 α = 1. Thus if M is of

dimension 2n+ 1, then we have

〈c1(M,ψ)n, [B]〉 =

∫
B

Θα ∧Θα ∧ · · · ∧Θα =

∫
M
α ∧ (dα)n

where B = M/S1 and [B] ∈ H2n(B;Z) is the fundamental homology class
of B.

Remark 3.7. The theory of characteristic classes of orbibundles is well
established in the case of good orbibundles. In fact, they are defined as ele-
ments of orbifold cohomology. In our case, B is the quotient space of M by
a pseudo-free S1-action and the orbifold cohomology H∗orb(B) is the same
as the equivariant cohomology H∗S1(M) (see [ALR, Proposition 1.51]). Also,
the fibration

qS1 : M ×S1 ES1 →M/S1 = B

induces an isomorphism q∗S1 : H∗(B)→ H∗S1(M) with coefficients in a field
(see [ALR, Proposition 2.12]). With this identification, one can see that
the Chern class c1(M,ψ) ∈ H2(B;R) defined above is actually the same as
the Chern class c1(Ẽ) ∈ H2(M ×S1 ES1) = H2

orb(B;R) (defined as in [ALR,
page 45]) of the associated line bundle

Ẽ = (M × C)×S1 ES1 →M ×S1 ES1

In other words, we have

q∗S1(c1(M,ψ)) = c1(Ẽ).

The following proposition gives an explicit computation of the Chern
numbers of odd-dimensional spheres equipped with linear S1-actions, which
we use crucially to prove Proposition 1.3 and Theorem 1.4.

Proposition 3.8. Suppose that an S1-action ψ on S2n−1 ⊂ Cn is given by

t · (z1, z2, . . . , zn) = (tp1z1, t
p2z2, . . . , t

pnzn)

for some (p1, p2, . . . , pn) ∈ (Z \ {0})n. Then

〈c1(S2n−1, ψ)n, [S2n−1/S1]〉 =
1∏n
i=1 pi

.
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On the Chern numbers for pseudo-free circle actions 17

Proof. We will use real coordinates (xj , yj) = zj = xj + iyj for j = 1, 2, . . . , n.
Recall that s1 is identified with R which is parametrized by θ and t = e2πiθ.
For X = ∂

∂θ , we have

X = 2π
∑
j

pj

(
−yj

∂

∂xj
+ xj

∂

∂yj

)
.

Define a connection form α on S2n−1 such that

α =
1

2π

∑
j

1

pj
(−yjdxj + xjdyj).

Then we can easily check that α is a normalized connection form on S2n−1.
By differentiating α, we have

dα =
1

2π

∑
j

1

pj
(−dyj ∧ dxj + dxj ∧ dyj)

=
1

2π

∑
j

2

pj
dxj ∧ dyj

=
1

π

∑
j

1

pj
dxj ∧ dyj .

Therefore, we have∫
S2n−1

α ∧ (dα)n−1 =

∫
D2n

(dα)n = π−n
n!∏
j pj

Vol(D2n) =
1∏
j pj

where the first equality comes from the Stoke’s theorem. �

Corollary 3.9. Let π : ES1 → BS1 be the universal S1-bundle and let α0

be a normalized connection form on ES1. Then the curvature form Θα0
on

BS1 represents the first Chern class of the complex line bundle

O(1) = ES1 ×S1 C

where S1 acts on ES1 × C by t · (x, z) = (t · x, tz) for every t ∈ S1 and
(x, z) ∈ ES1 × C.
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18 B. An and Y. Cho

Proof. Recall that the universal bundle q̃ : ES1 → BS1 can be constructed
as an inductive limit of the sequence of Hopf fibrations

S3 � � //

��

S5 � � //

��

· · · S2n+1

��

· · · � � // ES1 ∼ S∞

��
CP 1 � � // CP 2 � � // · · · CPn · · · � � // BS1 ∼ CP∞,

where S1 acts on S2n−1 ⊂ Cn by

t · (z1, z2, . . . , zn) = (tz1, tz2, . . . , tzn).

Since O(1) is the dual bundle of the tautological line bundle O(−1) over
BS1, we have

c1(O(1)) = u ∈ H2(BS1;Z)

where u is the positive generator of H2(BS1;Z) ∼= H2(CP∞;Z). Thus it is
enough to show that

〈
[Θα0

], [CP 1]
〉

=

∫
S3

α ∧ dα = 1.

This follows from Proposition 3.8. �

Remark 3.10. In [Ka, page 245], Kawasaki described a cohomology ring
structure (over Z) of the quotient space S2n+1/S1 where S1-action ψ on
S2n+1 is given by

t · (z0, z1, z2, . . . , zn) = (tp0z0, t
p1z1, . . . , t

pnzn)

for any positive integers p0, p1, . . . , pn such that gcd(p0, p1, . . . , pn) = 1. The
ring structure of H∗(S2n+1/S1;Z) is as follows. Let γk be the positive gen-
erator of H2k(S2n+1/S1;Z) ∼= Z. Then

γ1 · γk =
`1`k
`k+1

γk+1

where

`k = lcm

{
pi0pi1 · · · pik

gcd(pi0 , pi1 , . . . , pik)

∣∣∣∣ 0 ≤ i0 < · · · < ik ≤ n
}
.
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In particular, we have `1 = lcm(p0, p1, . . . , pn) and `n = p0p1 · · · pn since the
action is effective. Then it is not hard to show that

γn1 =
`n1
`n
γn.

On the other hand, Godinho [Go, Proposition 2.15] proved that the
action has the first Chern class

c1(S2n+1, ψ) =
γ1

lcm(p0, p1, . . . , pn)
=
γ1

`1
.

Consequently, the Chern number is

〈c1(S2n+1, ψ)n, [S2n+1/S1]〉 =
1

`n
〈γn, [S2n+1/S1]〉 =

1

p0p1 · · · pn

which coincides with Proposition 3.8.

Remark 3.11. In [Lia], Liang studied the Chern number of a (2n+ 1)-
dimensional homotopy sphere Σ2n+1 equipped with a differentiable pseudo-
free S1-action

φ : S1 × Σ2n+1 → Σ2n+1

under certain assumption. More precisely, he proved that if there are exactly
k exceptional orbits C1, . . . , Ck in Σ2n+1 with isotropy subgroups Zq1 , . . . ,Zqk
for some positive integers q1, . . . , qk such that gcd(qi, qj) = 1 for each i, j with
i 6= j, then

〈c1(Σ2n+1, φ)n, [Σ2n+1/S1]〉 = ± 1

q1 · · · qk
.

His result does not involve the condition “modulo Z” since the proof relies
on the fact [MY] that there exists an S1-equivariant map of degree ±1 from
Σ2n+1 to S2n+1 where an S1-action φ′ on S2n+1 is given by

t · (z1, . . . , zn+1) = (tq1···qkz1, tz2, . . . , tzn+1).

Thus we can obtain

〈c1(Σ2n+1, φ)n, [Σ2n+1/S1]〉 = ±〈c1(S2n+1, φ′)n, [S2n+1/S1]〉 = ± 1

q1 · · · qk

where the equality on the right hand side comes from Proposition 3.8. Conse-
quently, we cannot extend Liang’s result (without “module Z”) to a general
case by the lack of such an S1-equivariant map to S2n+1.
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20 B. An and Y. Cho

4. Proofs of Proposition 1.3 and Theorem 1.4

In this section, we give the complete proofs of Proposition 1.3 and Theo-
rem 1.4. Throughout this section, for a given oriented manifold M , we denote
M with the opposite orientation by −M .

Definition 4.1. Let (M,ψ) be a compact oriented fixed-point-free S1-
manifold with free S1-boundary ∂M , i.e., ψ is free on ∂M . A resolution N of
(M,ψ) is a triple (N,φ, h) consisting of a compact oriented free S1-manifold
(N,φ) with boundary ∂N and an orientation-preserving S1-equivariant dif-
feomorphism h : ∂N → ∂M with respect to φ and ψ.

Remark 4.2. Suppose that M and N are given as in Definition 4.1. Then
M/S1 has singularities, while N/S1 does not. If W is a singular space and
if there exists a subset of W which is diffeomorphic to M/S1, then we can
always remove M/S1 and glue N/S1 along ∂M/S1. In this manner, we can
think of

W̃ :=
(
W \ (M̊/S1)

)⊔
N/S1

as a resolution of W . This is the reason why we use the terminology ‘reso-
lution’ in Definition 4.1.

Let (M,ψ) be an oriented compact fixed-point-free S1-manifold with free
S1-boundary ∂M , and let N = (N,φ, h) be a resolution of (M,ψ). Then we
can glue M and N along their boundaries ∂M and ∂N by using h as follows.

By the equivariant collar neighborhood theorem [K, Theorem 3.5], there
exist closed S1-equivariant neighborhoods of ∂M and ∂N which are S1-
equivariantly diffeomorphic to ∂M × [0, ε] and ∂N × [0, ε], respectively, where
S1 acts on the left factors. Then we may extend h to a map h on ∂N × [0, ε]
to ∂M × [0, ε] as

h : ∂N × [0, ε] → ∂M × [0, ε]

(x, t) 7→ (h(x), ε− t).

Note that the extended map h is S1-equivariant and orientation-reversing.
Thus we can glue M̊ and −N̊ along ∂M × (0, ε) and ∂N × (0, ε) via h. Thus
we get a closed fixed-point-free S1-manifold

MN = M̊ th −N̊ ,
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where the S1-action ψN on MN is given by

ψN = ψ th φ.

Notice that if ψ is pseudo-free, then so is ψN.

Lemma 4.3. Let (M,ψ) be a compact fixed-point-free S1-manifold with free
S1-boundary ∂M . Suppose that there exists a resolution N of (M,ψ). Then
e(MN, ψN) is independent of the choice of a resolution N.

Proof. Suppose that there are two resolutions N1 = (N1, φ1, h1) and
N2 = (N2, φ2, h2) of (M,ψ) so that we have two closed fixed-point-free S1-
manifolds

(MN1
, ψN1

) = (M̊ th1
−N̊1, ψ th1

φ1), and

(MN2
, ψN2

) = (M̊ th2
−N̊2, ψ th2

φ2).

For the sake of simplicity, we denote by M i = MNi
and ψi = ψNi

for each
i = 1, 2. Then our aim is to prove that

e(M1, ψ1) = e(M2, ψ2).

Now, let α∂ be a connection form on ∂M . Then α∂ can be extended
to a connection form, which we still denote by α∂ , on ∂M × [0, ε] via the
projection ∂M × [0, ε]→ ∂M . Let α be a connection form on M such that
the restriction of α to a closed collar neighborhood ∂M × [0, ε] is α∂ . Such
an α always exists by the existence of a partition of unity (see [KN, Theorem
2.1]). Similarly, for each i = 1, 2, we can construct a connection form αi on
Ni such that the restriction of αi on ∂Ni × [0, ε] is the pull-back h

∗
iα∂ .

Since α and αi agree on ∂M × [0, ε] and ∂Ni × [0, ε] via hi, we can define
a connection form αi on M i by gluing α and αi via hi. Then we have

e(M1, ψ1)− e(M2, ψ2) ≡
∫
M1

α1 ∧ (dα1)n −
∫
M2

α2 ∧ (dα2)n

≡
∫

(M̊\∂M×(0,ε))t−N̊1

α1 ∧ (dα1)n

−
∫

(M̊\∂M×(0,ε))t−N̊2

α2 ∧ (dα2)n

≡
∫
N2

α2 ∧ (dα2)n −
∫
N1

α1 ∧ (dα1)n (modZ).
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22 B. An and Y. Cho

On the other hand, h := h−1
2 ◦ h1 : ∂N1 → ∂N2 is an orientation-

preserving S1-equivariant diffeomorphism so that (N2, φ2, h) is a resolution
of (N1, φ1). Thus we can glue N1 and N2 along the collar neighborhoods of
their boundaries via h. If we let

(N,φ) = (N̊2 th −N̊1, φ2 th φ1),

then (N,φ) becomes a closed free S1-manifold. In particular, αi on ∂Ni ×
[0, ε] agree with h

∗
iα∂ so that there exists a connection form α on N such

that α|N̊i = αi|N̊i for each i = 1, 2. Consequently, since φ is free, we have

0 ≡
∫
N
α ∧ (dα)n (modZ) =

∫
N̊2\∂N2×(0,ε)t−N̊1

α ∧ (dα)n

=

∫
N2

α2 ∧ (dα2)n −
∫
N1

α1 ∧ (dα1)n −
∫
∂N2×(0,ε)

α2 ∧ (dα2)n.

Since α2 on ∂N2 × (0, ε) is the same as h
∗
2α∂ and α∂ ∧ (dα∂)n = 0, the last

term vanishes. Therefore∫
N2

α2 ∧ (dα2)n −
∫
N1

α1 ∧ (dα1)n ≡ 0 (modZ)

which completes the proof. �

In general, for a compact fixed-point-free S1-manifold with free S1-
boundary, we do not know whether a resolution always exists. However, if
we consider a closed tubular neighborhood of an isolated exceptional orbit,
then a resolution always exists (see Proposition 1.3). To show this, suppose
that there exists a closed S1-manifold (M,ψ) having only one exceptional
orbit C. Then the local data of (M,ψ) is given by

L(M,ψ) = {(C, (p;−→q ))},

for some p = p(C) ∈ N and −→q = −→q (C) = (q1, q2, . . . , qn) ∈
(
Z×p
)n

. Then by
Proposition 1.1, there exists a tubular neighborhood U ∼= S1 × Cn of C such
that the S1-action is given by

t · (w, z1, z2, . . . , zn) = (tpw, tq1z1, t
q2z2, . . . , t

qnzn)

for every t ∈ S1 and (w, z1, z2, . . . , zn) ∈ S1 × Cn. Observe that the comple-
ment M \ U of U defines a resolution of U . Thus Lemma 4.3 implies that
e(M,ψ) depends only on (U , ψ|U ), or equivalently, the local invariant (p;−→q )
of C. We first show the existence of such an (M,ψ) in the case where n = 1.
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Notation 4.4. From now on, we denote the closed unit disk in C by D and
identify U with S1 ×Dn. Moreover, we denote (S1 ×Dn, (p; q1, q2, . . . , qn))
the space S1 ×Dn equipped with an S1-action given by

t · (w, z1, z2, . . . , zn) = (tpw, tq1z1, t
q2z2, . . . , t

qnzn)

for every t ∈ S1 and (w, z1, z2, . . . , zn) ∈ S1 ×Dn.

Lemma 4.5. Let p > 1 be an integer and let q ∈ Z×p . Then there exists
a 3-dimensional closed pseudo-free S1-manifold (M,ψ) having exactly one
exceptional orbit C of (p; q)-type. Furthermore, we have

e(M,ψ) =
q−1

p
(modZ)

where q−1q ≡ 1 in Z×p .

Proof. By Proposition 1.1 and Definition 2.4, there exists an S1-equivariant
closed tubular neighborhood of C isomorphic to (S1 ×D, (p; q)). Let m =
q−1 be the inverse of q modulo p and a be an integer satisfying

pa+mq = 1.

Now, let us consider a linear S1-action ψ on S3 = ∂(D ×D) ⊂ C2 given by

t · (z1, z2) = (tpz1, tz2).

We first claim that S3/Zm with the induced S1/Zm-action, namely ψ, is
our desired manifold (M,ψ) where Zm ⊂ S1 is the cyclic subgroup of S1 of
order m.

Observe that S3 = D × S1 ∪ S1 ×D so that

S3/Zm = D ×Zm S
1 ∪ S1 ×Zm D.

Since the S1-action on D × S1 is free, the induced S1/Zm-action ψ on D ×Zm
S1 is also free. Thus it is enough to show that the action ψ on S1 ×Zm D
has only one exceptional orbit of type (p; q).
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We apply Lemma 2.2 with m, x0 = m0 = p, and x1 = m1 = 1. Then we
can choose a1 = a and s1 = q and we have a S1-equivariant diffeomorphism

Φ : S1 ×Zm D → S1 ×D

where the target admits the residual S1-action given by

t · (w, z) = (tx0w, ts1z) = (tpw, tqz).

Therefore (S1 ×Zm D,ψ) is S1-equivariantly diffeomorphic to (S1 ×D, (p; q))
and so (S3/Zm, ψ) has exactly one exceptional orbit of (p; q)-type as desired.

On the other hand, by Proposition 3.8, we have

e(S3, ψ) =
1

p
.

Let X (Xm, respectively) be the fundamental vector field on S3 (S3/Zm,
respectively) with respect to ψ (ψ, respectively). Then the quotient map
q : S3 → S3/Zm maps the fundamental vector field X to mXm. Thus if we
choose any connection form α on S3/Zm, then 1

mq
∗α is a connection form

on S3. Therefore, we have

e(S3/Zm, ψ) =

∫
S3/Zm

α ∧ dα =
1

m

∫
S3

q∗α ∧ d(q∗α)

= m

∫
S3

1

m
q∗α ∧ 1

m
d(q∗α)

=
m

p
≡ q−1

p
(modZ).

�

Remark 4.6. In Lemma 4.5, (M,ψ) is not unique. For example, if (M,ψ)
is given in Lemma 4.5 and if we perform an S1-equivariant Dehn surgery
along a free orbit in (M,ψ), then we get a new pseudo-free S1-manifold

(M̃, ψ̃) having exactly one exceptional orbit of (p; q)-type.

To prove Proposition 1.3, we need the following series of lemmas.

Lemma 4.7. Suppose that (M,ψ) be a (2n− 1)-dimensional closed pseudo-
free S1-manifold having only one exceptional orbit C of (p; q1, q2, . . . , qn−1)-
type where p ∈ N and (q1, . . . , qn−1) ∈ (Z×p )n−1. Then there exists a (2n+ 1)-

dimensional closed pseudo-free S1-manifold (M̃, ψ̃) having only one orbit C̃

of (p; q1, q2, . . . , qn−1, 1)-type. Moreover, we have e(M,ψ) = e(M̃, ψ̃).
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Proof. Recall that D is the unit disk in C. Let us consider a manifold M ×D
with an S1-action ψ given by

t · (x, z) := (t · x, tz)

for every t ∈ S1 and (x, z) ∈M ×D. Then it is obvious that ψ has only one
exceptional orbit C × {0} of (p; q1, q2, . . . , qn−1, 1)-type. Thus it is enough
to construct a resolution of (M ×D,ψ).

Let E = M ×S1 D with an S1-action φ given by

t · [x, z] = [t · x, z] = [x, t−1z]

for every t ∈ S1 and [x, z] ∈M ×S1 D. Then we have ∂E = M ×S1 S1 = M
and φ on ∂E coincides with ψ. Thus the product space N = E × S1 with
an S1-action φ given by

t · ([x, z], w) = (t · [x, z], tw)

has a boundary ∂N = M × S1 such that φ|∂N = ψ|M×S1 via the canonical
identification map h : ∂(M ×D)→ ∂N = ∂(E × S1). Obviously, φ is free on
N so that (N,φ, h) is a resolution of (M ×D,ψ) ifN is smooth. However, the
problem is that E is not smooth and neither is N in general. In fact, there is
only one isolated singularity C ×S1 {0} on the zero section M ×S1 {0} ⊂ E
where C is the unique exceptional orbit of (M,ψ). Locally, a neighborhood
of C ×S1 {0} is S1-equivariantly diffeomorphic to

(S1 × Cn−1)×S1 C ∼= Cn−1 ×Zp C,

where S1-action φ on Cn−1 ×Zp C is given by

t · [z1, z2, . . . , zn−1, z] = [z1, z2, . . . , zn−1, t
−1z]

for every t ∈ S1 and [z1, z2, . . . , zn−1, z] ∈ Cn−1 ×Zp C. In other words, C ×S1

{0} corresponds to the origin 0 in Cn−1 ×Zp C which is a cyclic quotient
singularity fixed by φ. Furthermore, it is a toroidal singularity, i.e., Cn−1 ×Zp
C is an affine toric variety with the isolated singularity 0 equipped with a
(C∗)n-action given by

(t1, t2, . . . , tn) · [z1, z2, . . . , zn−1, z] = [t1z1, t2z2, . . . , tn−1zn−1, tnz]

for every (t1, t2, . . . , tn) ∈ (C∗)n and [z1, z2, . . . , zn−1, z] ∈ Cn−1 ×Zp C such
that φ acts as a subgroup of (C∗)n. Therefore, by [KKMS, Theorem 11], there
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exists a (C∗)n-equivariant resolution of Cn−1 ×Zp C. Consequently, there ex-
ists a φ-equivariant resolution E′ of E with an extended S1-action φ′. Thus
E′ × S1 admits a free S1-action φ

′
given by

t · (x,w) = (t · x, tw)

for every t ∈ S1 and (x,w) ∈ E′ × S1. Since ∂E′ = ∂E via the canonical

identification map, say h′, we have a triple (E′ × S1, φ
′
, h′) which is a resolu-

tion of (M ×D,ψ). Therefore, we get a (2n+ 1)-dimensional closed pseudo-

free S1-manifold (M̃, ψ̃)

M̃ = M ×D th′ E
′ × S1,

ψ̃ = ψ th′ φ
′

where h
′
: ∂(E′ × S1)× [0, ε]→ ∂(M ×D)× [0, ε] is an S1-equivariant

orientation-reversing diffeomorphism defined by h′ as before. Obviously,
(M̃, ψ̃) has exactly one exceptional orbit of type (p; q1, q2, . . . , qn−1, 1).

Now, it remains to show that e(M̃, ψ̃) = e(M,ψ). Let β = dθ be the
normalized connection form on D \ {0} with respect to an S1-action on D
given by t · z = tz where

D = {re2πiθ|r, θ ∈ [0, 1]}.

We consider the pull-back of β|∂D=S1 along the natural projection E′ × S1 →
S1 and denote by β again. Then β becomes a normalized connection form
on (E′ × S1, φ

′
).

We will construct a global normalized connection form on (M̃, ψ̃) as
follows. Let α be a normalized connection form on (M,ψ) and let f : [0, 1]→
[0, 1] be a smooth function such that f(r) ≡ 0 near r = 0 and f(r) ≡ 1 near
r = 1. Let

α̂ = (1− f(r))α+ f(r)β

be a one-form on M ×D where r = |z| for z ∈ D. Though β is not defined on
the whole M ×D, the one-form α̂ is well-defined on the whole M ×D since
f ≡ 0 near r = 0. Moreover, it is obvious that α̂ is a normalized connection
form on M ×D. In particular, α̂ coincides with β on a neighborhood of
∂(E′ × S1) = M × S1 = ∂(M ×D). Thus we can glue α̂ and β so that we
get a global normalized connection form α̃, i.e. α̃ is a connection form on
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(M̃, ψ̃) such that

α̃|∂(E′×S1) = β and α̃|M×D = α̂.

Since dβ = 0 on E′ × S1, we have

e(M̃, ψ̃) ≡
∫
M̃
α̃ ∧ (dα̃)n (modZ)

=

∫
M×D

α̂ ∧ (dα̂)n +

∫
E′×S1

β ∧ (dβ)n −
∫
∂(E′×S1)×(0,ε)

β ∧ (dβ)n

=

∫
M×D

α̂ ∧ (dα̂)n + 0 + 0

=

∫
M×D

(
(1− f)n+1

)′
β ∧ dr ∧ α ∧ (dα)n

=

∫ 1

0
−
(
(1− f)n+1

)′
dr

∫
∂D

β

∫
M
α ∧ (dα)n

= e(M,ψ)

which completes the proof. �

Lemma 4.8. Let (M,ψ) be a (2n+ 1)-dimensional closed pseudo-free S1-
manifold with exactly one exceptional orbit C of (p;−→q )-type where p ∈ N
and −→q ∈ (Z×p )n. Then for any r ∈ N with gcd(p, r) = 1, the quotient space
M/Zr with the induced S1/Zr-action ψr is also a pseudo-free S1-maifold
with exactly one exceptional orbit of type (p; r−1−→q ) where r−1 is the inverse
of r in Z×p . Moreover, we have

e(M/Zr, ψr) = rn · e(M,ψ) (modZ).

Proof. Since gcd(p, r) = 1, it is straightforward that the Zr-action on M is
free so that M/Zr is a smooth manifold. Let U be an S1-equivariant neigh-
borhood of C. It is also obvious that ψ is free on M \ U and therefore the
induced S1/Zr-action ψr is also free on (M \ U)/Zr. Therefore, there is no
exceptional orbit in M \ U so that we need only to care about a neighbor-
hood U of C.

We apply Lemma 2.2 with parameters m = r, x0 = m0 = p and xi =
mi = qi since Zr is a subgroup of S1. Then U/Zr is S1-equivalently diffeo-
morphic to S1 × Cn such that the induced S1/Zr-action on S1 × Cn is given
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by

t · (w, z1, . . . , zn) = (tpw, ts1z1, . . . , t
snzn) = (tpw, tr

−1q1z1, . . . , t
r−1qnzn).

where r−1 is the inverse of r in Z×p .
Now, it remains to show that

e(M/Zr, ψr) = rn · e(M,ψ) (modZ).

Let X and Xr be the fundamental vector fields of (M,ψ) and (M/Zr, ψr),
respectively. Then the quotient map q : M →M/Zr maps X to rXr. Let α
be a normalized connection form on M/Zr. Then we can easily check that
1
r q
∗α is a normalized connection form on M . Then,

e(M/Zr, ψr) =

∫
M/Zr

α ∧ (dα)n =
1

r

∫
M
q∗α ∧ (q∗dα)n

= rn
∫
M

1

r
q∗α ∧ (

1

r
q∗dα)n

= rn · e(M,ψ)

which completes the proof. �

Now we are ready to prove Proposition 1.3.

Proposition 4.9 (Proposition 1.3). Let p > 1 be an integer and let
−→q = (q1, . . . , qn) ∈ (Z×p )n. Then there exists a (2n+ 1)-dimensional oriented
closed pseudo-free S1-manifold (M,ψ) having exactly one exceptional orbit
C of (p;−→q )-type. Moreover,

e(M,ψ) =
q−1

1 q−1
2 · · · q−1

n

p
(modZ)

where q−1
j is the inverse of qj in Z×p .

Proof. Let ri = qiq
−1
i+1 ∈ Z×p for i < n and let rn = qn. Then

qi ≡ riri+1 · · · rn ∈ Z×p

for every i = 1, 2, . . . , n. Thus C is of (p; r1r2 · · · rn, . . . , rn−1rn, rn)-type.
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By Lemma 4.5, there exists a three-dimensional closed pseudo-free S1-
manifold (M̃1, ψ̃1) having exactly one orbit of type (p; r1) and

e(M̃1, ψ̃1) =
r−1

1

p
=
q−1

1 q2

p
(modZ).

By Lemma 4.7, there exists a five-dimensional closed pseudo-free S1-manifold
(M2, ψ2) having exactly one orbit of type (p; r1, 1) and

e(M2, ψ2) = e(M̃1, ψ̃1).

Then, by Lemma 4.8, M̃2 = M2/Zr−1
2

with the induced S1/Zr−1
2

-action ψ̃2 is

a five-dimensional closed pseudo-free S1-manifold having exactly one orbit
of type (p; r1r2, r2) and

e(M̃2, ψ̃2) = (r−1
2 )2 · e(M2, ψ2)

= (q−2
2 q2

3) · e(M̃1, ψ̃1)

=
q−1

1 q−1
2 q2

3

p
(modZ)

Inductively, we get a (2n+ 1)-dimensional closed pseudo-free S1-manifold

(M̃n, ψ̃n) having exactly one orbit of type (p; r1r2 · · · rn, . . . , rn−1rn, rn) and

e(M̃n, ψ̃n) = (r−1
n )n · e(Mn, ψn)

= (q−nn ) · e(M̃n−1, ψ̃n−1)

= (q−nn ) ·
q−1

1 q−1
2 · · · q

−1
n−1q

n−1
n

p

=
q−1

1 q−1
2 · · · q−1

n

p

which completes the proof. �

Now, we state and prove our main theorem 1.4.

Theorem 4.10 (Theorem 1.4). Suppose that (M,ψ) is a (2n+ 1)-dimen-
sional oriented closed pseudo-free S1-manifold with the set E of exceptional
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orbits. Then

e(M,ψ) =
∑
C∈E

q1(C)−1q2(C)−1 · · · qn(C)−1

p(C)
(modZ)

where qj(C)−1 is the inverse of qj(C) in Z×p(C).

Proof. We use induction on the number of exceptional orbits. Suppose that
|E| = 1. Then it follows from Lemma 4.3 that Theorem 1.4 coincides with
Proposition 1.3.

Now, let us assume that Theorem 1.4 holds for |E| = k − 1. Let (M,ψ)
be a (2n+ 1)-dimensional closed pseudo-free S1-manifold with E = {C1, C2,
. . . , Ck}.

Assume that C1 is of (p;−→q )-type for some integers p ≥ 2 and −→q ∈ (Z×p )n.
By Proposition 1.3, there exists a (2n+ 1)-dimensional closed pseudo-free
S1-manifold (N,φ) having exactly one exceptional orbit C ′ of (p;−→q )-type
such that

e(N,φ) =
q−1

1 q−1
2 · · · q−1

n

p
(modZ).

Let U and U ′ be S1-equivariant tubular neighborhoods of C1 and C ′ respec-
tively so that

U ∼= (S1 ×Dn, (p;−→q )) ∼= U ′

where D is the unit disk in C. Let α be a normalized connection form on
S1 ×Dn defined as a pull-back of a normalized connection form on (S1, p) via
the projection map (S1 ×Dn, (p;−→q ))→ (S1, p). Let αU (αU ′ , respectively)
be the normalized connection form on U (U ′, respectively) induced by α via
the identifications above. Let αM (αN , respectively) be an extension of αU
(αU ′ , respectively) to whole M (N , respectively) so that

• dαM = 0 on U and

• dαN = 0 on U ′.

Since there exists an obvious S1-equivariant diffeomorphism h : ∂U ′ → ∂U ,
we can easily check that the triple (N \ U ′, φ|N\U ′ , h|∂U ′) is a resolution of
(M \ U , ψ|M\U ) since φ is free on N \ U ′.

Now, let (M,ψ) be a closed S1-manifold obtained by gluing (M \ U ,
ψ|M\U ) and (N \ U ′, φ|N\U ′). Since h∗(αM |∂U )=αN |∂U ′ , we can glue αM |M\U
and αN |N\U ′ so that we get a normalized connection form α on M such that

• α|M\U = αM and
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• α|N\U ′ = αN .

Then,

e(M,ψ)− e(M,ψ) =

∫
M
αM ∧ (dαM )n −

∫
M
α ∧ (dα)n

=

∫
U
αM ∧ (dαM )n −

∫
−N\U ′

αN ∧ (dαN )n

=

∫
N
αN ∧ (dαN )n

where the last equality comes from the fact that∫
U
αM ∧ (dαM )n =

∫
U ′
αN ∧ (dαN )n = 0.

Since (M,ψ) has (k − 1) exceptional orbits C2, . . . , Ck, by induction hypoth-
esis, we have

e(M,ψ) = e(M,ψ) +

∫
N
αN ∧ (dαN )n

= e(M,ψ) + e(N,φ) =
∑
C∈E

q1(C)−1q2(C)−1 · · · qn(C)−1

p(C)
(modZ)

which completes the proof. �

5. Applications

In this section, we illustrate several applications of Theorem 1.4.
Let (M,ψ) be a (2n+ 1)-dimensional closed pseudo-free S1-manifold

such that e(M,ψ) = 0. Then 1.4 implies that

(1)
∑
C∈E

q−1
1 (C)q−1

2 (C) · · · q−1
n (C)

p(C)
≡ 0 (modZ)

where E is the set of exceptional orbits of ψ. Thus the condition e(M,ψ) = 0
gives the constraint (1) on the local data L(M,ψ). We first give the proofs
of Corollary 1.5 and Corollary 1.6 as we see below.

Corollary 5.1 (Corollary 1.5). Suppose that (M,ψ) is a closed oriented
pseudo-free S1-manifold with e(M,ψ) = 0. If the action is not free, then M
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contains at least two exceptional orbits. If M contains exactly two exceptional
orbits, then they must have the same isotropic subgroup.

Proof. Recall that the condition ‘pseudo-free’ implies that a numerator of
each summand in (1) is never zero. Thus the first claim is straightforward
by Theorem 1.4. If there are exactly two exceptional orbits C1 and C2, then

q(C1)−1

p(C1)
+
q(C2)−1

p(C2)
≡ 0 (modZ)

where

q(Ci)
−1 = q1(Ci)

−1q2(Ci)
−1 · · · qn(Ci)

−1 ∈ Z×p(Ci)

for i = 1, 2. Then p(C2)q(C1)−1

p(C1) ≡ 0 (modZ) and p(C1)q(C2)−1

p(C2) ≡ 0 (modZ).

Thus p(C1) | p(C2) and p(C2) | p(C1) so that p(C1) = p(C2). �

Corollary 5.2 (Corollary 1.6). Suppose that (M,ψ) is an oriented closed
pseudo-free S1-manifold with e(M,ψ) = 0. If C is an exceptional orbit with
the isotropy subgroup Zp for some p > 1, there exists an exceptional or-
bit C ′ 6= C with the isotropy subgroup Zp′ for some integer p′ such that
gcd(p, p′) 6= 1.

Proof. Let C1, C2, . . . , Ck be exceptional orbits. Suppose that

gcd(p(C1), p(Ci)) = 1 for every i = 2, 3, . . . , k.

By Theorem 1.4,

q(C1)−1

p(C1)
+

K

p(C2)p(C3) · · · p(Ck)
≡ 0 (modZ)

for some K ∈ Z where q(C1) = q1(C1)q2(C1) · · · qn(C1). By multiplying both
sides by p(C2)p(C3) · · · p(Ck), we get

q(C1)−1 · p(C2)p(C3) · · · p(Ck)
p(C1)

∈ Z

which is a contradiction to the fact that

gcd(p(C1), q(C1)) = gcd(p(C1), p(Ci)) = 1

for i = 2, 3, . . . , k. Thus there exists some Cj 6= C1 with gcd(p(C1), p(Cj)) 6=
1. �



i
i

“1-Cho” — 2019/4/30 — 11:51 — page 33 — #33 i
i

i
i

i
i

On the Chern numbers for pseudo-free circle actions 33

Now, we illustrate two types of such manifolds. One is a product manifold
as follows.

Proposition 5.3 (Proposition 1.7). Let (M,ψ) be a (2n+ 1)-dimensional
oriented closed fixed-point-free S1-manifold. If M = M1 ×M2 for some closed
S1-manifolds M1 and M2 with positive dimensions, then e(M,ψ) = 0.

Proof. Note that our assumption for ψ implies that the projections π1 : M1 ×
M2 →M1 and π2 : M1 ×M2 →M2 are S1-equivariant. Since ψ is fixed-
point-free, either M1 or M2 cannot have a fixed point. Without loss of
generality, we may assume that M1 does not have a fixed point.

Let α1 be a connection form on M1. Then α := π∗1α1 becomes a connec-
tion form on M1 ×M2 and it satisfies∫

M1×M2

α ∧ (dα)n =

∫
M1

α1 ∧ (dα1)n = 0

for a dimensional reason. In particular, we have

e(M1 ×M2, ψ) ≡
∫
M1×M2

α ∧ (dα)n = 0 (mod Z).

�

Now, we will show that Theorem 1.4 and Proposition 5.3 induce some
well-known result on the fixed point theory of circle actions. Suppose that
(M,J) is a 2n-dimensional closed almost complex manifold equipped with
an S1-action with a discrete fixed point set MS1

. Then for each fixed point
z ∈MS1

, there exist non-zero integers q1(z), q2(z), . . . , qn(z), called weights
at z, such that the action is locally expressed by

t · (z1, z2, . . . , zn) = (tq1(z)z1, t
q2(z)z2, . . . , t

qn(z)zn)

for any t ∈ S1 where (z1, z2, . . . , zn) is a local complex coordinates centered
at z. Let us recall the Atiyah-Bott-Berline-Vergne localization theorem :

Theorem 5.4. [AB][BV] For any equivariant cohomology class γ ∈
H∗S1(M ;R), we have ∫

M
γ =

∑
z∈MS1

γ|z∏n
i=1 qi(z)x

where γ|z ∈ H∗S1(z;R) ∼= H∗(BS1) = R[x] is the restriction of γ onto z.
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Note that if we apply Theorem 5.4 to γ = 1 ∈ H0
S1(M), then Corol-

lary 1.8 is straightforward. However, we give another proof of Corollary 1.8
by using Theorem 1.4 as we see below.

Corollary 5.5 (Corollary 1.8). Let (M,J) be a closed almost complex
S1-manifold. Suppose that the action preserves J and that there are only
isolated fixed points. Then, ∑

z∈MS1

1∏n
i=1 qi(z)

= 0

where q1(z), . . . , qn(z) are the weights at z.

Proof. Let p be an arbitrarily large prime number such that p > qi(z) for
every z ∈MS1

and i = 1, 2, . . . , n. Suppose that

(2)
a

b
=

∑
z∈MS1

1∏n
i=1 qi(z)

6= 0

for some integers a and b. Then

ab−1 =
∑

z∈MS1

q1(z)−1q2(z)−1 · · · qn(z)−1 6= 0 in Zp

by the assumption, where qi(z)
−1 and b−1 are the inverses of qi(z) and b in

Z×p , respectively, for every i = 1, 2, . . . , n.
Let us consider the product space M × S1 with an S1-action ψ given by

t · (x,w) = (t · x, tpw)

for t ∈ S1 and (x,w) ∈M × S1. Then (M × S1, ψ) is a pseudo-free S1-
manifold such that the set E of exceptional orbit is

E =
{
{z} × S1 ⊂M × S1 | z ∈MS1

}
.

For each exceptional orbit {z} × S1, the local invariant is given by

(p; q1(z), q2(z), . . . , qn(z)).

By Theorem 1.4 and Proposition 5.3, we have∑
z∈MS1

q1(z)−1q2(z)−1 · · · qn(z)−1

p
≡ 0 (modZ).
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which is equivalent to∑
z∈MS1

q1(z)−1q2(z)−1 · · · qn(z)−1 = 0 in Zp.

which leads a contradiction. �

The other type of manifolds having e = 0 comes from equivariant sym-
plectic geometry. Here we give a brief introduction to the theory of circle
actions on symplectic manifolds.

Let M be a 2n-dimensional closed manifold. A differential 2-form ω on
M is called a symplectic form if ω is closed and non-degenerate, i.e.,

• dω = 0, and

• ωn is nowhere vanishing.

We call such a pair (M,ω) a symplectic manifold. A smooth S1-action on
(M,ω) is called symplectic if it preserves ω. Equivalently, an S1-action is
symplectic if LXω = diXω = 0 where X is the fundamental vector field on
M generated by the action. Thus if the action is symplectic, then iXω is a
closed 1-form so that it represents some cohomology class [iXω] ∈ H1(M ;R).
Now, let us assume that ω is integral so that [ω] ∈ H2(M ;Z). By a direct
computation, we can easily check that iXω is also integral. Thus we can
define a smooth map µ : M → R/Z ∼= S1 such that

µ(x) :=

∫
γx

iXω mod Z

where x0 is a base point and γx is any path γx : [0, 1]→M such that γx(0) =
x0 and γx(1) = x. We call µ a generalized moment map.

Lemma 5.6. [McD][CKS, Proposition 2.2] Let µ be a generalized moment
map. Then

dµ = iXω.

It is immediate consequences of Lemma 5.6 that µ is S1-invariant and
the set of critical points of µ is equal to MS1

. Let θ ∈ R/Z be a regular
value of µ. Then Fθ := µ−1(θ) is a (2n− 1)-dimensional closed fixed-point-
free S1-manifold. Note that the restriction ω|Fθ has one-dimensional kernel
generated by X on Fθ. Thus ω|Fθ induces a symplectic structure ωθ on the
quotient Mθ := Fθ/S

1 and we call (Mθ, ωθ) the symplectic reduction at θ.
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If we choose ε > 0 small enough so that Iθ := (θ − ε, θ + ε) ⊂ R/Z has no
critical value, then

µ−1(Iθ) ∼= Mθ × Iθ.

Thus we can compare [ωϑ] with [ωθ] in H2(M ;R) whenever ϑ ∈ Iθ. The fol-
lowing theorem due to Duistermaat and Heckman gives an explicit variation
formula of reduced symplectic forms.

Theorem 5.7. [DH] Let ψθ be the induced S1-action on Fθ. Then

[ωϑ]− [ωθ] = (ϑ− θ) · c1(Fθ, ψθ)

for every ϑ ∈ Iθ.

Now, we can define a function, called the Duistermaat-Heckman func-
tion, on Iθ such that

DH : Iθ → R
ϑ 7→ Vol(Mϑ, ωϑ)

where Vol(Mϑ, ωϑ) is a symplectic volume given by

Vol(Mϑ, ωϑ) =

∫
Mϑ

ωn−1
ϑ .

By Theorem 5.7, the Duistermaat-Heckman function DH(ϑ) is a locally poly-
nomial of degree n− 1 with the leading coefficient 〈c1(Fθ, ψθ)

n−1, [Mθ]〉. In
other words,

DH(ϑ) =

(∫
Mθ

c1(Fθ, ψθ)
n−1

)
(ϑ− θ)n−1 + · · ·+

∫
Mθ

ωn−1
θ

=

(∫
Mθ

c1(Fθ, ψθ)
n−1

)
ϑn−1 + · · · .

Proposition 5.8 (Proposition 1.10). Let (M,ω) be a closed symplectic
manifold equipped with a fixed-point-free S1-action ψ preserving ω. Let µ :
M → R/Z be a generalized moment map and let Fθ = µ−1(θ) for θ ∈ R/Z.
Then e(Fθ, ψ|Fθ) = 0.

Proof. Since the S1-action ψ on (M,ω) is fixed-point-free by assumption,
the Duistermaat-Heckman function DH is a polynomial defined on the whole
R/Z. Since any periodic polynomial is a constant function, all coefficients of
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ϑn−i in DH(ϑ) are zero for 1 ≤ i < n. Indeed, the coefficient of ϑn−i can be
expressed as

i∑
j=1

(
n− j
i− j

)
(−θ)i−j

∫
Mθ

c1(Fθ, ψθ)
n−jωj−1

for every i = 1, . . . , n. In particular, we have e(Fθ, ψθ) = 0 when i = 1. �

Furthermore, we have the following corollary.

Corollary 5.9. Let (M,ω) be a (2n+ 2)-dimensional closed symplectic
manifold with a fixed-point-free symplectic S1-action ψ. Assume that [ω] ∈
H2(M ;Z) and every submanifold fixed by some non-trivial finite subgroup
of S1 is of dimension two. Then we have

∑
S∈J

ω(S) · q
−1
1 (S)q−1

2 (S) · · · q−1
n (S)

p(S)
≡ 0 (modZ)

where J is the set of connected submanifolds of M having non-trivial isotropy
subgroups, ω(S) is the symplectic area of S, p(S) is the order of the isotropy
subgroup of S, (q1(S), . . . , qn(S)) is the weight-vector of Zp(S)-representation
on the normal bundle over S, and qi(S)−1 is the inverse of qi(S) in Z×p(S)
for every i = 1, . . . , n.

Proof. Let µ : M → R/Z be a generalized moment map for ψ. Without loss
of generality, by scailing ω if necessary, we may assume that µ∗dt = iXω =
dµ where dt is a volume form on R/Z such that

∫
R/Z dt = 1 and X is the

vector field generated by the S1-action ψ, see [Au, p. 273] for more details.
Since the action is fixed-point-free, there is no critical point of µ. Let θ ∈ R/Z
and we denote ψθ the induced action on Fθ = µ−1(θ).

Let J = {S1, . . . , Sk} be the set of connected symplectic submanifolds
of (M,ω) having non-trivial isotropy subgroups. Since each Si is two-
dimensional and the induced action on (Si, ω|Si) is fixed-point-free and sym-
plectic, we can easily see that Si is diffeomorphic to T 2 and the restriction
µ|Si becomes a generalized moment map for the induced symplectic S1-
action on (Si, ω|Si). Furthermore, each level set (µ|Si)−1(t) is the union of
finite number of S1-orbits for every t ∈ R/Z.

Thus Fθ ∩ Si = (µ|Si)−1(θ) is the union of finite number of S1-orbits for
each i = 1, . . . , k. We denote the number of connected components of Fθ ∩ Si
by ni. Consequentely, there are exactly n1 + · · ·+ nk exceptional S1-orbits
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in Fθ and hence (Fθ, ψθ) is a pseudo-free S1-manifold. By Theorem 1.4, we
have

k∑
i=1

ni ·
q−1

1 (Si)q
−1
2 (Si) · · · q−1

n (Si)

p(Si)
≡ 0 (modZ).

Observe that ni = ω(Si) since if we choose a loop γi : S1 → Si ∼= T 2 gener-
ating a gradient-like vector field with respect to µ|Si , then∫

Si

ω =

∫
γi

iXω = 〈dt, µ∗[γ]〉 = ni

for every 1 ≤ i ≤ k. This completes the proof. �

Remark 5.10. Any effective fixed-point-free symplectic circle action on a
closed symplectic four manifold satisfies the condition in Corollary 5.9.
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