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1640 J. W. Fish and R. Siefring

1. Introduction and the main result

Let (M, ξ = kerλ) be a closed contact 3-manifold equipped with a nonde-
generate contact form λ. Recall a complex structure J on ξ is said to be
compatible with the data (M,λ) if dλ(·, J ·) is a bundle metric on ξ. We
denote the set of complex structures J on ξ compatible with (M,λ) by
J (M,λ). Given a J ∈ J (M,λ) we can extend it in the usual way to an
R-invariant almost complex structure J̃ on R×M by requiring

J̃∂a = Xλ and J̃ |π∗Mξ = π∗MJ

where ∂a is the coordinate field along R and πM : R×M →M is the canon-
ical projection onto the second factor.

Given data (M,λ, J) where (M,λ) is a 3-manifold M with contact form
λ and J ∈ J (M,λ) is a compatible complex multiplication on ξ = kerλ, a
finite-energy pseudoholomorphic map in R×M is a quadruple (Σ, j,Γ, ũ)
where (Σ, j) is a compact Riemann surface, Γ ⊂ Σ is a finite set, and ũ =
(a, u) : Σ \ Γ→ R×M is a map satisfying

J̃ ◦ dũ = dũ ◦ j

and

0 < E(ũ) <∞

where the energy E(ũ) of the map is defined by

E(ũ) = sup
ϕ∈Ξ

∫
Σ\Γ

ũ∗d(ϕλ)

where Ξ is the collection of functions defined by

Ξ =
{
ϕ ∈ C∞(R, [0, 1]) |ϕ′(x) ≥ 0

}
.

A finite-energy pseudoholomorphic curve in R×M is then an equivalence
class C = [Σ, j,Γ, ũ] with respect to the equivalence relation of holomorphic
reparametrization. Since the energy of a pseudoholomorphic map is invari-
ant under holomorphic reparametrization of the domain, pseudoholomorphic
curves have a well-defined energy. A now well-known result of Hofer [24] tells
us that near the (nonremovable) punctures, finite-energy pseudoholomorphic
curves are asymptotic to periodic orbits of the Reeb vector field.
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Connected sums and finite energy foliations I 1641

A finite energy foliation F for the data (M,λ, J) is a collection of con-
nected finite-energy pseudoholomorphic curves with uniformly bounded en-
ergies whose images form a smooth foliation of R×M . We define the energy
E(F) of a foliation F to be the supremum of the energies of the curves in
the foliation, that is

E(F) = sup
C∈F

E(C).

A finite energy foliation F for the data (M,λ, J) is said to be stable if:

1) For any C ∈ F , C is either a trivial cylinder over a periodic orbit or
the Fredholm index ind(C) (see Section 3.4 below) is either 1 or 2.

2) For any two curves C1, C2 ∈ F with ind(Ci) ∈ {1, 2}, the holomorphic
intersection number from [50] (see Section 3.3 below) C1 ∗ C2 vanishes.

The word “stable” here is meant to connote the fact that both the existence
of such a finite energy foliation and its basic structure will persist under
suitable sufficiently small perturbations of the data (λ, J). As we will discuss
in Section 4 below, a stable finite energy foliation necessarily consists of only
punctured spheres and is invariant under the R-action on R×M given by
shifting the R-coordinate. The R-invariance in turn lets us conclude that the
projections of the curves in the foliation to the 3-manifold M are embedded,
transverse to the flow of the Reeb vector field, and foliate the complement
of a finite collection of periodic orbits in M .

The study of finite energy foliations was initiated by Hofer, Wysocki, and
Zehnder in [28] in which they use the existence of a finite energy foliation to
construct a global surface of section of disk type for a 3-dimensional strictly
convex energy surface in (R4,

∑2
i=1 dxi ∧ dyi). This work was extended in

[31] where the same authors show that any nondegenerate star-shaped hy-
persurface in R4 admits a stable finite energy foliation. Using this fact, they
then show that there exists a Baire set of star-shaped hypersurfaces in R4 so
that any given hypersurface in this set has either precisely two or infinitely
many periodic orbits.

Recently, Bramham has introduced the use of finite energy foliations to
the study of area-preserving maps of the disk [8, 9]. Using the foliations that
he constructs in [8], Bramham proves in [10] that every smooth, irrational
pseudorotation of the 2-disk is the uniform limit of a sequence of maps which
are each conjugate to a rotation about the origin. In [11], these foliations
are again used to prove there is a dense subset L∗ ⊂ L of the Liouville
numbers so that a pseudorotation of the disk with rotation number in L∗
has a sequence of iterates which converge uniformly to the identity map
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and thus such a pseudorotation can’t exhibit strong mixing. A discussion of
further applications of finite energy foliations to the study of disk maps can
be found in the survey [7].

The existence of finite energy foliations has also had applications in con-
tact and symplectic topology. Among these are Hind’s work on Lagrangian
unknottedness in Stein surfaces [23] and Wendl’s work on fillabilty of con-
tact 3-manifolds [60]. Further work either addressing existence of finite en-
ergy foliations or in which the existence of finite energy foliations plays a
role in dynamical or contact/symplectic topological results can be found in
[1, 2, 13–15, 20–22, 25, 29, 34–36, 38, 40, 43, 55, 56, 59, 61].

In the present series of papers we develop abstract tools for extending
previously known existence results for stable finite energy foliations. One
motivation for this work comes from the study of the planar, circular, re-
stricted three-body problem. Albers, Frauenfelder, van Koert and Paternain
show in [5] that near the two massive primaries, the regularized energy levels
below and slightly above the first Lagrange point are diffeomorphic respec-
tively to two copies of RP3 and the connected sum of two copies of RP3. In
[4], Albers, Frauenfelder, Hofer, van Koert, and the first author apply tech-
niques from [28] to construct finite energy foliations for many mass ratios
and regularized energy levels below the first Lagrange point. Since many
classical techniques to study the restricted three-body problem fail above
the first Lagrange point, it’s of interest to know whether the existence of
finite energy foliations for regularized energy surfaces below the first La-
grange point can be used to deduce the existence of finite energy foliations
for regularized energy surfaces above the first Lagrange point.

The results from [4, 5] and the associated problem of attempting to
construct a finite energy foliation for regularized energy surfaces above the
first Lagrange point naturally lead to the general question of whether the
existence of finite energy foliations persist under the formation of contact
connected sums as in [41, 54]. Our main theorem, which we state now,
answers this question by showing that finite energy foliations do indeed
persist after forming the contact connected sum of a contact manifold.

Theorem 1.1. Let (M, ξ) be a contact 3-manifold with contact structure
induced by a nondegenerate contact form λ, and let J ∈ J (M,λ) be a com-
plex multiplication for which the triple (M,λ, J) admits a stable finite en-
ergy foliation F of energy E(F). Then, there exists an open, dense set
U ⊂M ×M \∆(M) so that for any (p, q) ∈ U the contact manifold (M ′, ξ′)
obtained by performing a contact connected sum at (p, q) as in [41, 54] admits
a nondegenerate contact form λ′ with ξ′ = kerλ′, a compatible J ∈ J (M ′, λ′)
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and a stable finite energy foliation F ′ for the data (M ′, λ′, J ′) with energy
E(F ′) = E(F).

We briefly discuss some of the key steps of the proof of this theorem.
Given a finite energy foliation F for the data (M,λ, J) we choose any
two distinct points p and q ∈M lying on distinct (up to R-translation)
index-2 leaves of the foliation. We then form the connected sum M ′ by S2-
compactifying M \ {p, q} and gluing along the newly created boundary. We
denote the new manifold by M ′, the induced inclusion M \ {p, q} ↪→M ′ by
i, and the embedded sphere M ′ \ i(M \ {p, q}) by S. It is well known from
[41, 54] that the gluing can be done in such a way that M ′ is a smooth
manifold and the induced contact structure continues smoothly across S.
We show that, in addition, we can find a contact form λ′ and compatible
J ′ which agree respectively with λ and J outside of any desired sufficiently-
small neighborhood U of S so that there is precisely one simple periodic
orbit γ0 ⊂ S contained in U and so that γ0 divides S into two disks, each of
which is the projection to M ′ of an index-1 J̃ ′-holomorphic plane. Using the
fact that curves in a stable finite energy foliation must satisfy so-called auto-
matic transversality conditions, we investigate the boundaries of the moduli
spaces of curves surrounding the neighborhood U of S. Using intersection
theory arguments, and specifically a result concerning the direction of ap-
proach of a curve to an orbit with even Conley–Zehnder index, we show that
these families of curves converge to height-2 pseudoholomorphic buildings
with one of the planes in S as one of the nontrivial components and that
the resulting collection of curves forms a finite energy foliation.

Since the finite energy foliation we construct on the connected sum al-
ways contains a pair of rigid (i.e. index-1) planes asymptotic to same periodic
orbit, it is natural to ask the question of whether the operation can be re-
versed anytime one has a foliation with a similar configuration of curves in
it. We show in [16] that this in fact can be done. Specifically, assuming the
data (M,λ, J) admits a finite energy foliation F containing two distinct (up
to R-translation) index-1 planes asymptotic to the same periodic orbit, the
manifold M ′ obtained by doing surgery on the 2-sphere formed by the orbit
and the projections of the planes to M admits a contact form λ′ and a com-
patible J ′ ∈ J (M ′, λ′) so that the data (M ′, λ′, J ′) admits a finite energy
foliation F ′ with E(F ′) = E(F). We further show in [17] that a Weinstein
cobordism connecting the two contact manifolds admits a finite energy foli-
ation which is asymptotic to the foliations F and F ′ on the boundaries.

Our main result in this paper can be combined with previous existence
results for finite energy foliations to produce new finite energy foliations.
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We recall that for contact manifolds whose contact structures are supported
by planar open book decompositions, Abbas [1] and Wendl [59] have con-
structed finite energy foliations consisting of curves which correspond via
the projection R×M →M to pages of the open book decomposition. More-
over, it is known that performing a contact connected sum at two points in
a contact manifold supported by a planar open book decomposition pro-
duces a contact manifold whose contact structure is also supported by a
planar open book decomposition with one additional binding component.1

Combining these facts with our construction leads to the following theorem.

Theorem 1.2. Let (M0, ξ0) be a contact manifold with contact structure
supported by a planar open book decomposition with b binding components,
and let (Mk, ξk) denote the contact manifold obtained from performing k
successive contact connected sums on (M0, ξ0). Then for any integer ` ∈ [1, k]
there exist a contact form λ` with kerλ` = ξk, a compatible complex structure
J` on ξk, and a stable finite energy foliation F` for the data (M,λ`, J`)
consisting of:

• b+ k − ` trivial cylinders over elliptic orbits
{
γe1, . . . , γ

e
b+k−`

}
,

• ` trivial cylinders over even orbits
{
γh1 , . . . , γ

h
`

}
,

• ` pairs of index-1 families of planes, with one such pair of families
asymptotic to each of the periodic orbits γhi ,

• ` pairs of index-1 families of curves, one pair for each hyperbolic orbit
γhi , having b+ k − ` positive punctures with the collection of elliptic
orbits

{
γe1, . . . , γ

e
b+k−`

}
as asymptotic limits and one negative puncture

with γhi as an asymptotic limit, and

1This can be seen from the following argument which was explained to the second
author by O. van Koert. Forming a contact connected sum at two points in a
given connected manifold (M, ξ) is the same as forming a contact connected sum of
(M, ξ) with (S1 × S2, ξ0) where ξ0 is the contact structure arising as the kernel of
the S1-invariant contact form λ0 = cos θ dt+ sin2 θ dφ with t ∈ R/Z the coordinate
along S1, and with φ ∈ R/2πZ and θ ∈ [0, π], respectively, the polar and azimuthal
coordinates on S2. Forming the book connected sum (see e.g. Section 4.5 in [44]
or Section 5.2.3 in [53]) of an open book decomposition for (M, ξ) with the open
book decomposition for (S1 × S2, ξ0) by cylinders of the form S1 × {φ = c} yields
an open book decomposition for the contact connected sum (M, ξ)#(S1 × S2, ξ0)
with pages having the same genus as those of the given open book decomposition
for (M, ξ) and one additional boundary component.
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• 2` families of index-2 curves in which each curve has b+ k − ` posi-
tive punctures with the collection of elliptic orbits

{
γe1, . . . , γ

e
b+k−`

}
as

asymptotic limits.

Proof. Given an integer ` ∈ [1, k], consider the contact manifold (Mk−`, ξk−`)
obtained by performing k − ` successive contact connected sums on (M0, ξ0).
According to the observation above, since (M0, ξ0) is supported by a planar
open book decomposition with b binding components, (Mk−`, ξk−`) is sup-
ported by a planar open book decomposition with b+ k − ` binding compo-
nents. The constructions of Abbas [1] and Wendl [59] then provide a finite
energy foliation whose leaves are all either trivial cylinders over elliptic or-
bits corresponding to bindings of the open book decomposition or index-2
curves, having only positive punctures, whose projections to M coincide
with with the pages of the open book decomposition.

Given this, we then carry out our construction ` times on the given open
book decomposition. Since varying the points at which the connected sum
occurs leads to contactomorphic contact manifolds, we are free to choose
the points at each step to lie on an index-2 curve in the foliation. As is
shown in Section 6, each time we apply our construction we add one even
orbit to the foliation with two planes (modulo the R-action) asymptotic to
it and two index-1 curves (modulo the R-action) asymptotic to that orbit
with a negative puncture. Moreover the four different height-2 holomorphic
buildings that can be formed by these curves are each a boundary component
of one of the surrounding index-2 curves, all of which have the same number
of punctures and asymptotic behavior as the curves in the original foliation.
Since these curves form 1-dimensional families modulo the R-action, and
each such family has two boundary components, there must be exactly 2`
of them. �

This theorem shows that any manifold of the form (Mk, ξk) satisfying the hy-
potheses above admits at least k + 1 different stable finite energy foliations:
the holomorphic open book decomposition F0 constructed by Abbas [1] and
Wendl [59] and the k foliations F` constructed by the theorem. An interest-
ing question for further investigation is whether or not the various foliations
on the manifold (Mk, ξk) are, in language introduced in [55], concordant;
that is whether or not two given foliations Fi and Fj on (Mk, ξk) can be re-
lated by a non-R-invariant pseudoholomorphic foliation Fij of R×Mk which
is asymptotic at the positive and negative ends to Fi and Fj respectively.

Our construction can also be used in combination with the results of
Hofer, Wysocki, and Zehnder [31] to make local changes to the structure of
a given finite energy foliation on a manifold. Indeed, we recall that forming
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the contact connected sum of a contact manifold (M, ξ) with a copy of tight
S3 produces a contact structure onM contactomorphic to the original. Given
then data (M,λ, J) admitting a foliation, we can apply our construction to
the given foliation on M and any of the foliations on tight S3 constructed by
Hofer, Wysocki, and Zehnder in [31] to produce a new foliation on M for a
contact form inducing a contact structure contactomorphic to the original.
For example, by applying our construction to any number of copies of tight
S3 equipped with an open book decomposition consisting of pseudoholo-
morphic planes and a planar contact manifold equipped with a holomorphic
planar open book decomposition constructed by Abbas [1] and Wendl [59],
one can construct a stable finite energy foliation for a given planar contact
manifold having any desired number of even Conley–Zehnder index orbits
appearing as asymptotic limits of leaves of the foliation.

We make two observations about the new foliations produced by forming
a connected sum of a foliation F for data (M,λ, J) with a Hofer–Wysocki–
Zehnder foliation FHWZ on tight S3. The first is that the new foliation F ′ =
F#FHWZ can, with some additional work, be shown to be concordant to the
original foliation F . A second observation about this construction is that,
since Hofer–Wysocki–Zehnder foliations exist for any nondegenerate contact
form on S3, there is a good deal of freedom in the choice of contact form and
almost complex structure on the S3 portion of the connected sum. Indeed,
forming the connected sum of a foliation with a Hofer–Wysocki–Zehnder
foliation creates a 3-ball in the manifold bounded by a 2-sphere composed of
a pair of pseudoholomorphic planes. The foliation created will persist under
arbitrary perturbations of the contact form and almost complex structure
which are compactly supported in the interior of this three-ball, provided the
resulting contact form is nondegenerate and the almost complex structure is
regular. Thus, the existence of a foliation for a given set of data (M,λ, J) is
a property which is persistent under a large class of localized perturbations
to the data (λ, J).

In regards to the original motivation for this work from the three-body
problem, we point out that our main theorem here does not immediately im-
ply the existence of a finite energy foliation for level sets of the Hamiltonian
having energies just above the first Lagrange point. However, given the exis-
tence of finite energy foliations for level sets below the first Lagrange point,
our result allows one to construct a Hamiltonian on the same phase space
having an interval of regular level sets which admit finite energy foliations
and which are homotopic to a level set of the original Hamiltonian for the
three-body problem having energy just above the first Lagrange point. This
fact along with some deformation results for finite energy foliations currently
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being developed by the second author would then allow one to construct a
finite energy foliation for any small nondegenerate perturbation of a level
set of the original Hamiltonian. In some cases these foliations could then be
used to construct foliations for level sets of the Hamiltonian via a limiting
argument as in [28].

Finally, we remark that for simplicity of presentation, and for the con-
venience of being able to quote results from other papers, we have chosen
to focus on the case of contact manifolds equipped with a nondegenerate
contact form and we don’t impose any conditions on the rates of conver-
gence of curves in the foliation to their asymptotic limits. However, with the
use of the in-progress work [51], which generalizes the intersection theory of
[50] to include exponential weights and Morse–Bott nondegenerate orbits, it
is straightforward to adapt our arguments to somewhat more general situa-
tions. The essential point is that appropriate generalizations of the necessary
results from intersection theory [50] and Fredholm theory [30, 57] are true
provided the curves in question approach their asymptotic limits exponen-
tially fast. Given this, one can consider R-invariant finite energy foliations
in a manifold with a degenerate contact form, provided all curves converge
exponentially to their asymptotic limits. The arguments in the proofs of [50,
Theorem 2.4] and [50, Theorem 2.6] show that, for appropriate choices of
exponential weights, the exponentially weighted version of the ∗-product,
developed in [51], must vanish between any two of the nontrivial curves of
such a foliation. Such a foliation would then be called a weighted, stable
finite energy foliation if all weighted Fredholm indices of nontrivial curves
are 1 or 2. Given results that will be proved in [51], it is straightforward to
adapt our arguments to work for weighted, stable finite energy foliations.

Remark 1.3. In the recent work [14], de Paulo and Salomão study Hamil-
tonians H on R4 having a saddle-center equilibrium point lying on a strictly
convex singular subset S0 ⊂ H−1(0). They show that for all sufficiently small
positive energies E, there is a subset SE ⊂ H−1(E) diffeomorphic to the
closed three ball so that the symplectization R× SE admits a finite energy
foliation. The structure of the finite energy foliation that they construct is
the same as that which would result from our construction when taking a
connected sum with S3 equipped with one of the pseudoholomorphic open
book decompositions constructed by Hofer, Wysocki, and Zehnder in [28].

Acknowledgements. We’d like to thank Peter Albers for posing the ques-
tion that lead to this series of papers. We’d also like to thank the Max Planck
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Institute for Mathematics in the Sciences, and in particular Jürgen Jost and
Matthias Schwarz, for providing a supportive research environment.

1.1. Outline of the paper

While most earlier results on finite energy foliations deal with relatively
concrete constructions, the results we prove in the present series of papers
deal with finite energy foliations abstractly. The proofs of our results thus
require us to develop some general theory for finite energy foliations. To
assist in this, we review some background about Reeb dynamics and pseu-
doholomorphic curves in Sections 2 and 3, with a special focus on giving
precise statements and references for facts that we will need in this paper
and its sequels.

We start by recalling relevant facts about contact geometry and Reeb
dynamics in Section 2, primarily focusing on material concerning properties
of the Conley–Zehnder index from [26]. Then in Section 3 we review back-
ground on finite-energy pseudoholomorphic curves. First, in Section 3.1 we
recall the basic asymptotic convergence to a periodic orbit, established by
Hofer in [24], as well as the refined relative asymptotic formula of the sec-
ond author from [49]. Then in Section 3.2, we recall the compactification of
the space of finite-energy pseudoholomorphic curves. Of particular relevance
here is the work of Wendl [58] which focuses on what sort of limiting objects
can arise as sequences of so-called nicely-embedded curves. After that, in
Section 3.3, we review results related to the intersection product for finite-
energy pseudoholomorphic curves introduced by the second author in [50].
An adaptation of a result from [50] concerning the direction of approach of
curves to even orbits will be key for the proof of our main theorem. Finally,
in Section 3.4 we recall facts about the Fredholm theory of embedded finite-
energy pseudoholomorphic curves from [30] and review so-called automatic
transversality conditions [2, 30, 32, 57] which give topological criteria that
guarantee the moduli space of curves is a smooth manifold of dimension
equal to the Fredholm index.

General discussion of finite energy foliations begins in Section 4. After
giving a definition of stable finite energy foliations we establish some basic
properties of stable finite energy foliations that follow from this definition.
We then discuss some facts about the structure of the moduli spaces of curves
which appear in finite energy foliations. In Section 5 we show that contact
connected sums can be formed in a way which gives us properties necessary
to prove our main theorem. In order to focus on the main ideas, some of the
more straightforward but tedious computations needed to support claims in
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this section are delayed to Appendix A. Finally in Section 6, we give the
proof of our main theorem.

2. Background in contact geometry and Reeb dynamics

In this section we review some basic notions from contact geometry and
Reeb dynamics that we will need, and fix some notation. Much of the mate-
rial from this section, particularly that material pertaining to the Conley–
Zehnder index of periodic orbits, is adapted from [26].

Let M be a closed, oriented 3-manifold. Recall that a contact form on
M is a 1-form λ for which

(2.1) λ ∧ dλ is a volume form on M .

This condition implies that there is a unique vector field Xλ, called the Reeb
vector field associated to λ, satisfying the conditions

(2.2) iXλλ = 1 and iXλdλ = 0.

The contact structure ξ determined by λ is defined by ξ = kerλ. As a re-
sult of condition (2.1) the contact structure is necessarily a 2-plane bundle
transverse to Xλ, and dλ restricts to a nondegenerate form on ξ. The contact
form λ thus determines a splitting

(2.3) TM = RXλ ⊕ (ξ, dλ)

of the tangent space TM of M into a framed line bundle and a symplectic
2-plane bundle. Moreover, the defining conditions (2.2) for Xλ used with the
formula LX = iX ◦ d+ d ◦ iX imply that

LXλλ = 0 and LXλdλ = 0

and thus the flow of Xλ preserves the splitting (2.3).
It will be convenient for our purposes here to think of periodic orbits of

the Reeb vector field as maps from the circle S1 = R/Z. In particular, for
T > 0 we consider a T -periodic orbit to be a map γ : S1 →M satisfying

γ̇(t) = T ·Xλ(γ(t)).
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An unparametrized periodic orbit is a collection of parametrized orbits that
differ by reparametrization via the S1-action on the domain. We will gener-
ally use the same notation for a parametrized orbit and its associated un-
parametrized orbit, allowing the context or specific language to distinguish
between the two.

Let ψ· : R×M →M be the flow generated by the Reeb vector field Xλ,
that is

ψ̇t(x) = Xλ ◦ ψt(x),

and let γ : S1 →M be a parametrized T -periodic orbit. Since the flow of
Xλ preserves the splitting (2.3), we obtain for any t ∈ S1 a symplectic map

dψT (γ(t)) ∈ Sp(ξγ(t), dλ),

and, since the group property of the flow and its linearization can be used
to show that

(2.4) dψT (γ(t)) = [dψ−tT (γ(t))]−1dψT (γ(0))dψ−tT (γ(t)),

the spectrum of dψT (γ(t)) is independent of t ∈ S1. We will thus say that an
unparametrized T -periodic orbit γ is nondegenerate if for a representative
parametrization γ : S1 →M , the map dψT (γ(0)) does not have 1 in the
spectrum. A contact form λ on M is said to nondegenerate if all periodic
orbits are nondegenerate.

A nondegenerate T -periodic orbit γ is said to be:

• elliptic if dψT (γ(t)) has complex eigenvalues, or

• hyperbolic if dψT (γ(t)) has real eigenvalues.

Moreover, γ is said to be:

• odd if γ is elliptic, or if γ is hyperbolic and dψT (γ(t)) has negative
eigenvalues, or

• even γ is hyperbolic and dψT (γ(t)) has positive eigenvalues.

As a result of (2.4) the designation of a nondegenerate orbit as even/odd,
positive/negative is a well-defined property associated to the unparametrized
orbit. The parity of a periodic orbit as defined here agrees with the parity
of the orbit’s Conley–Zehnder index, which we will now define.

Given a trivialization of the contact structure along a nondegenerate pe-
riodic orbit, one can assign a number, called the Conley–Zehnder index, to
the orbit which can be thought of as a measure of the winding with respect to
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the given trivialization of the linearized flow along the orbit [12, 26, 45, 47].
We review the key information now. As a starting point we recall information
about the Maslov index and Conley–Zehnder index for, respectively, loops
and paths in Sp(1) = Sp(R2, ω0 = dx ∧ dy). We first recall that the funda-
mental group π1(Sp(1)) of the symplectic group is isomorphic to Z (see e.g.
[3, Section 1.2.1]). The Maslov index of a (homotopy class of) loop(s) of
matrices in Sp(1) based at the identity is, by definition, the isomorphism

m : π1(Sp(1))→ Z

determined by assigning a value of 1 to the (homotopy class of the) loop

t ∈ S1 = R/Z 7→
[
cos 2πt − sin 2πt
sin 2πt cos 2πt

]
which is a generator of π1(Sp(1)). Given this, we can define the Conley–
Zehnder index for (homotopy classes of) paths in Sp(1) that start at the
identity and end at a matrix without 1 in the spectrum via the following
axiomatic characterization from [26, Theorem 3.2].

Theorem 2.1. Let

(2.5) Σ(1) =
{

Ψ ∈ C0([0, 1], Sp(1)) |Ψ(0) = I and det(Ψ(1)− I) 6= 0
}

denote the space of continuous paths in Sp(1) which start at the identity and
end at a matrix without 1 in the spectrum. There exists a unique map

µcz : Σ(1)→ Z,

called the Conley–Zehnder index, determined by the following axioms:

1) Homotopy invariance: The Conley–Zehnder index of a path in Σ(1) is
invariant under homotopies of paths in Σ(1).

2) Maslov compatibility: If Ψ ∈ Σ(1) and g : [0, 1]→ Sp(1) is a loop based
at the identity, then

µcz(gΨ) = 2m(g) + µcz(Ψ)

where gΨ ∈ Σ(1) is the path defined by (gΨ)(t) = g(t)Ψ(t).
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3) Inverse axiom: If Ψ ∈ Σ(1) and Ψ−1 ∈ Σ(1) is the inverse path defined
by Ψ−1(t) = [Ψ(t)]−1, then

µcz(Ψ
−1) = −µcz(Ψ).

Now, let γ : S1 →M by a nondegenerate, T -periodic orbit, and let Φ :
S1 × R2 → γ∗ξ by a symplectic trivialization, that is, assume that

dλγ(t) (Φ(t)·,Φ(t)·) = dx ∧ dy

for all t ∈ S1. Again, recalling that LXλdλ = 0, the flow ψt of Xλ gives for
any t ∈ R a symplectic map

dψtT (γ(0)) : (ξγ(0), dλγ(0))→ (ξψtT (γ(0)), dλψtT (γ(0))) = (ξγ(t), dλγ(t))

and thus the map

(2.6) t ∈ [0, 1]→ Φ−1(t)dψtT (γ(0))Φ(0)

gives a path of matrices in Sp(1) starting at the identity and ending at

Φ−1(1)dψT (γ(0))Φ(0) = Φ−1(0)dψT (γ(0))Φ(0)

which doesn’t have 1 in the spectrum by the assumption that γ is nonde-
generate. We define the Conley–Zehnder index µΦ(γ) of the orbit γ relative
to the trivialization Φ by

(2.7) µΦ(γ) := µcz(Ψ)

with Ψ ∈ Σ(1) the path (2.6), and µcz(Ψ) the Conley–Zehnder index of the
path Ψ as characterized in Theorem 2.1. We note that, as a result of the ho-
motopy invariance axiom from Theorem 2.1, the Conley–Zehnder index of
an orbit is invariant under homotopies of the trivialization. Furthermore,
the homotopy invariance axiom can be used to show that the Conley–
Zehnder index relative to a given trivialization is independent of the choice
of parametrization of the orbit. Finally, we note that, as result of the Maslov
compatibility axiom, the parity of the Conley–Zehnder index of an orbit does
not depend on the choice of trivialization. Further, this parity can be shown
to agree with that defined above in terms of the eigenvalues of the linearized
flow.

We will need the characterization of the Conley–Zehnder index in terms
of the spectrum of a certain self-adjoint operator acting on sections of the
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contact structure along the orbit from [26]. Let γ be a parametrized T -
periodic orbit, and let h : S1 → ξ be a smooth section of the contact struc-
ture along γ, i.e. h(t) ∈ ξγ(t) for all t ∈ S1. We observe that since h is defined
along a flow line of Xλ, it has a well-defined Lie derivative LXλh defined by

(2.8) LXλh(t) =
d

ds

∣∣∣∣
s=0

dψ−s(γ(t+ s/T ))h(t+ s/T )

and, since the flow ψt of Xλ preserves the splitting (2.3), LXλh is also a
section of the contact structure along γ. Given any symmetric connection ∇
on TM , we use that γ̇(t) = T ·Xλ(γ(t)) to write

T · LXλh = ∇th− T∇hXλ.

Thus∇t · −T∇·Xλ gives a first-order differential operator on C∞(γ∗ξ) which
is independent of choice of symmetric connection.

Next, recall that given a symplectic vector bundle (E,ω) a complex
structure J on E is said to be compatible with ω if the bilinear form

gJ(·, ·) = ω(·, J ·)

is a metric on E. It is a well known fact the space of compatible almost com-
plex structures on a given symplectic vector bundle is nonempty and con-
tractible in the C∞ topology (see e.g. Proposition 5 and discussion thereafter
in Section 1.3 of [33]). Recalling that (ξ, dλ) is a symplectic vector bundle,
we define the set J(M,λ) ⊂ End(ξ) to be the set of complex structures on
ξ compatible with dλ. Given a T -periodic orbit γ and a J ∈ J(M,λ), we
define the asymptotic operator Aγ,J associated to γ and J by

(2.9) Aγ,Jh = −J(∇th− T∇hXλ),

and note that, by the discussion of the previous paragraph, Aγ,J gives a first-
order differential operator on C∞(γ∗ξ) which is independent of the choice
of symmetric connection used to define it.

We define an inner product 〈·, ·〉J on C∞(γ∗ξ) by

〈h, k〉J =

∫
S1

dλγ(t) (h(t), J(γ(t))k(t)) dt.
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Recalling that LXλdλ = 0, we have for any h, k ∈ C∞(γ∗ξ) that

d

dt

[
dλγ(t) (h(t), k(t))

]
= dλγ(t) (T (LXλh)(t), k(t))

+ dλγ(t) (h(t), T (LXλk)(t)) .

Using that compatibility of J with (ξ, dλ) implies that dλ(J ·, J ·) = dλ on
ξ × ξ, we can integrate the above equation to give

〈h,Aγ,Jk〉J = 〈Aγ,Jh, k〉J .

Thus Aγ,J is formally self-adjoint, and induces a self-adjoint operator

Aγ,J : D(Aγ,J) = H1(γ∗ξ) ⊂ L2(γ∗ξ, 〈·, ·〉J)→ L2(γ∗ξ, 〈·, ·〉J).

Since for any value in the resolvent set of Aγ,J , the associated resolvent
operator factors through the compact embedding H1(γ∗ξ) ↪→ L2(γ∗ξ), we
know from the spectral theorem for compact self-adjoint operators that the
spectrum of Aγ,J consists of real, isolated eigenvalues of finite multiplicity
accumulating only at ±∞.

We recall the observation from [27] that ker Aγ,J is trivial if and only
if γ is a nondegenerate orbit. Indeed, if h is a section of γ∗ξ in the kernel
of Aγ,J then LXλh = 0 and thus dψtTh(t0) = h(t0 + t) for any t ∈ R and
t0 ∈ S1. In particular dψT (γ(t0))h(t0) = h(t0 + 1) = h(t0) so dψT (γ(t0)) has
1 as an eigenvalue and γ must be a degenerate orbit. Conversely, if the
orbit is degenerate, then dψT (γ(t0)) has 1 as an eigenvalue. Letting v0 ∈
ξγ(0) \ {0} be a vector with dψT (γ(0))v0 = v0, the map v : R→ ξ defined
by v(t) = dψtT (γ(0))v0 ∈ ξγ(t) will be 1-periodic and satisfy LXλv = 0, thus
determining a section of γ∗ξ in the kernel of Aγ,J .

In a unitary trivialization of (γ∗ξ, dλ, J) — that is, a symplectic trivial-
ization Φ : S1 × R2 → γ∗ξ of (γ∗ξ, dλ) satisfying

Φ ◦ J0 = J ◦ Φ

with

J0 =

[
0 −1
1 0

]
— the operator Aγ,J takes the form

Φ−1 ◦Aγ,J ◦ Φ = −i ddt − S(t)
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with S(t) a symmetric matrix. An eigenvector of Aγ,J satisfies a linear,
first-order ordinary differential equation and therefore never vanishes since
it doesn’t vanish identically. Hence every eigenvector gives a map from S1 →
R2 \ {0} and thus has a well-defined winding number. Since −i ddt − S(t) is
a compact perturbation of −i ddt , it can be shown using perturbation theory
in [39] that that the winding is monotonic in the eigenvalue and that to any
k ∈ Z the span of the set of eigenvectors having winding k is two dimensional.
These facts are proved in Section 3 of [26], and we restate them here as a
lemma.

Lemma 2.2. Let γ be a T -periodic orbit of Xλ, let Aγ,J denote the asymp-
totic operator of γ, and let T(γ∗ξ) denote the set of homotopy classes of
symplectic trivializations of (γ∗ξ, dλ). There exists a map w : σ(Aγ,J)×
T(γ∗ξ)→ Z which satisfies

1) If e : S1 → γ∗ξ is an eigenvector of Aγ,J having eigenvalue λ, then
w(λ, [Φ]) = wind(Φ−1e), that is, w(λ, [Φ]) measures the winding with
respect to Φ of any eigenvector of Aγ,J with eigenvalue λ.

2) For any fixed [Φ] ∈ T(γ∗ξ) we have that

w(λ, [Φ]) < w(µ, [Φ])⇒ λ < µ,

that is, the winding of eigenvectors of Aγ,J is (not necessarily strictly)
monotonic in the eigenvalue.

3) If m(λ) = dim ker(Aγ,J − λ) denotes the multiplicity of λ as an eigen-
value we have for every k ∈ Z and [Φ] ∈ T(γ∗ξ) that∑

{λ |w(λ,[Φ])=k}

m(λ) = 2,

that is, the span of the set of eigenvectors of Aγ,J with any given
winding has dimension 2.

We now describe the characterization of the Conley–Zehnder in terms
of the asymptotic operator from [26]. Given a T -periodic orbit γ and a
J ∈ J (M,λ) let σ−max(γ) ∈ σ(Aγ,J) denote the largest negative eigenvalue
of Aγ,J . Given a trivialization Φ of γ∗ξ, we define

(2.10) αΦ(γ) = w(σ−max(γ); [Φ])
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so that αΦ(γ) is the winding relative to Φ of any eigenvector of Aγ,J having
the largest possible negative eigenvalue. We define the parity of p(γ) of γ by

(2.11) p(γ) =

{
0 if ∃µ ∈ σ(Aγ,J) ∩ R+ with w(µ, [Φ]) = αΦ(γ)

1 otherwise

i.e. the parity is 0 if there is a positive eigenvalue with eigenvectors having
winding equal to that of those eigenvectors having largest negative eigen-
value, and the parity is 1 otherwise. The following theorem then gives a
formula for the Conley–Zehnder index of γ in terms of the quantities αΦ

and p just defined.

Theorem 2.3 (Hofer–Wysocki–Zehnder [26]). Let γ be a T -periodic
orbit of the Reeb vector field Xλ, let Φ : S1 × R2 → γ∗ξ be a symplectic triv-
ialization of (γ∗ξ, dλ) and let αΦ(γ) and p(γ) be as defined in (2.10)–(2.11)
above. Then the Conley–Zehnder index of γ relative to Φ is given by the
formula

µΦ(γ) = 2αΦ(γ) + p(γ).

Finally we close this section by stating a formula for how the Conley–
Zehnder index behaves for iterates of an orbit. This lemma follows from facts
about Sp(1) which can be found in e.g. [31, Appendix 8.1] or [3, Section 1.2].

Lemma 2.4. Let γ be a periodic orbit of the Reeb vector field Xλ and let Φ :
S1 × R2 → γ∗ξ be a symplectic trivialization. Assume that for each positive
integer m, the periodic orbit γm defined by γm(t) = γ(mt) is nondegenerate.
Then:

• If γ is a hyperbolic orbit

µΦ(γm) = mµΦ(γ).

• If γ is an elliptic orbit, there exists an irrational number θ so that

µΦ(γm) = 2bmθc+ 1.

3. Background on pseudoholomorphic curves

In this section we review some basic facts about punctured pseudoholo-
morphic curves. First, in Section 3.1 we review the basic set-up and re-
view some facts about the asymptotic behavior of finite-energy curves from
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[24, 27, 42, 49]. Next, in Section 3.2, we recall the compactification of the
space of finite-energy curves [6], focusing on a result from [58] concerning
the extra properties that can be proved about the compactification when
restricting attention to sequences of curves which project to embeddings in
the 3-manifold. In Section 3.3 we recall facts about the intersection theory of
finite-energy curves from [50]. Of particular importance here is a slight gen-
eralization of a result from [50] concerning curves which approach an even
orbit in the same direction. Finally, in Section 3.4, we recall facts about the
Fredholm theory of embedded finite-energy curves from [30].

3.1. Basic set-up and asymptotic behavior

Let (M,λ) be 3-manifold equipped with a nondegenerate contact from, and
recall from the previous section that we defined J (M,λ) to be the collection
of complex structures on the contact structure ξ compatible with dλ. Given a
J ∈ J (M,λ) we can extend it in the usual manner to an R-invariant almost
complex structure J̃ on R×M by requiring

(3.1) J̃∂a = Xλ and J̃ |π∗Mξ = π∗MJ

where a is the coordinate in R, and πM : R×M →M is the canonical pro-
jection onto the second factor. We consider quintuples (Σ, j,Γ, a, u) where

• (Σ, j) is a compact Riemann surface,

• Γ ⊂ Σ is a finite set called the set of punctures, and

• ũ := (a, u) : Σ \ Γ→ R×M is a smooth map.

We define the energy of such a quintuple by

(3.2) E(ũ) = sup
ϕ∈Ξ

∫
Σ\Γ

ũ∗d(ϕλ)

where Ξ is defined by

Ξ =
{
ϕ ∈ C∞(R, [0, 1]) |ϕ′(x) ≥ 0

}
.

The data (Σ, j,Γ, a, u) is said to be a finite-energy pseudoholomorphic map
if the map ũ has finite energy and is J̃-holomorphic, that is, if

(3.3) J̃ ◦ dũ = dũ ◦ j
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and

E(ũ) <∞.
A finite-energy pseudoholomorphic curve is then defined to be an equivalence
class C = [Σ, j,Γ, a, u] of finite-energy pseudoholomorphic maps (Σ, j,Γ, a, u)
under the equivalence relation of holomorphic reparametrization. For a given
3-manifold M equipped with a nondegenerate contact form λ, and com-
patible J ∈ J (M,λ), we will denote the moduli space of finite-energy J̃-
holomorphic curves by M(λ, J).

If (Σ, j,Γ, ũ = (a, u)) is a J̃-holomorphic map, then we can use the R-
invariance of J̃ defined by (3.1) to conclude that the map ũc := (a+ c, u) ob-
tained by translating the R-coordinate by a constant is also a J̃-holomorphic
map, and it is moreover easily shown that E(ũ) = E(ũc). Thus there is an
R-action on the space of finite-energy J̃-holomorphic curves given by trans-
lating the R-coordinate by a constant and, in fact, the M -component u of
ũ = (a, u) determines the R-component a up to a constant. To see this, we
define πξ : TM = RXλ ⊕ ξ → ξ to be the projection of TM onto ξ deter-
mined by the splitting (2.3). It then follows from the definition of J̃ that the
equation (3.3) is equivalent to the pair of equations

u∗λ ◦ j = da(3.4a)

J ◦ πξ ◦ du = πξ ◦ du ◦ j(3.4b)

and from the first of these equations it’s clear that the map u determines da,
and thus a up to a constant. We will define a projected (finite-energy) pseudo-
holomorphic map to be a quintuple (Σ, j,Γ, da, u) satisfying equations (3.4)
for which the associated map ũ = (a, u) to R×M has finite energy. A pro-
jected (finite-energy) pseudoholomorphic curve is then an equivalence class
C = [Σ, j,Γ, da, u] of projected pseudoholomorphic maps under the equiva-
lence relation of holomorphic reparametrization of the domain. For a given
3-manifold M equipped with a nondegenerate contact form λ, and compati-
ble J ∈ J (M,λ), we will denote the moduli space of projected, finite-energy
J̃-holomorphic curves by M(λ, J)/R.

In his work on the Weinstein conjecture [24], Hofer showed that near the
nonremovable punctures of a finite-energy pseudoholomorphic curves, there
are sequences of loops whose images under u converge to periodic orbits
of the Reeb vector field. In the case that the periodic orbit of the Reeb
vector field is nondegenerate, then more can be said about this convergence.
Suppose that λ is a nondegenerate contact form and (Σ, j,Γ, a, u) is a finite-
energy pseudoholomorphic map. Then, for each puncture z0 ∈ Γ there are
three possibilities:
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1) Removable punctures: The map ũ = (a, u) is bounded near z0, in which
case ũ admits a smooth, J̃-holomorphic extension over the puncture.

2) Positive punctures: The function a is bounded from below near z0 but
not from above. In this case there exists a nondegenerate periodic orbit
γ with period T ≤ E(ũ) and a holomorphic coordinate system

φ : [R,∞)× S1 ⊂ R× S1 ≈ C/iZ→ Σ \ {z0}

on a punctured neighborhood of z0 so that the maps ṽc : [R,∞)×
S1 → R×M defined by

ṽc(s, t) = (a(s+ c/T, t)− c, u(s+ c/T, t))

converge in C∞([R,∞)× S1,R×M) as c→∞ to the map

(s, t) 7→ (Ts, γ(t)).

3) Negative punctures: The function a is bounded from above near z0

but not from below. In this case there exists a nondegenerate periodic
orbit γ with period T ≤ E(ũ) and a holomorphic coordinate system

φ : (−∞,−R]× S1 ⊂ R× S1 ≈ C/iZ→ Σ \ {z0}

on a punctured neighborhood of z0 so that the maps ṽc : (−∞,−R]×
S1 → R×M defined by

ṽc(s, t) = (a(s− c/T, t) + c, u(s− c/T, t))

converge in C∞((−∞,−R]× S1,R×M) as c→∞ to the map

(s, t) 7→ (Ts, γ(t)).

We will henceforth assume that all removable punctures have been removed,
and thus that all punctures are either positive or negative punctures at which
the curves in question are asymptotic to cylinders over periodic orbits.

We will need more precise information about the asymptotic behavior of
curves near a puncture, in particular that the convergence is exponential in
nature and the finer behavior of the map (and differences between two maps)
can be described in terms of eigenvectors of the asymptotic operator asso-
ciated to the orbit. Before stating the appropriate result, we first establish
some language. Let (Σ, j,Γ, a, u) be a pseudoholomorphic map and assume
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that ũ = (a, u) has a positive puncture at z0 ∈ Γ where ũ is asymptotic to
a cylinder over the T -periodic orbit γ. A map U : [R,∞)× S1 → γ∗ξ with
U(s, t) ∈ ξγ(t) for all (s, t) ∈ [R,∞)× S1 is called an asymptotic represen-
tative of ũ near z0 if there exists a map φ : [R,∞)× S1 → Σ \ {z0} with
lims→∞ φ(s, t) = z0 so that

ũ ◦ φ(s, t) =
(
Ts, expγ(t) U(s, t)

)
where exp is the exponential map of some metric on M .2 Asymptotic rep-
resentatives at negative punctures are defined similarly but as maps from
negative half-cylinders of the form (−∞,−R]× S1. The following theorem,
concerning the asymptotic behavior of differences of asymptotic representa-
tives, is proved in [49].

Theorem 3.1. Let U , V : [R,∞)× S1 → γ∗ξ be smooth maps with U(s, t),
V (s, t) ∈ ξγ(t) representing positive pseudoholomorphic half-cylinders (or, re-
spectively, let U , V : (−∞,−R]× S1 → γ∗ξ be smooth maps with U(s, t),
V (s, t) ∈ ξγ(t) representing negative pseudoholomorphic half-cylinders). Then
either U − V vanishes identically or

U(s, t)− V (s, t) = eσs[e(t) + r(s, t)]

where

• σ is a negative (resp. positive) eigenvalue of the asymptotic operator
Aγ,J (defined in (2.9)),

• e ∈ ker(Aγ,J − σ) \ {0} is an eigenvector of Aγ,J with eigenvalue σ,
and

• ∇is∇
j
tr(s, t)→ 0 as s→∞ (resp. s→ −∞) exponentially for all

(i, j) ∈ N2.

The special case of this theorem where V ≡ 0 recovers the asymptotic
results for single half-cylinders from [27, 42]. As is shown in [26], the asymp-
totic formula for a single half-cylinder allows one to assign a local invariant to
each puncture, known as the asymptotic winding. Indeed, as a result of this
formula, the M -portion u of a given pseudoholomorphic map (Σ, j,Γ, a, u)

2In [49] a specific metric is used in the definition of asymptotic representative
but that specific choice of metric is not essential for Theorem 3.1 to remain true.
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can be written near some given puncture z0 ∈ Γ

u ◦ ψz0
(s, t) = expγ(t) Uz0

(s, t)

with the asymptotic representative U satisfying a formula of the form

U(s, t) = eσs[e(t) + r(s, t)]

with σ, e, and r satisfying the conditions listed above. Since eigenvectors of
the asymptotic operator Aγ,J are nowhere vanishing, the fact that r con-
verges to 0 as |s| → ∞ implies that U(s, t) is nonvanishing for all sufficiently
large |s|, or equivalently that in some neighborhood of the puncture, u does
not intersect its asymptotic limit γ. Choosing a trivialization of γ∗ξ, we
define the asymptotic winding of ũ at z0 by

windΦ
∞(u; z0) = wind(Φ−1Uz0

(s, ·))

with the right-hand side being well defined and independent of all sufficiently
large |s|. Using the asymptotic results of [27] and the characterization of the
Conley–Zehnder index in terms of the spectrum of Aγ,J from [26] (reviewed
as Theorem 2.3 above), the following inequality for the asymptotic winding
is deduced in [26].

Theorem 3.2. Let C = [Σ, j,Γ, a, u] ∈M(λ, J) and let z ∈ Γ. Then

(3.5) ±z windΦ
∞(u; z) ≤ b±zµΦ(ũ; z)/2c

where ±z is the sign of the puncture z.

3.2. Compactness

It is shown in [6] that the space of punctured pseudoholomorphic curves
with energy below any given value can be compactified by including more
general objects, known as pseudoholomorphic buildings. In [58], it’s shown
that the space of curves which project to embeddings in the 3-manifold M
can be compactified by considering only those buildings whose components
are either pairwise disjoint or identical when projected to the 3-manifold M
and are all either trivial cylinders or project to embeddings in M . We recall
the result here.
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We start with some definitions. First, for i ∈ {1, . . . , k}, consider a col-
lection of (possibly disconnected) pseudoholomorphic curves

Ci = [Σi, ji,Γi, ai, ui] ∈M(λ, J)

and write Γi = Γ+
i ∪ Γ−i to indicate the decomposition into positive and

negative punctures. Assume there are bijections Ii : Γ−i → Γ+
i+1 between the

negative punctures of one curve and the positive punctures of the next in
the sequence. We say that the data (C1, . . . , Ck; I1, . . . , Ik−1) form a height-
k non-nodal pseudoholomorphic building when pairs of punctures identified
via the bijections Ii have the same asymptotic limit. We will denote such a
height-k pseudoholomorphic building by

C1 �I1 · · · �Ik−1
Ck

or simply

C1 � · · · � Ck
when the specific bijections are not important, and we will refer to the curves
Ci as the levels of the building. Given a height-k pseudoholomorphic build-
ing C1 �I1 · · · �Ik−1

Ck with Ci = [Σi, ji,Γi, ai, ui], we can circle-compactify
each of the domain surfaces Σi \ Γi at the punctures and glue these compact-
ified surfaces together along circles corresponding to punctures identified via
the bijections Ii to form a a topological surface with boundary. Due to the
asymptotic behavior of the curves, this identification can be done in such
a way that the maps ui extend to the circle-compactifications and glue to-
gether to give a continuous map from the glued surface into M . In the event
that any of the levels are asymptotic to multiply covered periodic orbits, the
operation of gluing the circle-compactified surfaces is only uniquely deter-
mined when further choices, namely that of so-called asymptotic markers,
are made. The specifics won’t be important here, so we won’t address this
issue any further.

The structure of a non-nodal pseudoholomorphic building

C1 �I1 · · · �Ik−1
Ck

can be encoded in a graph with a vertex for each smooth connected compo-
nent of the domains of the levels Ci and an edge for each pair of punctures
identified via the bijections Ii. We will say that a non-nodal pseudoholo-
morphic building is connected if the corresponding graph is connected. This
is equivalent to requiring the surface obtained from circle-compactifying
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and gluing the levels, as described in the previous paragraph, to be con-
nected. The arithmetic genus of a connected pseudoholomorphic building is
the genus of the glued surface. The arithmetic genus can be computed in
terms of the graph modeling the building by the formula

g = #E −#V +
∑
vi∈V

g(vi) + 1

where #E is the number of edges, #V is the number of vertices, and g(vi)
is the genus of a given smooth connected surface in the building corre-
sponding to the vertex vi (see [6, Equation (6)]). In particular, a connected
pseudoholomorphic building has arithmetic genus zero precisely when each
component has genus 0 and #E = #V − 1 or, equivalently, precisely when
each component has genus zero and the modeling graph is a tree.

Following [58], we refer to a connected pseudoholomorphic curve C =
[Σ, j,Γ, a, u] as a nicely-embedded pseudoholomorphic curve if the map u :
Σ \ Γ→M is an embedding, that is, if the curve projects to an embedding in
the 3-manifold M . We will say that a non-nodal pseudoholomorphic building
is nicely embedded if:3

1) Each C ∈M(λ, J) occurring as a connected component of the building
is either nicely embedded or a trivial cylinder (i.e. a curve of the form
R× γ for some periodic orbit γ).

2) If C and D ∈M(λ, J) occur as connected components of the building,
the projections of C and D to M are either identical or disjoint.

We will call a nicely-embedded, non-nodal pseudoholomorphic building, sta-
ble if no level consists entirely of trivial cylinders.4 The following theorem
is proved as the main theorem in [58]

Theorem 3.3. [58, Theorem 1] Let Ck ∈M(λ, J) be a sequence of nicely-
embedded pseudoholomorphic curves with uniformly bounded energy. Then

3The definition in [58] also includes a condition on some of the periodic orbits
which connect the levels, but this condition (in fact a slightly stronger condition)
is a consequence of the above two conditions. See Lemma 3.6 below.

4The general definition of stable from [6] allows for levels which contain only
trivial cylinders or constant maps provided the domains of these maps are stable
curves, i.e. twice the genus plus the number of special points (marked points and
nodes) is greater than or equal to 3. Since we only consider buildings with no nodes
or marked points here, our simpler definition is equivalent.
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there is a subsequence which converges in the sense of [6] to a stable, nicely-
embedded pseudoholomorphic building.

For our purposes, the complete definition of SFT-convergence from [6]
is not necessary, but we will need the following facts which we state as a
proposition.

Proposition 3.4. Assume a sequence Ck = [Σk, jk,Γk, ak, uk] ∈M(λ, J)
converges in the sense of [6] to a non-nodal pseudoholomorphic building
C∞,1 � · · · � C∞,` with C∞,i = [Σ∞,i, j∞,i,Γ∞,i, a∞,i, u∞,i]. Then there is a
k0 ∈ N so that:

1) For k ≥ k0 there exist embeddings ψk,i : Σ∞,i \ Γ∞,i → Σk \ Γk and con-
stants ck,i so that

ak ◦ ψk,i + ck,i → a∞,i in C∞loc(Σ∞,i \ Γ∞,i,R)

and

uk ◦ ψk,i → u∞,i in C∞loc(Σ∞,i \ Γ∞,i,M).

2) There exists a punctured surface Σ∞ \ Γ∞ so that for all k ≥ k0, Σk \
Γk is diffeomorphic to Σ∞ \ Γ∞, and there exist diffeomorphisms ψk :
Σ∞ \ Γ∞ → Σk \ Γk so that the maps uk ◦ ψk converge in C0(Σ∞ \
Γ∞,M).

Finally, we will need to know what sorts of periodic orbits can appear
in the SFT-limit of sequences of nicely-embedded curves. We start with a
definition. In the following definition, we will use the notation γm to denote
the m-fold cover a periodic orbit γ.

Definition 3.5. Let γ be a simply covered orbit and let m+ and m− be
positive integers. We say that (γ,m+,m−) is a bidirectional asymptotic limit
of a given non-nodal pseudoholomorphic building, if there are (possibly iden-
tical) nontrivial components C+, C− in the building so that γm+ is a positive
asymptotic limit of C+ and γm− is a negative asymptotic limit of C−.

We remark that nontrivial breaking orbits as defined in [58] always give
rise to a bidirectional limit, but the converse is not true.

Lemma 3.6. Let (γ,m+,m−) be a bidirectional limit of a nicely-embedded
pseudoholomorphic building. Then either:
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• γ is even and m+ = m− = 1, or

• γ is odd, hyperbolic and m+ = m− = 2.

Proof. This is equivalent to Proposition 4.4 in [58] which references [50] for
proof. While this result is easily deduced from facts in [50], this fact is not
stated explicitly there, so we outline the proof here.

Let C+ = [Σ+, j+,Γ+, a+, u+] and C− = [Σ−, j−,Γ−, a−, u−] be nontriv-
ial components of the building so that C+ has γm+ as an asymptotic limit at
a puncture z+ ∈ Γ+ and C− has γm− as an asymptotic limit at a puncture
z− ∈ Γ−. The assumption that C± are nicely embedded and have either iden-
tical or disjoint projections to M imply via, as appropriate, either condition
2(c) in [50, Theorem 2.4]/Theorem 3.10 or condition 3(b) in [50, Theorem
2.6]/Theorem 3.13 that5

(3.6)
windΦ

∞(u−; z−)

m−
=
−b−µΦ(γm−)/2c

m−
=
bµΦ(γm+)/2c

m+
=

windΦ
∞(u+; z+)

m+
,

while condition 4(c) of [50, Theorem 2.6]/Theorem 3.13 tells us that

(3.7) gcd(m+,windΦ
∞(u+, z+)) = gcd(m−,windΦ

∞(u−, z−)) = 1

for any trivialization Φ of ξ|γ . However, it’s proved in [50, Theorem 2.4] using
the iteration formulas for the Conley–Zehnder index (Lemma 2.4) that

−b−µΦ(γm−)/2c
m−

=
bµΦ(γm+)/2c

m+

if and only if γm+ and γm− are both even orbits. This is equivalent to
requiring either that γ is even, or γ is odd hyperbolic and m+ and m− are
both even. In either case, we can use that the Conley–Zehnder index iterates
linearly for hyperbolic orbits (Lemma 2.4). In the case that γ is even we then

5The sign difference between the equations given here and those in [50] are due to
a convention difference for computing Conley–Zehnder indices and wind∞. Here we
compute both by always traversing an orbit in the direction of the Reeb vector field,
while in [50] both are computed by traversing the orbit in a direction determined
by the boundary of the S1-compactified surface, which means negative asymptotic
limits are traversed in the direction opposite of the flow of the Reeb vector field.
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have from (3.6) that

gcd(m±,windΦ
∞(u±, z±)) = gcd(m±, b±µΦ(γm±)/2c)

= gcd(m±, b±m±µΦ(γ)/2c)
= gcd(m±,m±µ

Φ(γ)/2)

= m± gcd(1, µΦ(γ)/2)

= m±

so we must have m± = 1 for (3.7) to hold. On the other hand, if γ is odd
hyperbolic and m± = 2n± are even, we have from (3.6) that

gcd(m±,windΦ
∞(u±, z±)) = gcd(m±, b±µΦ(γm±)/2c)

= gcd(2n±, b±µΦ(γ2n±)/2c)
= gcd(2n±, b±2n±µ

Φ(γ)/2c)
= gcd(2n±, b±n±µΦ(γ)c)
= gcd(2n±, n±µ

Φ(γ))

= n± gcd(2, µΦ(γ))

= n±

where we’ve used the µΦ(γ) is odd in the last line. This lets us conclude that
(3.7) holds precisely when n± = 1 and hence m± = 2n± = 2. This completes
the proof. �

3.3. Intersection theory

Here we review some facts about the intersection theory of punctured pseu-
doholomorphic curves from [50].

We continue to assume λ is a nondegenerate contact form on M and J ∈
J (M,λ) is a compatible almost complex structure. Let C1 = [Σ, j,Γ, a, u]
and C2 = [Σ′, j′,Γ′, b, v] be pseudoholomorphic curves. We write Γ = Γ+ ∪
Γ− and Γ′ = Γ′+ ∪ Γ′− to indicate the signs of the punctures. We assume
that at z ∈ Γ, ũ = (a, u) is asymptotic to γmz

z where γz is a simply-covered,
unparametrized periodic orbit, mz is a positive integer, and γmz

z denotes
the mz-fold cover of γz. Similarly we assume that at w ∈ Γ′, ṽ = (b, v) is
asymptotic to γmw

w with γw simply covered. We let Φ denote a choice of
trivialization of the contact structure along all simply covered periodic orbits
of Xλ with covers appearing as asymptotic limits of C1 or C2. We define a
map ṽΦ by perturbing the M -portion v of the map slightly near the ends
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by the flow of a section of the contact structure defined near the orbits
which has zero winding relative to the trivialization Φ. It can be shown
that for suitably small such perturbations, the algebraic intersection number
int(ũ, ṽΦ) of the maps ũ and ṽΦ is well defined and depends only on the
homotopy classes of the maps ũ, ṽ and the trivialization Φ. We thus define
the relative intersection number iΦ(C1, C2) of C1 and C2 relative to the
trivialization Φ by

iΦ(C1, C2) = int(ũ, ṽΦ).

For more background on the definition and properties of the relative inter-
section number, see [37, Section 2.4] or [50, Section 4.1.1]

Given the relative intersection number of two curves, we define the holo-
morphic intersection number6 by7

C1 ∗ C2 = iΦ(C1, C2)(3.8)

+
∑

(z,w)∈Γ+×Γ′
+

γz=γw

mzmw max
{
bµΦ(γmzz )/2c

mz
, bµ

Φ(γmww )/2c
mw

}

+
∑

(z,w)∈Γ−×Γ′−
γz=γw

mzmw max
{
b−µΦ(γmzz )/2c

mz
, b−µ

Φ(γmww )/2c
mw

}
.

We note that the sums here are taken over all pairs of ends with the same sign
which are asymptotic to coverings of the same underlying simply covered or-
bit; the quantities in these sums correspond to the negation of the minimum
number of intersections that must appear between a pair of such ends when
one is perturbed in the prescribed direction (see Section 3.2 and specifically
Corollary 3.21 in [50]). As our notation indicates, the holomorphic intersec-
tion product of two curves is independent of the choice of trivialization used
to define the quantities on the right hand side of (3.8). For proof of this
fact and the other basic properties of the holomorphic intersection number
collected in the following theorem, we refer the reader to [50].

Theorem 3.7 (Properties of the generalized intersection number).
Let (M,λ, J) be a nondegenerate contact manifold equipped with compati-
ble J ∈ J (M,λ), and let M(λ, J) denote the moduli space of finite-energy
pseudoholomorphic curves in M .

6This is called the generalized intersection number in [50].
7This definition appears slightly different from that given in [50] since there

Conley–Zehnder indices of orbits at negative punctures are computed by traversing
the orbit backwards.
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1) If C = [Σ, j,Γ, ũ], D = [Σ′, j′,Γ′, ṽ] ∈M(λ, J) are pseudoholomorphic
curves then the generalized intersection number C ∗D depends only on
the relative homotopy classes of the maps ũ and ṽ.

2) For any C, D ∈M(λ, J)

C ∗D = D ∗ C.

3) If C1, C2, D ∈M(λ, J) then

(C1 + C2) ∗D = C1 ∗D + C2 ∗D

where “+” on the left hand side denotes the disjoint union of the curves
C1 and C2.

4) If C1 � C2 and D1 �D2 are asymptotically cylindrical buildings then

(C1 � C2) ∗ (D1 �D2) ≥ C1 ∗D1 + C2 ∗D2.

Moreover, strict inequality occurs if and only if there is a periodic
orbit γ so that C1 has a negative puncture asymptotic to γm, D1 has
a negative puncture asymptotic to γn, and both γm and γn are odd
orbits.

One of the main motivations for the definition of the holomorphic inter-
section number is that certain well-known theorems concerning the homo-
logical intersection number of holomorphic curves generalize nicely to facts
about the holomorphic intersection number, albeit with an additional com-
plication. The first such theorem is a generalization of the fact that for a pair
of closed pseudoholomorphic curves having no common components (i.e. no
components having identical image) the homological intersection number is
nonnegative, and equal to zero if and only if the two curves are disjoint.
For punctured curves a statement almost as strong can be made, but we
have to allow for the possibility that intersections disappear at the punc-
tures when the curves have ends approaching the same orbit. In this case,
the disappearance of intersections is traded for a higher degree of “tangency
at infinity” with this notion being made precise in terms of the asymptotic
relative asymptotic formula from [49] reviewed above as Theorem 3.1. The
total measure of “tangency at infinity” between two curves C, D without
common components is called the total asymptotic intersection number and
denoted δ∞(C,D). For a precise definition of the total asymptotic intersec-
tion number, and for proof and further discussion, we refer the reader to
[50, Theorem 4.4/2.2].
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Theorem 3.8. Let C, D ∈M(λ, J) be pseudoholomorphic curves. If C
and D have no common components then

(3.9) C ∗D = int(C,D) + δ∞(C,D)

where int(C,D) denotes the algebraic intersection number of C and D, and
δ∞(C,D) is the asymptotic intersection index of C and D. In particular

C ∗D ≥ int(C,D) ≥ 0,

and

C ∗D = 0

if and only if C and D don’t intersect, and the total asymptotic intersection
index vanishes, i.e. δ∞(C,D) = 0.

It will be of use to us here to be able to identify situations in which
the holomorphic intersection number of two curves vanishes. A set of nec-
essary and sufficient conditions is proved is proved in [50, Corollary 5.9].
We quote that result here with appropriate adjustments to the notation and
conventions.

Theorem 3.9. Let C = [Σ, j,Γ, ũ = (a, u)] and D = [Σ′, j′,Γ′, ṽ = (b, v)] ∈
M(λ, J) be pseudoholomorphic curves, and assume that no component of C
or D lies in a trivial cylinder. Then the following are equivalent:

1) The generalized intersection number C ∗D = 0.

2) All of the following hold:
a) The map u does not intersect any of the positive asymptotic limits

of v.
b) The map v does not intersect any of the negative asymptotic limits

of u.
c) Let γ be a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz

and at w ∈ Γ′, ṽ is asymptotic to γmw , and let Φ be a trivialization
of ξ|γ. Then:
(i) If z and w are both positive punctures,

windΦ
∞(ũ; z) = bµΦ(γmz)/2c

and

(3.10) bµΦ(γmz )/2c
mz

≥ bµ
Φ(γmw )/2c
mw

.
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(ii) If z and w are both negative are both negative punctures

−windΦ
∞(ṽ;w) = b−µΦ(γmw)/2c

and
b−µΦ(γmw )/2c

mw
≥ b−µ

Φ(γmz )/2c
mz

.

(iii) If z is a negative puncture and w is a positive puncture,

−windΦ
∞(ũ; z)− b−µΦ(γmz)/2c = windΦ

∞(ṽ;w)− bµΦ(γmw)/2c = 0

and γmz and γmw are both even orbits; or equivalently

windΦ
∞(ũ;z)
mz

= windΦ
∞(ṽ;w)
mw

.

3) All of the following hold:
a) The map u does not intersect any of the asymptotic limits of v.
b) The map v does not intersect any of the asymptotic limits of u.
c) If γ is a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz and

at w ∈ Γ′, ṽ is asymptotic to γmw , then

±z windΦ
∞(ũ; z)− b±zµΦ(γmz)/2c = ±w windΦ

∞(ṽ;w)− b±wµΦ(γmw)/2c = 0.

Further
(i) if γ is elliptic, then z and w are either both positive punctures,

or both negative punctures, and

b±zµΦ(γmz )/2c
mz

= b±wµΦ(γmw )/2c
mw

.

(ii) if γ is odd, hyperbolic then either mz and mw are both even, or
the punctures have the same sign and mz = mw.

It is observed in the discussion following Corollary 5.9 in [50] that if
holomorphic intersection number of two connected curves vanishes, then the
projections of those curves to the 3-manifold are either disjoint or identi-
cal. Indeed, assume that the projections of C and D have neither identical
nor disjoint image. Then, arguing as in [26], an intersection point between
the projections can be seen as an intersection between one curve C and
an R-shift of the other c ·D. Thus C ∗ (c ·D) > 0 by Theorem 3.8. But
homotopy invariance of the ∗-product from Theorem 3.7 then tells us the
C ∗D = C ∗ (c ·D) > 0, and we can conclude that C ∗D = 0 if and only if
the projections of C and D to M have either identical or disjoint image.
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While the converse of this statement is not true, a fairly complete set of
necessary and sufficient conditions for the projections of two curves to the
3-manifold to not intersect is given in [50, Theorem 2.4/5.12]. We recall that
theorem here with appropriate adjustments to the notation and conventions.

Theorem 3.10. Let [Σ, j,Γ, ũ = (a, u)] and [Σ′, j′,Γ′, ṽ = (b, v)] ∈M(λ, J)
be pseudoholomorphic curves, and assume that no component of ũ or ṽ lies
in a trivial cylinder, and that the projected curves u and v do not have
identical image on any component of their domains. Then the following are
equivalent:

1) The projected curves u and v do not intersect.

2) All of the following hold:
a) The map u does not intersect any of the positive asymptotic limits

of v.
b) The map v does not intersect any of the negative asymptotic limits

of u.
c) If γ is a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz and

at w ∈ Γ′, ṽ is asymptotic to γmw , then:
(i) If z and w are either both positive punctures or both negative

punctures then

wind∞(ũ;z)
mz

≥ wind∞(ṽ;w)
mw

.

(ii) If z is a negative puncture and w is a positive puncture then

windΦ
∞(ũ;z)
mz

= −b−µΦ(γmz )/2c
mz

= bµΦ(γmw )/2c
mw

= windΦ
∞(ṽ;w)
mw

(this is only possible if γmz and γmw are both even orbits).

3) All of the following hold:
a) The map u does not intersect any of the asymptotic limits of v.
b) The map v does not intersect any of the asymptotic limits of u.
c) If γ is a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz and

at w ∈ Γ′, ṽ is asymptotic to γmw , then

wind∞(ũ;z)
mz

= wind∞(ṽ;w)
mw

.

The following corollary will be of use in the proof of our main theorem.

Corollary 3.11. Let C = [Σ, j,Γ, ũ] and D = [Σ′, j′,Γ′, ṽ] ∈M(λ, J) be
connected pseudoholomorphic curves. Assume that C or D are not trivial
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cylinders, that C and D have distinct projections to M , and that at ev-
ery puncture of C and D the winding bound from (3.5) is achieved. Then
C ∗D = 0 if and only if the projections of C and D to M are disjoint.

Proof. In the event that the winding bound from (3.5) is achieved at each
puncture, i.e. that

±z windΦ
∞(ũ; z) = b±zµΦ(γmz)/2c

for all z ∈ Γ and

±w windΦ
∞(ṽ;w) = b±wµΦ(γmw)/2c

for all w ∈ Γ′, then condition (2) in Theorem 3.10 and condition (2) in
Theorem 3.9 reduce to the same thing. Thus the two theorems together
imply that C ∗D = 0 if and only if the projection of C and D to M are
disjoint. �

In addition to Theorem 3.8, a second fact which motivates the defini-
tion of the holomorphic intersection number is that, like the homological
self-intersection number of a closed curve, the holomorphic self-intersection
number identifies those relative homotopy classes of simple curves (i.e. those
that don’t factor through a branched cover) which must be embedded [50,
Theorem 2.3]. This result can be combined with Theorem 3.10 and some
results and techniques from [26] to state a fairly exhaustive set of necessary
and sufficient conditions of the vanishing of the holomorphic self-intersection
number of a curve. We will summarize the information we need from this
result below after recalling the definitions of some relevant invariants asso-
ciated to a punctured pseudoholomorphic curve.

Consider a pseudoholomorphic curve C = [Σ, j,Γ, a, u] ∈M(λ, J), and
assume that at z ∈ Γ the map u is asymptotic to a cover of the periodic orbit
γz. Let Φ denote a trivialization of ξ in a neighborhood of each periodic
orbit γ appearing as an asymptotic limit of C, and note that Φ induces a
trivialization of u∗ξ in a neighborhood of each puncture. We then define the
total Conley–Zehnder index of the curve C to be

(3.11) µ(C) = 2cΦ
1 (u∗ξ) +

∑
z∈Γ+

µΦ(u; z)−
∑
z∈Γ−

µΦ(u; z)

where cΦ
1 (u∗ξ) is the relative first Chern number, defined to be algebraic

count of zeroes of a section of u∗ξ which is nonzero and constant in the
trivialization Φ in a neighborhood of each puncture (see [37, Section 2.2] or
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[50, Section 4.2.1] for more details on the properties of the relative first chern
number). As a result of the respective change-of-trivialization formulas for
the Conley–Zehnder index and cΦ

1 (u∗ξ), it follows that the total Conley–
Zehnder index of a curve is independent of any choice of trivialization. We
then the define the index ind(C) of C by

(3.12) ind(C) = µ(C)− χ(Σ) + #Γ

where χ(Σ) is the Euler characteristic of Σ and #Γ is the number of punc-
ture of the curve. This index represents the Fredholm index of the operator
describing the local deformations of the curve C (the relevant facts from [30]
are reviewed in Section 3.4 below).

We now have the following theorem, summarizing relevant information
from [50, Corollary 5.17] and the discussion thereafter.

Theorem 3.12. Let C = [Σ, j,Γ, ũ = (a, u)] ∈M(λ, J) be a simple, con-
nected pseudoholomorphic curve, and assume that C ∗ C = 0 and that C
does not lie in a trivial cylinder. Then:

1) The map ũ : Σ \ Γ→ R×M is an embedding.

2) The map u : Σ \ Γ→M is embedding, everywhere transverse to Reeb
flow, which is disjoint from all the asymptotic limits of u.

3) For each z ∈ Γ, the bound from (3.5) is achieved, i.e.

±z windΦ
∞(ũ; z) = b±zµΦ(ũ; z)/2c

where ±z denotes the sign of the puncture z.

4) The index ind(C) satisfies

ind(C)− χ(Σ) + #Γeven = 0

where χ(Σ) is the Euler characteristic of the surface Σ and #Γeven is
the number of punctures of C asymptotic to even periodic orbits.

We recall from the discussion following Corollary 5.17 in [50] that for a
connected curve C = [Σ, j,Γ, a, u] satisfying the hypotheses of the previous
result, if C ∗ C = 0 then the projection of the curve to M is an embedding.
Indeed, the result shows that umust be an immersion which doesn’t intersect
any of its asymptotic limits. Moreover, since for the R-translates c · C =
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[Σ, j,Γ, a+ c, u], we have

0 ≤ int(C, c · C) ≤ C ∗ (c · C) = C ∗ C = 0,

it follows from positivity of intersections that ũ doesn’t intersect any of
its R-translates, and hence that the projection u is injective. As observed
in [26], the asymptotic behavior of the curve then allows us to conclude
that u is an embedding. As with the discussion of intersections of curves
with distinct projections to the three-manifold, the converse is not true:
it is possible for curves to project to embeddings in M but have positive
self-intersection number. However, various sets of necessary and sufficient
conditions for the projection of a curve of M to be embedded are given
in [50, Theorem 2.6/5.20]. We quote that result here, making appropriate
adjustments to notation and conventions.

Theorem 3.13. Let [Σ, j,Γ, ũ = (a, u)] ∈M(λ, J) be a connected, simple
pseudoholomorphic curve, and assume that ũ does not have image contained
in a trivial cylinder. Then the following are equivalent:

1) The projected map u : Σ \ Γ→M is an embedding.

2) The algebraic intersection number int(ũ, ũc) between ũ and one of its
R-translate ũc = (a+ c, u) is zero for all c ∈ R \ {0}.

3) All of the following hold:
a) u does not intersect any of its asymptotic limits.
b) If γ is a periodic orbit so that u is asymptotic at z ∈ Γ to γmz and

u is asymptotic at w ∈ Γ to γmw , then

wind∞(ũ;z)
mz

= wind∞(ũ;w)
mw

.

4) All of the following hold:
a) The map ũ is an embedding.
b) The projected map u is an immersion which is everywhere trans-

verse to Xλ

c) For each z ∈ Γ, we have

gcd(mz,wind∞(ũ; z)) = 1.

d) If γ is a simple periodic orbit so that u is asymptotic at z to γmz ,
u is asymptotic at w 6= z to γmw , and the punctures have the same
signs, then the relative asymptotic intersection number (see Lemma
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3.19 and discussion following in [50] for definition) of the ends
[ũ; z] and [ũ;w] satisfies

iΦ∞([ũ; z], [ũ;w]) = −mzmw max
{
±z windΦ

∞(ũ;z)
mz

, ±w windΦ
∞(ũ;w)

mw

}
.

The following corollary will be of use in the proof of our main theorem.

Corollary 3.14. Consider a connected pseudoholomorphic curve

C = [Σ, j,Γ, ũ = (a, u)] ∈M(λ, J)

and assume that C is not a trivial cylinder and that at every puncture of C
the winding bound from (3.5) is achieved. Then C ∗ C = 0 if and only if the
map u : Σ \ Γ→M is an embedding.

Proof. In the event that the winding bound from (3.5) is achieved at each
puncture, i.e. that

±z windΦ
∞(ũ; z) = b±zµΦ(γmz)/2c

for all z ∈ Γ then the special case of condition (2) in Theorem 3.9 in which
ũ = ṽ and condition (3) in Theorem 3.13 reduce to the same thing. Thus
the two theorems together imply that C ∗ C = 0 if and only if the map
u : Σ \ Γ→M is an embedding. �

It is shown in [50] that when two curves have ends approaching coverings
of the same hyperbolic orbit, there is a “direction-of-approach” condition
that will guarantee the two curves have positive holomorphic intersection
number. We review the relevant definitions and results here.

We will first define what it means for two pseudoholomorphic half-
cylinders to approach an orbit in the same (or opposite) direction. The
definition we use here will apply to any nondegenerate periodic orbit and,
when the orbit is even, will be stricter than the definition used in [50]. In
exchange for using a slightly stricter definition we will be able to make a
slightly stronger conclusion via essentially the same argument used in [50].

Let ũ, ṽ : [R,∞)× S1 → R×M be positive pseudoholomorphic half-
cylinders asymptotic to the same nondegenerate periodic orbit γ, and assume
that the the asymptotic formulas for asymptotic representatives U , V of ũ
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and ṽ respectively are given by

U(s, t) = eλus[eu(t) + ru(s, t)]

V (s, t) = eλvs[ev(t) + rv(s, t)].

We say that the half cylinders ũ and ṽ approach γ in the same direction if
the eigenvectors eu and ev are positive scalar multiples of each other, and
similarly we say that we say that the half cylinders ũ and ṽ approach γ
in the opposite direction if the eigenvectors eu and ev are negative scalar
multiples of each other. We note that in either case we must have λu = λv.
For a pair of negative half-cylinders asymptotic to the same periodic orbit,
the definitions are exactly analogous: the cylinders are said to approach in
the same direction if the eigenvectors controlling the approach are positive
multiples of each other, and are said to approach in the opposite direction
if they are negative scalar multiples of each other.

The notion of approaching an orbit in the same (or opposite) direction
is of particular use at an even orbit due to the following lemma, which shows
that pairs of pseudoholomorphic ends approaching an even orbit with the
same sign and extremal winding (i.e. the bound in (3.5) is achieved) always
either approach in the same or opposite direction.

Lemma 3.15. Let γ be an even periodic orbit. Let ũ and ṽ : [R,∞)×
S1 → R×M be either both positive or both negative pseudoholomorphic half-
cylinders asymptotic to γ, and assume that

windΦ
∞(ũ) = windΦ

∞(ṽ) = µΦ(γ)/2.

for any symplectic trivialization Φ of γ∗ξ. Then ũ and ṽ either approach γ
in the same direction, or opposite direction.

Proof. Let λ− < 0 denote the largest negative eigenvalue of Aγ,J . Then, ac-
cording to Theorem 2.3 and the fact that the parity of an orbit is equal
to the parity of its Conley–Zehnder index, in any symplectic trivializa-
tion Φ of γ∗ξ the winding of an eigenvector of Aγ,J with eigenvalue λ− is
bµΦ(γ)/2c = µΦ(γ)/2. It further follows from the same theorem and Lemma
2.2 that eigenvectors of Aγ,J having smallest possible positive eigenvalue
also have winding equal to µΦ(γ)/2. Since Lemma 2.2 tells us that the span
of the collection of eigenvectors having winding equal to µΦ(γ)/2 is two
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dimensional, we can conclude that

dim ker(Aγ,J − λ±) = 1

and that all eigenvectors e of Aγ,J with negative (resp. positive) eigenvalue
satisfying

wind Φ−1e = µΦ(γ)/2

have eigenvalue λ− (resp. λ+).
Now, if ũ and ṽ are positive (resp. negative) half-cylinders and have

winding

windΦ
∞(ũ) = windΦ

∞(ṽ) = µΦ(γ)/2.

then the eigenvector controlling the approach of each cylinder must have
eigenvalue λ− (resp. λ+). Since we’ve argued above that the eigenspaces
ker(Aγ,J − λ±) are 1-dimensional, we conclude that the eigenvectors associ-
ated to each cylinder are scalar multiples of each other which is equivalent to
saying that ũ and ṽ approach γ in either the same or opposite direction. �

We now state the main theorem concerning the intersection properties of
pseudoholomorphic half-cylinders that approach an even orbit with extremal
winding in the same direction.

Theorem 3.16. (c.f. [50, Theorem 5.15]) Let ũ = (a, u) and ṽ = (b, v) :
[R,∞)× S1 → R×M be either both positive or both negative pseudoholo-
morphic half-cylinders asymptotic to an even periodic orbit γ. Assume that
ũ and ṽ have extremal winding, i.e.

(3.13) windΦ
∞(ũ) = windΦ

∞(ṽ) = µΦ(γ)/2,

and that ũ and ṽ approach γ in the same direction. Then the projections u,
v of the maps ũ, ṽ to the 3-manifold M intersect.

Proof 1. The proof is a combination of the proofs of Theorem 5.14, The-
orem 5.15, Lemma 5.10 in [50], and a local version of Theorem 2.2 in
[50]/Theorem 3.8 above. If the images of ũ and ṽ differ by the R-action
on some neighborhood of infinity, then the projections to M will be identi-
cal on the same neighborhood of infinity so there is nothing more to prove.
We thus, without loss of generality, assume that the images of ũ and ṽ
do not differ by the R-action on any neighborhood of infinity. Given this
assumption Theorems 5.14–5.15 in [50] shows that the there is a constant
c0 ∈ R so that the asymptotic intersection number δ∞(ũ, ṽc0) is positive,
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where ṽc = (b+ c, v) denotes the half-cylinder obtained by shifting the R-
coordinate of ṽ by c. On the other hand, the argument in Lemma 5.10 in [50]
shows that δ∞(ũ, ṽc) = 0 for all c 6= c0 nearby to c0 (in fact, the proof there
reveals, for all c 6= c0). Since intersections are isolated, we can, after perhaps
restricting the domains, define an algebraic intersection number int(ũ, ṽc0),
relative intersection number iΦ(ũ, ṽc0), and holomorphic intersection number
[ũ] ∗ [ṽc0 ] = iΦ(ũ, ṽc0) + µΦ(γ)/2. Moreover, iΦ(ũ, ṽc0) and [ũ] ∗ [ṽc0 ] will be
invariant under small perturbations of ṽc0 , and the analogy of formula (3.9)

[ũ] ∗ [ṽc0 ] = int(ũ, ṽc0) + δ∞(ũ, ṽc0)

holds as well for the localized versions of the intersection product. As c0

changes to a sufficiently nearby c 6= c0 in the equation, the local holomorphic
intersection product [ũ] ∗ [ṽc] remains unchanged, while we’ve just argued
that the asymptotic intersection number δ∞(ũ, ṽc) changes from a positive
number to zero. Thus the algebraic intersection number int(ũ, ṽc) must in-
crease, and since int(ũ, ṽc) ≥ 0 for all c, we conclude that int(ũ, ṽc) > 0 for
c very near to c0. Since ũ = (a, u) and ṽc = (b+ c, v) intersecting implies u
and v intersect, this completes the proof. �

For the convenience of the reader we provide a self-contained presenta-
tion of the above argument below.

Proof 2. For simplicity we will carry out the proof assuming that both cylin-
ders are positive. The proof in the case that both are negative is completely
analogous. As in the previous proof, we continue to assume that the images
of ũ and ṽ do not differ by the R-action on any neighborhood of infinity.

Proceeding now with the above assumptions, we let U , V : [R′,∞)×
S1 → γ∗ξ be asymptotic representatives of ũ and ṽ respectively, that is U
and V satisfy

ũ ◦ φ(s, t) =
(
Ts, expγ(t) U(s, t)

)
ṽ ◦ ψ(s, t) =

(
Ts, expγ(t) V (s, t)

)
for some proper embeddings φ, ψ : [R′,∞)× S1 → [R,∞)× S1. We further
observe that if ṽc is the map ṽc(z) = (b(z) + c, v(z)) obtained by shifting the
R-component of ṽ by c, then

ṽc ◦ ψc(s, t) =
(
Ts, expγ(t) Vc(s, t)

)
,

where ψc(s, t) := ψ(s− c/T, t) and Vc(s, t) := V (s− c/T, t).



i
i

“4-Siefring” — 2019/3/19 — 10:11 — page 1679 — #41 i
i

i
i

i
i

Connected sums and finite energy foliations I 1679

According to our winding assumption (3.13) and the fact that γ is an
even orbit, the asymptotic formulas for U and V must be of the form

U(s, t) = eλs[eu(t) + r1(s, t)](3.14)

V (s, t) = eλs[ev(t) + r2(s, t)](3.15)

with λ the largest negative eigenvalue of Aγ,J , and ri(s, t)→ 0 exponentially
in s. Hence the asymptotic formula for Vc = V (· − c/T, ·) is of the form

(3.16)
Vc(s, t) = eλse−λc/T [ev(t) + r2(s− c/T, t)]

= eλs[Kcev(t) + rc(s, t)]

where Kc = e−λc/T > 0 and rc = Kcr2(· − c/T, ·) decays exponentially in s.
We seek to understand how the intersection behavior of two cylinders

ũ and ṽc changes as c changes. We first observe that by the assumption
that ũ and ṽ approach γ in the same direction, there is a c0 so that eu =
Kc0ev. If ũ and ṽc0 intersect, the projections u and v intersect, so there is
nothing more to prove. We assume then that ũ and ṽc0 don’t intersect and
consider the difference U(s, t)− Vc0(s, t) for (s, t) ∈ [R′′,+∞) for some large
R′′. According to Theorem 3.1 we have that

(3.17) U(s, t)− Vc0(s, t) = eλ1s[e1(t) + r(s, t)]

with r(s, t)→ 0 exponentially. Meanwhile, direct computation using formu-
las (3.14) and (3.16) shows that

U(s, t)− Vc0(s, t) = eλs[r1(s, t)− rc0(s, t)].

Since r1 − rc0 converges exponentially to 0, comparing above two equations
shows that λ1 < λ. Since the orbit is even, Lemma 2.2 with Theorem 2.3
tells us that we must have that wind Φ−1e1 < wind Φ−1eu = µΦ(γ)/2 in any
trivialization Φ of γ∗ξ. We thus conclude from this observation and (3.17)
that

(3.18) wind Φ−1[U(s, ·)− Vc0(s, ·)] = wind Φ−1e1 < µΦ(γ)/2

for all sufficiently large s. Moreover, since we assume that ũ and ṽc0 don’t
intersect, we conclude that (3.18) holds for all s ∈ [R′′,∞).

Meanwhile, we can choose c 6= c0 sufficiently close to c0 so that U(s, t)−
Vc(s, t) is defined for (s, t) ∈ [R′′ + 1,∞)× S1 and so that for all s ∈ [R′′ +
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1, R′′ + 2]

wind Φ−1[U(s, ·)− Vc(s, ·)] = wind Φ−1[U(s, ·)− Vc0(s, ·)] < µΦ(γ)/2.

On the other hand, computation using (3.14), (3.16) Kc = e−λc/T , and eu =
Kc0ev gives us

e−λs[U(s, t)− Vc(s, t)] = eu(t)−Kcev(t) + r4(s, t)

= eu(t)− e−λ(c−c0)/TKc0ev(t) + r4(s, t)

= eu(t)− e−λ(c−c0)/T eu(t) + r4(s, t)

= σc0eu(t) + r4(s, t)

where r4 := r1 − rc decays exponentially in s and σc0 := 1− e−λ(c−c0)/T 6= 0.
We conclude that for all s sufficiently large,

wind Φ−1[U(s, t)− Vc(s, t)] = wind Φ−1eu = µΦ(γ)/2.

Since the winding of Φ−1[U(s, t)− Vc(s, t)] changes as s changes, U(s, t)−
Vc(s, t) must have at least one zero. This implies that ũ and ṽc must intersect
at least once, which in turn implies that the projections u and v intersect.
This completes the proof. �

We close this section with a result concerning intersections between com-
ponents of a holomorphic building resulting as the limit of a sequences of
holomorphic curves having intersection number equal to zero.

Lemma 3.17. Let Ck, Dk ∈M(λ, J) be sequences of holomorphic curves
satisfying Ck 6= Dk and Ck ∗Dk = 0 for all k, and assume that Ck and Dk

converge (in the sense of [6]) respectively to a holomorphic buildings C∞,
D∞. Then for every component C ′ of C∞ and D′ of D∞, the projections of
C ′ and D′ to M are either disjoint or identical.

Proof. Assume that the projections of some components C ′ and D′ of the
limit buildings to M are neither disjoint nor identical. Then for some value
of d′ ∈ R, C ′ and the R-translate d′ ·D′ have at least one isolated inter-
section. But according to the definition of SFT-convergence from [6] there
exist sequences of constants ck, dk ∈ R so that ck · Ck and dk ·Dk converge
respectively in C∞loc to C ′ and D′ (see Proposition 3.4), and thus (dkd

′) ·Dk

converges in C∞loc to d′ ·D. But, since C ′ and D′ have at least one isolated
intersection, we can conclude from the C∞loc convergence that ck · Ck and
(dkd

′) ·Dk have at least one isolated intersection for sufficiently large values
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of k. Theorem 3.8 then allows us to conclude that (ck · Ck) ∗ (dkd
′ ·Dk) > 0

for sufficiently large k. But by homotopy invariance of the ∗-product, we
have that

(ck · Ck) ∗ (dkd
′ ·Dk) = Ck ∗Dk = 0.

This contradiction completes the proof. �

3.4. Fredholm theory and transversality

We will briefly review the Fredholm theory for embedded (or immersed)
pseudoholomorphic curves from [30].

First, given (M,λ) and compatible J ∈ J (M,λ), we define a metric gJ
on M by

gJ(v, w) = λ(v)λ(w) + dλ (πξ(v), Jπξ(w))

where πξ : TM ≈ RXλ ⊕ ξ → ξ is the projection to ξ along Xλ. That gJ de-
fined this way is a metric on TM follows from the definition of compatibility
of J . We extend this to a metric g̃J on R×M by defining

g̃J ((h, v), (k,w)) = h · k + gJ(v, w)

where (h, v), (k,w) ∈ R⊕ TM ≈ T (R×M). Compatibility of J with (ξ, dλ)
and the definition of the extension of J to an almost complex structure J̃
on R×M implies that g̃J is a hermitian metric on the (R×M, J̃), that is
J̃ is a g̃J -orthogonal endomorphism of T (R×M).

Now, let C = [Σ, j,Γ, ũ = (a, u)] ∈M(λ, J) be an embedded pseudo-
holomorphic curve, and choose a model parametrization (Σ, j,Γ, ũ = (a, u)).
Then C has a well-defined normal bundle NC which can be realized as a
subbundle of T (R×M)|C = ũ∗T (R×M) by letting

(NC)ũ(z) = dũ(z)(TzΣ)⊥

with ⊥ denoting the g̃J orthogonal complement within Tũ(z)(R×M). We
consider curves which are parametrized by mapping sections of the normal
bundle NC of the curve C to R×M via the exponential map ẽxp of the met-
ric g̃J , that is, those curves C ′ = [Σ′, j′,Γ′, ṽ = (b, v)] ∈M(λ, J) for which
there exists a smooth map ψ : Σ \ Γ→ Σ′ \ Γ′ and a smooth section V of
NC so that

ṽ(ψ(z)) = ẽxpũ(z)V (z).

In order to to do this, we first recall that the asymptotic behavior of the
curve C implies that ẽxp is an immersion on some ε-neighborhood N ε

C of the
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zero section of NC with respect to the metric on NC induced from g̃J (see
e.g. Corollary 2.7 in [52]). We can thus define an almost complex structure
J̄ on this ε-neighborhood of the zero section of NC by pulling back J̃ via
the exponential map. Give a connection ∇ on NC , we get a splitting

T(z,V )NC ≈ Tz(Σ \ Γ)⊕ (NC)z

of the tangent space of NC into horizontal and vertical distributions. This
splitting is canonical along the zero section. With respect to the splitting
induced by a given connection we can write

(3.19) J̄(z, V ) =

[
i(z, V ) ∆̃(z, V )
∆(z, V ) J(z, V )

]
with i ∈ End(T (Σ \ Γ)), ∆̃ ∈ Hom(NC , T (Σ \ Γ)), ∆ ∈ Hom(T (Σ \ Γ), NC),
and J ∈ End(NC). Moreover, along the zero section of NC we have

J̄(z, 0) =

[
i(z, 0) ∆̃(z, 0)
∆(z, 0) J(z, 0)

]
=

[
j(z) 0

0 JN (z)

]
with j the complex structure on TΣ and JN the complex structure on NC

induced from J̃ . Note that squaring (3.19) and using J̄2 = −I we get that

∆ ◦ i = −J ◦∆.

Letting ∆′ : N ε
C → Hom(NC ,Hom(T (Σ \ Γ), NC)) denote the map obtained

from differentiating ∆ in the fiber direction, we can differentiate the above
equation in the fiber direction and use that ∆ vanishes along the zero section
to conclude that

[∆′(0)V ] ◦ i(0) = −J(0) ◦ [∆′(0)V ]

or equivalently

[∆′(0)V ] ◦ j = −JN ◦ [∆′(0)V ]

for any section V of NC . Thus, for any section V of NC , [∆′(0)V ] ◦ j is a
j-JN anti-linear map from T (Σ \ Γ) to NC .

Definition 3.18. The linearized normal ∂̄-operator ∂̄∇N (C) at an embed-
ded curve C ∈M(λ, J) relative to the connection ∇ on NC is the operator
∂̄∇N (C) : C∞(NC)→ C∞(Hom0,1(T (Σ \ Γ), NC)) defined by

∂̄∇N (C)V = ∇V + JN∇j·V + [∆′(0)V ] ◦ j.
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The following theorem summarizes results about the linearized normal
∂̄-operator proved in [30] using results from [48].

Theorem 3.19. There exists a measure and metric on Σ \ Γ and connec-
tion on NC so that the extensions of ∂̄∇N (C) to maps

∂̄∇N (C) : W k,p(NC)→W k−1,p(Hom0,1(T (Σ \ Γ), NC))

and

∂̄∇N (C) : Ck,α0 (NC)→ Ck−1,α
0 (Hom0,1(T (Σ \ Γ), NC))

are Fredholm. Moreover each of the above operators has the same kernel,
and the Fredholm index ind(∂̄∇N (C)) of each of the above operators is given
by

ind(∂̄∇N (C)) = ind(C)

with ind(C) as defined in (3.12).

In [30], it is shown that the moduli space of pseudoholomorphic curves
near a given embedded C ∈M(λ, J) can be given as the zero set of a smooth,
nonlinear sectionH : B → E of a Banach space bundle E defined over an open
neighborhood B of 0 in the Banach algebra Ck,α0 (NC) of Ck,α0 sections of the
normal bundle NC of C. Moreover, if 0 ∈ B denotes the zero section of NC ,
there is a natural isomorphism

α : Ck−1,α
0 (Hom0,1(T (Σ \ Γ), NC))→ E0

so that the linearization H ′(0) of the section H at the zero section 0 ∈ B
satisfies

H ′(0)V = α(∂̄∇N (C)V )

for any V ∈ Ck,α0 (NC). Thus, in the case that ∂̄∇N (C) is surjective, the im-
plicit function theorem can be applied to conclude that set of curves near
C ∈M(λ, J) is a smooth manifold with dimension equal to the index (3.12).
This leads to the following theorem, summarized from facts proved in [30].

Theorem 3.20. Let C ∈M(λ, J) be an embedded pseudoholomorphic curve
with parametrization (Σ, j,Γ, ũ = (a, u)) and assume that

∂̄∇N (C) : Ck,α0 (NC)→ Ck−1,α
0 (Hom0,1(T (Σ \ Γ), NC))

is surjective. Then there exists an open neighborhood B ⊂ ker ∂̄∇N (C) of the

zero section of NC and a smooth embedding E : B → Ck,α0 (NC) mapping 0
to the zero section satisfying:
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1) For every τ ∈ B, Eτ : Σ \ Γ→ NC is smooth section of the normal
bundle to C.

2) The derivative DE0 : ker ∂̄∇N (C)→ Ck,α0 (NC) of E : B → Ck,α0 (NC) at

0 ∈ B is the inclusion ker ∂̄∇N (C) ↪→ Ck,α0 (NC), i.e. DE0(v) = v for any

v ∈ ker ∂̄∇N (C) ⊂ Ck,α0 (NC).

3) For each τ ∈ B, there exists a distinct pseudoholomorphic curve Cτ ∈
M(λ, J) with parametrization (Στ , jτ ,Γτ , ṽτ = (bτ , vτ )) and a diffeo-
morphism8 ψτ : Σ \ Γ→ Στ \ Γτ so that9

ṽτ ◦ ψτ = ẽxp(Eτ ).

4) The map F : B × (Σ \ Γ)→ R×M defined by

F (τ, z) = ẽxpũ(z)Eτ (z)

is smooth.

We remark that the last claim above is only proved in [30] as part of
a theorem (Theorem 5.7) where it’s assumed that the original curve C is a
pseudoholomorphic plane satisfying some additional properties. The proof
of that portion of theorem however applies to any immersed curve C. The
key idea is that the sections Eτ are smooth by elliptic regularity and that
the map τ 7→ Eτ determines a smooth map from B → Ck,α0 (NC) for every
positive integer k.

It’s proven in [30] that for a generic choice of J ∈ J (M,λ) the linearized
normal ∂̄-operator ∂̄∇N (C) at any immersed curve C ∈M(λ, J) is surjective.
We will not state the precise result since it is not needed in our proof.
What is of interest here is the fact that under certain circumstances, the
surjectivity of the linearized normal Cauchy–Riemann operator ∂̄∇N (C) can
be guaranteed provided that certain conditions on the topological invariants

8We caution the reader that, in general, the continuous extension of this diffeo-
morphism over the punctures is not smooth. We refer the reader to [30] for more
details.

9We note that in [30], rather than using the exponential map of the metric, a
map from the normal bundle of C to R×M is constructed by using a special
trivialization in a special coordinate system. However, the essential point for the
results of [30] to hold is that one has a map from a neighborhood of 0 in NC to
R×M satisfying certain asymptotic conditions. That the exponential map ẽxp of
the metric g̃J has the right properties is easily seen from the asymptotic analysis
in [52].
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of the curve C are met. Such so-called automatic transversality conditions
were first described Gromov in [19], with proofs in [32] for compact curves
(either without boundary or with totally real boundary conditions), and
very general results proven in [57] from which the following theorem can be
deduced.

Theorem 3.21. Let C = [Σ, j,Γ, a, u] ∈M(λ, J) be immersed. Then the
linearized normal ∂̄-operator ∂̄∇N (C) at C is surjective if

(3.20) ind(C) ≥ −χ(Σ) + #Γeven + 2 = 2g(Σ) + #Γeven

where χ(Σ) is the Euler characteristic of the surface Σ, and #Γeven is the
number of punctures of the curve which limit to periodic orbits with even
Conley–Zehnder index.

In the event that ind(C) is even and positive there is a short proof of a
special case of this result (the essential case for our proof is ind(C) = 2, but
we include the above result since it’s also of interest to know that index-
1 curves in a stable foliation are regular). We will recall the proof of this
special case below since the proof is easy and uses a fact about the zeros of
elements of the kernel of the linearized normal ∂̄-operator that we will need
later. We state this fact in the following lemma.

Lemma 3.22. Let C = [Σ, j,Γ, a, u] ∈M(λ, J) be an embedded pseudo-
holomorphic curve and let V ∈ ker ∂̄∇N (C) be a nontrivial element of the
kernel of the linearized normal Cauchy–Riemann operator at C. Then all
zeroes of V are isolated and have positive local index. Moreover, if i(V )
denotes the total algebraic count of zeroes of V , then

0 ≤ i(V ) ≤ 1

2
(ind(C)− χ(C) + #Γeven)

with χ(C) the Euler characteristic of the curve, and #Γeven the number of
asymptotic limits of the curve with even Conley–Zehnder index.

Proof. The proof is a straightforward generalization of arguments in [26,
Proposition 5.6, Theorem 5.8], [30, Theorem 2.11], and [31, Theorem 2.7].
We will highlight the main points. As observed in [30, Theorem 2.11], the
fact that the zeroes of a nontrivial element of ker ∂̄∇N (C) are isolated and
have positive local index follows from the similarity principle (see e.g. Ap-
pendix A.6 in [33]). As in [30, Theorem 2.11], it can be argued that a nontriv-
ial element V of ker ∂̄∇N (C) satisfies an asymptotic formula of the same form
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as that given in [27, 42] or Theorem 3.1 above. Thus choosing a trivialization
Φ of the contact structure along the asymptotic limit γz of a given puncture
z ∈ Γ and extending to a trivialization of the normal bundle NC near the
puncture, the section V has a well-defined asymptotic winding number and
the argument of Theorem 3.2 applies to show that

±z windΦ(V ; z) ≤ b±zµΦ(γz)/2c = 1
2

(
±zµΦ(γz)− p(γz)

)
with ±z the sign of the puncture z and p(z) is the parity of the orbit γz. A
straightforward zero-counting argument gives that

i(V ) = cΦ
1 (NC) +

∑
z∈Γ

±z windΦ(V ; z).

Meanwhile, properties of the relative first Chern number imply that

cΦ
1 (NC)− cΦ

1 (ξ|C) = −χ(Σ \ Γ) = −χ(Σ) + #Γ

(see [37, Proposition 3.1]). Combining the above with formulas (3.11) and
(3.12) leads to

i(V ) ≤ 1

2
(ind(C)− χ(C) + #Γeven)

as claimed. �

We now recall the proof of the special case of Theorem 3.21. The idea is
that if the kernel of the linearized operator is too big, then one can construct
a section of the kernel with too many zeroes. This same argument is applied
in the proofs of [30, Theorem 2.11] and [2, Theorem 2.7].

Theorem 3.23. Let C = [S2, i,Γ, a, u] ∈M(λ, J) be a an embedded, pseu-
doholomorphic (punctured) sphere and assume that all punctures of are odd
and that ind(C) = 2. Then the linearized normal ∂̄-operator ∂̄∇N (C) is sur-
jective.

Proof. To show that ∂̄∇N (C) is surjective, it suffices to show that

dim ker ∂̄∇N (C) = ind(C) = 2.

Suppose to the contrary that dim ker ∂̄∇N (C) > 2. Then we can find three
linearly independent vectors V1, V2, V3 ∈ ker ∂̄∇N (C) ⊂ C∞(NC). Choosing a
point z0 ∈ S2 \ Γ and using that the normal bundle NC has (real) dimension
2, we can find constants c1, c2, and c3 so that

∑3
i=1 ciVi(z0) = 0. Thus,
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the section Vc of NC defined by Vc =
∑3

i=1 ciVi is a nonzero element of
ker ∂̄∇N (C) which vanishes at z0 and therefore, according to Lemma 3.22
satisfies i(Vc) ≥ 1 since all zeroes have positive local index. But Lemma 3.22
also tells us that

i(Vc) ≤ 1

2

(
ind(C)− χ(S2) + #Γeven

)
=

1

2
(2− 2 + 0) = 0.

We thus have the contradiction 1 ≤ i(Vc) ≤ 0 which completes the proof. �

4. Stable finite energy foliations and moduli spaces of
foliating curves

In this section we will develop some general theory for finite energy foliations
and collect facts about the moduli spaces of curves which make up finite
energy foliations. We start with a definition.

Definition 4.1. Let (M,λ, J) be a three manifold equipped with a nonde-
generate contact form and compatible J ∈ J (M,λ). A stable finite energy
foliation F of total energy E0 for the data (M,λ, J) is a collection of simple
curves C ∈M(λ, J) satisfying:

• For every point p ∈ R×M there is a unique curve C ∈ F passing
through p.

• Every C ∈ F is either a trivial cylinder or satisfies ind(C) ∈ {1, 2}

• For any C1, C2 ∈ F with ind(Ci) ∈ {1, 2}, C1 ∗ C2 = 0.

• E0 = supC∈F E(C).

We note that this definition is a slightly weaker one than that given in
the introduction in that we don’t explicitly require here that the curves of
F form a smooth foliation of R×M . We will see below however, that this
condition follows from the above assumptions and, thus, the two definitions
are in fact equivalent. We observe that the penultimate condition in our
definition of stable finite energy foliation above applies when C1 = C2. The
following theorem collects some facts about the moduli spaces of curves
satisfying C ∗ C = 0 and ind(C) ∈ {1, 2} that follow from results reviewed
in the preceding sections.

Theorem 4.2. Let C = [Σ, j,Γ, a, u] ∈M(λ, J) be a simple pseudoholo-
morphic curve, and assume that C ∗ C = 0 and ind(C) ∈ {1, 2}. Then:
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1) C is embedded.

2) C is nicely embedded; that is, the projection of C to M is an embedding
transverse to the Reeb flow and doesn’t intersect any of its asymptotic
limits.

3) For each z ∈ Γ, the bound from (3.5) is achieved, i.e.

±z windΦ
∞(ũ; z) = b±zµΦ(ũ; z)/2c

where ±z denotes the sign of the puncture z.

4) The genus g(Σ) of the domain is zero, i.e. (Σ, j) is biholomorphic to
the Riemann sphere (S2, i).

5) The number Γeven of punctures of C asymptotic to even orbits is given
by

#Γeven = 2− ind(C).

6) The linearized normal Cauchy–Riemann operator ∂̄∇N (C) is surjective.

7) With n = ind(C), there exists an ε > 0 and an injective immersion

F̃C : Bn
ε (0)× Σ \ Γ→ R×M

so that the map z 7→ F̃C(0, z) is a parametrization of the curve C, and
so that for every τ ∈ Bn

ε (0), there is a pseudoholomorphic curve

Cτ = [Στ , jτ ,Γτ , ũτ = (aτ , uτ )] ∈M(λ, J)

and a diffeomorphism10

ψτ : Σ \ Γ→ Στ \ Γτ

so that

F̃C(τ, ·) = ũτ ◦ ψτ .

Proof. The first three claims follow immediately from [50, Corollary 5.17]
(relevant portions are reviewed above in Theorem 3.12). The fourth and fifth

10As with Theorem 3.20, we again caution the reader here that the continuous
extension of this diffeomorphism over the punctures is not, in general, smooth.
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claims also follow from [50, Corollary 5.17]/Theorem 3.12. Indeed, we get
from that result that C ∗ C = 0 implies that

ind(C)− χ(Σ) + #Γeven = 0,

which, if ind(C) ≥ 1, implies that

χ(Σ) ≥ 1 + #Γeven

and thus we must have χ(Σ) = 2− 2g(Σ) = 2 or, equivalently, g(Σ) = 0 es-
tablishing the third claim. Substituting χ(Σ) = 2 in the above then imme-
diately yields the fifth claim.

Next, given g(Σ) = 0 and #Γeven = 2− ind(C), we have that

ind(C)− 2g(Σ)−#Γeven = ind(C)−#Γeven

= 2(ind(C)− 1)

which is greater than or equal to zero provided ind(C) ≥ 1. Thus

ind(C) ≥ 2g(Σ) + #Γeven

provided ind(C) ≥ 1 and Theorem 3.21 then allows us to conclude that the
linearized normal ∂̄-operator is surjective. (We note that in the ind(C) = 2
case we have #Γeven = 2− ind(C) = 0 so the special case, Theorem 3.23, of
the automatic transversality result holds.)

The final claim is a generalization of Theorem 5.7 in [30], and follows
from Theorem 3.20, (a generalization of) Lemma 3.22, and the fact that
C ∗ C = 0. Indeed, since ∂̄∇N (C) is surjective, Theorem 3.20 holds, and we ob-
tain a neighborhood B of 0 ∈ ker ∂̄∇N (C) and a smooth map F : B × Σ \ Γ→
R×M so that each of the maps z 7→ F (τ, z) parametrizes a distinct pseudo-
holomorphic curve Cτ homotopic to C. The assumption C ∗ C = 0 with ho-
motopy invariance of the holomorphic intersection number implies that Cτ1 ∗
Cτ2 = 0 for any τ1, τ2 ∈ B. Hence item (1) above along with Theorem 3.8
imply that the Cτ form a family of pairwise disjoint, embedded/nicely-
embedded pseudoholomorphic curves. This in turn implies that the map
F is injective since double points of F can be seen as either intersections
between two distinct Cτ ’s or a self-intersection of some given Cτ . We next
claim that F is an immersion. This argument proceeds essentially the same
as in [30, Theorem 5.7] which proves a similar result in the special case that
the curve C is a plane. We explain the main points here. Since F is given
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by

F (τ, z) = ẽxpũ(z)Eτ (z)

and we have previously remarked that ẽxp is an immersion on some uniform
neighborhood of the zero section of NC , it suffices to show that the map
(τ, z) 7→ Eτ (z) is an immersion. Since Eτ is a smooth section of a vector
bundle, it suffices in turn to show that the fiber derivative DτEτ (z) at any

point z has full rank. Letting {vi}ind(C)
i=1 be a basis for ker ∂̄∇N (C), it suffices

to show that the sections DτEτ (z)vi are pointwise linearly independent. If
not, then we could construct a nontrivial section v of NC in the image of
DτEτ having a zero at some point. However, it can be shown that sections
in the image of DτEτ are in the kernel of a linear Fredholm operator Lτ
of the same type as ∂̄∇N (C). In particular, the proof of Lemma 3.22 applies
to elements of the kernel of Lτ and shows that any nontrivial section v
of NC in the kernel of Lτ is nonvanishing since ind(C)− χ(C) + #Γeven =
0. This contradiction completes the proof that, for some sufficiently small
neighborhood B of 0 ∈ ker ∂̄∇N (C), F is an injective immersion on B × Σ \ Γ.
With n = ind(C), we choose a basis {vi}ni=1 for ker ∂̄∇N (C) and get a map
F̃ : Bn

ε (0)× Σ \ Γ→ R×M by defining F̃ (ci, z) = F (
∑

i civi, z), which will
be an injective immersion provided ε is small enough. �

We next prove a general lemma which says that up to R-translation all
but finitely many curves in a stable finite energy foliation have index 2.

Lemma 4.3. Let F be a stable finite energy foliation for the data (M,λ, J)
(according to Definition 4.1). Then:

• F contains a finite number of trivial cylinders.

• Up to R-translation, F contains a finite number of curves C with
ind(C) = 1.

Proof. First, we consider a curve C = [Σ, j,Γ+ ∪ Γ−, a, u] ∈M(λ, J) and as-
sume that at z+

i ∈ Γ+, u is asymptotic to an orbit with period T+
i and, simi-

larly, that at z−j ∈ Γ−, u is asymptotic to an orbit with period T−j . Then the
asymptotic behavior, the compatibility of J with dλ, and Stokes’ Theorem
can be used to show that :

• the energy E(C) of the curve (defined by (3.2) above) is given by

E(C) =
∑
z+
i ∈Γ+

T+
i
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and

• the dλ-energy Edλ(C), defined by

(4.1) Edλ(C) :=

∫
Σ\Γ

u∗dλ,

is nonnegative and

Edλ(C) =
∑
z+
i ∈Γ+

T+
i −

∑
z−j ∈Γ−

T−j .

Thus, in a finite energy foliation, the period of any orbit appearing as an
asymptotic limit of a curve of the foliation is bounded above by the energy
of the foliation. Since we assume that λ is nondegenerate, one can then use
Arzelà–Ascoli and the fact that nondegenerate orbits are isolated to argue
that there are only a finite number of unparametrized periodic orbits of
Xλ having period less than any given positive number. Thus a stable finite
energy foliation can contain only a finite number of trivial cylinders.

To prove the second claim we will argue by contradiction. Suppose that
there are an infinite number of index-1 curves in F , each distinct up to R-
translation. Then we can find a sequence of curves Ck ∈ F with ind(Ck) = 1
and so that no two of the Ck differ by the R-action. Then, applying the main
theorem of [58] (reviewed as Theorem 3.3 above), we can pass to a subse-
quence, still denoted Ck, which converges to a connected, nicely-embedded,
non-nodal pseudoholomorphic building C∞ whose components have indices
summing to 1. We will argue below that the limit building C∞ is simply an
embedded curve with ind(C∞) = 1. Once we know this, the completeness
property [30, Theorem 7.1] implies that for sufficiently large k, the Ck be-
long to the same connected component of the moduli space as C∞ and thus
differ by an R-shift. This contradiction will complete the proof.

To argue that the building C∞ consists of just a single embedded curve,
we first note that Lemma 3.17 allows us to conclude that all components of
the building C∞ have image identical to curves in F and further, since C∞ is
a nicely-embedded building, that all nontrivial components of C∞ are curves
in F (as opposed to possibly being multiple covers of such curves). Since C∞
consists of only trivial cylinders (which have index 0) and nontrivial curve
of F (which have index at least 1), and since the indices of the components
of C∞ must sum to 1, we can conclude there is precisely one nontrivial
component. Moreover, since the building C∞ is connected, stable, and has
no nodes, we can conclude that C∞ contains no trivial cylinders, and thus
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consists of just a single, embedded curve belonging to F . This completes the
proof. �

We now have the following corollary which shows that stable finite energy
foliations are indeed smooth foliations of R×M which are invariant under
the R-action and project to M to give smooth foliations of the complement
of a finite collection of periodic orbits in M . Moreover, the projected leaves
of the foliation are transverse to the Reeb flow.

Corollary 4.4. Let F be a stable finite energy foliation for the data (M,λ, J)
(according to Definition 4.1). Then:

1) If C0 ∈ F and C1 ∈M(λ, J) is a simple11 curve which is relatively
homotopic to C0, then C1 ∈ F .

2) The family of curves F is invariant under the action of translation in
the R-coordinate, i.e. if C = [Σ, j,Γ, a, u] ∈ F then c · C := [Σ, j,Γ, a+
c, u] ∈ F .

3) The curves in F form a smooth foliation of R×M .

4) There exists a finite collection B of periodic orbits, so that the curves
in F not fixed by the R-action project to M to form a smooth foliation
of M \B transverse to the flow.

Proof. To prove the first statement, we will argue by contradiction. Assume,
to the contrary, that C0 ∈ F , and that C1 is a simple curve relatively ho-
motopic to C0 with C1 /∈ F . Then for any given point p in the image of C1

there is a simple curve Cp ∈ F passing through p and thus intersecting C1.
Theorem 3.8 then implies that C1 ∗ Cp ≥ 1. However, since C0 and Cp are
both curves in the family F , we have that C0 ∗ Cp = 0 by definition of sta-
ble finite energy foliation. Thus the homotopy invariance of the intersection
product from Theorem 3.7 gives us the contradiction

1 ≤ C1 ∗ Cp = C0 ∗ Cp = 0.

This completes the proof that if C0 ∈ F , all simple curves relatively ho-
motopic to C0 are also in F . The second statement is then an immediate
corollary of the first since any curve in M(λ, J) is relatively homotopic to
its R-translates.

11The assumption that C1 is also simple can be eliminated. Indeed, it can be
shown that if C0 is a simple curve with C0 ∗ C0 = 0 and ind(C0) ∈ {1, 2} and if C1

is homotopic to C0 then C1 must also be simple, but we will not need this here.
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We next address the third claim above. By Theorem 4.2 above, all curves
in F are embeddings. The fact that the curves of F form a smooth foliation
of R×M then follows from an argument similar to that in the paragraphs
following Lemma 6.10 in section 6.3 of [31]. We first observe that Lemma 4.3
tells us that the set of points of R×M with index-2 curves passing through
them is open and dense. For a point p ∈ R×M with an index-2 curve C ∈ F
passing through it, it follows from the last item in Theorem 4.2 that C
belongs to a smoothly varying 2-dimensional family of pseudoholomorphic
curves Cτ which foliate a neighborhood of p. Moreover, it follows from the
preceding paragraph that each of the curves Cτ is in F , and thus that curves
of F foliate some neighborhood of p.

Next, considering a point p lying on an index-1 curve C ∈ F , we’ve al-
ready observed that all R-translates of C belong to F . If pk is a sequence
of points converging to p and not lying on an R-translate of C, we can con-
clude from Lemma 4.3 that for sufficiently large k, pk lies on an index-2
curve Ck ∈ F . Moreover, by Theorem 3.3, we can find a sequence of lo-
cal parametrizations of some subsequence Ckj which converge in C∞loc to a
parametrization of a curve C∞ passing through p. We claim that C∞ = C.
Indeed, if C∞ doesn’t have identical image with C, it must have an isolated
intersection with C. This would then allow us to conclude that the Ckj in-
tersect C for sufficiently large j and thus, by Theorem 3.8, that Ckj ∗ C ≥ 1.
This contradicts the fact that Ckj ∗ C = 0 by the assumption that C and
all Ck are in the family F . We conclude that C∞ has the same image as
C and further, since Theorem 3.3 tells us that C∞ must be either a trivial
cylinder or nicely embedded, that C∞ = C. This allows us to conclude that
the curves of F smoothly foliate some neighborhood of p. The argument for
points lying on one of the finitely-many (according to Lemma 4.3) trivial
cylinders of F now proceeds along similar lines with the use compactness
and positivity of intersections.

We finally address the last claim. We first define B to be the collection
of periodic orbits which appear as asymptotic limits of curves in F . Then B
must be a finite set by Lemma 4.3 above. By Theorem 4.2 every curve C ∈ F
that is not a trivial cylinder projects to an embedding transverse to the flow
and disjoint fromB. Moreover, it follows from the assumption that C1 ∗ C2 =
0 for any two nontrivial curves C1, C2 ∈ F that the projections of C1 and
C2 to M have either disjoint or identical images (see e.g. the discussion
following Corollary 5.9 in [50]). Therefore, we have a unique embedded curve
through every point ofM \B. Moreover, since the curves of F form a smooth
foliation of R×M invariant under R-shifting, the projections of these curves
to R×M will form a smooth foliation of M \B provided the pullback of
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the coordinate field ∂a on R to R×M is not tangent to any of the curves.
Since, as a result of the definition of J̃ , such a tangency can be identified
with tangency of the projected curve to the Reeb vector field, there can be
no such tangencies. This completes the proof. �

We can also prove a converse to last part of the above result; specifically,
the next result shows that as an alternate definition of stable finite energy
foliation, one can consider the projections of curves to M which foliate the
complement of a finite collection of periodic orbits.

Corollary 4.5. Let B ⊂M be a finite collection of simple periodic orbits,
and let F ⊂M(λ, J)/R be a collection of simple curves C ∈M(λ, J)/R
satisfying:

• Each C ∈ F is disjoint from B.

• For each p ∈M \B there is a (not necessarily unique) curve C ∈ F
passing through p.

• ind(C) ∈ {1, 2} for all C ∈ F .

• C1 ∗ C2 = 0 for all C1, C2 ∈ F .

• The energies of the curves in F are uniformly bounded; that is, E(F) :=
supC∈F E(C) is finite.

Then the collection of curves F̃ in M(λ, J) consisting of all possible lifts of
curves C ∈ F to curves in R×M together with cylinders over the periodic
orbits in B form a finite energy foliation.

Proof. Given a point p ∈M \B there is, by assumption, a curve C ∈ F
passing through it. Considering the set of all possible lifts gives a curve
through each point of R× (M \B). Moreover, by the assumption that the
holomorphic intersection numbers between all such curves is zero, we indeed
get a unique curve through each point of R× (M \B) by Theorem 3.8.
Moreover, by the assumption that the curves of F are disjoint from B, we
obtain a unique curve through each point of R×M by including the trivial
cylinders over the orbits in B in the collection we consider. The remaining
properties of a finite energy foliation from Definition 4.1 are then easily
verified from our remaining assumptions. �
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In the rest of this section we will focus on the structure of moduli spaces
of simple curves satisfying C ∗ C = 0 and ind(C) = 2. Because of the impor-
tant role that such curves play in what follows, it will be convenient to have
a term for such curves.

Definition 4.6. A curve C ∈M(λ, J) is said to be a foliating curve if
C ∗ C = 0 and ind(C) = 2.

Given a curve C ∈M(λ, J) we will use the notation M(C) to indicate
the moduli space of simple curves in the same relative homotopy class as C
and M1(C) to indicate the moduli space of simple curves with one marked
point in the same relative homotopy class as C. We note the results of [30],
reviewed in Section 3.4 above, give a local manifold structure on these spaces
in the event that linearized normal ∂̄-operator is surjective. However, the
fact these local manifold structures glue together to give a global manifold
structure on the moduli space is only addressed in [30] as a special case of
the fact that the local models for the universal moduli space glue together
to give a global Banach manifold structure on the universal moduli space. In
the event that the curves in question are foliating curves, a simpler argument
is possible using Theorem 4.2 above. We state this result as a corollary.

Corollary 4.7. Let C ∈M(λ, J) be a foliating curve, that is, assume that
C is simple, C ∗ C = 0 and ind(C) = 2. Then M(C) has the structure of a
smooth, 2-dimensional manifold, and M1(C) has the structure of a smooth
4-dimensional manifold. Moreover, the evaluation map ev :M1(C)→ R×
M is a smooth embedding, the forgetful map M1(C)→M(C) is a smooth
submersion, and the action of R-shifting a curve defines smooth, free, proper
R-actions on M1(C) and M(C).

Proof. Given Ci = [Σi, ji,Γi, ai, ui] ∈M(C) for i ∈ {1, 2}, Theorem 4.2 gives
a local identification of the moduli space of curves with one marked point
with B2

εi(0)× Σi \ Γi together with an embedding F̃Ci : B2
εi(0)× Σi \ Γi →

R×M . Because the maps F̃Ci are local diffeomorphisms, maps of the form
F̃−1
C2
◦ F̃C1

are smooth when defined, and thus the local identifications of
M1(C) with sets of the form B2

εi(0)× Σi \ Γi piece together to give a global
manifold structure on M1(C) in which the evaluation map, being locally
given by the F̃C-maps, are smooth immersions. Moreover, since double points
of ev can be seen as intersections/self-intersections between curves inM(C),
the fact that C ∗ C = 0 implies that ev is an injective map.
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Next, we observe that a local manifold structure onM(C) near the curve
Ci is given by projecting

πi : B2
εi(0)× Σi \ Γi → B2

εi(0).

Since the maps F̃−1
C2
◦ F̃C1

, where defined, are smooth local diffeomorphisms
which restrict to diffeomorphisms on the fibers of the projections πi, a
smooth local section s1 for the projection π1 is mapped via F̃−1

C2
◦ F̃C1

to

a smooth local section for π2, and the composition π2 ◦ F̃−1
C2
◦ F̃C1

◦ s1 is in-
dependent of the choice of smooth section s1. Such maps can then be used to
construct smooth change-of-coordinate maps giving a global manifold struc-
ture onM(C). Moreover, since the forgetful mapM1(C)→M(C) is given
locally by one of the projections πi defined above, the forgetful map is a
smooth submersion in the manifold structure we’ve constructed.

To see that the R-action is a smooth, free, proper action on M1(C) we
first observe that the evaluation map ev :M1(C)→ R×M is R-equivariant.
Since the R-action on R×M is smooth, free, and proper and ev is an em-
bedding, it follows immediately that the R-action onM1(C) is smooth, free,
and proper. Moreover, since the forgetful mapM1(C)→M(C) is a smooth
R-equivariant submersion, we can conclude that the R acts smoothly on
M(C) as well by considering smooth local sections M(C)→M1(C). Free-
ness of the R-action on M(C) follows from the well-known fact that only
trivial cylinders can be fixed points of the R-action (or, in this case, from
the fact that C ∗ C = 0 implies that C is disjoint from all of its nontrivial R-
translates). Finally, properness follows from R-equivariance of the forgetful
map and properness of the action on M1(C). �

Corollary 4.8. Let C be a foliating curve. Then the moduli spaceM1(C)/R
is a smooth 3-manifold and the moduli spaceM(C)/R is a smooth 1-manifold.
Moreover, the evaluation map ev :M1(C)/R→M is an embedding, and the
forgetful map M1(C)/R→M(C)/R is a smooth submersion.

Proof. The facts thatM1(C)/R is a smooth 3-manifold and thatM(C)/R is
a smooth 1-manifold follow directly from Corollary 4.7 since the R-action on
M1(C) and M(C) is free and proper, while the fact that the forgetful map
M1(C)/R→M(C)/R is a smooth submersion follows from the fact that
the forgetful mapM1(C)→M(C) is an R-equivariant smooth submersion.
Finally, to see that ev :M1(C)/R→M is an embedding, we first observe
that it follows from the fact that the evaluation map ev :M1(C)→ R×M
is an R-equivariant immersion that ev :M1(C)/R→M is also immersion.
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Since M1(C)/R and M are the same dimension, it remains to show that
ev :M1(C)/R→M is injective. But since C ∗ C = 0, it follows that the
projections of distinct curves in M(C) to M are embedded and have dis-
joint image unless they differ by the R-action. Since double points of ev :
M1(C)/R→M can be seen as intersections/self-intersections of curves in
M(C)/R, we conclude that ev :M1(C)/R→M in injective, and thus an
embedding. �

For the following let ψt denote the flow of the Reeb vector field.

Corollary 4.9. Let C = [Σ, j,Γ, da, u] ∈M(λ, J)/R be a foliating curve.
Then given any p ∈ u(Σ \ Γ), there exists an ε > 0 so that:

1) For every t ∈ (−ε, ε) there exists a unique point of M(C)/R passing
through ψt(p).

2) The map taking a point t ∈ (−ε, ε) to the unique curve in M(C)/R
passing through ψt(p) is a local diffeomorphism.

Proof. The first claim follows from Corollary 4.8. Indeed, since the evalu-
ation map ev :M1(C)/R→M is an embedding, the image of an open set
around (C, z) contains an open neighborhood U of the point p := u(z). Thus,
there exists some ε > 0 so that ψt(p) ∈ U for all t ∈ (−ε, ε), which tells there
us there is a point ofM1(C)/R mapping via ev to p, which is equivalent to
there being a curve in M(C)/R passing through p. Moreover, the fact that
the evaluation map is injective implies that there is at most one curve in
M(C) passing through any given point in M .

Next we show that the map taking t ∈ (−ε, ε) to the unique curve in
M(C)/R passing through p is a local diffeomorphism. By construction, the
map taking an interval (−ε, ε) to M(C)/R is given by the composition

(−ε, ε) ψ·(p)−−−−→ M
ev−1

−−−−→ M1(C)/R −−−−→ M(C)/R

with the last map the forgetful map. Since the composition of the first two
maps gives an embedding of (−ε, ε) inM1(C)/R it suffices to show that this
embedding is transverse to the fibers of the forgetful map. However, since
the embedding ev :M1(C)/R→M maps the fibers of the forgetful map
to nicely-embedded pseudoholomorphic curves, a tangency of the map t 7→
ev−1(ψt(p)) to a fiber of the forgetful map corresponds via the embedding
ev with a tangency of the map t 7→ ψt(p) to a curve C ′ ∈M(C)/R, that
is, a tangency of the Reeb vector field to a curve C ′ ∈M(C)/R. Since we
know from Theorem 4.2 that the Reeb vector field is everywhere transverse
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to every curve in M(C)/R, no such tangency can exist. We’ve thus shown
the map taking a point t ∈ (−ε, ε) to the unique curve passing through p is
a local diffeomorphism. �

5. The connected sum construction

This section is devoted to the proof of Theorem 5.1 below, which shows
that we can perform a connected sum on a manifold M with contact form
λ and obtain a contact form on the surgered manifold which has certain
additional properties which will allow us to prove Theorem 1.1. Previous
descriptions/constructions of connected sums in contact manifolds can be
found in [41, 54]. For our main theorem, we will need the Reeb vector field
of the new contact form to have some specific properties not addressed in
these previous constructions.

For the statement of the theorem, we will need the following definition.
We will say that an open set U in a contact manifold (M,λ) is a flow-
tube neighborhood of a point p ∈M if the closure Ū of U is contained in a
coordinate neighborhood in which Ū takes the form

Ū = Bε(p)× [−ε, ε] ⊂ R2 × R = {(x, y)} × {z}

for some ε > 0 and the Reeb vector field takes the form Xλ = ±∂z.

Theorem 5.1. Let M a 3-manifold equipped with a nondegenerate contact
form λ and let p and q be distinct points in M , and let O be an open neigh-
borhood of {p, q}. Then there exist disjoint flow-tube neighborhoods U ⊂ O
and V ⊂ O of p and q respectively, a manifold M ′ equipped with a contact
form λ′, and an embedding i : M \ {p, q} →M ′ so that:

1) The contact form λ′ on M ′ is nondegenerate.

2) The pullback i∗λ′ agrees with λ on M \ {U ∪ V }, that is, if ι denotes
the composition

M \ {U ∪ V } ↪→M \ {p, q} i−→M ′

with M \ {U ∪ V } ↪→M \ {p, q} the obvious inclusion, then

ι∗λ′ = λ.
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3) The set

M ′ \ i(M \ {p, q})

is diffeomorphic to an embedded 2-sphere in M ′, and the set

N := M ′ \ i(M \ {U ∪ V }),

called the neck, is diffeomorphic to R× S2.

4) Letting Xλ′ denote the Reeb vector field of the contact form λ′, there
exists a simple, even periodic orbit γ0 ⊂ N of Xλ′ contained entirely
within N . All other simple periodic orbits of Xλ′ pass through points
of M ′ \N .

5) Given any compatible J ∈ J (M ′, λ′) we can find a compatible J ′ ∈
J (M ′, λ′) agreeing with J outside of the neck N for which there exists
a pair of (nicely) embedded, disjoint pseudoholomorphic planes

P± = [S2, i, {∞} , da±, u±] ∈M(λ′, J ′)/R

asymptotic to γ0 in opposite directions with extremal winding. More-
over,

P+ ∗ P+ = P− ∗ P− = P+ ∗ P− = 0

and the union P+ ∪ γ0 ∪ P− of the planes and the periodic orbit form
a (C1-)smooth12 sphere in N ≈ R× S2 which generates π2(N).

6) Let ψt denote the flow of Xλ and ψ̃t denote the flow of Xλ′. Then:
a) If p+ and p− are points in ∂U and γp : [a, b] ⊂ R→ Ū ⊂M is

a smooth integral curve-segment of Xλ connecting p− to p to p+

within Ū , then there exist smooth integral curve-segments γ̃p,± of
Xλ′ lying in N̄ so that
• γ̃p,− connects i(p−) to the plane P− and the interior of γ̃p,−

lies in N \ {P+ ∪ γ0 ∪ P−}.
• γ̃p,+ connects the plane P+ to i(p+) and the interior of γ̃p,+

lies in N \ {P+ ∪ γ0 ∪ P−}.
b) Similarly, if q± are points in ∂V and γq : [a′, b′] ⊂ R→ V̄ ⊂M is

a smooth integral curve-segment of Xλ connecting q− to q to q+

12Our proof will actually provide a C∞-smooth sphere, but for our main result
we need only assume that the two planes approach γ0 in opposite directions, in
which case Theorem 3.1 can be used to show that the resulting sphere is C1. This
is addressed in [16].
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within V̄ , then there exist smooth integral curve-segments γ̃q,± of
Xλ′ lying in N̄ so that
• γ̃q,− connects i(q−) to the plane P+ and the interior of γ̃q,−

lies in N \ {P+ ∪ γ0 ∪ P−}.
• γ̃p,+ connects the plane P− to i(q+) and the interior of γ̃q,+

lies in N \ {P+ ∪ γ0 ∪ P−}.

Before proving this theorem, we will describe a contact connected sum on
two copies of R3 equipped with specific contact forms. Since the connected
sum operation we describe can be localized into arbitrarily small regions,
Darboux’s theorem for contact manifolds will then allow us to transfer the
construction to any contact 3-manifold. We describe this construction in a
series of lemmas. In order to focus on the main points of the construction we
delay some details involving longer but more straightforward computations
to Appendix A.

We consider R3 = {(x, y, z)} equipped with the contact forms λ+ and
λ− defined by

λ± = ±dz +
1

2
(x dy − y dx)

We equip S2 with polar coordinate φ ∈ R/2πZ and azimuthal coordinate
θ ∈ [0, π] and consider the 1-form λ1 on R× S2 defined by

λ1 = 3 cos θ dρ− ρ sin θ dθ +
1

2
sin2 θ dφ

where ρ is the R-coordinate. It follows from Lemma A.1 that λ1 does in fact
extend over the θ ∈ {0, π} locus to gives a smooth 1-form on R× S2, and
further that λ1 is a contact form on R× S2.

Lemma 5.2. Consider the maps Φ± : R± × S2 → R3 \ {0} defined by

(5.1) Φ±(ρ, φ, θ) = ±(ρ sin θ cosφ, ρ sin θ sinφ, ρ3 cos θ).

Then Φ+ and Φ− are smooth diffeomorphisms satisfying

(5.2) Φ∗±λ± = ρ2λ1

with λ+, λ−, and λ1 as defined above.

The proof of this lemma involves straightforward computation and we
give the details in Lemma A.2 in Appendix A. This lemma shows that we
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can take a connected sum between these two copies of R3 in a way which
preserves the Reeb flow outside of an arbitrarily small neighborhood of the
surgered region. Indeed, according to this lemma, any smooth positive func-
tion f : R× S2 → R+ gives us a contact form fλ1 on R× S2 which is con-
tactomorphic on R± × S2 to (R3 \ {0} , λ±) via the maps Φ±. Furthermore,
the Reeb flow of fλ1 is conjugate via Φ± to that of the Reeb vector field(s)
for (R3, λ±) on any region where f(ρ, p) = ρ2. Since we can easily construct
smooth positive functions f : R× S2 → R+ satisfying f(ρ, p) = ρ2 on an ar-
bitrarily small neighborhood of ρ = 0, this shows the Reeb vector fields of
fλ1 and those of λ± are identified via Φ± outside of an arbitrarily neigh-
borhood of the surgered region.

To establish that the connected sum operation can be carried out in such
a way as to ensure the other properties we will need, further properties on
the function f will be required. Before discussing these properties we first
establish some properties of the contact form

λf := fλ1

and its associated contact structure

ξ1 := kerλf = kerλ1.

It will be convenient to define the function

(5.3) g(θ) := 2 cos2 θ + 1 = 3 cos2 θ + sin2 θ

and we note that g defines a smooth function on S2 as a result of Lemma A.1.

Lemma 5.3. For θ /∈ {0, π}:

• The set

B(ρ,θ,φ) =

{
(fg)−1(−3 cot θ ∂φ +

1

2
sin θ ∂ρ), 2ρ csc θ ∂φ + ∂θ

}
(5.4)

=: {v1(ρ, θ, φ), v2(ρ, θ, φ)}

is a symplectic basis for (ξ1, dλf ).
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• The Reeb vector field Xf of the contact form λf is given by

Xf = [gf2]−1

[
(−ρfρ − 3fθ cot θ + 2f) ∂φ(5.5)

+

(
3 cot θfφ −

1

2
sin θfρ

)
∂θ

+

(
ρfφ +

1

2
sin θfθ + f cos θ

)
∂ρ

]
.

The proof is straightforward computation. Further details are given in
Lemmas A.3–A.4 in the Appendix A.

We now have the following lemma which identifies a condition which
guarantees a periodic orbit of Xf on the sphere ρ = 0.

Lemma 5.4. The Reeb vector field Xf of λf is a constant multiple of ∂φ
along the equator θ = π/2 of the sphere ρ = 0 precisely when df = 0 there.

Proof. From (5.5), we have for (ρ, θ, φ) = (0, π/2, φ) that

Xf = f−2

[
2f ∂φ −

1

2
fρ ∂θ +

1

2
fθ ∂ρ

]
.

Thus, Xf (0, π/2, φ) is a positive multiple of ∂φ precisely when fρ(0, π/2, φ) =
fθ(0, π/2, φ) = 0, in which case the formula forXf along (ρ, θ, φ) = (0, π/2, φ)
reduces to Xf = (2/f) ∂φ. Thus Xf (0, π/2, φ) is a constant multiple of ∂φ
precisely when f(0, π/2, φ) is constant, which is equivalent to requiring
fφ(0, π/2, φ) = 0. �

By further restricting the function f we can say that the periodic orbit
identified in the above lemma is the only (simple) periodic orbit of Xf , and
we can arrange that the flow of Xf is tangent to R× {θ = 0, π}.

Lemma 5.5. Let f : R→ R+ be a smooth, positive function satisfying

ρf ′(ρ) > 0

for all ρ 6= 0. Then

• Xf has a unique (simple) periodic orbit occurring at ρ = 0, θ = π/2.

• Along θ = 0 (resp. θ = π) locus, Xf is a positive (resp. negative) mul-
tiple of ∂ρ.
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Proof. If f depends only on the R-coordinate ρ, then the formula (5.5) of
the Reeb vector field of λf reduces to

(5.6) Xf = [g(θ)f(ρ)2]−1

[
(−ρf ′ + 2f) ∂φ −

1

2
sin θf ′ ∂θ + f cos θ ∂ρ

]
Define the function Z : R× S2 → R by

Z(ρ, θ, φ) = ρ cos θ.

It follows from Lemma A.1 that Z defined as such extends to a smooth
function on all of R× S2. Then

dZ = cos θ dρ− ρ sin θ dθ

and so

dZ(Xf ) = (g(θ)f(ρ)2)−1

(
f cos2 θ +

1

2
f ′ρ sin2 θ

)
which is nonnegative everywhere. Therefore Z is monotonic along any flow
line ofXf , and any periodic orbit ofXf must be contained in the zero locus of
dZ(Xf ). But dZ(Xf ) = 0 precisely when both f cos2 θ and f ′ρ sin2 θ vanish,
which, in turn, happens precisely when ρ = 0 and θ = π/2.

To see the second claim is true, we observe from Lemma A.1 that ∂φ
and sin θ ∂θ define smooth vector fields on S2 which vanish at the north and
south poles θ ∈ {0, π}. Thus, the formula above for the Reeb vector field
tells us that

Xf (ρ, φ, 0) = [g(0)f(ρ)]−1 cos(0) ∂ρ =
1

3f(ρ)
∂ρ

and

Xf (ρ, φ, π) = [g(π)f(ρ)]−1 cos(π) ∂ρ =
−1

3f(ρ)
∂ρ

which establishes the second claim of the lemma. �

We next compute the Conley–Zehnder index of the periodic orbit guar-
anteed by the above lemma provided an additional assumption on the func-
tion f .
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Lemma 5.6. Assume that f : R→ R+ is a smooth positive function satis-
fying

ρf ′(ρ) > 0

for ρ 6= 0 and

f ′′(0) > 0.

Then relative to the symplectic trivialization

B(0,π/2,φ) = {v1(0, π/2, φ), v2(0, π/2, φ)} =
{

1
2f(0)∂ρ, ∂θ

}
of (ξ1, dλf ) from (5.4), the Conley–Zehnder index of the unique simple pe-
riodic orbit γ0 of Xf is 0.

Proof. We first observe that the proof of Lemma 5.5 above shows that along
the equator

Xf (0, π/2, φ) = (2/f(0)) ∂φ

and thus the map γ0 : R/Z→ R× S2 given by γ0(t) = (0, π/2, 2πt) satisfies

γ̇0(t) = 2π ∂φ = (f(0)π)Xf (γ0(t))

so γ0 is a periodic orbit of period τf := f(0)π.
Let ψt denote the flow of Xf , that is ψt satisfies

ψ̇t(x) = Xf (ψt(x))

To compute the Conley–Zehnder µΦ(γ0) index of γ0 in the trivialization Φ
arising from B(0,π/2,φ) we need to analyze the behavior of the linearized flow
dψt on ξ1 in the trivialization Φ. Letting

Ψ(t) = Φ(ψtτf (0, π/2, 0))−1dψtτf (0, π/2, 0)Φ(0, π/2, 0)

= Φ(0, π/2, 2πt)−1dψtτf (0, π/2, 0)Φ(0, π/2, 0)

we can write

Ψ(t) =

[
c11(t) c12(t)
c21(t) c22(t)

]
where the cij are defined by

dψtτf (0, π/2, 0)vj(0, π/2, 0) =
∑
i

cij(t)vi(0, π/2, 2πt)
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and satisfy cij(0) = δij . Since the dψtτf (0, π/2, 0)vj(0, π/2, 0) defines a sec-
tion of ξ1 along γ0 defined by pushing forward by the linearized flow of τfXf ,
the Lie derivative LτfXf = τfLXf (in the sense of (2.8)) is well defined and
vanishes. Taking the Lie derivative LτfXf then of the above equation gives
us ∑

i

c′ij(t)vi(0, π/2, 2πt) + cij(t)(LτfXfvi)(0, π/2, 2πt) = 0.

Letting M(t) = [mij(t)] be the matrix defined by

(LτfXfvj)(0, π/2, 2πt) = −
∑
i

mij(t)vi(0, π/2, 2πt),

we substitute in the above equation and use that the vi are a linearly inde-
pendent to conclude that

c′ij −
∑
k

mikckj = 0

or, equivalently, that Ψ satisfies the linear ODE

(5.7)
Ψ′(t) = M(t)Ψ(t)

Ψ(0) = I.

To find M(t) we extend v1(0, π/2, 2πt) and v2(0, π/2, 2πt) to vector fields

ṽ1(ρ, θ, φ) =
1

2f(0)
∂ρ

ṽ2(ρ, θ, φ) = ∂θ

which are locally constant in (ρ, θ, φ) coordinates, and use (5.6) to compute

−(LτfXfv1)(0, π/2, 2πt) = τf (v1Xf −Xf ṽ1)(0, π/2, 2πt)

= τf (v1Xf )(0, π/2, 2πt)

= (f(0)π)
1

2f(0)
∂ρXf (0, π/2, 2πt)

= −πf
′′(0)

4f(0)2
∂θ

= −πf
′′(0)

4f(0)2
v2(0, π/2, 2πt)
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and

−(LτfXfv2)(0, π/2, 2πt) = τf (v2Xf −Xf ṽ2)(0, π/2, 2πt)

= τf (v2Xf )(0, π/2, 2πt)

= (f(0)π)∂θXf (0, π/2, 2πt)

= −π ∂ρ
= −2πf(0)v1(0, π/2, 2πt).

We conclude

M(t) =

[
0 −2πf(0)

−πf ′′(0)
4f(0)2 0

]
=

[
0 −A2

−B2 0

]
.

with A =
√

2πf(0) and B =

√
πf ′′(0)

2f(0) . Direct computation then shows that

the solution to (5.7) is given by

Ψ(t) =

[
cosh(ABt) −(A/B) sinh(ABt)

−(B/A) sinh(ABt) cosh(ABt)

]
= C

[
eABt 0

0 e−ABt

]
C−1

where C is the symplectic matrix

C =
1√
2

[
A/B 1
−1 B/A

]
.

A path of symplectic matrices of this form is well-known to have Conley–
Zehnder index equal to 0 (see Lemma A.5 below) and thus

µΦ(γ0) = µcz(Ψ) = 0

as claimed. �

We next show that we can choose a compatible J on a neighborhood
of ρ = 0 so that the northern/southern hemispheres of the the sphere ρ = 0
are projections of pseudoholomorphic planes to R× S2 asymptotic to the
periodic orbit at the equator.

Lemma 5.7. Let f : R→ R+ satisfy the hypotheses of Lemma 5.6 and
let J ∈ J (R× S2, λf ) be a compatible almost complex structure. Then, for
any open neighborhood U of {0} × S2 there exists a compatible J ′ ∈ J (R×
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S2, λf ) agreeing with J outside of U so that the planes

P+ = {ρ = 0, θ ∈ [0, π/2)}
P− = {ρ = 0, θ ∈ (π/2, π]}

given from the upper and lower hemispheres of the ρ = 0 sphere are projected
pseudoholomorphic curves, i.e. elements of M(λf , J

′)/R, approaching their
mutual asymptotic limit γ0 in opposite directions with extremal winding.
Moreover,

P+ ∗ P+ = P− ∗ P− = P+ ∗ P− = 0.

Proof. Considering S2 as the unit sphere in R3 we can define diffeomor-
phisms between C = {x+ iy} and P± via radial projection from the origin to
the planes (x, y,±1). In standard polar coordinates x = R cos Θ, y = R sin Θ
on C, this radial projection map from P± → C is given by

(5.8)
R(θ, φ) = tan θ

Θ(θ, φ) = φ.

Since i in these coordinates is given by

i(R∂R) = ∂Θ i(∂Θ) = −R∂R

and a straightforward computation shows that

R∂R = sin θ cos θ ∂θ ∂Θ = ∂φ

under the coordinate change (5.8), we find that the radial projection map
induces a smooth complex structure on T (S2 \ {θ = π/2}) given by

(5.9)
j∂θ = sec θ csc θ ∂φ

j∂φ = − cos θ sin θ ∂θ

in which the upper and lower hemispheres P± of S2 are conformally equiv-
alent to C.

We next claim that if i0 : S2 → R× S2 is the inclusion

p ∈ S2 7→ (0, p) ∈ R× S2

then i∗0λf ◦ j is exact. We have that λf along the sphere ρ = 0 is given by

λf = f(0)

[
3 cos θ dρ+

1

2
sin2 θ dφ

]
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so the pullback of λf to the sphere is given by

i∗0λf =
1

2
f(0) sin2 θ dφ.

From (5.9) we have

dφ ◦ j = sec θ csc θ dθ

and hence

i∗0λf ◦ j =
1

2
f(0) sin2 θ dφ ◦ j

=
1

2
f(0) tan θ dθ

= d

(
−1

2
f(0) log |cos θ|

)
.

We note that the function

(θ, φ) 7→ −1

2
f(0) log |cos θ|

is smooth on the upper and lower hemispheres as a result of Lemma A.1.
Next, let

πξ : T (R× S2) = RXf ⊕ ξ1 → ξ1

be the projection onto ξ1 along Xf , given by the formula

πξ(v) = v − λf (v)Xf .

We claim that along ρ = 0, πξ|TS2 : TS2 → ξ1 is an isomorphism away from
θ = π/2. Along ρ = 0, the Reeb vector field is given by

Xf = [g(θ)f(0)2]−1 [2f(0) ∂φ + f(0) cos θ ∂ρ]

= [(2 cos2 θ + 1)f(0)]−1 [2 ∂φ + cos θ ∂ρ]

and λf is given by

λf = f(0)

[
3 cos θ dρ+

1

2
sin2 θ dφ

]
.
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Thus, with v1 and v2 as defined by (5.4), straightforward computation shows
that

πξ(∂θ) = ∂θ − λf (∂θ)Xf

= ∂θ

= v2(0, θ, φ)

and

πξ(∂φ) = ∂φ − λf (∂φ)Xf

= −g(θ)−1 cos θ sin θ

[
−3 cot θ ∂φ +

1

2
sin θ ∂ρ

]
= −f(0) cos θ sin θ v1(0, θ, φ).

This computation shows that πξ|TS2 is an isomorphism when θ /∈ {0, π/2, π},
and since TS2 = ξ1 at the north and south poles θ ∈ {0, π}, it follows that
πξ|TS2 is an isomorphism away from θ = π/2.

Given the results of the previous two paragraphs, we define a compatible
almost complex structure J ′ on ξ1|ρ=0,θ 6=π/2 by

(5.10) J ′ = πξ|TS2 ◦ j ◦ (πξ|TS2)−1,

and, as long as J ′ extends smoothly over the equator θ = π/2, we have found
a compatible J ′ along ρ = 0 for which P± are projected J̃ ′-holomorphic
curves. Since the space of compatible complex multiplications on a given
symplectic vector space is nonempty and contractible, there are no ob-
structions to extending a compatible J ′ defined on ρ = 0 smoothly to a
J ′ ∈ J (R× S2, λf ) which agrees outside of any given open neighborhood
of {0} × S2 with any previously chosen J ∈ J (R× S2, λf ). The computa-
tion of the previous paragraph together with the definition (5.9) of j shows,
however, that a J ′ defined by (5.10) will satisfy

J ′(0, θ, φ)v1(0, θ, φ) = 1
f(0) v2(0, θ, φ)

J ′(0, θ, φ)v2(0, θ, φ) = −f(0) v1(0, θ, φ)

away from the north and south poles θ ∈ {0, π}. Since v1 and v2 are a smooth
basis for ξ1 on θ /∈ {0, π}, this implies that the J ′ defined by (5.10) extends
smoothly over the equator θ = π/2.
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It remains to check that P± approach γ0 in opposite directions with
extremal winding and that

(5.11) P± ∗ P± = P+ ∗ P− = 0.

We first claim that the planes approach their asymptotic limit with extremal
winding, i.e. that

(5.12) windΦ
∞(P±) = bµΦ(γ0)/2c.

To see this, we observe that large R = constant loops in C get mapped via
the identification (5.8) to θ = c loops with c some constant close to but not
equal to π/2. It’s straightforward to see that such loops lift via the expo-
nential map to sections of ξ1|γ0

which have zero winding relative to the triv-

ialization Φ arising from the framing B(0,π/2,φ) =
{

1
2f(0)∂ρ, ∂θ

}
from (5.4).

Thus windΦ
∞(P±) = 0. Since we have already computed in Lemma 5.6 that

µΦ(γ0) = 0, we have confirmed (5.12). Since P+ and P− are disjoint and
γ0 is even, it then follows immediately from Lemma 3.15 and Theorem 3.16
that P+ and P− approach γ0 in opposite directions. Finally we prove that
all intersection numbers are zero, i.e. that (5.11) holds. We first observe that
P+ and P− are, by construction, disjoint embeddings. Since we’ve already
confirmed that P+ and P− both converge to their unique asymptotic limit
with extremal winding, (5.11) is an immediately consequence of Corollar-
ies 3.11 and 3.14. �

We are now prepared to prove Theorem 5.1.

Proof of Theorem 5.1. Recall (M, ξ = kerλ) denotes a contact 3-manifold
equipped with a nondegenerate contact form. Given p 6= q ∈M and any
open neighborhood O of {p, q}, we can apply Darboux’s theorem for contact
manifolds (see e.g. [18, Theorem 2.24]) to find disjoint open neighborhoods
Op, Oq ⊂ O of p and q respectively, and embeddings φp : Op → R3, and
φq : Oq → R3 with φp(p) = 0, φq(q) = 0 and

(5.13)
φ∗pλ+ = λ

φ∗qλ− = λ.

Choosing an ε > 0 so that Bε(0)× [−ε, ε] ⊂ φp(Op) ∩ φq(Oq) gives flow tube
neighborhoods
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U = φ−1
p (Bε(0)× (−ε, ε))

V = φ−1
q (Bε(0)× (−ε, ε))

of p and q, respectively, identified via φp and φq with neighborhoods of 0 in
(R3, λ+) and (R3, λ−), respectively.

Next, with the maps Φ± : R± × S2 → R3 \ {0} as defined above in (5.1),
choose an ε′ > 0 so that

Φ+

(
(0, ε′)× S2

)
⊂ Bε(0)× (−ε, ε)

Φ−
(
(−ε′, 0)× S2

)
⊂ Bε(0)× (−ε, ε).

Given such an ε′ > 0 we can find a smooth positive function f : R→ R+

satisfying13

• f(ρ) = ρ2 for |ρ| ≥ ε′/2,

• ρf ′(ρ) for ρ 6= 0, and

• f ′′(0) > 0.

As explained following Lemma 5.2 above, this f gives us a contact form
λf = fλ1 on (−ε′, ε′)× S2 so that the maps

Φ+ :
(
(0, ε′)× S2, λf

)
→ (Bε(0)× (−ε, ε) \ {0} , λ+)

Φ− :
(
(−ε′, 0)× S2, λf

)
→ (Bε(0)× (−ε, ε) \ {0} , λ−)

are contact diffeomorphisms onto their images which, on (ε′/2, ε′)× S2 and
(−ε′,−ε′/2)× S2, satisfy

Φ∗±λ± = ρ2λ1 = fλ1

and hence by (5.13)

(5.14)
(φ−1
p ◦ Φ+)∗λ = fλ1 = λf

(φ−1
q ◦ Φ−)∗λ = fλ1 = λf .

We then define

M ′ =
(
M \ {p, q} q (−ε′, ε′)× S2

)
/ ∼

13Such functions are easy to construct. See Lemma A.6 for an example.
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where ∼ is the equivalence relation identifying points in (−ε′, 0)× S2 and
(0, ε′)× S2 with their respective images in M \ {p, q} under φ−1

q ◦ Φ− and
φ−1
p ◦ Φ+, and we define

i : M \ {p, q} →M ′

to be the naturally induced inclusion. With

Bp := (φ−1
p ◦ Φ+)

(
(0, ε′/2)× S2

)
Bq := (φ−1

q ◦ Φ−)
(
(−ε′/2, 0)× S2

)
,

we define λ′ on M ′ by

λ′ =

{
λ on M \Bp ∪Bq
λf on (−ε′, ε)× S2.

It follows from (5.14) and the definition of M ′ that λ′ defines a smooth
contact form on M ′. Moreover, it is easily verified that items (2) and (3) in
theorem are satisfied.

Next, since the neck

N := M ′ \ i(M \ {U ∪ V })

equipped with the contact form λ′ can be identified via the maps Φ−1
+ ◦ φp

and Φ−1
− ◦ φq with a subset of R× S2 equipped with the contact form λf ,

it follows immediately from Lemma 5.5 that there is precisely one (simple)
periodic orbit γ0 of the Reeb vector field Xλ′ of λ′ contained in the neck.
Thus any other (simple) periodic orbit Xλ′ must pass through points of
M ′ \N . Moreover, it follows from Lemma 5.6 that γ0 is an even orbit. Thus
item (4) of the theorem is verified. Item (5) meanwhile follows immediately
from Lemma 5.7.

To see that Condition (6) holds, we note that since the Reeb vector
field of λ+ is ∂z, the points p± := φ−1

p (0, 0,±ε) are points in ∂U which are
connected by a flow line γp(t) = φ−1

p (0, 0, t) which is contained in Ū and
passes through p = φp(0, 0, 0). Moreover, since we can easily verify from
(5.1) that

Φ−1
+ ({(0, 0, z) | z > 0}) = R+ × {θ = 0}

Φ−1
+ ({(0, 0, z) | z < 0}) = R+ × {θ = π}
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it follows that

Φ−1
+ ◦ φp ◦ γp ((0, ε)) ⊂ R+ × {θ = π}

Φ−1
+ ◦ φp ◦ γp ((−ε, 0)) ⊂ R+ × {θ = 0} .

We can then apply the second claim of Lemma 5.5 to conclude that item
(6a) of the theorem holds. Item (6b) follows similarly.

At this point, all claims of Theorem 5.1 hold with the possible exception
of item (1): nondegeneracy of the contact form λ′. By construction we have
that i∗λ′ = λ outside of the region identified with (−ε′/2, ε′/2)× S2 in the
construction. Thus any periodic orbit created by this construction (i.e. not
identified via i with a periodic orbit of Xλ) must pass through the region
(−ε′/2, ε′/2)× S2. Moreover, since γ0 is the only periodic orbit contained
within this region, any other new (and thus potentially nondegenerate) orbit
created in the connected sum operation must pass through the boundary
{±ε′/2} × S2 of the region. Applying results from [46], we can find a C∞-
small function h : M ′ → R supported in an arbitrarily small neighborhood of
these spheres, so that the contact form ehλ′ has only nondegenerate periodic
orbits. Moreover, since the support and (C∞-) size of the function can both
be chosen arbitrarily small, and since all claims of the theorem remain true
under sufficiently C∞-small perturbations with sufficiently small support in
a neighborhood of {±ε′/2} × S2, we can carry out this perturbation of the
contact form while maintaining all the claims of the theorem. �

6. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Here we will use the alternate defini-
tion of finite energy foliation furnished by Corollary 4.5, and will thus work
almost exclusively with projections of pseudoholomorphic curves to the 3-
manifold. All curves should thus be thought of as equivalence classes of maps
to the 3-manifold unless otherwise stated. Since we deal nearly exclusively
with simple curves (i.e. those which do not factor though a branched cover
of degree 2 or greater) such an equivalence class of maps is entirely deter-
mined by the image in M of a representative map from the class. We will
thus generally make no distinction between a curve and its image in M .

Our standing assumptions throughout the section will be:

• (M,λ) is a 3-manifold with a nondegenerate contact form λ,

• J ∈ J (M,λ) is a compatible complex structure on ξ = kerλ, and
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• F is a stable finite energy foliation for the data (M,λ, J) with energy
E(F) = E0.

Given the foliation F , we consider a subset U of M ×M \∆(M) defined to
be the set of pairs of distinct points (p, q) ∈M ×M \∆(M) in M with p
and q lying on distinct index-2 leaves of the foliation. It is straightforward to
use Lemma 4.3 and Corollary 4.8 to argue that U is an open, dense subset of
M ×M \∆(M). We will show that the manifold M ′ formed by taking the
connected sum at any given pair of points (p, q) ∈ U admits a contact form λ′

and compatible J ′ ∈ J (M ′, λ′) so that the data (M ′, λ′, J ′) admits a stable
finite energy foliation F ′ with E(F ′) = E(F). Moreover, our construction
will show that the change in the contact form and almost complex structure
can be localized to an arbitrarily small neighborhood of the points p and
q; that is, if i : M \ {p, q} →M ′ is the natural inclusion, we can arrange
that i∗λ′ = λ and i∗J ′ = J on the complement of any given neighborhood
of {p, q}.

To start the construction, we choose a pair of points (p, q) ∈ U ; that is,
we choose distinct points p and q in M so that

• p lies on a curve Cp ∈ F with ind(Cp) = 2,

• q lies on a curve Cq ∈ F with ind(Cq) = 2, and

• Cq 6= Cp (in M(λ, J)/R).

We recall from Corollary 4.4 that all curves in the moduli spacesM(Cp)/R
and M(Cq)/R are also in the foliation F (where M(C) is the notation
introduced in Section 4 to indicate all simple curves in M(λ, J) which are
relatively homotopic to C). Letting ψt denote the flow generated by the
Reeb vector field Xλ associated to λ, we can apply Corollary 4.9 to find an
ε0 > 0 so that

• for each t ∈ [−ε0, ε0] there is a unique curve of M(Cp)/R passing
through the point ψt(p), and so that the map taking t ∈ [−ε0, ε0] to
the unique curve inM(Cp)/R passing through ψt(p) is an embedding;

• for each t ∈ [−ε0, ε0] there is a unique curve of M(Cq)/R passing
through the point ψt(q), and so that the map taking t ∈ [−ε0, ε0] to
the unique curve inM(Cq)/R passing through ψt(q) is an embedding;

• the collection of curves passing through the points ψt(p) for t ∈ [−ε0, ε0]
and the collection of curves passing through the points ψt(q) for t ∈
[−ε0, ε0] are disjoint.
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We define points p± = ψ±ε0
(p) and similarly q± = ψ±ε0

(q), and let Cp,±
denote the unique curve in M(Cp)/R through p± and similarly let Cq,±
denote the unique curve in M(Cq)/R through q±.

Given the above, we define an open set Up to be the union of the images
of the curves inM(Cp)/R passing through the points ψt(p) for t ∈ (−ε0, ε0),
and similarly Uq is the image of the curves inM(Cq)/R passing through the
points ψt(q) for t ∈ (−ε0, ε0). There exists an open neighborhood O−p of p−
in Cp,− and a positive function fp : O−p → R+ so that{

ψf(z)(z) | z ∈ O−p
}

is an open neighborhood of p+ in Cp,+ and ψt(z) ∈ Up for all t ∈ (0, f(z)).
Define an open set Op by

Op =
⋃
z∈O−p

⋃
t∈(0,f(z))

ψt(z)

and define an open set Oq ⊂ Uq analogously. Choosing an open flow tube
neighborhood Fp of p with F̄p ⊂ Op and an open flow tube neighborhood
Fq of q with F̄q ⊂ Oq, we can apply Theorem 5.1 to find a nondegenerate
contact manifold (M ′, ξ′ = kerλ′) with compatible J ′ ∈ J (M ′, ξ′), and an
embedding i : M \ {p, q} →M ′ so that:

1) M ′ is diffeomorphic to the connected sum of M taken at p and q,
and the set M ′ \ i(M \ (Fp ∪ Fq)) (called the neck) is diffeomorphic to
R× S2.
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2) On M \ (Fp ∪ Fq), i∗λ′ = λ and i∗J ′ = J .

3) There is precisely one simple (unparametrized) periodic orbit γ0 con-
tained in the neck. Moreover γ0 has even Conley–Zehnder index.

4) There exist two distinct, nonintersecting, nicely-embedded planes P± ∈
M(λ′, J ′)/R contained in the neck which are asymptotic to γ0 in op-
posite directions (see discussion preceding Lemma 3.15) with extremal
winding (see Theorem 3.2). Moreover,

P+ ∗ P+ = P− ∗ P− = P+ ∗ P− = 0,

and the union of the images P+, P− and γ0 form a C1-smooth sphere
which divides the neck into two pieces, each homeomorphic to R× S2.

5) If ψ̃t is the flow of the Reeb vector field Xλ′ then there exist real
numbers δ+ < 0 < δ− and ε+ < 0 < ε− so that,
• ψ̃δ+(i(p+)) ∈ P+ and ψ̃t(i(p+)) /∈ P± for all t ∈ (δ+, 0].

• ψ̃δ−(i(p−)) ∈ P− and ψ̃t(i(p−)) /∈ P± for all t ∈ [0, δ−).

• ψ̃ε+
(i(q+)) ∈ P− and ψ̃t(i(q+)) /∈ P± for all t ∈ (ε+, 0].

• ψ̃ε−(i(q−)) ∈ P+ and ψ̃t(i(q−)) /∈ P± for all t ∈ [0, ε−).
Letting p′± := i(p±) and q′± := i(q±), we define embedded flow-line seg-
ments γp′± , γq′± ⊂M

′ by:
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• γp′+ =
{
ψ̃t(p

′
+) | t ∈ [δ+, 0]

}
• γp′− =

{
ψ̃t(p

′
−) | t ∈ [0, δ−]

}
• γq′+ =

{
ψ̃t(q

′
+) | t ∈ [ε+, 0]

}
• γq′− =

{
ψ̃t(q

′
−) | t ∈ [0, ε−]

}
Since i∗λ′ = λ and i∗J ′ = J outside of Fp ∪ Fq, and since the curves Cp,±

do not meet Fp ∪ Fq, it follows that C ′p,± := i(Cp,±) are nicely-embedded
finite-energy curves in M(λ′, J ′)/R. We note that since p ∈ Fp ⊂ Up and
q ∈ Fq ⊂ Uq the connected sum operation yields an open set U ⊂M ′ arising
as the connected sum of the sets Up and Uq taken at p and q. Moreover, the
set U is divided into two open subsets by sphere formed by P+ ∪ γ0 ∪ P−
in the neck. We call the subset coming from the p-side of the connected sum
U ′p and the subset coming from the q-side of the connected sum U ′q. We note
that, by construction, the boundary of U ′p consists of the curves C ′p,± and
their asymptotic limits, along with P± and γ0.

Lemma 6.1. There are no periodic orbits of Xλ′ contained within U ′p.

Proof. We first argue that there are no periodic orbits γ of the Reeb vector
field Xλ on the unsurgered manifold contained in the set Up. Indeed, since
Up is foliated by curves inM(Cp)/R, then γ would intersect some curve C ′ ∈
M(Cp)/R, which implies that (R× γ) ∗ C ′ > 0. By homotopy invariance of
the ∗-product, we conclude (R× γ) ∗ C > 0 for any C ∈M(Cp)/R and, in
particular, (R× γ) ∗ Cp,± > 0. However, since γ is contained in Up and thus
not an asymptotic limit of Cp,±, this implies that γ intersects Cp,±. This,
however, contradicts the assumption that γ ⊂ Up, and we conclude that
there are no periodic orbits γ of Xλ contained in Up.

Now, assume γ is a simple periodic orbit of Xλ′ with γ ⊂ U ′p. Then, we
claim the previous paragraph shows that γ must enter the neck. Indeed if
not, then γ is identified via the map i : M \ {p, q} →M ′ with a periodic
orbit of Xλ contained in Up, of which, we have just argued, there are none.
Moreover, since γ0 is the only periodic orbit contained entirely within the
neck, γ must pass through points of U ′p both inside and outside the neck.
But by construction — specifically that the connected sum is carried out
in flow tubes neighborhoods contained in open sets consisting of flow lines
connecting the curves Cp,+ and Cp,− (or Cq,+ and Cq,−) — any flow line
entering the neck in U ′p must hit C ′p,− in backward time, while any flow
line exiting the neck in U ′p must hit C ′p,+ in forward time. Thus γ intersects
either C ′p,+ or C ′p,− which contradicts the assumption that γ ⊂ U ′p. �
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Lemma 6.2. Let C ∈M(C ′p,±)/R. Then either C ⊂ U ′p or C ∩ U ′p = ∅.
Moreover, the set of curves C ∈M(C ′p,±)/R with C ⊂ U ′p is nonempty and
open.

Proof. We first observe that, by construction, the boundary of U ′p consists of
the pseudoholomorphic curves C ′p,±, P± and their asymptotic limits. More-
over, we know that C ′p,± ∗ C ′p,± = C ′p,+ ∗ C ′p,− = 0 and, since the curves P±

are disjoint from and share no common orbits with the curves C ′p,±, it fol-
lows immediately from the definition of the ∗-product that C ′p,+ ∗ P± =
C ′p,− ∗ P± = 0. Given a curve C ∈M(C ′p,±)/R, homotopy invariance of the
intersection number then allows us to conclude that the intersection number
of C with each of C ′p,± and P± is zero. Theorem 3.9/3.10 then lets us further
conclude that C doesn’t intersect any of the asymptotic limits of the curves
in the boundary of U ′p. Thus the curve C can’t intersect any of the curves
in the boundary of U ′p unless it coincides with that curve. We conclude that
either C ⊂ U ′p or C is disjoint from U ′p.

We next show that the set of curves C ∈M(C ′p,±)/R with C ⊂ U ′p
is nonempty. Given that we’ve shown in the previous paragraph that a
curve C ∈M(C ′p,±)/R meeting U ′p must be contained in U ′p, it suffices to
show there are curves C ∈M(C ′p,±)/R meeting U ′p. This follows from Corol-
lary 4.8. Indeed, since the evaluation map ev :M1(C ′p,±)/R→M is an em-
bedding, the image of the evaluation map is open. Therefore, given any point
x ∈ C ′p,± ⊂ ∂U ′p, there is an open set around x in the image of evaluation
map. Since an open set around a boundary point of U ′p must meet U ′p, there
are points in U ′p in the image of the evaluation map, which is equivalent to
there being points in U ′p with curves in M(C ′p,±)/R passing through them.

Finally we show that the set of curves C ∈M(C ′p,±)/R with C ⊂ U ′p is
open. This follows from Corollary 4.9. Indeed, given a curve C ∈M(C ′p,±)/R
passing through a point x ∈ U ′p there is an ε > 0 so that for every t ∈ (−ε, ε)
there is a unique curve ofM(C ′p,±)/R passing through ψ̃t(x), and so that the
map taking a point t ∈ (−ε, ε) to the unique curve in M(C ′p,±)/R passing

through ψ̃t(x) is an embedding. Since U ′p is open, we can, by shrinking ε if

necessary, assume that ψ̃t(x) ∈ U ′p for all t ∈ (−ε, ε). We have thus found a
subset I ofM(C ′p,±)/R diffeomorphic to an open interval and containing C
so that each curve C ′ ∈ I meets U ′p and thus, according to the results of the
first paragraph, is contained in U ′p. �

Since, as we’ve noted above, the images of C ′p,± are contained in the
boundary of the set U ′p, it follows that the curves C ′p,± are in the boundary of
the set

{
C ∈M(C ′p,±)/R |C ⊂ U ′p

}
. We define a submanifold with boundary
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Mp,± ⊂M(C ′p,±)/R to be the connected component of{
C ′p,±

}
∪
{
C ∈M(C ′p,±)/R |C ⊂ U ′p

}
containing C ′p,±. As a result of the above discussion, it is clear thatMp,± is
diffeomorphic to a half-open interval, and in the following we seek to char-
acterize Mp,± \Mp,±, where Mp,± denotes the compactification of Mp,±
in the SFT topology (relevant information is reviewed in Section 3.2 above).
According to our construction — specifically that M(C ′p,±)/R is a smooth
1-manifold and Mp,± can be identified with an embedded half-open subin-
terval — the set Mp,± \Mp,± is either an element of M(C ′p,±)/R or is
contained in the boundary of M(C ′p,±)/R and thus, according to the main
theorem of [58] (reviewed above as Theorem 3.3), consists of stable, nicely-
embedded, non-nodal pseudoholomorphic buildings. The next lemma shows
that the latter alternative in fact always holds.

Lemma 6.3. Every element of Mp,± \Mp,± is a stable, nicely-embedded,
non-nodal pseudoholomorphic building with at least two nontrivial compo-
nents and at least two levels.

Proof. We prove this for Mp,+. The proof for Mp,− is identical.
We first argue thatMp,± \Mp,± is either a single element ofM(C ′p,+)/R

or is a subset of the boundary of M(C ′p,+)/R. As we discussed above,
M(C ′p,+)/R has the structure of a smooth 1-manifold and, by construction,
Mp,+ is an embedded submanifold with boundary which is diffeomorphic to
a half-open interval. Choosing an identification ofMp,+ with an embedding
i : [0, 1) ↪→M(C ′p,+)/R, we can identify the setMp,± \Mp,± with limits of
SFT-convergent sequences of the form i(ak) with ak ∈ [0, 1) an increasing
sequence converging to 1. Assume that there exists some such sequence ak so
that i(ak) converges to a curve C∞ ∈M(C ′p,+)/R. Then every open neigh-
borhood of C∞ inM(C ′p,+)/R meets a set of the form i ((1− ε, 1)) for some
ε > 0. Since i is an embedding of a 1-manifold in a 1-manifold, this allows
us to conclude that for every sequence ak ∈ [0, 1) with ak → 1, i(ak) con-
verges to C∞. We conclude that if Mp,± \Mp,± contains an interior point
C∞ of M(C ′p,+) then Mp,± \Mp,± = {C∞}. Thus Mp,± \Mp,± is either a
single element of M(C ′p,+)/R or is a subset of the boundary of M(C ′p,+)/R
as claimed.

To show thatMp,+ \Mp,+ can’t be a curve inM(C ′p,+)/R we will argue

by contradiction and suppose to the contrary that Mp,+ \Mp,+ is an ele-
ment ofM(C ′p,+)/R. In this caseMp,+ is diffeomorphic to a closed interval
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embedded in M(C ′p,+)/R and thus every sequence in Mp,+ has a subse-
quence converging to an element of M(C ′p,+)/R. We then claim that every
point of U ′p would have a curve from Mp,+ passing through it and, since
Mp,+ consists of foliating curves, that U ′p is homeomorphic to R× (Σ \ Γ).
Since, by construction, U ′p is homeomorphic to (R× (Σ \ Γ)) with a point
removed, this contradiction would finish the proof.

Supposing then that every sequence in Mp,+ has a subsequence con-
verging to an element of M(C ′p,+)/R, we claim that the set of points in
U ′p with a curve in Mp,+ \

{
C ′p,+

}
passing through them is nonempty and

both open and (relatively) closed in U ′p. Both nonemptiness and openness
follow immediately from Corollary 4.8; indeed, since the evaluation map
ev :M1(C ′p,+)/R→M is an embedding it has open image, and therefore the
set of points in U ′p with curves from the open subset Mp,+ of M(C ′p,+)/R
passing through them is nonempty and open. Closedness, in turn, follows
from our assumption that all sequences inMp,+ have subsequences converg-
ing to a point inM(C ′p,+)/R. Indeed, let pk be a sequence in U ′p converging
to a point p∞ ∈ U ′p, and assume that for each point pk there is a curve
Ck ∈Mp,+ passing through pk. Then by assumption, some subsequence of
the curves Ck converges to a curve C∞ ∈M(C ′p,+)/R passing through p∞
and, by the previous lemma, we have that C∞ ⊂ U ′p since it passes through
the point p∞ ∈ U ′p. Since Corollary 4.8 implies there is an open set of points
around p∞ having curves of M(C ′p,+)/R passing through them, it follows
that C∞ is in the same connected component of the subset{

C ∈M(C ′p,+)/R |C ⊂ U ′p
}

of M(Cp,+) as the Ck i.e. that C∞ ∈Mp,+. This completes the proof that
Mp,+ \Mp,+ can’t be an interior point of M(C ′p,+)/R, and therefore must
be contained in the (SFT) boundary of M(C ′p,+)/R. As noted above, it

follows from the main theorem of [58] that Mp,+ \Mp,+ consists of stable,
non-nodal, nicely-embedded pseudoholomorphic buildings.

Finally we show that any element ofMp,+ \Mp,+ has at least two levels
and at least two nontrivial components. We first note that an element of
Mp,+ \Mp,+ is connected since it is the limit of connected curves. Supposing
such an element has only one level, then that level must have at least two
components (or else we would just have a curve in M(C ′p,+)/R). But, since
a height-1 pseudoholomorphic building with at least two components and no
nodes must be disconnected, this is a contradiction. Given that an element
ofMp,+ \Mp,+ has at least two levels, stability implies that each level must
have at least one nontrivial component. �
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We next seek to show that the sets Mp,+ \Mp,+ and Mp,− \Mp,−
each contain a single non-nodal, nicely-embedded pseudoholomorphic build-
ing, and that these buildings consist of exactly one of the planes P± and
precisely one other nicely-embedded pseudoholomorphic curve Zp with γ0

as a negative asymptotic limit.

Proposition 6.4. Let Γ−p denote the set of negative punctures of Cp,± and
assume that at z ∈ Γ−p , Cp,+ is asymptotic to the orbit γz. Then, there exists
a pseudoholomorphic curve Zp ∈M(M ′, λ′)/R so that

Mp,+ \Mp,+ = Zp � (P+ qz∈Γ−p R× γz)

and

Mp,− \Mp,− = Zp � (P− qz∈Γ−p R× γz).

We note that since, as previously observed, the main theorem of [58]
(see Theorem 3.3 above) implies that any curve in Mp,± \Mp,± must be a
nicely-embedded building, it follows immediately from this proposition that
Zp is embedded in M and disjoint from P±.

We prove the proposition in a series of lemmas. In the following we let

C∞,+ ∈Mp,+ \Mp,+

denote one of the nicely-embedded, non-nodal pseudoholomorphic buildings
given by Lemma 6.3 above.

Lemma 6.5. Let γ be a simple periodic orbit and assume that the m-fold
cover γm is a positive (resp. negative) asymptotic limit of C ′p,+. Then there
exists a nontrivial component of C∞,+ with γm as a positive (resp. negative)
asymptotic limit.

Proof. For simplicity we assume that γm is a positive asymptotic limit of
C ′p,+. The argument in the case that it is a negative asymptotic limit is
identical. Since C∞,+ can be written as the SFT-limit of a sequence of curves
Ck ∈Mp,+, each homotopic to C ′p,+, it follows from the definition of SFT-
convergence (see Proposition 3.4) that the positive asymptotic limits of the
top-most level of C∞,+ agree with the positive asymptotic limits of C ′p,+
and, similarly, the negative asymptotic limits of the bottom-most level of
C∞,+ agree with the negative asymptotic limits of C ′p,+. Thus there is some
component of the top level of C∞,+ with γm as a positive asymptotic limit.
If this component is nontrivial there is no more to prove. If not, then the
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component with γm as a positive asymptotic limit must be a trivial cylinder
and, thus, there is some component on the next level down with γm as a
positive asymptotic limit. Repeating this argument we find either at least
one component of C∞,+ with γm as a positive puncture, or we can conclude
that there is a trivial cylinder over γm on the lowest level of C∞,+ and thus
that γm is also negative asymptotic limits of C ′p,+ so that (γ,m,m) is a
bidirectional orbit of C ′p,+. Recalling that C ′p,+ satisfies C ′p,+ ∗ C ′p,+ = 0 and
ind(C ′p,+) = 2 it follows Theorem 4.2 that all asymptotic limits of C ′p,+, and
specifically γm, have odd Conley–Zehnder index. But, since C ′p,+ is nicely
embedded, it follows from Lemma 3.6 that γm must have even Conley–
Zehnder index if it were a bidirectional orbit of C ′p,+. This contradiction
completes the proof. �

Lemma 6.6. The periodic orbit (γ0, 1, 1) is the only possible bidirectional
asymptotic limit (see Definition 3.5 above) of C∞,+. Moreover, if γ0 appears
as a limit of a component of C∞,+, γ0 is necessarily a bidirectional orbit.

Proof. Since C∞,+ is the limit of a sequence of curves contained entirely
within the open set U ′p, it follows from the definition of SFT-convergence (see
Proposition 3.4) that any periodic orbit appearing as an asymptotic limit of
a component of C∞,+ must be contained in the closure Ū ′p of U ′p. Moreover,
Lemma 6.1 tells us that there are no orbits contained within U ′p so any
periodic orbit within the closure Ū ′p must touch the boundary. However, by
construction, the boundary of U ′p consists of the pseudoholomorphic curves
C ′p,± and P± and the periodic orbits which are asymptotic limits of these
curves, and any flow line touching the curves C ′p,± of P± necessarily passes
through points outside of U ′p. We thus conclude that any orbit contained
in Ū ′p is contained within the boundary. Since the periodic orbits in the
boundary of U ′p are the asymptotic limits of C ′p,+ along with γ0, and since
every asymptotic limit of C ′p,+ is odd and, according to the previous lemma,
occurs as an asymptotic limit of some nontrivial component of C∞,+ with
the same covering numbers, it follows from Lemma 3.6 that the only possible
bidirectional limit is γ0, which can only occur simply covered since γ0 is even.

Next, we argue that if γ0 (or in fact any orbit other than the limits of
C ′p,+) appears as an asymptotic limit of a component of C∞,+, then it must
be a bidirectional limit. Recall that since C∞,+ is a limit of pseudoholomor-
phic spheres, its structure can be modeled by a tree with one vertex for each
component, and an edge for each periodic orbit connecting adjacent levels
(or, in general, for each node, but we know there are none here). Moreover,
the positive asymptotic limits of the top level of C∞,+ and the negative



i
i

“4-Siefring” — 2019/3/19 — 10:11 — page 1723 — #85 i
i

i
i

i
i

Connected sums and finite energy foliations I 1723

asymptotic limits of the bottom level of C∞,+ agree with those of C ′p,+. As-
suming then that γ0 appears as an asymptotic limit of a component of C∞,+
but is not a bidirectional limit, we can conclude that either the only curves
in C∞,+ having γ0 as a positive limit are trivial cylinders, or the only curves
in C∞,+ having γ0 as a negative limit are trivial cylinders. In either case,
we could, by following a path of vertices corresponding to trivial cylinders,
conclude that γ0 is either a positive asymptotic limit of the top level or a
negative asymptotic limit of the bottom level. This contradicts the fact that
the positive limits of the top level and the negative limits of the bottom
level agree with those of C ′p,+. �

Lemma 6.7. All components of C∞,+ with γ0 as a positive asymptotic limit
must be equal to either P+ or P−.

Proof. This follows from Theorem 3.16, [50, Theorem 2.4]/Theorem 3.10,
and Lemma 3.17. Indeed if Ck is a sequence in Mp,+ converging to C∞,+
then P± ∗ Ck = P± ∗ C ′p,+ = 0 by homotopy invariance of the intersection
number. Thus Lemma 3.17 allows us to conclude that any component of
C∞,+ is either identical with or disjoint from P±.

Now, if there were a component Z of C∞,+ distinct from P± with γ0

as a positive puncture, then Z must approach a simple cover of γ0 since,
according to the previous lemma, γ0 would have to be a bidirectional limit
of C∞,+. Condition (3c) of Theorem 3.10 then tells us that Z must approach
with the same winding as P±. But since P+ and P− approach γ0 in opposite
directions with extremal winding, Z necessarily approaches γ0 with extremal
winding and thus, according to Lemma 3.15, in the same direction as either
P+ or P−. Theorem 3.16 then lets us conclude that Z intersects either P+

or P−, which contradicts the fact from the previous paragraph that such a
Z must be disjoint from P+ and P−. �

Lemma 6.8. There is precisely one nontrivial component of C∞,+ not equal
to P+ or P−.

Proof. We first show that there is at most one nontrivial component of C∞,+
distinct from P+ and P−. Recall that the building C∞,+, being the limit
of spheres, can be modeled by a tree with vertices corresponding to compo-
nents of the building and edges corresponding to periodic orbits connecting
adjacent levels (or, in general, nodes, but we know there are none in this
case). Moreover, we know that all components of the building are either
nicely-embedded curves or trivial cylinders. Assuming there are two or more
nontrivial components in C∞,+ which are distinct from P+ and P−, we can
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find a sequence of components (C1, . . . , Cn) of C∞,+ corresponding to dis-
tinct, adjacent vertices in the modeling tree, with C1 and Cn nontrivial and
not equal to P+ or P−. Since we assume all the Ci correspond to distinct
vertices, we can conclude none of the Ci with i /∈ {1, n} are planes since
planes correspond to univalent vertices in the tree modeling C∞,+. Thus all
elements of the sequence (C1, . . . , Cn) are either trivial cylinders, or non-
trivial components distinct from P+ and P−. Moreover, by truncating the
sequence if necessary, we can assume without loss of generality that only
C1 and Cn are nontrivial and that all Ci for 1 < i < n are trivial cylinders.
However, since a sequence of adjacent trivial cylinders in the holomorphic
building must be cylinders over the same periodic orbit γ, this allows us to
conclude that either C1 has a positive puncture limiting to γ and Cn has a
negative puncture limiting to γ, or that C1 has a negative puncture limiting
to γ and Cn has a positive puncture limiting to γ. Thus γ is a bidirectional
orbit, so Lemma 6.6 tells us that γ = γ0. However, since Lemma 6.7 tells us
that the planes P+ and P− are the only possible components of the build-
ing having γ0 as a positive asymptotic limit, this contradicts our assumption
that C1 and Cm are distinct from P±. This completes the argument that
there is at most one component of C∞,+ distinct from the P±.

We next argue there is at least one nontrivial component of C∞,+ distinct
from P+ and P−. If there are no nontrivial components other than P+ and
P−, then every component of the building is either equal to P+, P− or a
trivial cylinder. Since C∞,+ is, as the limit of connected curves, a connected
building, this would then let us conclude that γ0 is the only asymptotic limit
of components of the building C∞,+ However, since C∞,+ is a limit of curves
in M(C ′p,+), the properties of SFT-convergence (see Proposition 3.4) allow
us to conclude that the asymptotic limits of the top and bottom levels of
C∞,+ agree with those of C ′p,+. Since C ′p,+ has only odd asymptotic limits
and γ0 is even, this is a contradiction. Thus there must be at least one
nontrivial component in the building not equal to P+ or P−. �

Lemma 6.9. Let C ∈Mp,+ \
{
C ′p,+

}
. Then the intersection numbers of

the curve C with the flow segments γp′± are well defined and given by

γp′+ · C = 1 γp′− · C = 0.

Proof. To see this, we first recall the flow segments have boundary in the
boundary U ′p and interior in the interior of U ′p. Since curves C ∈Mp,+ \{
C ′p,+

}
limit at the punctures to periodic orbits disjoint from γp′± and, by
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definition of Mp,+, are contained entirely within U ′p, it follows that the in-
tersection number of such a curve with the flow segments γp′± is well defined.
Moreover, since the image of C ′p,+ compactifies to a map that is disjoint from
γp′− , it follows that curves inMp,+ nearby to C ′p,+ are also disjoint from γp′−
and thus

γp′− · C = 0

for C ∈Mp,+ \
{
C ′p,+

}
. On the other hand, it follows from Corollary 4.9 —

specifically that a flow line passing through C ′p,+ gives a local diffeomorphism
with a neighborhood of C ′p,+ in M(C ′p,+) — that curves in Mp,+ nearby to
C ′p,+ have a single transverse intersection with γp′+ . Thus

γp′+ · C = 1

for C ∈Mp,+ \
{
C ′p,+

}
as claimed. �

We will denote by Zp the nontrivial component of C∞,+ guaranteed by
Lemma 6.8.

Lemma 6.10. The pseudoholomorphic building C∞,+ is a height-2 building
with Zp on the top level, and P+ and trivial cylinders over the negative orbits
of C ′p,± on the bottom level, i.e.

C∞,+ = Zp � (P+ qz∈Γ−p R× γz)

where Γ−p is the set of negative punctures of C ′p,± and γz is the asymptotic
limit of C ′p,± at z ∈ Γ−p .

Proof. We argue that the number of times that P± appears as a com-
ponent of the building C∞,+ bounds the intersection number γp′± · C for

C ∈Mp,+ \
{
C ′p,+

}
from below. This with the previous lemma will show

that P+ can appear at most once as a component of C∞,+, while P− can’t
appear. Assume there are components Di of C∞,+ with Di = P+ (mod the
R-action), and choose a parametrization u : C→M ′ of P+ with u mapping
0 ∈ C to the intersection of γp′+ with P+. Then according to Proposition 3.4,
if Ck = [Σk, jk,Γk, ak, uk] ∈Mp,+ is a sequence which converges in the sense
of [6] to C∞,+, then there is a sequence of holomorphic embeddings

φk = qiφk,i : qiD→ Σk,

with D = {z ∈ C | |z| ≤ 1} the unit disk in C, so that uk ◦ φk,i converges in
C∞ to u|D. Since uk ◦ φk has image in U ′p and γp′+ meets P+ transversely, it
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follows from the C∞ convergence that the pseudoholomorphic disks uk ◦ φk,i
intersect γp′+ transversely for sufficiently large k. This shows that for large
k, Ck has at least one transverse intersection with γp′+ for each component
of C∞,+ equal to P+. However, since R× γp′+ is pseudoholomorphic, every
intersection of γp′+ with a curve Ck contributes positively to the intersec-
tion number γp′+ · Ck, so the number of components of C∞,+ equal to P+ is
bounded above by γp′+ · Ck = 1. An analogous argument shows that the num-
ber of components of C∞,+ equal to P− is bounded above by γp′− · Ck = 0.
Thus P+ can appear at most once as a component of C∞,+ and P− does
not appear.

Finally, we observe that we have shown in Lemmas 6.3 and 6.6 that C∞,+
has at least two levels, at least two nontrivial components, and precisely one
nontrivial component Zp distinct from P+ and P−. This combined with the
results of the previous paragraph then shows that C∞,+ has precisely two
nontrivial components: Zp and P+. Moreover, by stability, C∞,+ must be a
height-2 building with Zp on the top level and P+ along with cylinders over
the other negative orbits of Zp on the bottom level. �

Remark 6.11. We remark that Theorem 3.16 can also be used to bound
the number of planes appearing in C∞,+, but an additional argument is then
needed to show that the unique plane appearing in C∞,+ is P+ and not P−.
Indeed, if the total number of times P+ and P− appeared as components
of C∞,+ were greater than one, we could argue that the unique nontrivial
component of C∞,+ distinct from P± guaranteed from Lemma 6.8 must have
multiple negative ends approaching γ0. Moreover, these ends would have to
be disjoint in M since all components of C ′p,+ are nicely embedded. We could
then argue, as in Lemma 6.13 below, that these ends would have to approach
γ0 in the same direction. Theorem 3.16 would then yield a contradiction, so
we could conclude that there is at most a single plane in the building C∞,+.

Remark 6.12. The work leading up to the proof of Lemma 6.10 can be
simplified somewhat if one applies [30, Theorem 1.10] to perturb J ′ slightly
so that all moduli spaces of embedded curves are smooth manifolds of the
appropriate dimension as predicted by the index formula (3.12). Since auto-
matic transversality holds for the planes P+ and P− such a perturbation of
J ′ could be carried out while maintaining the existence of planes with the
properties we need. Given such a J ′, it would follow immediately from [58,
Theorem 2] that C∞,+ is a height-2 building with precisely one nontrivial
component on each level. It would then remain to argue, as we have above,
that the nontrivial component of the lower level is P+. However, we do not
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need to assume that such a generic J ′ has been chosen since our argument
shows that the theorem holds for any J ′ for which there exist planes P+ and
P− with the prescribed properties.

Finally, we conclude that Mp,+ \Mp,+ consists of a single building,
completing the proof of the first statement in Proposition 6.4.

Lemma 6.13. With C∞,+, Zp, Γ−p , and γz as above, we have that

Mp,+ \Mp,+ = C∞,+ = Zp � (P+ qz∈Γ−p R× γz).

Proof. Let C ′∞,+ ∈Mp,+ \Mp,+. We seek to show that C ′∞,+ = C∞,+. The
argument above applies to show that C∞,+ = Z ′p � (P+ qz∈Γ−p R× γz) for
some nicely-embedded curve Z ′p. It only remains to show that Z ′p = Zp. We
first argue that Zp and Z ′p must approach γ0 in the same direction. To see
this, we first note that since C∞,+ and C ′∞,+ are nicely-embedded buildings
and thus Zp and Z ′p are disjoint from P±, it follows from condition (3c) of
Theorem 3.10 that Z ′p and Zp approach γ0 with winding equal to that of P±,

and thus equal to bµΦ(γ0)/2c = µΦ(γ0)/2. Thus, according to Lemma 3.15,
Z ′p and Zp approach γ0 in either the same or the opposite direction, with
approach governed by a nonzero multiple of an eigenvector e+ of Aγ0,J with
smallest possible positive eigenvalue. However, the boundary of U ′p at γ0,
being given nearby by the planes P+ and P−, is tangent to the largest
negative eigenspace span {e−} of Aγ0,J , since eigenvectors with largest neg-
ative eigenvalue govern the approach of P+ and P−. Since, according to [26,
Lemma 3.5], eigenvectors with the same winding and different eigenvalue
are pointwise linearly independent, e+ is nowhere tangent to the boundary
of U ′p. Thus if e+ points into U ′p, −e+ points into U ′q and vice versa. Since,
Z ′p and Zp both approach γ0 from within U ′p we can thus conclude that Z ′p
and Zp approach γ0 in the same direction.

We next claim the fact that Z ′p and Zp approach γ0 in the same direction
leads to a contradiction unless Z ′p = Zp. Let Ck and C ′k be sequences inMp,+

converging respectively to C∞,+ and C ′∞,+. Then, for any j and k, we have
that

Cj ∗ C ′k = C ′p,+ ∗ C ′p,+ = 0

by homotopy invariance of the holomorphic intersection product. It then
follows from Lemma 3.17 that Z ′p and Zp are either identical or disjoint.
However, since Z ′p and Zp approach γ0 in the same direction, it follows
from Theorem 3.16 that Z ′p and Zp must intersect. We thus arrive at a
contradiction unless Z ′p = Zp. �
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We now complete the proof of Proposition 6.4.

Lemma 6.14. The set Mp,− \Mp,− consists of a single height-2 building
with Zp on the top level, and P− and trivial cylinders over the negative orbits
of C ′p,± on the bottom layer, i.e.

Mp,− \Mp,− = Zp � (P− qz∈Γ−p R× γz)

where Γ−p is the set of negative punctures of C ′p,± and γz is the asymptotic
limit of C ′p,± at z ∈ Γ−p .

Proof. Let C∞,− ∈Mp,− \Mp,−. An analogous argument to that in Lem-
mas 6.6–6.10 as above gives us that C∞,− = Z ′p � (P− qz∈Γ−p R× γz) for
some nicely-embedded curve Z ′p. It remain only to show that Z ′p = Zp. This
follows from an argument analogous to that in Lemma 6.13 above. Indeed,
we can argue exactly as in Lemma 6.13 that Z ′p and Zp approach γ0 in the
same direction. Then, with Ck and C ′k sequences respectively in Mp,+ and
Mp,− converging respectively to C∞,+ and C∞,−, we have that

Cj ∗ C ′k = C ′p,+ ∗ C ′p,− = 0

by homotopy invariance of the holomorphic intersection product. We can
thus again apply Lemma 3.17 and Theorem 3.16 to arrive at a contradiction
unless Z ′p = Zp. �

Next, we define Mq,± analogously to Mp,±, that is, we define Mq,± ⊂
M(Cq,±)/R to be the connected component of

{Cq,±} ∪
{
C ∈M(Cq,±)/R |C ⊂ U ′q

}
containing Cq,±. An analogous argument to above shows the following.

Proposition 6.15. There exists a curve Zq ∈M(λ′, J ′)/R which is em-
bedded in M and disjoint from P± so that

Mq,+ \Mq,+ = Zq � (P− qz∈Γ−q R× γz)

and

Mq,− \Mq,− = Zq � (P+ qz∈Γ−q R× γz)

where Γ−q is the set of negative punctures of C ′q,± and γz is the asymptotic
limit of C ′q,± at z ∈ Γ−q .
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Finally, to complete the argument, we need to show that the curves
from the old foliation together with the curves from the compactified moduli
spaces from above give a foliation of the surgered manifold with the same
energy as the original foliation. We work with the definition of finite energy
foliation given by Corollary 4.5. More precisely we consider the collection of
simple periodic orbits B′ ⊂M ′ defined by

B′ = i(B) ∪ {γ0}

where B is the set of periodic orbits with covers appearing as asymptotic
limits of the original foliation F , and we define a collection of curves F ′ ⊂
M(λ′, J ′)/R by including:

• The curves in the moduli spaces Mp,+, Mp,−, Mq,+, and Mq,−.

• The curves {Zp, Zq, P+, P−} constructed above.

• The push forward via the inclusion i : M \ {p, q} →M ′ of any curve in
the original foliation F which lies in the closure of the complement of
the regions Up and Uq, i.e. if C = [Σ, j,Γ, a, u] ∈ F and C ⊂M \ (Up ∪
Uq) then we define i(C) = [Σ, j,Γ, a, i ◦ u]. Since i∗J = J ′ outside of Up
and Uq it follows that i(C) is a pseudoholomorphic curve in M ′.

We now argue that F ′ so defined is a stable finite energy foliation for
M ′. We need to show that there is a unique curve from F ′ through every
point of M ′ \B′, that the index of any nontrivial curve in F ′ is 1 or 2, that
the intersection numbers between any two nontrivial curves in F ′ vanish,
and that E(F ′) = E(F).

We first address the fact that the energies of the two collections of curves
are the same.

Lemma 6.16. With F ′ ⊂M(λ′, J ′)/R the collection of curves defined above,
we have that

E(F ′) := sup
C∈F ′

E(C) = sup
C∈F

E(C) =: E(F).

Proof. We recall from the proof of Lemma 4.3 that the energy E(C) of a
curve C = [Σ, j,Γ, da, u] ∈M(λ, J)/R, defined by (3.2), is given by the sum
of the periods of the orbits that are asymptotic limits of the positive punc-
tures of C. Since all curves C ∈ F have asymptotic limits in the region where
i∗λ′ = λ and, by construction, either satisfy i(C) ∈ F ′ or are homotopic to
a curve satisfying this, every curve in F has energy equal to that of some
curve in F ′. We conclude E(F) ≤ E(F ′).
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Conversely, every curve in C ′ ∈ F ′ \ {Zp, Zq, P+, P−} is, by construc-
tion, either of the form C ′ = i(C) for some C ∈ F or is homotopic to a curve
of this form. Thus every curve C ′ ∈ F ′ \ {Zp, Zq, P+, P−} has energy equal
to that of some curve in F and we conclude that E(C ′) ≤ E(F). Moreover,
by Propositions 6.4 and 6.15, Zp and Zq have positive punctures identical
respectively to C ′p,± = i(Cp,±) and C ′q,± = i(Cq,±) and thus E(Zp) ≤ E(F)
and E(Zq) ≤ E(F) as well. Finally, we recall from the proof of Lemma 4.3
that the dλ-energy of a curve, defined by (4.1), is always nonnegative and is
given by the difference between the sums of periods of the positive asymp-
totic limits and those of the negative asymptotic limits. Thus, if follows
immediately from Propositions 6.4 that E(P±) ≤ E(Zp) ≤ E(F). We con-
clude that E(F ′) ≤ E(F) and, with the previous paragraph, this completes
the proof. �

We next address the fact that all nontrivial curves in F ′ have index 1
or 2.

Lemma 6.17. Let C ∈ F ′. Then ind(C) ∈ {1, 2}.

Proof. Except for C ∈ {Zp, Zq, P+, P−}, this is immediate from the fact that
all nontrivial curves in F have index 1 or 2. To see that ind(P±) = 1 we use
the fact P± ∗ P± = 0. Then according to Theorem 3.12

ind(P±) = χ(S2)−#Γeven

= 2− 1 = 1.

The fact that ind(Zp) = ind(Zq) = 1 then follows from Propositions 6.4
and 6.15. Indeed, since the pseudoholomorphic buildings Mp,± \Mp,± and
Mq,± \Mq,± have no nodes, the sum of the indices of the nontrivial compo-
nents must add to the index of a curve inMp,± orMq,±. Since such curves
have index 2, and we have just shown that P± have index 1, it follows that
ind(Zp) = ind(Zq) = 1 as claimed. �

We next address the intersection numbers. We start by showing that any
two distinct curves in F ′ are disjoint.

Lemma 6.18. Let C1, C2 ∈ F ′ be distinct curves. Then C1 and C2 are
disjoint.
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Proof. Since any two nontrivial curves in the original foliation F have van-
ishing intersection number, it follows that any two nontrivial curves in

C1, C2 ∈ F ′ \
{
Zp, Zq, P

+, P−
}

have vanishing intersection number. Thus any two such distinct curves are
disjoint in M . Moreover, since the curves Zp, Zq, P

+, and P− occur as com-
ponents of limiting buildings of sequences of curves in F ′ \ {Zp, Zq, P+, P−}
we can immediately conclude from Lemma 3.17 that any two distinct, non-
trivial curves in F ′ are disjoint. �

Lemma 6.19. Let C1, C2 ∈ F ′. Then C1 ∗ C2 = 0.

Proof. As noted in the proof of the above lemma, this is immediate for any
two curves

C1, C2 ∈ F ′ \
{
Zp, Zq, P

+, P−
}
.

It remains to show that C1 ∗ C2 = 0 when one or both of C1, C2 is equal to
one of Zp, Zq, P

+, or P−. We first observe that ind(Zp) = ind(Zq) = 1 and
Zp and Zq each have precisely one puncture asymptotic to an even orbit.
We thus have for C ∈ {Zp, Zq} that

ind(C)− χ(S2) + #Γeven = 1− 2 + 1 = 0,

so it then follows from facts in [26] that the bound in inequality (3.5)
is achieved at each puncture of Zp and Zq (see also discussion preced-
ing Lemma 2.6 in [2] and equation 5.1 in [50]). Meanwhile, we know that
the bound in inequality (3.5) is achieved at each puncture of every other
curve in F ′ from Theorem 3.12. Thus, by Corollary 3.11 and the previ-
ous lemma, we can conclude that C1 ∗ C2 = 0 for any distinct C1, C2 ∈ F ′.
Since we already know that P± ∗ P± = 0 by Theorem 5.1, it remains to
show Zp ∗ Zp = Zq ∗ Zq = 0. However, since Zp and Zq are embedded in M ′

and, as observed above, have extremal winding at each puncture, Corol-
lary 3.14 implies that Zp ∗ Zp = Zq ∗ Zq = 0. This completes the proof that
C1 ∗ C2 = 0 for any two curves C1, C2 ∈ F ′. �

It remains to show that there is a curve of F ′ through every point of
M ′ \B′.

Lemma 6.20. For every x ∈M ′ \B′ there is a curve C ∈ F ′ passing
through x.
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Proof. By construction, since i∗J ′ = J outside of Up ∪ Uq and since the
boundaries of Up and Uq are made up of curves in the foliation F , it suffices
to show there is a curve through every point of U ′p \ Zp and U ′q \ Zq. We will
prove this for U ′p \ Zp. The argument for U ′q \ Zq is identical.

We first define a subset U ′p,+ (resp. U ′p,−) of U ′p \ Zp to be the sets of
points in U ′p \ Zp having a curve ofMp,+ (resp.Mp,−) passing through them.
Then U ′p,+ and U ′p,− are each nonempty (by construction ofMp,±), open (by
Corollary 4.8), and (relatively) closed (by compactness and Proposition 6.4).
Thus, U ′p,+ and U ′p,− each form a connected component of U ′p \ Zp. Since U ′p
is connected and Zp is an embedded submanifold, U ′p \ Zp has at most two
connected components. Thus, the proof is completed unless U ′p,+ = U ′p,−.
However, if U ′p,+ = U ′p,− there is a point x′ ∈ U ′p \ Zp with curves C+ ∈Mp,+

and C− ∈Mp,− passing through x′. Since C+ ∗ C− = C ′p,+ ∗ C ′p,− = 0 by
homotopy invariance of the intersection number and Theorem 3.8, we must
have that C+ = C−, so we have found a curve belonging to both Mp,+ and
Mp,−. But we’ve shown in Lemma 6.9 that the intersection numbers γp′± · C
of curves C ∈Mp,+ with the flow segments γp′± are well defined and satisfy

γp′+ · C = 1 γp′− · C = 0,

while an analogous argument shows that for curves C ∈Mp,− the intersec-
tion numbers γp′± · C are well defined and satisfy

γp′+ · C = 0 γp′− · C = 1.

Thus, a curve belonging to both Mp,+ and Mp,− would lead to a contra-
diction, and this completes the proof that there is at least one curve of F ′
through every point of M ′ \B′. �

Appendix A. Additional details for Section 5

In this section we collect some of the more straightforward but tedious com-
putations supporting claims made in Section 5.

Lemma A.1. Consider S2 equipped with polar coordinate φ ∈ R/2πZ and
azimuthal coordinate θ ∈ [0, π]. The following define smooth tensor fields on
S2:

1) sin2 θ

2) cos θ
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3) sin θ dθ

4) ∂φ (and ∂φ vanishes for θ ∈ {0, π})

5) sin2 θ dφ

6) sin θ ∂θ (and sin θ ∂θ vanishes for θ ∈ {0, π})

Proof. Considering S2 embedded as the unit sphere in R3, the smooth
change of coordinates on the upper and lower hemispheres obtained by pro-
jecting onto the xy-plane is given by

x = sin θ cosφ

y = sin θ sinφ.

In these coordinates we have

sin2 θ = x2 + y2

which is clearly smooth. Meanwhile

cos θ = ±
√

1− sin2 θ = ±
√

1− x2 − y2

which is also smooth near (x, y) = 0, and hence the 1-form

−d(cos θ) = sin θ dθ

is also smooth.
Next we have that

∂φ = xφ ∂x + yφ ∂y

= −y ∂x + x ∂y

which is smooth and vanishes when x = y = 0 (i.e. when θ ∈ {0, π}). Mean-
while, using that the standard round metric g on S2 with total area 4π is
given by

g = dθ ⊗ dθ + sin2 θ dφ⊗ dφ

we have that

g(∂φ, ·) = sin2 θ dφ

so sin2 θ dφ is smooth since it is dual to a smooth vector field. Similarly

g(sin θ ∂θ, ·) = sin θ dθ
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so sin θ ∂θ is smooth since it is dual to a smooth 1-form. Moreover,

g(sin θ ∂θ, sin θ ∂θ) = sin2 θ = x2 + y2

shows that sin θ ∂θ vanishes when x = y = 0 i.e. when θ ∈ {0, π}. �

Lemma A.2 (Lemma 5.2). Consider the maps Φ± : R± × S2 → R3 \ {0}
defined by

Φ±(ρ, φ, θ) = ±(ρ sin θ cosφ, ρ sin θ sinφ, ρ3 cos θ).

Then Φ+ and Φ− are smooth diffeomorphisms satisfying

Φ∗±λ± = ρ2λ1

with λ+, λ−, and λ1 as defined in Section 5.

Proof. We first claim that Φ± is bijective. Since the two maps differ by
negation on R3 \ {0} it suffices to show that Φ+ is bijective. We first observe
that Φ+ maps the set R+ × {θ = 0, π} bijectively to the complement of the
origin on the z-axis. We thus consider a point p0 = (x0, y0, z0) ∈ R3 \ {0}
not in the z-axis, and seek to find a unique solution to

x0 = ρ sin θ cosφ(A.1)

y0 = ρ sin θ sinφ(A.2)

z0 = ρ3 cos θ(A.3)

with (ρ, φ, θ) ∈ R+ × R/2πZ× (0, π). Squaring and summing (A.1)–(A.2)
gives

(A.4) x2
0 + y2

0 = ρ2 sin2 θ

and the assumption that p0 is not in the z-axis implies that x2
0 + y2

0 > 0.
Combining (A.4) and (A.3) leads to

cot θ csc2 θ =
z0

(x2
0 + y2

0)3/2

which has a unique solution with θ0 ∈ (0, π) since the derivative of cot θ csc2 θ
is everywhere negative and limθ→kπ± = ±∞ for k ∈ Z. Substituting this θ0

in (A.3) gives a unique ρ0 > 0. Finally substituting these values of ρ0 and
θ0 into equations (A.1)–(A.2) gives a unique value of φ0 ∈ R/2πZ for which
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(A.1)–(A.3) are satisfied. This completes the proof that Φ+ and Φ− are
bijective.

To show the Φ± are diffeomorphisms, it remains to show that Φ± are
immersions. Again it suffices to show this for Φ+. For θ /∈ {0, π} we have
that

DΦ+(ρ, φ, θ) =

sin θ cosφ −ρ sin θ sinφ ρ cos θ cosφ
sin θ sinφ ρ sin θ cosφ ρ cos θ sinφ
3ρ2 cos θ 0 −ρ3 sin θ


from which we can compute that

detDΦ+(ρ, φ, θ) = −ρ4 sin θ(1 + 2 cos2 θ)

which is nonzero for θ /∈ {0, π}. Meanwhile, in a neighborhood of θ ∈ {0, π}
we can make the change of coordinates

X = sin θ cosφ

Y = sin θ sinφ

to write

Φ+(ρ,X, Y ) = (ρX, ρY, ρ3
√

1−X2 − Y 2).

Thus,

DΦ+(ρ,X, Y ) =

 X ρ 0
Y 0 ρ

3ρ2
√

1−X2 − Y 2 −ρ3 X√
1−X2−Y 2

−ρ3 Y√
1−X2−Y 2


and

detDΦ+(ρ,X, Y ) =
ρ4(3− 2X2 − 2Y 2)√

1−X2 − Y 2

which is nonzero along the set X = Y = 0 as required. Thus Φ± are immer-
sions.

Finally recall that λ± were defined by

λ± = ±dz +
1

2
(x dy − y dx).

The maps Φ± : (ρ, φ, θ) ∈ R± × S2 → (x, y, z) ∈ R3 defined by

x = ±ρ sin θ cosφ dx = ± (sin θ cosφdρ+ ρ cos θ cosφdθ − ρ sin θ sinφdφ)

y = ±ρ sin θ sinφ dy = ± (sin θ sinφdρ+ ρ cos θ sinφdθ + ρ sin θ cosφdφ)

z = ±ρ3 cos θ dz = ±
(
3ρ2 cos θ dρ− ρ3 sin θ dθ

)
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so

y dx = ρ sin2 θ sinφ cosφdρ+ ρ2 sin θ cos θ sinφ cosφdθ − ρ2 sin2 θ sin2 φdφ

x dy = ρ sin2 θ sinφ cosφdρ+ ρ2 sin θ cos θ sinφ cosφdθ + ρ2 sin2 θ cos2 φdφ

and hence

x dy − y dx = ρ2 sin2 θ dφ.

We then find that

Φ∗±λ± = 3ρ2 cos θ dρ− ρ3 sin θ dθ +
1

2
ρ2 sin2 θ dφ

= ρ2

(
3 cos θ dρ− ρ sin θ dθ +

1

2
sin2 θ dφ

)
= ρ2λ1

as required. �

We next compute the Reeb vector field of the contact form λf = fλ1 on
R× S2. We start with a general lemma.

Lemma A.3. Let (M,λ) be a contact 3-manifold, let f be a smooth positive
function, and let X̃f be the unique section of ξ = kerλ satisfying

(A.5) iXfdλ = df − df(Xλ)λ

where Xλ is the Reeb vector field. Then the Reeb vector field of the contact
form associated to fλ is given by

Xfλ = 1
fXλ + 1

f2 X̃f .

Moreover, if {v1, v2} is a basis for ξ, then we have that

(A.6) X̃f = [dλ(v1, v2)]−1(df(v2)v1 − df(v1)v2).

Proof. Let X̃f be the unique section of ξ satisfying iX̃fdλ = df − df(Xλ)λ.
Then

df(X̃f ) = (iX̃f )2dλ+ f(Xλ)iX̃fλ = 0

since X̃f ∈ ξ = kerλ. We then find that

iXλd(fλ) = iXλdf ∧ λ+ iXλ(fdλ)

= iXλdf ∧ λ
= df(Xλ)λ− df
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while

iX̃fd(fλ) = iX̃fdf ∧ λ+ iX̃f (fdλ)

= iX̃f (fdλ)

= f iX̃fdλ

so

i 1
f Xλ+

1
f2 X̃f

d(fλ) = 1
f iXλd(fλ) + 1

f2 iX̃fd(fλ)

= 1
f [df(Xλ)λ− df ] + 1

f2 [f iX̃fdλ]

= 1
f [df(Xλ)λ− df + iX̃fdλ]

= 0

by definition of X̃f . Furthermore

i 1
f Xλ+

1
f2 X̃f

(fλ) = 1
f iXλ(fλ) + 1

f2 iX̃f (fλ)

= iXλλ+ 1
f iX̃fλ

= 1 + 0 = 1.

Thus 1
fXλ + 1

f2 X̃f is the Reeb vector field of fλ as claimed.

Next, to verify the second claim, we define X̃f by (A.6) and verify that
this X̃f satisfies (A.5). Computing, we have that

iX̃fdλ− df − df(Xλ)λ = [dλ(v1, v2)]−1[df(v2)dλ(v1, ·)− df(v1)dλ(v2, ·)]
− df − df(Xλ)λ.

Using that iviλ = 0, iXλλ = 1 and iXλdλ = 0 we see that each of the vectors
Xλ, v1, and v2 yields 0 when evaluated on the right hand side of this equation
above. Since these vectors form a basis for the tangent space, it follows that
this quantity vanishes on TM and thus (A.5) is satisfied. �

Lemma A.4 (Lemma 5.3). Recalling the definition

g(θ) = 2 cos2 θ + 1 = 3 cos2 θ + sin2 θ

from (5.3), we have for θ /∈ {0, π}:
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• The set

B(ρ,θ,φ) =

{
(fg)−1

(
−3 cot θ ∂φ +

1

2
sin θ ∂ρ

)
, 2ρ csc θ ∂φ + ∂θ

}
=: {v1(ρ, θ, φ), v2(ρ, θ, φ)}

is a symplectic basis for (ξ1, dλf ).

• The Reeb vector field Xf of the contact form λf is given by

Xf = [gf2]−1

[
(−ρfρ − 3fθ cot θ + 2f) ∂φ

+

(
3 cot θfφ −

1

2
sin θfρ

)
∂θ

+

(
ρfφ +

1

2
sin θfθ + f cos θ

)
∂ρ

]
.

Proof. The vectors v1 and v2 are clearly linearly independent for θ /∈ {0, π}
since v1 has nonzero ∂ρ component and vanishing ∂θ component, while the
opposite is true of v2. Recalling that

λ1 = 3 cos θ dρ− ρ sin θ dθ +
1

2
sin2 θ dφ

dλ1 = (2 sin θ dρ− cos θ sin θ dφ) ∧ dθ

we immediately find that

λ1(v1) = (fg)−1
[
(3 cos θ)(1

2 sin θ) + (1
2 sin2 θ)(−3 cot θ)

]
= 0

and

λ1(v2) = −ρ sin θ + (1
2 sin2 θ)(2ρ csc θ) = 0

so v1 and v2 ∈ ξ1. Finally, we have that

iv1
dλ1 = (fg)−1(sin2 θ + 3 cot θ cos θ sin θ) dθ

= (fg)−1(sin2 θ + 3 cos2 θ) dθ

= 1/f dθ
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and thus

dλ1(v1, v2) = iv2
(iv1

λ1)(A.7)

= iv2
(1/f dθ)

= 1/f.

Since λ1(v1) = λ1(v2) = 0, it follows that

dλf (v1, v2) = fdλ1(v1, v2) = 1

and thus {v1, v2} is a symplectic basis for (ξ1, dλf ) for θ /∈ {0, π}.
Next to compute the Reeb vector field of λf we first observe that the

vector field X1 defined by

X1 = g(θ)−1 (cos θ ∂ρ + 2 ∂φ) .

satisfies

λ1(X1) = g(θ)−1
[
3 cos2 θ + sin2 θ

]
= 1

and

iX1
dλ1 = g(θ)−1 [2 sin θ cos θ − 2 sin θ cos θ] dθ = 0

so X1 is the Reeb vector field of λ1. According to Lemma A.3, the Reeb
vector field of Xf of λf is then given by

Xf = 1
fX1 + 1

f2 X̃f

with

X̃f = [dλ1(v1, v2)]−1(df(v2)v1 − df(v1)v2)

= f(df(v2)v1 − df(v1)v2)

where we’ve applied (A.7) in the second line. Computing, we have that

f df(v2)v1 = g(θ)−1 (2ρ csc θfφ + fθ)

(
−3 cot θ ∂φ +

1

2
sin θ ∂ρ

)
= g(θ)−1

[
(−6ρ csc θ cot θfφ − 3 cot θfθ) ∂φ +

(
ρfφ +

1

2
sin θfθ

)
∂ρ

]
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and

f df(v1)v2 = g(θ)−1

(
−3 cot θfφ +

1

2
sin θfρ

)
(2ρ csc θ ∂φ + ∂θ)

= g(θ)−1

[
(−6ρ csc θ cot θfφ + ρfρ) ∂φ +

(
−3 cot θfφ +

1

2
sin θfρ

)
∂θ

]
.

Combining the above we conclude that

Xf = [gf2]−1

[
(−ρfρ − 3fθ cot θ + 2f) ∂φ

+

(
3 cot θfφ −

1

2
sin θfρ

)
∂θ

+

(
ρfφ +

1

2
sin θfθ + f cos θ

)
∂ρ

]
as claimed. �

Lemma A.5. Let C ∈ Sp(1) be a symplectic matrix and let k 6= 0 be a
constant. Then the path ΨC,k : [0, 1]→ Sp(1) defined by

ΨC,k(t) = C

[
ekt 0
0 e−kt

]
C−1

has Conley–Zehnder index µcz(ΨC,k) = 0.

Proof. We first consider the case C = I, i.e. the path given by

ΨI,k =

[
ekt 0
0 e−kt

]
.

The path ΨI,k is easily seen to be homotopic within Σ(1) to its inverse

Ψ−1
I,k = ΨI,−k =

[
e−kt 0

0 ekt

]
.

via the homotopy

Ψs(t) := R(sπ/2)ΨI,k(t)R(sπ/2)−1 = R(sπ/2)ΨI,k(t)R(−sπ/2)

where R(θ) is the rotation matrix

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.
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The homotopy axiom from Theorem 2.1 then implies that

µcz(ΨI,k) = µcz(Ψ
−1
I,k)

while the inverse axiom implies that

µcz(ΨI,k) = −µcz(Ψ−1
I,k).

We conclude that

µcz(ΨI,k) = 0.

For C 6= I, we can use the fact that the symplectic group is path con-
nected to find a path Cs ∈ Sp(1) with C0 = C and C1 = I. We then construct
a homotopy Ψs ∈ Σ(1) defined by

Ψs(t) := ΨCs,k(t) = Cs

[
ekt 0
0 e−kt

]
C−1
s

with Ψ0 = ΨC,k and Ψ1 = ΨI,k. The homotopy invariance axiom of Theo-
rem 2.1 and the result of the previous paragraph then imply

µcz(ΨC,k) = µcz(ΨI,k) = 0

as claimed. �

Lemma A.6. For any ε > 0, there exists a smooth, positive function fε :
R→ R+ satisfying:

1) fε(x) = x2 whenever |x| ≥ ε,

2) xf ′ε(x) > 0 for all x 6= 0, and

3) f ′′ε (0) > 0.

Proof. Given ε > 0 choose a smooth function βε : R→ [0, 1] satisfying

• βε(x) = 1 for |x| ≥ ε,

• βε(x) = 0 for |x| ≤ ε/2, and

• xβ′ε(x) ≥ 0 for |x| ∈ (ε/2, ε) (and thus all x ∈ R).

Since β′ε is compactly supported and vanishes for |x| ≤ ε/2 it follows that the
function x 7→ x−1β′(x) is smooth, compactly supported, and thus bounded.
We can thus find a cε > 0 so that
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1

cε
≥ 2 max

(
x−1β′ε(x)

)
and hence

1− x−1β′ε(x)cε ≥ 1−
(
maxx−1β′ε(x)

)
cε(A.8)

≥ 1− 1

2
=

1

2

for all x ∈ R. Defining

fε(x) = βε(x)x2 + (1− βε(x))(1
2x

2 + cε)

= 1
2(βε(x) + 1)x2 + (1− βε(x))cε
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it’s immediately clear that fε is smooth, positive, and satisfies the first and
third conditions listed in the lemma.

To check that fε satisfies the second condition we compute using xβ′ε(x) ≥
0, βε(x) ≥ 0, and (A.8), and find

xf ′ε(x) = x
[

1
2β
′
ε(x)x2 + (βε(x) + 1)x− β′ε(x)cε

]
= 1

2 [xβ′ε(x)]x2 + (βε(x) + 1)x2 − xβ′ε(x)cε

≥ x2 − xβ′ε(x)cε

= x2(1− x−1β′ε(x)cε)

≥ 1
2x

2.

Since 1
2x

2 > 0 for x 6= 0, xf ′ε(x) > 0 for all x 6= 0, and this completes the
proof. �
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