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Assume that we are given a closed chord-generic Legendrian sub-
manifold Λ ⊂ P × R of the contactisation of a Liouville manifold,
where Λ moreover admits an exact Lagrangian filling LΛ ⊂ R×
P × R inside the symplectisation. Under the further assumptions
that this filling is spin and has vanishing Maslov class, we prove
that the number of Reeb chords on Λ is bounded from below by
the stable Morse number of LΛ. Given a general exact Lagrangian
filling LΛ, we show that the number of Reeb chords is bounded
from below by a quantity depending on the homotopy type of LΛ,
following Ono-Pajitnov’s implementation in Floer homology of in-
variants due to Sharko. This improves previously known bounds in
terms of the Betti numbers of either Λ or LΛ.
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1. Introduction

1.1. Motivation

One of the first striking applications of Gromov’s theory of pseudoholomor-
phic curves [33] was that a closed exact Lagrangian immersion Λ̃ ⊂ (P, dθ)
inside a Liouville manifold must have a double-point, given the assump-
tion that it is Hamiltonian displaceable. Gromov’s result has the following
contact-geometric reformulation, which will turn out to be useful. Consider
the so-called contactisation (P × R, dz + θ) of the Liouville manifold (P, dθ),
which is a contact manifold with the choice of a contact form. Recall that a
(generic) exact Lagrangian immersion Λ̃ ⊂ (P, dθ) lifts to a Legendrian (em-
bedding) Λ ⊂ (P × R, dz + θ). One says that Λ is horizontally displaceable
given that Λ̃ is Hamiltonian displaceable. The above result thus translates
into the fact that a horizontally displaceable Legendrian submanifold Λ must
have a Reeb chord for the above standard contact form — i.e. a non-trivial
integral curve of ∂z having endpoints on Λ. A similar result holds for Leg-
endrian submanifolds of boundaries of subcritical Weinstein manifolds, as
proven in [41] by Mohnke.

In the spirit of Arnold [3], the following conjectural refinement of the
above result was later made: the number of Reeb chords on a chord-generic
Legendrian submanifold Λ ⊂ (P × R, dz + θ) whose Lagrangian projection is
Hamiltonian displaceable is at least 1

2

∑
i bi(Λ;F). However, as was shown by

Sauvaget in [48] by the explicit counter-examples inside the standard contact
vector space (R4 × R, dz + θ0), θ0 = −(y1dx1 + y2dx2), the above inequality
is not true without additional assumptions on the Legendrian submanifold;
also, see the more recent examples constructed in [16] by Ekholm-Eliashberg-
Murphy-Smith. The latter result is based upon the h-principle proven in [26]
by Eliashberg-Murphy for Lagrangian cobordisms having loose negative ends
in the sense of Murphy [42].

On the positive side, the above Arnold-type bound has been proven us-
ing the Legendrian contact homology of the Legendrian submanifold, under
the additional assumption that the Legendrian contact homology algebra is
sufficiently well-behaved. Legendrian contact homology is a Legendrian iso-
topy invariant independently constructed by Chekanov [8] and Eliashberg-
Givental-Hofer [24], and later developed by Ekholm-Etnyre-Sullivan [18].
This invariant is defined by encoding pseudoholomorphic disc counts in the
Legendrian contact homology differential graded algebra (DGA for short)
which usually is called the Chekanov-Eliashberg algebra of the Legendrian
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The stable Morse number as a lower bound 1211

submanifold. In the case when the Chekanov-Eliashberg algebra of a Leg-
endrian admits an augmentation (this should be seen as a form of non-
obstructedness for its Floer theory), the above Arnold-type bound was proven
by Ekholm-Etnyre-Sullivan in [20] and by Ekholm-Etnyre-Sabloff in [17]. In
[14], the authors generalised this proof to the case when the Chekanov-
Eliashberg algebra admits a finite-dimensional matrix representation, in
which case the same lower bound also is satisfied.

The above Arnold-type bound is also related to the one regarding the
number of Hamiltonian chords between the zero-section in T ∗L (or, more
generally, any exact closed Lagrangian submanifold of a Liouville manifold)
and its image under a generic Hamiltonian diffeomorphism. Namely, such
Hamiltonian chords correspond to Reeb chords on a Legendrian lift of the
union of the Lagrangian submanifold and its image under the Hamiltonian
diffeomorphism. In fact, as shown by Laudenbach-Sikorav in [38], the number
of such chords is bounded from below by the stable Morse number of the
zero-section (and hence, in particular, it is bounded from below by half of the
Betti numbers of the disjoint union of two copies of the zero-section). Arnold
originally asked whether this bound can be improved, and if in fact the Morse
number of the zero-section is a lower bound. However, this question seems
to be out of reach of current technology. On the other hand, we note that
the stable Morse number is equal to the Morse number in a number of cases;
see [11] as well as Section 2.1 below for more details.

Finally, we mention the remarkable result by Ekholm-Smith in [22],
which shows that the smooth structure itself can predict the existence of
more double points than the original bound given in terms of the homology.
Namely, a 2k-dimensional manifold Σ2k for k > 2 that admits a Legendrian
embedding having precisely one transverse Reeb chord in the standard con-
tact space must be diffeomorphic to the standard sphere unless χ(Σ2k) = −2.
Also see [23] for similar results in other dimensions.

1.2. Results

In this paper, we will explore a priori lower bounds for the number of Reeb
chords on a Legendrian submanifold Λ ⊂ (P × R, dz + θ), given that it ad-
mits an exact Lagrangian filling LΛ ⊂ (R× P × R, d(et(dz + θ))) inside the
symplectisation. Recall that the condition of admitting an exact Lagrangian
filling is invariant under Legendrian isotopy; see e.g. [5]. The bound will
be given in terms of the simple homotopy type of LΛ. First, we recall that
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such a Legendrian submanifold automatically has a well-behaved Chekanov-
Eliashberg algebra; namely, an exact Lagrangian filling induces an augmen-
tation by [15]. In the case when the projection of Λ to Λ̃ ⊂ P is displaceable,
the aforementioned result can thus be applied, giving the above Arnold-type
bound. However, in this case, there are even stronger bounds that can be
obtained from the topology of the exact Lagrangian filling LΛ (and without
the assumption of horizontal displaceability). See Section 1.3 below for pre-
vious such results as well as an outline of the proof, which is based upon
Seidel’s isomorphism in wrapped Floer homology. This is also the starting
point of the argument that we will use in order to prove our results here.

In the following we assume that a Legendrian submanifold Λ ⊂ (P ×
R, α := dz + θ) is chord-generic and has an exact Lagrangian filling LΛ ⊂
(R× P × R, d(etα)). Here t denotes the coordinate on the first R-factor.
In particular, the set of Reeb chords Q(Λ) of Λ is finite. Further, the set
of Reeb chords c in degree |c| = CZ(c)− 1 ∈ Z/ZµLΛ

will be denoted by
Q|c|(Λ), where the grading is induced by the Conley-Zehnder index modulo
the Maslov number µLΛ

∈ Z of LΛ as defined in [21]. Observe that µLΛ
= 0

in particular implies that the first Chern class of (P, dθ) vanishes on H2(P ).
For a group G being the epimorphic image of π1(LΛ), consider the Morse

homology complex (CM•(LΛ, f ;R[G]), ∂f ) of LΛ with coefficients in the
group ring R[G] twisted by the fundamental group, where R is a unital
commutative ring and f : LΛ → R is a Morse function satisfying df(∂t) > 0
outside of a compact set. (The generators of this complex are graded by the
Morse index, and the differential counts negative gradient flow lines.)

Theorem 1.1. Let LΛ ⊂ (R× P × R, d(etα)) be an exact Lagrangian fill-
ing of an n-dimensional closed Legendrian submanifold Λ ⊂ (P × R, α) with
fundamental group π := π1(LΛ) and Maslov number µLΛ

∈ Z.

(i) In the case when the filling is spin and when µLΛ
= 0, the Morse ho-

mology complex (CM•(LΛ, f ;Z[π]), ∂f ) is simple homotopy equivalent
to a Z[π]-equivariant complex (Z[π]〈Qn−•(Λ)〉, ∂);

(ii) In the general case, it follows that the complex (CM•(LΛ, f ;R[G]), ∂f )
is homotopy equivalent in the category of G-equivariant complexes to
a complex (R[G]〈Qn−•(Λ)〉, ∂) with grading in Z/µLΛ

Z. Here we can
always take R = Z2, while we are free to choose an arbitrary unital
commutative ring in the case when LΛ is spin.

We prove Theorem 1.1 in Section 3. Now let stabMorse(M) denote the
stable Morse number of a manifold M with possibly non-empty boundary,
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The stable Morse number as a lower bound 1213

see Definition 2.5. Using Theorem 1.1 and the adaptation of [11, Theorem
2.2] to the case of manifolds with boundary (see Proposition 2.9), the fol-
lowing result is immediate:

Corollary 1.2. Suppose that Λ ⊂ P × R is a chord-generic closed Legen-
drian submanifold admitting an exact Lagrangian filling LΛ which is spin
and has vanishing Maslov number. It follows that the bound

|Q(Λ)| ≥ stableMorse(LΛ)(1.1)

is satisfied for the number of Reeb chords on Λ.

By using the long exact sequence in singular homology of the pair
(LΛ, ∂LΛ = Λ), where LΛ denotes the compact part of LΛ, we obtain the
following inequalities

stableMorse(LΛ) ≥
∑
i

bi(LΛ;F) ≥ 1

2

∑
i

bi(Λ;F),

for any field F. Obviously, Inequality (1.1) is a strengthening of the original
Arnold-type bound. For a discussion about how to construct examples of ex-
act Lagrangian fillings for which our obtained lower bound is strictly greater
than previously known bounds in terms of the homology of the filling, we
refer to Section 6.1.

Note that in forthcoming work [27], Eriksson Östman also obtains an
improved version of the above Arnold-type bound for certain horizontally
displaceable Legendrian submanifolds. The bound is obtained in terms of
the homotopy type of the Legendrian submanifold itself. It does not assume
the existence of an exact Lagrangian filling, but rather assumes the existence
of an augmentation of a version of the Chekanov-Eliashberg algebra having
twisted coefficients that is defined in the same article.

In the course of showing the above result, we also obtain the follow-
ing generalisation of the aforementioned result by Sikorav-Laudenbach [38],
which also is related to the theory of stable intersection numbers as intro-
duced by Eliashberg-Gromov in [25, Section 2.3].

Theorem 1.3. Consider a closed exact Lagrangian submanifold L ⊂ (P, dθ)
which is spin and has vanishing Maslov number. For any k ≥ 0, the exact
Lagrangian submanifold L× Rk ⊂ (P × Ck, dθ ⊕ ω0) with ω0 = dx1 ∧ dy1 +
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· · ·+ dxk ∧ dyk satisfies the property that

#(L× Rk) t φ1
Hs(L× Rk) ≥ stableMorse(L),

given that the above intersection is transverse, and that the Hamiltonian is
of the form Hs = fs +Q, where:

• Q(x1+iy1, . . . , xk+iyk)=Q(x1, . . . , xk) is a non-degenerate quadratic
form on Rk ⊂ Ck; and

• fs : P × Ck → R, s ∈ [0, 1], satisfies the property that maxs∈[0,1] ‖fs‖C1

is bounded for a product Riemannian metric of the form gP ⊕ gstd

on P × Ck. Here we moreover require gP to be invariant under the
Liouville flow on (P, dθ) outside of a compact subset, while gstd denotes
the Euclidean metric.

Remark 1.4. Damian’s examples in [11] (see Theorem 2.6) can be used
to produce a Hamiltonian for which (L× Rk) t φ1

Hs
(L× Rk) is strictly less

than the Morse number of L, given that k � 0 is sufficiently large.

We also get the following two theorems which are consequences of The-
orem 1.1 together with the algebraic machinery developed by Ono and Pa-
jitnov in [43]. For a finitely presented group G, we denote by d(G) ∈ Z≥0

the minimal number of generators of G.

Theorem 1.5. Let µLΛ
= 0. Assume that π1(LΛ) admits a finite epimor-

phic image G, which is a simple or solvable group.

(i) Under the above assumptions, we have

|Q(Λ)| ≥ d(G) +
∑
i 6=1

bi(LΛ;F);

(ii) If moreover π1(LΛ) is a finite perfect group, then

|Q(Λ)| ≥ d(G) +
∑
i 6=1

bi(LΛ;F) + 2.

Here we have to use the field F = Z2 unless LΛ is spin, in which case it can
be chosen arbitrarily.

Theorem 1.6. Assume that π1(LΛ) admits a finite epimorphic image G,
which is a simple or solvable group.
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(i) Under the above assumptions, we have

|Q(Λ)| ≥ max(1, d(G)− 1) +
∑
i 6=1

bi(LΛ;F),

where i ∈ Z/µLΛ
Z;

(ii) If moreover µLΛ
≥ 2n+ 2, then

|Q(Λ)| ≥ d(G) +
∑
i 6=1

bi(LΛ;F),

where i ∈ Z/µLΛ
Z.

Here we have to use the field F = Z2 unless LΛ is spin, in which case it can
be chosen arbitrarily.

Note that the estimates presented in Theorems 1.5 and 1.6 are in general
weaker than the estimate described in Corollary 1.2. On the other hand, the
estimates from Theorems 1.5 and 1.6 hold in the less restrictive settings
compared to the settings of Corollary 1.2. Theorems 1.5 and 1.6 will be
proven in Section 5.

In Section 6, we provide a construction of exact Lagrangian fillings with
a given finitely presented fundamental group. This leads to examples where
the estimate described in the second part of Theorem 1.5 coincides with
the stable Morse number of an exact Lagrangian filling and, moreover, such
that this bound is better than the estimate coming from the homological
data of the filling. Finally in Section 6.4, we provide a series of examples
of exact Lagrangian fillings for which the estimates for the number of Reeb
chords provided by Theorems 1.5 and 1.6 are arbitrary far from the estimates
coming from the so-called Seidel’s isomorphism in Theorem 1.7 (i.e. coming
from homological data of the filling).

1.3. Previous results obtained using wrapped Floer homology

It was previously known that a Legendrian submanifold Λ ⊂ (P × R, dz + θ)
admitting an exact Lagrangian filling LΛ in the symplectisation satisfies
a stronger form of the above Arnold-type bound. It should also be noted
that, in this case, the bound is in fact true also without the assumption of
horizontal displaceability of Λ. Namely, as outlined in [15, Conjecture 1.2]
and later developed in [12] and [13] by the first author and by both authors,
respectively, the number of Reeb chords for such a chord-generic Legendrian
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submanifold Λ is at least
∑

i bi(LΛ;F). (Recall that there is an inequality∑
i bi(LΛ;F) ≥ 1

2

∑
i bi(Λ;F).) In the case of exact Lagrangian fillings inside

a more general subcritical Weinstein domain, this result was proven by Ritter
in [45, Theorem 11.1].

These results are all proven using roughly the same idea, based upon
computations of the wrapped Floer homology of the filling which in these
cases is acyclic. Wrapped Floer homology, originally defined in [2] by
Abouzaid-Seidel and in [15] in a different form by Ekholm, generalises Floer’s
original Lagrangian intersection Floer homology [28] to the setting of exact
Lagrangian fillings. Note that wrapped Floer homology is always acyclic in
our setting, since the exact Lagrangian fillings considered here are displace-
able in the appropriate sense.

Since the argument in the proof of the above bound is the starting point
of the method that we will be using here, we now give a brief outline:

First, the wrapped Floer homology computed for the pair (LΛ, L
′
Λ),

where L′Λ is any Hamiltonian push-off of LΛ, is acyclic. For a suitable push-
off L′Λ, the wrapped Floer complex can thus be made into an acyclic mapping
cone of a chain map from the Morse homology complex of LΛ, as follows
from Floer’s original computation, to a subcomplex whose underlying vector
space is given by F〈Qn−•(Λ)〉. This acyclic mapping cone gives rise to the
so-called Seidel’s isomorphism:

Theorem 1.7 (Seidel). Let Λ be a Legendrian submanifold of P × R with
the property that Λ admits an exact Lagrangian filling LΛ. Then there is a
quasi-isomorphism

H•(LΛ, ∂LΛ;F)
'−→ HF+∞

• (LΛ;F),

where the right-hand side is the homology of a complex with underlying vector
space F〈Q•−1(Λ)〉. In the case when charF 6= 2, we must assume that LΛ is
spin and choose an appropriate spin structure.

We refer to [13] for a proof in the setting under consideration here, based
upon the ideas in [15] and [12].

In particular, the above isomorphism implies that the number of Reeb
chords on Λ is at least

∑
i bi(LΛ;F), given that Λ is chord-generic. Our main

result Theorem 1.1 can be interpreted as an upgrade of Seidel’s isomorphism
to a simple homotopy equivalence.

Related ideas were also present in [6, Theorem 4.7], where the authors
together with Chantraine and Ghiggini used wrapped Floer homology with
twisted coefficients in order to show that a Legendrian submanifold in P × R
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with a single Reeb chord satisfies the property that any of its exact La-
grangian fillings must be contractible.
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2. Preliminaries

2.1. Basics from symplectic and contact topology

By a Liouville manifold we mean a pair (P, θ) consisting of an even-
dimensional smooth manifold P and a one-form θ ∈ Ω1(P ) for which dθ
is a symplectic form, i.e. for which (dθ)∧ dimP/2 is a volume form on P .
For us, a Liouville manifold will moreover always have a cylindrical convex
(sometimes called positive) non-compact end. In other words, we will assume
that (P, dθ) is of the form ((0,+∞)× Y, d(esαY )) in the complement of a
compact sub-domain with smooth boundary. Here s is the standard coordi-
nate on the (0,+∞)-factor and αY ∈ Ω1(Y ) is a one-form on Y . (The latter
exact symplectic manifold is the half of the the symplectisation of the closed
contact manifold (Y, αY ).) Recall that a Liouville manifold possesses the so-
called Liouville vector field X ∈ ΓTP which is dθ-dual to θ, i.e. satisfying
the equation iXdθ = θ.

Given an exact symplectic 2n-manifold (P, dθ), we define its contacti-
sation to be (P × R, dz + θ), where z is a coordinate on the R-factor. It is
not difficult to see that α := dz + θ satisfies α ∧ (dα)∧n 6= 0, and hence α
is a contact form on P × R which defines a contact structure ξ := kerα ⊂
T (P × R).

An n-dimensional submanifold Λ ⊂ P × R is called Legendrian given
that TΛ ⊂ ξ, and a smooth 1-parameter family of Legendrian submanifolds
is called a Legendrian isotopy.

The Reeb vector field Rα on P × R is uniquely determined by the equa-
tions iRαα = 1, iRαdα = 0, and is in this case given by Rα = ∂z. A non-
trivial integral curve of Rα having endpoints on a Legendrian submanifold
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Λ is called a Reeb chord on Λ, the set of which will be denoted by Q(Λ).
We define the length of a Reeb chord c ∈ Q(Λ) to be `(c) :=

∫
c dz > 0. In

this case, Reeb chords are obviously in bijective correspondence with the
double-points of the image of Λ under the canonical projection to P . We
call a Legendrian submanifold chord-generic given that this projection is a
generic immersion. In particular, a closed chord-generic Legendrian subman-
ifold has a finite number of Reeb chords in the current setting. Observe that
any Legendrian submanifold can be made chord-generic after an arbitrarily
C∞-small perturbation through Legendrian submanifolds.

The symplectisation of the contactisation (P × R, α) is the exact sym-
plectic manifold (R× P × R, d(etα)), where t denotes the standard coordi-
nate on the first R-factor. An exact Lagrangian filling inside the symplecti-
sation is a central object of this article. It is a special case of the following
more general concept.

Definition 2.1. Given two Legendrian submanifolds Λ−,Λ+ ⊂ (P × R, α),
we call a proper embedding L ⊂ (R× P × R, d(etα)) an exact Lagrangian
cobordism from Λ− to Λ+ given that there exists a number T > 0 for which:

• L ∩ ((−∞,−T ]× P × R) = (−∞,−T ]× Λ−;

• L ∩ ([T,∞)× P × R) = [T,∞)× Λ+;

• L ∩ ([−T, T ]× P × R) =: L is a compact manifold with boundary
∂L = Λ− t Λ+; and

• The pull-back of et(dz + θ) to L is exact and, moreover, admits a
primitive which is globally constant on L ∩ {t ≤ −T} as well as on
L ∩ {t ≥ T}.

Λ+ is called the positive end of L, and Λ− is called the negative end of L. If
Λ− = ∅, we call L an exact Lagrangian filling of Λ+.

Observe that the property of admitting an exact Lagrangian filling is a
Legendrian isotopy invariant, as shown in [5]. Indeed, a Legendrian isotopy
from Λ to Λ′ induces an exact Lagrangian cobordism from Λ to Λ′. Fur-
thermore, two exact Lagrangian cobordisms La, Lb ⊂ R× P × R from Λ−a
to Λ and from Λ to Λ+

b , respectively, can be concatenated to form an exact
Lagrangian cobordism La � Lb ⊂ R× P × R from Λ−a to Λ+

b .



i
i

“2-Golovko” — 2019/1/31 — 21:34 — page 1219 — #11 i
i

i
i

i
i

The stable Morse number as a lower bound 1219

2.2. Floer homology with twisted coefficients

The Floer homology of an exact Lagrangian manifold L with itself can be
defined using coefficients twisted by the fundamental group as first described
by Sullivan in [53], and later by Damian in [10] as well as Abouzaid in [1].
This construction is analogous to the definition of Morse homology with
twisted coefficients.

We will rely on the formulation of Floer homology carried out in [53].
Due to the non-compact setting, we have to consider only compatible al-
most complex structures J on R× P × R which are of a particular form
outside of a compact subset, see [13]. We start by fixing a compatible al-
most complex structure JP on (P, dθ) for which the standard coordinate es

on the non-compact cylindrical end ((0,+∞)× Y, d(esαY )) ⊂ (P, dθ) is JP -
convex, i.e. so that −d(des ◦ J(·)) is a symplectic form tamed by JP . The
so-called cylindrical lift J̃P of JP is the compatible almost complex structure
on (R× P × R, d(etα)) defined uniquely by the following properties:

• The canonical projection R× P × R→ P is (J̃P , JP )-holomorphic; and

• The almost complex structure J̃P is cylindrical, i.e. it is invariant under
translations of the t-coordinate, and satisfies J̃P (∂t) = ∂z, as well as
J̃P (ξ) = ξ.

The compatible almost complex structures J on the symplectisation R×
P × R that we will be considering here will all be taken to coincide with a
fixed cylindrical lift J̃P outside of a compact subset.

In this situation, the SFT compactness theorem [4], together with the
monotonicity properties for the symplectic area of pseudoholomorphic curves
[50], imply that Lagrangian intersection Floer homology can be defined as
usual, and that invariance is satisfied for compactly supported Hamiltonian
isotopies. To that end, we recall the following fact. Let L0 ⊂ R× P × R be
an exact Lagrangian filling, let Ls1, s ∈ [0, 1], be a smooth family of exact
Lagrangian fillings that is fixed outside of a compact subset, and let Js be
a smooth family of tame almost complex structures on R× P × R all which
coincide with the above almost complex structure J̃P outside of a fixed
compact subset. Further, we assume that all intersection points L0 ∩ Ls1 are
contained in a compact subset.

Lemma 2.2 (Lemma 4.1 [13]). There exists a fixed compact subset K ⊂
R× P × R that contains any Js-holomorphic Floer strip having a compact
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image inside R× P × R, boundary on L0 ∪ Ls1, and both punctures mapping
to intersection points L0 ∩ Ls1.

The Floer complex can be defined in many different ways, but we will
use the approach taken in [53]. In addition, see [13], [6] for the set-up of Floer
homology in the same setting as considered here. For a pair of transversely
intersecting exact Lagrangian fillings L0, L1 ⊂ R× P × R, the underlying
module of the Floer complex will be given by

CF•(L0, L1;R[π1(L0)]) := R[π1(L0)]〈L0 ∩ L1〉,

for a unital commutative ring R, where each generator has a well-defined
grading modulo the Maslov number of L0 ∪ L1, given that we have fixed a
choice of Maslov potential; see Section 2.2.1 below for more details.

The differential

∂ : CF•(L0, L1;R[π1(L0)])→ CF•−1(L0, L1;R[π1(L0)])

is defined roughly as follows. The coefficient 〈∂(y), x〉 is the signed count of
rigid (i, J)-holomorphic Floer strips of the form

u : ({s+ it ∈ C; s ∈ R, t ∈ [0, 1]}, {t = 0}, {t = 1})→ (R× P × R, L0, L1)

having boundary on L0 ∪ L1 and asymptotics to intersection points x and
y as s→ −∞ and +∞, respectively. Each such strip moreover contributes
with the coefficient in π1(L0) ⊂ R[π1(L0)] obtained by completing the path
u(s+ i0) to a loop via the concatenation with fixed capping paths in L0

that connect each intersection point in L0 ∩ L1 with the base point. Recall
that we must take R = Z2 in the above count unless both L0, L1 are spin. In
the latter case, the signed count moreover depends on the choice of a spin
structure on L0 ∪ L1.

2.2.1. The grading convention. Assume that

L0, L1 ⊂ (R× P × R, d(etα))

are connected (n+ 1)-dimensional exact Lagrangian fillings of Λ0,Λ1 ⊂ (P ×
R, α). We here restrict attention to the special case when Λ1 and Λ0 differ
by a translation in the R-coordinate (i.e. by the Reeb flow). In this case, the
following uniquely defined grading convention modulo the Maslov number
of L0 ∪ L1 will be used.
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Consider the Legendrian lift of the disconnected exact Lagrangian im-
mersion L0 ∪ L1 to the contactisation (R× P × R)× R of the symplectisa-
tion. We choose a lift where the component L1 has been translated suf-
ficiently far in the negative Reeb direction (of the latter contactisation
(R× P × R)× R) so that all Reeb chords start on L1. Recall that there
is a bijective correspondence between Reeb chords cp on this lift and inter-
section points p ∈ L0 ∩ L1.

Fix points xi ∈ Λi, i = 0, 1, where xi, i = 0, 1, differ by a translation of
the R-coordinate. For each i = 0, 1, we also fix choices of oriented paths γ

cp
i ⊂

Li from the end-points of the Reeb chord cp on (the Legendrian lift of) Li to
the point (T, xi) ∈ (R× Λi) ∩ Li for some T � 0 sufficiently large. For an
intersection point p ∈ L0 ∩ L1 ⊂ CF•(L0, L1;R[π1(L0)]) we then prescribe
the grading

|p| := n+ 1− CZ(cp)

for the Conley-Zehnder index as defined in [19], where the choice of (discon-
nected) capping path consisting of the path γ

cp
0 followed by the path −γcp1

has been used.
We end by noting that, using the above grading conventions, the differ-

ential ∂ is of index −1.

2.3. The stable Morse number

We here briefly discuss the notion of the Morse and stable Morse number.
We refer to [11] for more details concerning the closed case.

Definition 2.3. For a compact manifoldM possibly with non-empty bound-
ary, we call

Morse(M) := min
f∈C∞(M,R)

{# Crit(f) | f Morse, df−1(0) ∩ ∂M = ∅}

the Morse number of M .

Definition 2.4. Let M be a compact manifold possibly with non-empty
boundary. A function F : M × Rk → R is called almost quadratic at infin-
ity given that there is a non-degenerate quadratic form Q on Rk, and a
Riemannian metric gM on M , satisfying the properties that

• The norm ‖dF − dQ‖C0 is bounded for the C0-norm on T ∗(M × Rk)
induced by the product Riemannian metric gM ⊕ gstd on M × Rk,
where gstd denotes the Euclidean metric on Rk; and
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• For the standard coordinate t : (1/2, 1]× ∂M × Rk → (1/2, 1] on a col-
lar neighbourhood U ⊃ ∂M , we have dF (∂t) > 0 on U × Rk.

Definition 2.5. For a compact manifoldM possibly with non-empty bound-
ary, we call

stableMorse(M)

:= min
k≥0

F∈C∞(M×Rk,R)

{# Crit(F ) | F Morse and almost quadratic at infinity}

the stable Morse number of M .

For any compact smooth manifold M with or without boundary, it im-
mediately follows that

Morse(M) ≥ stableMorse(M).

The Morse number and stable Morse number coincide for surfaces, the
three-sphere [44], as well as for simply connected closed manifolds of dimen-
sion k ≥ 6 [51]. There are examples due to Damian [11] of closed manifolds
M for which Morse(M) > stableMorse(M). Note that, if one removes a small
open ball from the examples of Damian, the proof of [11, Theorem 1.2] (based
upon Proposition 2.9 below) generalises to show that:

Theorem 2.6 (Damian). Consider the group G := Πk
i=1Am, where Am is

the alternating group on m letters, m ≥ 5, and k ≥ 0 is sufficiently large.
Then there exists a compact manifold M satisfying π1(M) = G as well as
Morse(M) > stableMorse(M), where M can be taken either with or without
boundary.

Finally, the following statement holds:

Lemma 2.7. A closed smooth manifold M satisfies

stableMorse(M ×Dk) = stableMorse(M)

for any k ≥ 0.

Proof. The inequality “≥” is immediate, since a function almost quadratic
at infinity on M × RN can be suitably stabilised to give a function almost
quadratic at infinity on (M ×Dk)× RN .
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We continue with the inequality “≤”. By the definition of a function
F : (M ×Dk)× RN → R being almost quadratic at infinity, we can write it
as Q+ f for a quadratic form Q on RN together with a function f with a
uniform bound on its differential.

Consider the quadratic form Q0(x) := ‖x‖2 on Rk 3 x together with
a bump function ρ : R→ [0, 1] satisfying ρ′(t) ≥ 0, ρ(t) = 0 for t ≤ 1− 2ε,
while ρ(t) = 1 for t ≥ 1− ε. Also, consider a diffeomorphism φ : Rk → Bk ⊂
Dk of the form x 7→ (σ(‖x‖)/‖x‖)x, where σ : R≥0 → [0, 1) satisfies σ′(t) > 0
together with σ(t) = t for all 0 ≤ t ≤ 1− ε. It follows that the function

F̃ := f ◦ (idM , φ, idRN ) + ρ(‖x‖) ·Q0(x) +Q

is almost quadratic at infinity on M × Rk+N . By the assumptions on F ,
given that ε > 0 is sufficiently small, it can readily be seen that the number
of critical points of F and F̃ agree. The inequality now follows. �

2.4. Simple homotopy theory

In the following we let (C•, ∂) be a free and finitely generated chain complex
over a group-ring Z[G] with a preferred graded basis. We also assume that
the grading is taken in the integers Z. Observe that we allow generators in
negative degrees. In this setting Whitehead defined the notion of a simple
homotopy equivalence between such complexes in [54, Section 5]; also see
Milnor’s survey in [40]. Roughly speaking, two such complexes are simple
homotopy equivalent if and only if they are related by stabilisation by trivial
complexes, together with a simple isomorphism, i.e. an isomorphism for
which the Whitehead torsion vanishes.

Floer homology has been shown to preserve the simple homotopy type
in certain situations, as first shown by Sullivan in [53]. These ideas were
later successfully used in work by Suárez in [52]; also, see the related results
in [7] by Charette. Observe that the setting considered here is similar to
that in [52] in the sense that we also consider non-compact Lagrangian
submanifolds. On the other hand, our setting is simpler, and we do not need
the restrictions on the almost complex structure made there.

The following result due to Sullivan is central to us.

Theorem 2.8. ([53]) Let L0, L1 ⊂ R× P × R be exact Lagrangian fillings
which are disjoint outside of a compact subset and intersect transversely. If
L0 and L′0 are compactly supported Hamiltonian isotopic, it follows that the
Floer complexes (CF•(L0, L1;R[π1(L0)]), ∂) and (CF•(L

′
0, L1;R[π1(L0)]), ∂′)
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are homotopy equivalent in the category of π1(L0)-equivariant complexes. In
the case when the Maslov numbers vanish and the grading is taken in Z, and
both fillings are spin and R = Z, then this is a simple homotopy equivalence.

Proof. The proof follows from the analysis used to prove [53, Theorem 3.1].
Strictly speaking, the latter result only states that the Whitehead torsion
is well-defined for an acyclic Floer complex. The main point of its proof,
however, establishes an invariance proof of Floer homology based upon bi-
furcation analysis that leads to the sought statement.

In particular, [53, Corollary 3.14] concerns the invariance in the case
when a handle-slide occurs, while [53, Lemma 3.15] concerns the case when
a birth/death of an intersection point occurs. Both statements combine to
show that the simple homotopy type of the complex is preserved under
these moves. That these cases suffices follows from the techniques in [53,
Section 3.3] (in particular, see Theorem 3.12 therein). Namely, there it is
established that, after taking a suitable stabilisation, we can perturb the
isotopy to one consisting of a sequence of handle-slides and birth/deaths of
the required form.

We end with the following remark. As written, the proof in the afore-
mentioned paper only deals with the case R = Z2. However taking [53, Re-
mark 5.5] into account, together with the construction of coherent orienta-
tions in e.g. [20], the general case follows as well. �

In order to deduce Corollary 1.2, we will need the following result, which
was proven in [11] by Damian in the case of a closed manifold.

Proposition 2.9 (Theorem 2.2 in [11]). Let M be a compact smooth
manifold with boundary, and let (CM•(M,f ;Z[π1(M)]), ∂f ) be the Morse
homology complex with twisted coefficients in Z[π1(M)] of a Morse function
f : M → R for which the gradient of f points outwards along the bound-
ary. Any complex (D•, ∂D) that is simple homotopy equivalent to this Morse
complex is itself of the form

(D•, ∂D) = (CM•(M × Rk, F ;Z[π1(M × Rk)]), ∂F ),

for a Morse function F : M × Rk → R which is almost quadratic at infinity
for some k ≥ 0.

Proof. The case when M has boundary follows by the same proof as the
case when M is closed. Roughly speaking, the proof consists of the follow-
ing steps. First, we stabilise the function f by a non-degenerate quadratic
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function Q : Rk → R, thus obtaining a Morse function f +Q : M × Rk → R
for some sufficiently large k > 0. This function is almost quadratic at in-
finity by construction. We may then realise the simple homotopy equiva-
lence by a sequence of Morse theoretic handle-slide moves together with
birth/death moves applied to this stabilised Morse function. Since these
moves all may be realised by compactly supported modifications (a gradient
flow line connecting two critical points is disjoint from a fixed neighbour-
hood of ∂M × Rk by assumption), we may assume that the Morse function
is kept fixed in a neighbourhood of ∂M × Rk throughout the modification.
See e.g. [11, Lemma 2.3]. The resulting function produced will hence also be
almost quadratic at infinity in the sense of Definition 2.4. �

2.5. Group theoretic background

Here we remind the reader of some definitions and facts from group theory
that will become useful later.

A group G is called an extension of a group Q by a group N , if N is
a normal subgroup of G and the quotient group G/N is isomorphic to the
group Q.

A group G is called solvable if it admits a subnormal series whose factor
groups are all abelian, that is, if there are subgroups

{1} = G0 < G1 < · · · < Gk−1 < Gk = G

such that Gi−1 is a normal subgroup of Gi and Gi/Gi−1 is abelian for i =
1, . . . , k.

Let π denote a set of primes, then a Hall π-subgroup is a subgroup whose
order is a product of primes in π, and whose index is not divisible by any
primes in π. In [31], Hall proved the following theorem.

Theorem 2.10 (Hall). Given a finite solvable group G and a set of primes
π, then any two Hall π-subgroups of G are conjugate.

A group G is said to be perfect if it equals its own commutator subgroup
[G,G].

A group is said to be superperfect when its first two homology groups
are trivial, i.e.

H1(G,Z) = H2(G,Z) = 0.

The property of being superperfect is stronger than a property of being
perfect, since perfect can be translated into H1(G,Z) = 0.
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The following fact follows from the classification of finite simple groups.

Fact 2.11. If G is a finite simple group, then

(i) if G is abelian, then the minimal number of generators of G equals 1,

(ii) if G is non-abelian, then the minimal number of generators of G
equals 2.

Finally, we recall the following realisation result due to Kervaire [35].

Theorem 2.12 ([35]). Let G be a group satisfying the following conditions:

(i) G admits a finite presentation,

(ii) H1(G,Z) = 0,

(iii) H2(G,Z) = 0,

and let n be an integer greater than 4. Then there exists an n-dimensional
smooth homology sphere M such that π1(M) ' G.

We also observe that if G is a fundamental group of a smooth homology
sphere M , then it satisfies conditions (i), (ii), (iii). Conditions (i) and (ii)
are automatic and condition (iii) follows from Hopf’s theorem [34] which
says that H2(G;Z) ' H2(M ;Z)/ρ(π2(M)), where ρ : π2(M)→ H2(M ;Z) is
the Hurewicz homomorphism.

Given a finitely presented group G, let d(G) denote the minimal number
of generators of G, and δ(G) be the minimal number of generators of the
augmentation ideal IG of G as a Z[G]-module (i.e. the two-sided ideal of
Z[G] generated by elements of the form g − e with g ∈ G and e being the
group unit in G). It is not difficult to see that d(G)− δ(G) ≥ 0.

Observe that d(G) = δ(G) holds for a large class of groups.

Theorem 2.13 ([46]). Let G be a finite group which is either simple or
solvable. Then d(G) = δ(G).

There are also examples of finitely presented groups, where d(G)−
δ(G) > 0, see [9].

3. The proof of Theorem 1.1 and its consequences

Using the Reeb flow of (P × R, α := dz + θ) we can displace every filling
from itself inside the symplectisation (R× P × R, d(etα)) (this symplectic
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manifold is subcritical). We will exploit this displacement in order to create
a Hamiltonian isotopy that does the following. We take two copies of the
filling suitably perturbed, so that the Floer complex becomes equal to the
Morse homology complex for a Morse function on the filling. The goal is
then to create a compactly supported Hamiltonian isotopy after which the
intersection points are in bijective correspondence with the Reeb chords
on the Legendrian end of the filling. The simple homotopy equivalence in
Theorem 1.1 can now be seen to follow from Theorem 2.8, i.e. the bifurcation
analysis proof of the invariance of Floer homology as performed in [53].

3.1. The main geometric construction

In the following we assume that we are given an exact (n+ 1)-dimensional
Lagrangian filling LΛ ⊂ R× P × R of a closed Legendrian n-dimensional
submanifold Λ ⊂ P × R in the symplectisation of a contactisation. For sim-
plicity, we moreover assume that LΛ ∩ {t ≥ −1} = [−1,+∞)× Λ is cylindri-
cal. (This can always be achieved after a translation of the symplectisation
coordinate.)

Recall that the Hamiltonian flow

φset : (R× P × R, d(etα))→ (R× P × R, d(etα))

induced by the autonomous Hamiltonian et coincides with the Reeb flow
of the contact manifold, which in this case simply is a translation of the
z-coordinate by s.

More generally, for any smooth function g : R→ R, we observe that the
flow

Φs
g∂z : (R× P × R, d(etα))→ (R× P × R, d(etα)),

(t, p, z) 7→ (t, p, z + sg(t))

is a Hamiltonian flow (and φset = Φs
∂z

).

3.1.1. Constructing a small push-off. First, we consider the Hamilto-
nian push-off

LΛε := φεet(LΛ), ε > 0,

of LΛ, which hence is a translation of the z-coordinate by ε > 0. Observe
that we have

LΛε ∩ {t ≥ −1} = [−1,+∞)× Λε,
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where Λε = φεet(Λ) is obtained by the time-ε Reeb flow applied to Λ. In
particular, LΛε is an exact Lagrangian filling of Λε. See Figure 1 for the case
of a one-dimensional filling of a zero-dimensional Legendrian submanifold.

z

t

LΛε = φεet(LΛ)

LΛ

−1

Figure 1: The union of LΛ together with its small Hamiltonian push-off
LΛε = φεet(LΛ). Note that the Reeb chords from the positive end of LΛε to
the positive end of LΛ are in natural bijective correspondence with the Reeb
chords on Λ.

Take a Weinstein neighbourhood of LΛ, i.e. an extension of the La-
grangian embedding LΛ ↪→ (R× P × R, d(etα)) to a symplectic embedding
of a neighbourhood of the zero-section LΛ ⊂ (T ∗LΛ,−d(pdq)). Using this
identification, and assuming that we are given an ε > 0 that is chosen suffi-
ciently small, we may identify LΛε ⊂ T ∗LΛ with a section df for a function
f : LΛ → R which satisfies df(∂t) > 0 outside of a compact subset. After a
compactly supported Hamiltonian perturbation L′Λε of LΛε we may assume
that the latter function is Morse. The following computation is standard.

Lemma 3.1. Using the grading convention in Section 2.2.1, it follows
that the intersection point pc ∈ LΛ ∩ L′Λε ⊂ CF (LΛ, L

′
Λε) corresponding to

c ∈ Crit(f) has grading given by its Morse index, i.e. |pc| = indexf (c).

3.1.2. Wrapping. We now choose g to be of the form g(t) = −1 for t ≤
−1, g′(t) > 0 for t ∈ (−1, 0), while g(t) = 0 for t ≥ 0. Given that we take 0 <
ε < minc∈Q(Λ) `(c) sufficiently small and S � 0 sufficiently large, it follows
that

ΦS
g∂z(LΛ) ∩ LΛε ⊂ {−1 < t < 0}.

Since g(t) ≤ 0 and g′(t) > 0 holds in the subset {−1 < t < 0}, the flow
Φs
g∂z

(t, p, z) there has the effect of “wrapping” the Lagrangian LΛ in the
negative z-direction. In the same subset LΛ and LΛε are cylindrical over
Λ and Λε, respectively, and every intersection point thus corresponds to a
Reeb chord (i.e. an integral curve of ∂z) starting on Λε and ending on Λ.
Note that the latter Reeb chords are in a natural bijective correspondence
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with the Reeb chords on Λ. For S � 0 sufficiently large, we hence get an
induced bijection

Q(Λ)→ ΦS
g∂z(LΛ) ∩ L′Λε ,
c 7→ pc

between the Reeb chords on Λ and the intersection points produced by the
wrapping. Figure 2 illustrates this in the case of a one-dimensional filling of
a zero-dimensional Legendrian submanifold.

Proposition 3.2. Given 0<ε<minc∈Q(Λ) `(c) and S�0 sufficiently large,
the intersection points ΦS

g∂z
(LΛ) ∩ L′Λε are in bijective correspondence with

Q(Λ), and are all transverse if and only if Λ is chord-generic. Moreover,
the grading of pc ∈ ΦS

g∂z
(LΛ) ∩ L′Λε ⊂ CF (ΦS

g∂z
(LΛ), L′Λε) is given by |pc| =

n− |c| modulo the Maslov number of LΛ, where n := dim Λ.

Proof. The computation of the Conley-Zehnder indices will be performed in
a local model of the Legendrian lift L̃0 ∪ L̃1 of ΦS

g∂z
(LΛ) ∪ Lε describing a

neighbourhood of the Reeb chord that corresponds to the intersection point
pc ∈ ΦS

g∂z
(LΛ) ∩ LΛε . More precisely, we assume that L̃0 and L̃1 corresponds

to ΦS
g∂z

(LΛ) and LΛε , respectively, while the Legendrian lift is chosen so that

the Reeb chord starts at L̃1. Recall the definition |pc| = n+ 1− CZ(pc) of
the grading in Section 2.2.1, where the latter denotes the Conley-Zehnder
index of the Reeb chord for precisely this choice of Legendrian lift.

Let Λ0,Λ1 ⊂ (P × R, α) be small open subsets of the sheets of Λ contain-
ing the end point and starting point of the Reeb chord c, respectively. The
sought lifts can now be constructed in the following manner. First, we take
the product of Λ0 ∪ Λ1 ⊂ (P × R, dz + θ) with R ⊂ (T ∗R,−pdq), and in this
way obtain the Legendrian submanifold R× (Λ0 ∪ Λ1) ⊂ (T ∗R× P × R =
J1R× P, dz − pdq + θ) of one dimension higher. Second, we deform the com-
ponent R× Λ1 by the addition of the one-jet of the function −Z + εq on R
for Z � 0 (the number ε > 0 here corresponds to the translation taking Λ
to Λε, while −Z � 0 corresponds to a translation of the Legendrian lift of
LΛε by the negative Reeb flow), giving rise to the Legendrian submanifold
L̃1. Third, we deform the component R× Λ0 by the addition of the one-jet
of the Morse function q2 on R (this corresponds to the wrapping of LΛ),
giving rise to the Legendrian submanifold L̃0. The local model produced
has a unique Reeb chord c′ from L̃1 to L̃0 contained above q = ε/2, the
latter being the unique and non-degenerate critical point of the function
f(q) = q2 − (−Z + εq).
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The sought identity

|pc| = n+ 1− CZ(pc) = n+ 1− CZ(c′) = n− |c|

now follows from the basic relation

CZ(c′) = CZ(c) + indexf (ε/2) = CZ(c)

concerning the Conley-Zehnder index, where indexf (ε/2) = 0 denotes the
Morse index. To see this, note that the canonical projection T ∗R× P → P
maps the Lagrangian projection of L̃i to the Lagrangian projection of Λi
for i = 0, 1. (Above we have used the grading convention in Section 2.2.1
concerning the choices of capping paths.)

We also refer to Figure 2 for a schematic picture of the intersection point
together with the corresponding Reeb chords. �

z

t

LΛε = φεet(LΛ)

ΦS
g∂z

(LΛ)
−S

−1

cc̃pc

Figure 2: After wrapping LΛ by applying the Hamiltonian flow Φs
g∂z

, the

intersection points ΦS
g∂z

(LΛ) ∩ LΛε are in natural one-to-one correspondence
with the Reeb chords on Λ. The double point pc corresponds to the Reeb
chord c on Λ which, in turn, corresponds to the Reeb chord c̃ from Λε to Λ.

3.2. Identifying the Floer homology and the Morse homology
(the proof of Theorem 1.1)

In this subsection, we recall the definition of the Morse homology complex
(CM•(LΛ, f ;R[π1(LΛ)]), ∂f ) for a Morse function f : LΛ → R with coeffi-
cients twisted by the fundamental group. The underlying graded module
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is

CM•(LΛ, f ;R[π1(LΛ)]) := R[π1(LΛ)]〈Crit(f)〉

with grading given by the Morse index. The differential ∂f counts the number
of negative rigid gradient flow lines of f defined for a Morse-Smale pair
consisting of f together with a Riemannian metric on LΛ, while taking
the homotopy class of the flow line into account (similarly as to the Floer
homology with twisted coefficients as described above).

Proposition 3.3. Given that ε > 0 is sufficiently small, after a generic
and arbitrarily small compactly supported perturbation L′Λε of LΛε, there is
an equality

(CF•(LΛ, L
′
Λε ;R[π1(LΛ)]), ∂) = (CM•(LΛ, f ;R[π1(LΛ)]), ∂f )

of complexes with grading modulo the Maslov number of LΛ, given that we
use the grading convention specified in Section 2.2.1. Here f : LΛ → R is a
generic Morse function satisfying the properties that:

• All critical points are contained in the subset {t < 0}; and

• Its differential satisfies df(∂t) > 0 for {t ≥ 0}.

Proof. As described in Lemma 3.1, there is a natural identification of the
bases of the underlying graded vector spaces.

The calculation of the differential is standard. It was first performed by
Floer in [28], whose computation shows that the Floer homology of a C1-
small Hamiltonian push-off of an exact Lagrangian submanifold is equal to
a Morse complex. The case with twisted coefficients as considered here was
carried out in [10, Section 2.3] by Damian. Also, see the identification in [52,
Proposition 2.4]. Recall that, when using the ring R = Z, extra care must
be taken when choosing the spin structure in order to obtain the correct
signs. �

Using Proposition 3.3 together with Theorem 2.8, Theorem 1.1 is now a
direct consequence. Together with Proposition 2.9 we then conclude Corol-
lary 1.2.

4. The proof of Theorem 1.3

This result roughly follows the ideas above, albeit under a slightly different
setting. We start by describing the setup.
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4.1. Lagrangian fillings of Legendrian submanifolds inside
P × S2k−1

The exact Lagrangian submanifold that we will be considering here is of the
form L× Rk ⊂ (P × Ck, dθ ⊕ dα0), where

α0 :=
1

2

k∑
i=1

(xidyi − yidxi)

and dα0 = ω0 is the standard symplectic form. This Lagrangian submanifold
can be considered as an exact Lagrangian filling of a Legendrian subman-
ifold inside (P × S2k−1, θ ⊕ α0) in the following way, where we recall that
(S2k−1, α0) is the standard contact form on the sphere S2k−1 ⊂ Ck.

Choose a Weinstein neighbourhood of L ⊂ (P, dθ) which symplectically
identifies a neighbourhood of L with a neighbourhood of the zero-section
of (T ∗L, dλL), where λL = pdq denotes the Liouville form. The exactness
of L ⊂ (P, dθ) implies that λL = df + θ holds inside this neighbourhood for
some smooth function f : T ∗L→ R. Using a bump-function ϕ supported
in a neighbourhood of L and replacing θ with form θ + d(ϕf), we may
thus assume that the primitive of the symplectic form vanishes along L
(recall that L is embedded!). In other words, the non-compact Lagrangian
submanifold L× Rk ⊂ (P × Ck, dθ ⊕ ω0) is a cylinder over the Legendrian
embedding

L× (Rk ∩ S2k−1) ⊂ (P × S2k−1, θ ⊕ α0)

of L× Sk−1 outside of a compact subset.
We will call a (possibly time-dependent) Hamiltonian Hs : P × Ck → R

homogeneous at infinity if it coincides with a function satisfying H(p, rz) =
r2H(z) outside of a compact subset of P × Ck, where r ∈ R≥0, p ∈ P , and
z ∈ Ck. Observe that the image of L× Rk under the isotopy induced by a
homogeneous Hamiltonian is still cylindrical over a Legendrian submanifold
outside of a compact subset. To see this, we use the fact that (t, z) 7→ et/2z
is the Liouville flow on (Ck \ {0}, dα0). In other words, the latter symplectic
manifold can be identified with the symplectisation of (S2k−1, α0), and a
homogeneous Hamiltonian induces an isotopy which is the lift of a contact
isotopy on the latter contact manifold.

Recall that Floer homology again can be defined for Lagrangian fillings
that are cylindrical over Legendrian submanifolds in the above sense, given
that we e.g. choose an almost complex structure which is cylindrical with
respect to the convex end of the product Liouville manifold (P × Ck, dθ ⊕
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dα0). As usual, invariance of the Floer complex holds for compactly sup-
ported Hamiltonian perturbations.

4.2. Making the Hamiltonian homogeneous at infinity (the proof
of Theorem 1.3)

Equip P × Ck with the product metric gP ⊕ gstd. By the assumptions of The-
orem 1.3, the Hamiltonian Hs : P × Ck → R satisfies Hs = fs +Q, where
fs : P × Ck → R, s ∈ [0, 1], has a uniform bound on ‖fs‖C1 , and where Q :
Rk → R is a non-degenerate quadratic form. In particular, the Hamiltonian
vector field associated to Hs is of the form

Xs = Ys + i∇Q,

where Ys ∈ T (P × Ck) is uniformly bounded and where ∇Q denotes the
gradient of Q with respect to the Euclidean metric.

Lemma 4.1. For any Hamiltonian Hs : P × Ck → R as in the assumption,
the intersections

(L× Rk) ∩ φsHs(L× Rk) ⊂ P × Ck

for any s ∈ [0, 1] are all contained inside a fixed compact subset K ⊂ P × Ck,
where this compact subset moreover may be taken to only depend on the norm
maxs∈[0,1] ‖dfs‖C0.

Proof. Fix a constant C > 0. Given that R� 0 is sufficiently large, the
Hamiltonian vector field Ys + i∇Q may be supposed to satisfy ‖i∇Q‖ ≥ C
in the complement of

P × {‖Re(z)‖ ≤ R} ⊂ P × Ck.

In particular, the term i∇Q may be assumed to be considerably larger than
the Hamiltonian vector field induced by fs in the same complement. Since
the image of

(L× Rk) ∩ (P × {‖Re(z)‖ ≤ R}) = L× {‖Re(z)‖ ≤ R}

is compact, its image under φsHs , s ∈ [0, 1], can be assumed to be contained
inside a compact subset K as in the assumption. The statement now follows.

�
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Lemma 4.2. After deforming the Hamiltonian Hs : P × Ck → R outside
of a compact subset, we may obtain a Hamiltonian Gs : P × Ck → R which
is homogeneous at infinity and for which

(L× Rk) ∩ φ1
Gs(L× Rk) = (L× Rk) ∩ φ1

Hs(L× Rk)

is satisfied. We can moreover take Gs = gs +Q for gs : P × Ck → R com-
pactly supported and Q equal to the above non-degenerate quadratic form.

Proof. The sought Hamiltonian will be taken to be of the form Gs := χ · fs +
Q, with the corresponding Hamiltonian vector field Ỹs + i∇Q, for a smooth
cut-off function χ : P × Ck → [0, 1] having compact support. It follows that
this Hamiltonian is homogeneous at infinity. Observe that the vector field Ỹs
has a uniform C0-bound expressed in terms of ‖dχ‖C0 , ‖fs‖C0 , and ‖dfs‖C0 .

The required behaviour concerning the intersections can be achieved
in the following way. Take a smooth cut-off function satisfying χ ≡ 1 in a
sufficiently large subset, while satisfying the uniform bound ‖dχ‖C0 ≤ 1.

In particular, we require that χ ≡ 1 holds in the compact subset

φ
[0,1]
Hs

((φ1
Hs)
−1(K)) ⊂ P × Ck,

foliated by Hamiltonian trajectories, where K denotes the compact subset
produced by Lemma 4.1. This is done in order to ensure that the latter
Hamiltonian trajectories all are unaffected by the cut-off function χ.

After choosing the compact subset K even larger, we may further assume
that φsχ·fs+Q((L× Rk) \K) is contained in a subset where ‖i∇Q‖ ≥ C holds,
for an arbitrary fixed constant C > 0. (In particular, the term i∇Q can
again be assumed to be considerably larger than the Hamiltonian vector
field induced by either fs or χ · fs in the complement of K.) The sought
property of the intersection points follows from this. �

Lemma 4.3. Let Gs : P × Ck → R be a Hamiltonian of the form gs +Q,
where gs : P × Ck → R is compactly supported and Q is a non-degenerate
quadratic form on Rk. For each ε > 0 sufficiently small, one can construct
a Hamiltonian G̃s : P × Ck → R, where

1) G̃s coincides with εGεs outside of P ×B2k
R for some R� 0 sufficiently

large;

2) The intersection points satisfy

(L× Rk) ∩ φ1
G̃s

(L× Rk) = (L× Rk) ∩ φ1
Gs(L× Rk);
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3) The two Lagrangian submanifolds φ1
G̃s

(L× Rk) and φεGs+hs(L× Rk)
are compactly supported Hamiltonian isotopic for any smooth and com-
pactly supported Hamiltonian hs : P × Ck → R.

Proof. For any small ε > 0 we choose a suitable smooth function ρε : R≥0 →
R≥0 satisfying ρ′ε(t) > 0, ρε(t) = t for all t ∈ [0, A], while ρε(t) =

√
εt for all

t ≥ B, and where B > A > 0 have been chosen sufficiently large. Using this
function we then construct the Hamiltonian

G̃s := gs +Q((ρε(‖x‖)/‖x‖)x).

Observe that, since x 7→ (ρε(‖x‖)/‖x‖)x is a diffeomorphism of Rk fixing
the origin, the critical points of Q((ρε(‖x‖)/‖x‖)x) correspond bijectively
to the critical points of Q. More precisely, the unique critical point is still
the origin x = 0.

(1): Given that A� 0 is chosen sufficiently large, a suitable deformation
of G̃s supported outside of some big compact subset of P × {‖Re(z)‖ ≤ A}
yields the desired Hamiltonian, which we again denote by G̃s.

(2): Again given that A� 0 was chosen sufficiently large, we may as-
sume the following. In the subset of P × Ck, where Gs and G̃s differ, these
Hamiltonians are of the form Q(x) and Q((ρε(‖x‖)/‖x‖)x), respectively.
Moreover, we may assume that neither function has a critical point in this
subset. The property now follows.

(3): Consider the image of L× Rk under the one-parameter family

λ 7→ φε
Gs+hs−λ(hs+Gs−(1/ε)G̃s/ε)

, λ ∈ [0, 1],

of Hamiltonian diffeomorphisms, where hs +Gs − (1/ε)G̃s/ε is compactly
supported by part (1). Recall that

φεs(1/ε)Fs/ε(L× Rk) = φsFs(L× Rk), s ∈ [0, 1],

for any Hamiltonian Fs. �

Lemma 4.4. For any given Morse function f : L→ R, there exists a suit-
able compactly supported cut-off function χ : Rk → [0, 1] for which there is
an equivalence

(CM•(L, f ;Z[π1(L)]), ∂f )

= (CM•+index(Q)(L× Rk, χ · f +Q;Z[π1(L× Rk)]), ∂)

of complexes.
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Proof. This can be seen by using the following standard technique. The
function Q : L× Rk → R has a non-degenerate critical manifold L× {0} in
the Bott sense. We proceed to construct a suitable Morse function of the
form χ · f +Q that gives rise to the sought complex.

First we compute

∇(χ · f +Q) = χ∇f +X +∇Q

where suppX⊂supp dχ and also ‖X‖C0≤‖dχ‖C0‖f‖C0 are satisfied. Choos-
ing the cut-off function χ to satisfy ‖dχ‖C0 ≤ 1 together with supp dχ ⊂ L×
(Rk \Bk

R) for some sufficiently large R� 0 the statement follows. Namely,
in this case, all critical points of χ · f +Q are contained inside L× {0} ⊂
L× Rk and correspond to critical points of f . Moreover, we can assume that
a gradient flow line which connects two critical points cannot leave L× {0}
for the product metric. �

We are now ready to prove Theorem 1.3. First, by Lemma 4.2 we may
replace Hs by a Hamiltonian Gs = gs +Q being homogeneous at infinity,
where gs has compact support and where Q is a nondegenerate quadratic
form. Choose a Morse function f : L→ R and take a cutoff function χ as
provided by Lemma 4.4. A standard computation in Floer homology (see
Proposition 3.3) together with Lemma 4.4 now gives an equality

(CF•(L× Rk, φεh+Q(L× Rk);Z[π1(LΛ)]), ∂)

= (CM•−index(Q)(L, f ;Z[π1(L)]), ∂f )

of complexes for a suitable extension h of χ · f to all of P × Ck ⊃ L× Rk,
and where ε > 0 must be chosen sufficiently small. Applying Theorem 2.8
to the compactly supported Hamiltonian isotopy produced by part (3) of
Lemma 4.3 we obtain a simple homotopy equivalence from the latter Morse
homology complex to a Floer homology complex generated by the inter-
section points (L× Rk) ∩ φ1

G̃s
(L× Rk), where G̃s is produced by the same

lemma applied to Gs. Finally, using part (2) of Lemma 4.3, we may assume
that

(L× Rk) ∩ φ1
G̃s

(L× Rk) = (L× Rk) ∩ φ1
Gs(L× Rk),

where we recall that the latter intersection points are equal to (L× Rk) ∩
φ1
Hs

(L× Rk) by the construction of Gs. It is now simply a matter of applying
Proposition 2.9 in order to obtain the sought inequality.
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5. Adaptation of the estimates of Ono-Pajitnov

In this section, we describe lower bounds for the number of Reeb chords on
Λ in terms of d(G) and δ(G), where G is a group which is an epimorphic
image of π1(LΛ).

The estimates here are all obtained by direct applications of the re-
sults from [43] by Ono-Pajitnov concerning the number of generators of π1-
equivariant complexes enforced by the complexity of the fundamental group
π1. These results are related to invariants due to Sharko [49]. The algebro-
topological results from [43] applies to complexes that are π1-equivariantly
homotopy equivalent to a complex induced by a π1-equivariant CW-complex
being the universal cover of a connected space having fundamental group
equal to π1 (after possibly reducing the grading Z→ Z/µZ). In particular,
they can be applied to our setting.

In fact, the latter article also provided important inspiration to our work
here. The original application of the algebro-topological results therein was
to establish lower bounds for the number of periodic orbits of time-dependent
Hamiltonian vector field on a closed and weakly monotone symplectic man-
ifold under the assumption that all periodic orbits are non-degenerate.

In the following we will use the notation ci := |Qi(Λ)| for the number of
Reeb chords in degree i modulo the Maslov number of LΛ. We also write
n := dim Λ.

5.1. Proof of Theorem 1.5

Let LΛ be an exact Lagrangian filling of a Legendrian Λ ⊂ P × R such that
LΛ is spin and µLΛ

= 0. In this case, the first part of Theorem 1.1 holds. Now
we adapt the results of Ono-Pajitnov from [43, Section 5.1] to this settings.

Using [43, Theorem 3.10] and [43, Corollary 3.11], we get the following
proposition.

Proposition 5.1. The following estimates hold:

• If |π1(LΛ)| > 1, then cn−1(Λ) ≥ 1.

• If π1(LΛ) admits a group epimorphism π1(LΛ)→ G with |G| > 1, then
(i) cn−1(Λ) ≥ δ(G);
(ii) cn−1(Λ) ≥ d(G) if G is simple or solvable;
(iii) cn−1(Λ) ≥ 2 if G is not cyclic.
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From [43, Corollary 3.20] and [43, Corollary 3.28] we get the following
bound.

Proposition 5.2. If |π1(LΛ)| <∞, then

(i) cn−2(Λ) ≥ δ(π1(LΛ))− dimH1(LΛ;F) + dimH2(LΛ;F) for every field
F;

(ii) cn−2(Λ) ≥ dimH2(LΛ;F) + 2 if π1(LΛ) is perfect;

Propositions 5.1 and 5.2 lead to Theorem 1.5.

5.2. Proof of Theorem 1.6

In the case when we do not make the assumption that µLΛ
= 0 and that

LΛ is spin, then the second part of Theorem 1.1 holds. Then using algebraic
machinery described in [43, Section 4], we get the following estimates, which
are reformulations of the estimates from [43, Section 5.2].

Proposition 5.3. The following estimates hold:

• If |π1(LΛ)| > 1, then cn−1(Λ) ≥ 1.

• If π1(LΛ) admits an epimorphism onto a finite group G, then
(i) cn−1(Λ) ≥ max(1, δ(G)− 1), and |Q(Λ)| ≥ δ(G);

(ii) if G is simple or solvable, then |Q(Λ)| ≥ d(G);
(iii) if G is not cyclic, then |Q(Λ)| ≥ 2.

Proposition 5.4. If µLΛ
≥ 2n+ 2 and π1(LΛ) admits an epimorphism

onto a finite group G, then we have

(i) cn−1(Λ) ≥ δ(G);

(ii) if G solvable or simple, then cn−1(Λ) ≥ d(G);

(iii) if G is not cyclic, then cn−1(Λ) ≥ 2.

Using Propositions 5.3 and 5.4, we get Theorem 1.6.

6. Examples of exact Lagrangian fillings

Here we describe a general construction of Lagrangian fillings in the sym-
plectisation of the standard contact vector space (R2n+1, dz + θ0), where
θ0 := −(y1dx1 + . . .+ ykdxk). The goal is to construct examples of fillings
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diffeomorphic to N × Rk+1, where N is a closed manifold, to which our re-
sults can be applied in order to produce non-trivial lower bounds for the
number of Reeb chords on the Legendrian end N × Sk ⊂ R2n+1.

6.1. Fillings in the symplectisation of the standard contact space

Consider the standard disc filling Lk+1
0 ⊂ (R× J1Rk, d(etα0)) of the stan-

dard Legendrian k-sphere

Λk0 ⊂ (J1Rk = R2k+1, α0 := dz + θ0)

of tb(Λk0) = (−1)k(k−1)/2+1. In particular, the Maslov class of Lk+1
0 vanishes

for topological reasons. The filling Lk+1
0 can either be constructed by hand,

or by observing that the contact manifold J1Rk = R2k+1 endowed with the
standard contact structure is contactomorphic to the complement of a point
(S2k+1 \ {pt}, ξ0) of the standard tight contact sphere. Namely, under this
identification, Λk0 is identified with Rk+1 ∩ S2k+1 ⊂ Ck+1 ∩ S2k+1 while Lk+1

0

can be identified with a compactly supported perturbation of Rk+1 ⊂ Ck+1

that misses the origin.
First, we observe that

N × Lk+1
0 ⊂ (T ∗N × (R× J1Rk), d(et(λN + α0)))

is an exact Lagrangian filling of N × Λk0 ⊂ (J1(N × Rk), dz + λN + θ0) dif-
feomorphic to N × Sk, where λN denotes the Liouville one-form on T ∗N .
Observe that the Maslov class of N × Lk+1

0 also vanishes.
Second, given that N embeds into RdimN+k with trivial normal bundle,

it follows that there exists a contact-form preserving embedding

J1(N × Rk) = T ∗(N × Rk)× R ↪→ T ∗RdimN+k × R = J1RdimN+k.

For example, this embedding can be obtained starting from the canonical
open exact symplectic embedding T ∗(N × Rk) ↪→ T ∗RdimN+k induced by a
choice of open embedding N × Rk ↪→ RdimN+k, and then taking the canon-
ical lift to the corresponding jet spaces.

Remark 6.1. We recall that the standard representative of Λk0 ⊂ R2k+1

has a single transverse Reeb chord in degree k. Using this fact, we see that
the Legendrian embedding N × Λk0 ↪→ RdimN+k produced above has a Bott
manifold of Reeb chords that, moreover, is diffeomorphic to N . A generic
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perturbation of this Legendrian embedding can be seen to produce precisely
a number Morse(N) of transverse Reeb chords.

6.2. Constructing exact Lagrangian fillings with a given
fundamental group

For any finitely presented group G, the above method can be used to con-
struct an exact Lagrangian filling with fundamental group equal to G.

Proposition 6.2. For a given finitely-presented group G, there exists a
closed n-dimensional manifold MG such that π1(MG) = G and a Legen-
drian submanifold MG × Λk0 ⊂ (R2(n+k)+1, dz + θ0) which admits an exact
Lagrangian filling diffeomorphic to MG × Rk+1 for any k � 1 sufficiently
large, where this Lagrangian filling moreover is spin and has vanishing Maslov
number.

Proof. Recall that the strong Whitney embedding theorem implies that a
stably parallelisable manifold M embeds into R2 dimM with a stably trivial
normal bundle. In particular,M embeds into R2 dimM+1 with a trivial normal
bundle. (See [36, Lemma 3.3].) The construction in Section 6.1 together with
the following standard result thus proves the claim. �

Lemma 6.3. Given a finitely presented group G, there exists a stably par-
allelisable closed manifold MG for which π1(MG) = G.

Proof. Observe that there exists a cell complex X with π1(X) = G, see [32,
Proposition 1.26, Corollary 1.28]. Then we embed X into Rn for some n and
thicken it to the open manifold Xop so that Xop is a compact manifold of
codimension 0 in Rn which is stably parallelisable. Then, we define MG to
be a double of Xop in Rn+1, i.e. we smoothen the corners of the boundary of
Xop × [0, 1] ⊂ Rn+1, thus producing a closed submanifold of Rn+1. SinceXop

is stably parallelisable, Xop × [0, 1] is stably parallelisable as well. Since MG

is the boundary of a stably parallelisable manifold, it is hence itself stably
parallelisable. �

6.3. Exact Lagrangian fillings diffeomorphic to stabilised
homology spheres

In this section, we discuss (integral) homology spheres, as well as related
exact Lagrangian cobordisms having interesting fundamental groups. Recall
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that any (integral) homology sphere is stably parallelisable by [39]. (The
proof of this statement is a modification of the proof of stably parallelisability
of homotopy spheres, see [36].) Using this fact together with Proposition 6.2
we conclude the following. For a given homology sphere S, there exists a
Legendrian S × Λk0 admitting an exact Lagrangian filling diffeomorphic to
S × Rk+1 with fundamental group π1(S × Rk+1) = π1(S), given that k � 1
is chosen sufficiently large.

6.3.1. The Poincaré homology sphere. The Poincaré homology 3-
sphere (or the dodecahedral space of Poincaré) is a classical space that has
received particular attention. Namely, it was the first example of a homology
sphere which is not a sphere, and it also lies in a class of three manifolds
closely related to Platonic solids.

The Poincaré homology sphere can be described as a Brieskorn 3-sphere.
More precisely, consider a polynomial f : C3 → C given by f(z1, z2, z3) =
z2

1 + z3
2 + z5

3 and a singular complex variety f−1(0). Note that f−1(0) is
singular only at the origin, i.e. when zi = 0 for i = 1, 2, 3. The Poincaré
homology 3-sphere S3

P is defined to be S5 ∩ f−1(0), where S5 ⊂ C3 is a small
5-sphere around the origin. There are many other interesting descriptions of
the Poincaré homology sphere, see [37].

Note that π1(S3
P ) is isomorphic to the so-called binary icosahedral group

〈2, 3, 5〉 defined by the presentation

〈s, t | (st)2 = s3 = t5〉.

Note that 〈2, 3, 5〉 is the unique stem extension, where the base normal
subgroup is cyclic group Z2 and the quotient group is the alternating group
A5. We also observe that A5 is the smallest non-abelian finite simple group.

The Poincaré sphere S3
P embeds into R5 by the above, and hence does so

with a trivial normal bundle by topological reasons. Using the construction
in Section 6.1, we can thus produce a Legendrian embedding S3

P × Λk0 ⊂
R2(3+k)+1 which admits an exact Lagrangian filling diffeomorphic to S3

P ×
Rk+1 for any k ≥ 2.

Now we show that bounds described in Corollary 1.2 and in Theorems 1.5
and 1.6 are stronger than the bound coming from the homological data of the
filling. Part (ii) of Theorem 1.5 applied to the perfect group 〈2, 3, 5〉 implies
the bound |Q(S3

P × S1)| ≥ 6 for all representatives. In addition, note that
Morse(S3

P ) = 6. This follows from the fact that S3
P admits a Heegaard split-

ting of genus 2, see [47, Section 9D]. Moreover, combining Theorem 1.5 with
[11, Proposition 2.1] we get that even stableMorse(S3

P )=6 holds. Lemma 2.7
now shows that we have stableMorse(S3

P ×Dk+1) = 6 as well. In conclusion,
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the bound we get using the method of Ono-Pajitnov actually equals the
Morse number of S3

P ×Dk+1. Finally, note that Seidel’s isomorphism only
predicts that |Q(S3

P × Sk)| ≥ 2.

6.3.2. High-dimensional homology spheres. We again consider the
binary icosahedral group 〈2, 3, 5〉. Note that the binary icosahedral group is
a finitely presented superperfect group, and by the work of Kervaire [35], see
Theorem 2.12, there exists an n-dimensional smooth homology sphere that
we call M〈2,3,5〉, where n ≥ 5, with the property that π1(M〈2,3,5〉) ' 〈2, 3, 5〉.
Using the same arguments as we described in Section 6.3.1, we produce a
Legendrian manifold M〈2,3,5〉 × Sk for k � 1 sufficiently large, for which the
bound

|Q(M〈2,3,5〉 × Sk)| ≥ 6

thus is satisfied for all representatives. Finally, observe that Seidel’s isomor-
phism again predicts that |Q(M〈2,3,5〉 × Sk)| ≥ 2.

6.4. Exact Lagrangian fillings with finite solvable
fundamental group

In this section, we produce examples for which the estimates described in
Section 5 are much stronger compared to the estimate coming from Seidel’s
isomorphism. In order to do this, we first provide examples of finite solvable
groups G with the property that d(G)− d(G/[G,G])� 0 is arbitrarily large.

We start with the following observation

(H oϕ K)/[H oϕ K,H oϕ K] ' (K/[K,K])× ((H/[H,H])/GH),(6.1)

where GH is a subgroup of H/[H,H] generated by [h]− [φ(h)]. The proof
can, for example, be deduced from [30, Proposition 29]. Then we describe a
series of finite solvable groups Gm with the property that d(Gm) = m+ 1,
d(Gm/[Gm, Gm]) = 1.

Example. Let Fq be a finite field with q elements, where q > 2 is a prime
number. We define a group Gm := Fmq oϕ F∗q , where ϕ : F∗q → Aut(Fmq ) acts
on the additive group Fmq by ϕ(f)((f1, . . . , fm)) := (ff1, . . . , ffm), f ∈ F∗q ,
fi ∈ Fq. It is easy to see that Gm is a solvable group. This follows from the
existence of the following subnormal series

{1} < Fq < · · · < Fm−1
q < Fmq < Gm,

where Gm/Fmq ' F∗q and Fiq/Fi−1
q ' Fq.
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Then we observe that from Formula 6.1 it follows that Gm/[Gm, Gm] '
F∗q is a non-trivial cyclic group. Therefore, d(Gm/[Gm, Gm]) = 1.

Finally we prove that d(Gm) = m+ 1. Since d(Fmq ) = m and d(F∗q) = 1,
we get that d(Gm) ≤ m+ 1.

We first show that d(Gm) ≥ m. Assume that Gm has a generating set
SGm = {(vi, gi) | 1 ≤ i ≤ k} with vi ∈ Fmq , gi ∈ F∗q and k < m. Then, note
that every element in the group generated by SGm has a form (

∑
1≤i≤kaivi, h),

where h ∈ F∗q , ai ∈ Fq, and vi ∈ Fmq . This leads to the contradiction with the
fact that d(Fmq ) = m.

Then we take a set of generators SGm and (v, g) ∈ SGm with the property
that g is a generator of F∗q (F∗q is a cyclic group). Such an element definitely
exists since if all the elements of SGm are of the form (w, h), where h is not a
generator of F∗q , then SGm is not a generating set of Gm. Again, F∗q is a cyclic
group of order q − 1, and the order of g that we denote by ord(g) is coprime
to |Fq|. This implies that ord((v, g)) = ord(g) is coprime to |Fq|, and hence
none of the primes which divide ord((v, g)) will divide [Gm : 〈(v, g)〉] = |Fmq |.
Let π be the set of primes which divide ord(g). Then 〈(v, g)〉 and 〈(0, g)〉
are two Hall π-subgroups, and hence by Theorem 2.10 they are conjugate
by some element x ∈ Gm. This implies that SGm , after conjugation, contains
an element x(v, g)x−1 = (0, g̃), where g̃ is a generator of F∗q . We also would
like to mention that it is possible to find x explicitly without relying on the
theory of Hall π-subgroups. Then, already knowing that d(Gm) ≥ m, we can
apply the previous argument and see that, in fact, d(Gm) ≥ m+ 1. Together
with the fact that d(Gm) ≤ m+ 1 we get that d(Gm) = m+ 1.

Using Proposition 6.2, we construct an exact Lagrangian filling MGm ×
Lk+1

0 of a Legendrian MGm × Λk0 inside the standard contact vector space.
Then Theorem 1.5 tells us that

|Q(Λ)| ≥ m+ 1− rankH1(MGm × Rk+1;F) +
∑
i

rankHi(MGm × Rk+1;F)

= m+
∑
i

rankHi(MGm × Rk+1;F)

is satisfied for all representatives.
On the other hand, the bound given by Seidel’s isomorphism is

|Q(Λ)| ≥
∑
i

rankHi(MGm × Rk+1;F).

Finally, note that the difference between the previous two bounds gets arbi-
trarily large as m→∞.
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