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1. Introduction

Let T be a compact torus acting effectively on a closed symplectic manifold
(M,ω) in a Hamiltonian fashion. If the T -action is GKM, the celebrated the-
orem [GKM, Theorem 1.2.2] due to Goresky-Kottwitz-MacPherson tells us
that the equivariant cohomology ring of M is completely determined by the
corresponding GKM graph, which is an image of zero and one-dimensional
torus orbits in M under a moment map. In particular, since the ordinary
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cohomology ring H∗(M ;R) of M can be obtained from its equivariant co-
homology ring by extension of scalars, the product structure of H∗(M ;R)
is determined by the GKM graph.

In this paper, we study the hard Lefschetz property of a closed Hamil-
tonian GKM manifold. We say that a closed symplectic manifold (M,ω)
satisfies the hard Lefschetz property if

∧[ω]n−l : H l(M ;R) −→ H2n−l(M ;R)

α 7−→ α ∧ [ω]n−l

is an isomorphism for every l = 0, 1, . . . , n. It is clear that the product
structure of H∗(M ;R) and the cohomology class [ω] ∈ H2(M ;R) determine
whether (M,ω) satisfies the hard Lefschetz property or not, and therefore it
is natural to ask how to check the hard Lefschetz property of a closed Hamil-
tonian GKM manifold by “looking up” the corresponding GKM graph.

It is known that the hard Lefschetz property does not hold in general. See
[Cho1] or [Go] for example. However, it is not known whether (M,ω) satisfies
the hard Lefschetz property when (M,ω) admits a Hamiltonian torus action
with isolated fixed points. Our work is motivated by the following question
posed by Karshon.

Question 1.1. [JHKLM] Let (M,ω) be a closed symplectic manifold with
an effective Hamiltonian circle action. Assume that all fixed points are iso-
lated. Then, does (M,ω) satisfy the hard Lefschetz property?

Note that if (M,ω) satisfies the hard Lefschetz property, then we can
easily see that the sequence {b0(M), b2(M), . . . , b2n(M)} is unimodal1 where
bi(M) denotes the i-th Betti number of M . This leads to the following ques-
tion, posed by Tolman, regarded as a weak version of Question 1.1.

Question 1.2. [JHKLM] Let (M,ω) be a closed symplectic manifold with
an effective Hamiltonian circle action. If all fixed points are isolated, then
is the sequence {b0(M), b2(M), . . . , b2n(M)} unimodal?

Following a remark by Karshon in [JHKLM], we observe that the condi-
tion of “admitting isolated fixed points” is a strong assumption in the sense
that an example of a closed symplectic non-Kähler Hamiltonian S1-manifold
with isolated fixed points has not been found so far. In fact, there are several

1A sequence of real numbers a1, . . . , an is called unimodal if there exists an integer
k ≥ 1 such that a1 ≤ · · · ≤ ak ≥ · · · ≥ an
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positive results on Question 1.1 and Question 1.2 for a Hamiltonian torus
action with isolated fixed points. For example, Delzant [De] proved that
every closed symplectic toric manifold is Kähler and hence the hard Lef-
schetz property holds. Also, Karshon [Ka] proved that any four dimensional
closed Hamiltonian S1-manifold (M,ω) with isolated fixed points admits
an S1-invariant Kähler form. In this case, the hard Lefschetz property is
rather obvious since H1(M ;R) = H3(M ;R) = 0 by the Frankel’s theorem
[Fr, Corollary 2]. Also, some positive answers to Question 1.1 and Ques-
tion 1.2 are provided in [Cho2], [CK1], [CK2], and [Lu] under certain tech-
nical assumptions.

Throughout this paper we restrict our attention to Question 1.1 for
closed Hamiltonian GKM manifolds. Note that (M,ω) satisfies the hard
Lefschetz property if and only if the Hodge-Riemann bilinear form defined
as

HRl : H l(M)×H l(M) −→ R

(α, β) 7−→ < αβ[ω]n−l, [M ] >

is non-degenerate for every l = 0, 1, . . . , n. To check the non-degeneracy of
HRl, we first consider certain two bases B+l and B−l of H l(M ;R), which
consist of so-called the equivariant Thom classes in H l

T (M ;R) introduced
by Guillemin-Zara [GZ]. (See also Section 3.) Then we show that the matrix,
denoted by Al(M,ω), representing HRl with respect to the pair (B+l ,B

−
l ) is

obtained from the GKM graph by using the ABBV-localization theorem and
Goldin-Tolman’s theorem [GT]. (See Proposition 4.4 for the detail.) Also,
in case of n− l = 1, we show that Al(M,ω) has many zero entries. (See
Corollary 4.7.) Furthermore, we prove the following if M is of dimension
six.

Theorem 1.3. Let (M,ω) be a 6-dimensional closed symplectic manifold
equipped with an effective Hamiltonian T 2-action. If the action is GKM and
the corresponding GKM graph is index increasing2, then (M,ω) satisfies the
hard Lefschetz property.

Example 1.4. In [T], Tolman constructed a six-dimensional closed Hamil-
tonian GKM manifold (M,ω) which has no Kähler metric invariant under
the action. The corresponding GKM graph is given in Figure 1.1.

With respect to the ξ described in Figure 1.1, we see that the GKM
graph is index-increasing so that Tolman’s manifold satisfies the hard Lef-
schetz property by Theorem 1.3. In fact, Woodward already pointed out

2See Definition 3.3.
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Figure 1.1: Tolman’s Hamiltonian GKM manifold.

in [Wo2, page 9] that Tolman’s manifold satisfies the hard Lefschetz prop-
erty with a hint for a proof, which seems to rely on computation of the
cohomology ring of M . Also, he constructed more examples of non-Kähler
GKM-manifolds using U(2)-equivariant surgery and they have the same x-
ray with Tolman’s example [Wo, Proposition 3.6], and therefore their GKM
graphs are all index-increasing. Consequently, every Woodward’s example
satisfies the hard Lefschetz property by Theorem 1.3.

Organization. In Section 2, we give a brief introduction to the equivariant
cohomology theory for Hamiltonian torus actions and recall the ABBV-
localization theorem which will be used in order to compute the matrix
Al(M,ω) representing the Hodge-Riemann bilinear form HRl. In Section 3,
we provide some background on Hamiltonian GKM manifolds and their
graph cohomology rings. In Section 4, we compute the matrix Al(M,ω) by
using combinatorial data of a GKM graph. In Section 5, we prove our main
theorem (Theorem 1.3). Finally, in Section 6, we prove two propositions
crucially used in Section 5.

Acknowledgement. The authors thank anonymous referees for their en-
durance and kindness to improve the paper, especially to bring the beauti-
ful papers [GT], [ST], and [Mo] to our attention. The first author was sup-
ported by the National Research Foundation of Korea(NRF) grant funded by
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2. Equivariant cohomology

Throughout this paper, we assume that an action of a Lie group on a man-
ifold is effective, unless stated otherwise. Also, we take cohomology with
coefficients in R.

Let (M,ω) be a closed symplectic manifold admitting Hamiltonian T -
action where T is a compact m-dimensional torus for some integer m ≥ 1.
Then the equivariant cohomology of M is defined by

H∗
T (M) =: H∗(M ×T ET )

where ET is a contractible space on which T acts freely. In particular, the
equivariant cohomology of a point is given by H∗

T (pt) = H∗(pt×T ET ) =
H∗(BT ) where BT = ET/T is the classifying space of T . Note that if T =
S1, then BS1 can be constructed as an inductive limit of the sequence of
Hopf fibrations

S3 →֒ S5 →֒ · · · S2n+1 · · · →֒ ES1 ∼ S∞

↓ ↓ · · · ↓ · · · ↓
CP 1 →֒ CP 2 →֒ · · · CPn · · · →֒ BS1 ∼ CP∞

Thus we have

H∗(BS1) ∼= R[x]

where x is an element of degree two such that 〈x, [CP 1]〉 = 1. Similarly, if
we choose an ordered Z-basis X = {X1, . . . , Xm} for the lattice3 in t and
a decomposition T = S1 × · · · × S1 corresponding to X, then we can easily
check that BT is homotopy equivalent to the m-times product of CP∞ and
hence

(2.1) H∗(BT ) ∼= S(t∗) = R[x1, . . . , xm]

where S(t∗) is the symmetric tensor algebra of t∗ and each xi ∈ t
∗ is the dual

of Xi and is of degree two for i = 1, . . . ,m.

3The lattice of t means the kernel of the exponential map from t to T .
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2.1. Equivariant formality

Note that a projection map M × ET → ET on the second factor is T -
equivariant so that it induces the map

π : M ×T ET → BT

which makes M ×T ET into an M -bundle over BT

(2.2)

M ×T ET
f
←֓ M

π ↓

BT

where f is an inclusion of a fiber M . Then it induces the following sequence

H∗(BT )
π∗

→ H∗
T (M)

f∗

→ H∗(M).

In particular, H∗
T (M) has an H∗(BT )-module structure via the map π∗ such

that

x · α = π∗(x) ∪ α

for x ∈ H∗(BT ) and α ∈ H∗
T (M).

Definition 2.1. Let (M,ω) be a symplectic manifold. We say that a T -
action on (M,ω) is Hamiltonian if there exists a smooth map µ : M → t

∗

such that

d〈µ,X〉 = ω(X, ·)

for every X ∈ t. We call µ a moment map for the T -action.

Remark 2.2. Note that if µ is a moment map for a Hamiltonian T -action
on (M,ω), then µ+ c is also a moment map for any c ∈ t

∗. Thus a moment
map is not unique.

The equivariant cohomology of Hamiltonian T -action has a remarkable
property as follows.

Theorem 2.3. [Ki] Let (M,ω) be a closed symplectic manifold equipped
with a Hamiltonian T -action. Then M is equivariantly formal, that is, H∗

T (M)
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is a free H∗(BT )-module so that

H∗
T (M) ∼= H∗(M)⊗H∗(BT ).

Equivalently, the map f∗ is surjective with the kernel 〈x1, . . . , xm〉 ·H
∗
T (M)

where 〈x1, . . . , xm〉 is an ideal of H∗(BT ) generated by degree two elements
x1, . . . , xm and · denotes the scalar multiplication of the H∗(BT )-module
structure on H∗

T (M).

2.2. Localization theorem

For a given k ∈ Z≥0 and an element α ∈ Hk
T (M), Theorem 2.3 implies that

α can be uniquely expressed as

α = αk ⊗ 1 +

m∑

i=1

αi
k−2 ⊗ xi +

∑

1≤i,j≤m

αi,j
k−4 ⊗ xixj + · · ·

where αJ
i ∈ H i(M) for every i ≤ k and J is a multiset whose elements are

in [m] = {1, . . . ,m}. We denote the set of multisets with elements in [m] by
[m]mul. With this notation, we have f∗(α) = αk.

Definition 2.4. An integration along the fiber M is an H∗(BT )-module
homomorphism

∫
M : H∗

T (M)→ H∗(BT ) defined by

∫

M
α = 〈αk, [M ]〉 · 1 +

m∑

i=1

〈αi
k−2, [M ]〉 · xi + · · ·

for every k ∈ Z≥0 and any α ∈ Hk
T (M) where [M ] is the fundamental ho-

mology class of M .

Note that 〈αJ
j , [M ]〉 = 0 for any J ⊂ [m]mul and j < dimM = 2n. Also,

αJ
j = 0 for every j > 2n for a dimensional reason, and therefore we have

∫

M
α =

∑

J∈[m]mul

|J |+2n=k

〈αJ
2n, [M ]〉xJ

for every k ∈ Z≥0 and any α ∈ Hk
T (M) where xJ =

∏
j∈J xj . This leads to

the following corollary.
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Corollary 2.5. Let α ∈ H∗
S1(M) such that degα ≤ dimM . Then we have

∫

M
α = 〈f∗(α), [M ]〉.

Let MT be the fixed point set and let F ⊂MT be a fixed component
with an inclusion map iF : F →֒M . Then it induces a ring homomorphism

i∗F : H∗
T (M)→ H∗

T (F ) ∼= H∗(F )⊗H∗(BT ).

For any α ∈ H∗
T (M), the image i∗F (α) is called the restriction of α to F

and is denoted by α|F . The following theorem due to Atiyah-Bott [AB] and
Berline-Vergne [BV] states that the integration

∫
M α can be calculated in

terms of the fixed point data.

Theorem 2.6. (ABBV-localization) For any α ∈ H∗
T (M), we have

∫

M
α =

∑

F⊂MT

∫

F

α|F
ΛF

where ΛF is the equivariant Euler class of the normal bundle of F . In par-
ticular, if every fixed point is isolated, then

∫

M
α =

∑

F∈MT

α|F
ΛF

.

Recall that the l-th Hodge-Riemann bilinear form is given by

HRl : H l(M)×H l(M) −→ R

(α, β) 7−→ < αβ[ω]n−l, [M ] >

for l = 0, 1, . . . , n. Let α and β be any elements in H l(M). Since f∗ is sur-
jective by Theorem 2.3, we can find α̃, β̃, [ω̃] ∈ H∗

T (M) such that f∗(α̃) = α,

f∗(β̃) = β, and f∗([ω̃]) = [ω] and hence we get

∫

M
α̃β̃[ω̃]n−l = 〈αβ[ω]n−l, [M ]〉

by Corollary 2.5. Thus we can compute 〈αβ[ω]n−l, [M ]〉 by applying the
ABBV-localization theorem to α̃β̃[ω̃]n−l.
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2.3. Cartan models

Note that the choice of a class [ω̃] ∈ H2
T (M) satisfying f∗([ω̃]) = [ω] is para-

metrized by a moment map. To understand [ω̃] in more detail, we briefly
overview the Cartan model of H∗

T (M) as follows. (See also [GS2].) Let us
consider the set of equivariant q-forms

Ωq
T (M) =

⊕

2i+j=q

Si(t∗)⊗ Ωj(M)T

where Si(t∗) denotes the set of degree i elements in the symmetric tensor
algebra of t∗ and Ωj(M)T is the set of T -invariant differential j-forms on M .
Then we may think of an element α ∈ Ω∗

T (M) as a map from t to Ω∗(M)T .
We call (Ω∗

T , dT ) the Cartan complex where the differential is defined by

dT := 1⊗ d+

m∑

j=1

xi ⊗ iXi
, dT (f ⊗ α) = f ⊗ dα+

m∑

j=1

xif ⊗ iXi
α

for any f ⊗ α ∈ S∗(t∗)⊗ Ω∗(M)T where {X1, . . . , Xm} and {x1, . . . , xm} are
the basis, which we have chosen in (2.1), of t and t

∗, respectively. Then it
is not hard to check that d2T = 0 by direct computation. The equivariant de
Rham theorem states that

H∗
T (M) ∼= H(Ω∗

T (M), dT ).

Now, let µ = (µ1, . . . , µm) : M → t
∗ be a moment map where m = dimT .

Since each component of µ is T -invariant, we may regard µ as an element
of S1(t∗)⊗ Ω0(M)T ⊂ Ω2

T (M) such that

µ = x1 ⊗ µ1 + · · ·+ xm ⊗ µm.

Since ω is also T -invariant, ω can be regarded as the element 1⊗ ω ∈
S0(t∗)⊗ Ω2(M)T ⊂ Ω2

T (M). Define

ω̃µ := ω − µ = 1⊗ ω −

m∑

i=1

xi ⊗ µi ∈ Ω2
T (M).
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We call ω̃µ the equivariant symplectic form with respect to µ. Then

dT (ω̃µ) = dT (ω − µ)

= 1⊗ dω −

m∑

j=1

xi ⊗ dµi +

m∑

j=1

xi ⊗ iXi
ω

=

m∑

j=1

xi ⊗ (iXi
ω − dµi)

= 0

so that ω̃µ is dT -closed, and therefore ω̃µ represents an equivariant cohomol-
ogy class [ω̃µ] ∈ H2

T (M) which we call the equivariant symplectic class with
respect to µ. Then we immediately obtain the following corollary from the
definition of ω̃µ.

Lemma 2.7. Let v ∈MT be an isolated fixed point. Then

[ω̃µ]|v = −

m∑

j=1

xi ⊗ µi(v) = −µ(v) ∈ t
∗ = S1(t∗) ∼= H2(BT ).

3. The Graph cohomology of Hamiltonian GKM manifolds

In this section, we briefly review the theory of Hamiltonian GKM-manifolds
and GKM graphs, following [GKM] and [GZ].

3.1. GKM manifolds

Let (M,ω) be a 2n-dimensional closed symplectic manifold and let T be an
m-dimensional torus with its Lie algebra t for some integer m ≥ 2. Suppose
that T acts on (M,ω) in a Hamiltonian fashion with a moment map µ :
M −→ t

∗.

Definition 3.1. The triple (M,ω, µ) is called a Hamiltonian GKM mani-
fold if

1) the fixed point set MT is finite, and

2) for each v ∈MT , the weights αj,v ∈ t
∗, j = 1, . . . , n, of the one-dimen-

sional isotropy T -representations on TvM are pairwise linearly inde-
pendent.
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A Hamiltonian GKMmanifold (M,ω, µ) defines a graph Γ := Γ(M,ω, µ),
called a GKM graph, where the vertex set and the oriented edge set are
defined as follows:

• the vertex set VΓ is equal to MT ,

• the oriented edge set EΓ consists of pairs (p, q) ∈ VΓ × VΓ (p 6= q) such
that p and q are in the same component of the H-fixed point set MH

for some codimension one subtorus H of T . Equivalently, (p, q) ∈ EΓ

if and only if p and q are contained in a T -invariant two-sphere in M.
In particular, (p, q) ∈ EΓ if and only if (q, p) ∈ EΓ.

We call the two conditions (1) and (2) in Definition 3.1 the GKM conditions.
Note that each v ∈ VΓ is contained in exactly n edges, i.e., Γ is an n-valent
graph. Indeed, for each fixed point v ∈MT , the tangential T -representation
on TvM splits into the sum of one-dimensional irreducible representations
so that

TvM = ⊕n
j=1ξj

where ξj is a one-dimensional irreducible T -representation with weight αj,v ∈
t
∗ for j = 1, . . . , n. Then any element zj ∈ ξj ⊂ TvM is fixed by the adjoint
action of kerαj,v, and therefore ξj is fixed by the codimension one subtorus
Hj := exp(kerαj,v) of T . By the second GKM condition (2), the connected
component of MHj containing v is of dimension two, i.e., it is a two-sphere
and it contains exactly two fixed points, say v and v′j , of the T -action. Thus
there exist n fixed points v′1, . . . , v

′
n of the T -action such that (v, v′j) ∈ EΓ for

each j = 1, . . . , n. Furthermore, the GKM condition (2) implies that there
is no more edge containing v except for (v, v′j)’s for j = 1, . . . , n.

For an oriented edge e = (p, q) ∈ EΓ, we denote by i(e) and t(e) the
initial vertex p and the terminal vertex q of e, respectively. For each ξ ∈ t,
let µξ := 〈µ, ξ〉 where 〈 , 〉 is the canonical pairing of t∗ and t. We say ξ is
generic if

µξ

(
i(e)

)
6= µξ

(
t(e)

)

for every e ∈ EΓ. In other words, ξ is generic if ξ is not perpendicular to
µ(q)− µ(p) for any edge (p, q) of Γ.

Now, fix a generic ξ ∈ t. We say that e ∈ EΓ is ascending (resp. descend-
ing) with respect to ξ if µξ

(
i(e)

)
< µξ

(
t(e)

)
(resp. µξ

(
i(e)

)
> µξ

(
t(e)

)
). The

index of v ∈ VΓ, denoted by λv, is defined as twice the number of descending
edges starting at v.
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Remark 3.2. We can always take a generic element ξ lying on the lattice
of t so that ξ generates a circle subgroup S1 of T . Then the Hamiltonian S1-
action generated by ξ has a moment map µξ = 〈ξ, µ〉 and the genericity of
ξ implies that the fixed point set MS1

for the S1-action is the same as MT .
Moreover, µξ is a Morse function on M such that each fixed point v ∈MS1

has a Morse index equal to λv. See [Au] for more details.

Definition 3.3. Let ξ ∈ t be a generic vector. Γ is called index increasing
with respect to ξ ∈ t if

µξ

(
i(e)

)
< µξ

(
t(e)

)
implies λi(e) < λt(e)

for every e ∈ EΓ. If Γ is index increasing with respect to some ξ ∈ t, then Γ
is simply called index increasing.

Remark 3.4. We note that if Γ is index increasing with respect to ξ ∈ t,
then Γ is also index increasing with respect to −ξ.

3.2. Graph cohomology rings

For each e ∈ EΓ, we denote by S2
e the unique T -invariant two-sphere con-

taining i(e) and t(e). Let us define a function α, called an axial function of Γ,
which assigns the weight of the one-dimensional tangential T -representation
on Ti(e) S

2
e for each e ∈ EΓ :

α : EΓ −→ t
∗, e 7−→ α(e).

Notation 3.5. For the sake of simplicity, we denote by (p, q) the oriented
edge e such that i(e) = p and t(e) = q. Also, we denote α

(
(p, q)

)
by α(p, q).

Definition 3.6. For a given pair (Γ, α), the graph cohomology ring H(Γ, α)
is defined by

{h : VΓ → S(t∗) | h
(
t(e)

)
− h

(
i(e)

)
≡ 0 mod α(e) for every e ∈ EΓ},

where S(t∗) is identified with a polynomial ring R[x1, . . . , xm] as in (2.1).
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The product structure on H(Γ, α) is defined by

(h1 · h2)(v) := h1(v)h2(v) ∈ S(t∗) ∼= R[x1, . . . , xm]

for every h1, h2 ∈ H(Γ, α). The graph cohomology ringH(Γ, α) has a natural
Z-grading given by

H i(Γ, α) := H(Γ, α) ∩Map(VΓ, S
i(t∗))

where Si(t∗) is the R-subspace of S(t∗) generated by i-times symmetric tensor
products of elements in t

∗ for i > 0. When i = 0, we put S0(t∗) = R.
Together with the product structure, H(Γ, α) becomes a commutative

Z-graded ring. Also, any S(t∗)-valued constant function on VΓ is an element
of H(Γ, α) and hence S(t∗) is a subring of H(Γ, α). Therefore, H(Γ, α) is an
S(t∗)-algebra with the unit 1 ∈ S0(t∗) = R.

Lemma 3.7. Let Γ and α be given as above.

1) Let h ∈ H1(Γ, α) and e ∈ EΓ. If h
(
t(e)

)
= 0, then h

(
i(e)

)
= k · α(e)

for some k ∈ R.

2) Let h ∈ H i(Γ, α) for some i ≤ n− 1. If h(v) = 0 for every vertex v
except one, then h = 0.

Proof. (1) is straightforward by definition of H(Γ, α). For (2), assume that
h(v0) 6= 0 for some v0 ∈ VΓ and h(v) = 0 for any other vertex v 6= v0. Then
α(v, v0) divides h(v0) for every v adjacent to v0. Also, these α(v, v0)’s are
pairwise linearly independent by the GKM condition (2). Thus h(v0) should
be of polynomial degree at least n since S(t∗) is a UFD. This contradicts
that deg h(v0) ≤ n− 1, and therefore h(v0) = 0. �

3.3. Equivariant Thom classes

Let ξ ∈ t be a generic vector. A path of Γ is a sequence of vertices (v0, . . . , vl)
of Γ such that (vj , vj+1) ∈ EΓ for every j = 0, . . . , l − 1. We say that a path
(v0, . . . , vl) is ascending (resp. descending) with respect to ξ if each (vj , vj+1)
is ascending (resp. descending) with respect to ξ for every j.

For each v ∈ VΓ, let E↑
v (resp. E↓

v) be the set of ascending (resp. de-
scending) edges with respect to ξ having the initial vertex v. Note that
|E↓

v | = λv/2 where λv is the index of v (with respect to ξ) and λv is equal
to the Morse index of v with respect to µξ, see Remark 3.2.
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For each h ∈ H(Γ, α), define a support of h by

supp h := {v ∈ VΓ | h(v) 6= 0}.

Guillemin-Zara [GZ] proved that there exists a nice basis of H(Γ, α) as an
S(t∗)-module whose elements are called equivariant Thom classes.

Theorem 3.8. [GZ, Theorem 1.5, 1.6] Let (M,ω, µ) be a Hamiltonian
GKM manifold with its GKM graph (Γ, VΓ, EΓ). If Γ is index increasing
with respect to some generic ξ ∈ t, then for each v ∈ VΓ, there exists a unique
element τ+v of Hλv/2(Γ, α) satisfying

1) supp τ+v ⊂
{
v′ ∈ VΓ | there exists an ascending path with respect to ξ

from v to v′
}
, and

2) τ+v (v) = Λ+
v :=

∏
e∈E↓

v
α(e).

Furthermore, the set {τ+v }v∈VΓ
forms a basis of H(Γ, α) as an S(t∗)-module.

We call τ+v the equivariant Thom class for v ∈ VΓ with respect to ξ. As
in Remark 3.4, if Γ is index increasing with respect to ξ, then Γ is also index
increasing with respect to −ξ. We denote by τ−v the equivariant Thom class
for v ∈ VΓ with respect to −ξ. Then by Theorem 3.8, we have

τ−v (v) = Λ−
v :=

∏

e∈E↑
v

α(e) and Λv = Λ+
v · Λ

−
v ,

where Λv is the equivariant Euler class of the normal bundle to v in M .

3.4. GKM description of equivariant cohomology

Recall that the inclusion map ı : MT →֒M induces an H∗(BT )-algebra ho-
momorphism

ı∗ : H∗
T (M)→ H∗

T (M
T ) ∼=

⊕

v∈MT

H∗
T ({v}).

In particular, for each fixed point v ∈MT , the inclusion ıv : {v} →֒M in-
duces the map

ı∗v : H∗
T (M)→ H∗

T ({v})
∼= H∗({v})⊗H∗(BT ) ∼= H∗(BT ),

and the image ı∗v(β) is called the restriction of β to v and is denoted by β|v
for every β ∈ H∗

T (M). See Section 2.2. The following theorem is a symplectic
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version of the theorem [GKM] due to Goresky, Kottwitz, and MacPherson,
which enables us to identify H∗

T (M) with H(Γ, α).

Theorem 3.9. [GKM] Let (M,ω, µ) be a closed Hamiltonian GKM mani-
fold with its GKM graph (Γ, VΓ, EΓ). Then the map

H∗
T (M) −→ H(Γ, α), β 7−→ hβ

is an S(t∗)-algebra isomorphism where

hβ(v) := β|v

for each v ∈ VΓ. The image of H2l
T (M) under this isomorphism is H l(Γ, α)

for every integer l ≥ 0.

Let e ∈ EΓ be any oriented edge. Let us label the n edges outward from
i(e) by e1,i(e), . . . , en,i(e). Also, let

αj,i(e) := α(i(ej,i(e)), t(ej,i(e))) = α(i(e), t(ej,i(e))).

Also, we can define αj,t(e)’s in a similar way.

Lemma 3.10. [GZ, Proposition 2.2] For each oriented edge e ∈ EΓ, we can
reorder ej,i(e)’s and ej,t(e)’s so that

(3.1) αn,t(e) = −αn,i(e) = −α(e) and αj,t(e) ≡ αj,i(e) mod α(e)

for each 1 ≤ j ≤ n− 1.

4. Hodge-Riemann bilinear forms

Let (M,ω) be a 2n-dimensional closed symplectic manifold and let T be an
m-dimensional (m ≥ 2) compact torus acting on (M,ω) in a Hamiltonian
fashion with a moment map µ : M → t

∗. Assume the action is GKM and the
corresponding GKM graph Γ is index increasing with respect to some generic
vector ξ ∈ t

∗ so that the equivariant Thom class exists for every vertex
v ∈ VΓ by Theorem 3.8. In the section, we compute the matrix Al(M,ω)
presenting the Hodge-Riemann bilinear form HRl for each l = 0, . . . , n.
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For a fixed l with 0 ≤ l ≤ n, let bl := bl(M) be the l-th Betti number of
M and let

{p1, . . . , pbl} and {q1, . . . , qbl}

be the set of vertices of index l and index 2n− l, respectively. Then Theo-
rem 3.8 and Theorem 2.3 imply that each of

B+l := {f∗τ+p1
, . . . , f∗τpbl

} and B−l := {f∗τ−q1 , . . . , f
∗τ−qbl}

forms a basis of H l(M) where f : M →֒M ×T ET is an inclusion of a fiber
M, see (2.2). Then the Hodge-Riemann form HRl is represented by the
following bl × bl matrix

(4.1) Al(M,ω) = (ajk)1≤j, k≤bl :=
(
HRl(f

∗τ+pk
, f∗τ−qj )

)
1≤j, k≤bl

.

It is straightforward that (M,ω) satisfies the hard Lefschetz property if and
only if Al(M,ω) is non-singular for every l = 0, 1, . . . , n.

4.1. Θ function and vol function

To compute each entry ajk of Al(M,ω), we define two functions Θ and vol
as follows. The function vol, called the volume function, is defined by

vol : EΓ −→ R, (p, q) 7−→
(
µ(q)− µ(p)

)/
α(p, q)

for every (p, q) ∈ EΓ.

Lemma 4.1. For any (p, q) ∈ EΓ, the symplectic area of the T -invariant
two-sphere S2

(p,q) containing p and q is equal to vol(p, q). In particular,

vol(p, q) is a positive real number.

Proof. Let i : S2
(p,q) →֒M be the embedding of S2

(p,q) into M. Then the

symplectic volume
∫
S2

(p,q)

i∗ω is equal to the integration along the fiber∫
S2

(p,q)

i∗[ω̃µ] where [ω̃µ] ∈ H2
T (M) is the equivariant symplectic class with

respect to µ. By the ABBV-localization theorem (Theorem 2.6) and Lemma
2.7, we have

∫

S2
(p,q)

i∗[ω̃µ] =
[ω̃µ]|p
ep

+
[ω̃µ]|q
eq

=
−µ(p)

α(p, q)
+
−µ(q)

α(q, p)
=

µ(q)− µ(p)

α(p, q)
.

This completes the proof. �
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Now, following [GT, p. 453], we define the function Θ by

Θ : EΓ → Q(t∗)

(p, q) 7→ Θ(p, q) :=
ρα(p,q)(Λ

+
p )

ρα(p,q)(Λ
+
q /α(q, p))

where Q(t∗) is the quotient field of S(t∗) and ρα(p,q) is the canonical extension
of the projection map

X 7→ X −
〈X, ξ〉

〈α(p, q), ξ〉
α(p, q) on t

∗

to S(t∗). Note that Θ(p, q) ∈ Q(t∗) is a nonzero element (rational function)
in Q(t∗) by the GKM conditions. Moreover, it has an integer value when
λq − λp = 2. See [ST, Theorem 2.4].

b bb

b

µ(p)

µ(q)ξ

ρα(p,q)(Λ
+
p ) ρα(p,q)(Λ

+
q /α(q, p))

a
b

Θ(p, q) = a
b

b

b

µ(p)

µ(q)

ξ

Λ+
p

Λ−

p /α(p, q)

Λ−

q

Λ+
q /α(q, p)

Figure 4.1: Goldin-Tolman’s Θ function.

Lemma 4.2. ρα(p,q) = ρα(q,p) for every (p, q) ∈ EΓ.

Proof. It is straightforward by definition of ρ. �

On the other hand, let us consider Γ with an opposite generic vector
−ξ ∈ t

∗. Then Γ is also index-increasing with respect to −ξ and the index
of v, denoted by λv, with respect to µ−ξ is given by λv = 2n− λv for every
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v ∈ VΓ. Let Θ be the Goldin-Tolman’s Θ function with respect to −ξ so that

Θ(q, p) =
ρα(q,p)(Λ

−
q )

ρα(q,p)(Λ
−
p /α(p, q))

.

By applying Lemma 4.2, we have

Θ(p, q)

Θ(q, p)
=

ρα(q,p)(Λ
−
p /α(p, q))

ρα(q,p)(Λ
−
q )

·
ρα(p,q)(Λ

+
p )

ρα(p,q)(Λ
+
q /α(q, p))

(4.2)

=
ρα(p,q)(Λp/α(p, q))

ρα(p,q)(Λq/α(q, p))
.

Lemma 4.3. For any (p, q) ∈ EΓ, we have

ρα(p,q)(Λp/α(p, q))

ρα(p,q)(Λq/α(q, p))
= 1,

and therefore Θ(p, q) = Θ(q, p).

Proof. Without loss of generality, we may assume that (p, q) is ascending
with respect to ξ. By Lemma 3.10, we can give orders on the set of edges
{e1, . . . , en} having initial vertex p and on {e′1, . . . , e

′
n} having initial vertex

q such that

• α(en) = −α(e
′
n) = α(p, q), and

• α(ej) = α(e′j) + cjα(en) = α(e′j) + cjα(p, q) for some cj ∈ R

for every j = 1, . . . , n− 1. Then α(e1) · · ·α(en−1) = α(e′1) · · ·α(e
′
n−1) mod-

ulo α(p, q) in S(t∗). Since α(p, q) is in the kernel of ρα(p,q), we have

ρα(p,q)(α(e1) · · ·α(en−1)) = ρα(p,q)(α(e
′
1) · · ·α(e

′
n−1)).

Furthermore, the GKM conditions imply that

ρα(p,q)(α(ej)) 6= 0 and ρα(p,q)(α(e
′
j)) 6= 0

for every j = 1, . . . , n− 1. Therefore,

ρα(p,q)(Λp/α(p, q)) = ρα(p,q)(α(e1) · · ·α(en−1))

= ρα(p,q)(α(e
′
1) · · ·α(e

′
n−1))

= ρα(p,q)(Λq/α(q, p)) 6= 0.
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This completes the proof. �

4.2. Computation of Al(M,ω)

Let v = (v0, v1, . . . , vs) be an ascending path of Γ with respect to a generic
ξ. Following [GT], the length of v is defined to be s and denoted by |v|. For
any two vertices p and q in VΓ, let

∑q
p be the set of ascending paths from p

to q :

{
v = (v0, v1, . . . , v|v|)

∣∣∣ v0 = p, v|v| = q, λvj+1
− λvj

= 2,

and (vj , vj+1) ∈ EΓ for any 0 ≤ j ≤ |v| − 1
}

where |v| = (λq − λp)/2. Also, we denote by
∑q

p(r) the subset of
∑q

p con-
sisting of paths passing through r for r ∈ VΓ.

Now, for 1 ≤ l ≤ n, let Al(M,ω) be the (bl × bl)-matrix with respect to
the bases B+l and B−l defined in (4.1). The following proposition states that
each entry of Al(M,ω) can be computed by using vol, Θ, and µ.

Proposition 4.4. The (j, k)-th entry ajk of Al(M,ω) is equal to
(4.3)

∑

r∈VΓ

[
n−l∏

i=1

[
µ(r)− di

]
]
·

[
∑

v∈
∑qj

pk
(r)

∏n−l
i=1

[
vol(vi−1, vi) ·Θ(vi−1, vi)

]
∏

i∈{0,1,...,n−l}\{cr}

[
µ(r)− µ(vi)

]
]

for 1 ≤ j, k ≤ bl where d1, . . . , dn−l are any elements in t
∗ and cr = (λr −

λpk
)/2.

To prove Proposition 4.4, we use the following theorem due to [GT].
(More general formula can be found in [ST].)

Theorem 4.5. [GT, Theorem 1.6] For any p, q ∈ VΓ, the following holds:

τ+p (q) = Λ+
q ·

∑

v∈
∑

q

p

|v|∏

i=1

µ(vi)− µ(vi−1)

µ(q)− µ(vi−1)
·
Θ(vi−1, vi)

α(vi, vi−1)
,

where v = (p = v0, v1, . . . , v|v| = q).

Remark 4.6. In [GT], they used the opposite sign convention to ours. For
example, our α(p, q) should be α(q, p) in [GT] and our Λ+

p should be Λ−
p
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in [GT]. Note that the notation η(p, q) used in [GT] is the same as α(q, p).
Also, αp (the canonical class) in [GT] is the same as τ+p in our paper.

Proof of Proposition 4.4. Let us fix k and j with 1 ≤ k, j ≤ bl. By Theo-
rem 4.5, we have

τ+pk
(r) = Λ+

r ·
∑

v∈
∑

r

pk

|v|∏

i=1

µ(vi)− µ(vi−1)

µ(r)− µ(vi−1)
·
Θ(vi−1, vi)

α(vi, vi−1)

for every vertex r ∈ VΓ. Note that the length of v ∈ Σr
pk

is
λr−λpk

2 , which we
denote by cr. By substituting

vol(vi−1, vi) =
µ(vi)− µ(vi−1)

α(vi−1, vi)

to the the above formula, we have

τ+pk
(r) = Λ+

r ·
∑

v∈
∑

r

pk

|v|∏

i=1

vol(vi−1, vi) ·Θ(vi−1, vi)

−µ(r) + µ(vi−1)
.

Similarly, with respect to −ξ ∈ t, we have

τ−qj (r) = Λ−
r ·

∑

v∈
∑qj

r

|v|∏

i=1

vol(vi−1, vi) ·Θ(vi, vi−1)

−µ(r) + µ(vi)

for every r ∈ VΓ by Lemma 4.3. Therefore, we have

(4.4) τ+pk
(r) · τ−qj (r) = Λr ·

∑

v∈
∑qj

pk
(r)

∏n−l
i=1 vol(vi−1, vi) ·Θ(vi−1, vi)∏

i∈{0,1,...,n−l}\{cr}

[
− µ(r) + µ(vi)

] ,

since |v| = n− l for every v ∈ Σ
qj
pk
(r) and each v is of the form

v = (v0 = pk, . . . , vcr = r, . . . , vn−l = qj).
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Eventually, by applying the ABBV-localization theorem (Theorem 2.6), we
have

ajk = 〈[ω]n−l ∧ f∗(τ+pk
) ∧ f∗(τ−qj ), [M ]〉(4.5)

=

∫

M

[ n−l∏

i=1

[ω̃i]
]
· τ+pk
· τ−qj

=
∑

r∈VΓ

([ n−l∏

i=1

[ω̃i]
]
· τ+pk
· τ−qj

)
(r)

/
Λr,

where ω̃i is any equivariant symplectic form for each i = 1, . . . , n− l. Note
that (4.5) is equal to

∑

r∈VΓ

[ n−l∏

i=1

[ω̃i]
]
(r) ·

[
∑

v∈
∑qj

pk
(r)

∏n−l
i=1 vol(vi−1, vi) ·Θ(vi−1, vi)∏

i∈{0,1,...,n−l}\{cr}

[
− µ(r) + µ(vi)

]
]

by (4.4). Also, note that [ω̃i](r) = [ω̃i]|r = −µ(r) + di for some di ∈ t
∗. Since

(4.5) holds for any choice of ωi, each di can be chosen arbitrarily. Therefore,
the coefficient ajk is equal to

∑

r∈VΓ

[
n−l∏

i=1

[
µ(r)− di

]
]
·

[
∑

v∈
∑qj

pk
(r)

∏n−l
i=1

[
vol(vi−1, vi) ·Θ(vi−1, vi)

]
∏

i∈{0,1,...,n−l}\{cr}

[
µ(r)− µ(vi)

]
]
.

This finishes the proof. �

From Proposition 4.4, we can obtain the following.

Corollary 4.7. Suppose that n− l = 1. Then

1) ajk =

{
Θ(pk, qj) · vol(pk, qj) if (pk, qj) ∈ EΓ,

0 if (pk, qj) 6∈ EΓ, and

2) ajk is nonzero if and only if (pk, qj) ∈ EΓ.

Proof. Suppose that n− l = 1 and let p = pk (resp. q = qj) be any index l
(resp. index 2n− l) vertex in VΓ. If p and q are not adjacent, then ajk = 0
by Proposition 4.4 since

∑q
p is empty. If p and q are adjacent, the formula
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of Proposition 4.4 is reduced to

ajk = (µ(p)− d) ·
vol(p, q) ·Θ(p, q)

µ(p)− µ(q)
+ (µ(q)− d) ·

vol(p, q) ·Θ(p, q)

µ(q)− µ(p)

= vol(p, q) ·Θ(p, q)

for any choice of d ∈ t
∗. The second statement (2) easily follows from (1) and

the fact that vol(p, q) and Θ(p, q) are both nonzero for every (p, q) ∈ EΓ. �

4.3. Concluding remark

Sabatini and Tolman [ST, Theorem 0.3] gave a generalized formula of The-
orem 4.5. We state the modified version of the theorem which fits in our
context as follows.

Theorem 4.8. [ST] Let (M,ω, µ) be a Hamiltonian GKM T -manifold such
that the corresponding GKM graph Γ is index increasing with respect to some
generic vector ξ ∈ t. Let p and q be any two fixed point. For each fixed point
z ∈MT , let wz be any element in H2

T (M) such that wz(q) 6= wz(z). Then

τ+p (q) = Λ+
q ·

[
∑

v∈
∑

q

p

|v|∏

i=1

wvi
(vi+1)− wvi

(vi)

wvi
(q)− wvi

(vi)
·
τ+vi

(vi+1)

Λ+
vi+1

]
.

Remark 4.9. We can easily see that Theorem 4.8 is a generalization of
Theorem 4.5 by taking wz = [ω̃µ] for every z ∈MT .

We expect that Theorem 4.8, together with the flexibility of the choice of
di’s in Proposition 4.4, may provide a more simple formula of Proposition 4.4.
Indeed, the coefficients and the determinant of Al(M,ω) can be expressed
by very simple formulas in the following special case [CK2]. More precisely,
the authors proved in [CK2] that if there exists a vector ξ ∈ t such that
µξ(v) = λv for each fixed point v, i.e., µξ is a self-indexing moment map, then
(M,ω) satisfies the hard Lefschetz property by computing the determinant
of Al(M,ω) for each l.

5. Hamiltonian GKM manifolds with index increasing

graphs

In this section, we restrict our attention to six-dimensional Hamiltonian
GKM manifolds and give the proof of Theorem 1.3.
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Let (M,ω) be a six-dimensional closed symplectic manifold and let T
be a two-dimensional compact torus acting on (M,ω). Assume that the T -
action is Hamiltonian GKM with a moment map µ : M −→ t

∗. Let ξ ∈ t

be a generic vector having rational slop such that the corresponding GKM
graph (Γ, VΓ, EΓ) is index increasing with respect to ξ. Note that the vector
ξ defines a circle subgroup S1 of T and the induced S1-action on (M,ω) is
Hamiltonian with respect to a moment map µξ = 〈µ, ξ〉. We start with the
following well-known fact.

Lemma 5.1. [Au] bodd(M) = 0.

Proof. See Remark 3.2. �

We reformulate Theorem 1.3 by using equivariant Thom classes defined
in Section 3. Recall that (M,ω) satisfies the hard Lefschetz property if and
only if the Hodge-Riemann bilinear form HRl is nondegenerate for every
l = 0, . . . , 3, see Section 1. It is straightforward that

HR0 : H0(M)×H0(M) −→ R

(α, β) 7−→ < αβ[ω]3, [M ] >

is nondegenerate since ω3 is a volume form on M . Therefore, by Lemma
5.1, HR2 is non-degenerate if and only if (M,ω) satisfies the hard Lefschetz
property.

Now, let τ+v and τ−v be the equivariant Thom classes for each vertex
v ∈ VΓ with respect to ξ and −ξ, respectively. Let b2 := b2(M) be the second
Betti number of M and let

{p1, . . . , pb2} and {q1, . . . , qb2}

be the sets of index-two vertices and index-four vertices, respectively. These
sets have the same number of elements by the Poincaré duality. Let x1
and x2 be the generators of S(t∗) ∼= H∗(BT ) = R[x1, x2] given in (2.1). By
Theorem 3.9, we may identify H∗

T (M) with H(Γ, α) and the set of all equiv-
ariant Thom classes forms a basis of H∗

T (M) as an H∗(BT )-module by
Theorem 3.8. In particular, each of

{x1, x2, τ
+
pk
| 1 ≤ k ≤ b2} and {x1, x2, τ

−
qj | 1 ≤ j ≤ b2}

becomes a basis of H2
T (M) as an R-vector space.
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Lemma 5.2. Let f : M →֒M ×T ET be an inclusion of a fiber M given
in (2.2) and let f∗ : H∗

T (M)→ H∗(M) be its induced ring homomorphism.
Then HR2 is nondegenerate if and only if the b2 × b2 matrix

A2(M,ω) = (ajk)1≤j, k≤b2 :=
(
HR2(f

∗τ+pk
, f∗τ−qj )

)
1≤j, k≤b2

is nonsingular.

Proof. Recall that B+2 = {f∗τ+p1
, . . . , f∗τ+pb2

} and B−2 = {f∗τ−q1 , . . . , f
∗τ−qb2} are

bases of H2(M) by Theorem 3.8 and Theorem 2.3. Then A2(M,ω) is the
matrix representing HR2 with respect to the pair (B+2 ,B

−
2 ) and this finishes

the proof. �

Using Lemma 5.2, we can reformulate Theorem 1.3 into the following
proposition.

Proposition 5.3 (Theorem 1.3). The matrix A2(M,ω) is nonsingular.

Let o (resp. r) be the unique index-zero (resp. index-six) vertex of Γ.
Recall that vol and Θ are functions on the edge set EΓ defined by

vol(p, q) :=
(
µ(q)− µ(p)

)/
α(p, q) ∈ Q(t∗)

and

Θ(p, q) :=
ρα(p,q)(Λ

+
p )

ρα(p,q)(Λ
+
q /α(q, p))

∈ Q(t∗)

for (p, q) ∈ EΓ. See Section 4.1. The following proposition is straightforward
by Corollary 4.7.

Proposition 5.4. Let A2(M,ω) = (ajk)1≤j,k≤b2 be given in Lemma 5.2.
Then

1) ajk = Θ(pk, qj) · vol(pk, qj), and

2) ajk is nonzero if and only if pk and qj are adjacent.

Suppose that (p, q) ∈ EΓ where p (resp. q) is an index-two (resp. index-
four) vertex of Γ. Then there exists a unique vertex v 6= p adjacent to and
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below q with respect to ξ, that is, µξ(v) < µξ(q). Also, by the index increas-
ing property, the index of v is less than or equal to two. Since
(5.1)
supp τ+p ⊂ {p} ∪ {index-4 vertices adjacent to p} ∪ {the index-6 vertex r}

by Theorem 3.8, we have τ+p (v) = 0, and therefore τ+p (q) = k · α(q, v) for
some real number k ∈ R by Lemma 3.7.(1). Furthermore, since τ+p (q)−
τ+p (p) ≡ 0 modulo α(p, q), we can easily see that k = Θ(p, q), and therefore

(5.2) τ+p (q) = Θ(p, q) · α(q, v)

see Figure 4.1 and Figure 5.1.(a). Note that if p and q are not adjacent,
then τ+p (q) = 0 by (5.1). Thus we obtain the following lemma. See also [GT,
Theorem 4.1].

Lemma 5.5. Let p and q be an index-two and index-four vertices, respec-
tively. Then p and q are adjacent if and only if τ+p (q) 6= 0.

b

b
ξ

µ(p)

µ(q)

Λ+
p

α(q, v)

µ(p) + Λ+
p + R · α(p, q)

Θ(p, q) · α(q, v)

(a)

b

b

µ(p)

µ(q)

Λ+
p

α(q, v)

µ(p) + Λ+
p + R · α(p, q)

Θ(p, q) · α(q, v)

(b)

Figure 5.1: (a) Θ(p, q) > 0, (b) Θ(p, q) < 0.

5.1. Positivity of Θ

The positivity of Θ(p, q) will play an essential role for proving the non-
singularity of A2(M,ω).

Definition 5.6. A subset of a real two-dimensional vector space V is said
to be in the same side with respect to a straight line L in V if it is contained
in the closure of a connected component of V − L.
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Let (p, q) ∈ EΓ for an index-two vertex p and an index-four vertex q,
respectively. By definition of graph cohomology, we have

(5.3) τ+p (p) ≡ τ+p (q) mod α(p, q).

Substituting

τ+p (p) = Λ+
p and τ+p (q) = Θ(p, q) · α(q, v)

into (5.3), we have

(5.4) − Λ+
p +Θ(p, q) · α(q, v) = k · α(p, q) for some real number k.

Adding µ(q)− µ(p) = vol(p, q) · α(p, q) to both sides of (5.4), we have

(
− µ(p)− Λ+

p

)
+
(
µ(q) + Θ(p, q) · α(q, v)

)
= k′ · α(p, q)

where k′ = k + vol(p, q). This implies that

µ(q) + Θ(p, q) · α(q, v) ∈
(
µ(p) + Λ+

p

)
+ R · α(p, q),

that is, µ(q) + Θ(p, q) · α(q, v) is contained in the dotted line in Figure 5.1.
On the other hand, Θ can be understood in the following way : the

straight line µ(q) + R · α(q, v) intersects µ(p) + Λ+
p + R · α(p, q) at µ(q) +

Θ(p, q) · α(q, v), see Figure 5.1 in which the line segment connecting µ(p)
and µ(q) is parallel with the dotted straight line marked by the doubled
arrow vector. Consequently, we can see that µ(p) + Λ+

p and µ(q) + Θ(p, q) ·
α(q, v) are in the same side with respect to the straight line µ(p) + R · α(p, q).
Equivalently, Λ+

p and Θ(p, q) · α(q, v) are in the same side with respect to
the straight line R · α(p, q). From this observation, we deduce the following.

Lemma 5.7. Two vectors Λ+
p and α(q, v) are in the same side with respect

to the straight line R · α(p, q) if and only if Θ(p, q) is positive.

As the following examples show, Lemma 5.7 enables us to check the
positivity of Θ by looking up the shape of a graph.

Example 5.8. For example, Θ(p, q) is positive in Figure 5.1.(a). On the
other hand, in Figure 5.1.(b), Θ(p, q) is negative since two vectors Λ+

p and
α(q, v) are not in the same side with respect to the straight line R · α(p, q).
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More concrete examples are as follows. In Figure 5.4.(d), Θ(p, q) is neg-
ative for the index-two vertex p and the index-four vertex q which lie on the
interior of the moment map image. In fact, Figure 5.4.(d) corresponds to
Tolman’s example of a non-Kähler Hamiltonian GKM manifold explained
in Example 1.4. On the contrary, Θ(p, q) is positive for any (p, q) ∈ EΓ in
Figure 5.4 with ind p = 2 and ind q = 4.

By using Lemma 5.7, we can state a more refined condition under which
Θ(p, q) is positive. For an index-two vertex p, we denote by γp the cycle whose
vertices consist of p and vertices connected by ascending paths starting at
p, and call it the ascending cycle starting at p. In other words, the set of
all vertices contained in γp is the right hand side of (5.1). Note that p is
of index-two so that p should be adjacent to at least one and at most two
index-four vertices by the three valency of Γ, see Section 3.1. In particular,
γp has three or four vertices. An ascending cycle is called triangular (resp.
tetragonal) if it has three (resp. four) vertices. In other words, γp is triangular
if and only if p is adjacent to exactly one index-four vertex and to r. Also, γp
is tetragonal if and only if p is adjacent to exactly two index-four vertices.

Example 5.9. Let us consider examples of ascending cycles in Figure 5.4.
Each of (a) and (b) has one triangular and no tetragonal ascending cycle.
And each of (c), (e), and (f) has one triangular and one tetragonal ascending
cycles. Each of (d) and (g) has no triangular ascending cycle and it has two
tetragonal ascending cycles. And (h) has no triangular ascending cycle and
has three tetragonal ascending cycles.

For a tetragonal ascending cycle γp starting at p, we denote by �γp
the union of images µ(S2

e ) for edges e of γp. Thus �γp is a tetragon in t
∗.

It is classical that tetragons are classified into three types as follows, see
Figure 5.2.

Lemma 5.10. [We, p.50] Tetragons �ABCD in a plane are classified into
three types :

(a) convex if for each edge ℓ of �ABCD, {A,B,C,D} is in the same side
with respect to the straight line generated by ℓ,

(b) concave if the convex hull Conv{A,B,C,D} is triangular, i.e., a vertex
is contained in the interior of Conv{A,B,C,D},

(c) crossed if there exist two opposite line segments passing through each
other.
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A

B

CD

(a) convex

A

B

C

D

(b) concave

A

B

C D

(c) crossed

Figure 5.2: Three types of tetragons.

Similarly, we call a tetragonal ascending cycle γp convex, concave, or
crossed if the tetragon �γp is convex, concave, or crossed, respectively. We
introduce a new condition which guarantees that Θ(p, q) is positive.

Proposition 5.11. For an adjacent index-two vertex p and an index-four
vertex q, if the ascending cycle γp is tetragonal and convex, then Θ(p, q) is
positive.

Before we prove Proposition 5.11, we give the following lemma without
proof, which is essentially the same as Lemma 3.10.

Lemma 5.12. For each oriented edge e ∈ EΓ, we can reorder αj,i(e)’s and
αj,t(e)’s so that (1) αn,t(e) = −αn,i(e) = −α(e), and (2) αj,t(e), αj,i(e) are in
the same side with respect to R · α(e) for each 1 ≤ j ≤ n− 1.

Proof of Proposition 5.11. Pick the vertex v 6= p which is adjacent to and
below q. By the assumption, there exists another index-four vertex q′ 6=
q which is adjacent to and above p, see Figure 5.3. Since �γp is convex,
α(p, q′) and α(q, r) are in the same side with respect to R · α(p, q) by Lemma
5.10. Applying Lemma 5.12 to the edge (p, q), two weights Λ+

p = α(p, o) and
α(q, v) should be in the same side with respect to R · α(p, q). Therefore,
Θ(p, q) is positive by Lemma 5.7. �

Example 5.13. Let us consider Figure 5.4.(d). For the index-two vertex p
in the interior of µ(M), γp is not convex but concave. As we have seen in
Example 5.8, Θ(p, q) is negative for the index-four vertex q in the interior of
µ(M). On the other hand, for any other index-two vertex p in Figure 5.4, if
γp is tetragonal, it is convex.
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b

b

b

b

b

b

ξ

µ(p)

µ(q)
µ(q′)

µ(r)

µ(v)

µ(o)

Figure 5.3: Proof of Proposition 5.11.

5.2. Weak classification

In addition to Proposition 5.4 and Proposition 5.11, we need to understand
the GKM graph more precisely to show that the determinant of the matrix
A2(M,ω) is nonzero. Let E and V be the numbers of non-oriented edges and
vertices of Γ, respectively.

Lemma 5.14. Let V and E be given above. Then

• 2E = 3V, and

• the number of index-two vertices, i.e., b2 is equal to V/2− 1.

Proof. The first statement follows from the three valency of Γ. Also, the
second statement follows from the Poincaré duality. �

The following proposition classifies all possible GKM graphs Γ into eight
types according to the following four criteria :

1) the shape of the moment map image µ(M),

2) the number of vertices of Γ,

3) adjacency between o and r, and

4) the number of tetragonal ascending cycles starting at index-two ver-
tices.

Proposition 5.15. Let (M,ω) be a six-dimensional closed Hamiltonian
T 2-manifold. Suppose that the action is GKM and its GKM graph Γ is index-
increasing with respect to some generic ξ ∈ t. Then Γ satisfies one of (a)∼(h)
of Table 5.1.
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µ(M) V o is adjacent to r? the number of tetragonal ascending
cycles starting at an index-two vertex

(a) triangle 4 Yes 0
(b) tetragon 4 Yes 0
(c) tetragon 6 No 1
(d) tetragon 6 Yes 2
(e) pentagon 6 No 1
(f) hexagon 6 No 1
(g) hexagon 6 Yes 2
(h) hexagon 8 No 3

Table 5.1: Eight types of possible index increasing GKM graphs.

b

b

b

b

µ(r)

µ(o)

ξ

(a)

b

b

b

b

µ(o)

µ(r)

(b)

b

b
b

b

b
b

µ(o)

µ(r)

(c)

b

b

b

b

b

b

µ(o)

µ(r)

(d)

b

b

b

b

b

b

µ(r)

µ(o)

(e)

b

b

b

b

b

b

µ(o)

µ(r)

(f)

b

b

b

b
b

b

µ(o)

µ(r)

(g)

b

b

b

b

b

b b

b

µ(o)

µ(r)

(h)

Figure 5.4: Examples of eight types of possible index increasing GKM
graphs.

The proof of Proposition 5.15 will be given in Section 6. In Figure 5.4,
examples of the eight types of GKM graphs in Table 5.1 are illustrated.
Note that Proposition 5.15 does not claim that every possible index increas-
ing GKM graph is one of those in Figure 5.4. For example, there exists an
index increasing GKM graph satisfying Table 5.1 (h) but is different from
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Figure 5.4.(h), see Figure 5.5. Thus we may call Proposition 5.15 a weak clas-
sification of index increasing GKM graphs of closed six-dimensional Hamil-
tonian GKM manifolds. Nevertheless, Table 5.1 (a)∼(g) (V ≤ 6) are corre-
sponding to the Morton’s classification of index increasing GKM graphs of
closed six-dimensional Hamiltonian GKM manifolds with vertices less than
or equal to six, see [Mo].

b

b

b

b

b

b

b

b
b

µ(o)

µ(r)

ξ

Figure 5.5: Example of Table 5.1 (h).

Remark 5.16. We can easily check that Tolman’s example (Example 1.4)
corresponds to Table 5.1 (d). See also [GT, Example 5.2 and Figure 1].

The following proposition will be used to prove our main theorem in
Section 5.3, where the proof will be given in Section 6.

Proposition 5.17. Suppose that Γ is of type Table 5.1 (h). Then every
tetragonal ascending cycle in Γ is convex. In particular, Θ(p, q) is positive
for every index-two vertex p and index-four vertex q of Γ.

5.3. Proof of Theorem 1.3

Now, we are ready to prove our main theorem.

Proof of Proposition 5.3. (Proof of Theorem 1.3) We first consider the case
where a GKM graph Γ satisfies Table 5.1 (a) or (b). In this case, we have
b2 = 1 and H2(M) is generated by the symplectic class [ω]. Since [ω2] 6= 0
in H4(M), the hard Lefschetz property of (M,ω) is automatically satisfied.

Second, suppose that Γ satisfies Table 5.1 (c), (e), or (f). In this case,
we have b2 = 2 and there is only one tetragonal ascending cycle starting at
an index-two vertex. (See Table 5.1.) This implies that the number of non-
oriented edges connecting an index-two vertex and a four vertex is three.



✐

✐

“2-Kim” — 2019/3/5 — 16:33 — page 1580 — #32
✐

✐

✐

✐

✐

✐

1580 Y. Cho and M. K. Kim

Since A2(M,ω) is a 2× 2 matrix with exactly three nonzero entries by
Proposition 5.4, A2(M,ω) should be nonsingular.

Third, assume that Γ satisfies Table 5.1 (h). Then Γ has three index-two
vertices so that b2 = 3. In particular, A2(M,ω) is a 3× 3 matrix. Also, there
are three tetragonal ascending cycles starting at an index-two vertex, that is,
the ascending cycle starting at an index-two vertex pk is tetragonal for every
k = 1, 2, 3. Moreover, the ascending cycles are convex by Proposition 5.17.
Thus if pk and qj are adjacent, then Θ(pk, qj) is positive by Proposition 5.11,
and therefore ajk is positive for 1 ≤ j, k ≤ 3 with (pk, qj) ∈ EΓ by Proposi-
tion 5.4. So, by Proposition 5.4, there are exactly three zeros in A2(M,ω)
and each zero appears exactly one time in each row and column. Reorder-
ing pk’s and qj ’s, if necessary, we may assume that the diagonal entries of
A2(M,ω) are all zero. Then,

det A2(M,ω) = a12a23a31 + a13a21a32 > 0.

Therefore, A2(M,ω) is nonsingular.
Finally, consider the case where Γ satisfies Table 5.1 (d) or (g). In this

case, we have b2 = 2 (and hence A2(M,ω) is a 2× 2 matrix) and there are
two tetragonal ascending cycles starting at an index-two vertex. In other
words, the ascending cycle starting at each index-two vertex pk is tetragonal
and hence it is adjacent to both q1 and q2. Thus all entries of A2(M,ω) are
nonzero by Proposition 5.4.

To show that the determinant of A2(M,ω) is nonzero, we apply column
operation on A2(M,ω) to obtain a triangular matrix. To do this, we need
the following lemma.

Lemma 5.18. Let t1 and t2 be two arbitrary nonzero real numbers. If Γ sat-
isfies Table 5.1 (d) or (g), then the following (degree four) graph cohomology
class

(5.5) t1 · τ
+
p1
·
(
[ω̃µ] + µ(p1)

)
+ t2 · τ

+
p2
·
(
[ω̃µ] + µ(p2)

)

does not vanish simultaneously on q1 and q2.

Proof. Note that the class (5.5) vanishes on o, p1, p2 by Theorem 3.8 and
Lemma 2.7. Moreover, if (5.5) vanishes on q1 and q2 simultaneously, then
(5.5) should be the zero class by Lemma 3.7.(2). Thus we need only show
that (5.5) never vanishes on r.
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Therefore, it is enough to prove that the following two linear polynomials

(5.6)
[
τ+p1
·
(
[ω̃µ] + µ(p1)

)]
(r) and

[
τ+p2
·
(
[ω̃µ] + µ(p2)

)]
(r)

in S(t∗) are R-linearly independent. We first compute τ+pk
(r) as follows. Since

τ+pk
is zero at o for k = 1, 2 by Theorem 3.8, and o and r are adjacent by

Table 5.1 (d) and (g), we have

τ+pk
(r) = dk · α(r, o)

for some real numbers dk by Lemma 3.7.(1).
We claim that dk’s are all nonzero. Suppose that dk is zero for some k,

i.e. τ+pk
(r) = 0. Without loss of generality, we may assume that k = 1. Then

τ+p1
vanishes on r. Moreover, τ+p1

vanishes on p2 by (5.1). Since each of q1
and q2 is adjacent to both p1 and p2, τ

+
p1
(qj) is divided by both α(qj , r) and

α(qj , p2) for each j = 1, 2 by Lemma 3.7.(1). However, two weights α(qj , r)
and α(qj , p2) are linearly independent by the GKM condition (2) and τ+p1

(qj)
is of polynomial degree 1 in S(t∗). Thus we have τ+p1

(qj) = 0 and it is a
contradiction by Lemme 5.5. Thus d1 is nonzero. Also, we obtain d2 6= 0 in
a similar way. Therefore, the polynomials in (5.6) can be expressed by

[
τ+pk
·
(
[ω̃µ] + µ(pk)

)]
(r) = dk · α(r, o) ·

(
− µ(r) + µ(pk)

)

by Lemma 2.7 for k = 1, 2.
Now, it is enough to show that

µ(r)− µ(p1) and µ(r)− µ(p2)

are R-linearly independent. To the contrary, suppose that they are linearly
dependent. Then µ(r), µ(p1), and µ(p2) should be collinear. Let us first
consider the case of Table 5.1 (d). Then there exists index-four interior
vertex, which is assumed to be q1, adjacent to r, p1, and p2. Similarly, we
can easily see that r is adjacent to o, q1, and q2. Note that if µ(p1) and µ(p2)

are in the same side with respect to the straight line
←−−−−−→
µ(r)µ(q1), then both

µ(o) and µ(q2) must be in the same side with µ(pk)’s by Lemma 5.12 so

that
←−−−−−→
µ(r)µ(q1) is on the boundary of µ(M), which contradicts that q1 is an

interior point of the moment polytope µ(M). Thus µ(p1) and µ(p2) cannot

be in the same side with respect to the straight line
←−−−−→
µ(r)µ(q), and hence

µ(r), µ(p1), and µ(p2) are not colinear.
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For the case of (g), µ(p1) and µ(p2) are vertices of the moment polytope
µ(M) as well as µ(r). Then it is straightforward that µ(r)− µ(p1) and µ(r)−
µ(p2) are linearly independent. �

We go back to the proof of Proposition 5.3. Since every ajk is nonzero,
we can take t0 = −

a12

a11
6= 0 so that a12 + t0 · a11 = 0. Since

det

(
a11 a12
a21 a22

)
= det

(
a11 a12 + t0 · a11
a21 a22 + t0 · a21

)

= det

(
a11 0
a21 a22 + t0 · a21

)
,

it is enough to show that a22 + t0 · a21 6= 0.
Consider the following equivariant cohomology class

τ+pk
·
(
[ω̃µ] + µ(pk)

)
· τ−qj ∈ H6

T (M).

Using f∗
(
[ω̃µ]− µ(pk)

)
= [ω] and the ABBV-localization theorem, we have

ajk = 〈f∗(τ+pk
) ∧ [ω] ∧ f∗(τ−qj ), [M ]〉(5.7)

=

∫

M
τ+pk
·
(
[ω̃µ] + µ(pk)

)
· τ−qj

=
∑

v∈VΓ

[
τ+pk
·
(
[ω̃µ] + µ(pk)

)
· τ−qj

]
(v)

/
Λv

=
[
τ+pk
·
(
[ω̃µ] + µ(pk)

)
· τ−qj

]
(qj)

/
Λqj

= τ+pk
(qj) ·

(
− µ(qj) + µ(pk)

)/
Λ+
qj(

=
[
τ+pk
·
(
[ω̃µ] + µ(pk)

)]
(qj)

/
Λ+
qj

)
.(5.8)

In the fourth equality, we use Theorem 3.8 and the followings :

• supp τ+pk
⊂ {pk} ∪ {index-4 vertices adjacent to pk} ∪ {index-6 vertex r},

• supp τ−qj ⊂ {qj} ∪ {index-2 vertices adjacent to qj} ∪ {index-0 vertex o},

•
(
[ω̃µ] + µ(pk)

)
(pk) = −µ(pk) + µ(pk) = 0

obtained from (5.1) and Lemma 2.7. Then, by (5.7), we can easily see that

ajk =
[
τ+pk
·
(
[ω̃µ] + µ(pk)

)]
(qj)

/
Λ+
qj , and

aj2 + t0 · aj1 =
[
τ+p2
·
(
[ω̃µ] + µ(p2)

)
+ t0 · τ

+
p1
·
(
[ω̃µ] + µ(p1)

)]
(qj)

/
Λ+
qj .
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Since t0 6= 0, both a12 + t0 · a11 and a22 + t0 · a21 do not vanish simultane-
ously by Lemma 5.18. Therefore, we have a22 + t0 · a21 6= 0. This completes
the proof. �

6. Proof of Proposition 5.15 and 5.17

In this section, we prove Proposition 5.15 and 5.17 used in Section 5. To
begin with, we introduce the following terminologies.

Definition 6.1. A vertex v is called a boundary vertex (resp. an interior
vertex) if µ(v) is contained in the boundary (resp. interior) of µ(M). Sim-
ilarly, an edge e is called a boundary edge (resp. an interior edge) if µ(S2

e )
is contained in the boundary (resp. interior) of µ(M). A path (v0, . . . , vl) of
Γ is called a boundary path if each edge (vj , vj+1) is a boundary for every
0 ≤ j ≤ l − 1.

Now, we give the proof of Proposition 5.15 as follows.

Proof of Proposition 5.15. Consider two ascending boundary paths

(v0, . . . , vl) and (v′0, . . . , v
′
l′)

from o to r. Then µ(M) is a convex (l + l′)-gon by the Atiyah-Guillemin-
Sternberg convexity theorem [At, GS] so that both paths cannot have length
one simultaneously. Moreover, by the index increasing property, the lengths
of the two paths are less than or equal to three, i.e. l, l′ ≤ 3. Therefore, we
have

2 ≤ l · l′ and l, l′ ≤ 3.

Without loss of generality, we may assume that l ≤ l′. Then there are exactly
five possible cases :

(l, l′) ∈ {(1, 2), (2, 2), (1, 3), (2, 3), (3, 3)}.

If l = 1, l′ = 2, then µ(M) is a triangle so that o and r are adjacent. We
may assume that v′1 is of index-two. (If not, then v′1 is of index-two with
respect to −ξ so that we need only take −ξ instead of ξ.) Then there exists
at least one index-four interior vertex by the Poincaré duality. Moreover,
there cannot exist more than one index-four vertex by the three valency
at r, since any index-four vertex is adjacent to r by the index-increasing
property and r is already adjacent to two vertices o and v′1. Therefore, Γ
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b

b

b

b

b

bµ(v1)
µ(v′1)

µ(v′2)

µ(v2) = µ(r) = µ(v′3)

µ(v0) = µ(o) = µ(v′0)

ξ

Figure 6.1: Example of ascending boundary paths for (l, l′) = (2, 3).

has only one index-four vertex so that Γ has four vertices, that is, Γ is a
complete graph and the unique ascending cycle γv′

1
starting at the unique

index-two vertex v′1 is triangular. Thus Γ is the case of Table 5.1 (a).
If l = 2, l′ = 2, then µ(M) is a tetragon. Then each of o and r is adjacent

to the boundary vertices v1 and v′1. We first show that v1 and v′1 have
different indices. If v1 and v′1 have the same index, say two, then there
should be at least two index-four interior vertices by the Poincaré duality.
Thus r should be adjacent to at least four vertices and this contradicts the
three valency at r. Therefore, v1 and v′1 must have different indices. Assume
that v1 is of index-two and v′1 is of index-four. Then γv1

is triangular since
v1 is adjacent to r.

Now, there are two possible cases according to adjacency of o and r. If
o and r are adjacent, then o (resp. r) is adjacent to the three vertices r, v1,
and v′1 (resp. o, v1, and v′1) so that there is no other vertex except for o,
r, v1, and v′1 since any vertex other than o, r should be adjacent to o or r
by the index increasing property. In other words, Γ has four vertices and v1
must adjacent to v′1. This is the case of Table 5.1 (b).

Second, assume that o and r are not adjacent. Since each of o and r is
adjacent to v1 and v′1, there are exactly two interior vertices by the three
valency of Γ and the Poincaré duality, and therefore Γ has six vertices. Since
v1 and v′1 have different indices, two interior vertices have different indices
by the Poincaré duality. Let p and q be the index-two and index-four interior
vertex respectively. Note that v1 and v′1 are not adjacent, otherwise Γ cannot
be three-valent at p and q. Therefore, p and v′1 are adjacent and that v1 and
q are adjacent by the index increasing property. Also p is adjacent to q by
the three valency of Γ. Consequently, p is adjacent to three vertices q, v′1, o
so that γp is tetragonal. This is the case of Table 5.1 (c).

If l = 1, l′ = 3, then µ(M) is a tetragon and o is adjacent to r. Note
that v′1 and v′2 are of index-two and of index-four by the index increasing
property, respectively. Note that o (resp. r) is adjacent to r and v′1 (resp. o



✐

✐

“2-Kim” — 2019/3/5 — 16:33 — page 1585 — #37
✐

✐

✐

✐

✐

✐

Hard Lefschetz property for Hamiltonian torus actions 1585

b

b

b

b

µ(o)

µ(r)

µ(v1)

µ(v′1)

ξ

b

b

b

b

µ(o)

µ(r)

µ(v′1)

µ(v′2)

Figure 6.2: Examples of Table 5.1 (b).

and v′2) and hence there are at most two interior vertices. By the Poincaré
duality, the number of interior vertices is zero or two.

First, if there is no interior vertex, then Γ has four vertices and v′1 (resp.
v′2) is adjacent to r (resp. o), which is the case of Table 5.1 (b). Second,
assume that there are two interior vertices, namely, the index-two interior
vertex p and the index-four interior vertex q. Then r is adjacent to three
vertices o, v′2, and q. Similarly, o is adjacent to r, v′1, and p. By the three
valency of Γ, each of p and v′1 is adjacent to v′2 and q, and therefore the
ascending cycles γp and γv′

1
are tetragonal. This is the case of Table 5.1 (d).

b

b

b

b

b

bµ(v1)
µ(v′1)

µ(v′2)

µ(r)

µ(o)

µ(q)

ξ b

b

b

b

b

bµ(v1)
µ(v′1)

µ(v′2)

µ(r)

µ(o)

µ(q)

Figure 6.3: The case of l = 2 and l′ = 3.

If l = 2, l′ = 3, then µ(M) is a pentagon. Since (v′0, v
′
1, v

′
2, v

′
3) is an as-

cending boundary path from v′0 = o to v′3 = r, v′1 is of index-two and v′2 is
of index-four. Furthermore, we may assume that v1 is of index two. Since
v1 is adjacent to r, the ascending cycle γv1

is triangular. Note that there is
exactly one interior vertex, say q, by the three valency of Γ and the Poincaré
duality. Then r is adjacent to v1, v

′
2, and q so that r is not adjacent to o.

Also, r is not adjacent to v′1. Thus v′1 is adjacent to q and v′2 so that the
ascending cycle γv′

1
is tetragonal. Consequently, there is only one tetragonal

ascending cycle γv′
1
and this is the case Table 5.1 (e).

If l = 3, l′ = 3, then µ(M) is a hexagon. By index increasing property,
v1 and v′1 are of index-two, and v2 and v′2 are of index four. By the three
valency at o and r, there exist at most two interior vertices so that there are
two possible cases according to the number of interior vertices. If Γ has six
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vertices (with no interior vertex), then this is the case of Table 5.1 (f) if o
and r is not adjacent, and of Table 5.1 (g) if o and r is adjacent. Also, if Γ
has eight vertices (with two interior vertices), then r should be adjacent to
three index-four vertices so that r is not adjacent to o. Thus any ascending
cycle is tetragonal and this is the case of Table 5.1 (h) �

Now, we prove Proposition 5.17. We first recall the following.

Lemma 6.2. A vertex v is an interior vertex if and only if
∑

1≤j≤3 R+ ·
αj,v = t

∗. In particular, if v is an interior vertex, then α1,v, α2,v are not in
the same side with respect to R · α3,v.

Proof. See [Km, Lemma 2 and Example 2]. �

Proof of Proposition 5.17. We label each vertex as in Figure 6.4 :

• two ascending boundary paths from o to r are (o, p1, q1, r) and
(o, p3, q3, r), and

• p2 and q2 are the interior vertices of index-two and four, respectively.

Note that

• every ascending cycle starting at an index-two vertex is tetragonal by
Table 5.1, and therefore each pk (resp. qj) is not adjacent to r (resp.
o), and

• each tetragonal ascending cycle contains two index-four vertices, it
contains at least one boundary vertex of index-four.

We also note that, by interchanging p1 and p3 (resp. q1 and q3) if necessary,
there are exactly four types of ascending cycles in Γ : (i) an ascending cycle
γp (p is any index-two vertex) contains q1 and q3, (ii) γp1

contains q1 and
q2, (iii) γp2

contains q1 and q2, and (iv) γp3
contains q1 and q2.

Case (i): γp contains q1 and q3

Note that (q1, r) and (q3, r) of γp are boundary edges so that γp cannot
be crossed by Lemma 5.10, see Figure 6.4.(a) for example. Furthermore,
p is below q1, q3, and r by the index increasing property so that p is not
contained in the interior of Conv{p, q1, q3, r}. Thus γp is convex.
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µ(o)

µ(p1)

µ(q1)

µ(r)

µ(q3)

µ(p3)
µ(p2)

µ(q2)

ξ

(a)

b

b

b

b

b

b

b
b

µ(o)
µ(p1)

µ(q1)

µ(r)

µ(q3)

µ(p3)
µ(p2)

µ(q2)

(b)

b

b

b

b

b

b
b

b

µ(o)

µ(p1)

µ(q1)

µ(r)

µ(q3)

µ(p3)
µ(p2)

µ(q2)

(c)

b

b

b

b

b

b
b

b

µ(o)

µ(p1)

µ(q1)

µ(r)

µ(q3)

µ(p3)
µ(p2)

µ(q2)

(d)

b

b

b

b

b

b
b

b

µ(o)

µ(p1)

µ(q1)

µ(r)

µ(q3)

µ(p3)
µ(p2)

µ(q2)

(e)

b

b

b

b

b

b b

b

µ(o)

µ(p1)

µ(q1)

µ(r)

µ(q3)

µ(p3) µ(p2)

µ(q2)

(f)

Figure 6.4: Possible configurations of Γ of type Table 5.1 (h).

Case (ii): γp1
contains q1 and q2

First, γp1
cannot be crossed since (p1, q1) and (q1, r) are boundary edges.

Suppose that γp1
is concave, see Figure 6.4.(b). Since p1, q1, and r are

boundary vertices of γp1
, q2 should be contained in the interior of the convex

hull Conv{p1, q1, r} by Lemma 5.10. Then q2 cannot be adjacent to p3 by
Lemma 6.2. Also, q2 cannot be adjacent to o since o is already adjacent
to three vertices p1, p2, and p3. Thus q2 is adjacent to p2 by the index
increasing property. Then p2 should be in the interior of �γp1

by Lemma 6.2
at q2. Moreover, by Lemma 6.2 again, p2 cannot be adjacent to q3. Thus p2
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is adjacent to q1 and this contradicts the three valency of Γ at p3. Therefore,
γp1

is convex.

Case (iii): γp2
contains q1 and q2

Note that p3 is adjacent to q2 because q1 is adjacent to p1 and p2, see
Figure 6.4.(c). Suppose that γp2

is crossed. Since the edge (q1, r) is boundary,
two line segments q2r and p2q1 should intersect by Lemma 5.10. Then this
contradicts to Lemma 5.12 with respect to the edge (q2, r), so γp2

is not
crossed, see Figure 6.4.(e).

Next, suppose that γp2
is concave. By the index increasing property,

p2 should be below q1 and q2. Thus q2 should be lying on the interior of
Conv{p2, q1, r}, see Figure 6.4.(f). Then it contradicts Lemma 5.12 with
respect to the edge (q2, r). Therefore, γp2

is convex.

Case (iv): γp3
contains q1 and q2

Such case does not happen by the three valency at p3. �
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