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We introduce a new version of Floer theory of a non-monotone La-
grangian submanifold which only uses least area holomorphic disks
with boundary on it. We use this theory to prove non-displaceability
theorems about continuous families of Lagrangian tori in the com-
plex projective plane and other del Pezzo surfaces.
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1. Introduction

In this paper, we introduce a new non-displaceability criterion for Lagrangian
submanifolds of a given compact symplectic (four-)manifold. The criterion
is based on a Hamiltonian isotopy invariant of a Lagrangian submanifold
constructed using J-holomorphic disks of lowest area with boundary on the
Lagrangian. We apply our criterion to prove non-displaceability results for
Lagrangian tori in CP 2 and in other del Pezzo surfaces, for which there is
no clear alternative proof using standard results in Floer theory. We shall
focus on dimension four in line with our intended applications, although we
do have a clear vision of a higher-dimensional setup to which our methods
generalise — it is mentioned briefly in Subsection 1.5.
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1410 D. Tonkonog and R. Vianna

1.1. Challenges in Lagrangian rigidity

A classical question in symplectic topology, originating from Arnold’s con-
jectures and still inspiring numerous advances in the field, is to understand
whether two given Lagrangian submanifolds L1, L2 are (Hamiltonian) non-
displaceable, meaning that there exists no Hamiltonian diffeomorphism that
would map L1 to a Lagrangian disjoint from L2. It is sometimes referred to
as the Lagrangian rigidity problem, and the main tool to approach it is
Floer theory. Historically, most applications of Floer theory were focused
on monotone (or exact) Lagrangians, as in those cases it is foundationally
easier to set up, and usually easier to compute.

More recent developments have given access to non-displaceability re-
sults concerning non-monotone Lagrangians. One of such developments is
called Floer cohomology with bulk deformations, introduced by Fukaya, Oh,
Ohta and Ono [26, 27]. Using bulk deformations, the same authors [29] found
a continuous family of non-displaceable Lagrangian tori T̂a in CP 1 × CP 1,
indexed by a ∈ (0, 1/2]. (When we say that a Lagrangian is non-displaceable,
we mean that it is non-displaceable from itself.) For some other recent meth-
ods, see [2, 10, 56].

Remark 1.1. To be able to observe such “rigidity for families” phenom-
ena, it is essential to consider non-monotone Lagrangian submanifolds, as
spaces of monotone ones up to Hamiltonian isotopy are discrete, on compact
symplectic manifolds.

It is easy to produce challenging instances of the displaceability problem
which known tools fail to answer. For example, consider the 2:1 cover CP 1 ×
CP 1 → CP 2 branched along a conic curve. Taking the images of the above
mentioned tori under this cover, we get a family of Lagrangian tori in the
complex projective plane denoted by Ta ⊂ CP 2 and indexed by a ∈ (0, 1/2]
— see Section 3 and [57, Section 3] for details. It turns out that the tori
Ta ⊂ CP 2 have trivial bulk-deformed Floer cohomology for any bulk class
b ∈ H2(CP 2,Λ0), as we check in Proposition 3.8. While one can show that
the tori Ta are displaceable when a > 1/3, the following remains to be a
conjecture.

Conjecture 1.1. For each a ∈ (0, 1/3], the Lagrangian torus Ta ⊂ CP 2 is
Hamiltonian non-displaceable.
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Low-area Floer theory 1411

Motivated by this and similar problems, we introduce a new approach,
called low-area Floer theory, to solve rigidity problems concerning some non-
monotone Lagrangians. Let us list some application of this technique.

Theorem 1.2. For each a ∈ (0, 1/9], the torus Ta ⊂ CP 2 is Hamiltonian
non-displaceable from the monotone Clifford torus TCl ⊂ CP 2.

Remark 1.2. An interesting detail of the proof, originating from
Lemma 1.7 (ii), is that we use Z/8 coefficients for our Floer-theoretic in-
variants, and it is impossible to use a field, or the group Z, instead. To place
this into context, recall that conventional Floer cohomology over finite fields
can detect non-displaceable monotone Lagrangians unseen by characteristic
zero fields: the simplest example is RPn ⊂ CPn, see e.g. [30]; a more so-
phisticated example, where the characteristic of the field to take is not so
obvious, is the Chiang Lagrangian studied by Evans and Lekili [22], see also
J. Smith [49]. However, there are no examples in conventional Floer theory
that would require working over a torsion group which is not a field.

We can also show analogous results for some other del Pezzo surfaces.
They are summarised below, and the precise formulations are contained in
Theorems 3.6, 3.7.

Theorem 1.3. In CP 1 × CP 1 and in CP 2#3CP 2 with a monotone sym-
plectic form, there exists a one-parametric family of Lagrangian tori which
are non-displaceable from the standard monotone toric fibre.

The next result exhibits a two-parametric family of non-displaceable La-
grangian tori in symplectic del Pezzo surfaces. By a symplectic del Pezzo sur-
faces we mean monotone symplectic 4-manifolds, whose classification follows
from a series of works [37, 38, 41, 42, 50–52]. Recall that their list consists of
blowups of CP 2 at 0 ≤ k ≤ 8 points, and of CP 1 × CP 1. By the correspon-
dence between monotone symplectic 4-manifolds and complex Fano surfaces
we will omit the term “symplectic”, and call them del Pezzo surfaces from
now on.

Theorem 1.4. Let X be a del Pezzo surface and S, S′ ⊂ X be a pair of La-
grangian spheres with homological intersection [S] · [S′] = 1. Then, for some
0 < a0, b0 < 1/2, there exist two families of Lagrangian tori indexed by a, b:

Ta, T
′
b ⊂ X, a ∈ (0, a0), b ∈ (0, b0),
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1412 D. Tonkonog and R. Vianna

lying in a neighbourhood of the sphere S resp. S′, and such that Ta is non-
displaceable from T ′b for all a, b as above.

In our construction, any two different tori in the same family {Ta} will
be disjoint, and the same will hold for the {T ′b}.

Recall that pairs of once-intersecting Lagrangian spheres exist inside k-
blowups of CP 2 when k ≥ 3. For example, one can take Lagrangian spheres
with homology classes [Ei]− [Ej ] and [Ej ]− [Ek] where {Ei, Ej , Ek} are
three distinct exceptional divisors, as explained in [21, 46]. These spheres
can also be seen from the almost toric perspective [55]: on an almost toric
base diagram for the corresponding symplectic del Pezzo surface, these La-
grangian spheres projects onto the segment connecting two nodes on the
same monodromy line. For homology reasons, blowups of CP 2 at 2 or less
points do not contain such pairs of spheres.

1.2. Lagrangian rigidity from low-area Floer theory

We call a symplectic manifold X monotone if ω and c1(X) give positively
proportional classes in H2(X;R). Similarly, a Lagrangian is called mono-
tone if the symplectic area class and the Maslov class of L are positively
proportional in H2(X,L;R). It is quite common to use a definition where
the proportionality is only required over π2(X) or π2(X,L); we stick to the
homological version for convenience.

Floer theory for monotone Lagrangians has abundant algebraic struc-
ture, a particular example of which are the open-closed and closed-open
string maps. There is a non-displaceability criterion for a pair of monotone
Lagrangians formulated in terms of these string maps; it is due to Biran and
Cornea and will be recalled later. Our main finding can be summarised as
follows: it is possible define a low-area version of the string maps for non-
monotone Lagrangians, and prove a version of Biran-Cornea’s theorem under
an additional assumption on the areas of the disks involved. This method can
prove non-displaceability in examples having no clear alternative proof by
means of conventional Floer theory for non-monotone Lagrangians. We shall
focus on dimension 4, and proceed to a precise statement of our theorem.

Fix a ring Q of coefficients; it will be used for all (co)homologies when
the coefficients are omitted. (The coefficient ring does not have to include
a Novikov parameter in the way it is done in classical Floer theory for non-
monotone manifolds; rings like Z/kZ are good enough for our purpose.) Let
L,K ⊂ X be two orientable, not necessarily monotone, Lagrangian surfaces
in a compact symplectic four-manifold X.
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Low-area Floer theory 1413

Denote

(1.1) a = min{ω(u) > 0 | u ∈ H2(X,L;Z), µ(u) = 2},

assuming this minimum exists. This is the least positive area of topological
Maslov index 2 cycles with boundary on L. (For example, we currently do
not allow the above set of areas to have infimum equal to 0.) Also, denote
by A the next-to-the-least such area:

(1.2) A = min{ω(u) > a | u ∈ H2(X,L;Z), µ(u) = 2}.

We assume that the minimum exists, including the possibility A = +∞ =
min ∅; the latter is the case when L is monotone.

Fix a tame almost complex structure J and a point pL ∈ L. Let {DL
i }i ⊂

(X,L) be the images of all J-holomorphic Maslov index 2 disks of area a such
that pL ∈ ∂DL

i and whose boundary is non-zero in H1(L;Z) (their number
is finite, by Gromov compactness [32]). Assume that

(1.3)
∑
i

∂[DL
i ] = 0 ∈ H1(L)

and the disks are regular with respect to J . Recall that by convention, the
above equality needs to hold over the chosen ring Q. Then let

OC(2)
low ([pL]) ∈ H2(X)

be any element whose image under the map H2(X)→ H2(X,L) equals∑
i[D

L
i ]. We call this class the low-area string invariant of L. Observe that

it is defined only up to the image

H2(L)→ H2(X),

i.e. up to [L] ∈ H2(X), compare Remark 2.2. In the cases of interest, we will

have [L] = 0; but regardless of this, we prove in Lemma 2.2 that OC(2)
low ([pL])

is independent of the choices we made, up to [L]. Finally, consider K instead
of L and define the numbers b and B analogously to a and A, respectively.
Let pK be a point on K.

Theorem 1.5. Assume that Condition (1.3) holds for L and K, the min-
ima a, A, b, B exist, and [L] = [K] = 0. Suppose that a+ b < min(A,B)
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1414 D. Tonkonog and R. Vianna

and the homological intersection number below is non-zero over Q:

OC(2)
low ([pL]) · OC(2)

low ([pK ]) 6= 0.

Then L and K are Hamiltonian non-displaceable from each other.

Above, the dot denotes the intersection pairing H2(X)⊗H2(X)→ Q.
We refer to Subsection 2.1 for a comparison with Biran-Cornea’s theorem in

the monotone setup, and for a connection of OC(2)
low with the classical open-

closed string map. Note that the above intersection number is well-defined
due to the hypothesis [L] = [K] = 0.

Remark 1.3. The condition [L] = [K] = 0 is in fact totally non-restrictive,
due to the following two “lower index” non-displaceability criteria. First, if
[L] · [K] 6= 0, then L and K are non-displaceable for topological reasons.
Second, if

[L] · OC(2)
low ([pK ]) 6= 0 or [K] · OC(2)

low ([pL]) 6= 0,

one can show that K and L are non-displaceable by a variation on The-
orem 1.5 whose proof can be carried analogously. Finally, if the condi-

tions of the previous two criteria fail, the intersection number OC(2)
low ([pL]) ·

OC(2)
low ([pK ]) is well-defined, and the reader can check that the proof of The-

orem 1.5 still applies.

Our proof of Theorem 1.5 uses the idea of gluing holomorphic disks
into annuli and running a cobordism argument by changing the confor-
mal parameter of these annuli. This argument has been prevously used in
Abouzaid’s split-generation criterion [1] and in Biran-Cornea’s theorem [7,
Section 8.2.1]. We follow the latter outline with several important modi-
fications involved. The condition a+ b < min(A,B), which does not arise
when both Lagrangians are monotone (A = B = +∞), is used in the proof
when the disks DL

i and DK
j are glued to an annulus of area a+ b; the

condition makes sure higher-area Maslov index 2 disks on L cannot bub-
ble off this annulus. This condition, for example, translates to a < 1/9 in
Theorem 1.2. Additionally, we explain how to achieve transversality for the
annuli by domain-dependent perturbations — although arguments of this
type appeared before in the context of Floer theory [1, 12, 19, 45, 47], we
decided to explain this carefully.



i
i

“6-Tonkonog” — 2019/2/12 — 17:14 — page 1415 — #7 i
i

i
i

i
i
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Remark 1.4. Our proof only uses classical transversality theory for holo-
morphic curves, as opposed to virtual perturbations required to set up con-
ventional Floer theory for non-monotone Lagrangians; compare [13].

Remark 1.5. There is another (weaker) widely used notion of monotonic-
ity of X or L, where ω is required to be proportional to c1(X) resp. Maslov
class of L only when restricted to the image of π2(X) resp. π2(X,L) under
the Hurewicz map. It is possible to use this definition throughout the paper;
moreover, the numbers a and A, see (1.1), (1.2), can be defined considering
u ∈ π2(X,L). All theorems still hold as stated, except for small adaptations
in the statement of Lemma 1.7, e.g. requiring c1(X)|π2(X) = kω|π2(X).

Next, we shall need a technical improvement of our theorem. Fix a field
K, and choose an affine subspace

SL ⊂ H1(L;K).

Remark 1.6. The field K and the ring Q appearing earlier play indepen-
dent roles in the proof, and need not be the same.

Consider all affine subspaces parallel to SL; they have the form SL + l
where l ∈ H1(L;K). For each such affine subspace, select all holomorphic
disks among the {DL

i } whose boundary homology class over K belongs to
that subspace and are non-zero. Also, assume that the boundaries of the
selected disks cancel over Q. This cancellation has to happen in groups
for each affine subspace of the form SL + l. The stated condition can be
rewritten as follows:

(1.4)
∑

DL
i : [∂DL

i ]∈SL+l

[∂DL
i ] = 0 ∈ H1(L;Q) for each l ∈ H1(L;K).

This condition is in general finer than the total cancellation of boundaries
(1.3), and coincides with (1.3) when we choose SL = H1(L;K). Under Con-
dition (1.4), we can define

OC(2)
low ([pL], SL) ⊂ H2(X)

to be any element whose image under H2(X)→ H2(X,L) equals∑
DL

i : [∂DL
i ]∈SL

[DL
i ] ∈ H2(X,L).



i
i

“6-Tonkonog” — 2019/2/12 — 17:14 — page 1416 — #8 i
i

i
i

i
i

1416 D. Tonkonog and R. Vianna

Note that here we only use the disks whose boundary classes belong to

the subspace SL ⊂ H1(L;K) and ignore the rest. Again, OC(2)
low ([pL], SL) ⊂

H2(X) is well-defined up to [L]. The same definitions can be repeated for
another Lagrangian submanifold K.

Theorem 1.6. Let L and K be orientable Lagrangian surfaces and SL ⊂
H1(L,K), SK ⊂ H1(L,K) affine subspaces. Assume that Condition (1.4)
holds for L, SL and K,SK , the minima a, A, b, B exist, and [L] = [K] = 0.
Suppose that a+ b < min(A,B) and the homological intersection number be-
low is non-zero over Q:

OC(2)
low ([pL], SL) · OC(2)

low ([pK ], SK) 6= 0.

Then L and K are Hamiltonian non-displaceable.

We point out that, as in Remark 1.3, the condition [L] = [K] = 0 is in
fact non-restrictive; however we will not use this observation.

When L or K is monotone, we shall drop the subscript low from our

notation for OC(2)
low (·).

1.3. Computing low-area string invariants

There is a natural setup for producing Lagrangian submanifolds whose least-
area holomorphic disks will be known. Let us start from an orientable mono-
tone Lagrangian L ⊂ T ∗M disjoint from the zero section, and for which we
know the holomorphic Maslov index 2 disks and therefore can compute our
string invariant. We are still restricting to the 4-dimensional setup, so that
dimM = 2. Next, let us apply fibrewise scaling to L in order to get a family
of monotone Lagrangians La ⊂ T ∗M indexed by the parameter a ∈ (0,+∞);
we choose the parameter a to be equal to the areas of Maslov index 2 disks
with boundaries on La. (The scaling changes the area but not the enumer-
ative geometry of the holomorphic disks.) The next lemma, explained in
Section 3, follows from an explicit knowledge of holomorphic disks; recall
that we drop the low subscript from the string invariants as we are in the
monotone setup.

Lemma 1.7. (i) There are monotone Lagrangian tori L̂a ⊂ T ∗S2, indexed
by a ∈ (0,+∞) and called Chekanov-type tori, which bound Maslov index
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2 disks of area a and satisfy Condition (1.3) over Q = Z/4, such that:

(1.5) OC(2)([pL̂a
]) = 2[S2] ∈ H2(T ∗S2;Z/4).

Moreover, there is a 1-dimensional affine subspace

SL̂a
= 〈β〉 ⊂ H1(L̂a;Z/2)

satisfying Condition (1.4) over K = Z/2 and Q = Z/2, such that:

(1.6) OC(2)([pL̂a
], SL̂a

) = [S2] ∈ H2(T ∗S2;Z/2).

(ii) Similarly, there are monotone Lagrangian tori La ⊂ T ∗RP 2, indexed by
a ∈ (0,+∞), which bound Maslov index 2 disks of area a and satisfy
Condition (1.3) over Q = Z/8, such that:

(1.7) OC(2)([pLa
]) = [4RP 2] ∈ H2(T ∗RP 2;Z/8).

In both cases, the tori are pairwise disjoint; they are contained inside
any given neighbourhood of the zero-section for small enough a.

Remark 1.7. Note that RP 2 is non-orientable so it only has fundamental
class over Z/2, however the class [4RP 2] modulo 8 also exists.

Now suppose M itself admits a Lagrangian embedding M → X into
some monotone symplectic manifold X (We do not require that M ⊂ X
be monotone.) By the Weinstein neighbourhood theorem, this embedding
extends to a symplectic embedding i : U → X for a neighbourhood U ⊂
T ∗M of the zero-section. Possibly by passing to a smaller neighbourhood,
we can assume that U is convex. By construction, the Lagrangians La will
belong to U for small enough a:

La ⊂ U, a ∈ (0, a0).

(The precise value of a0 depends on the size of the available Weinstein
neighbourhood.) We define the Lagrangians

(1.8) Ka = i(La) ⊂ X, a ∈ (0, a0)

which are generally non-monotone in X (even if M ⊂ X were monotone).
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Consider the induced map i∗ : H2(T ∗M)→ H2(X). The next lemma
explains that, for sufficiently small a, the low-area string invariants for the
Ka ⊂ X are the i∗-images of the ones for the La ⊂ T ∗M . We also quantify
how small a needs to be.

Lemma 1.8. In the above setup, suppose that the image of the inclusion-
induced map H1(L;Z)→ H1(T ∗M ;Z) is N -torsion, N ∈ Z. Let M ⊂ (X,ω)
be a Lagrangian embedding into a monotone symplectic manifold (X,ω).
Assume that ω is scaled in such a way that the area class in H2(X,M ;R)
is integral, and c1(X) = kω ∈ H2(X;Z) for some k ∈ N. Assume that

a < 1/(k +N).

(i) The number a indexing the torus Ka equals the number a defined by
Equation (1.1). The number A defined by Equation (1.2) exists (could be
A = +∞) and satisfies:

A ≥ 1− (k −N)a

N
.

(ii) There is a tame almost complex structure on X such that all area-a holo-
morphic Maslov index 2 disks in X with boundary on Ka belong to i(U),
and i establishes a 1-1 correspondence between them and the holomorphic
disks in T ∗M with boundary on La.

In particular, when (i) and (ii) apply and La ⊂ T ∗M satisfy Condition (1.3),
the following identity holds in H2(X):

i∗(OC(2)([pLa
)]) = OC(2)

low ([pKa
]).

Similarly, if La ⊂ T ∗M satisfy Condition (1.4) then:

i∗(OC(2)([pLa
], SLa

)) = OC(2)
low ([pKa

], SKa
),

where SKa
= i∗(SLa

) ⊂ H1(Ka;K).

A proof is found in Section 2. To give a preview, part (i) is purely
topological and part (ii) follows from a neck-stretching argument.

Remark 1.8. The above constructions and proofs work for any Liouville
domain taken instead of T ∗M . For example, there is another class of Li-
ouville domains containing interesting monotone Lagrangian tori: these do-
mains are rational homology balls whose skeleta are the so-called Lagrangian
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pinwheels. The embeddings of Lagrangian pinwheels in CP 2 have beed stud-
ied in [23], and using such embeddings we can employ the above construction
and produce non-monotone tori in CP 2 which are possibly non-displaceable.
In the language of almost toric fibrations on CP 2 constructed in [53], these
tori live above the line segments connecting the baricentre of a moment tri-
angle to one of the three nodes. See also Subsection 1.5 for a short discussion
of higher dimensions.

1.4. Applications to non-displaceability

Now that we have explicit calculations of the low-area string invariants avail-
able, we can start applying our main non-displaceability result. Our first
application is to prove Theorem 1.4.

Proof of Theorem 1.4. Let S ⊂ X be a Lagrangian sphere in a del Pezzo sur-
face X with an integral symplectic form. For concreteness, we normalise the
symplectic form to make it primitive integral (it integrates by 1 over some in-
tegral homology class). Let us define the Lagrangian tori Ta = i(L̂a) ⊂ X as
in (1.8), using the monotone tori L̂a ⊂ T ∗S2 which appeared in Lemma 1.7(i),
and the Lagrangian embedding S ⊂ X. The tori Ta are indexed by a ∈ (0, a0)
for some a0 > 0. Define the tori T ′b indexed by b ∈ (0, b0) analogously, using
S′ instead of S.

After decreasing a0 and b0 if required, we see that the conditions from
Lemma 1.8(i,ii) are satisfied. Here N = 1 and k ∈ {1, 2, 3} depending on the
del Pezzo surface, by the normalization of our symplectic form. Therefore
by Lemma 1.8 and Lemma 1.7(i) we have over K = Q = Z/2:

OC(2)
low (Ta, STa

) = [S] ∈ H2(X;Z/2), OC(2)
low (T ′a, ST ′

a
) = [S′] ∈ H2(X;Z/2)

for the choices of STa
⊂ H1(Ta;Z/2) and ST ′

a
coming from the one in Lemma

1.7. Now let us apply Theorem 1.6. We can check the condition a+ b <
min(A,B) using Lemma 1.8(i):

a+ b < 2
k+N ≤ min(1−(k−N)a

N , 1−(k−N)b
N ) ≤ min(A,B)

whenever a, b < 1
k+N = 1

k+1 . Finally,

OC(2)
low (Ta, STa

) · OC(2)
low (T ′a, ST ′

a
) = [S] · [S′] = 1 ∈ Z/2.

So Theorem 1.6 implies that Ta is non-displaceable from T ′b, for small a, b.
�
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We will prove Theorem 1.2 in Section 3. In fact, we shall see that the tori
Ta ⊂ CP 2 appearing in Theorem 1.2 can be obtained via Formula (1.8) us-
ing the monotone tori La ⊂ T ∗RP 2 from Lemma 1.7(ii), and the Lagrangian
embedding RP 2 ⊂ CP 2 described in Section 3.1. We could have taken this
as a definition, but our actual exposition in Section 3 is different: we intro-
duce the tori Ta ⊂ CP 2 in a more direct and conventional way, and subse-
quently use the existing knowledge of holomorphic disks for them to prove
Lemma 1.7(ii).

1.5. Higher-dimensional versions

One can state generalisations of Theorems 1.5 and 1.6 to higher dimen-
sions. We shall omit the precise statements and instead mention a major
class of potential examples where the low-area string invariants are easy
to define, and which hopefully makes the details clear. The setup is as in
Subsection 1.3: one starts with a monotone Lagrangian submanifold L in a
Liouville domain M rescaled so as to stay close to the skeleton of M . Then
one takes a symplectic embedding M ⊂ X into some symplectic manifold X.

Consider the composite Lagrangian embedding L ⊂ X which is not nec-
essarily monotone. Provided that the symplectic form on X is rational and
the image of H1(L)→ H1(M) is torsion, the classes in H2(X,L) whose sym-
plectic area is below some treshold (depending on how close we scale L to
the skeleton of M) lie in the image of H2(M,L) and therefore behave as
if L were monotone (meaning that their area is proportional to the Maslov
index). This makes it possible to define low-area string invariants for L ⊂ X.
An analogue of Lemma 1.7 can easily be established as well; the outcome is
that the low-area string invariants of L in X are obtained as the composition

OClow : HF∗(L)
OC−−→ H∗(M)→ H∗(X),

where HF∗(L) is the Floer homology of L in M , and OC is the classical
monotone closed-open string map (see Section 2 for references). In this setup,
it is most convenient to define OClow as the above composition. Observe that
this setup does not restrict to the use of Maslov index 2 disks, and also allows
higher-index disks.

Let us provide a statement which is similar to Theorem 1.4.

Theorem 1.9 (sketch). Let L ⊂M and K ⊂ N be monotone Lagrangian
submanifolds in Liouville domains, and these inclusions are H1-torsion. Let
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X be a monotone symplectic manifold, and N,M ⊂ X be symplectic em-
beddings. Suppose there are classes α ∈ HF∗(L), β ∈ HF∗(K) such that the
following pairing in X is non-zero:

OClow (α) · OClow (β) 6= 0.

By the above pairing, we mean the composition of the intersection product
with the projection: H∗(X)⊗H∗(X)→ H∗(X)→ H0(X).

Let La,Kb ⊂ X be the Lagrangians obtained by scaling L,K towards the
skeleton within their Liouville domains, and then embedding them into X via
N,M ⊂ X. Then La,Kb ⊂ X are Hamiltonian non-displaceable from each
other for sufficiently small a, b. �

We remark that the above theorem does not incorporate the modification
we made in Theorem 1.5, namely to only consider disks with homologically
non-trivial boundary; we also have not explored the possibility to re-organise
disks in groups like in Theorem 2.1.

The idea of proof is to establish a version of Lemma 1.7 saying that
OClow defined as the above composition coincides with low-area disk counts
on the actual Lagrangian L ⊂ X. The key observation is that for any interval
I = (r, s) ⊂ R, one can scale L sufficiently close to the skeleton so that all
elements in H2(X,L) of Maslov index within I and sufficiently low area,
come from H2(M,L). This can be improved to (−∞, s) for holomorphic
disks by taking r = −n, because holomorphic disks of Maslov index µ < −n
generically do not exist. Given this, one shows that the proof Biran-Cornea’s
theorem can be carried by only using low-area curves; this forces all the
possible bubbling to happen in the monotone regime. The details are left to
the reader.

Currently, there seems to be a lack of interesting computations of open-
closed maps for monotone Lagrangians in higher-dimensional Liouville do-
mains — this prevents us of from providing some concrete applications of the
higher-dimensional story. We believe such applications will become available
in the future.

Structure of the article

In Section 2 we prove Theorems 1.5 and 1.6, discuss their connection with
the monotone case and some generalisations. We also prove Lemma 1.8.
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In Section 3 we prove Lemma 1.7, Theorem 1.2 and the related theorem
for CP 1 × CP 1 and CP 2#3CP 2. Then we explain why Floer theory with
bulk deformation does not readily apply to the Ta ⊂ CP 2.
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2. The non-displaceability theorem and its discussion

In this section we prove Theorems 1.5 and 1.6, and further discuss them. We
conclude by proving Lemma 1.8, which is somewhat unrelated to the rest of
the section.

2.1. The context from usual Floer theory

We start by explaining Biran-Cornea’s non-displaceability criterion for mono-
tone Lagrangians and its relationship with Theorems 1.5 and 1.6. We assume
that the reader is familiar with the language of pearly trajectories to be used
here, and shall skip the proofs of some facts we mention if we do not use
them later.

Recall that one way of defining the Floer cohomology HF ∗(L) of a mono-
tone Lagrangian L ⊂ X uses the pearl complex of Biran and Cornea [6–8];
its differential counts pearly trajectories consisting of certain configurations
of Morse flowlines on L interrupted by holomorphic disks with boundary on
L. A remark about conventions: Biran and Cornea write QH∗(L) instead of
HF ∗(L); we do not use the Novikov parameter, therefore the gradings are
generally defined modulo 2.
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Also recall that the basic fact — ifHF ∗(L) 6=0, then L is non-displaceable
— has no intrinsic proof within the language of pearly trajectories. Instead,
the proof uses the isomorphism relating HF ∗(L) to the (historically, more
classical) version of Floer cohomology that uses Hamiltonian perturbations.
Nevertheless, there is a different non-displaceability statement whose proof
is carried out completely in the language of holomorphic disks. That state-
ment employs an additional structure, namely the maps

OC : HF ∗(L)→ QH∗(X), CO : QH∗(X)→ HF ∗(L)

defined by counting suitable pearly trajectories in the ambient symplec-
tic manifold X. These maps are frequently called the open-closed and the
closed-open (string) map, respectively; note that Biran and Cornea denote
them by iL, jL. The statement we referred to above is the following one.

Theorem 2.1 ([8, Theorem 2.4.1]). For two monotone Lagrangian sub-
manifolds L,K of a closed monotone symplectic manifold X, suppose that
the composition

(2.1) HF ∗(L)
OC−−→ QH∗(X)

CO−−→ HF ∗(K)

does not vanish. Then L and K are Hamiltonian non-displaceable. �

In this paper we restrict ourselves to dimension four, so let us first discuss
the monotone setting of Theorem 2.1 in this dimension. Recalling that a
del Pezzo surface has H1(X) = 0, we see that there are three possible ways
for (2.1) not to vanish.

To explain this, it is convenient to pass to chain level: let CF ∗(L) be
the Floer chain complex of L (either the pearl complex or the Hamiltonian
Floer complex) and CF ∗(X) be the Morse (or Hamiltonian Floer) chain
complex of X, both equipped with Morse Z-gradings. For the definition of
the closed-open maps, see [6, 8] in the pearl setup, and [44, 48] among others
in the Hamiltonian Floer setup. Below we will stick to the setup with pearls.

First, we can consider the topological part of (2.1):

CF 0(L)
OC−−→
µ=0

CF 2(X)
CO−−→
µ=0

CF 2(K).

In this case, as indicated by the µ = 0 labels, the relevant string maps neces-
sarily factor through CF 2(X) and are topological, i.e. involve pearly trajec-
tories containing only constant Maslov index 0 disks. The composition above
computes the homological intersection [L] · [K] inside X, where [L], [K] ∈
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H2(X). If [L] · [K] 6= 0, then L and K are topologically non-displaceable;
otherwise we proceed to the next possibility; compare Remark 1.3. Observe
that we are using the cohomological grading convention: pearly trajectories
of total Maslov index µ contribute to the degree −µ part of CO, and to the
degree (dimL− µ) part of OC on cochain level.

The second possibility for CO ◦ OC not to vanish is via the contribution
of pearly trajectories whose total Maslov index sums to two; the relevant
parts of the string maps factor as shown below. In the examples we are
aiming at, we are going to have [L] = [K] = 0, so the µ = 0 parts below will
vanish on homology level.

CF 0(L)
OC−−→
µ=0

CF 2(X)
CO−−→
µ=2

CF 0(K),

CF 2(L)
OC−−→
µ=2

CF 2(X)
CO−−→
µ=0

CF 2(K),

The remaining part of CO ◦ OC breaks as a sum of three compositions
factoring as follows:

(2.2) CF 0(X)

∼=
µ=0

%%

CF 2(L)
µ=2
//

µ=4
99

∼=
µ=0 %%

CF 2(X)
µ=2
// CF 0(K)

CF 4(X)

µ=4

99

The labels here indicate the total Maslov index of holomorphic disks
present in the corresponding pearly trajectories; this time the µ = 0 parts
are isomorphisms on homology. Therefore, to compute CO ◦ OC|HF 2(L) we
need to know the Maslov index 4 disks. We wish to avoid this, keeping in
mind that in our examples we will know only the Maslov index 2 disks.

To this end, we perform the following trick to “single out” the Maslov
index 2 disk contribution in the diagram above. Let us modify the defini-
tion of CO, OC by only considering J-holomorphic disks whose boundary is
non-zero in H1(L;Z) or H1(K;Z). Denote this modified map by OC(2) and
consider the composition:

(2.3) CF 2(L)
OC(2)−−−→
µ=2

CF 2(X)
CO(2)

−−−→
µ=2

CF 0(K)
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Here the modified maps OC(2), CO(2) by definition count pearly trajectories
contributing to the middle row of (2.2), i.e. containing a single disk, of
Maslov index 2, with the additional condition that the boundary of that
disk is homologically non-trivial. The superscript (2) reflects that we are
only considering Maslov index 2 trajectories, ignoring the Maslov index 0
and 4 ones; the condition about non-zero boundaries is not reflected by our
notation. We claim that if composition (2.3) does not vanish, then K,L are
non-displaceable.

This modified non-displaceability criterion we have just formulated is
the specialisation of Theorem 1.5 to the case when both Lagrangians are
monotone. Indeed, if both L,K are monotone and [L] · [K] = 0, then

OC(2)([pL]) · OC(2)([pK ]) 6= 0

if and only if the composition (2.3) is non-zero; compare Lemma 2.3. A proof
can also be traced using the original approach [7, Theorem 8.1] — see the
proof of Theorem 1.5 in Subsection 2.2 for further details.

Speaking of our second result, Theorem 1.6, in the monotone case it
corresponds to another refinement of Biran-Cornea’s theorem which does
not seem to have appeared in the literature. Note that this refinement is not
achieved by deforming the Floer theories of L and K by local systems.

Remark 2.1. Recall that, for a two-dimensional monotone Lagrangian L
equipped with the trivial local system, we have∑

j

∂[DL
j ] = 0

if and only if HF ∗(L) 6= 0, and in the latter case HF ∗(L) ∼= H∗(L). Indeed,∑
j ∂[DL

j ] computes the Poincaré dual of the Floer differential d([pL]) where

[pL] is the generator of H2(L); if we pick a perfect Morse function on L,
then pL is geometrically realised by its maximum. If d([pL]) = 0, then by
duality the unit is not hit by the differential, hence HF ∗(L) 6= 0. For a non-
monotone L, the condition

∑
i ∂[DL

i ] = 0 from Equation (1.3) above is a
natural low-area version of the non-vanishing of Floer cohomology.

Remark 2.2. Recall that OC(2)
low ([pL]) ∈ H2(X) is well-defined up to [L]

as explained in Section 1. This is analogous to a well known phenomenon
in monotone Floer theory: recall that there is no canonical identification
between HF ∗(L) and H∗(L), even when they are abstractly isomorphic [8,
Section 4.5]. In particular, HF ∗(L) is only Z/2-graded and the element
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[pL] ∈ HF ∗(L) corresponding to the degree 2 generator of H2(L) is defined
up to adding a multiple of the unit 1L ∈ HF ∗(L). Recall that OC(1L) is
dual to [L] ∈ H2(X), and this matches with the fact that OC([pL]), as well
as OC(2)([pL]), is defined up to [L].

Remark 2.3. Charette [14] defined quantum Reidemeister torsion for
monotone Lagrangians whose Floer cohomology vanishes. While it is possi-
ble that his definition generalises to the non-monotone setting, making our
tori Ta ⊂ CP 2 valid candidates as far as classical Floer theory is concerned,
it is shown in [14, Corollary 4.1.2] that quantum Reidemeister torsion is
always trivial for tori.

2.2. Proof of Theorem 1.5

Our proof essentially follows [7, Theorem 8.1] with the following differences:
we check that certain unwanted bubbling, impossible in the monotone case,
does not occur in our setting given that a+ b < min(A,B); we include an
argument which “singles out” the contribution of Maslov index 2 disks with
non-trivial boundary from that of Maslov index 4 disks; and relate the string

invariants OC(2)
low ([pL]), OC(2)

low ([pK ]) defined in Section 1 to the ones appear-
ing more naturally in pearly trajectory setup. We assume that the reader is
familiar with the setup moduli spaces of pearly trajectories [7].

Remark 2.4. We point out that [7, Theorem 8.1] also appears as [8, The-
orem 2.4.1], and in the latter reference the authors take a different approach
to a proof based on superheaviness.

Lemma 2.2. Under the assumptions of Subsection 1.2, the string invari-

ants OC(2)
low ([pL]) and OC(2)

low ([pL], SL) are independent of the choice of J and
the marked point pL.

Proof. First, we claim that for a generic 1-parametric family of almost com-
plex structures, L will not bound holomorphic disks of Maslov index µ < 0.
Indeed, for simple disks this follows for index reasons (recall that dimX = 4);
next, non-simple disks with µ < 0 must have an underlying simple disk with
µ < 0 by the decomposition theorem of Kwon and Oh [33] and Lazzarini
[34], so the non-simple ones do not occur as well.

Therefore, the only way disks with µ = 2 and area a can bubble is into
a stable disk consisting of µ = 0 and µ = 2 disks; the latter µ = 2 disk must
have positive area less than a. However, such µ = 2 disks do not exist by
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Condition (1.1). We conclude that Maslov index 2, area a disks cannot bub-
ble as we change J , and because the string invariants are defined in terms
of these disks, they indeed do not change. A similar argument (by moving
the point along a generic path) shows the independence of pL. �

Remark 2.5. In the monotone case, the fact that the counts of Maslov
index 2 holomorphic disks was first pointed out in [20]. A rigorous proof uses
the works [33, 34] as above, and is well known. Similar results for (possibly)
non-monotone Lagrangians in dimension 4 appear in [13, Lemmas 2.2, 2.3].

Suppose there exists a Hamiltonian diffeomorphism φ such that φ(L) ∩
K = ∅, and redenote φ(L) by L, so that L ∩K = ∅.

Pick generic metrics and Morse functions f1, f2 on L,K. We assume that
the functions f1, f2 are perfect (it simplifies the proof, but is not essential);
such exist because L,K are two-dimensional and orientable. Consider the
moduli space M of configurations (“pearly trajectories”) of the three types
shown in Figure 1, with the additional condition that the total boundary
homology classes of these configurations are non-zero both in H1(L;Z) and
H1(K;Z). (By writing “total” we mean that if the configuration’s boundary
on a single Lagrangian has two components, their sum must be non-zero.)

Figure 1: The moduli space M consists of pearly trajectories of these types.

Here are the details on the pearly trajectories from Figure 1 that we use
to define M:

• The Maslov index and the area of each curve is prescribed in the figure;

• The conformal parameter of each annulus is allowed to take any value R ∈
(0,+∞). Recall that the domain of an annulus with conformal parameter
R can be realised as {z ∈ C : 1 ≤ |z| ≤ eR};

• Every flowline has a time-length parameter l that can take any value
l ∈ [0,+∞). The configurations with a contracted flowline (i.e. one with
l = 0) correspond to interior points of M, because gluing the disk to the
annulus is identified with l becoming negative;
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• The annulus has two marked points, one on each boundary component,
that are fixed in the domain. This means that if we identify an annulus
with conformal parameter R with {z ∈ C : 1 ≤ |z| ≤ eR}, then the two
marked points can be e.g. 1 and eR;

• The disks also have marked points as shown in the figure. Because the
disks are considered up to reparametrisation, the marked points can also
be assumed to be fixed in the domain;

• The curves evaluate to the fixed points fixed points pK ∈ K, pL ∈ L at
the marked points as shown in Figure 1. They satisfy the Lagrangian
boundary conditions as shown in Figure 1;

• The non-vanishing of total boundary homology classes (stated above)
must be satisfied.

Recall that the Fredholm index of unparametrised holomorphic annuli
without marked points and with free conformal parameter equals the Maslov
index. Computing the rest of the indices, one shows that M is a smooth
1-dimensional oriented manifold [7, Section 8.2], assuming M is regular.
The regularity of the annuli can be achieved by a small domain-dependent
perturbation of the J-holomorphic equation; we give a detailed discussion
of it in the next subsection. Now, we continue with the proof assuming the
regularity of the annuli (and hence ofM, because the transversality for disks
is classical).

The spaceM can be compactified by adding configurations with broken
flowlines as well as configurations corresponding to the conformal parameter
R of the annulus becoming 0 or +∞. We describe each of the three types of
configurations separately and determine their signed count.

(i) The configurations with broken flowlines are shown in Figure 2. As
before, they are subject to the condition that the total boundary homology
classes of the configuration are non-zero both in H1(L;Z) and H1(K;Z).
The annuli have a certain conformal parameter R0 and the breaking is an
index 1 critical point of fi [7, Section 8.2.1, Item (a)].

Figure 2: Configurations with broken flowlines, called type (i).
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The count of the sub-configurations consisting of the disk and the attached
flowline vanishes: this is a Morse-theoretic restatement Condition (1.3) say-
ing that

∑
i ∂[DL

i ] =
∑

j ∂[DK
j ] = 0. Hence (by the perfectness of the fi)

the count of the whole configurations in Figure 2 also vanishes, at least if
we ignore the condition of non-zero total boundary. Separately, the count of
configurations in Figure 2 whose total boundary homology class is zero either
in L or K, also vanishes. Indeed, suppose for example that the ω = a disk
in Figure 2 (left) has boundary homology class ϑ ∈ H1(L;Z) and the lower
boundary of the annulus has class −ϑ; then the count of the configurations
in the figure with that disk and that annulus equals the homological inter-
section (−ϑ) · ϑ = 0, since L is an oriented surface. We conclude that the
count of configurations in the above figure whose total boundary homology
classes are non-zero, also vanishes.

(ii) The configurations with R = 0 contain a curve whose domain is an
annulus with a contracted path connecting the two boundary components.
The singular point of this domain must be mapped to an intersection point
K ∩ L, so these configurations do not exist if K ∩ L = ∅ [7, Section 8.2.1,
Item (c)].

(iii) The configurations withR = +∞ correspond to an annulus breaking
into two disks, one with boundary on K and the other with boundary on
L [7, Section 8.2.1, Item (d)]. One of the disks can be constant, and the
possible configurations are shown in Figure 3.

Figure 3: The limiting configurations when R = +∞, called type (iii).

In fact, there is another potential annulus breaking at R = +∞ that we
have ignored: the one into a Maslov index 4 disk on one Lagrangian and
a (necessarily constant) Maslov index 0 disk on the other Lagrangian, see
Figure 4. This broken configurations cannot arise from the configurations
in M by the non-zero boundary condition imposed on the elements of this
moduli space. The fact that a Maslov index 0 disk has to be constant is due
to the generic choice of J .

Lemma 2.3. The count of configurations in Figure 3 equals OC(2)
low ([pL]) ·

OC(2)([pK ]) as defined in Section 1.
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Figure 4: The limiting configurations for R = +∞ which are impossible by
the non-zero boundary condition.

Proof. In the right-most configuration in Figure 3, forget the ω = b disk so
that one endpoint of the ∇f1-flowline becomes free; let CL be the singular
2-chain on L swept by these endpoints. In other words, for each disk DL

i ,
consider the closure of

CLi = {φl(x) ∈ L : x ∈ ∂DL
i , φl is the time-l flow of ∇f1, l ≥ 0}

oriented so that the component of ∂CLi corresponding to ∂DL
i has the same

orientation as ∂DL
i . Then CL =

⋃
i CLi .

We claim that ∂CL =
∑

i ∂D
L
i on chain level. Indeed, the boundary ∂CL

corresponds to zero-length flowlines that sweep
∑

i ∂D
L
i , and to flowlines

broken at an index 1 critical point of f1, shown below:

The endpoints of these configurations sweep the zero 1-chain. Indeed, we
are given that

∑
i ∂[DL

i ] = 0 so the algebraic count of the appearing index 1
critical points represents a null-cohomologous Morse cocycle, therefore this
count equals zero by perfectness of f1. It follows that ∂CL =

∑
i ∂D

L
i . Simi-

larly, define the 2-chain CK on K, ∂CK =
∑

j ∂D
K
j , by forgetting the ω = a

disk in the second configuration of type (iii) above, and repeating the con-

struction. It follows that the homology class OC(2)
low ([pL]) from Subsection 1.2

can be represented by the cycle

(∪iDL
i ) ∪ CL,

and similarly OC(2)([pK ]) can be represented by (∪jDK
j ) ∪ CK . This inter-

section number can be expanded into four chain-level intersections:

OC(2)
low ([pL]) · OC(2)

low ([pK ]) = (∪iDL
i ) · (∪jDK

j ) + (∪iDL
i ) · CK

+ CL · (∪jDK
j ) + CL · CK .

The last summand vanishes because L ∩K = ∅, and the other summands
correspond to the three configurations of type (iii) pictured earlier. �
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Remark 2.6. Note that the equality between the intersection number

OC(2)
low ([pL]) · OC(2)

low ([pK ]) and the count of the R = +∞ boundary points
of M holds integrally, i.e. with signs. This follows from the general set-up
of orientations of moduli spaces in Floer theory, which are consistent with
taking fibre products and subsequent gluings, see e.g. [1, Appendix C] for
the case most relevant to us. For example, in our case the signed intersec-
tion points between a pair of holomorphic disks can be seen as the result of
taking fibre product along evaluations at interior marked points; therefore
these intersection signs agree with the orientations on the moduli space of
the glued annuli.

If the moduli spaceM is completed by the above configurations (i)–(iii),
it becomes compact. Indeed, by the condition a+ b < min(A,B), Maslov
index 2 disks on L with area higher than a cannot bubble. Disks of Maslov
index µ ≥ 4 cannot bubble (for finite R) on either Lagrangian because the
rest of the configuration would contain an annulus of Maslov index µ ≤ 0
passing through a fixed point on the Lagrangian, and such configurations
have too low index to exist generically (the annuli can be equipped with a
generic domain-dependent perturbation of J , hence are regular). Similarly,
holomorphic disks of Maslov index µ ≤ 0 cannot bubble as they do not exist
for generic perturbations of the initial almost complex structure J . (This
is true for simple disks by the index formula, and follows for non-simple
ones from the decomposition theorems [33, 35], as such disks must have an
underlying simple disk with µ ≤ 0.) Side bubbles of Maslov index 2 disks
(not carrying a marked point with a pK or a pL constraint) cannot occur
because the remaining Maslov index 2 annulus, with both the pK and pL
constraints, would not exist generically. Finally, as usual, sphere bubbles
cannot happen in a 1-dimensional moduli space because such bubbling is a
codimension 2 phenomenon in the monotone case.

By the compactness of M, the signed count of its boundary points (i)–
(iii) equals zero. We therefore conclude from Lemma 2.3 and the preceding

discussion that OC(2)
low ([pL]) · OC(2)([pK ]) = 0, which contradicts the hypoth-

esis of Theorem 1.5. �

2.3. Transversality for the annuli

In the proof of Theorem 1.5, we mentioned that in order to make the an-
nuli appearing in the moduli space M regular, we need to use a domain-
dependent perturbation of the J-holomorphic equation on those annuli. We
wish to make this detail explicit.
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First, let us recall the moduli space of domains used to define M, see
Figure 1, and its compactification. Recall that the annuli inM were allowed
to have free conformal parameter

R ∈ (0,+∞),

and the limiting cases R = 0, R = +∞ were included in the compactifcation
of M as explained in the proof above.

Figure 5: The annuli AR with various conformal parameters, and a compact
disk D = DR supporting the domain-dependent almost complex structure
JD.

Now, for each conformal parameter R ∈ (0,+∞), we pick some closed
disk inside the corresponding annulus:

DR ⊂ AR = {1 ≤ |z| ≤ eR}

depending smoothly on R, and disjoint from the regions where the domains
AR degenerate as R→ +∞ or R→ 0. To see what the last condition means,
recall that the annulus AR used for defining M has two fixed boundary
marked points; we are assuming they are the points 1 and eR. With these
marked points, the annulus has no holomorphic automorphims. We can then
uniformise the family of annuli {AR}R∈(0,∞) as shown in Figure 5. To do so,
we start with an annulus of a fixed conformal parameter, say R = 1. The
annuli with R < 1 are obtained from the R = 1 annulus by performing a slit
along a fixed line segment C ⊂ A1 connecting the two boundary components.
The annuli for R > 1 are obtained by stretching the conformal structure of
the R = 1 annulus in a fixed neighbourhood of some core circle S ⊂ A1.
In this presentation, all annuli AR have a common piece of domain away
from a neighbourhood of C ∪ S, and it is notationally convenient to choose
DR ⊂ AR to be a fixed closed disk D inside that common domain, for each
R. See Figure 5.

Next, let J denote the space of compatible almost complex structures
on X. Let J ∈ J be the almost complex structure we have been using in
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the proof of Theorem 1.5 — namely, we are given that the relevant J-
holomorphic disks are regular.

Now pick some domain-dependent almost complex structure

JAR
∈ C∞(AR,J ), JAR

≡ J away from DR.

Using the above presentation where all the DR are identified with a fixed
disk D, it is convenient to take JAR

|DR
to be the same domain-dependent

almost complex structure

JD ∈ C∞(D,J )

for all R, such that JD ≡ J near ∂D.
In our (modified) definition ofM, we use the following domain-dependent

perturbation of the J-holomorphic equation for each of the appearing annuli:

(2.4) du+ JAR
(u) ◦ du ◦ j = 0, u : AR → X

Here j is the complex structure on AR. Observe that (2.4) restricts to the
usual J-holomorphic equation, with the constant J , away from DR. For this
reason, the equation is J-holomorphic in the neighbourhoods of the nodal
points formed by: domain degenerations as R→ +∞ and R→ 0, and the
side bubbling of holomorphic disks. The standard gluing and compactness
arguments work in this setting, compare e.g. Sheridan [47, Proof of Propo-
sition 4.3]; therefore, the R = 0 and R = +∞ compactifications of M from
the proof of Theorem 1.5 are still valid in our perturbed case, as well as
the fact that the flowline length 0 configurations in Figure 1 (middle and
right) are interior points of M. (This is a very hands-on version of the gen-
eral notion of a consistent choice of perturbation data in the setup of by
Seidel [45], see also [47], except that we are not using a Hamiltonian term
in our equation.) We keep all disks appearing in M to be J-holomorphic,
without any perturbation.

It is well known that the solutions to (2.4) are regular for a Baire set of
JAR
|DR

, or equivalently for a Baire set of JD’s [19, Lemma 4.1, Corollary 4.4].
The fact that a perturbation in a neighbourhood of a point is sufficient
follows from the unique continuation principle for Cauchy-Riemann type
equations and is contained in the statement of [19, Lemma 4.1].

In particular, there is a sequence JAR,n converging to the constant J :

JAR,n|DR
→ J in C∞(DR,J )

such that the annuli solving (2.4) with respect to JAR,n are regular for each n.
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The rest of the proof of Theorem 1.5 requires one more minor modifi-
cation. Looking at Figure 3 (left), one of the holomorphic disks now carries
a domain-dependent perturbation supported in the subdomain D inherited
from the annulus, compare Figure 5 (right). (Which of the two disks car-
ries this perturbation depends on which side of the core circle the D was in
the annulus.) We note that the disks in Figure 3 (middle and right) do not
carry a perturbation, as they arise as side bubbles from the annuli. We claim
that for large enough n, the count of the configurations in Figure 3 (left)
where one of the disks carries an above perturbation, equals to the same
count where the disks are purely J-holomorphic. Indeed, it follows from the
fact that JD,n → J , using continuity and the regularity of the unperturbed
J-holomorphic disks. This allows us to use Lemma 2.3 and conclude the
proof.

2.4. Proof of Theorem 1.6

This is a simple modification of the proof of Theorem 1.5, so we shall be brief.
The idea is to redefine the moduli space M by considering only those con-
figurations in Figure 1 whose total boundary homology classes in H1(L;K)
resp. H1(K;K) belong to the affine subspace SL resp. SK .

The only difference in the proof arises when we argue that configura-
tions of type (i) cancel, see Figure 2. At that point of the above proof, we
used Condition (1.3); now we need to use Condition (1.4) instead. Let us
consider configurations as in the left part of Figure 2. Assume that the area
b annulus in the figure has boundary homology class l ∈ H1(L;K) on L.
Then the area a disk of the same configuration has boundary class belong-
ing to the affine subspace SL − l ⊂ H1(L;K); this is true because the total
boundary homology class has to lie in SL. By a Morse-theoretic version of
Condition (1.4), the count of such area a disks with the attached flowlines
(asymptotic to index 1 critical points) vanishes. The rest of the proof goes
without change. �

2.5. Adjusting the area conditions

We would like to point out that the area restrictions in Theorems 1.5 and 1.6
can be weakened at the expense of requiring one of the two Lagrangians be
monotone. In the setup of Section 1.2, suppose that K is monotone, so that
B = +∞ and b is the monotonicity constant of X, i.e. ω(β) = b

2µ(β) for
β ∈ H2(X,K). Below is a modified version of Theorem 1.5, which differs by
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the fact that the numbers a,A become redefined compared to those from
Section 1.2. We are still using a coefficient ring Q for homology.

Theorem 2.4. Suppose K,L ⊂ X are orientable Lagrangian surfaces, and
K is monotone. Fix any tame almost complex structure J , and let MC(pt)
be the moduli space of holomorphic disks in the homology class C through a
fixed point in L. Define A to be

(2.5) A = min

ω0 :
∑

C∈H2(X,L):
ω(C)=ω0, µ(C)=2

∑
u∈MC(pt)

[∂u] 6= 0 ∈ H1(L)


(This minimum exists by Gromov compactness.) Let a be any number less
than A, and assume in addition that that all holomorphic disks of area less
than a+ b with boundary on L are regular with respect to the chosen J .

Define OC(2)
low ([pL]) as in Section 1.2 using holomorphic disks of area a. If

a+ b < A, [L] = [K] = 0, and

OC(2)
low ([pL]) · OC(2)([pK ]) 6= 0,

then L and K are Hamiltonian non-displaceable from each other.

The meaning of this modification is as follows. In Theorem 1.5, a and
A were the first two positive areas of classes in H2(X,L); moreover the
boundares of area-a disks had to cancel, in order for the string invariant
to be defined. Here the boundaries of area-a disks still cancel by the new
definition of A and because a < A.

Now we come to the difference: in the setup of Theorem 1.5, there existed
no (topological) disks with areas between a and a+ b, while in the setup of
Theorem 2.4, such disks could exist (and be holomorphic of Maslov index 2),
but their boundaries will still cancel by the assumption a+ b < A. It turns
out that this is sufficient to run the argument.

We can similarly modify Theorem 1.6.

Theorem 2.5. In the setup of the previous theorem, additionally choose
SL as in Section 1. The statement of Theorem 2.4 holds if we replace A by
(2.6)

A = min

ω0 :
∑

C∈H2(X,L):
ω(C)=ω0, µ(C)=2,

∂C∈SL+l

∑
u∈MC(pt)[∂u] 6= 0 ∈ H1(L) for some l ∈ H1(L)


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and OC(2)
low ([pL]) by OC(2)

low ([pL], SL).

Proof of Theorems 2.4, 2.5. Given that K is monotone, OC(2)([pK ]) is ob-
viously invariant under its Hamiltonian isotopies. After this, the proofs of
Theorems 1.5 and 1.6 can be repeated using the fixed J appearing in the
hypothesis, with one obvious adjustment: the configurations in Figures 1
and 2 must allow disks of any area less than a+ b with boundary on L.
The configurations in Figure 2 still cancel by hypothesis. Note that no new
configurations of type (iii) (see Figure 3) need to be included.

In order to achieve the transversality of annuli by the method of Subsec-
tion 2.3, we choose domain-dependent perturbations JAR,n that converge, as
n→ +∞, to the fixed J appearing in the hypothesis. �

2.6. Proof of Lemma 1.8

We start with Part (i) which is purely topological. Assuming thatH1(L;Z)→
H1(T ∗M ;Z) is N -torsion, for any class in D ∈ H2(X,Ta;Z) its N -multiple
can be written in the following general form:

ND = i∗(D
′) +D′′, D′ ∈ H2(T ∗M,La;Z), D′′ ∈ H2(X;Z).

Recall that ω = c1/k ∈ H2(X;R) is integral. Assuming µ(D) = 2, we com-
pute:

µ(ND) = µ(D′) + 2c1(D′′) = 2N,

ω(ND) = a · µ(D′)/2 + c1(D′′)/k

= a(N − c1(D′′)) + c1(D′′)/k ∈ {aN + (1− ka)Z}.

Above, we have used the fact that the La are monotone in T ∗M , and that
c1(D′′) is divisible by k. Therefore,

ω(D) ∈ {a+ 1
N (1− ka)Z}

When a < 1/(k +N), the least positive number in the set {a+ 1
N (1− ka)Z}

is a, and the next one is A = a+ 1
N (1− ka). This proves Lemma 1.8(i).

Notice that area a is achieved if and only if c1(D′′) = ω(D′′) = 0.
To prove Lemma 1.8(ii), first notice that holomorphic disks with bound-

ary on La ⊂ T ∗M must be contained in U ⊂ T ∗M by the maximum prin-
ciple, for any almost complex structure cylindrical near ∂U . Therefore to
prove the desired 1-1 correspondence between the holomorphic disks, it suf-
fices to prove that for some almost complex J on X, the area-a Maslov index
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Figure 6: (a): holomorphic building which is the limit of a holomorphic disk,
and its part C; (b): the area computation for C.

2 holomorphic disks with boundary on Ta are contained in i(U). We claim
that this is true for a J which is sufficiently stretched around ∂i(U), in the
sense of SFT neck-stretching.

Pick the standard Liouville 1-form θ on i(U), and stretch J using a
cylindrical almost complex structure with respect to θ near ∂U . The SFT
compactness theorem [11] implies that disks not contained in i(U) converge
in the neck-stretching limit to a holomorphic building, like the one shown
in Figure 6(a). One part of the building is a curve with boundary on Ta and
several punctures. Denote this curve by C. It is contained in i(U), and its
punctures are asymptotic to Reeb orbits in ∂i(U) which we denote by {γj}.

Recall that above we have shown that the homology class of the original
disk D had the form

D = i∗(D
′)/N +D′′/N ∈ H2(X,Ta;Q),

where D′′ is a closed 2-cycle and ω(D′′) = 0. Denote

D0 = i∗(D
′)/N ∈ H2(X,Ta;Q).

Then ω(D0) = a and D0 can be realised as a chain sitting inside i(U), whose
boundary in Ta matches the one of C (or equivalently, D). Consider the chain
C ∪ (−D0), where (−D0) is the chainD0 taken with the opposite orientation,
see Figure 6(b). Then:

∂ (C ∪ (−D0)) = ∪jγj .

Below, the second equality follows from the Stokes formula using ω = dθ,
which can be applied because the whole chain is contained in i(U):
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ω(C)− a = ω(C ∪ (−D0)) =
∑

j A(γj),

where

A(γj) =
∫
γj
θ > 0,

since θ(Reeb vector field) = 1.
On the other hand, recall that ω(C) < a because C is part of a holo-

morphic building with total area a. This gives a contradiction. We conclude
that all area-a Maslov index 2 holomorphic disks are contained in i(U) for
a sufficiently neck-stretched J . �

3. The tori Ta are non-displaceable from the Clifford torus

In this section we recall the definition of the tori T̂a ⊂ CP 1 × CP 1 which
were studied by Fukaya, Oh, Ohta and Ono [29], and the tori Ta ⊂ CP 2

appearing in the introduction. We prove Theorem 1.2 along with a similar
result for the T̂a ⊂ CP 1 × CP 1, and for an analogous family of tori in the
3-point blowup of CP 2. We also prove Lemma 1.7, and check that Floer
cohomology with bulk deformations vanishes for the Ta.

3.1. Definition of the tori

We choose to define the tori Ta as in [57], using the coupled spin system [43,
Example 6.2.4] on CP 1 × CP 1. Consider CP 1 × CP 1 as the double pen-
dulum composed of two unit length rods: the endpoint of the first rod is
attached to the origin 0 ∈ R3 around which the rod can freely rotate; the
second rod is attached to the other endpoint of the first rod and can also
freely rotate around it, see Figure 7.

Figure 7: The double pendulum defines two functions F̂ , Ĝ on CP 1 × CP 1.
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Define two functions

F̂ , Ĝ : CP 1 × CP 1 → R

to be, respectively, the z-coordinate of the free endpoint of the second rod,
and its distance from the origin, normalised by 1/2. In formulas,

CP 1 × CP 1 = {x2
1 + y2

1 + z2
1 = 1} × {x2

2 + y2
2 + z2

2 = 1} ⊂ R6,

F̂ (x1, y1, z1, x2, y2, z2) =
1

2
(z1 + z2),

Ĝ(x1, y1, z1, x2, y2, z2) =
1

2

√
(x1 + x2)2 + (y1 + y2)2 + (z1 + z2)2.

The function Ĝ is not smooth along the anti-diagonal Lagrangian sphere
S2

ad = {(x1, y1, z1, x2, y2, z2) ∈ CP 1 × CP 1;x2 = −x1, y2 = −y1, z2 = −z1}
(corresponding to the folded pendulum), and away from it the functions F̂
and Ĝ Poisson commute. The image of the “moment map” (F̂ , Ĝ) : CP 1 ×
CP 1 → R2 is the triangle shown in Figure 8.

Figure 8: The images of the “moment maps” on CP 1 × CP 1 and CP 2, and
the lines above which the tori T̂a, Ta are located.

Definition 3.1. For a ∈ (0, 1), the Lagrangian torus T̂a ⊂ CP 1 × CP 1 is
the pre-image of (0, a) under the map (F̂ , Ĝ).

The functions (F̂ , Ĝ) are invariant under the Z/2-action on CP 1 × CP 1

that swaps the two CP 1 factors. This involution defines a 2:1 cover CP 1 ×
CP 1 → CP 2 branched along the diagonal of CP 1 × CP 1, so the functions
(F̂ , Ĝ) descend to functions on CP 2 which we denote by (F,G); the image
of (F,G/2) : CP 2 → R2 is shown in Figure 8. Note that the quotient of the
Lagrangian sphere S2

ad is RP 2 ⊂ CP 2. Being branched, the 2:1 cover cannot
be made symplectic, so it requires some care to explain with respect to
which symplectic form the tori Ta ⊂ CP 2 are Lagrangian. One solution is to
consider CP 2 as the symplectic cut [36] of T ∗RP 2, as explained by Wu [57].
It is natural to take (F,G/2), not (F,G), as the “moment map” on CP 2.
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We normalise the symplectic forms ω on CP 2 and ω̂ in CP 1 × CP 1 so
that ω(H) = 1 and ω̂(H1) = ω̂(H2) = 1, where H = [CP 1] is the generator of
H2(CP 2), and H1 = [{pt} × CP 1], H2 = [CP 1 × {pt}] in H2(CP 1 × CP 1).

Definition 3.2. For a ∈ (0, 1), the Lagrangian torus Ta ⊂ CP 2 is the pre-
image of (0, a/2) under (F,G/2), i.e. the image of T̂a under the 2:1 branched
cover CP 1 × CP 1 → CP 2.

Remark 3.1. There is an alternative way to define the tori T̂a and Ta. It
follows from the work of Gadbled [31], see also [40], that the above defined
tori are Hamiltonian isotopic to the so-called Chekanov-type tori introduced
by Auroux [4]:

T̂a ∼=
{

([x : w], [y : z])

∈ CP 1 × CP 1 \ {z = 0} ∪ {w = 0} :
xy

wz
∈ γ̂a,

∣∣∣ x
w

∣∣∣ =
∣∣∣y
z

∣∣∣ },
Ta ∼=

{
[x : y : z] ∈ CP 2 \ {z = 0} :

xy

z2
∈ γa,

∣∣∣x
z

∣∣∣ =
∣∣∣y
z

∣∣∣ },
where γ̂a, γa ⊂ C are closed curves that enclose a domain not containing
0 ∈ C. The area of this domain is determined by a and must be such that
the areas of holomorphic disks computed in [4] match Table 1; see below.
(Curves that enclose domains of the same area not containing 0 ∈ C give
rise to Hamiltonian isotopic tori.) The advantage of this presentation is that
the tori Ta are immediately seen to be Lagrangian. The tori T̂1/2 and T1/3

the monotone manifestations in CP 1 × CP 1 and CP 2 of the Chekanov torus
[16]. A presentation of the monotone Chekanov tori similar to the above was
described in [20]. Yet another way of defining the tori is by Biran’s circle
bundle construction [5] over a monotone circle in the symplectic sphere which
is the preimage of the top side of the triangles in Figure 8; see again [40].

3.2. Holomorphic disks

We start by recalling the theorem of Fukaya, Oh, Ohta and Ono mentioned
in the introduction.

Theorem 3.3 ([29, Theorem 3.3]). For a ∈ (0, 1/2], the torus T̂a ⊂
CP 1 × CP 1 is non-displaceable. �



i
i

“6-Tonkonog” — 2019/2/12 — 17:14 — page 1441 — #33 i
i

i
i

i
i

Low-area Floer theory 1441

Proposition 3.4. Inside CP 1 × CP 1 and CP 2, all fibres corresponding to
interior points of the “moment polytopes” shown in Figure 8, except for the
tori T̂a when a ∈ (0, 1/2], and Ta when a ∈ (0, 1/3], are displaceable.

Proof. First, note that our model is toric in the complement of the La-
grangians S2

ad ⊂ CP 1 × CP 1 resp. RP 2 ⊂ CP 2, represented by the bottom
vertex of Figure 8. In fact, CP 1 × CP 1 \ S2

ad and CP 2 \ RP 2 can be identi-
fied with the following normal bundles, respectively: O(2) over the diagonal
in CP 1 × CP 1, giving the maximum level set of Ĝ; and O(4) over the conic
in CP 2, giving the maximum level set of G/2. Clearly, these spaces are toric.

Recall the method of probes due to McDuff [39] which is a mechanism
for displacing certain toric fibres. Horizontal probes displace all the fibres ex-
cept the T̂a or Ta, a ∈ (0, 1). Vertical probes over the segment {0} × (0, 1/2]
displace the Ta for a > 1/2, and probes over the segment {0} × (0, 1] to dis-
place the T̂a for a > 1/2. All the displacements given by probes can be per-
formed by a Hamiltonian compactly supported in the complement of the La-
grangians S2 ⊂ CP 1 × CP 1, respectively RP 2 ⊂ CP 2. When 1/3 < a < 1/2,
the method of probes cannot displace Ta.

The proof of this remaining case is due to Georgios Dimitroglou Rizell
(currently not in the literature), who pointed out that for a > 1/3, the tori
Ta, up to Hamiltonian isotopy, can be seen to project onto the open segment
S connecting (0, 0) with (1/3, 1/3) in the standard moment polytope of CP 2

(using the description of Remark 3.1, we may take γa inside the disk of radius
1 for a > 1/3). But there is a Hamiltonian isotopy of CP 2 that sends the
preimage of S to the preimage of the open segment connecting (0, 1) with
(1/3, 1/3), and hence disjoint from S. �

The Maslov index 2 holomorphic disks for the tori T̂a and Ta, with re-
spect to some choice of an almost complex structure for which the disks are
regular, were computed, respectively, by Fukaya, Oh, Ohta and Ono [29] and
Wu [57]. Their results can also be recovered using the alternative presenta-
tion of the tori from Remark 3.1. Namely, Chekanov and Schlenk [15] deter-
mined Maslov index 2 holomorphic disks for the monotone Chekanov tori
T1/3 ⊂ CP 2 and T1/2 ⊂ CP 1 × CP 1, and the combinatorics of these disks
stays the same for the Chekanov-type tori from Remark 3.1 if one uses the
standard complex structures on CP 2 and CP 1 × CP 1 [4, Proposition 5.8,
Corollary 5.13]. We summarise these results in the statement below.
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Ta ⊂ CP 2

Disk class # Area PO term

H − 2β − α 1 a taz−2w−1

H − 2β 2 a taz−2

H − 2β + α 1 a taz−2w

β 1 (1− a)/2 t(1−a)/2z

T̂a ⊂ CP 1 × CP 1

Disk class # Area PO term

H1 − β − α 1 a taz−1w−1

H1 − β 1 a taz−1

H2 − β 1 a taz−1

H2 − β + α 1 a taz−1w
β 1 1− a t1−az

Table 1: The homology classes of all Maslov index two J-holomorphic disks
on the tori; the number of such disks through a generic point on the torus;
their areas; the corresponding monomials in the superpotential function:
all for some regular almost complex structure J . Here α, β denote some
fixed homology classes in H2(CP 2, Ta) or H2(CP 1 × CP 1, T̂a), and ∂α, ∂β
generate H1(Ta,Z) or H1(T̂a,Z).

Proposition 3.5 ([4, 15, 29, 57]). There exist almost complex structures
on CP 2 and CP 1 × CP 1 for which the enumerative geometry of Maslov in-
dex 2 holomorphic disks with boundary on Ta, resp. T̂a, is as shown in Ta-
ble 1, and these disks are regular. Here we are considering the standard spin
structure in the tori to orient the moduli spaces of disks. �

Remark 3.2. The fact that all disks contribute with positive signs is an
argument analogous to [17, Proposition 8.2] — see also [53, Section 5.5] for
a similar discussion.

3.3. Proof of Theorem 1.2

We now have all the ingredients to prove Theorem 1.2 using Theorem 1.5.
Take the almost complex structure J from Proposition 3.5, then the pa-
rameter a indexing the torus Ta ⊂ CP 2 satisfies Equation (1.1) whenever
a < 1/3. Let {Di}i ⊂ (CP 2, Ta) be the images of all J-holomorphic Maslov
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index 2 disks of area a such that p ∈ ∂Di, for a fixed point p ∈ Ta. We work
over the coefficient ring Q = Z/8. According to Table 1,∑

i

∂[Di] = −8 · ∂β = 0 ∈ H1(Ta;Z/8).

Moreover, according to Table 1 we have

(3.1) OC(2)
low ([pTa

]) = 4H ∈ H2(CP 2;Z/8).

Note that the next to the least area A from Equation (1.2) equals A =
(1− a)/2.

Let us move to the Clifford torus. It is well known that the monotone
Clifford torus TCl bounds three Maslov index 2 J-holomorphic disks passing
through a generic point, belonging to classes of the form β1, β2, H − β1 −
β2 ∈ H2(CP 2, TCl ;Z) (and counting positively with respect to the standard
spin structure on the torus) [18], see also [4, Proposition 5.5], and having
area b = 1/3. So we obtain

OC(2)([pTCl
]) = H ∈ H2(CP 2;Z/8).

Proof of Theorem 1.2. Since

OC(2)
low ([pTa

]) · OC(2)([pTCl
]) = 4 6= 0 mod 8,

we are in shape to apply Theorem 1.5, provided that:

a+ b = a+ 1/3 < A = 1−a
2

i.e. a < 1/9. The case a = 1/9 follows by continuity. �

Remark 3.3. We are unable to prove that the tori Ta are non-displaceable

using Theorem 1.5 because OC(2)
low ([pTa

]) · OC(2)
low ([pTa

]) = 16 ≡ 0 mod 8.

Remark 3.4. It is instructive to see why the argument cannot be made to
work over C or Z. Then

∑
i ∂[Di] = −8 · ∂β is non-zero, but this can be fixed

by introducing a local system ρ : π1(Ta)→ C× taking α 7→ −1, β 7→ +1. By
definition, ρ is multiplicative, so for example, ρ(α+ β) = ρ(α)ρ(β). Then
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∑
i ρ(∂[Di]) · ∂[Di] equals

−(−2∂β − ∂α) + 2(−2∂β)− (−2∂β + ∂α) = 0 ∈ H1(Ta;C).

However, in this case

OC(2)
low ([pTa

]; ρ) =
∑
i

ρ(∂[Di])[Di]

vanishes in H2(CP 2;C), because the H-classes from Table 1 cancel in this
sum.

3.4. Similar theorems for CP 1 × CP 1 and CP 2#3CP 2

Using our technique, we can prove a similar non-displaceability result inside
CP 1 × CP 1, which is probably less novel, and CP 2#3CP 2, both endowed
with a monotone symplectic form. We start with CP 1 × CP 1.

Theorem 3.6. For each a ∈ (0, 1/4], the torus T̂a ⊂ CP 1 × CP 1 is Hamil-
tonian non-displaceable from the monotone Clifford torus TCl ⊂ CP 1 × CP 1.

Remark 3.5. We believe this theorem can be obtained by a short elab-
oration on [29]: for the bulk-deformation b used in [29], there should exist
local systems (which in this context are weak bounding cochains [29, Ap-
pendix 1]) on T̂a and TCl such that HF b(T̂a, TCl ) 6= 0, for a ∈ (0, 1/2]. Al-
ternatively, in addition to HF b(T̂a, T̂a) 6= 0 as proved in [29], one can show
that HF b(TCl , TCl ) 6= 0 for some local system, and there should be a bulk-
deformed version of Theorem 2.1 using the unitality of the string maps and
the semi-simplicity of the deformed quantum cohomology QHb(CP 2). Our
proof only works for a ≤ 1/4, but is based on much simpler transversality
foundations.

As a warm-up, let us try to apply Theorem 1.5; we shall work over Z/4.
By looking at Table 1, we see that for a < 1/2 we have

(3.2) OC(2)
low ([pT̂a

]) = 2(H1 +H2) ∈ H2(CP 1 × CP 1;Z/4),

and A = 1− a. One easily shows that

OC(2)([pT̂Cl
]) = H1 +H2 ∈ H2(CP 1 × CP 1;Z/4),

since the Clifford torus bounds holomorphic Maslov index 2 disks of area
b = 1/2, passing once through each point of T̂Cl , in classes of the form β1,
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β2, H1 − β1, H2 − β2 (and counting positively with respect to the standard
spin structure on the torus) [18], see also [4, Section 5.4]. We cannot directly
apply Theorem 1.5 because

OC(2)
low ([pT̂a

]) · OC(2)([pT̂Cl
]) = 4 ≡ 0 mod 4.

Hence we need to use the more refined Theorem 1.6.

Proof of Theorem 3.6. Consider ST̂Cl
⊂ H1(T̂Cl ;Z/2) to be the linear space

generated by [∂β2] and ST̂a
⊂ H1(T̂a;Z/2) generated by ∂β; both satisfy

Condition (1.4) over K = Q = Z/2. So we have:

OC(2)
low ([pT̂a

], ST̂a
) = H1 +H2 ∈ H2(CP 1 × CP 1;Z/2),(3.3)

OC(2)([pT̂Cl
], ST̂Cl

) = H2 ∈ H2(CP 1 × CP 1;Z/2),(3.4)

and hence,

OC(2)
low ([pT̂a

], ST̂a
) · OC(2)([pT̂Cl

], ST̂Cl
) = 1 6= 0 mod 2.

Therefore by Theorem 1.6, T̂a is non-displaceable from T̂Cl provided that
a+ b = a+ 1/2 < A = 1− a, i.e. a < 1/4. �

Next, we pass on to CP 2#3CP 2 which we see as CP 1 × CP 1 blown up
at the two points corresponding to the two top corners of the image of the
“moment map” (F̂ , Ĝ), see Figure 9. If the blowup is of the correct size then
the resulting symplectic form on CP 2#3CP 2 is monotone; see [54, Section
7] for more details. We denote by T̄a the tori in CP 2#3CP 2 coming from the

T̂a ⊂ CP 1 × CP 1, in particular, T̄a = L
1/2
1−a in the notation of [54, Section 7].

We also denote by T̄Cl the monotone torus corresponding to the baricentre
of the standard moment polytope of CP 2#3CP 2.

Figure 9: The images of the “moment maps” on CP 2#3CP 2, and the line
above which the tori T̄a are located.
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Theorem 3.7. For each a ∈ (0, 1/4], the torus T̄a ⊂ CP 2#3CP 2 is Hamil-
tonian non-displaceable from the monotone Clifford torus T̄Cl ⊂ CP 2#3CP 2.

Proof. Let E1 and E2 be the classes of the exceptional curves of the above
blowups, so that

H2(CP 2#3CP 2, T̄a) = 〈H1, H2, E1, E2, β, α〉.

Compared to Table 1, the torus T̄a acquires two extra holomorphic disks of
area 1/2, with boundary in classes [∂α] and −[∂α], and whose sum gives the
class H1 +H2 − E1 − E2, see [54, Lemma 7.1].

We then use ST̄a
⊂ H1(T̄a;Z/2) generated by ∂β and ST̄Cl

⊂ H1(T̄Cl ;Z/2)
in a similar fashion as in the proof of Theorem 3.6, so that ST̄a

, ST̄Cl
satisfy

Condition (1.4) and OC(2)([pT̂Cl
], ST̂Cl

) = H2. Hence

OC(2)
low ([pT̄a

], ST̄a
) · OC(2)([pT̄Cl

], ST̄Cl
) = (H1 +H2) ·H2 = 1 mod 2.

If one defines A by (1.2), then A = b = 1/2, so Theorem 1.6 does not apply.
However, we can use Theorem 2.4. Notice that the boundaries of both disks
of area 1/2 are equal to α over Z/2, and there are two such disks so their
count vanishes over Z/2. Therefore in the setup of Theorem 2.4 we can
take A = 1− a. So we get the desired non-displaceability result as long as
a+ b < 1− a, i.e. a < 1/4. �

Remark 3.6. We expect that Theorems 3.6, 3.7 can be improved so as to
allow a ∈ (0, 1/2]. Indeed, the tori appearing in those theorems are non-self-
displaceable for a ∈ (0, 1/2]: see [28, 29] for the case of CP 1 × CP 1 and [54]
for the case of CP 2#3CP 2; and see the previous remark.

3.5. Proof of Lemma 1.7

Starting with X = CP 1 × CP 1 or X = CP 2, remove the divisor D ⊂ X
given by the preimage of the top side of the triangle in Figure 8 under
the “moment map”. The complement U is symplectomorphic to an open
co-disk bundle inside T ∗S2, respectively T ∗RP 2. The Lagrangian tori T̂a
resp. Ta are monotone in U . Indeed, note that the only disk in X passing
through the divisor D is the one in class β (Table 1) — this can be seen in
any presentation of the tori [4, 29, 57], see again Remark 3.1. Monotonicity
of the tori follows from noting that H2(U, T̂a;Q), resp. H2(U, Ta;Q), is gen-
erated by the remaining Maslov index 2 disks — which all have the same
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area a and boundary generate H1(T̂a;Q), resp. H1(Ta;Q) — together with
the Lagrangian zero-section S2

ad when X = CP 1 × CP 1, which have Maslov
index 0 (recall that H2(T ∗RP 2;Q) = 0). Actually these tori differ by scaling
inside the respective cotangent bundle. We denote these tori seen as sitting
in the cotangent bundles by L̂a ⊂ T ∗S2 resp. La ⊂ T ∗RP 2. These are the
tori we take for Lemma 1.7. In the cotangent bundle, the tori can be scaled
without constraint so we actually get a family indexed by a ∈ (0,+∞) and
not just (0, 1).

As we pointed out, the holomorphic disks of area a from Table 1 are
precisely the ones which lie in the complement of D ⊂ X [29, 57], therefore
they belong to U . Finally, the tori L̂a and La bound no holomorphic disks
in T ∗S2 resp. T ∗RP 2 other than the ones contained inside U , by the maxi-
mum principle. Therefore we know all holomorphic Maslov index 2 disks on
these tori, and Lemma 1.7 becomes a straightforward computation, that we
actually already performed. Indeed, the disks used to compute OC(2) in U

(and hence in T ∗S2 resp. T ∗RP 2) are the same used to compute OC(2)
low in

X, i.e., OC(2)
low ([pT̂a

]) = i∗OC(2)([pL̂a
]), resp. OC(2)

low ([pTa
]) = i∗OC(2)([pLa

]).

Remark 3.7. Note that the disks computed in Table 1 were with respect
to the standard complex structure J . Moreover, the divisor D corresponds
to the diagonal in CP 1 × CP 1 and to a conic in CP 2. In particular, J is
cylindrical at infinity for X \D.

Namely, as in the proof of Theorem 3.6, the holomorphic Maslov index
2 disks with boundary on L̂a ⊂ T ∗S2 satisfy Condition (1.3) over Z/4, and
Equation (1.5) from Lemma 1.7 follows immediately from (3.2):

i∗OC(2)([pL̂a
]) = OC(2)

low ([pT̂a
]) = 2(H1 +H2) = 2(H1 −H2)

= 2i∗[S
2] ∈ H2(CP 1 × CP 1;Z/4),

and injectivity of i∗ : H2(U ;Z/4)→ H2(CP 1 × CP 1;Z/4), where i is the
embedding of U ⊂ X..

Similarly, we can identify SL̂a
with the ST̂a

from proof of Theorem 3.6,
which satisfies Condition (1.4) over K = Q = Z/2. Equation (1.6) from
Lemma 1.7 follows immediately from (3.3):

i∗OC(2)([pL̂a
], SL̂a

) = OC(2)
low ([pT̂a

], ST̂a
) = H1 +H2 = H1 −H2

= i∗[S
2] ∈ H2(CP 1 × CP 1;Z/2),

and the injectivity of i∗ : H2(U ;Z/2)→ H2(CP 1 × CP 1;Z/2).
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Analogously, Lemma 1.7(ii) is checked as in the proof of Theorem 1.2,
in particular Equation (1.7) follows from (3.1):

i∗OC(2)([pLa
]) = OC(2)

low ([pTa
]) = 4H = i∗[4RP 2] ∈ H2(CP 2;Z/8).

Indeed, i∗ sends the generator [4RP 2] of H2(T ∗RP 2;Z/8) ∼= Z/2 to 4H ∈
H2(CP 2; Z/8).

Finally, we note that these computations are actually valid for a ∈
(0,+∞), as scaling monotone tori in a cotangent bundle does not change
the enumerative geometry of holomorphic disks. �

3.6. The superpotentials

We conclude by an informal discussion of the superpotentials of the tori
we study, aimed to readers familiar to the notions of the superpotential
and bulk deformations. We refer to [4, 25, 29, 57] for the definitions. The
Landau-Ginzburg superpotential (further called “potential”) associated to
a Lagrangian 2-torus and an almost complex structure J is a Laurent se-
ries in two variables which combinatorially encodes the information about
all J-holomorphic index 2 disks through a point on L. In the setting of
Proposition 3.5, the potentials are given by

POCP 2 = t(1−a)/2z +
ta

z2w
+ 2

ta

z2
+
taw

z2
(3.5)

= t(1−a)/2z + ta
(1 + w)2

z2w
;

POCP 1×CP 1 = t1−az +
ta

zw
+ 2

ta

z
+
taw

z
(3.6)

= t1−az + ta
(1 + w)

zw
+ ta

(1 + w)

z
.

(These functions are sums of monomials corresponding to the disks as shown
in Table 1.) Here t is the formal parameter of the Novikov ring Λ0 associated
with a ground field K, usually assumed to be of characteristic zero:

Λ0 =
{∑

ait
λi
∣∣ ai ∈ K, λi ∈ R≥0, λi ≤ λi+1, lim

i→∞
λi =∞

}
.

Let Λ× be the field of elements of Λ0 with nonzero constant term a0t
0.

We can see (Λ×)2 as the space of local systems π1(L)→ Λ× on a Lagrangian
torus L, or [25, Remark 5.1] as the space exp(H1(L; Λ0)) of exponentials of
elements in H1(L; Λ0), the so-called bounding cochains from the works of
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Fukaya, Oh, Ohta and Ono [24–26]. In turn, the potential can be seen as
a function (Λ×)2 → Λ0, and its critical points correspond to local systems
σ ∈ (Λ×)2 such that HF ∗(L, σ) 6= 0 [25, Theorem 5.9]

If the potential has no critical points, it can sometimes be fixed by
introducing a bulk deformation b ∈ H2k(X; Λ0) which deforms the function;
critical points of the deformed potential correspond to local systems σ ∈
(Λ×)2 such that HF b(L, σ) 6= 0 [25, Theorem 8.4]. This was the strategy of
[29] for proving that the tori T̂a ⊂ CP 1 × CP 1 are non-displaceable. When
b ∈ H2(X; Λ0), the deformed potential is still determined by Maslov index
2 disks (if dimX = 2n > 4, this will be the case for b ∈ H2n−2(X; Λ0)), see
e.g. [25, Theorem 8.2]. For bulk deformation classes in other degrees, the
deformed potential will use disks of all Maslov indices, and its computation
becomes out of reach.

In contrast to the T̂a, the potential for the tori Ta does not acquire
a critical point after we introduce a degree 2 bulk deformation class b ∈
H2(CP 2,Λ0).

Proposition 3.8. Unless a = 1/3, for any bulk deformation class b ∈
H2(CP 2,Λ0), the deformed potential POb for the torus Ta ⊂ CP 2 has no
critical point in (Λ×)2.

Proof. Let Q ⊂ CP 2 be the quadric which is the preimage of the top side
of the traingle in Figure 8, so [Q] = 2H. Then b must be Poincaré dual
to c · [Q] for some c ∈ Λ0. Among the holomorphic disks in Table 1, the
only disk intersecting Q is the β-disk intersecting it once [57]. Therefore the
deformed potential

POb
CP 2 = t(1−a)/2ecz + ta

(1 + w)2

z2w

differs from the usual one by the ec factor by the monomial corresponding
to the β-disk, compare [29]. Its critical points are given by

w = 1, z3 = 8t(3a−1)/2e−c.

Unless 3a− 1 = 0, the t0-term of z has to vanish, so z /∈ Λ×. �

Keeping an informal attitude, let us drop the monomial t(1−a)/2z from
Equation (3.5) of POCP 2 ; denote the resulting function by POCP 2,low . For
a < 1/3, it reflects the information about the least area holomorphic disks
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with boundary on Ta ⊂ CP 2,

(3.7) POCP 2,low = ta
(1 + w)2

z2w
.

Now, this function has plenty of critical points. Over C, it has the critical
line w = −1, and if one works over Z/8 then the point (1, 1) is also a critical
point, reflecting the fact the boundaries of the least area holomorphic Maslov
index 2 disks on Ta cancel modulo 8, with the trivial local system.

The potential (3.7) becomes the usual potential for the monotone tori
La ⊂ T ∗S2 from Lemma 1.7. The fact that it has a critical point implies,
this time by the standard machinery, that the tori La ⊂ T ∗RP 2 are non-
displaceable [29, Theorem 2.3] (note Condition 6.1, Theorem A.1 and The-
orem A.2 in [29, Appendix 1]), see also [9, 48]. The same is true of the
L̂a ⊂ T ∗S2 and has been known due to [3], see also [29, Appendix 2].
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