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Orderability, contact non-squeezing, and

Rabinowitz Floer homology

Peter Albers and Will J. Merry

We study Liouville fillable contact manifolds (Σ, ξ) with non-zero
and spectrally finite Rabinowitz Floer homology and assign spec-
tral numbers to paths of contactomorphisms. As a consequence

we prove that C̃ont0(Σ, ξ) is orderable in the sense of Eliashberg
and Polterovich. This provides a new class of orderable contact
manifolds. If the contact manifold is in addition periodic or a pre-
quantization space M × S1 for M a Liouville manifold, then we
construct a contact capacity in the sense of Sandon [44]. This can
be used to prove a general non-squeezing result, which amongst
other examples in particular recovers the beautiful non-squeezing
results from [24].
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1. Introduction and results

Suppose (Σ, ξ) is a closed coorientable contact manifold. Denote by
Cont0(Σ, ξ) the identity component of the group of contactomorphisms, and
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1482 P. Albers and W. J. Merry

denote by PCont0(Σ, ξ) the set of smooth paths of contactomorphisms start-

ing at the identity. The universal cover C̃ont0(Σ, ξ) is then PCont0(Σ, ξ)/ ∼,
where ∼ denotes the equivalence relation of being homotopic with fixed end-
points. Suppose α ∈ Ω1(Σ) is a contact form defining ξ, and θt its Reeb flow.
To a path ϕ = {ϕt}0≤t≤1 ∈ PCont0(Σ, ξ) we can associate its contact Hamil-
tonian ht

(1.1) ht ◦ ϕt := α

(
d

dt
ϕt

)
: Σ→ R,

which uniquely determines the path ϕ. In this article we are interested in
four classes of contact manifolds, labelled (A), (A)+, (B), and (C). See
Section 2 for precise definitions of the terms involved. In particular, see
Definition 3.1 for the definition of a spectrally finite class.

Assumption (A): (Σ, ξ) admits a Liouville filling W such that there
exists a spectrally finite class Z ∈ RFH∗(Σ,W ).

Theorem 1.1. Suppose (Σ, ξ) satisfies Assumption (A). Then for any
spectrally finite class Z ∈ RFH∗(Σ,W ) there is a map

c(·, Z) : PCont0(Σ, ξ)→ R

with the following properties.

1) If ϕ ∼ ψ then c(ϕ,Z) = c(ψ,Z). Thus c(·, Z) descends to define a map

(denoted by the same symbol) c(·, Z) : C̃ont0(Σ, ξ)→ R.

2) For any T ∈ R, c(t 7→ θtT , Z) = −T + c(idΣ, Z).

3) The map c is continuous with respect to the C2-norm on PCont0(Σ, ξ).

4) If ϕ resp. ψ is generated by the contact Hamiltonian ht resp. kt with
ht(x) ≥ kt(x) for all x ∈ Σ and t ∈ [0, 1] then c(ϕ,Z) ≤ c(ψ,Z).

Corollary 1.2. If there exists a constant δ > 0 such that ht(x) ≥ δ for all
x ∈ Σ and t ∈ [0, 1] then c(ϕ,Z) < c(idΣ, Z), where ϕ is generated by ht.

Proof. Note that the constant function δ generates the path {t 7→ θtδ} thus
Theorem 1.1 (2) & (4) implies

(1.2) c(ϕ,Z) ≤ c(t 7→ θtδ, Z) = −δ + c(idΣ, Z) < c(idΣ, Z). �

Corollary 1.3. If (Σ, ξ) satisfies Assumption (A) then C̃ont0(Σ, ξ) is or-
derable in the sense of Eliashberg–Polterovich [25].
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Proof. Recall from [25, Criterion 1.2.C.] that C̃ont0(Σ, ξ) is orderable if and
only if no contractible loop ϕ of contactomorphisms exists whose contact
Hamiltonian ht satisfies ht(x) > 0 for all x ∈ Σ and t ∈ [0, 1]. Let us assume,
by contradiction, that ϕ is such a loop. Then (1) in Theorem 1.1 implies that
c(ϕ,Z) = c(idΣ, Z) since ϕ is contractible. On the other hand Corollary 1.2
implies that c(ϕ,Z) < c(idΣ, Z). This contradiction proves the Corollary.

�

Remark 1.4. Together with its companion article [8] this article is the
first to establish Rabinowitz Floer homology (RFH), a tool for studying
orderability and non-squeezing questions in contact geometry. The aim of
the article [8] is very different from the present one since it is solely concerned
with a link between the famous Weinstein conjecture and orderability. In
this article we derive obstructions from Rabinowitz Floer homology to non-
orderability and to squeezing phenomena. Since Rabinowitz Floer homology,
defined originally by Cieliebak and Frauenfelder [15] is nowadays rather
computable, see eg. [18], this delivers checkable criteria for orderability and
non-squeezing. In particular, we reproduce many of the previously known
examples of orderable contact manifolds and similarly for the non-squeezing
results. At the same time our approach gives entirely new classes of orderable
contact manifolds and an abstract non-squeezing results.

A precursor to this development is the article [7] by Frauenfelder and the
first author in which a rather different version of Rabinowitz Floer homology
is used to mimic Givental’s construction of the non-linear Maslov index [32–
34]. On unit cotangent bundles this also leads to an obstruction to a (strong
form) of non-orderability.

The notion of contact capacity (see below) was introduced by Sandon
in [44]. She was the first to discover a connection between translated points
and orderability and other contact rigidity phenomena.

Corollary 1.3 has the following rephrasing.

Corollary 1.5. Let (Σ, ξ) be a closed contact manifold for which C̃ont0(Σ, ξ)
is not orderable. Then for any Liouville filling W of Σ with RFH(Σ,W ) con-
taining a spectrally finite class one has

(1.3) RFH∗(Σ,W ) = 0.

We illustrate the above with some examples.

Example 1.6.
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• The sphere S2n−1 with its standard contact structure is not order-
able by [24, Theorem 1.10]. The standard contact structure on S2n−1

is index positive, cf. Definition 3.2. Thus, for any Liouville filling
W of Σ, RFH(Σ,W ) contains only spectrally finite classes. Thus,
RFH(S2n−1,W ) = 0 for any Liouville filling W . The equivalent state-
ment of vanishing symplectic homology of any Liouville filling of the
standard contact sphere was proved before by Smith, see [48, Corol-
lary 6.5].

• A new class of orderable contact manifolds is given by links of weighted
homogeneous singularities with positive Milnor number. This includes
certain Brieskorn manifolds, and in particular non-standard structures
on spheres (the Ustilovsky spheres), as well as contact structures on
exotic spheres. This was communicated to us by Otto van Koert, see
Example 1.11 below, which also includes more examples.

• Let Σ = S∗gB be the unit cotangent bundle of the closed Rieman-
nian manifold (B, g) equipped with its standard contact structure
ξ. The Liouville filling by the unit codisk bundle D∗gB always has
RFH∗(S

∗
gB,D

∗
gB) 6= 0 due to Cieliebak-Frauenfelder-Oancea [18], see

also Abbondandolo-Schwarz [4]. Moreover there certainly exists spec-
trally finite classes; in fact the stronger Assumption (A)+ below is sat-

isfied, see Example 1.7. Thus, C̃ont0(S∗gB, ξ) is orderable, which was
proved by Eliashberg-Kim-Polterovich [24] and Chernov-Nemirovski
[14].

Recall that given a Reeb orbit γ, we denote by µtr
CZ(γ) its transverse

Conley Zehnder index, and we denote by νtr(γ) its transverse nullity. Let us
define

(1.4) µ(γ) := µtr
CZ(γ)− 1

2
νtr(γ).

Assumption (A)+: (Σ, ξ) admits a Liouville filling (W 2n, dλ) such that
α := λ|Σ is Morse-Bott with non-zero Rabinowitz Floer homology.
Moreover the Reeb flow θt : Σ→ Σ of α has no contractible Reeb orbits
γ with

(1.5) µ(γ) ∈ [−n− νtr(γ), 1− n].

As proved in Lemma 3.16 below, Assumption (A)+ guarantees the exis-
tense of a non-zero class µΣ which is not only spectrally finite but in addition
has spectral value 0: c(idΣ, µΣ) = 0.
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Example 1.7. If (Σ, ξ) admits a Liouville filling (W,dλ) such that the
Reeb vector field of α := λ|Σ has no contractible Reeb orbits (e.g. T3 with
its standard contact structure, which is filled by D∗T2. In this case the
RFH∗(Σ, D

∗T2) is equal to the singular homology of Σ, and thus Assump-
tion (A)+ is trivially satisfied. More generally, recall that (Σ, α) is called
dynamically convex if the transverse Conley-Zehnder index µtr(γ) is at least
n+ 1 for all such γ (in the case where Σ has dimension 3, this coincides with
the original definition of dynamical convexity [35]). Since the transverse nul-
lity is at most 2n− 2, this is implied by requiring that the quantity µ(γ)
defined in (3.15) is at least 2. Therefore dynamical convexity is a stronger
assumption than (1.5), and hence Assumption (A)+ is also satisfied for any
Liouville fillable contact manifold which admits a filing with non-zero Rabi-
nowitz Floer homology and which is dynamically convex. Similarly Assump-
tion (A)+ is satisfied for any fibrewise convex hypersurface in a cotangent
bundle of dimension at least four, since in this case the Conley-Zehnder index
of a Reeb orbit can be identified with the Morse index of the corresponding
critical point of the Lagrangian action functional associated to the Legendre
dual Lagrangian. This result is essentially due to Duistermaat [23]; see for
instance [3, Theorem 4.1] for a detailed modern proof.

The fact that this class µΣ has the property that c(idΣ, µΣ) = 0 allows
us to strengthen Statement (4) of Theorem 1.1 to the following statement,
which is proved as Corollary 3.18 below.

Theorem 1.8. Assume (Σ, ξ) satisfies Assumption (A)+. Suppose ϕ ∈
C̃ont0(Σ, ξ) has contact Hamiltonian ht. Assume ht ≤ 0 and there exists
x ∈ Σ such that ht(x) < 0 for all t ∈ [0, 1] then c(ϕ, µΣ) > 0.

Remark 1.9. In Section 1.1 below we provide an example to show that
the same implication with opposite inequalities in the above theorem does
not hold. See Remarks 3.19 and 5.14, and Appendix A.

For us the main relevance of Theorem 1.8 is that it implies the contact
capacity c̄(·, µΣ) we define below is non-trivial, see Remark 1.19 below.

Definition 1.10. We call a contact form α periodic if its Reeb flow θt is a
1-periodic loop: θ1 = idΣ.

Let us now assume that (Σ, ξ) satisfies the following condition:
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Assumption (B): (Σ, ξ) admits a Liouville filling (W,dλ) such that the
Rabinowitz Floer homology RFH∗(Σ,W ) contains a spectrally finite
class and such that α := λ|Σ is periodic.

Example 1.11 (Communicated to us by Otto van Koert). An in-
teresting class of examples where our results apply is the following. Assume
that (Q,ω) is a simply connected symplectic manifold. Assume in addi-
tion that [ω] is integral and (Q,ω) is monotone, with negative monotonicity
constant. Let K ⊂ Q denote a closed connected symplectic submanifold of
codimension 2 such that K is Poincaré dual to k[ω] for some k ∈ N. Such a
hypersurface is known as a Donaldson hypersurface, since Donaldson showed
that every symplectic manifold with an integral symplectic form admits a
symplectic submanifold Poincaré dual to k[ω] for k ∈ N sufficently large [22].
Assume in addition that H1(K;Z) = 0. Let ν(K) denote a collar neighbor-
hood of K in Q. Then the complement Q \ ν(K) is the interior of a Liouville
domain (W1, λ1) with the property that the Reeb flow on Σ := ∂W1 is peri-
odic (see for instance [21]). Denote by W the completion of W1. If we assume
that the inclusion Σ ↪→W induces an injection on π1 (e.g. if dimQ ≥ 6), then
the symplectic homology SH∗(W ) is non-zero (see below), and hence so is
the Rabinowitz Floer homology RFH∗(Σ,W ). Assumption (B) is satisfied
by Lemma 3.5 and Lemma 3.7.

There are several ways to see that the symplectic homology of SH∗(W )
is non-zero. The simplest one is an index argument, and goes as follows.
Since (Q,ω) is monotone it follows easily that c1(TW ) is torsion, and hence
the Conley-Zehnder index is a well defined integer for contractible orbits.
Next the monotonicity assumption and a suitable choice of Hamiltonian
functions imply that the index of all contractible Reeb orbit is at most
n = 1

2 dimW . However there is a well defined map H∗+n(W1,Σ)→ SH∗(W ),
and the image of the fundamental class has degree n. This class therefore
remains non-zero in SH∗(W ) due to index reasons. Alternatively, one can
argue using S1-equivariant symplectic homology: the proof of Lemma 7.6 in
[40] implies that SHS1,+

∗ (W ) has no generators with large positive degree,
since the index growth of non constant one periodic orbits is proportional to
the (non-positive) monotonicity constant. However if SH∗(W ) = 0 then work
of Bourgeois-Oancea [13] implies that SHS1

∗ (W ) = 0. The Viterbo long exact
sequence (see [12, Lemma 4.8]) then implies SHS1,+(W ) ∼= H∗+n(W,Σ)⊗
H∗(CP∞;Z), which has generators with arbitrary positive degree, which is
a contradiction.

If we assume that π2(Q) = 0 then it follows from the homotopy exact
sequence of the fibration that all the Reeb orbits on Σ are non-contractible.
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If in addition H1(Q;Z) = 0 and H1(K;Z) = 0 then the construction de-
scribed above yields examples satisfying Assumption (A)+ and (B) (cf.
Example 1.7). Moreover, very explicit examples are the complement of a de-
gree k-curve in CP2 with k ≥ 3 which admit Liouville fillings (even though
H1(K;Z) 6= 0).

Finally, another more general class of examples where our results apply
are links of weighted homogeneous singularities with positive Milnor num-
ber. The latter guarantees the existence of Lagrangian spheres which in turn
implies non-vanishing of RFH, see [38]. In particular, this includes certain
Brieskorn manifolds, see [38, Theorem 1.2] for a precise statement. We men-
tion here only that these include non-standard contact structures on spheres
(the Ustilovsky spheres [50]), as well as contact structures on exotic spheres.

The advantage of Assumption (B) is the following. As before Z denotes
a spectrally finite class in RFH∗(Σ,W ). The definitions and results that
follow are based on Sandon’s article [44].

Definition 1.12. We define for ϕ ∈ C̃ont0(Σ, ξ) an integer c(ϕ,Z) by

(1.6) c(ϕ,Z) := dc(ϕ,Z)e .

Proposition 1.13. The function c(·, Z) : C̃ont0(Σ, ξ)→ Z is conjugation

invariant: if ψ ∈ Cont0(Σ, ξ) and ϕ ∈ C̃ont0(Σ, ξ) then

(1.7) c̄(ψϕψ−1, Z) = c̄(ϕ,Z).

Remark 1.14. In contrast to spectral invariants in Hamiltonian Floer ho-
mology, Proposition 1.13 is a non-trivial result. See Remark 1.20 below.

Given a path ϕ of contactomorphisms, we define the support of ϕ,

(1.8) S(ϕ) :=
⋃

0≤t≤1

supp(ϕt),

where supp(ϕt) := {x ∈ Σ | ϕt(x) 6= x}.

Definition 1.15. For an open set U ⊂ Σ we define the contact capacity

(1.9) c(U,Z) := sup
{
c(ϕ,Z) | ϕ ∈ C̃ont0(Σ, ξ), S(ϕ) ⊂ U

}
∈ Z ∪ {±∞},

where by convention we declare that sup ∅ = −∞.
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Proposition 1.13 has the following immediate corollary.

Corollary 1.16. For all ψ ∈ Cont0(Σ, ξ), one has

(1.10) c(ψ(U), Z) = c(U,Z).

Using the contact capacity we obtain the following abstract non-squeezing
results.

Theorem 1.17. Let U ⊂ V ⊂ Σ be open sets and assume that there exists
ϕ ∈ Cont0(Σ, ξ) with ϕ(V ) ⊂ U . Then

(1.11) c(U,Z) = c(V,Z).

In particular, if c(U,Z) < c(V,Z) then there exists no contact isotopy map-
ping V into U .

Proof. Suppose ϕ is as in the statement of the Theorem. Then trivially we
have c(U,Z) ≤ c(V,Z) and c(ϕ(V ), Z) ≤ c(U,Z). By Corollary 1.16 we also
have c(ϕ(V ), Z) = c(V,Z), and hence c(U,Z) = c(V,Z) as claimed. �

Remark 1.18. Of course, the contact capacities defined in [20, 26, 44, 52]
satisfy analogues of Theorem 1.17.

Remark 1.19. If we assume both Assumptions (A)+ and (B) then it fol-
lows from Theorem 1.8 that c̄(U, µΣ) ≥ 1 for every non-empty open subset
U ⊂ Σ, and hence the capacity c̄(·, µΣ) is non-trivial. In the next section
we provide a class of examples (namely, contact manifold satisfying As-
sumption (C)) where c̄(·, µΣ) is computable, and thus derive applications of
Theorem 1.17.

1.1. Prequantization spaces

Fix a Liouville manifold (M,dγ) (i.e. the completion of Liouville domain,
cf. Definition 2.1). The prequantization space of M is the contact manifold
Σ := M × S1, equipped with the contact structure ξ := ker α, where

(1.12) α := γ + dτ,

where τ is the coordinate on S1 = R/Z. These contact manifolds are the last
type we study in this paper. Note that unlike the other classes of contact
manifolds we study, these contact manifolds are not compact.
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Assumption (C): (Σ, ξ = ker α) is a prequantization space Σ = M ×
S1, where (M,dγ) is a Liouville manifold, and α = γ + dτ .

Let P1 denote a 2-torus with a small disc removed, so that ∂P1 = S1. Equip
P1 with an exact symplectic form dβ1 such that β1|∂P1

= dτ . Let (P, dβ)
denote the completion of the Liouville domain (P1, dβ1), and consider

(1.13) W := M × P,

equipped with the symplectic form dλ where λ := γ + β. Even though Σ is
periodic, W is not a Liouville filling of Σ, and in fact Σ does not satisfy
either Assumptions (A) or (B) - for instance, as already mentioned Σ is
non-compact. Nevertheless, it is still possible to define the Rabinowitz Floer
homology RFH∗(Σ,W ), and we prove that

(1.14) RFH∗(Σ,W ) ∼= HF∗(M)⊗H∗(S
1;Z2).

Here

(1.15) HF∗(M) ∼= Hn−∗(M ;Z2)

denotes the Hamiltonian Floer homology of M , defined using compactly
supported Hamiltonians (see Frauenfelder-Schlenk [30]). Moreover the Ra-
binowitz Floer homology RFH∗(Σ,W ) constructed in this way satisfies the
analogue of Assumption (A)+, that is, there is a suitable non-zero spectrally
finite class µΣ ∈ RFHn(Σ,W ). Indeed, in this case one simply takes µΣ to
be the image of the class {pt} × [S1] ∈ H0(M ;Z2)⊗H1(S1;Z2) under the
isomorphisms (1.14) and (1.15). In fact, in this setting all non-zero classes
are automatically spectrally finite, since all critical points are constant, and
hence have critical value zero.

Since the Hamiltonian Floer homology is non-zero, one can associate a
spectral number cM (f) to any f ∈ H̃amc(M,dγ), the universal cover of the
group of compactly supported Hamiltonian diffeomorphisms (see eg. Schwarz
[47] or Frauenfelder-Schlenk [30]) . As in the contact case described above,
cM can then be used to define a symplectic capacity cM (O) for O ⊂M open,
by setting

(1.16) cM (O) := sup {cM (f) | S(f) ⊂ O} .

Remark 1.20. In contrast to the contact case (see Proposition 1.13 and
Remark 1.14), the proof that cM (f) is invariant under conjugation, that
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is, cM (hfh−1) = cM (f) for f ∈ H̃amc(M,dγ) and h ∈ Sympc(M,dγ) is im-
mediate, since in this case the action spectrum of hfh−1 is the same as
the action spectrum of f (see for instance [36, Chapter 5, Proposition 7]).
This in turn immediately implies that cM is a symplectic capacity, that is,
cM (f(O)) = cM (O) for any symplectomorphism f and any open set O ⊂M .

Going back to Σ = M × S1, let us denote by Cont0,c(Σ, ξ) those con-
tactomorphisms ϕ with compact support. There is a natural way to lift an
element f ∈ H̃amc(M,dγ) to obtain an element ϕ ∈ C̃ont0,c(Σ, ξ), as we now
recall. The equation

(1.17) f∗t γ − γ = dat, a0 ≡ 0,

determines a smooth compactly supported function at : M → R. Define ϕt :
Σ→ Σ by

(1.18) ϕt(y, τ) :=
(
ft(y), τ − at(y)︸ ︷︷ ︸

mod 1

)
.

As explained in Section 5.1 below, one can define for any non-zero class
Z the spectral numbers c(ϕ,Z) for ϕ ∈ C̃ont0,c(Σ, ξ) in much the same way
as before. Similarly one can define the capacity c̄(U) for U ⊂ Σ open in the
same way as before (if U is not precompact then one must again only use

elements of C̃ont0,c(Σ, ξ) when defining c̄(U)). Moreover most of the results
stated thus far in the paper continue to hold (this statement is made more
precise in Section 5.1). In particular, Parts (1), (3), and (4) of Theorem 1.1
remain true, and so do Proposition 1.13 and Theorem 1.17.

It is natural to ask the question: if ϕ ∈ C̃ont0,c(Σ, ξ) is the lift of f ∈
H̃amc(M,dγ), how is c(ϕ) := c(ϕ, µΣ) related to cM (f)? Note that S(ϕ) =
S(f)× S1, and hence another question is how the cM capacity of O ⊂M is
related to the c capacity of O × S1. As with the case of R2n × S1, treated in
[44], the following result answers these questions in the nicest possible way.

Theorem 1.21. Suppose f ∈ H̃amc(M,dγ), and let ϕ ∈ C̃ont0,c(Σ, ξ) de-
note the lift of f . Then

(1.19) cM (f) = c(ϕ).

Moreover, if O ⊂M is open and has compact closure then

(1.20) cM (O) = c(O × S1).
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Theorem 1.21 allows us to prove non-squeezing results on Σ by making
use of the known results on M . Let lt : M →M denote the flow of the
Liouville vector field on M and set ζt := llog t. We will prove the following
general result.

Theorem 1.22. Suppose O ⊂M is a non-empty open set with compact
closure and unit capacity: cM (O) = 1. Suppose there exists a contact isotopy

ϕ ∈ C̃ont0,c(Σ, ξ) such that

(1.21) ϕ1

(
ζr2(O)× S1

)
⊂ ζr1(O)× S1

for r1, r2 ∈ R. Then dr2e ≤ dr1e. In addition if O ⊂ Q ⊂M are open sets

with the property that there exists ϕ ∈ C̃ont0(Σ, ξ) with ϕ1(Q× S1) ⊂ O ×
S1 then dcM (Q)e = dcM (O)e.

Proof. Note that for any r ∈ R,

(1.22) cM (ζr(O)) = rcM (O) 6= 0.

Thus

(1.23) c(ζr(O)× S1) = dcM (ζr(O))e = dre .

The result is now an immediate consequence of Theorem 1.17 (which, as
remarked above, does indeed remain true in this setting). The last statement
follows similarly. �

Remark 1.23. Theorem 1.22 recovers the beautiful non-squeezing result
of [24, Theorem 1.2]. In this case one takes M = R2n and U the unit ball.
They prove that if dr1e < dr2e then it is not possible to squeeze B(r2)× S1

into the cylinder1 C(r1)× S1. This result was also recovered by Sandon [44]
using generating functions.

A further applications of Theorem 1.21 is the following. Here we denote
by cHZ the Hofer-Zehnder capacity (see Definition 5.19 below or [36]).

1Note that whilst C(r1) := B2(r1)× R2n−2 does not have compact closure in
R2n, and thus c(C(r1)× S1) is not defined, since we only work with compactly
supported contactomorphisms we can deduce this from the second statement of
Theorem 1.22 by taking O = B(r2) and Q a sufficiently large ellipse contained in
C(r1).
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Theorem 1.24. Let (M,dγ) denote a Liouville manifold. Equip R2m with
the standard symplectic form dλstd, and consider the contact manifold (Σ̃, α+
λstd), where Σ̃ := M × R2m × S1. Suppose O ⊆M is open and cHZ(O,M) <
∞. Choose r0 > 0 such that

(1.24)
⌈
πr2

0

⌉
< dcHZ(O,M)e

and set

(1.25) r1 :=
√

1
π cHZ(O,M) + 1

Then there does not exist ϕ ∈ Cont0,c(Σ̃, α+ λstd) such that

(1.26) ϕ(O ×B(r1)× S1) ⊂ O ×B(r0)× S1.

The proof of Theorem 1.24 is given in Section 5.4. See also Corollary 5.22
for an application of Theorem 1.24.

Finally, following [24, Section 1.7] we investigate a rigidity phenomenon
of positive contractible loops of contactomorphisms. Suppose now that
(M,dγ) is the completion of a Liouville domain (M1, dγ1). Set S := ∂M1

and κ := γ|S , so that (S, κ) is a contact manifold. Abbreviate

(1.27) Mr :=

{
M1\(S × (r, 1)), 0 < r < 1,

M1 ∪S (S × [1, r]), r ≥ 1.

We can prove the following result, which roughly speaking says that if
C̃ont0(S, κ) is non-orderable, so there exists a positive contractible loop
χ = {χt}t∈S1 ⊂ Cont0(S, κ) of contactomorphisms, then it is not possible
to homotope ζ through positive loops to idS . In [24, Theorem 1.11] this was
proved for S = S2n−1.

Theorem 1.25. Set c := cM (M1) and assume that c <∞. Suppose that
χ = {χt}t∈S1 ⊂ Cont0(S, κ) is a positive contractible loop of contactomor-
phisms. Let gt : S → (0,∞) denote the contact Hamiltonian of χ, and set

(1.28) ε := min
(t,y)∈S1×S

gt(y) > 0.

Then if {χs,t}0≤s≤1 is any homotopy of loops of contactomorphisms such that
χ1,t = χt and χ0,t = idS with corresponding contact Hamiltonian gs,t : S →
R then there exists (s, t, y) ∈ [0, 1]× S1 × S such that gs,t(y) ≤ −(1− ε)c.
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Proof. This follows directly from Theorem 1.22 and the material from [24,
Section 2.1]. Indeed, suppose there exists δ > 0 such that gs,t(y) > −(1−
ε)(c− δ) for all (s, t, y) ∈ [0, 1]× S1 × S. Set a := min{ε, εc}. Then as proved
in [24, Section 2.1] for any r < 1

c−δ it is possible to squeeze Mr × S1 into

M r

1+ar
× S1. Fix 0 < λ < min{a, δ} and take r = 1

c−λ . Then

c(Mr × S1) = dcM (Mr)e
= drcM (M1)e

=
⌈

c
c−λ

⌉
= 2.(1.29)

But

c(M r

1+ar
)× S1) =

⌈
cM (M r

1+ar
)
⌉

=

⌈
cr

1 + ar

⌉
=

⌈
c

c− λ+ a

⌉
= 1.(1.30)

This contradicts Theorem 1.22. �

Note added in March 2019: The research presented in this paper was
completed several years ago. In the meantime, various exciting further de-
velopments have been made. In particular, we would like to draw the reader’s
attention to [19], in which a product is constructed on Rabinowitz-Floer ho-
mology.
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2. Preliminaries

2.1. Introductory definitions

Suppose (Σ, ξ) is a connected closed coorientable contact manifold. We de-
note by PCont0(Σ, ξ) the set of all smoothly parametrized paths {ϕt}0≤t≤1
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with ϕ0 = idΣ. We introduce an equivalence relation ∼ on PCont0(Σ, ξ) by
saying that two paths ϕ and ψ are equivalent if ϕ1 = ψ1 and we can connect
ϕ and ψ via a smooth family ϕs = {ϕst}0≤s,t≤1 of paths such that ϕ0 = ϕ,

ϕ1 = ψ and such that ϕs1 is independent of s. The universal cover C̃ont0(Σ, ξ)
of Cont0(Σ, ξ) is then PCont0(Σ, ξ)/ ∼. We now give the precise definition
of a Liouville manifold, and what it means for Σ to be Liouville fillable.

Definition 2.1. A Liouville domain (W1, λ1) is a compact exact symplectic
manifold with2 c1|π2(W1) = 0 such that λ1|∂W1

is a positive contact form on
∂W1. Equivalently the vector field Z1 on W1 defined by ιZ1

λ1 = dλ1 should
be transverse to ∂W1 and point outwards. Z1 is called the Liouville vector
field, and we denote by lt the flow of Z1, which is defined for all t ≤ 0, and
thus induces an embedding ∂W1 × (0, 1]→W1 defined by (x, r) 7→ llog r(x).
Thus we can form the completion (W,dλ) of (W1, λ1) by attaching ∂W1 ×
[1,∞) onto ∂W1:

(2.1) W := W1 ∪∂W1
(∂W1 × [1,∞)).

We extend λ1 to a 1-form λ on W by setting λ = rλ1|∂W1
on ∂W1 × [1,∞).

Thus dλ is a symplectic form on W . Similarly we extend Z1 to a vector
field Z on W by setting Z = r∂r on ∂W1 × [1,∞). One calls (W,dλ) a Liou-
ville manifold - thus Liouville manifolds are exact non-compact symplectic
manifolds obtained by completing a Liouville domain.

We say that a closed connected coorientable contact manifold (Σ, ξ)
is Liouville fillable if there exists a Liouville domain (W1, dλ1) such that
Σ = ∂W1 and such that if α := λ|Σ then α is a positive contact form on
Σ with ker α = ξ. By a slight abuse of notation we will generally refer to
the Liouville manifold (W,dλ) obtained from completing (W1, dλ1) as “the”
filling of Σ.

The symplectization SΣ of a contact manifold (Σ, ξ = ker α) is the sym-
plectic manifold Σ× (0,∞) equipped with the symplectic form d(rα). If Σ
is Liouville fillable with filling (W,dλ) then one can embed SΣ ↪→W by
using the flow lt of the Liouville vector field Z of V . Next we recall how
to lift a path ϕ = {ϕt}0≤t≤1 of contactomorphisms to a symplectic isotopy
Φ = {Φt}0≤t≤1 on the symplectization SΣ. Write ϕ∗tα = ρtϕt. Then define

2Some of the results proved in this paper do not require c1|π2(W1) = 0, but for
the sake of a uniform presentation we will assume this throughout.
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Φt : SΣ→ SΣ by

(2.2) Φt(x, r) :=

(
ϕt(x),

r

ρt(x)

)
.

The path Φt is Hamiltonian (in fact it preserves λ) with Hamiltonian func-
tion

(2.3) Ht(x, r) := rht(x) : SΣ→ R.

We next define precisely what it means for a contact form α generating
ξ to be of Morse-Bott type.

Definition 2.2. A contact 1-form α ∈ Ω1(Σ) generating ξ is said to be of
Morse-Bott type if for each T > 0, the set PT ⊂ Σ of points x ∈ Σ satisfying
θT (x) = x (recall θt : Σ→ Σ is the Reeb flow of α) is a closed submanifold
of Σ, with the property that rank dα|PT is locally constant and

(2.4) TxPT = ker
(
DθT (x)− idTxΣ

)
for all x ∈ PT .

A Liouville fillable contact manifold (Σ, ξ) is said to admit a Morse-Bott
Liouville filling if there exists a filling (W,dλ) such that α := λ|Σ is of Morse-
Bott type.

Let us now recall the definition of a translated point of a contactomor-
phism. This notion was introduced by Sandon in [44, 45].

Definition 2.3. Let (Σ, ξ) denote a closed connected coorientable con-
tact manifold, and fix a contact form α ∈ Ω1(Σ) generating ξ. Fix ψ ∈
Cont0(Σ, ξ). We can write ψ∗α = ρα for a smooth positive function ρ on
Σ. A translated point of ψ with respect to α is a point x ∈ Σ with the
property that there exists η ∈ R such that

(2.5) ψ(x) = θη(x), and ρ(x) = 1.

We call η the time-shift of x. Note that if the leaf {θt(x)}t∈R is closed (which
is always the case when α is periodic) then the time-shift is not unique.
Indeed, if the leaf {θt(x)}t∈R has period T > 0 then ψ(x) = θη+νT (x) for all
ν ∈ Z.

Now let us define what it means for a translated point x of an element
[ϕ] ∈ C̃ont0(Σ, ξ) to be contractible with respect to a Liouville filling (W,dλ).
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Definition 2.4. Let (W,dλ) denote a Liouville filling of (Σ, ξ), with α =

λ|Σ. Suppose [ϕ] ∈ C̃ont0(Σ, ξ) and x is a translated point of ϕ1 of time-shift
η. We say that the pair (x, η) is a contractible translated point if the contin-
uous loop l : R/2Z→ Σ obtained from concatenating the path {ϕt(x)}0≤t≤1

with the path {θ−ηt(x)}0≤t≤1 is contractible in W . It is easy to see that this
does not depend on path ϕ = {ϕt}0≤t≤1 ∈ PCont0(Σ, ξ) representing [ϕ].

For us, the usefulness of translated points stems from the fact that the
translated points of ϕ are the generators of the Rabinowitz Floer homology
associated to ϕ, when the Rabinowitz Floer homology is well defined; see
Lemma 2.7 or [9] for more information.

2.2. The Rabinowitz action functional Aϕ on Λ(SΣ)× R

Write Λ(SΣ) := C∞contr(S
1, SΣ) for the component of the free loop space

containing the contractible loops.

Definition 2.5. Fix a path ϕ ∈ PCont0(Σ, ξ) as above, and let Ht denote
the Hamiltonian (2.3). We define the perturbed Rabinowitz action functional
(cf. [5, 15])

(2.6) Aϕ : Λ(SΣ)× R→ R

by

(2.7) Aϕ(u, η) :=

∫ 1

0
u∗λ− η

∫ 1

0
β(t)(r(t)− 1)dt−

∫ 1

0
χ̇(t)Hχ(t)(u(t))dt,

where β : R/Z→ R is a smooth function with

(2.8) β(t) = 0 ∀t ∈ [1
2 , 1], and

∫ 1

0
β(t)dt = 1,

and χ : [0, 1]→ [0, 1] is a smooth monotone map with χ(1
2) = 0, χ(1) = 1,

and r(t) is the R-component of the map u : S1 → SΣ = Σ× R. Denote
by Crit(Aϕ) the set of critical points of Aϕ, and denote by Spec(ϕ) :=
Aϕ(Crit(Aϕ)).

Remark 2.6. In this paper we define the Rabinowitz action functional
only on the component of contractible loops of the free loop space, as all
the applications we have in mind here pertain only to this component. Nev-
ertheless, it is possible to carry out all of our constructions on the full loop
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space without any changes. This is because the symplectic form (on SΣ or
on the Liouville filling W ) is exact, and so there are no ambiguities in the
definition of Aϕ on non-contractible loops.

The following lemma explains why the perturbed Rabinowitz action
functional is useful in detecting translated points. It is a minor variant of an
argument originally due to the first author and Frauenfelder [5, Proposition
2.4]. For the convenience of the reader we recall the proof again here.

Lemma 2.7. [9] A pair (u, η) is a critical point of Aϕ only if, writing
u(t) = (x(t), r(t)) ∈ Σ× (0,∞), p := x(1

2) is a translated point of ϕ, with
time-shift −η. Conversely every such pair (p, η) gives rise to a unique critical
point of Aϕ. Moreover if (u, η) is a critical point of Aϕ then

(2.9) Aϕ(u, η) = η.

If ϕ is an exact path of contactomorphisms then r(t) ≡ 1 for every critical
point (u = (x, r), η).

Proof. Denote by Φt : SΣ→ SΣ the symplectic isotopy (2.2). A pair (u, η)
with u = (x, r) : S1 → Σ× (0,∞) belongs to Crit(Aϕ) if and only if

(2.10)

{
u̇(t) = ηβ(t)R(x(t)) + χ̇(t)XHχ(t)

(u(t)),∫ 1
0 β(t)(r(t)− 1)dt = 0.

Thus for t ∈ [0, 1
2 ], we have r(t) = 1 and ẋ(t) = −ηR(x(t)), and x(1) =

Φ1(x(1
2)). Suppose (u, η) ∈ Crit(Aϕ). Thus u(1

2) = (θ−η(x(0)), 1). Next, for
t∈ [1

2 , 1] we have u̇(t) = χ̇(t)XHχ(t)
(u(t)). In particular, ϕ(x(1

2)) = θ−η(x(1
2)),

and thus x(1
2) is a translated point of ϕ. Moreover the time shift of x is given

by −η mod 1.
Next, we note that

(2.11) λ(XH(x, r)) = dH(x, r)

(
r
∂

∂r

)
= H(x, r),

and hence

Aϕ(u, η) =

∫ 1
2

0
(rα)(ηβ(u)R(x))dt+

∫ 1

1
2

[
λ(χ̇XHχ(u))− χ̇Hχ(u)

]
dt

= η + 0.(2.12)
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Finally if ϕt is exact for each t then the path Φt of symplectomorphisms
defined in (2.2) is simply given by Φt(x, r) = (ϕt(x), r), from which the last
statement immediately follows. �

Remark 2.8. We emphasize again that if (u = (x, r), η) is a critical point
of Aϕ then the time-shift of the translated point x(1

2) is the negative of the
action value. This explains the Reeb flow will turn out to have a negative
spectral number (cf. part (1) of Theorem 1.1).

We point out that there is a distinguished Morse-Bott component of
Crit(AidΣ

) diffeomorphic to Σ corresponding to critical points ((x, 1), 0) for
x ∈ Σ.

We now define what it means for ϕ to be non-degenerate. In the periodic
case we also introduce the notion of being non-resonant.

Definition 2.9. A path ϕ is non-degenerate if Aϕ : Λ(SΣ)× R→ R is a
Morse-Bott function. In the periodic case we say that ϕ is non-resonant if
Spec(ϕ) ∩ Z = ∅.

Remark 2.10. The identity idΣ is non-degenerate if and only if α is of
Morse-Bott type (see [15, Appendix B]). In [9] we explained why a generic
path ϕ is non-degenerate (actually a stronger result is proved there: for
generic ϕ the functional Aϕ is even Morse). It is also easy to see that a
generic ϕ is non-resonant. Finally we note that Spec(ϕ) depends only on the
terminal map ϕ1.

The following lemma is a minor variation on [47, Lemma 3.8]. The proof
is included for completeness.

Lemma 2.11. The set Spec(ϕ) is always a nowhere dense subset of R (even
in the degenerate case).

Proof. More generally, we will prove that any functional of the form

A : Λ(W )× R→ R, A(u, η) =

∫ 1

0
u∗λ− η

∫ 1

0
Ft(u(t)) dt−

∫ 1

0
Ht(u(t)) dt,

where F,H ∈ C∞(S1 ×W,R), has the property that Spec(A) := A(Crit(A))
is a nowhere dense subset of R. Let Λ2(W ) := C∞(R/2Z,W ), and consider
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A2 : Λ2(W )× R→ R defined by

A2 : Λ(W )×R→ R, A2(w, η) =

∫ 2

0
w∗λ− η

∫ 1

0
Ft(w(t)) dt−

∫ 1

0
Ht(w(t)) dt

(note only the first term integrates over the whole domain R/2Z). Denoting
by

Kη(t, x) := ηFt(x) +Ht(x),

we see that critical points (w, η) of A2 satisfy

ẇ(t) =

{
XKη(t, w(t)), t ∈ [0, 1],

0, t ∈ [1, 2],

and ∫ 1

0
Ft(w(t)) dt = 0.

Thus there is a well defined map i : Crit(A) ↪→ Crit(A2) given by i(u, η) =
(w, η), where w(t) = u(t) for t ∈ [0, 1] and w(t) = u(1) for t ∈ [1, 2]. Now
consider a neighborhood U of the zero section of TW small enough that the
map e(x, v) := (x, expx(v)) is a diffeomorphism of U onto a neighbourhood
V of the diagonal ∆ in W ×W .

Let Q denote the open set

Q :=
{

(x, η) | (x, φ1
Kη(x)) ∈ V

}
⊂W × R,

and consider the map

c : Q→ Λ2(W ), c(x, η)(t) :=

{
φtKη(x), t ∈ [0, 1],

expx

(
(2− t)e−1(x, φ1

Kη
(x))

)
, t ∈ [1, 2].

Then c(u(0), η) = i(u, η) for all (u, η) ∈ Crit(A). Thus if we define a : Q→ R
by a(x, η) := A2(c(x, η)), we see that Crit(A) can be identified with a subset
of Crit(a). Since Q is finite-dimensional, the conclusion follows from Sard’s
theorem. �

The next lemma explains why we pay particular attention to periodic
contact manifolds. It is the analogue in the context of Rabinowitz Floer
homology of the key idea in [44].It will prove crucial in the construction
of the contact capacity (cf. Section 4, in particular Proposition 4.3). Fix

ϕ ∈ C̃ont0(Σ, ξ) and fix a contactomorphism ψ ∈ Cont0(Σ, ξ).
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Lemma 2.12. Assume α is periodic. If (u = (x, r), η) ∈ Crit(Aϕ) with η ∈
Z then there exists a critical point (u1 = (x1, r1), η) of Aψϕψ−1 with x1(1

2) =
ψ(x(1

2)). In particular,

(2.13) Spec(ϕ) ∩ Z = ∅ ⇔ Spec(ψϕψ−1) ∩ Z = ∅.

Moreover (u, η) is non-degenerate if and only if (u1, η) is non-degenerate.

Proof. If (u, η) ∈ Crit(Aϕ) with η ∈ Z then since θt is 1-periodic, this means
that if we write u(t) = (x(t), r(t)) then x(1

2) is a fixed point of ϕ. Thus
ψ(x(1

2)) is a fixed point of ψϕψ−1. Thus by Lemma 2.7 for each ν ∈ Z there
exists a critical point (uν = (xν , rν), ν) of Aψϕψ−1 with xν(1

2) = ψ(xν(1
2)). In

particular, this is true for ν = η. The final statement follows from the fact
that the linearised equation is also conjugation invariant. �

2.3. Rabinowitz Floer homology

Let us now assume that (Σ, ξ) is Liouville fillable with a Morse-Bott Liouville
filling (W,dλ). We would like to extend Aϕ to a functional defined on all of
Λ(W )× R, where Λ(W ) := C∞contr(S

1,W ) as before. In order to do this we
must extend the function (x, r) 7→ r − 1 and the Hamiltonian Ht to functions
defined on all of W . At the same time, it is convenient to truncate them. As
in [5, 18], we proceed as follows. Define m : W → R so that

(2.14) m(z) :=


r − 1, z = (x, r) ∈ Σ× (1

2 ,
3
2),

3
4 , z = (x, r) ∈ Σ× (2,∞),

−3
4 , z ∈W \ SΣ.

Next, for κ > 0 let εκ ∈ C∞([0,∞), [0, 1]) denote a smooth function such
that

(2.15) εκ(r) =

{
1, r ∈ [e−κ, eκ],

0, r ∈ [0, e−2κ] ∪ [eκ + 1,∞),

and such that

0 ≤ ε′κ(r) ≤ 2e2κ for r ∈ [e−2κ, e−κ],(2.16)

−2 ≤ ε′κ(r) ≤ 0 for r ∈ [eκ, eκ + 1].(2.17)

Then define Hκ
t : W → R by setting Hκ

t |W\SΣ = 0 and

(2.18) Hκ
t (x, r) := εκ(r)Ht(x, r) for (x, r) ∈ SΣ.
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We denote by Aκϕ : Λ(W )× R→ R the Rabinowitz action functional defined
using the Hamiltonians m and Hκ

t :

(2.19) Aκϕ(u, η) :=

∫ 1

0
u∗λ− η

∫ 1

0
β(t)m(u(t))dt−

∫ 1

0
χ̇(t)Hκ

χ(t)(u(t))dt.

Definition 2.13. Now let us recall the definition of the oscillation semi-
norm on C̃ont0(Σ, ξ). Firstly, suppose {ϕt}0≤t≤1 ∈ PCont0(Σ, ξ). Let ht :
Σ→ R denote the contact Hamiltonian. The oscillation semi-norm ‖h‖osc

is defined by

‖h‖osc := ‖h‖+ + ‖h‖− ,(2.20)

‖h‖+ :=

∫ 1

0
max
x∈Σ

ht(x)dt, ‖h‖− := −
∫ 1

0
min
x∈Σ

ht(x)dt.(2.21)

We then define the oscillation semi-norm ‖ϕ‖ and its positive and negative

parts ‖ϕ‖± for ϕ ∈ C̃ont0(Σ, ξ) by taking the infimum of the oscillation semi-
norms ‖h‖osc [resp. ‖h‖±] over all possible paths {ϕt}0≤t≤1 representing ϕ
(with corresponding contact Hamiltonians ht). Note that the positive and
negative parts ‖h‖± can in fact have any sign, but their sum is always non-
negative.

Definition 2.14. Suppose ϕ ∈ PCont0(Σ, ξ). Let ρt : Σ→ (0,∞) is de-
fined by ϕ∗tα = ρtα. Define a constant κ(ϕ) ≥ 0 by

(2.22) κ(ϕ) := max
t∈[0,1]

∣∣∣∣∫ t

0
max
x∈Σ

ρ̇τ (x)

ρτ (x)2
dτ

∣∣∣∣
Note that if ϕ is exact (i.e. ϕ∗tα = α, so that ρt = 1) then κ(ϕ) = 0.

In [9, Proposition 2.5] we proved:

Lemma 2.15. If κ > κ(ϕ) then if (u, η) ∈ Crit(Aκϕ) then u(S1) ⊆ SΣ, and

moreover if we write u(t) = (x(t), r(t)) then r(S1) ⊆ (e−κ/2, eκ/2).

If ϕ is non-degenerate in the sense of Definition 2.9, then as explained in
[9], Lemma 2.15 allows to define for a, b ∈ [−∞,∞]\Spec(ϕ) the Rabinowitz
Floer homology

(2.23) RFH
(a,b)
∗ (Aϕ,W ).

This is a semi-infinite dimensional Morse theory associated to the functional
Aκϕ (for some κ > κ0(ϕ)), and we sketch the definition here and refer to e.g.
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[5, 9] for more information. As indicated by the notation, the filtered Ra-
binowitz Floer homology is independent of the choice of κ, as explained
in [7]. Indeed, since the critical points and values are independent of κ by

Lemma 2.15, a continuation argument implies that RFH
(a,b)
∗ (Aϕ,W ) is in-

dependent of κ up to a chain complex isomorphism.

Definition 2.16. We denote by J (W ) the set of smooth families

(2.24) J = {Jt(·, τ)}(t,τ)∈S1×R

of almost complex structures on W , which are compatible with dλ, meaning
that for each (t, z, τ) ∈ S1 ×W × R, the bilinear form dλz(Jt(z, τ)·, ·) defines
a Riemannian metric on TzW . In addition we require that

(2.25) sup
(t,τ)∈S1×R

‖Jt(·, τ)‖Ck < +∞, ∀ k ∈ N,

where ‖ · ‖Ck is the norm taken with respect to some background metric on
W . We denote by Jconv(W ) ⊂ J (W ) the subset consisting of those families
J which are contact type at infinity. This means that there exists S0 > 0
such that on Σ× [S0,+∞) ⊂W one has

(2.26) dr ◦ Jt(·, ·, τ) = rα, on Σ× [S0,∞).

In particular, this means that J is independent of both t ∈ S1 and τ ∈ R on
Σ× [S0,+∞).

Given J ∈ Jconv(W ) we can define an L2-inner product 〈〈·, ·〉〉J on
Λ(W )× R: for (u, η) ∈ Λ(W )× R, ζ, ζ ′ ∈ Γ(u∗TW ) and b, b′ ∈ R, set

(2.27)
〈〈

(ζ, b), (ζ ′, b′)
〉〉
J

:=

∫ 1

0
dλu(t)

(
Jt(u(t), η)ζ(t), ζ ′(t)

)
dt+ bb′.

We denote by ∇JAκϕ the gradient of Aκϕ with respect to 〈〈·, ·〉〉J .
Assume that ϕ is non-degenerate and fix κ > κ0(ϕ) and J ∈ Jconv(W ).

By assumption Aκϕ is a Morse-Bott function. Pick a Morse function g :
Crit(Aκϕ)→ R, and choose a Riemannian metric % on Crit(Aκϕ) such that
the negative gradient flow of ∇%g is Morse-Smale. Given two critical points
w−, w+ ∈ Crit(g), with w± = (u±, η±), we denote by Mw−,w+(Aκϕ, g, J, %)
the moduli space of gradient flow lines with cascades of −∇JAκϕ and −∇%g
running from w− to w+. See [27, Appendix A] or [15, Appendix A] for the
precise definition.
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Remark 2.17 (Transversality and Morse-Bott issues). In this paper
we use the fact that the moduli spaces Mw−,w+(Aκϕ, g, J, %) can generically
be chosen to be smooth finite dimensional manifolds, whose zero-dimensional
components have good compactness properties. Let us explain why this is
true.

• Firstly, there exists a residual subset in the product of Jconv(W ) with
the space of Riemannian metrics on Crit(Aκϕ) with the property that
if (J, %) belongs to this subset then the spaces Mw−,w+(Aκϕ, g, J, %)
are finite dimensional smooth manifolds. The proof of this does not
quite follow from standard arguments in Floer theory. Nevertheless,
a detailed proof is given in [2, Section 4.3]. This is the reason why
the almost complex structures J we use in this article are required to
additionally depend on τ ∈ R, rather than just being S1-dependent.

• The compactness question is slightly more delicate, since at the time
of writing there is no detailed treatment of the gluing analysis re-
quired to construct Morse-Bott Floer theory in general. This situation
will be rectified shortly, but for now let us explain to what extent the
constructions in this paper actually require this theory. In short, every-
thing in Sections 2-4 can be redone without needing Morse-Bott theory.
Section 5 is slightly different, and we will discuss this in Remark 5.9
below.

In fact, in most cases of interest in this paper, we may assume that
Aκϕ is actually Morse (cf. Remark 2.10). In this case (without making
any changes at all) we do not need any Morse-Bott theory: one can
take the auxiliary Morse function g to be identically zero. The only
case where we cannot assume this is when ϕ = idΣ. There are (at least)
two different ways to deal with this which do not require Morse-Bott
theory in full generality.

For instance, as explained in [15, Appendix B] (see also [16]), we may
assume that the contact form α generating ξ is not only Morse-Bott
but also transversely non-degenerate, in the sense that for each x ∈ PT
(cf. Definition 2.2), the linearisation DθT (x)− idTxΣ|ξx : ξx → ξx does
not have 1 in its spectrum. This implies that the critical manifolds
of Aid corresponding to closed Reeb orbits are all one-dimensional. In
this case a detailed proof of the gluing analysis needed is available:
this is due to Bourgeois-Oancea [11].

Moreover, if the reader wishes to work without any Morse-Bott the-
ory, this is also possible, at the expense of slightly changing the wording
of the Assumptions (A)-(B) from the Introduction. Namely, one could
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simply define RFH∗(Σ,W ) to be the homology of the perturbed Ra-
binowitz action functional Aϕ, where ϕ is a perturbation sufficiently
close to the identity such that Aϕ is a Morse function. This is a well-
defined definition (i.e. the resulting homology is independent of the
choice of perturbation), and agrees with the original definition if one
uses Morse-Bott theory.

The fact that both of these approaches suffice to deal with the situa-
tion posited by Assumption (B) from the Introduction, i.e. when there
exists a contact form α whose Reeb flow is periodic, follows immedi-
ately from the fact that the spectral value c defined in Definition 3.8
below depends Lipschitz continuously on the 1-form λ used to define
the Rabinowitz Floer homology RFH∗(Σ,W ). The proof of this state-
ment can be extracted from the proof of Corollary 3.7 in [15], see also
[6, Section 5].

Introduce a grading on Crit(g) by setting

(2.28) µ(u, η) :=


µCZ(u)− 1

2 dim(u,η) Crit(Aκϕ) + indg(u, η), η > 0,

µCZ(u)− 1
2 dim(u,η) Crit(Aκϕ) + indg(u, η) + 1, η < 0,

1− n+ indg(u, η), η = 0.

Here µCZ(u) denotes the Conley-Zehnder index of the loop t 7→ u(t/η) and
dim(u,η) Crit(Aκϕ) denotes the local dimension of Crit(Aκϕ) at (u, η), and
indg(u, η) denotes the Morse index of (u, η) as a critical point of g. As
mentioned above, in most cases of interest in this paper, we may assume
that Aϕ is actually Morse. In this case the Morse function g is taken to
be identically zero, and (2.28) continues to hold, with ind g=0 := 0. Equiva-
lently, denoting by µtr

CZ(u) the transverse Conley Zehnder index, and denot-
ing by νtr(u, η) the tranverse nullity of the critical point (so that νtr(u, η) =
dim(u,η) Crit(Aκϕ)− 1), the formula (2.28) can be unified as

(2.29) µ(u, η) := µtr
CZ(u)− 1

2
νtr(u, η) + indg(u, η)

in the case η 6= 0.

Remark 2.18. Our normalization convention for the Conley-Zehnder in-
dex is that if H is a C2-small Morse function on W and x is a critical point
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of W then

(2.30) µCZ(x) = n− indH(x),

where indH(x) denotes the Morse index of x.

Given −∞ < a < b <∞ denote by RFC
(a,b)
∗ (Aκϕ, g) := Crit

(a,b)
∗ (g)⊗ Z2,

where Crit
(a,b)
∗ (g) denotes the set of critical points w of g with a < Aϕ(w) <

b. We only do this when a, b /∈ Spec(ϕ), even if this is not explicitly stated.
Generically the moduli spacesMw−,w+(Aϕ, g, J, %) carry the structure of fi-
nite dimensional smooth manifolds, whose components of dimension zero

are compact. One defines a boundary operator ∂ on RFC
(a,b)
∗ (Aκϕ, g) by

counting the elements of the zero-dimensional parts of the moduli spaces
Mw−,w+(Aϕ, g, J, %).

The homology RFH
(a,b)
∗ (Aϕ,W ) := H∗(RFC

(a,b)
∗ (Aκϕ, g), ∂) does not de-

pend on any of the auxiliary choices we made. We emphasize though that

RFH
(a,b)
∗ (Aϕ,W ) depends on the choice of filling (W,dλ). Finally we define

(2.31) RFHb
∗(Aϕ,W ) := lim←−

a↓−∞
RFH

(a,b)
∗ (Aϕ,W ),

and

(2.32) RFH∗(Aϕ,W ) := lim−→
b↑+∞

RFHb
∗(Aϕ,W ) = lim−→

b↑+∞
lim←−
a↓−∞

RFH
(a,b)
∗ (Aϕ,W )

(the order of the limits in (2.32, cf. [17]) matters). As pointed out by Ritter
[41], it follows from work of Cieliebak-Frauenfelder-Oancea [18] that the Ra-
binowitz Floer homology RFH∗(Σ,W ) vanishes if and only if the symplectic
homology SH∗(W ) vanishes.

We briefly summarize now the key properties that we will need about

the Rabinowitz Floer homology RFH
(a,b)
∗ (Aϕ,W ), which are all proved in

[5, 15]:

1) The Rabinowitz Floer homology is independent of ϕ in the following
strong sense. There is a universal object RFH∗(Σ,W ) (which may be
thought as corresponding to the case ϕ = idΣ) together with canonical
isomorphisms

(2.33) ζϕ : RFH∗(Σ,W )→ RFH∗(Aϕ,W ).
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Given two paths ϕ and ψ, there is a map ζϕ,ψ : RFH∗(Aϕ,W )→
RFH∗(Aψ,W ) with the property that

(2.34) ζψ = ζϕ,ψ ◦ ζϕ.

In particular, if Z∈RFH∗(Σ,W ) is a non-zero class then RFH∗(Aϕ,W )
contains a non-zero class Zϕ defined by

(2.35) ζϕ,ψ
(
Zϕ
)

= Zψ and ZidΣ
= Z ∈ RFH∗(Σ,W ).

2) If a ≤ b ≤ ∞ there is a natural map

(2.36) ja,bϕ : RFHa
∗(Aϕ,W )→ RFHb

∗(Aϕ,W )

induced by the inclusion on the chain level, and similarly there is a
natural map

(2.37) pa,bϕ : RFHb
∗(Aϕ,W )→ RFH

(a,b)
∗ (Aϕ,W )

induced by the restriction on the chain level. If b =∞ we abbreviate
ja,∞ϕ = jaϕ, and we write ja for the map RFHa

∗(Σ,W )→ RFH∗(Σ,W ),

with similar conventions for the maps pa,bϕ . If Spec(ϕ) ∩ [a, b] = ∅ then
the map

ja,bϕ : RFHa
∗(Aϕ,W )→ RFHb

∗(Aϕ,W )

is an isomorphism and pa,bϕ : RFHb
∗(Aϕ,W )→ RFH

(a,b)
∗ (Aϕ,W ) is the

zero map (as RFH
(a,b)
∗ (Aϕ,W ) = 0).

3) Moreover there is a filtered version of (2.34), which gives the existence
of maps

(2.38) ζaϕ,ψ : RFHa
∗(Aϕ,W )→ RFH

a+K(ϕ,ψ)
∗ (Aψ,W )

for some constant K(ϕ,ψ) ≥ 0. The maps (2.38) are a special case of
[5, Lemma 2.7]. It will be important however to note that if the paths
ϕ,ψ have contact Hamiltonians ht and kt then the constant K(ϕ,ψ)
satisfies

(2.39) K(ϕ,ψ) ≤ emax{κ(ϕ),κ(ψ)}max
{
‖h− k‖+ , 0

}
,

where we are using the notation from (2.20)-(2.21). Finally one has for
all Z ∈ RFHa

∗(Aϕ,W ) that

(2.40) ζϕ,ψ
(
jaϕ(Z)

)
= j

a+K(ϕ,ψ)
ψ

(
ζaϕ,ψ(Z)

)
.
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4) We recall from Remark 2.8 that Crit(AidΣ
) contains Σ as a Morse-

Bott component via the constants. For ε > 0 smaller than the smallest
period of a contractible Reeb orbit, this gives rise to a canonical iso-
morphism

(2.41) RFH
(−ε,ε)
∗ (Σ,W ) ∼= H∗+n−1(Σ;Z2).

Even though it is more or less standard, the estimate (2.39) is extremely
important in all that follows, and hence we prove it here. To define the
continuation homomorphism ζϕ,ψ we denote by Ht = rht and Kt = rkt the
Hamiltonian functions of ϕ and ψ, respectively, and choose a linear homo-
topy

(2.42) Lst := ν(s)Ht + (1− ν(s))Kt

for a smooth function ν : R→ [0, 1] with ν(s) = 1 for s ≤ −1, ν(s) = 0 for
s ≥ 1 and ν ′(s) ≤ 0. We define the (s-dependent) action functional As as
in (2.7):
(2.43)

As(u, η) =

∫ 1

0
u∗λ− η

∫ 1

0
β(t)m(u(t))dt−

∫ 1

0
χ̇(t)εκ(r)Lsχ(t)(u(t))dt.

where ϕs has corresponding Hamiltonian function Lst . Then counting solu-
tions of

(2.44) ∂s(u, η) +∇JsAs(u, η) = 0

with

(u−, η−) :=
(
u(−∞), η(−∞)

)
∈ Crit(Aϕ)

and

(u+, η+) :=
(
u(+∞), η(+∞)

)
∈ Crit(Aψ)
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defines the continuation homomorphism. We recall that κ>max{κ(ϕ), κ(ψ)}
and estimate

0 ≤ EJ(u, η)

=

∫ ∞
−∞

∫ 1

0
|∂s(u, η)|2Jsdtds

= −
∫ ∞
−∞

∫ 1

0
〈〈∇JsAs(u, η), ∂s(u, η)〉〉Js dtds

= −
∫ ∞
−∞

∫ 1

0

d

ds
As(u, η)dtds+

∫ ∞
−∞

∫ 1

0

∂As
∂s

(u, η)dtds

= Aϕ(u−, η−)−Aψ(u+, η+)−
∫ ∞
−∞

∫ 1

0
χ̇(t)εκ(r(t))

∂Lsχ(t)

∂s
(u(t))dtds

= Aϕ(u−, η−)−Aψ(u+, η+)

−
∫ ∞
−∞

∫ 1

0
ν ′(s)εκ(r(t))χ̇(t)

(
Hχ(t)(u(t))−Kχ(t)(u(t))

)
dtds

= Aϕ(u−, η−)−Aψ(u+, η+)

+

∫ ∞
−∞

∫ 1

0
(−ν ′(s))︸ ︷︷ ︸
≥0

εκ(r(t))r(t)︸ ︷︷ ︸
0≤·≤eκ

χ̇(t)︸︷︷︸
≥0

(
hχ(t)(u(t))− kχ(t)(u(t))

)
dtds

≤ Aϕ(u−, η−)−Aψ(u+, η+)

+

∫ ∞
−∞

∫ 1

0
(−ν ′(s))︸ ︷︷ ︸
≥0

εκ(r(t))r(t)︸ ︷︷ ︸
0≤·≤eκ

χ̇(t)︸︷︷︸
≥0

max
x∈Σ

(
hχ(t)(x)− kχ(t)(x)

)
dtds

≤ Aϕ(u−, η−)−Aψ(u+, η+)

+

∫ ∞
−∞

∫ 1

0
(−ν ′(s))︸ ︷︷ ︸
≥0

εκ(r(t))r(t)︸ ︷︷ ︸
0≤·≤eκ

χ̇(t)︸︷︷︸
≥0

max
{

max
x∈Σ

(
hχ(t)(x)− kχ(t)(x)

)
, 0
}
dtds

≤ Aϕ(u−, η−)−Aψ(u+, η+)

+ eκ
∫ ∞
−∞

∫ 1

0
(−ν ′(s))χ̇(t) max

{
max
x∈Σ

(
hχ(t)(x)− kχ(t)(x)

)
, 0
}
dtds

= Aϕ(u−, η−)−Aψ(u+, η+)

+ eκ
∫ ∞
−∞

(−ν ′(s))ds︸ ︷︷ ︸
=1

∫ 1

0
χ̇(t) max

{
max
x∈Σ

(
hχ(t)(x)− kχ(t)(x)

)
, 0
}
dt

= Aϕ(u−, η−)−Aψ(u+, η+) + eκ
∫ 1

0
max

{
max
x∈Σ

(
ht(x)− kt(x)

)
, 0
}
dt

≤ Aϕ(u−, η−)−Aψ(u+, η+) + eκ max
{
‖h− k‖+, 0

}
.
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This proves estimate (2.39).

3. Spectral invariants and orderability

We begin this section with the definition of the crucial property of being
spectrally finite.

Definition 3.1. A non-zero class Z ∈ RFH∗(Σ,W ) is said to be spectrally
finite if

(3.1) inf {a ∈ R | Z ∈ ja(RFHa
∗(Σ,W ))} > −∞.

We emphasise that we only define the notion of a spectrally finite class for
the unperturbed Rabinowitz action functional.

Let (Σ, ξ = kerα) denote a contact manifold such that α is Morse-Bott,
see Definition 2.2. We recall that for T ∈ Spec(α) the set

PT :=
{
x ∈ Σ | θT (x) = x

}
is a closed submanifold of Σ such that dα|PT has locally constant rank, and
such that TxPT = ker(DθT (x)− id) for all x ∈ PT . Here as usual θt : Σ→ Σ
denotes the Reeb flow of α. The Reeb flow induces an S1-action on PT , and
we denote by ST := PT /S

1 the quotient of PT by this action, which will in
general be an orbifold. An orbit space ST is called simple if there exists a
point x ∈ ST with minimal period T .

Assume that (Σ, α) is Liouville fillable. This implies that the mean index
of an orbit space, denoted by ∆(ST ), is a well defined real number (if PT is
not connected, one gets such a number for each connected component, but
by a slight abuse of notation we will suppress this in the following). More
precisely, fix x ∈ PT and let γ(t) := θt(x) for t ∈ [0, T ], so that γ : [0, T ]→ Σ
is a closed Reeb orbit. The linearized Reeb flow preserves the symplectic form
dα and thus gives rise to a family of symplectic maps Dθt(x) : ξγ(0) → ξγ(t)

along γ. Trivialising ξ along γ we obtain a path [0, T ] 7→ Sp(2n− 2). We
denote by ∆(ST ) mean index of this path (in the sense of [43, Section 5]),
which, as the notation suggests, does not depend on x ∈ PT .

If γ is not homologically trivial it may depend on the choice of triviali-
sation, and an additional assumption on the first Chern class of ξ is needed
in order for this to be well defined. Nevertheless, in this paper we are only
concerned with contractible Reeb orbits, and so in the remainder of this
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section we will implicitly only speak of the mean index ∆(ST ) when the
component PT contains contractible Reeb orbits.

The following two properties of the mean index ∆ are important. Firstly,
the mean index is linear with respect to iterations, that is,

(3.2) ∆(SkT ) = k∆(ST ), ∀ k ∈ Z.

Secondly if (u, η) ∈ Crit(Aid) with η 6= 0 and γ is the |η|-periodic Reeb orbit
given by γ(t) := u(t/η) then there exists a constant c such that

(3.3) |∆(S|η|)− µCZ(γ)| ≤ c,

cf. [43, Lemma 3.4] and [42]. The next definition was originally introduced
by Ustilovsky [49] and Bourgeois [10].

Definition 3.2. We say that (Σ, α) is index positive if there exist constants
A > 0 and B ∈ R such that for all T ∈ Spec(α), one has

(3.4) ∆(ST ) ≥ AT +B.

For us, the notion of index positivity is useful, since it implies that all
non-zero classes in the Rabinowitz Floer homology are spectrally finite.

Lemma 3.3. Suppose (Σ, α) is an index positive Liouville fillable con-
tact manifold, with Liouville filling (W,dλ). Then every non-zero class Z ∈
RFHk(Σ,W ) is spectrally finite.

Proof. We claim that for any fixed degree k ∈ Z, the assumption that (Σ, α)
is index positive implies that there exists a constant a(k) ∈ R such that the

chain group RFC
(−∞,a(k))
k = {0}, and thus the same is true in homology.

This implies that for every non-zero Z ∈ RFHk(Σ,W ) the left-hand side
of (3.1) is at least a(k).

We now prove the claim. Fix k ∈ Z, and suppose to the contrary that

there exists a sequence (al) ⊂ (−∞, 0) with al → −∞ such that RFC
(−∞,al)
k

6= {0}. Thus there exist critical points (ul, ηl) ∈ Crit(Aid) such that µ(ul, ηl)
= k and ηl = Aid(ul, ηl) ≤ al.

Recall that by definition of Aid, since ηl < 0, the loop γl(t) := ul(t/ηl)
is a closed contractible Reeb orbit of period −ηl. Hence −ηl ∈ Spec(α) and
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γl ∈ S−ηl . By (2.28) and (3.3) there exists a constant c0 such that

|∆(S−ηl) + k| = |∆(S−ηl) + µ(ul, ηl)|
≤ |∆(S−ηl)− µCZ(γl)|+ |µCZ(γl) + µ(ul, ηl)|
≤ c0

(3.5)

However applying (3.4) with T = −ηl ∈ Spec(α), we also have

(3.6) ∆(S−ηl) ≥ A(−ηl) +B ≥ −Aal +B →∞,

which contradicts the previous inequality. �

Definition 3.4. We say that α is a periodic contact form if there exists
T ∈ R such that θT = id. We say that α is a Boothby-Wang contact form if
all simple Reeb orbits are closed and have the same period.

If α is periodic then there only finitely many simple orbit spaces
{STj}j=1,...m. We order these so that T1 < T2 < · · · < Tm, so that Tj di-
vides Tm for each 1 ≤ j ≤ m. Thus α is Boothby-Wang if m = 1. We denote
by ∆(α) := ∆(SτTm), where τ ∈ N is the smallest positive integer such that
the τth iteration of a principal orbit in STm is contractible. Note that (3.2)
implies that if ∆(STj ) = 0 for some 1 ≤ j ≤ m, then necessarily ∆(α) = 0.

In the periodic case, there is another way to prove that spectrally finite
classes exist.

Lemma 3.5. Suppose (Σ, α) is Liouville fillable contact manifold, with Li-
ouville filling (W,dλ), and assume that α is periodic. Assume ∆(α) 6= 0.
Then every non-zero class Z ∈ RFHk(Σ,W ) is spectrally finite.

Proof. We adopt the notation from Definition 3.4. As noted above, the as-
sumption ∆(α) 6= 0 implies that ∆(STj ) 6= 0 for all 1 ≤ j ≤ m. We claim
that this implies that for any integer k ∈ Z, the chain group RFCk has only
finitely many generators, which in turn implies that every non-zero class is
spectrally finite.

To prove the claim, suppose for contradiction there exists k ∈ Z such
that RFCk has infinitely many generators. By the pigeonhole principle,
there exists a fixed 1 ≤ j ≤ m and a sequence (ul, nlTj) ∈ Crit(Aid) with
µ(ul, nlTj) = k, such that (nl) ⊂ Z is unbounded and ul

(
t

|nl|Tj

)
∈ SnlTj . As
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in the proof of (3.5), this implies that there exists a constant c0 such that

|nl∆(STj )− k| ≤ c0, ∀ l ∈ Z.

Since (nl) is unbounded, this forces ∆(STj ) = 0, which contradicts the pre-
vious paragraph. �

Remark 3.6. The above arguments are presented in the Morse-Bott set-
ting. An explicit perturbation scheme to the Morse situation where the above
argument carries over is explained in [10, Section 2.2].

Up to rescaling, all Boothby-Wang contact forms arise in the follow-
ing way, see [31, Section 7.2]. Take (Q,ω) to be a closed primitive integral
symplectic manifold (i.e. the de Rham cohomology class [ω] has a primi-
tive integral lift in H2(Q;Z). Fix k ∈ Z \ {0}. Then there is a circle bun-
dle qk : Σ→ Q with Euler class k[ω] and connection 1-form α such that
q∗k(kω) = dα. The 1-form α is then a Boothby-Wang contact form on Σ.
One also calls (Σ, α) a prequantisation space over (Q, kω).

The following computation is from [10, Chapter 9]. A very detailed proof
can be found in [51].

Lemma 3.7. Suppose (Σ, α) is a prequantisation space over (Q, kω). As-
sume in addition that Q is simply connected and monotone, that is, there
exists c ∈ Z such that c1(Q) = c[ω]. Then ∆(α) = 2c.

Throughout the remainder of this section we require Assumption (A)
from the Introduction to hold. More precisely, recall we say that a closed
connected coorientable contact manifold (Σ, ξ) satisfies Assumption (A) if:

Assumption (A): (Σ, ξ) admits a Liouville filling (W,dλ) such that
α := λ|Σ is Morse-Bott and such that there exists a spectrally finite
class Z ∈ RFH∗(Σ,W ).

Definition 3.8. Fix a spectrally finite class Z ∈ RFH∗(Σ,W ) and let ϕ
denote a non-degenerate path. We define its spectral number by

(3.7) c(ϕ,Z) := inf
{
a ∈ R | Zϕ ∈ jaϕ(RFHa

∗(Aϕ,W ))
}
,

where we use the notation Zϕ from (2.35). Note that c(ϕ,Z) > −∞ for any
ϕ; this follows directly from (2.39) and the fact that Z is a spectrally finite
class.
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Throughout the rest of the paper, the letter Z denotes a spectrally finite
class in RFH∗(Σ,W ).

Proposition 3.9. Let ϕ and ψ be two non-degenerate paths. Then we have
the estimate

c(ψ,Z) ≤ c(ϕ,Z) +K(ϕ,ψ)(3.8)

≤ c(ϕ,Z) + emax{κ(ϕ),κ(ψ)}max
{
‖h− k‖+, 0

}
,(3.9)

where h and k are the contact Hamiltonians of ϕ and ψ, respectively. In
particular, we have

(3.10) ht(x) ≤ kt(x) ∀x ∈ Σ, t ∈ [0, 1] =⇒ c(ϕ,Z) ≥ c(ψ,Z),

and so c(ϕ,Z) > −∞ because Z is a spectrally finite.

Proof. This follows immediately from the definition of the spectral number
together with (2.38) and the estimate (2.39). �

Lemma 3.10. For any non-degenerate path ϕ ∈ PCont0(Σ, ξ) the spectral
numbers are all critical values of Aϕ, i.e. c(ϕ,Z) ∈ Spec(ϕ).

Moreover c(·, Z) admits a unique extension to all of PCont0(Σ, ξ): given
a degenerate path ϕ, set

(3.11) c(ϕ,Z) := lim
k
c(ϕk, Z),

where ϕk → ϕ is any sequence of non-degenerate paths converging to ϕ in C2.
The extension still satisfies c(ϕ,Z) ∈ Spec(ϕ) and the estimates (3.8) and
(3.10). In particular, c(·, Z) : PCont0(Σ, ξ)→ R is a continuous function
when we equip PCont0(Σ, ξ) with the C2-topology.

Proof. The assertion c(ϕ,Z) ∈ Spec(ϕ) follows immediately from the fact
that RFHc

∗(Aϕ,W ) only changes if c crosses a critical value of Aϕ, compare
the discussion below (2.37).

To prove the existence of the extension we are required to prove that the
limit exists and is independent of the choice of the approximating sequence
ϕk. We denote by hk the corresponding contact Hamiltonians. Since we
assume that ϕk converges to ϕ in C2 it follows that κ(ϕk)→ κ(ϕ) and hk →
h, the contact Hamiltonian of ϕ. From Proposition 3.9 we conclude that
(c(ϕk, Z)) converges and in the same way independence of the approximating
sequence (ϕk) is proved. That c(ϕ,Z) ∈ Spec(ϕ) and the estimates (3.8) and
(3.10) hold follows from the definition of c(·, Z) as a limit. �
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Lemma 3.11. The map c(·, Z) : PCont0(Σ, ξ)→ R descends to give a well

defined map c(·, Z) : C̃ont0(Σ, ξ)→ R.

Proof. We recall from Remark 2.10 and Lemma 2.11 that Spec(ϕ) ⊂ R is
nowhere dense and actually only depends on the endpoint ϕ1 of the path ϕ.
Moreover, Lemma 3.10 implies that c(·, Z) is a continuous map. If we vary
the path ϕ while keeping the endpoints fixed the continuous map c(·, Z)
takes values in the fixed, nowhere dense set Spec(ϕ1), thus is constant. This
proves the Lemma. �

Lemma 3.12. For any T ∈ R one has

(3.12) c(θT , Z) = −T + c(idΣ, Z).

Proof. One has Spec(θT ) = −T + Spec(idΣ). Since Spec(idΣ) is nowhere
dense and c(·, Z) is continuous the result follows. �

Remark 3.13. Proposition 3.9 and Lemmata 3.10, 3.11, 3.12 constitute
Theorem 1.1 from the introduction.

Given a path ϕ of contactomorphisms, we define the support of ϕ,

(3.13) S(ϕ) :=
⋃

0≤t≤1

supp(ϕt),

where supp(ϕt) := {x ∈ Σ | ϕt(x) 6= x}.

Definition 3.14. For an open set U ⊂ Σ we set

(3.14) c(U,Z) := sup
{
c(ϕ,Z) | ϕ ∈ C̃ont0(Σ, ξ), S(ϕ) ⊂ U

}
∈ (−∞,∞].

Example 3.15. By Lemma 3.12 one has immediately that c(Σ, Z) =∞
for any non-zero class Z.

Recall that given a Reeb orbit γ, we denote by µtr
CZ(γ) its transverse

Conley Zehnder index, and we denote by νtr(γ) its transverse nullity. Let us
define

(3.15) µ(γ) := µtr
CZ(γ)− 1

2
νtr(γ).

We now recall Assumption (A)+ from the Introduction.
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Assumption (A)+: (Σ, ξ) admits a Liouville filling (W 2n, dλ) such that
α := λ|Σ is Morse-Bott with non-zero Rabinowitz Floer homology.
Moreover the Reeb flow θt : Σ→ Σ of α has no contractible Reeb orbits
γ with

(3.16) µ(γ) ∈ [−n− νtr(γ), 1− n].

The reason (3.16) is useful for us is given the following lemma.

Lemma 3.16. Assume that the Reeb flow θt : Σ→ Σ has no contractible
Reeb orbits γ with

(3.17) µ(γ) ∈ [−n− νtr(γ), 1− n].

Then the fundamental class [Σ] ∈ H2n−1(Σ;Z2) defines a non-zero class

µΣ ∈ RFHn(Σ,W ),

which moreover satisfies

c(idΣ, µΣ) = 0

Proof. Choose a Morse function g on Crit(A) with the property that the
restriction of g to the component Σ ⊂ Crit(A) of constant loops has a unique
maximum, say at a point x0 ∈ Σ. Choose δ > 0 smaller than the smallest
period of a contractible Reeb orbit. Then the assumption that there are no
contractible Reeb orbits satisfying (3.17) implies that there that the filtered
complex in degree n consists

(3.18) RFC(−∞,δ)
n (A, g) = {x0}.

Let V ⊂W denote the compact domain bounded by Σ, and denote by
SH∗(V ) and SH∗(V ) the symplectic homology and cohomology of V , re-
spectively. We now use [18, Proposition 1.4] which tells us there exists a
commutative diagram
(3.19)

. . . // H0(V,Σ;Z2) // H0(V ;Z2) // H0(Σ;Z2) // H1(V,Σ;Z2) // . . .

. . . // SH−n(V )
ϕ //

OO

H2n(V,Σ;Z2)
ψ //

PD

RFH
(∞,δ)
n (Σ,W ) //

OO

SH1−n(V ) //

OO

. . .
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In fact, in [18, Proposition 1.4], instead of RFH
(−∞,δ)
n (Σ,W ) in the third

term on the bottom row, instead it is written ŠH
(−∞,δ)
n (V ) (the so-called “V -

shaped symplectic homology”). However by the main result of [18], Theorem

1.5, one has ŠH
(a,b)
∗ (V ) ∼= RFH

(a,b)
∗ (Σ,W ).

Since we are in degree −n, the map ϕ is identically zero, because by [18,
Proposition 1.3] the map ϕ factors as a composition

SH−n(V )→ H0(V,Σ;Z2)→ H2n(V,Σ;Z2),

and H0(V,Σ;Z2) = 0. Thus the map ψ is injective. We denote by µΣ :=

ψ([V ]), which is thus always a non-zero class in RFH
(−∞,δ)
n (Σ,W ).

In general we cannot say much about that class µΣ. In particular, there
is no reason why µΣ should define a non-zero class in the full Rabinowitz
Floer homology RFHn(Σ,W ). However we show now that under our index
assumption that there are no contractible Reeb orbits satisfying (3.17), not
only can we can precisely identify the class µΣ, but in this case µΣ defines
a class in the full Rabinowitz Floer homology RFHn(Σ,W ), and moreover
if RFH∗(Σ,W ) 6= 0 then also µΣ 6= 0.

Indeed, (3.18) implies that µΣ = [x0] simply since there are no other

generators. Thus µΣ is also a well defined class in RFH
(−δ,∞)
n (Σ,W ) (it is

obviously a class there). Let us now show that if RFH∗(Σ,W ) 6= 0 then

µΣ is never a boundary in RFH
(−δ,∞)
n (Σ,W ). For this we use the other

commutative diagram of [18, Proposition 1.4], which reads:

(3.20)

0 // H2n(V,Σ;Z2) //

c

��

H2n−1(Σ;Z2) //

��

H2n−1(V ;Z2) //

PD

. . .

0 // SHn(V )
ζ // RFH

(−δ,∞)
n (Σ,W ) // H1(V,Σ;Z2) // . . . ,

where again we have used the fact that H2n(V ;Z2) = H0(V,Σ;Z2) = 0 to put
zeroes in the left-hand column, The class u := c([V ]) ∈ SHn(V ) is the unit
in the SH∗(V ), and thus if SH∗(V ) is non-zero then u 6= 0. Commutativity
of the middle two squares of (3.19) and (3.20) tells us that ζ(u) = µΣ. Thus

if SH∗(V ) 6= 0 then µΣ 6= 0 in RFH
(−δ,∞)
n (Σ,W ). Finally, since SH∗(V ) = 0

if and only if RFH∗(Σ,W ) = 0 – this is a theorem of Ritter [41, Theorem
96] and follows essentially from the argument we have just sketched – we
conclude that under our index assumption that there are no contractible
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Reeb orbits satisfying (3.17), if RFH∗(Σ,W ) 6= 0 then the critical point x0

defines a non-zero class µΣ ∈ RFHn(Σ,W ). This completes the proof. �

Let us show that c(U, µΣ) > 0 for any non-empty set U ⊂ Σ.

Proposition 3.17. Given any non-empty open set U ⊂ Σ, there exists ψ ∈
C̃ont0(Σ, ξ) such that S(ψ) ⊂ U and c(ψ, µΣ) > 0.

Proof. We prove the proposition in three steps.
Step 1. We use an idea from Sandon [46]. Fix a C2-small function

b : Σ→ R. We use b to build a contactomorphism Ψ : T ∗Σ× R→ T ∗Σ× R,
where the 1-jet bundle T ∗Σ× R is equipped with the standard contact form
λ0 + dτ and λ0 = pdx in local coordinates. Namely, we set

(3.21) Ψ(x, p, τ) = (x, p− db(x), τ + b(x)).

Note that critical points of b are in 1-1 correspondence with Reeb chords
between the two Legendrians Σ× {0} and Ψ(Σ× {0}) (where Σ ⊂ T ∗Σ is
the zero section). Moreover, the contactomorphism Ψ is exact. Since b is
assumed to be C2-small, Ψ determines a contactomorphism of ψ of (Σ, α),
defined as follows. Firstly, Weinstein’s neighborhood theorem for Legendrian
submanifolds (see [1, Theorem 2.2.4]) implies that there is an exact contac-
tomorphism

(3.22) Ξ : N × (−δ, δ)→ Q× (−ε, ε)

between a neighborhood N × (−δ, δ) of Σ× {0} inside T ∗Σ× R and a neigh-
borhood Q× (−ε, ε) of ∆× {0} inside Σ× Σ× R, where ∆ is the diagonal
in Σ× Σ. Here Σ× Σ× R is equipped with the contact form erpr∗1α− pr∗2α,
where prj is the projection onto the jth factor. The contactomorphism ψ is
then defined by looking at the restriction of Ξ ◦Ψ ◦ Ξ−1 to ∆× {0} inside
Q× (−ε, ε); we can write

(3.23) Ξ ◦Ψ ◦ Ξ−1(x, x, 0) =: (x, ψ(x), 0),

for ψ : Σ→ Σ. Since Ψ and Ξ are exact contactomorphisms it follows that
ψ is an exact contactomorphism, too.

Similarly, if we start with an isotopy {bt}0≤t≤1 with b0 = 0 then we
obtain a path ψ = {ψt}0≤t≤1 of exact contactomorphisms with ψ0 = idΣ. In
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this case one can check that the contact Hamiltonian of ψ is −∂bt
∂t :

(3.24) α

(
∂

∂t
ψt

)
= −∂bt

∂t
◦ ψt.

Note that the minus sign is due to the fact that ψ(x) is the second entry in
(3.23) and the contact form on Σ× Σ× R contains −pr∗2α.

The key point now is that the translated points x ∈ Σ of ψ1 with time-
shift η ∈ (−ε, ε) are in 1-1 correspondence with the critical points of b1: if
x ∈ Crit(b1) then

(3.25) ψ1(x) = θ−b1(x)(x),

This follows from the following computations where we use that Ξ commutes
with the Reeb flows on T ∗Σ× R and Σ× Σ× R. The former is given by
(x, p, τ) 7→ (x, p, τ + t) and the latter by (x, y, a) 7→ (x, θ−t(y), a).

(3.26)

(x, ψ1(x), 0) = Ξ ◦Ψ1 ◦ Ξ−1(x, x, 0)

= Ξ ◦Ψ1(x, 0, 0)

= Ξ(x, 0, b1(x))

= (x, θ−b1(x)(x), 0)

Here, the third equality is true if and only if x ∈ Crit(b1). Thus for each
x ∈ Crit(b1) there is a critical point (ux, b1(x)) ∈ Crit(Aψ), and any critical
point (u, η) of Aψ not of this form necessarily satisfies |η| > ε.

Step 2. Suppose now that we start with a C2-small Morse-Bott func-
tion b on Σ. Define bt := tb for t ∈ [0, 1], and let ψ = {ψt}0≤t≤1 denote the
corresponding path of contactomorphisms. If x ∈ Crit(b) then the critical
point (ux, b(x)) belongs to a Morse-Bott component of Aψ, and moreover
we claim that

(3.27) µ(ux, b(x)) = 1− n+ indb(x),

where indb(x) denotes the maximal dimension of a subspace on which the
Hessian Hessb(x) of b at x is strictly negative definite.

To see this, we consider the Hamiltonian diffeomorphism Φ of T ∗Σ×
R× R obtained by lifting Ψ, which as Ψ is exact, is given simply by

(3.28) Φ(q, p, τ, σ) = (Ψ(q, p, τ), σ) .
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A translated point x of ψ1 gives rise to the following path of Lagrangian
subspaces:
(3.29)
Lt := {(x̂,−tHessb(x)(x̂), 0, σ̂) | x̂ ∈ TxΣ, σ̂ ∈ R} ⊂ T(x,0,0,σ)(T

∗Σ× R× R),

The desired index is then given by

(3.30) µ(ux, b(x)) = 1− n+ µRS(L0, L1),

which in this case is just 1− n+ indb(x) as claimed; note that the 1− n
summand comes from the normalization used in the definition of the Rabi-
nowitz index (2.28) above, and we are using the grading convention from
Remark 2.18.

Step 3. We now prove the theorem. Suppose U ⊂ Σ is open and non-
empty. Choose a function b : Σ→ [0,∞) such that supp(b) ⊂ U and such
that b is Morse on the interior of its support. Moreover we insist that b has
a unique maximum x0 ∈ Σ, with 0 < b(xmax) < ε, where ε is as in (3.22).
Let ψ be as in Step 2. Since the contact Hamiltonian of ψ is −b we can
estimate

(3.31) K(idΣ, ψ) ≤ eκ(ψ) 1
2b(xmax).

From Proposition 3.9 and Lemma 3.16 we obtain

c(ψ, µΣ) ≤ c(idΣ, µΣ)︸ ︷︷ ︸
=0

+K(idΣ, ψ)(3.32)

≤ eκ(ψ) 1
2b(xmax).(3.33)

We now assume in addition that eκ(ψ) 1
2b(xmax) < ε, too. Since the contact

Hamiltonian −b of ψ is non-positive, we have from (3.10) that

(3.34) 0 ≤ c(ψ, µΣ) < ε.

We recall from Step 1 that any critical point (u, η) of Aψ which is not of the
form (ux, b(x)) satisfies |η| > ε. Thus c(ψ, µΣ) is necessarily a critical value
of b. Since µΣ has index n, and xmax is the only critical point of b of index
2n− 1 (so that the corresponding critical point (uxmax

, b(xmax)) has index
1− n+ 2n− 1 = n), we see that

(3.35) c(ψ, µΣ) = b(xmax) > 0.

The proof is complete. �
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The following Corollary is Theorem 1.8 from the Introduction.

Corollary 3.18. Suppose ϕ ∈ C̃ont0(Σ, ξ) has contact Hamiltonian ht. As-
sume ht ≤ 0 and there exists x ∈ Σ such that ht(x) < 0 for all t ∈ [0, 1]. Then
c(ϕ, µΣ) > 0.

Proof. There exists a function b : Σ→ [0,∞) satisfying all the properties
from the proof of Proposition 3.17 and in addition that

(3.36) − tb(x) ≥ ht(x) ∀x ∈ Σ, t ∈ [0, 1].

Let ψ = {ψt}0≤t≤1 denote the contact isotopy whose contact Hamiltonian is
−tb. Then Proposition 3.9 and Proposition 3.17 imply that

(3.37) 0 < b(xmax) = c(ψ, µΣ) ≤ c(ϕ, µΣ). �

Remark 3.19. One might wonder whether the analogue of Corollary 3.18
continues to hold if instead we assume that ht is non-negative and not iden-
tically zero. In the non-compact setting discussed in Section 5 we will see
that this is false. See Remark 5.14 and Appendix A for more information.

4. Contact capacities

Let us now assume that (Σ, ξ) satisfies Assumption (B) from the Introduc-
tion:

Assumption (B): (Σ, ξ) admits a Liouville filling (W,dλ) such that the
Rabinowitz Floer homology RFH∗(Σ,W ) contains a spectrally finite
class and such that α := λ|Σ is periodic.

As before Z denotes a non-zero spectrally finite class in RFH∗(Σ,W ).

Definition 4.1. Following [44], we define for ϕ ∈ C̃ont0(Σ, ξ) an integer
c(ϕ,Z) by

(4.1) c(ϕ,Z) := dc(ϕ,Z)e .

The reason periodicity is helpful is this function c(·, Z) is conjugation
invariant. We will prove this shortly in Proposition 4.3 below, but to begin
with we present the following lemma. Recall from Definition 2.9 that we say
ϕ is non-resonant if Spec(ϕ) ∩ Z = ∅.
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Lemma 4.2. Suppose ϕ is degenerate with c(ϕ,Z) ∈ Z (and thus ϕ is
necessarily resonant). Then there exists ϕk → ϕ such that ϕk is resonant
and non-degenerate such that for all k sufficiently large one has c(ϕk, Z) =
c(ϕ,Z).

Proof. Start with any sequence (ϕk) of non-degenerate paths such that ϕk →
ϕ, and set ck := c(ϕk, Z), so that c(ϕ,Z) = limk ck (by definition). Thus
there exists a translated point xk of ϕk with time-shift ck. Now set

(4.2) ηk := ck − c(ϕ,Z),

so that ηk → 0. Now the key point is the following: since all the Reeb orbits
are closed, ηk is necessarily also a time-shift of the translated point xk, that
is

(4.3) ηk = ck, mod 1,

see Figure 1.

ϕ(x) = x

c(ϕ,Z)

xk ϕk(x)

c(ϕk, Z)

ηk

Figure 1.

The sequence θ−ηk ◦ ϕk still converges to ϕ, and it is easy to check that
θ−ηk ◦ ϕk is still non-degenerate, and for all k sufficiently large one has that

(4.4) c(θ−ηk ◦ ϕk, Z) = ck − ηk = c(ϕ,Z)

since

(4.5) Spec(θT ◦ ϕ) = T + Spec(ϕ)

and c(·, Z) is continuous. �
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The following is Proposition 1.13 from the Introduction. A similar argu-
ment appears in [44, Section 3.4]. We carry out the proof of the degenerate
case in detail (using Lemma 4.2 above), since this were not fully explained
in [44].

Proposition 4.3. The function c(·, Z) : C̃ont0(Σ, ξ)→ Z is conjugation in-

variant: if ψ ∈ Cont0(Σ, ξ) and ϕ ∈ C̃ont0(Σ, ξ) then

(4.6) c̄(ψϕψ−1, Z) = c̄(ϕ,Z).

Proof. Assume firstly that ϕ is non-resonant, that is, Spec(ϕ) ∩ Z = ∅ (see
Definition 2.9). Fix ψ ∈ Cont0(Σ, ξ) and let ψs ∈ Cont0(Σ, ξ) be a path con-
necting idΣ to ψ. Then we consider the map

(4.7) s 7→ c(ψsϕψ
−1
s , Z).

Proposition 3.9 implies that this map is continuous. Lemma 2.12 implies
that Spec(ψsϕψ

−1
s ) ∩ Z = ∅ for all s ∈ [0, 1], and hence

⌈
c(ψϕψ−1, Z)

⌉
=

dc(ϕ,Z)e as required.
There are now three cases to consider. Suppose that ϕ is resonant but

that c(ϕ,Z) /∈ Z. Suppose ψ ∈ Cont0(Σ, ξ). Then for ϕ′ non-resonant and
sufficiently close to ϕ, one has that ψϕ′ψ−1 is non-resonant and sufficiently
close to ψϕψ−1 and hence we have

(4.8) c(ψϕψ−1, Z) = c(ψϕ′ψ−1, Z) = c(ϕ′, Z) = c(ϕ,Z),

where the second equality used the step above. The next case is when
ϕ is resonant and non-degenerate, with c(ϕ,Z) ∈ Z. As before, given ψ ∈
Cont0(Σ, ξ) we choose a path ψs connecting idΣ to ψ. The key point now
is that for any s0 ∈ [0, 1], if (us0

, ηs0
) is a critical point of Aψs0ϕψ−1

s0
with

ηs0
∈ Z then (us0

, ηs0
) is automatically non-degenerate by the last statement

of Lemma 2.12. It follows that there exists ε > 0 such that

(4.9) Spec(ψsϕϕ
−1
s ) ∩ [c(ϕ,Z)− ε, c(ϕ,Z) + ε] = {c(ϕ,Z)},

and the result follows as above. The final case is when ϕ is both resonant
and degenerate and c(ϕ,Z) ∈ Z. In this case we employ Lemma 4.2 to find
a sequence ϕk → ϕ such that ϕk is both resonant, non-degenerate, and
such that for all large k one has c(ϕk, Z) = c(ϕ,Z). The argument above
then implies that for any ψ ∈ Cont0(Σ, ξ) and for all k sufficiently large,
c(ψϕkψ

−1, Z) = c(ϕk, Z) is an integer. Since c(ψϕkψ
−1, Z)→ c(ψϕψ−1, Z)

the result follows. �
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Corollary 4.4. One has c̄(t 7→ θtT , Z) = d−T + c(idΣ, Z)e for any T ∈ R.

Proof. Lemma 3.12. �

We now define c(U,Z) in the same way as c(U,Z) was defined in Defini-
tion 3.14.

Definition 4.5. For an open set U ⊂ Σ we define the contact capacity

(4.10) c(U,Z) := sup
{
c(ϕ,Z) | ϕ ∈ C̃ont0(Σ, ξ), S(ϕ) ⊂ U

}
∈ Z ∪ {∞}.

Remark 4.6. The notion of contact capacity was introduced by Sandon
in [44]. She was the first to discover a connection between translated points
and orderability and other contact rigidity phenomena.

The following is Corollary 1.16 from the Introduction.

Proposition 4.7. For all ψ ∈ Cont0(Σ, ξ), one has

(4.11) c(ψ(U), Z) = c(U,Z).

Proof. Since

(4.12) S(ψϕψ−1) = ψ(S(ϕ)),

we conclude from Proposition 4.3 that

c(U,Z) = sup
{
c(ϕ,Z) | ϕ ∈ C̃ont0(Σ, ξ), S(ϕ) ⊂ U

}
= sup

{
c(ϕ,Z) | ϕ ∈ C̃ont0(Σ, ξ), ψ(S(ϕ)) ⊂ ψ(U)

}
= sup

{
c(ϕ,Z) | ϕ ∈ C̃ont0(Σ, ξ), S(ψϕψ−1) ⊂ ψ(U)

}
= sup

{
c(ψϕψ−1, Z) | ϕ ∈ C̃ont0(Σ, ξ), S(ψϕψ−1) ⊂ ψ(U)

}
= sup

{
c(µ,Z) | µ ∈ C̃ont0(Σ, ξ), S(µ) ⊂ ψ(U)

}
= c(ψ(U), Z).(4.13)

�

For completeness we recall Theorem 1.17 which is proved in the Intro-
duction.
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Theorem 4.8. Let U ⊂ V ⊂ Σ be open sets and assume that there exists
ϕ ∈ Cont0(Σ, ξ) with ϕ(V ) ⊂ U . Then

(4.14) c(U,Z) = c(V,Z).

In particular, if c(U,Z) < c(V,Z) then there exists no contact isotopy map-
ping V into U .

Remark 4.9. If we assume that (Σ, ξ) satisfies both assumption (A)+ and
(B) then we know c(U, µΣ) > 0 whenever U ⊂ Σ is a nonempty open subset.
Unfortunately in general we do not know how to prove that c̄(U,Z) is ever
finite. Nevertheless, in certain situations it is possible to prove finiteness of
the capacities, for instance when the subset U is displaceable. In particular
this is the case in the setting described in the next section, see Corollary 5.17.

5. Prequantization spaces

5.1. Hamiltonian Floer homology

Fix a Liouville domain (M1, dγ1). Let S := ∂M1 and κ := γ1|S , so that (S, κ)
is a contact manifold. Let (M,dγ) denote the completion of M1, so that
M = M1 ∪S (S × [1,∞)). It is convenient in this section to introduce the
notation

(5.1) Mσ :=

{
M1\

(
S × (σ, 1)

)
if 0 < σ < 1,

M1 ∪S
(
S × [1, σ]

)
if σ ≥ 1.

Note here we are using σ to denote the R-coordinate on the end of M - this
is so as to avoid confusion in Section 5.3, when a second Liouville domain
will come into play.

Denote by Hamc(M,dγ) the group of Hamiltonian diffeomorphisms f on
M with compact support. As before, a path f = {ft}0≤t≤1 of compactly sup-
ported Hamiltonian diffeomorphisms is assumed to be smoothly parametrized
and begin at the identity: f0 = idM . Given such a path f = {ft}0≤t≤1, let
Xf denote the time-dependent vector field on M defined by

(5.2)
∂

∂t
ft = Xft ◦ ft.

The equation

(5.3) f∗t γ − γ = dat, a0 ≡ 0
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determines a smooth compactly supported function at : M → R. If we define

(5.4) Ft = iXftγ −
(
∂

∂t
at

)
◦ f−1

t ,

then Ft generates ft: ft = f tF . We can recover at from Ft via

(5.5) at =

∫ t

0

(
iXfsγ − Fs

)
◦ fsds

(see for instance [39, p294]).
We briefly explain the construction of the Hamiltonian Floer homology

of f in this section. The setting we consider here is a special case of the
one considered by Frauenfelder and Schlenk in [30], to which we refer to for
more details. However it will be convenient for us to use the Morse-Bott
framework developed by Frauenfelder [27], in order to make the link with
the Rabinowitz Floer homology of Σ := M × S1 clearer in the next section.

Let us first note that for a given F ∈ C∞c (S1 ×M,R), the flow f tF has
many 1-periodic orbits, since f tF is compactly supported. Of course, constant
1-periodic orbits outside the support of f are uninteresting, and hence we
introduce the following notation. Denote by

(5.6) σ(F ) := inf {σ > 0 | S(fF ) ⊆Mσ} .

Given a path f = {ft}0≤t≤1 in Hamc(M,dγ), we set σ(f) := σ(F ), where F
is given by (5.4). Next, we set

(5.7) PF :=
{
y ∈Mσ(f) | f1

F (y) = y
}
.

Definition 5.1. Define a subset Hmb
c ⊆ C∞c (S1 ×M,R) (here the “mb”

stands for Morse-Bott) to consist of those functions F with the property
that PF is either a closed submanifold of M or an open domain whose
closure is a compact manifold, and for which

(5.8) TyPF = ker(Df1
F (y)− 1) for all y ∈ PF .

It is well known that the subset Hmb
c is generic in C∞c (S1 ×M,R). We say

that a path f = {ft}0≤t≤1 is non-degenerate if the function F defined in
(5.4) belongs to Hmb

c .

We denote by Rκ the Reeb vector field of κ. Denote by Ĥ the set of
time-dependent smooth functions F̂ on M with the property that there
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exists C > 0 such that F̂t|S×[C,∞) is of the form F̂t(y, σ) = e(σ) for some
smooth function e : [C,∞)→ R satisfying

(5.9) 0 < e′(σ) < ℘(S, κ).

Here

(5.10) ℘(S, κ) := inf {T >0 | ∃ a closed Reeb orbit of Rκ of period T >0} .

This ensures that if ϕ1
F̂

denotes the flow of F̂ then ϕ1
F̂

has no non-constant

1-periodic orbits on S × (C,∞). Note that if F ∈ C∞c (S1 ×M,R) then one
can find F̂ ∈ Ĥ such that F̂ |S1×Mσ(F )

= F .
As a special case of this construction, consider a function O on M defined

by requiring that O = 0 on the interior M◦1 of M1 and that

(5.11) O(y, σ) = e(σ)

on S × [1,∞), where e(1) = 0 and e satisfies (5.9). In this case one has

(5.12) PO = M1,

where points in M1 are thought of as constant loops. In particular, f tO|M◦
1

=
idM◦

1
. Thus O is an extension of the zero function (generating the Hamilto-

nian diffeomorphism idM1
to Ĥ).

Definition 5.2. Fix a non-degenerate path f = {ft}0≤t≤1, and let F de-
note the function defined in (5.4), and fix an extension F̂ ∈ Ĥ such that
F̂ |S1×Mσ(F )

= F . Recall that Λ(M) := C∞contr(S
1,M). Define the Hamilto-

nian action functional Af : Λ(M)→ R by

(5.13) Af (v) :=

∫ 1

0
v∗γ − F̂t(v)dt.

Denote by Crit◦(Af ) the set of critical points v of Af with v(S1) ⊆
Mσ(f). Then Crit◦(Af ) does not depend on the extension F̂ - in fact

(5.14) Crit◦(Af ) ∼= PF ,

and hence the assumption (5.8) implies that each component of Crit◦(Af )
is a Morse-Bott component for Af .

Fix a family Jt of dγ-compatible almost complex structures on M which
are convex at infinity (cf. equation (2.26)). We define an L2-inner product
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〈〈·, ·〉〉J on Λ(M) as before (cf. equation (2.27), only this time there is no
bb′ term). We denote by ∇JAF the gradient of AF with respect to 〈〈·, ·〉〉J .
Pick a Morse function g : Crit◦(Af )→ R and a Riemannian metric % on
Crit◦(Af ) such that (g, %) is a Morse-Smale pair. In the case where PF is an
open domain in M whose boundary is a compact manifold, g must be chosen
so that 〈dg,n〉 < 0 on the boundary, where n is an outward pointing normal.
As before we define moduli spaces Mv−,v+(Af , g, J, %) of gradient flow lines
with cascades for critical points v± ∈ Crit(g). This time we grade v ∈ Crit(g)
simply by µ(v) := µCZ(v) + indg(v), where µCZ(v) is the Conley-Zehnder in-
dex. A standard convexity argument gives the necessary compactness needed
to define Floer homology - see Frauenfelder-Schlenk [30].

Given −∞ < a < b <∞ denote by CF
(a,b)
∗ (Af , g) := Crit

(a,b)
∗ (g)⊗ Z2,

where Crit
(a,b)
∗ (g) denotes the set of critical points v of g with a < Af (v) < b.

As before one defines a boundary operator ∂ on CF
(a,b)
∗ (Af , g) by counting

the elements of the zero-dimensional parts of the moduli spaces

Mv−,v+(Af , g, J, %)

for v− 6= v+. We denote by HF
(a,b)
∗ (Af ) the associated homology, which as

the notation suggests, is independent of the auxiliary data (g, J, %) and of the
extension F̂ , see [30]. In fact, one can also show it is also independent of the

choice of path f . We abbreviate HFa∗(Af ) := HF
(−∞,a)
∗ (Af ) and HF∗(Af ) :=

HF
(−∞,∞)
∗ (Af ). We denote the natural maps HFa∗(Af )→ HF∗(Af ) by jaf in

the same way as before. Under our grading convention explained in Re-
mark 2.18, there is a canonical isomorphism

(5.15) HF∗(Af ) ∼= Hn+∗(M1, ∂M1;Z2) ∼= Hn−∗(M1;Z2).

See the proof of Lemma 5.3 below for one way to see this.
Next, the Floer homology HF∗(Af ) carries the structure of a unital

ring. The unit lives in degree n according to our sign conventions, and
under the isomorphism (5.15), the unit corresponds to the fundamental
class [M1] ∈ H2n(M1, ∂M1;Z2); see Lemma 5.3 below. We denote the unit by
1f ∈ HFn(Af ). Since HF∗(Af ) is necessarily non-zero, as usual one defines
the spectral number

(5.16) cM (f) := inf
{
a ∈ R | 1f ∈ jaf (HFa∗(Af ))

}
.

As before, cM is a well defined function

(5.17) cM : H̃amc(M,dγ)→ R.
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We can use cM to define a capacity on open subsets O ⊂M ,

(5.18) cM (O) := sup {cM (f) | S(f) ⊂ O} ,

in the same way as before. We use the subscript cM to differentiate it from
the function c associated to Σ := M × S1 that we will define shortly.

Lemma 5.3. In the case of id = idM1
the unit 1 = 1id is simply given by

the fundamental class [M1], and thus cM (id) = 0.

Proof. We define Aid using the function O defined in (5.11). Thus Crit◦(Aid)
= M1, and every element of Crit◦(Aid) has action value zero. Thus there are
no gradient flow lines of Aid, and hence the Floer complex CF∗(Aid, g) re-
duces to the Morse complex of a Morse function g on M1. Such a Morse
function g can be chosen so that g > 1 on M◦1 and such that g is the restric-
tion of a Morse function ĝ : M → R such that ĝ(y, σ) = 1

σ on S × [1,∞).
Thus this shows that

(5.19) HF∗(Aid) ∼= HMn+∗(g) ∼= Hn+∗(M1, ∂M1;Z2),

which proves (5.15).
It is possible to prove directly using Morse-Bott techniques that the iso-

morphisms in (5.19) are ring maps, and thus the unit in HF∗(Aid) is exactly
the unit in Morse homology for g. The latter is of course the fundamen-
tal class [M1] under the isomorphism of the Morse homology of g with the
relative homology of (M1, ∂M1). In this situation however, we can simply
make a degree argument: if the Morse function g has a unique maximum at a
point ymax in M◦1 then one necessarily has that [ymax] is a cycle in HFn(Aid),
and that fact HFn(Aid) = Z2[ymax]. Since the unit lives in degree n, it must
therefore be precisely [ymax]. �

5.2. The prequantization space Σ = M × S1

The prequantization space of M is the contact manifold Σ := M × S1,
equipped with the contact structure ξ := ker α, where

(5.20) α := γ + dτ,

and τ is the coordinate on S1 ∼= R/Z. The last class of contact manifolds we
study in this paper are these prequantization spaces, which for convenience
we refer to as Assumption (C):



i
i

“1-Merry” — 2019/3/6 — 18:00 — page 1529 — #49 i
i

i
i

i
i

Orderability, contact non-squeezing, and RFH 1529

Assumption (C): (Σ, ξ = ker α) is a prequantization space Σ = M ×
S1, where (M,dγ) is a Liouville manifold, and α = γ + dτ .

In this case Σ is obviously periodic, but it is not Liouville fillable in the pre-
vious sense. Aside from anything else, Σ is necessarily non-compact. However
Σ does still retain enough of the properties needed above in order to define
a Rabinowitz Floer homology, as will explain in the next section.

Let us denote by Cont0,c(Σ, ξ) those contactomorphisms ϕ with compact
support. There is a natural way to obtain a path ϕ = {ϕt}0≤t≤1 of compactly
supported contactomorphisms on Σ from a path f = {ft}0≤t≤1 of compactly
supported Hamiltonian diffeomorphisms on M . Indeed, given such a path
f , define ϕt : Σ→ Σ by

(5.21) ϕt(y, τ) :=
(
ft(y), τ − at(y)︸ ︷︷ ︸

mod 1

)
,

where at was defined in (5.3). One easily checks that ϕt is an exact contacto-
morphism. We say that the contact isotopy ϕ is the lift of the Hamiltonian
isotopy f . In this case the contact Hamiltonian ht associated to ϕt is simply
Ft (thought of as a function on M × S1):

(5.22) ht ◦ ϕt = α

(
∂

∂t
ϕt

)
= Ft ◦ ϕt,

where Ft was defined in (5.4). Fix a function F̂ ∈ Ĥ such that F̂ = F on
S1 ×Mσ(F ), and define Ĥt : SΣ→ R by Ĥt := rF̂t.

Consider again the Rabinowitz action functional Aϕ : Λ(SΣ)× R→ R
defined as in (2.7), using Ĥt. Suppose (u, η) ∈ Crit(Aϕ). Write

u(t) = (v(t), τ(t), r(t)) ∈M × S1 × (0,∞).

Then from (2.10) we have

(f1(v
(

1
2

)
, τ
(

1
2

)
− a1

(
v
(

1
2

))︸ ︷︷ ︸
mod 1

)
= ϕ1

(
u
(

1
2

))
,

= θ−η
(
v
(

1
2

)
, τ
(

1
2

))
=
(
v
(

1
2

)
, τ
(

1
2

)
− η︸ ︷︷ ︸

mod 1

)
(5.23)

and hence if y := v(1
2) then f1(y) = y and a1(y) = η mod 1. Thus from (5.5)

one also has Af (v) = η mod 1. Moreover since ϕt is exact one has r(t) ≡ 1 for
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all t (cf. the last statement of Lemma 2.7). Since we only consider contractible
critical points of Aϕ, we deduce:

Lemma 5.4. There exists a bijective map

(5.24) π : Crit(Aϕ)→ Crit(Af )

given by

(5.25) π(u = (v, τ, r), η) :=
(
t 7→ ft

(
v
(

1
2

)))
.

Moreover

(5.26) Aϕ(u, η) = Af (π(u, η)).

In particular, every critical point (u, η) of Aϕ has

(5.27) u(S1) ⊆Mσ(f) × S1 × {1}.

Given a contactomorphism ϕ ∈ Cont0,c(Σ, ξ), we denote by

(5.28) σ(ϕ) = inf
{
σ > 0 | S(ϕ) ⊆Mσ × S1

}
.

Thus if ϕ is the lift of f then

(5.29) σ(ϕ) = σ(f).

5.3. Rabinowitz Floer homology on Σ

Let P1 denote a 2-torus with a disc removed, so that ∂P1 = S1. Equip P1

with an exact symplectic form dβ1 such that β1|∂P1
= dτ (the precise choice

of β1 is unimportant). Denote by (P, dβ) the completion of P1, so that

(5.30) β = rdτ on ∂P1 × [1,∞).

Consider

(5.31) W := M × P,

equipped with the symplectic form dλ where λ := γ + β. Since S1 × R+ is
naturally embedded in P , SΣ = M × S1 × R+ can naturally be embedded
inside of W = M × P . Nevertheless, W is not a Liouville filling of Σ. Indeed,
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firstly W is not compact, and moreover when equipped with the symplectic
form dλ, there is no embedding (SΣ, d(rα)) ↪→ (W,dλ) that we can use in
order to extend the Rabinowitz action functional Aϕ to a functional defined
on all on Λ(W )× R.

To circumvent this problem we will prove the following technical lemma.

Lemma 5.5. There exists a family {λs}s≥1 ⊂ Ω1(W ) of 1-forms such that
for all s ≥ 1:

1) ωs := dλs is a symplectic form on W .

2) Define

W+
s := (M\M2s−1 × P ) ∪ (M × P\P2s−1) ,(5.32)

W−s := Ms × P 1

2s−1
.(5.33)

Then

(5.34) λs|W+
s

= (2s− 1)γ + β, λs|W−
s

=
1

2s− 1
γ + β.

Thus ωs is split-convex at infinity in the sense of [30, Definition 3.1],
and hence we can achieve compactness, see the proof of Theorem 5.7
below and also [30]. Moreover λ1 = λ everywhere.

3) For s > 1, define

(5.35) Vs := Ms × S1 × (1
s , s) ⊂ SΣ.

Then for each s > 1, the natural embedding

(5.36) ιs : Vs ↪→W

satisfies ι∗sλs = rα.

Proof. Define a family {fs}s≥1 of smooth functions, see Figure 2 :

(5.37) fs : [0,∞)× [0,∞)→ (0,∞)

such that

(5.38) fs(σ, r) =


r, (σ, r) ∈ [0, s)× (1

s , s),
1

2s−1 , (σ, r) ∈ [0, s)× (0, 1
2s−1),

2s− 1, (σ, r) ∈ [0, s)× (2s− 1,∞),

2s− 1, (σ, r) ∈ [2s− 1,∞)× (0,∞).
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and finally such that

(5.39)
∂fs
∂σ

(σ, r) ≥ 0, for all (s, σ, r) ∈ [1,∞)× [0,∞)× [0,∞).

The fact that such functions fs exist is clear from Figure 2. On M \M0 ×

0 s 2s− 1 σ

1
2s−1

2s− 1

1
s

s

r fs(σ, r) = 2s− 1

fs(σ, r) = r

fs(σ, r) = 1
2s−1

Figure 2: The function fs(σ, r).

P \ P0, where both the σ and r-coordinates are defined, we set

(5.40) λs := fsγ + β.

The condition (5.39) guarantees that ωs := dλs is symplectic where defined,
and it is clear that statements (2) and (3) from the Lemma are satisfied. It
remains to extend λs to all of W . This is done simply by “continuity”:

(5.41) λs =


fs(0, r)γ + β, on M0 × P \ P0,

fs(σ, 0)γ + β, on M \M0 × P0,
1

2s−1γ + β, on M0 × P0.

�
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Definition 5.6. Given a path ϕ = {ϕt}0≤t≤1 of compactly supported con-
tactomorphisms of Σ, we define the number s0(ϕ) by:

(5.42) s0(ϕ) := max{1, κ(ϕ), σ(ϕ)},

where κ(ϕ) was defined in Definition 2.14 and σ(ϕ) was defined in (5.28).

We now prove the following result.

Theorem 5.7. For any non-degenerate path ϕ if s > s0(ϕ) then it is pos-
sible to define the Rabinowitz Floer homology RFH∗(Aϕ,W, ωs) (here the
notation indicates that we are working with the symplectic structure ωs on
W ). Moreover the Rabinowitz Floer homology is independent of the choice
of s > s0(ϕ).

Proof. Fix s > s0(ϕ), and consider the action functional Aϕ : Λ(Vs)× R→
R defined in the same way as before, only using the one-form λs. Let

(5.43) J split
conv (W ;ωs) ⊂ Jconv(W ;ωs)

denote the set of families (where Jconv(W ;ωs) is defined as in Definition
2.16), such that in addition the restriction of J to the subset W+

s de-
fined in (5.32) is split - that is, there exist almost complex structures J ′ ∈
Jconv(M ; (2s− 1)dγ) and J ′′ ∈ Jconv(P ; dβ) such that J = J ′ ⊕ J ′′ on this
set. Extend Aϕ to a functional Aκϕ defined on all of Λ(W )× R in a similar

way as before, by replacing Ĥt with a truncated function Ĥκ
t as in (2.18). As

with the Hamiltonian Floer homology, we are now only interested in the set
Crit◦(Aκϕ) of critical points (u = (v, τ, r), η) of Aκϕ with v(S1) ⊂Mσ(ϕ). Since
s > s0(ϕ), all elements of Crit◦(Aκϕ) are contained in ι(Vs) (cf. Lemma 2.15)

and Ĥκ
t is constant outside W+

2s−1+ε for some small ε > 0. Thus if we work

with an almost complex structure J ∈ J split
conv (W ;ωs), the maximum princi-

ple prohibits the cylinder part of flow lines of −∇JAκϕ from ever entering

W+
2s−1+ε, see for instance [30, p18-19]. Thus the Rabinowitz Floer homology

is well defined for this s. We point out that, since the cylinder part of flow
lines stay in a compact subset of W , L∞-bounds on the Lagrange multiplier
are derived as in [15, Theorem 3.1].

In order to prove independence of s, first note that for

s > max{s0(ϕ), s0(ψ)}
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the continuation maps from points (1)-(4) on page 1505 show that

(5.44) RFH∗(Aϕ,W, ωs) ∼= RFH∗(Aψ,W, ωs).

Next we note that if id := idM1×S1 is the contactomorphism with contact
Hamiltonian O as defined in (5.11) then s0(id) = 1. More generally, this is
true for any exact path ϕ of contactomorphisms, since in this case for any ε >
0, every critical point of Aεϕ is contained in Σ× {0} - see Lemma 2.15. Thus
by (5.44) it suffices to show that RFH∗(Aid,W, ωs) is independent of s > 1.
But this is clear, since every critical point of the Rabinowitz action functional
Aid has action value zero, as we are only looking at contractible critical
points and we have filled S1 with a punctured torus P1 rather than a disc D2.
Thus Crit◦(Aid) = M1 × S1 × {0}, and hence regardless of which symplectic
structure we use, as in Lemma 5.3, the Rabinowitz complex reduces to the
Morse complex of a Morse function g̃ : M1 × S1 → R. In particular, it does
not depend on s. �

We denote by RFH∗(Aϕ,W ) the groups RFH∗(Aϕ,W, ωs) for any s >
s0(ϕ).

Theorem 5.8. If ϕ = {ϕt}0≤t≤1 is the lift of f = {ft}0≤t≤1 then there ex-
ists a natural isomorphism

(5.45) RFH∗(Aϕ,W ) ∼= HF∗(Af )⊗H∗(S
1;Z2).

Proof. By naturality it suffices to prove the theorem in the case f = idM1
and

ϕ = id := idM1×S1 . In this case as in the proof of the last part of Theorem 5.7,
one has

(5.46) RFH∗(Aid,W ) ∼= HM∗+n(g̃),

where g̃ is a Morse function on M1 × S1. We choose g̃ = (g, g′), where g is
the Morse function considered in the proof of Lemma 5.3, and g′ : S1 → R
is a Morse function with two critical points τmin and τmax. This gives

RFH∗(Aid,W ) ∼= HMn+∗(g̃)(5.47)
∼= HM∗(g)⊗HM∗(g

′)(5.48)

∼= HMn+∗(M1, ∂M1)⊗H∗(S
1;Z2).(5.49)

This completes the proof. �
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Remark 5.9. As in Remark 2.17, once again the issue of using Morse-Bott
methods crops up here. Unfortunately here it does not seem possible to en-
tirely eliminate Morse-Bott theory. However the Morse-Bott theory needed
here is comparatively “tame”. Namely, the action functional has precisely
one critical manifold on which it takes the critical value 0. Whilst as in
Remark 2.17 one can easily define the two Floer theories without needing
to use Morse-Bott theory, we are unaware of an easy way to prove Theo-
rem 5.8 without using Morse-Bott methods. Nevertheless, we can at least
reduce the situation to a special case of a result covered by Frauenfelder’s
Habilitationsschrift [28]. Namely, instead of choosing f = idM1

in (5.45), one
can instead choose f to be generated by a C2-small Morse function on M1.
The isomorphism in Theorem 5.8 can then be obtained by making use of a
correpondence theorem relating trajectories upstairs and downstairs, which
is a (very) special case of [28, Theorem A].

Definition 5.10. As before, we denote by µΣ ∈ RFHn(Σ,W ) the non-zero
and spectrally finite class (in fact with spectral value c(idΣ, µΣ) = 0) ob-
tained under the isomorphisms from Theorem 5.8 and (5.15) from the class
[M1]⊗ [S1].

5.4. Relating the capacities

Definition 5.11. We define c(ϕ) := c(ϕ, µΣ) in the same way as before for

ϕ ∈ C̃ont0,c(Σ, ξ).

As long as we work with compactly supported contactomorphisms Propo-
sition 3.9 remains true and its proof is literally the same.

Proposition 5.12. Let ϕ, ψ ∈ C̃ont0,c(Σ, ξ) be two non-degenerate paths.
Then we have the estimate

c(ψ) ≤ c(ϕ) +K(ϕ,ψ)(5.50)

≤ c(ϕ) + emax{κ(ϕ),κ(ψ)}‖h− k‖+,(5.51)

where h and k are the contact Hamiltonians of ϕ and ψ, respectively. In
particular, we have In particular, we have

(5.52) ht(x) ≤ kt(x) ∀x ∈ Σ, t ∈ [0, 1] =⇒ c(ϕ) ≥ c(ψ)

and the same implication with nonstrict inequalities.
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The analogue of Corollary 3.18 remains true, too, again with the same
proof.

Corollary 5.13. Suppose ϕ ∈ C̃ont0,c(Σ, ξ) has contact Hamiltonian ht.
Assume ht ≤ 0 and ht 6= 0 for all t ∈ [0, 1]. Then c(ϕ) > 0.

Remark 5.14. Recall in the closed case we proved that c(t 7→ θtT , Z) =
−T + c(idΣ, Z) for any T ∈ R (cf. Statement (2) of Theorem 1.1. In this
setting the Reeb flow θt is of course not compactly supported, and thus
its spectral value is not defined. Nevertheless it is still possible to define a
“compactly supported Reeb flow” ϑt : Σ→ Σ which agrees with the normal
Reeb flow on a neighborhood of a given closed Reeb orbit. For small T it is
still possible to compute the spectral numbers c(ϑT ), but it is no longer the
case that c(ϑT ) = −T . Indeed, whilst for negative T one still has c(ϑT ) =
−T , for positive T one has c(ϑT ) = 0. This shows that Corollary 5.13 fails
if one instead assumes ht ≥ 0. Details are contained in Appendix A.

Definition 5.15. For an open non-empty set U ⊂ Σ with compact closure
we set

(5.53) c(U) := sup
{
c(ϕ) | ϕ ∈ C̃ont0,c(Σ, ξ), S(ϕ) ⊂ U

}
∈ (−∞,∞].

and

(5.54) c(U) := dc(U)e.

Theorem 5.16. Suppose f ∈ H̃amc(M,dγ), and let ϕ ∈ C̃ont0,c(Σ, ξ) de-
note the lift of f . Then

(5.55) cM (f) = c(ϕ).

Moreover, if O ⊂M is open with compact closure then

(5.56) cM (O) = c(O × S1).

Proof. The first statement follows from Lemma 5.4 and Theorem 5.8. Thus
clearly cM (O) ≤ c(O × S1). In order to complete the proof, we must show

that given any ψ ∈ C̃ont0,c(Σ, ξ) with S(ψ) ⊂ O × S1 there exists f ∈
H̃amc(M,dγ) with S(f) ⊂ O and such that the lifted contactomorphism
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ϕ satisfies

(5.57) c(ψ) ≤ c(ϕ).

This follows from Proposition 5.12: if ht denotes the contact Hamiltonian of
ψ we choose functions Ft : M → R supported inside O satisfying

(5.58) ht ≥ Ft.

The lift ϕ of the corresponding path f of Hamiltonian diffeomorphisms gen-
erated by F satisfies the required inequality. �

In this setting, we can use the fact that cM satisfies the triangle inequality
to obtain more information on c. In particular, we obtain a criterion for c(U)
to be finite (cf. Remark 4.9).

Corollary 5.17. Suppose U ⊂ Σ is a non-empty open set with compact
closure, and suppose that prM (U) is a Hamiltonian displaceable subset of
M . Then c(U) <∞.

Proof. We have c(U) ≤ c(prM (U)× S1) = cM (prM (U)), and cM (prM (U)) <
∞ by Theorem 5.20 below. �

We also have the following result:

Proposition 5.18. Suppose that ϕ ∈ C̃ont0,c(Σ, ξ) has the property that
prM (S(ϕ)) is a Hamiltonian displaceable subset of M . Then c(ϕ) ≥ 0.

Proof. First assume that ϕ is the lift of an element f ∈ H̃amc(M,dγ). The
fact that cM (f) ≥ 0 whenever S(f) is Hamiltonian displaceable is well known,
but for the convenience of the reader we give the short argument here. Sup-
pose that g1 ∈ Hamc(M,dγ) displaces S(f). Let {gt}0≤t≤1 denote some path
connecting g1 to idM . Choose a path of paths fs = {f st }0≤s,t≤1 connecting
f = f1 with the constant path f0

t ≡ idM such that g1 displaces S(fs) for
each 0 ≤ s ≤ 1. Then we claim that

(5.59) cM (gf) = cM (g).

Indeed, the point is that any fixed point of g1f1 lies outside of S(f), and
hence is necessarily also a fixed point of g1. The same is true if we replace
f1 with fs1 for any 0 ≤ s ≤ 1, and thus it follows that Spec(Agfs) is inde-
pendent of s. Since the function s 7→ cM (gfs) is continuous and Spec(Agfs)
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is nowhere dense, it must be constant. This proves (5.59). We then argue as
follows:

cM (g) = cM (gf−1f)(5.60)

≤ cM (gf−1) + cM (f)(5.61)

≤ cM (g) + cM (f)(5.62)

where (5.61) used the triangle inequality for cM and (5.62) used (5.59) ap-
plied to f−1. This implies that cM (f) ≥ 0. Finally to prove the general case
where ϕ is not necessarily the lift of a Hamiltonian path f , we use the same
argument from the proof of Theorem 5.16. Namely, we can find a path f of
Hamiltonians with support inside prM (S(ϕ)) such that cM (f) ≤ c(ϕ). Then
the argument above shows that cM (f) ≥ 0, and hence the same is true of
c(ϕ). �

Let us quickly recall the definition of the Hofer-Zehnder capacity. See
for instance [36] for an in depth treatment.

Definition 5.19. Let O be an open subset of M . We define the Hofer-
Zehnder capacity cHZ(O,M) of O to

(5.63) cHZ(O,M) := sup {‖H‖ | H is admissible} ,

where H ∈ C∞c (O,R) is admissible if there exists an open set O ⊂ O such
that H|O = maxH, and if the flow ϕtH has no non-constant periodic orbits
of period ≤ 1.

We also define the displacement energy by

(5.64) e(O,M) := inf
{
‖H‖ | ϕ1

H(O) ∩ O = ∅
}
.

The following result is due to Frauenfelder and Schlenk [30, Corollary 8.3],
see also [29, 47].

Theorem 5.20. If (M1, γ1) is a Liouville domain then

(5.65) cHZ(O,M) ≤ cM (O) ≤ e(O,M).

Denote by B(r) the open ball of radius r in R2m. Then cHZ(B(r),R2m) =
πr2. We can now prove the following result, which was stated as Theo-
rem 1.24 in the Introduction.
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Theorem 5.21. Let (M,dγ) denote a Liouville manifold. Equip R2m with
the standard symplectic form dλstd, and consider the contact manifold (Σ̃, α+
λstd), where Σ̃ := M × R2m × S1. Suppose O ⊆M is open and cHZ(O,M) <
∞. Choose r0 > 0 such that

(5.66)
⌈
πr2

0

⌉
< dcHZ(O,M)e

and set

(5.67) r1 :=
√

1
π cHZ(O,M) + 1

Then there does not exist ϕ ∈ Cont0,c(Σ̃, α+ λstd) such that

(5.68) ϕ(O ×B(r1)× S1) ⊂ O ×B(r0)× S1.

Proof. We first prove that for r > r1,

(5.69) cHZ(O ×B(r),M × R2m) ≥ cHZ(O,M).

Fix ε > 0. We consider a cutoff function β : [0,∞)→ [0, 1] such that β(s) = 1
for s ∈ [0, r − 1− ε] and β(s) = 0 for s > r, and such that −1 ≤ β′(s) ≤ 0
for all s ∈ [0,∞). Now suppose H is any admissible function on O. Define
Hβ : M × R2m → R by

(5.70) Hβ(x, y) := β(|y|)H(x).

The symplectic gradient of Hβ with respect to dγ ⊕ dλstd is

(5.71) XHβ(x, y) = (β(|y|)XH(x), H(x)Xβ(y)) .

Suppose γ : R→M × R2m is a non-constant periodic orbit of XHβ , with
γ(t+ T ) = γ(t) for all t ∈ R. We shall show that T > 1, so that Hβ is ad-
missible. Write γ(t) = (γx(t), γy(t)). Then

(5.72) γ̇x = β(|γy|)XH(γx), γ̇y = H(γx)Xβ(γy).

Since |β′| ≤ 1 we see that if γx is non-constant then T > 1. But if γx is
constant, say γx(t) = x0, then we must have H(x0) 6= 0. Since β′ is non-zero
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only for |γy| ∈ (r − 1− ε, r) we necessarily have

(5.73) T ≥ 1

H(x0)
π(r − 1− ε)2 ≥ 1

cHZ(O,M)
π(r − 1− ε)2.

Thus as long as

(5.74) π(r − 1− ε)2 > cHZ(O,M),

Hβ is indeed admissible. Since clearly max Hβ = max H, we see that

(5.75) cHZ(O ×B(r),M × R2n) ≥ cHZ(U,M)

provided that (5.74) holds. Since ε was arbitrary we obtain (5.69). Moreover
for any r > 0 one always has

(5.76) e(O ×B(r),M × R2n) ≤ πr2,

as can be checked directly. The remainder of the proof is an easy application
of Theorem 5.16, Theorem 5.20 and Theorem 4.8. Indeed, we have

c(O ×B(r0)× S1) =
⌈
e(O ×B(r0),M × R2m)

⌉
≤
⌈
πr2

0

⌉
< dcHZ(O,M)e
≤
⌈
cHZ(O ×B(r1),M × R2m)

⌉
≤ cM×R2m(O ×B(r1))

= c(O ×B(r1)× S1).(5.77)
�

Here is an application of Theorem 5.21, which can be seen as a more quan-
titive (albeit weaker, and with more hypotheses) version of the infinitesimal
result of [24, Theorem 1.18].

Corollary 5.22. Suppose X is a closed connected oriented Riemannian
manifold which admits a circle action S1 ×X → X such that the loop t 7→ t ·
p is not contractible for some p ∈ X. Then if O ⊂ T ∗X is any neighborhood
of the zero section then the conclusion of Proposition 5.21 holds.

Proof. A result of Kei Irie [37] proves that in this setting the Hofer-Zehnder
capacity of the unit disc bundle D∗X ⊂ T ∗X is finite. Thus the same is true
of any neighborhood O ⊂ T ∗X of the zero section, and hence the hypotheses
of Theorem 5.21 are satisfied. �
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Appendix A. The “compactly supported Reeb flow”

In this Appendix we continue to work in the setting from the previous sec-
tion. Thus Σ = M × S1 is a prequantisation space associated to the comple-
tion of a Liouville domain (M1, dγ1). Our aim is to construct a “compactly
supported Reeb flow” whose support is contained in a tubular neighborhood
of a closed Reeb orbit, and explicitly compute the spectral value. This result
has been alluded to in Remarks 3.19 and 5.14.

Theorem A.1. Suppose (Σ = M × S1, ξ) satisfies Assumption (C). Let
x(t) = (y0, t) denote a closed embedded Reeb orbit (for some fixed y0 ∈M .)
Then there exists ρ0 > 0 and a neighborhood B of y0 in M with the follow-
ing significance: For all ρ ∈ R with |ρ| < ρ0, there exists an exact contacto-

morphism ϑρ ∈ C̃ont0(Σ, ξ) with S(ϑρ) ⊂ B × S1 with the property that if
x ∈ S(ϑρ) is a translated point of ϑρ then

(A.1) ϑρ(x) = θρ(x).

In other words, from the point of view of translated points, ϑρ is “the Reeb
flow supported on x”. Moreover if B′ ⊂ B is any neigborhood of y0 then for
|ρ| sufficiently small we have S(ϑρ) ⊂ B′ × S1. The spectral value c(ϑρ) is
given by

(A.2) c(ϑρ) =

{
0, 0 ≤ ρ < ρ0,

−ρ, −ρ0 < ρ ≤ 0.

Convention: In this appendix we equip R2n\{0} with polar coordinates
(s, φ) where s ∈ (0,∞) and φ = (φ1, . . . , φ2n−1) with φj ∈ R/2πZ. In these
coordinates the standard contact form αstd is given by

(A.3) αstd =
∑
j

1
2s

2dφj + dτ.

This has the slightly unfortunate consequence that τ is 1-periodic but the
φj are 2π-periodic! These conventions are chosen so that cR2n(B(r)) = πr2

instead of 1
2r

2.

Proof of Theorem A.1. The argument is local in M , and hence it is sufficient
to prove the result in the special case M = R2n. Thus Σ = R2n × S1 and
α = αstd is given by (A.3). The Reeb vector field R of α is just ∂

∂τ , and the
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Reeb flow θt is given by

(A.4) θt(s, φ, τ) = (s, φ, τ + t︸ ︷︷ ︸
mod 1

).

Fix ρ ∈ R such that 0 < |ρ| < πr2. Let f : [0,∞)× [0,∞)→ R denote a
smooth function with the following properties:

1) There exists ε > 0 such that f(s) = ρ for 0 ≤ s ≤ ε and f(s) = 0 for
r − ε ≤ s ≤ r.

2) If ρ < 0 then f ′(s) ≥ 0 for all s. If ρ > 0 then f ′(s) ≤ 0 for all s.

3) If ρ < 0 then 2πs− f ′(s) > 0 for all s > 0. If ρ < 0 then 2πs+ f ′(s) <
0 for all s > 0.

Note that such a function only exists because |ρ| < πr2. Indeed, if ρ < 0
then since 2πs− f ′(s) > 0 one has

(A.5) − ρ =

∫ r

0
f ′(s)ds <

∫ r

0
2πsds = πr2.

Conversely it is easy to see that when |ρ| < πr2 such functions really do
exist. Now consider the contactomorphism ϑρ of R2n × S1 whose contact
Hamiltonian ht : R2n × S1 is given by

(A.6) ht(s, ζ, τ) = f(r).

The contact vector field Xt of ht is defined by the equations

(A.7) α(Xt) = ht, iXtdα = dht(R)α− dht.

This gives

(A.8) Xt(s, φ, τ) =
∑
j

f ′(s)

s

∂

∂φj
+

(
f(s)− sf ′(s)

2

)
∂

∂τ
.

We can integrate this to obtain
(A.9)

ϑρt (s, φ, τ) =

(
s, φ1 +

f ′(s)

s
t, . . . , φ2n−1 +

f ′(s)

2
t, τ +

(
f(s)− sf ′(s)

2

)
t

)
,
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and hence translated points of ϑρ1 are tuples (s, φ, τ) with

(A.10)
f ′(s)

s
∈ 2πZ,

and the time-shift is given by

(A.11) η = f(s)− sf ′(s)

2
.

By assumption one never has f ′(s)/2πs ∈ Z unless f ′(s) = 0. In other words,
translated points only occur when 0 ≤ s ≤ ε or when r − ε ≤ s ≤ ∞. In par-
ticular, the only translated points of ϑρ that lie in the interior of the support
of ϑρ are the points in B(ε)× S1. Since ϑρ = θρ on B(ε)× S1, this justifies
our claim that ‘from the point of view of translated points’, ϑρ is the Reeb
flow.

To complete the proof let us compute the spectral value of ϑρ. Note
that the contractible action spectrum of Aϑρ is just {0,−ρ}, and hence we
certainly have c(ϑρ) ∈ {0,−ρ}. For ρ < 0, one has ht < 0 on the interior of
its support and hence by Corollary 5.13 one has c(ϑρ) > 0, which implies
c(ϑρ) = −ρ. Thus for ρ > 0 we must have c(ϑρ) = 0. This completes the
proof. �
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