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1. Introduction

Jacobi structures were independently introduced by Lichnerowicz [29] and
Kirillov [23], and they are a combined generalization of symplectic or Pois-
son structures and contact structures. Note that Kirillov local Lie algebras
with one dimensional fiber [23] are slightly more general than Lichnerowicz
Jacobi manifolds. In this note we will adopt the following definition, which
is equivalent to Kirillov’s one: a Jacobi manifold is a manifold M equipped
with a Jacobi structure, i.e. a pair (L, {−,−}) consisting of a line bundle
L→M and a Lie bracket {−,−} on sections of L which is a first order
differential operator in each entry (see Definition 2.1). Jacobi manifolds à
la Lichnerowicz correspond to the case when L = M × R is the trivial line
bundle, and are, somehow, more popular. So we reserve the terminology
standard Jacobi manifolds for them. While general Jacobi manifolds encom-
pass non-coorientable contact manifolds, standard Jacobi manifolds do not.

Coisotropic submanifolds in (standard) Jacobi manifolds have been first
studied by Ibáñez-de León-Marrero-Mart́ın de Diego [17]. They showed that
these submanifolds play a similar role as coisotropic submanifolds in Poisson
manifolds. For instance, the graph of a conformal Jacobi morphism f : M1 →
M2 between Jacobi manifolds is a coisotropic submanifold in M1 ×M2 × R
equipped with an appropriate Jacobi structure. Other important examples
of coisotropic submanifolds in a Jacobi manifold M are leaves of the char-
acteristic distribution, and zero level sets of equivariant momentum maps.
Since the property of being coisotropic does not change in the same confor-
mal class of a standard Jacobi manifold (see Remark 2.15 and Lemma 3.1),
it seems to us that we should not restrict the study of coisotropic subman-
ifolds to those inside Poisson manifolds, and, even more, we should in fact
consider the case of coisotropic submanifolds in general (i.e. non-necessarily
standard) Jacobi manifolds.

One purpose of the present article is to extend the construction of an
L∞-algebra attached to a coisotropic submanifold S to the Jacobi case, gen-
eralizing analogous constructions in [35] (symplectic case), [5] (Poisson case),
[26] (locally conformal symplectic case). Our construction encompasses all
the known cases as special cases and reveals the prominent role of the gauge
algebroid DL of a line bundle L. In all previous cases L is a trivial line bundle



i
i

“7-Oh” — 2019/1/22 — 21:51 — page 1053 — #3 i
i

i
i

i
i

Deformations of coisotropic submanifolds 1053

while it is not necessarily so for general Jacobi manifolds. As a new special
case, our construction canonically applies to coisotropic submanifolds in any
(not necessarily co-orientable) contact manifold. We also provide a global
tensorial description of our L∞-algebra, in the spirit of [5], originally given
in the language of (formal) Q-manifolds [1] for the symplectic case (see [35,
Appendix]).

The L∞-algebra of a coisotropic submanifold S governs the formal defor-
mation problem of S. In this respect, another purpose of the present article is
to present necessary and sufficient conditions under which the L∞-algebra of
S governs the non-formal deformation problem as well. Our Proposition 4.14
extends — even in the Poisson setting — the sufficient condition given by
Schätz and Zambon in [39] to a necessary and sufficient condition. We also
discuss the relation between Hamiltonian equivalence of coisotropic sections
and gauge equivalence of Maurer-Cartan elements. We obtain a satisfactory
description of this relation (Proposition 4.20) and discuss its consequences
(Theorem 4.23 and Corollary 4.21).

Note that Jacobi manifolds can be understood as homogeneous Pois-
son manifolds (of a special kind) via the “Poissonization construction” (see,
e.g. [8, 32]). However, not all coisotropic submanifolds in the Poissonization
come from coisotropic submanifolds in the original Jacobi manifold. On the
other hand, if we regard a Poisson manifold as a Jacobi manifold, all its
coisotropic submanifolds are coisotropic in the Jacobi sense as well. In par-
ticular, the deformation problem of a coisotropic submanifold in a Jacobi
manifold is genuinely more general than its analogue in the Poisson setting.

Our paper is organised as follows. In Section 2 we attach important al-
gebraic and geometric structures to a Jacobi manifold. Our approach, via
gauge algebroids and first order multi-differential calculus on non-trivial line
bundles, unifies and simplifies previous, analogous constructions for Poisson
manifolds and locally conformal symplectic manifolds. In Section 3, using
results in Section 2, we attach an L∞-algebra to any closed coisotropic sub-
manifold in a Jacobi manifold. In Section 4 we study the deformation prob-
lem of coisotropic submanifolds. In particular we discuss the relation be-
tween smooth coisotropic deformations and formal coisotropic deformations
as well as the moduli problem under Hamiltonian equivalence. In Section 5
we apply the theory to the contact case, which is, in a sense, analogous to
the symplectic case analysed by Oh-Park [35]. In Section 6 we present an ex-
ample of a coisotropic submanifold in a contact manifold whose deformation
problem is obstructed.

Finally, the paper contains two appendices. The first one collects some
facts about gauge algebroids and Schouten-Jacobi algebras that are needed
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in the main body of the paper. In the second one we compute explicitly the
multi-brackets in the L∞-algebra of a pre-contact manifold, thus providing
a proof of Theorem 5.25.

2. Jacobi manifolds and associated algebraic and geometric
structures

In this section we recall the definition of Jacobi manifolds and present impor-
tant examples (Definition 2.1, Examples 2.2) of them. Our primary sources
are [23], [29], [32], [14], and the recent paper by Crainic and Salazar [7]
whose philosophy/approach à la Kirillov we adopt. Accordingly, we retain
the terms standard Jacobi manifolds for Jacobi manifolds in the sense of
Lichnerowicz. Generically non-trivial line bundles and first order multi-
differential calculus on them play a prominent role in Jacobi geometry.
We also associate important algebraic and geometric structures with Ja-
cobi manifolds. Namely, we recall the notion of Jacobi algebroid (see [14]
and [18] for the equivalent notion of Lie algebroid with a 1-cocycle), but we
adopt a slightly more general approach to incorporate the non-trivial line
bundle case. We discuss the existence of a Jacobi algebroid structure on the
first jet bundle J1L of the Jacobi bundle of a Jacobi manifold (M,L, {−,−})
(Example 2.7), first discovered by Kerbrat and Souici-Benhammadi in the
standard case L = M × R [21] (see [7] for the general case). Finally, we dis-
cuss the notion of morphisms of Jacobi manifolds.

2.1. Jacobi manifolds and their canonical bi-linear forms

Let M be a smooth manifold.

Definition 2.1. A Jacobi structure on M is a pair (L, {−,−}) where L→
M is a (generically non-trivial) line bundle, and {−,−} : Γ(L)× Γ(L)→
Γ(L) is a Lie bracket which, moreover, is a first order differential operator
in both entries. A Jacobi manifold is a manifold equipped with a Jacobi
structure. The bundle L and the bracket {−,−} will be referred to as the
Jacobi bundle and the Jacobi bracket respectively.

A Jacobi bracket {−,−} is, by definition, a (first order) bi-differential
operator. We collect basic facts, including our notations and conventions,
about (multi-)differential operators in Appendix A. In the following, we will
often refer to it for details.
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Example 2.2.

1) Any (possibly non-coorientable) contact manifold (M,C) is naturally
equipped with a Jacobi structure, with Jacobi bundle given by the
(possibly non-trivial) line bundle TM/C (see Section 5).

2) Recall that a locally conformal symplectic (l.c.s.) manifold is natu-
rally equipped with a standard Jacobi structure sometimes called the
associated locally conformal Poisson structure. There is a slight gen-
eralization of a l.c.s. manifold in the same spirit as Jacobi manifolds
(see Appendix A of [44]). Call it an l.c.s. manifold as well. Then, any
l.c.s. manifold is naturally equipped with a Jacobi structure [44].

3) Let {ωt}t∈I be a smooth l.c.s. deformation of a l.c.s. form ω0 on
a manifold M , where I is an open interval in R containing 0. De-
note by Jt the standard Jacobi structure on M associated with ωt,
and let J̃ : C∞(M × I)× C∞(M × I)→ C∞(M × I) be defined by
J̃(g̃, f̃)(x, t) := Jt(f̃(−, t), g̃(−, t))(x). Then it is not hard to verify that
(M × I, J̃) is a standard Jacobi manifold.

Let (M,L, {−,−}) be a Jacobi manifold and λ ∈ Γ(L). Then ∆λ :=
{λ,−} is a derivation of L. The symbol of ∆λ (see Appendix A) will be
denoted by Xλ.

Remark 2.3. By definition, a Jacobi bracket {−,−} on sections of a line
bundle L→M satisfies the following generalized Leibniz rule

(2.1) {λ, fµ} = f{λ, µ}+Xλ(f)µ,

λ, µ ∈ Γ(L), f ∈ C∞(M).

Denote by J1L the bundle of 1-jets of sections of L and let j1 : Γ(L)→
Γ(J1L) be the first jet prolongation. The bi-differential operator {−,−} can
be interpreted as an L-valued, skew-symmetric, bi-linear form J : ∧2J1L→
L. Namely, J is uniquely determined by

J(j1λ, j1µ) = {λ, µ},

for all λ, µ ∈ Γ(L).

Remark 2.4. As {−,−} and J contain the same information, we will some-
times identify them and write J ≡ {−,−}. For instance we will write [J,�]SJ
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for the Schouten-Jacobi bracket of {−,−} and another (first order) multi-
differential operator � (see Appendix A). On the other hand, we will always
use the symbol J for the bi-linear form ∧2J1L→ L, and we will always use
the symbol {−,−} when we want to act with the bracket on sections of L.

Denote by DL = Hom(J1L,L) the gauge algebroid of the line bundle
L (see Appendix A for details). Then, the bi-linear form J determines an
obvious morphism of vector bundles J# : J1L→ DL, defined by J#(α)λ :=
J(α, j1λ), where α ∈ Γ(J1L) and λ ∈ Γ(L). The bi-symbol ΛJ of {−,−}
will be also useful. It is defined as follows. Recall that there is a natu-
ral vector bundle embedding γ : T ∗M ⊗ L→ J1L, sometimes called the co-
symbol, well-defined by γ(df ⊗ λ) := j1(fλ)− fj1λ, for all f ∈ C∞(M), and
λ ∈ Γ(L). The co-symbol fits in the exact sequence

0 −→ T ∗M ⊗ L γ−→ J1L −→ L −→ 0,

where J1L→ L is the natural projection. Then ΛJ : ∧2(T ∗M ⊗ L)→ L is
the bi-linear form obtained by restricting J to T ∗M ⊗ L regarded as a sub-
bundle of J1L via the co-symbol. Namely,

ΛJ(η, θ) := J(γ(η), γ(θ)),

for all η, θ ∈ T ∗M ⊗ L. It immediately follows from the definition that

ΛJ(df ⊗ λ, dg ⊗ µ)(2.2)

= {fλ, gµ} − fg{λ, µ} − fXλ(g)µ+ gXµ(f)λ

= (Xfλ(g)− fXλ(g))µ,

where f, g ∈ C∞(M), and λ, µ ∈ Γ(L).
The skew-symmetric form ΛJ determines an obvious morphism of vec-

tor bundles Λ#
J : T ∗M ⊗ L→ TM , implicitly defined by 〈Λ#

J (η ⊗ λ), θ〉µ :=
ΛJ(η ⊗ λ, θ ⊗ µ), where η, θ ∈ Ω1(M), λ, µ ∈ Γ(L), and 〈−,−〉 is the duality
pairing. In other words,

(2.3) Λ#
J (df ⊗ λ) = Xfλ − fXλ,

f ∈ C∞(M), λ ∈ Γ(L). The morphism Λ#
J can be alternatively defined as

follows. Recall that DL projects onto TM via the symbol σ. It is easy to
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see that the diagram

T ∗M ⊗ L
Λ#
J //

γ

��

TM

J1L
J#

// DL

σ

OO

commutes, i.e. Λ#
J = σ ◦ J# ◦ γ, which can be used as an alternative defini-

tion of Λ#
J . Finally, note that

(J# ◦ γ)(df ⊗ λ) = ∆fλ − f∆λ.

2.2. Jacobi algebroid associated with a Jacobi manifold

Definition 2.5. A Jacobi algebroid is a pair (A,L) where A→M is a Lie
algebroid, and L→M is a line bundle equipped with a representation of A.

Remark 2.6. Jacobi algebroids are equivalent to Grabowski’s Kirillov al-
gebroids [12, Section 8].

Let A→M be a Lie algebroid with anchor ρ and Lie bracket [−,−]A,
and let E →M be a vector bundle equipped with a representation of A.
In the following we denote by (Γ(∧•A∗), dA) the de Rham complex of A
and by (Γ(∧•A∗ ⊗ E), dA,E) the de Rham complex of A with values in E. Its
cohomology, the de Rham cohomology of A with values in E, will be denoted
by H(A,E).

Now, let M be a manifold and let L→M be a line bundle. Denote by
J1L the dual bundle of J1L. Sections of J1L are first order differential oper-
ators Γ(L)→ C∞(M). Moreover, denote by D•L = Γ(∧•J1L⊗ L) the space
of alternating, first order multi-differential operators Γ(L)× · · · × Γ(L)→
Γ(L) (see Appendix A for more details).

Example 2.7. (cf. [21, Theorem 1], [19, (2.7)], [14, Theorem 13]) Let
(M,L, J ≡ {−,−}) be a Jacobi manifold. It is not hard to see (see, e.g.,
[7]) that there is a unique Jacobi algebroid structure on (J1L,L) with an-
chor ρJ , Lie bracket [−,−]J , and flat J1L-connection ∇J in L such that

ρJ(j1λ) = Xλ,

[j1λ, j1µ]J = j1{λ, µ},(2.4)

∇Jj1λµ = {λ, µ},
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for all λ, µ ∈ Γ(L). If ψ, χ ∈ Γ(J1L) are generic sections, we have

ρJ(ψ) = σ(J ]ψ)

and

(2.5) [ψ, χ]J = LJ]ψχ− LJ]χψ − j1J(ψ, χ).

Lemma 2.8. Let J ∈ D2L be an alternating, first order bi-differential op-
erator: J : Γ(L)× Γ(L)→ Γ(L). Then

1) for all λ, µ ∈ Γ(L),

(2.6) J(λ, µ) = −[[J, λ]SJ , µ]SJ .

2) (cf. [14, Theorem 1.b, (28), (29)]) J is a Jacobi bracket, i.e. it defines
a Lie algebra structure on Γ(L) iff

(2.7) [J, J ]SJ = 0,

where [−,−]SJ is the Schouten-Jacobi bracket (see Appendix A).

Proof. The first assertion is a consequence of the explicit form of the
Schouten-Jacobi bracket. The second assertion is a particular case of Theo-
rem 3.3 in [27]. �

Remark 2.9. Denote by X•(M) =
⊕

k X
k(M) the space of (skew-symmet-

ric) multi-vector fields on M . When L = RM := M × R, the trivial line bun-
dle, then the space Dk+1L of alternating first order multi-differential oper-
ators on Γ(L) with k + 1 entries, identifies with Xk+1(M)⊕ Xk(M) (see
Appendix A). In particular, an alternating, first order bi-differential oper-
ator J identifies with a pair (Λ,Γ) where Λ is a bi-vector field and Γ is a
vector field on M . In this case, Equation (2.7) is equivalent to

[Γ,Λ]SN = 0 and [Λ,Λ]SN = 2Λ ∧ Γ

where [−,−]SN is the Schouten-Nijenhuis bracket on multi-vectors.

Remark 2.10. Let (M,π) be a Poisson manifold, with Poisson bi-vector
π, and Poisson bracket {−,−}π. The differential dπ := [π,−]SN : X•(M)→
X•(M) has been introduced by Lichnerowicz. The cohomology of (X•(M), dπ)
is the Lichnerowicz-Poisson cohomology of (M,π). For more general Jacobi
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manifolds (M,L, J ≡ {−,−}) it is natural to replace multi-vectors with
multi-differential operators, i.e. elements of D•L, and the Lichnerowicz-
Poisson differential by the differential dJ := [J,−]SJ . The resultant coho-
mology is called the Chevalley-Eilenberg cohomology of (M,L, {−,−}) [15,
29]. Furthermore, the action of (D•L)[1] on Γ(∧•J1L) (see Appendix A)
gives rise to another cohomology, namely the cohomology of the complex
(Γ(∧•J1L), XJ), also called the Lichnerowicz-Jacobi cohomology of (M,L,
{−,−}) (see, e.g., [28]). It is easy to see that the complex (Γ(∧•J1L), XJ)
is nothing but the de Rham complex of the Lie algebroid (J1L, ρJ , [−,−]J).
Similarly, the complex (D•L, dJ) is the de Rham complex of (J1L, ρJ , [−,−]J)
with values in L.

2.3. Morphisms of Jacobi manifolds

Let (M1, L1, {−,−}1) and (M2, L2, {−,−}2) be Jacobi manifolds

Definition 2.11. A morphism of Jacobi manifolds, or a Jacobi map,

(M1, L1, {−,−}1)→ (M2, L2, {−,−}2)

is a vector bundle morphism φ : L1 → L2, covering a smooth map φ : M1 →
M2, such that φ is an isomorphism on fibers, and φ∗{λ, µ}2 = {φ∗λ, φ∗µ}1
for all λ, µ ∈ Γ(L2).

Definition 2.12. An infinitesimal automorphism, or a Jacobi derivation,
of a Jacobi manifold (M,L, {−,−}) is a derivation ∆ of the line bundle
L, equivalently, a section of the gauge algebroid DL of L, such that ∆
generates a flow by automorphisms of (M,L, {−,−}) (see Appendix A). A
Jacobi vector field is the symbol of a Jacobi derivation.

Remark 2.13. Let ∆ be a derivation of L, let {ϕt} be its flow, and let �
be a first order multi-differential operator on L with k entries, i.e. � ∈ DkL.
It is easy to see that (similarly as for vector fields)

(2.8)
d

dt

∣∣∣∣
t=0

(ϕt)∗� = [�,∆]SJ

where ϕ∗� denotes the push forward of � along a line bundle isomorphism
ϕ : L→ L′, defined by (ϕ∗�)(λ′1, . . . , λ

′
k) := (ϕ−1)∗(�(ϕ∗λ′1, . . . , ϕ

∗λ′k)), for
all λ′1, . . . , λ

′
k ∈ Γ(L′) (see also Appendix A about pushing forward deriva-

tions along vector bundle morphisms). In particular, ∆ is an infinitesimal
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automorphism of (M,L, {−,−}) if and only if [J,∆]SJ = 0. Since

(2.9) [J,∆]SJ(λ, µ) = {∆λ, µ}+ {λ,∆µ} −∆{λ, µ},

we conclude that ∆ is an infinitesimal automorphism of (M,L, {−,−}) iff

(2.10) ∆{λ, µ} = {∆λ, µ}+ {λ,∆µ}

for all λ, µ ∈ Γ(L). In other words ∆ is a derivation of the Jacobi bracket.

Remark 2.14. More generally, let {∆t} be a one parameter family of
derivations of L, generating the one parameter family of automorphisms
{ϕt}, and let � ∈ D•L. Then

(2.11)
d

dt
(ϕt)∗� = [(ϕt)∗�,∆t]

SJ .

Remark 2.15. Definitions 2.11 and 2.12 encompass the notions of con-
formal morphisms and infinitesimal conformal automorphisms of standard
Jacobi manifolds, respectively. In particular two standard Jacobi structures
are conformally equivalent if and only if they are isomorphic as Jacobi struc-
tures.

Let (M,L, J ≡ {−,−}) be a Jacobi manifold and λ ∈ Γ(L). Note that

(2.12) ∆λ = {λ,−} = −[J, λ]SJ .

The Jacobi identity for the Jacobi bracket immediately implies that not only
∆λ is a derivation of L, but even more, it is an infinitesimal automorphism of
(M,L, {−,−}), called the Hamiltonian derivation associated with the section
λ. Similarly, the symbol Xλ of ∆λ will be called the Hamiltonian vector field
associated with λ. Clearly we have

(2.13) [∆λ,∆µ] = ∆{λ,µ}, and [Xλ, Xµ] = X{λ,µ},

for all λ, µ ∈ Γ(L). Jacobi automorphisms L→ L generated by Hamilto-
nian derivations will be called Hamiltonian automorphisms. Similarly, dif-
feomorphisms M →M generated by Hamiltonian vector fields will be called
Hamiltonian diffeomorphisms.

Example 2.16. Let (M,L, {−,−}) be a Jacobi manifold. The values of all
Hamiltonian vector fields generate a distribution K ⊂ TM which is, gener-
ically, non-constant-dimensional. Distribution K is called the characteristic
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distribution of (M,L, {−,−}). The Jacobi manifold (M,L, {−,−}) is said to
be transitive if its characteristic distribution K is the whole tangent bundle
TM . Identity (2.13) implies that K is involutive. Moreover, it is easy to see
that K is constant-dimensional along the flow lines of a Hamiltonian vector
field. Hence, it is completely integrable in the sense of Stefan and Sussmann.
In particular, it defines a (singular) foliation, also denoted K. Each leaf C
of K, is called a characteristic leaf and possesses a unique transitive Jacobi
structure defined by the restriction of the Jacobi bracket to L|C , see Corol-
lary 3.3.2 for a precise expression. In other words, the inclusion L|C ↪→ L is a
Jacobi map. Moreover, a transitive Jacobi manifold (M,L, {−,−}) is either
an l.c.s. manifold (if dimM is even) or a contact manifold (if dimM is odd)
[23].

3. Coisotropic submanifolds in Jacobi manifolds
and their invariants

In this section we propose some equivalent characterizations of coisotropic
submanifolds S in a Jacobi manifold (M,L, {−,−}) (Lemma 3.1, Corol-
lary 3.3.(3)). Then we establish a one-to-one correspondence between coiso-
tropic submanifolds of (M,L, {−,−}) and certain Jacobi subalgebroids of
the Jacobi algebroid (J1L,L) (Proposition 3.6). In particular, this yields a
natural L∞-isomorphism class of L∞-algebras associated with each coiso-
tropic submanifold (Proposition 3.12 and Proposition 3.18).

3.1. Differential geometry of a coisotropic submanifold

Let (M,L, J ≡ {−,−}) be a Jacobi manifold, and let x ∈M . A subspace
T ⊂ TxM is said to be coisotropic (with respect to the Jacobi structure
(L, J ≡ {−,−})), if Λ#

J (T 0 ⊗ Lx) ⊂ T , where T 0 ⊂ T ∗xM denotes the anni-
hilator of T (cf. [17, Definition 4.1]). Equivalently, T 0 ⊗ Lx is isotropic with
respect to the L-valued bi-linear form ΛJ .

A submanifold S ⊂M is called coisotropic (with respect to the Jacobi
structure (L, J ≡ {−,−})), if its tangent space TxS is coisotropic for all
x ∈ S.

Lemma 3.1. Let S ⊂M be a submanifold, and let ΓS denote the set of
sections λ of the Jacobi bundle such that λ|S = 0. The following three con-
ditions are equivalent:

1) S is a coisotropic submanifold,
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2) ΓS is a Lie subalgebra in Γ(L),

3) Xλ is tangent to S, for all λ ∈ ΓS.

Proof. Let S ⊂M be a submanifold. We may assume, without loss of gener-
ality, that L is trivial. Then ΓS = I(S) · Γ(L), where I(S) denotes the ideal
in C∞(M) consisting of functions that vanish on S. In particular, if λ is
a generator of Γ(L), then every section in ΓS is of the form fλ for some
f ∈ I(S). Now, let f, g ∈ I(S). Putting µ = λ in (2.2) and restricting to S,
we find

{fλ, gλ}|S = 〈Λ#
J (df ⊗ λ), dg〉λ|S .

This shows that (1)⇐⇒ (2). The equivalence (2)⇐⇒ (3) follows from the
identity Xλ(f)µ|S = {λ, fµ}|S , for all λ ∈ ΓS , µ ∈ Γ(L), and f ∈ I(S). �

Now, let S ⊂M be a coisotropic submanifold and let T 0S ⊂ T ∗M |S be
the annihilator of TS. The (generically non constant-dimensional) distribu-
tion KS := Λ#

J (T 0S ⊗ L) ⊂ TS on S is called the characteristic distribution
of S.

Remark 3.2. In view of (2.3), KS is generated by the (restrictions to S
of) the Hamiltonian vector fields of the kind Xλ, with λ ∈ ΓS .

From Lemma 3.1 one can easily derive the following

Corollary 3.3.

1) (cf. [5, §2]) The characteristic distribution KS of any coisotropic sub-
manifold S is integrable (hence, it determines a foliation on S, called
the characteristic foliation of S).

2) (cf. [23]) Every characteristic leaf C, i.e. any leaf of the characteristic
distribution K = KM has an induced Jacobi structure (L|C , {−,−}C)
well-defined by {λ|C , µ|C}C = {λ, µ}|C , for all λ, µ ∈ Γ(L). The induced
Jacobi structure is transitive.

3) A submanifold S ⊂M is coisotropic, if and only if TS ∩ TC is coiso-
tropic in the tangent bundle TC, for all characteristic leaves C inter-
secting S, where C is equipped with the induced Jacobi structure.

Example 3.4.

1) Any coisotropic submanifold (in particular a Legendrian submanifold)
in a contact manifold is a coisotropic submanifold with respect to the
associated Jacobi structure (see Section 5.1 for details).
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2) Let S be a coisotropic submanifold of a Jacobi manifold (M,L, {−,−}),
and let X ∈ X(M) be a Jacobi vector field such that Xx /∈ TxS, for all
x ∈ S. Then T , the flowout of S along X, is a coisotropic submanifold
as well. Indeed, let {φt} be the flow of X. Clearly, whenever defined,
φt(S) is a coisotropic submanifold, and the claim immediately follows
from Lemma 3.1.

3.2. Jacobi subalgebroid associated with a closed coisotropic
submanifold

We are interested in deformations of a closed coisotropic submanifold, so,
from now on, we assume that S is a closed submanifold in a smooth manifold
M . Let A→M be a Lie algebroid. Recall that a subalgebroid of A over S
is a vector subbundle B → S, with embeddings j : B ↪→ A and j : S ↪→M ,
such that the anchor ρ : A→ TM descends to a (necessarily unique) vector
bundle morphism ρB : B → TS, making diagram

B
j //

ρB

��

A

ρ

��
TS

dj
// TM

commutative and, moreover, for all β, β′ ∈ Γ(B) there exists a (necessar-
ily unique) section [β, β′]B ∈ Γ(B) such that whenever α, α′ ∈ Γ(A) are j-
related to β, β′ (i.e. j ◦ β = α ◦ j, in other words α|S = β, and similarly for
β′, α′) then [α, α′]A is j-related to [β, β′]B. In this case B, equipped with ρB
and [−,−]B, is a Lie algebroid itself. One can also give a notion of Jacobi
subalgebroid as follows.

Let (A,L) be a Jacobi algebroid with representation ∇.

Definition 3.5. A Jacobi subalgebroid of (A,L) over S is a pair (B, `),
where B → S is a Lie subalgebroid of A over S ⊂M , and ` := L|S → S is
the pull-back line subbundle of L, such that ∇ descends to a (necessarily
unique) vector bundle morphism ∇|` making diagram

B
j //

∇|`
��

A

∇
��

D`
Dj` // DL
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commutative. Here j` : ` ↪→ L is the inclusion (see Appendix A for a defini-
tion of the morphism Dj`).

If (B, `) is a Jacobi subalgebroid, then the restriction ∇|` is a represen-
tation so that (B, `), equipped with ∇|`, is a Jacobi algebroid itself.

Now, let (M,L, J ≡ {−,−}) be a Jacobi manifold, and let S be a sub-
manifold. In what follows, we denote by

• ` := L|S the restricted line bundle,

• NS := TM |S/TS the normal bundle of S in M ,

• N∗S := (NS)∗ ∼= T 0S ⊂ T ∗M the conormal bundle of S in M ,

• N`S := NS ⊗ `∗, and by

• N`
∗S := (N`S)∗ = N∗S ⊗ ` the `-adjoint bundle of NS.

The vector bundle N`
∗S will be also regarded as a vector subbundle of

(J1L)|S via the vector bundle embedding

N`
∗S ↪−→ (T ∗M ⊗ L)|S

γ−→ J1L|S ,

where γ is the co-symbol. If λ ∈ Γ(L), we have that (j1λ)|S ∈ Γ(N`
∗S) if

and only if λ|S = 0, i.e. λ ∈ ΓS .
The following proposition establishes a one-to-one correspondence be-

tween coisotropic submanifolds and certain Lie subalgebroids of J1L.

Proposition 3.6. (cf. [20, Proposition 5.2]) The submanifold S ⊂M is
coisotropic if and only if (N`

∗S, `) is a Jacobi subalgebroid of (J1L,L).

Proof. Let S ⊂M be a coisotropic submanifold. We want to show that N`
∗S

is a Jacobi subalgebroid of J1L. We propose a proof which is shorter than
the one in [20]. Since S is coisotropic, we have

(3.1) ρJ(N`
∗S) ⊂ TS,

and similarly

(3.2) ∇J(N`
∗S) ⊂ D`.

Next we shall show that for any α, β ∈ Γ(J1L) such that α|S , β|S ∈ Γ(N`
∗S)

we have

(3.3) [α, β]J |S ∈ Γ(N`
∗S).
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First we note that if α|S ∈ Γ(N`
∗S) then α =

∑
fj1λ for some λ ∈ ΓS . Using

the Leibniz properties of the Jacobi bracket we can restrict to the case
α, β ∈ j1ΓS . The latter case can be handled taking into account (2.4) and
Lemma 3.1. Moreover, using (2.5), we easily check that

[α, β]J |S = 0 if α|S = 0 and β|S ∈ Γ(N`
∗S).

This completes the “only if part” of the proof.
To prove the “if part” it suffices to note that condition (3.1), regarded

as a condition on the image of the anchor map of the Lie subalgebroid N`
∗S,

implies, in view of (2.5), that S is a coisotropic submanifold. �

Remark 3.7. Different versions of Proposition 3.6 were proved for the
Poisson case [47, Proposition 3.1.3], [4, Proposition 5.1], [31, Theorem 10.4.2].

3.3. L∞-algebra associated with a coisotropic submanifold

Let M be as above, and let S ⊂M be a closed submanifold. Let

P0 : Γ(J1L) −→ Γ(N`S)

be the projection adjoint to the embedding

γ : N`
∗S ↪→ J1L, i.e. 〈P0(∆)x, αx〉 = 〈∆x, γ(αx)〉,

where ∆ ∈ Γ(J1L), α ∈ Γ(N`
∗S), and x ∈ S. Tensorizing by Γ(L) we also

get a projection

P : DL −→ Γ(NS).

It is not hard to see that P coincides with the composition

(3.4) DL σ−→ X(M) −→ Γ(TM |S) −→ Γ(NS),

where the second arrow is the restriction, and the last arrow is the canonical
projection. Projection P0 extends uniquely to a (degree zero) morphism
of graded algebras Γ(∧•J1L)→ Γ(∧•N`S) which we denote again by P0.
Similarly, P extends uniquely to a (degree zero) morphism of graded modules
(D•L)[1]→ Γ(∧•N`S ⊗ `)[1] which we denote again by P . As in the Poisson
case (see, e.g., [6]), the projection P : (D•L)[1]→ Γ(∧•N`S ⊗ `)[1] allows to
formulate a further characterization of coisotropic submanifolds.

Proposition 3.8. The submanifold S is coisotropic if and only if P (J) = 0.
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Remark 3.9. Let S ⊂M be any submanifold, then P (J) does only depend
on the bi-symbol ΛJ of J . To see this, note, first of all, that the symbol
σ : DL→ X(M) induces an obvious projection D•L→ Γ(∧•(TM ⊗ L∗)⊗
L). Moreover, in view of its very definition, P : (D•L)[1]→ Γ(∧•N`S ⊗ `)[1]
descends to an obvious projection

Γ(∧•(TM ⊗ L∗)⊗ L)[1] −→ Γ(∧•N`S ⊗ `)[1],

which, abusing the notation, we denote again by P . Now, recall that ΛJ ∈
Γ(∧2(TM ⊗ L∗)⊗ L). It immediately follows from the definition of P that,
actually,

P (J) = P (ΛJ).

In particular S is coisotropic if and only if P (ΛJ) = 0.

From now on we assume that S is coisotropic. In this case, the Jacobi
algebroid structure on (N`

∗S, `) (Proposition 3.6) turns the graded space
Γ(∧•N`S ⊗ `) into the de Rham complex of N`

∗S, with values in `. To ex-
press the differential dN`∗S,` in terms of the differential dJ = [J,−]SJ on D•L
it suffices to find a right inverse I : Γ(∧•N`S ⊗ `)[1]→ (D•L)[1] of P . How-
ever, there is no natural way to do this unless further structure is available.
In what follows we use a fat tubular neighborhood as an additional structure.
Before giving a definition, recall that a tubular neighborhood of S is an em-
bedding of the normal bundle NS into M which identifies the zero section 0
of NS → S with the inclusion i : S ↪→M . Denote by π : NS → S the pro-
jection and consider the pull-back line bundle LNS := π∗` = NS ×S ` over
NS. Moreover, let iL : ` ↪→ L be the inclusion.

Definition 3.10. A fat tubular neighborhood of `→ S in L→M over a
tubular neighborhood τ : NS ↪→M is an embedding τ : LNS ↪→ L of vector
bundles over τ : NS ↪→M such that the diagram

LNS = π∗`
τ //

��

&&

L

��

`

__

iL

==

��

NS
π

&&

τ //M

S0

__

i

==

commutes.
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In particular, it follows from the above definition that τ is an isomor-
phism when restricted to fibers. A fat tubular neighborhood can be under-
stood as a “tubular neighborhood in the category of line bundles”. In the
following we regard S as a submanifold of NS identifying it with the image
of the zero section 0 : S → NS.

Lemma 3.11. There exist fat tubular neighborhoods of ` in L.

Proof. Since fibers of NS → S are contractible, for every vector bundle V →
NS over NS there is a, generically non-canonical, isomorphism of vector
bundles NS ×S V |S ∼= V over the identity of NS. Now, let τ : NS ↪→M
be a tubular neighborhood of S. According to the above remark, the pull-
back bundle τ∗L→ NS is (non-canonically) isomorphic to LNS . Pick any
isomorphism φ : LNS → τ∗L. Then the composition

LNS
φ−→ τ∗L −→ L,

where the second arrow is the canonical map, is a fat tubular neighborhood
of ` over τ . �

Choose once for all a fat tubular neighborhood τ : LNS ↪→ L of ` over
a tubular neighborhood τ : NS ↪→M of S. We identify NS with the open
neighborhood τ(NS) of S in M . Similarly, we identify LNS with L|τ(NS). In
particular NS inherits from τ(NS) a Jacobi structure with Jacobi bundle
given by LNS . Abusing the notation we denote by J again the Jacobi bracket
on Γ(LNS). Moreover, in view of Proposition 3.8, there is a projection P :
(D•LNS)[1]→ Γ(∧•N`S ⊗ `)[1] such that P (J) = 0.

Now, regard the vertical bundle V (NS) := ker dπ as a Lie algebroid and
note preliminarily that

1) There is a natural splitting T (NS)|S = TS ⊕NS, where the projec-
tion T (NS)|S → TS is dπ, while the projection T (NS)|S → NS is the
natural one. In particular, sections of NS can be understood as vector
fields on NS along the submanifold S and vertical with respect to π.

2) Since π : NS → S is a vector bundle, the vertical bundle V (NS) iden-
tifies canonically with the induced bundle π∗NS → NS. In particular,
there is an embedding π∗ : Γ(NS) ↪→ X(NS) that takes a section ν of
NS to the unique vertical vector field π∗ν on NS, which is constant
along the fibers of π, and agrees with ν on S.

3) Since LNS = π∗` = NS ×S `, there is a natural flat connection D in
LNS , along the Lie algebroid V (NS), uniquely determined by DXπ∗λ =
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0, for all vertical vector fields X on NS, and all fiber-wise constant
sections π∗λ of LNS , λ ∈ Γ(`).

With these preliminary remarks we are finally ready to define a right
inverse I : Γ(∧•N`S ⊗ `)[1]→ (D•LNS)[1] of P : (D•LNS)[1]→ Γ(∧•N`S ⊗
`)[1]. First of all, let

I : Γ(NS) ↪→ DLNS

be the embedding given by I(ν) := Dπ∗ν . Tensorizing it by Γ(L∗NS) we also
get an embedding

I0 : Γ(N`S) ↪→ Γ(J1LNS).

The inclusion I0 extends uniquely to a (degree zero) morphism of graded
algebras Γ(∧•N`S)→ Γ(∧•J1LNS) which we denote again by I0. Similarly, I
extends uniquely to a (degree zero) morphism of graded modules Γ(∧•N`S ⊗
`)[1]→ (D•LNS)[1] which we denote again by I. It is straightforward to
check that

P0 ◦ I0 = id and P ◦ I = id .

Using I and the explicit expression for the Schouten-Jacobi bracket, one can
check that

(3.5) dN`∗S,`α = (P ◦ dJ ◦ I)(α) = P [J, I(α)]SJ

for all α ∈ Γ(∧•N`S ⊗ `)[1].
The rightmost hand side of (3.5) reminds us of the Voronov construction

of L∞-algebras via derived brackets. We refer the reader to [46] for details.
Our conventions about L∞-algebras are the same as those in [46]. In par-
ticular, multi-brackets in L∞-algebras in this paper will always be (graded)
symmetric. Now, using the derived bracket construction, we are going to de-
fine an L∞-algebra structure {mk} on Γ(∧•N`S ⊗ `)[1] whose first (unary)
bracket m1 coincides with the differential dN`∗S,`. The following Proposition
is an analogue of Lemma 2.2 in [10], see also [5] and [35, Appendix].

Proposition 3.12. Let I : Γ(∧•N`S ⊗ `)[1] ↪→ (D•LNS)[1] be the embed-
ding defined above. There is an L∞-algebra structure on Γ(∧•N`S ⊗ `)[1]
given by the following family of graded multi-linear maps mk : Γ(∧•N`S ⊗
`)[1]⊗k → Γ(∧•N`S ⊗ `)[1]

(3.6) mk(ξ1, . . . , ξk) := P [· · · [[J, I(ξ1)]SJ , I(ξ2)]SJ · · · , I(ξk)]
SJ .
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Proof. First, we observe that the image of I is an abelian subalgebra of the
graded Lie algebra ((D•LNS)[1], [−,−]SJ), or equivalently, the Schouten-
Jacobi bracket [I(α), I(β)]SJ vanishes for any two sections α, β ∈ Γ(∧•N`S ⊗
`)[1]. The last assertion is a consequence of the (generalized) Leibniz prop-
erty (A.2) for the Schouten-Jacobi bracket, and the fact that if α and β are
sections of NS then derivations I(α) and I(β) commute.

Next, we will show that the kernel of the projection P is a graded Lie
subalgebra of (D•LNS)[1]. Clearly, kerP is the Γ(∧•J1LNS)-submodule gen-
erated by those sections of DLNS whose symbol is tangent to S. Since such
sections are preserved by the Schouten-Jacobi bracket, it is easy to check
that kerP is also preserved, using the generalized Leibniz property (A.2)
again.

Finally, recall that J ∈ kerP . It follows that ((D•LNS)[1], im I, P, J) are
V -data [46, Theorem 1, Corollary 1]. See also [10, §1.2, Lemma 2.2] and [6]
where the terminology V-data has been introduced for the first time. This
completes the proof. �

Remark 3.13.

1) In view of (3.5), the differential m1 coincides with the Jacobi algebroid
differential dN`∗S,`.

2) If (M,ω) is a l.c.s. manifold and S is a coisotropic submanifold in M ,
then m1 can be identified, via Λ#, with a deformation of the foliation
differential of the characteristic foliation of S [26].

3.4. Coordinate formulas for the multi-brackets

In this subsection we propose some more efficient formulas for the multi-
brackets in the L∞-algebra of a coisotropic submanifold. Let (M,L, J ≡
{−,−}) be a Jacobi manifold and let S ⊂M be a coisotropic submanifold.
Moreover, as in the previous subsection, we equip S with a fat tubular
neighborhood τ : LNS ↪→ L.

Remark 3.14. By their very definition, the mk’s satisfy the following prop-
erties:

(a) mk is a graded R-linear map of degree one,

(b) mk is a first order differential operator with scalar-type symbol in each
entry separately.
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Because of (b) the mk’s are completely determined by their action on all
λ ∈ Γ(`) = Γ(∧0N`S ⊗ `), and on all s ∈ Γ(NS) = Γ(∧1N`S ⊗ `). Moreover
(a) implies that, if ξ1, . . . , ξk ∈ Γ(∧•N`S ⊗ `)[1] have non-positive degrees,
then mk(ξ1, . . . , ξk) = 0 whenever more than two arguments have degree −1.

From now on, in this section, we identify

• a section λ ∈ Γ(`), with its pull-back π∗λ ∈ Γ(LNS),

• a section s ∈ Γ(NS), with the corresponding vertical vector field π∗s ∈
Γ(π∗NS) ∼= Γ(V (NS)),

• a section ϕ ∈ Γ(N`
∗S) of the `-adjoint bundle N`

∗S = N∗S ⊗ ` with
the corresponding fiber-wise linear section of LNS .

Moreover, we denote by 〈−,−〉 : NS ⊗N`
∗S → ` the obvious (`-twisted)

duality pairing.

Proposition 3.15. The multi-bracket mk+1 is completely determined by

(3.7) mk+1(s1, . . . , sk−1, λ, ν) = (−)kDs1 · · ·Dsk−1
{λ, ν}|S ,

〈mk+1(s1, . . . , sk, λ), ϕ〉(3.8)

= −(−)k

(
Ds1 · · ·Dsk{λ, ϕ} −

∑
i

Ds1 · · · D̂si · · ·Dsk{λ, 〈si, ϕ〉}

)∣∣∣∣∣
S

,

〈mk+1(s1, . . . , sk+1), ϕ⊗ ψ〉

(3.9)

= −(−)k

(
Ds1 · · ·Dsk+1

{ϕ,ψ}
k+1∑
i=1

+
∑
i<j

Ds1 · · · D̂si · · · D̂sj · · ·Dsk+1
({〈si, ϕ〉, 〈sj , ψ〉}+ {〈sj , ϕ〉, 〈si, ψ〉})

−
∑
i

Ds1 · · · D̂si · · ·Dsk+1
({〈si, ϕ〉, ψ}+ {ϕ, 〈si, ψ〉})

)∣∣∣∣∣
S

,

where λ, ν ∈ Γ(`), s1, . . . , sk+1 ∈ Γ(NS), ϕ,ψ ∈ Γ(N`
∗S), and a hat “−̂” de-

notes omission.
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Proof. Equation (3.7) immediately follows from (3.6), (2.6), and the easy re-
mark that [∆, λ]SJ = ∆(λ) for all ∆ ∈ DLNS = D1LNS , and λ ∈ Γ(LNS) =
D0LNS . Equation (3.8) follows from (3.6), (2.9), and the obvious remark that
〈s, ϕ〉 = Dsϕ, hence Ds1Ds2ϕ = 0, for all s, s1, s2 ∈ Γ(NS), and ϕ ∈ Γ(N`

∗S).
Equation (3.9) can be proved in a similar way. �

Let zα be local coordinates on M , and let µ be a local generator of Γ(L).
Define local sections µ∗ and ∇α of J1L by putting

µ∗(fµ) = f, ∇α(fµ) = ∂αf,

where f ∈ C∞(M), and ∂α = ∂/∂zα. Then Γ(∧•J1L) is locally generated,
as a C∞(M)-module, by

∇α1
∧ · · · ∧ ∇αk , ∇α1

∧ · · · ∧ ∇αk−1
∧ µ∗, k > 0,

with α1 < · · · < αk. In particular, any ∆ ∈ Γ(∧•J1L) is locally expressed as

∆ = Xα1···αk∇α1
∧ · · · ∧ ∇αk + gα1···αk−1∇α1

∧ · · · ∧ ∇αk−1
∧ µ∗,

where Xα1···αk , gα1···αk−1 ∈ C∞(M). Here and in what follows, we adopt the
Einstein summation convention over pair of upper-lower repeated indexes.
Hence, (D•L)[1] is locally generated, as a C∞(M)-module, by

∇α1
∧ · · · ∧ ∇αk ⊗ µ, ∇α1

∧ · · · ∧ ∇αk−1
∧ id, k > 0,

with α1 < · · · < αk, and any � ∈ (D•L)[1] is locally expressed as

� = Xα1···αk∇α1
∧ · · · ∧ ∇αk ⊗ µ+ gα1···αk−1∇α1

∧ · · · ∧ ∇αk−1
∧ id .

Remark 3.16. Let J ∈ D2L. Locally,

(3.10) J = Jαβ∇α ∧∇β ⊗ µ+ Jα∇α ∧ id,

for some local functions Jαβ, Jα.

Now, identify LNS with its image in L under τ and assume that:

• coordinates zα are fibered, i.e. (zα) = (xi, ya), with xi coordinates on
S, and ya linear coordinates along the fibers of π : NS → S,

• the local generator µ is fiber-wise constant so that, locally, Γ(`) ⊂
Γ(LNS) consists exactly of sections λ such that ∇aλ = 0.
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In particular, the local expression (3.10) for J expands as

J =
(
Jab∇a ∧∇b + 2Jai∇a ∧∇i + J ij∇i ∧∇j

)
⊗ µ(3.11)

+
(
Ja∇a + J i∇i

)
∧ id .

We have the following

Corollary 3.17. Locally, the multi-bracket mk+1 is uniquely determined by

mk+1

(
∂a1

, . . . , ∂ak+1

)
= −(−)k∂a1

· · · ∂ak+1
Jab
∣∣
S
δa ∧ δb ⊗ µ,

mk+1 (∂a1
, . . . , ∂ak , fµ) = (−)k∂a1

· · · ∂ak
(
2Jai∂if + Jaf

)∣∣
S
∂a,

mk+1

(
∂a1

, . . . , ∂ak−1
, fµ, gµ

)
= (−)k∂a1

· · · ∂ak−1

[
2J ij∂if∂ig − J i(f∂ig − g∂if)

]∣∣
S
µ,

where f, g ∈ C∞(S), and δa := ∂a ⊗ µ∗.

3.5. Independence of the tubular embedding

Now we show that, as already in the symplectic [35, Appendix], the Pois-
son [6], and the l.c.s. [26, Theorem 9.5] cases, the L∞-algebra in Proposi-
tion 3.12 does not really depend on the choice of a fat tubular neighborhood,
in the sense clarified by Proposition 3.18 below. As a consequence, its L∞-
isomorphism class is an invariant of the coisotropic submanifold.

Proposition 3.18. Let S be a coisotropic submanifold of the Jacobi mani-
fold (M,L, J ≡ {−,−}). Then the L∞-algebra structures on Γ(∧•N`S ⊗ `)[1]
associated to different choices of the fat tubular neighborhood LNS ↪→ L of `
in L are L∞-isomorphic.

The proof is an adaptation of the one given by Cattaneo and Schätz in
the Poisson setting (see Subsections 4.1 and 4.2 of [6], see also Remark 3.21
below) and it is based on Theorem 3.2 of [6] and the fact that any two
fat tubular neighborhoods are isotopic (in the sense of Lemma 3.20 below).
Before proving Proposition 3.18, let us recall Cattaneo–Schätz Theorem. We
will present a “minimal version” of it, adapted to our purposes. The main
ingredients are the following.

We work in a category of real topological vector spaces. Let (h, a, P,∆0)
and (h, a, P,∆1) be V -data [10]. We identify a with the target space of P .
Note that (h, a, P,∆0) and (h, a, P,∆1) differ by the last entry only. Voronov
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construction associates L∞-algebras to (h, a, P,∆0) and (h, a, P,∆1). Denote
them a0 and a1 respectively. Cattaneo and Schätz main idea is proving that
if

• ∆0 and ∆1 are gauge equivalent elements of the graded Lie algebra h,
and

• they are intertwined by a gauge transformation preserving kerP ,

then a0 and a1 are L∞-isomorphic. Specifically, ∆0 and ∆1 are gauge equiv-
alent if they are interpolated by a smooth family {∆t}t∈[0,1] of elements
∆t ∈ h, and there exists a smooth family {ξt}t∈[0,1] of degree zero elements
ξt ∈ h such that the following evolutionary differential equation is satisfied:

(3.12)
d

dt
∆t = [ξt,∆t].

One usually assumes that the family {ξt}t∈[0,1] integrates to a family
{φt}t∈[0,1] of automorphisms φt : h→ h of the Lie algebra h, i.e. {φt}t∈[0,1]

is a solution of the Cauchy problem

(3.13)


d

dt
φt(−) = [φt(−), ξt]

φ0 = id
.

Finally we say that ∆0 and ∆1 are intertwined by a gauge transforma-
tion preserving kerP if the family {ξt}t∈[0,1] above satisfies the following
conditions:

1) the only solution {at}t∈[0,1], where at ∈ a, of the Cauchy problem

(3.14)


d

dt
at = P [at, ξt]

a0 = 0

is the trivial one: at = 0 for all t ∈ [0, 1],

2) [ξt, kerP ] ⊂ kerP for all t ∈ [0, 1].

Theorem 3.19 (cf. [6, Theorem 3.2]). Let (h, a, P,∆0) and (h, a, P,∆1)
be V -data, and let a0 and a1 be the associated L∞-algebras. If ∆0 and ∆1

are gauge equivalent and they are intertwined by a gauge transformation
preserving kerP , then a0 and a1 are L∞-isomorphic.
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The last ingredient needed to prove Proposition 3.18 is provided by the
following

Lemma 3.20. Any two fat tubular neighborhoods τ0 and τ1 of S are iso-
topic, i.e. there is a smooth one parameter family of fat tubular neighbor-
hoods T t of ` in L, and an automorphism ψ : LNS → LNS of LNS covering
an automorphism ψ : NS → NS of NS over the identity, such that T0 = τ0,
and T1 = τ1 ◦ ψ.

Proof. In view of the tubular neighborhood Theorem [16, Theorem 5.3],
there is a smooth one parameter family of tubular neighborhoods T t : NS ↪→
M of S in M , and an automorphism ψ : NS → NS over the identity such
that T 0 = τ0, and T 1 = τ1 ◦ ψ. Denote by T : NS × [0, 1]→M the map
defined by T (ν, t) = T t(ν) and consider the line bundle

p : L∗NS ⊗NS T ∗L −→ NS × [0, 1].

Note that

1) fibers of NS × [0, 1] over S × [0, 1] are contractible,

2) L∗NS ⊗NS T
∗L reduces to End `× [0, 1] = RS×[0,1] over S × [0, 1].

It follows from 1) and 2) that L∗NS ⊗NS T
∗L is isomorphic to the pull-

back over NS × [0, 1] of the trivial line bundle RS×[0,1] over S × [0, 1]. In
particular, p is a trivial bundle. Moreover, p admits a nowhere zero section
υ defined on (S × [0, 1]) ∪ (NS × {0, 1}) and given by id` on S × [0, 1], by T0

on NS × {0} and by T1 on NS × {1}. By triviality, υ can be extended to a
nowhere zero section Υ on the whole NS × [0, 1]. The section Υ is the same
as a one parameter family of vector bundle isomorphisms Υt : LNS → T ∗tL
over the identity of NS. Denote by Tt : LNS → L the composition

LNS
Υt−→ T ∗tL ↪−→ L,

where the second arrow is the natural inclusion. By construction, the Tt’s
are line bundle embeddings covering the T t’s. Finally, there exists a unique
automorphism ψ : LNS → LNS over ψ such that T1 = τ1 ◦ ψ. We conclude
that the Tt’s and ψ possess all the required properties. �

Proof of Proposition 3.18. Let τ0, τ1 :LNS ↪→L be fat tubular neighborhoods
over tubular neighborhoods τ0, τ1 : NS ↪→M . Denote by J0 and J1 the
Jacobi brackets induced on Γ(LNS) by τ0 and τ1 respectively, i.e. J0 =
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(τ−1
0 )∗J , and J1 = (τ−1

1 )∗J (see Remark 2.13 about pushing forward a multi-
differential operator along a line bundle isomorphism). In view of Lemma 3.20
it is enough to consider the following two cases:

Case I: τ1 = τ0 ◦ ψ for some automorphism ψ : LNS → LNS covering an
automorphism ψ : NS → NS of NS over the identity. Obviously, ψ iden-
tifies the V -data ((D•LNS)[1], Im I, P, J0) and ((D•LNS)[1], Im I, P, J1). As
an immediate consequence, the L∞-algebra structures on Γ(∧•N`S ⊗ `)[1]
determined by τ0 and τ1 are (strictly) L∞-isomorphic.

Case II: τ0 and τ1 are interpolated by a smooth one parameter family
of fat tubular neighborhoods τt. Consider φt := τ−1

t ◦ τ0. It is a local auto-
morphism of LNS covering a local diffeomorphism ϕt = τ−1

t ◦ τ0, well de-
fined in a suitable neighborhood of S in NS, fixing S point-wise and such
that ϕ0 = id. Let ξt be infinitesimal generators of the family {ϕt}. They
are derivations of LNS well defined around S. Our strategy is using ξt and
ϕt to prove that J0 and J1 are gauge equivalent Maurer-Cartan elements
of (D•LNS)[1] intertwined by a gauge transformation preserving kerP , and
then applying Theorem 3.19. However, the ϕt’s are well-defined only around
S in NS. In order to remedy this minor drawback, we slightly change the
graded space D•LNS underlying our V -data, passing to the graded space
D•forLNS of alternating, first order, multi-differential operators on LNS in a
formal neighborhood of S in NS. The space D•forLNS is defined as the inverse
limit

lim
←−
D•LNS/I(S)nD•LNS ,

where I(S) ⊂ C∞(NS) is the ideal of functions vanishing on S. In a sense,
D•forLNS consists of “Taylor series normal to S” of multi-differential op-
erators. Our V -data ((D•LNS)[1], Im I, P, J) induce in an obvious way new
V -data ((D•forLNS)[1], Im Ifor, Pfor, Jfor). In particular, Jfor is the class of J in
(D•forLNS)[1], and Ifor : Γ(∧•N`S ⊗ `)[1] ↪→ (D•forLNS)[1] is the natural em-
bedding. Moreover, in view of Corollary 3.17, the L∞-algebra determined
by ((D•LNS)[1], Im I, P, J) does only depend on Jfor. Therefore, the V -data
((D•forLNS)[1], Im Ifor, Pfor, Jfor) and ((D•LNS)[1], Im I, P, J) determine the
same L∞-algebra.

Now, being well defined around S, the ϕt’s determine well-defined au-
tomorphisms φt := (ϕt)∗ : (D•forLNS)[1] −→ (D•forLNS)[1] such that φ0 = id.
Similarly the ξt’s descend to zero degree elements of (D•forLNS)[1] which
we denote by ξt again. Clearly, the family {φt(J0)for} interpolates between
(J0)for and (J1)for and, in view of Equation (2.11), the φt’s satisfy the Cauchy
problem (3.13). Finally,
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1) from uniqueness of the one parameter family of automorphisms ϕt
generated by the one parameter family of derivation ξt, it follows that
the Cauchy problem (3.14) possesses a unique solution,

2) ϕt|` = id so that the ξt’s vanish on S, hence [ξt, kerP ] ⊂ kerP for all t.

The above considerations show that (J0)for and (J1)for are gauge equivalent
and they are intertwined by a gauge transformation preserving kerP . Hence,
from Theorem 3.19, the L∞-algebra structures on Γ(∧•N`S ⊗ `)[1] associ-
ated to the two choices τ0 and τ1 of the fat tubular neighborhood LNS ↪→ L
are actually L∞-isomorphic. �

Remark 3.21. In the contact case, as already in the l.c.s. one, there exists
a tubular neighborhood theorem for coisotropic submanifolds. As a conse-
quence, the proof of Proposition 3.18 simplifies. In particular, it does not
require using any formal neighborhood technique.

4. Deformations of coisotropic submanifolds in Jacobi
manifolds

In this section, we introduce the notion of formal coisotropic deformation of
a coisotropic submanifold (Definition 4.6). We prove that formal coisotropic
deformations are in one-to-one correspondence with (degree 0) Maurer-
Cartan elements of the associated L∞-algebra (Proposition 4.9). We also
give a necessary and sufficient condition for the convergence of the Maurer-
Cartan series MC(s) for any smooth section s (Proposition 4.14), extending
a previous sufficient condition given by Schätz and Zambon in the Poisson
case [39]. Analysing the notion of Hamiltonian equivalence of coisotropic
deformations (Proposition 4.18) leads to a definition of Hamiltonian equiv-
alence of formal deformations (Definition 4.19). We show that Hamiltonian
equivalence of formal coisotropic deformations coincides with gauge equiva-
lence of the corresponding Maurer-Cartan elements (Proposition 4.20) and
derive consequences of this fact (Theorem 4.23, Corollary 4.21). Finally we
compare our results with related results obtained by other authors (Re-
marks 4.22 and 4.25).

4.1. Smooth coisotropic deformations

Let (M,L, J ≡ {−,−}) be a Jacobi manifold and let S ⊂M be a closed
coisotropic submanifold. We equip S with a fat tubular neighborhood τ :
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LNS ↪→ L and use it to identify LNS with its image. Accordingly, and sim-
ilarly as above, from now on in this section, we abuse the notation and
denote by (L, J ≡ {−,−}) (instead of (LNS , τ

−1
∗ J)) the Jacobi structure on

NS (unless otherwise specified). A C1-small deformation of S in NS can be
identified with a section S → NS of NS. We say that a section s : S → NS
is coisotropic if its image s(S) is a coisotropic submanifold in (NS,L, J).

Definition 4.1. A smooth one parameter family of smooth sections of
NS → S starting from the zero section is a smooth coisotropic deformation
of S if each section in the family is coisotropic. A section s of NS → S is
an infinitesimal coisotropic deformation of S if εs is a coisotropic section
up to infinitesimals O(ε2), where ε is a formal parameter.

Remark 4.2. Let {st} be a smooth coisotropic deformation of S. Then

d

dt

∣∣∣∣
t=0

st

is an infinitesimal coisotropic deformation.

Recall that a section s : S → NS is mapped, via I : Γ(∧•N`S ⊗ `)[1]→
(D•L)[1], to a derivation I(s) := Dπ∗s of L, where π : NS → S is the projec-
tion. Let {Φt} be the one parameter group of automorphisms of L generated
by I(s) and denote exp I(s) := Φ1. Clearly exp I(s)(ν, λ) = (ν + s(x), λ),
for all (ν, λ) ∈ L = NS ×S `, x = π(ν). Further, let pr : J1L→ NS be the
projection, denote by j1 exp I(s) : J1L→ J1L the first jet prolongation of
exp I(s), and consider the following commutative diagram

N`
∗S

��

γ // J1L

��

j1 exp I(s) // J1L

��
S

0
,,
NSπ

oo

exp I(s)
,,
NS

exp I(−s)
oo

where 0 is the zero section. Note that s = exp I(s) ◦ 0.

Proposition 4.3. Let s : S → NS be a section of π. The following three
conditions are equivalent

1) s is coisotropic,

2) P (exp I(−s)∗J) = 0 (cf. [39]),
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3) the vector bundle pr ◦ j1 exp I(s) ◦ γ : N`
∗S → s(S) is a Jacobi subal-

gebroid of J1L.

Proof. 1) ⇐⇒ 2). Let P s : DL→ Γ(NS) be the composition

DL σ−→ X(M) −→ Γ(TM |s(S)) −→ Γ(NS),

where the second arrow is the restriction, and the last arrow is the canon-
ical projection (cf. (3.4)). The surjection P s extends to a surjection of
graded modules (D•L)[1]→ Γ(∧•N`S ⊗ `)[1] which we denote again by P s

(and is defined analogously as P : (D•L)[1]→ Γ(∧•N`S ⊗ `)[1]). By Propo-
sition 3.8, s is coisotropic if and only if P s(J) = 0. Since

D` = exp I(−s)∗DL|s(S) and exp I(−s)∗NS = NS,

we obtain

(4.1) P s = P ◦ exp I(−s)∗.

In particular, P s(J) = P (exp I(−s)∗J) = 0 if and only if s is coisotropic.
1) ⇐⇒ 3). Note that pr ◦ j1 exp I(s) ◦ γ : N`

∗S → s(S) is the `-adjoint
bundle of the normal bundle of s(S) in NS. Now the claim follows immedi-
ately from Proposition 3.6. �

Remark 4.4. Let s be a section of NS. In view of Remark 3.9,
P s(J) = P s(ΛJ), where, in the right hand side, P s denotes the extension
Γ(∧•(T (NS)⊗ L∗)⊗ L)→ Γ(∧•N`S ⊗ `) of the composition X(NS)→
Γ(T (NS)|s(S))→ Γ(NS) defined analogously as P : (D•L)[1]→ Γ(∧•N`S ⊗
`)[1]. Moreover, it is clear that

Λexp I(−s)∗J = exp I(−s)∗ΛJ ,

where Λexp I(−s)∗J is the bi-symbol of exp I(−s)∗J , and, in the right hand
side,

exp I(−s)∗ : Γ(∧•(T (NS)⊗ L∗)⊗ L)→ Γ(∧•(T (NS)⊗ L∗)⊗ L)

denotes the isomorphism induced by the line bundle automorphism exp I(−s).
It immediately follows that s is coisotropic if and only if P (exp I(−s)∗ΛJ) =
0.
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4.2. Formal coisotropic deformations

Let ε be a formal parameter.

Definition 4.5. A formal series s(ε) =
∑∞

i=0 ε
isi ∈ Γ(NS)[[ε]], si ∈ Γ(NS),

such that s0 = 0, is called a formal deformation of S.

The formal series I(s(ε)) :=
∑∞

i=0 ε
iI(si) ∈ (DL)[[ε]] is a formal deriva-

tion of L. It is easy to see that the space (DL)[[ε]] of formal derivations of
L is a Lie algebra, which has a linear representation in the space (D•L)[[ε]]
of formal first order multi-differential operators on L via the following Lie
derivative:

(4.2) Lξ(ε)∆(ε) ≡ [ξ(ε),∆(ε)]SJ :=

∞∑
k=0

εk
∑
i+j=k

[ξi,∆j ]
SJ ,

for ξ(ε) =
∑∞

i=0 ε
iξi, ξi ∈ DL, and ∆(ε) =

∑∞
i=0 ε

i∆i, ∆i ∈ D•L.
We define the exponential of the Lie derivative Lξ(ε) as the following

formal power series

(4.3) expLξ(ε) =

∞∑
n=0

1

n!
Lnξ(ε).

Proposition 4.3 motivates the following

Definition 4.6. A formal deformation s(ε) of S is said coisotropic, if
P (expLI(s(ε))J) = 0.

Remark 4.7. Let ξ(ε) ∈ (DL)[[ε]]. Define a Lie derivative

Lξ(ε) : Γ(∧•(T (NS)⊗ L∗)⊗ L)[[ε]]→ Γ(∧•(T (NS)⊗ L∗)⊗ L)[[ε]],

in the obvious way. It is easy to see that

(4.4) P (expLI(s(ε))J) = P (expLI(s(ε))ΛJ),

for all formal deformations s(ε) of S (cf. Remarks 3.9 and 4.4). In particular,
s(ε) is coisotropic if and only if P (expLI(s(ε))ΛJ) = 0.

Remark 4.8 (Formal deformation problem). The formal deformation
problem for a coisotropic submanifold S consists in finding formal coisotropic
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deformations of S. Let s(ε) =
∑∞

i=0 ε
isi be a formal coisotropic deformation

of S. Then s1 is an infinitesimal coisotropic deformation. On the other hand,
in general, not all infinitesimal coisotropic deformations can be “prolonged”
to a formal coisotropic deformation. If this is the case, one says that the for-
mal deformation problem is unobstructed. Otherwise, the formal deformation
problem is obstructed. The formal deformation problem of S is governed by
the L∞-algebra (Γ(∧•N`S ⊗ `)[1], {mk}) in the sense clarified by the follow-
ing proposition.

Proposition 4.9. A formal deformation s(ε) of S is coisotropic if and only
if −s(ε) is a solution of the (formal) Maurer-Cartan equation

(4.5) MC(−s(ε)) :=

∞∑
k=1

1

k!
mk(−s(ε), . . . ,−s(ε)) = 0.

Proof. The expression MC(−s(ε)) should be interpreted as an element of
Γ(∧•N`S ⊗ `)[[ε]]. The proposition is then a consequence of (4.3), P (J) = 0,
and the following identities

(4.6) P (LkI(ξ)J) = mk(−ξ, . . . ,−ξ), k ≥ 1,

for ξ ∈ Γ(NS), which immediately follow from the definition of mk. �

Let s be a section of NS. The Maurer-Cartan series of s is the series

MC(−s) :=

∞∑
k=1

1

k!
mk(−s, . . . ,−s).

In general, MC(−s) does not converge, not even for a coisotropic s. However,
we have the obvious

Corollary 4.10. Let s be a section of NS such that the Maurer-Cartan
series MC(−s) converges. Then s is a coisotropic deformation of S if and
only if MC(−s) = 0.

Corollary 4.11. A section s of NS is an infinitesimal coisotropic defor-
mation of S iff

(4.7) m1(s) = 0.

By Remark 3.13.(1), m1 coincides with the Jacobi algebroid de Rham
differential dN`∗S,`. Hence, a similar argument as in the proof of Theorem
11.2 in [35] yields
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Corollary 4.12. Assume that the second cohomology group H2(N`
∗S, `)

of the Jacobi subalgebroid N`
∗S ⊂ J1L with values in ` is zero. Then every

infinitesimal coisotropic deformation can be prolonged to a formal coisotropic
deformation, i.e. for any given class α ∈ H1(N`

∗S, `) Equation (4.5) has a
solution s(ε) =

∑∞
i=1 ε

isi such that m1(s1) = 0 and [s1] = α. In other words,
the formal deformation problem is unobstructed.

There is also a simple criterion for non-prolongability of an infinitesimal
coisotropic deformation to a formal coisotropic deformation based on the
Kuranishi map:

Kr : H1(N`
∗S, `) −→ H2(N`

∗S, `), [s] 7−→ [m2(s, s)].

Since m1 is a derivation of the binary bracket m2, the Kuranishi map is well-
defined. Moreover, similarly as in [35] (Theorem 11.4) we have the following

Proposition 4.13. Let α = [s] ∈ H1(N`
∗S, `), where s ∈ Γ(NS) is an in-

finitesimal coisotropic deformation, i.e. dN`∗S,`s = m1s = 0. If Kr(α) 6= 0,
then s cannot be prolonged to a formal coisotropic deformation. In particular,
the formal deformation problem is obstructed.

4.3. Formal deformations and smooth deformations

In this subsection we establish a connection between formal coisotropic de-
formations and smooth coisotropic deformations. We do this introducing the
notion of fiber-wise entire bi-symbol, which is a slight generalization of the
notion of fiber-wise entire Poisson structure introduced by Schätz and Zam-
bon in [39], and is motivated by the Taylor expansion of the bi-linear form
P (exp I(−s)∗ΛJ) (Proposition 4.14).

Let E → S be a vector bundle. Recall that a smooth function on E is
called fiber-wise entire if its restriction to each fiber of E is entire, i.e. it is real
analytic on the whole fiber. Now, let `→ S be a line bundle, and L := E ×S
`. A section of L is called fiber-wise entire if it is a linear combination of fiber-
wise constant sections, with coefficients being fiber-wise entire functions. Let
Θ ∈ Γ(∧k(TE ⊗ L∗)⊗ L). We regard Θ as a multi-linear map

Θ : ∧k(T ∗E ⊗ L) −→ L.

The multi-linear map Θ is called fiber-wise entire if

Θ(df1 ⊗ λ1, . . . , dfk ⊗ λk)
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is fiber-wise entire, whenever f1, . . . , fk are fiber-wise linear and λ1, . . . , λk
are fiber-wise constant. Equivalently Θ is fiber-wise entire if its components
in some (and therefore any) system of vector bundle coordinates are fiber-
wise entire functions (cf. [39, Lemmas 1.4, 1.7]).

Now, let S and (NS,L, J ≡ {−,−}) be as in Subsection 4.1. The follow-
ing proposition generalizes the main result of [39] establishing a necessary
and sufficient condition for the convergence of the Maurer-Cartan series
MC(−s) of a generic section s ∈ Γ(NS).

Proposition 4.14. The bi-symbol ΛJ of the Jacobi bi-differential operator
J is fiber-wise entire iff, for all sections s ∈ Γ(NS), the Maurer-Cartan se-
ries MC(−s) converges to P (exp I(s)∗J) = P (exp I(s)∗ΛJ) in the sense of
point-wise convergence.

Proof. Let (zα) = (xi, ya) be vector bundle coordinates on NS, with xi co-
ordinates on S, and ya linear coordinates along the fibers of NS. More-
over, let µ be a fiber-wise constant local generator of Γ(L). The Jacobi bi-
differential operator J is locally given by Equation (3.10), or, equivalently,
Equation (3.11):

J =
(
Jab∇a ∧∇b + 2Jai∇a ∧∇i + J ij∇i ∧∇j

)
⊗ µ+

(
Ja∇a + J i∇i

)
∧ id .

Accordingly, the bi-symbol ΛJ is locally given by

ΛJ =
(
Jabδa ∧ δb + 2Jaiδa ∧ δi + J ijδi ∧ δj

)
⊗ µ

where δα := ∂α ⊗ µ∗. In particular, ΛJ is fiber-wise entire if and only if its
components Jab, Jai, J ij are fiber-wise entire functions. Now, let s ∈ Γ(NS)
and denote by {Φt} the one parameter group of automorphisms of L gen-
erated by I(s). Then, from P (J) = P (ΛJ) = 0, Equations (4.6), (4.4), and
the very definition of the Lie derivative, we get

MC(−s) = P

∞∑
k=0

∂k(Φ−t1−···−tk)∗ΛJ
∂t1 · · · ∂tk

∣∣∣∣
t1=···=tk=0

= P

∞∑
k=0

1

k!

dk

dtk

∣∣∣∣
t=0

(Φ−t)∗ΛJ .

Let (x, y, λ) ∈ L, x ∈ S, y ∈ NxS, λ ∈ Lx. Then

Φ−t(x, y, λ) = (x, y − ts(x), λ)
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and

(Φ−t)∗ΛJ = (Jab ◦ Φt)δa ∧ δb ⊗ µ+ 2(Jai ◦ Φt)δa ∧ (δi − tsbiδb)⊗ µ
+ (J ij ◦ Φt)(δi − tsai δa) ∧ (δj − tsbjδb)⊗ µ,

where sai denotes the partial derivative with respect to xi of the a-th local
component of s in the local basis (∂a) of Γ(NS). Hence
(4.8)

MC(−s)=

∞∑
k=0

1

k!

dk

dtk

∣∣∣∣
t=0

(
Jab◦ts− 2tsbi(J

ai◦ts) + t2sai s
b
j(J

ij◦ts)
)
δa∧δb⊗µ.

Assume that ΛJ is fiber-wise entire. Then the Taylor expansions in t, around
t = 0, of Jab ◦ ts, Jai ◦ ts, and J ij ◦ ts converge for all t’s, in particular for
t = 1. It immediately follows that the series in the right hand side of (4.8)
converges as well. This proves the “only if” part of the proposition (cf. the
proof of the analogous proposition in [39]).

For the “if part” of the proposition assume that the series in the right
hand side of (4.8) converges for all s. First of all, locally, we can choose s
to be “constant” with respect to coordinates (xi, ya). Then sai = 0 and (4.8)
reduces to

(4.9) MC(−s) =

∞∑
k=0

1

k!

dk

dtk

∣∣∣∣
t=0

(
Jab ◦ ts

)
δa ∧ δb ⊗ µ.

Since s is arbitrary, (4.9) shows that the Jab’s are entire on any straight
line through the origin in the fibers of NS. Since the Taylor series of the
restriction to such a straight line is the same as the restriction of the Taylor
series, we conclude that the Jab’s are fiber-wise entire. Now, fix values i0, a0

for the indexes i, a respectively, and choose s so that sai = δi0i δ
a
a0

to see that
the Ja0i0 ’s are fiber-wise entire for all a0, i0. One can prove that the J ij ’s
are fiber-wise entire in a similar way. This concludes the proof. �

Corollary 4.15. Let (M,L, J ≡ {−,−}) be a Jacobi manifold, and let S ⊂
M be a coisotropic submanifold equipped with a fat tubular neighborhood
τ : LNS ↪→ L. If τ−1

∗ ΛJ is fiber-wise entire, then a section s : S → NS of NS
is coisotropic if and only if the Maurer-Cartan series MC(−s) converges to
zero.
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4.4. Moduli of coisotropic sections

Jacobi diffeomorphisms, in particular Hamiltonian diffeomorphisms, pre-
serve coisotropic submanifolds. Two coisotropic submanifolds are Hamil-
tonian equivalent if there is an Hamiltonian isotopy (i.e. a one parameter
family of Hamiltonian diffeomorphisms) interpolating them. With this def-
inition at hand one can define a moduli space of coisotropic submanifolds
under Hamiltonian equivalence. Now, let S be a coisotropic submanifold. In
this section we adapt the definition of Hamiltonian equivalence to the case
of coisotropic sections of NS → S [26, Definition 6.3]. In this way we define
a local version of the moduli space under Hamiltonian equivalence.

Definition 4.16. (cf. [26, Definition 10.2]).

1) Two coisotropic sections s0, s1 ∈ Γ(NS) are called Hamiltonian equiva-
lent if they are interpolated by a smooth family of sections st ∈ Γ(NS)
and there exists a family of Hamiltonian diffeomorphisms ψt : NS →
NS of (NS,L, J ≡ {−,−}) (i.e. the family {ψt} is generated by a fam-
ily {Xλt} of Hamiltonian vector fields, where the λt’s depend smoothly
on t) and a family of diffeomorphisms gt : S → S, t ∈ [0, 1], such that
g0 = idS , ψ0 = idNS and st = ψt ◦ s0 ◦ g−1

t . A coisotropic deformation
of S is trivial if it is Hamiltonian equivalent to the zero section.

2) Two infinitesimal coisotropic deformations s0, s1 ∈ Γ(NS) are called
infinitesimally Hamiltonian equivalent if s1 − s0 is the vertical compo-
nent along S of an Hamiltonian vector field. An infinitesimal coisotropic
deformation is trivial if it is infinitesimally Hamiltonian equivalent to
the zero section.

Note that both Hamiltonian equivalence and infinitesimal Hamiltonian
equivalence are equivalence relations. The notion of infinitesimal Hamilto-
nian equivalence is motivated by the following remark.

Remark 4.17. Let s0, s1 be Hamiltonian equivalent coisotropic sections,
and let st be the family of sections interpolating them as in Definition
4.16.(1). Then st is obviously a coisotropic section for all t. Moreover, s0

and

s0 +
d

dt

∣∣∣∣
t=0

st

are infinitesimally Hamiltonian equivalent coisotropic sections.
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Proposition 4.18. Let s0, s1 ∈ Γ(NS) be Hamiltonian equivalent coiso-
tropic sections. Then s0, s1 are interpolated by a smooth family of sections
st ∈ Γ(NS) and there exists a smooth family of sections λt of the Jacobi
bundle L such that st is a solution of the following evolutionary equation:

(4.10)
d

dt
st = P (exp I(−st)∗∆λt).

If S is compact, the converse is also true.

Proof. Denote by π : NS → S the projection. First of all, let s0, s1 be Hamil-
tonian equivalent coisotropic sections, and let st, ψt, gt be as in Defini-
tion 4.16.(1). The gt’s are completely determined by the ψt’s via gt = π ◦ ψt ◦
s0. In their turn, the ψt’s are generated by a smooth family {Xλt} of Hamil-
tonian vector fields, λt ∈ Γ(L). Differentiating the identity st = ψt ◦ s0 ◦ g−1

t

with respect to t, one finds

(4.11)
d

dt
st = P st(∆λt),

where, for a section s ∈ Γ(NS), the projection P s : (D•L)[1]→ Γ(∧•N`S ⊗
`)[1] is defined as in the proof of Proposition 4.3. To see this, interpret the
st’s as smooth maps, and consider their pull-backs s∗t : C∞(NS)→ C∞(S).
Then s∗t = (g−1

t )∗ ◦ s∗0 ◦ ψ∗t and a straightforward computation shows that

d

dt
s∗t = s∗t ◦Xλt ◦ (id−π∗ ◦ s∗t ).

which is equivalent to (4.11). Equation (4.10) now follows from (4.1).
Conversely, let S be compact, st be a solution of Equation (4.10) in-

terpolating s0 and s1, and let {ψt} be the one parameter family of Hamil-
tonian diffeomorphisms NS → NS generated by {Xλt}. The compactness
assumption guarantees that ψt is well-defined for all t ∈ [0, 1] (see, e.g. [40,
Lemma 3.15]). In view of (4.1) again, st is the (unique) solution of (4.11)
starting at s0. In particular, ψt maps diffeomorphically the image of s0 to
the image of st. Hence, the map gt = π ◦ ψt ◦ s0 is a diffeomorphism and
st = ψt ◦ s0 ◦ g−1

t . �

Note that if {st} is a solution of (4.10) interpolating coisotropic sections
s0, s1, then st is a coisotropic section for all t. Proposition 4.18 motivates
the following
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Definition 4.19. Two formal coisotropic deformations

s0(ε), s1(ε) ∈ Γ(NS)[[ε]]

are called Hamiltonian equivalent if they are interpolated by a smooth family
of formal coisotropic deformations st(ε) ∈ Γ(NS)[[ε]] (i.e. st(ε) =

∑
i st,iε

i

and the st,i’s depend smoothly on t) and there exists a smooth family of
formal sections λt(ε) ∈ Γ(L)[[ε]] of the Jacobi bundle such that

d

dt
st(ε) = P (expLI(st(ε))∆λt(ε)).

We now show that formal coisotropic deformations s0(ε), s1(ε) are Hamil-
tonian equivalent if and only if −s0(ε),−s1(ε) are gauge equivalent solutions
of the Maurer-Cartan equation MC(ξ(ε)) = 0. Two solutions ξ0(ε), ξ1(ε)
of the Maurer-Cartan equation are gauge equivalent if, by definition, they
are interpolated by a smooth family of formal sections ξt(ε) ∈ Γ(NS)[[ε]] =
Γ(∧1N`S ⊗ `)[[ε]] and there exists a smooth family of formal sections λt(ε) ∈
Γ(`)[[ε]] = Γ(∧0N`S ⊗ `)[[ε]] such that

(4.12)
d

dt
ξt(ε) =

∞∑
k=0

1

k!
mk+1(ξt(ε), . . . , ξt(ε), λt(ε)).

Gauge equivalence is an equivalence relation. Moreover, it follows from Equa-
tion (4.12) that ξt(ε) is a solution of the Maurer-Cartan equation for any
t.

Proposition 4.20. Two formal coisotropic deformations

s0(ε), s1(ε) ∈ Γ(NS)[[ε]]

are Hamiltonian equivalent if and only if −s0(ε) and −s1(ε) are gauge equiv-
alent solutions of the Maurer-Cartan equation.

Proof. Recall that kerP ⊂ (D•L)[1] is a Lie subalgebra. As Voronov notes
[46], this can be rephrased as:

(4.13) P [�1,�2]SJ = P [IP�1,�2]SJ + P [�1, IP�2]SJ ,
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�1,�2 ∈ (D•L)[1]. Now, let {st(ε)} be a family of formal coisotropic defor-
mations, and let {λt(ε)} be a family of formal sections of L. Put

Jk(ε) := [· · · [J, I(−st(ε))]SJ · · · , I(−st(ε))]SJ︸ ︷︷ ︸
k times

,

In particular, PJk(ε) = mk(−st(ε), . . . ,−st(ε)). Compute

P (expLI(st(ε))∆λt(ε))

= −
∞∑
k=0

1

k!
P [Jk(ε), λt(ε)]

SJ

= −
∞∑
k=0

1

k!
P [IPJk(ε), λt(ε)]

SJ −
∞∑
k=0

1

k!
P [Jk(ε), IPλt(ε)]

SJ

= −P [I(MC(−st(ε))), λt(ε)]SJ −
∞∑
k=0

1

k!
P [Jk(ε), I(λt(ε)|S)]SJ

= −
∞∑
k=0

1

k!
mk+1(−st(ε), . . . ,−st(ε), λt(ε)|S),

where we used (4.13), and the fact that MC(−st(ε)) = 0 for all t. This
concludes the proof. �

Corollary 4.21. Two solutions of (4.7) are infinitesimally Hamiltonian
equivalent if and only if they are cohomologous in the complex (Γ(∧•N`S ⊗
`)[1],m1). Hence, the infinitesimal moduli space (i.e. the set of infinitesimal
Hamiltonian equivalence classes) of infinitesimal coisotropic deformations
of S is H0(Γ(∧•N`S ⊗ `)[1],m1) = H1(N`

∗S, `).

Remark 4.22. Corollary 4.21 generalizes [26, Lemma 6.6], which has been
proved by a different method.

Now, we establish necessary and sufficient conditions for the convergence
of both the Maurer-Cartan series MC(−s) and the series

(4.14) δλMC(−s) :=

∞∑
k=0

1

k!
mk+1(−s, . . . ,−s, λ)

for generic sections s ∈ Γ(NS) and λ ∈ Γ(`). In this way, we can describe
moduli of coisotropic sections in terms of gauge equivalence classes of non-
formal solutions of the Maurer-Cartan equation. First of all, let E and L
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be as in the beginning of Section 4.3. A multi-differential operator ∆ ∈
(D•L)[1] is fiber-wise entire if it maps linear sections (of L) to fiber-wise
entire sections. Equivalently, ∆ is fiber-wise entire if its components in vector
bundle coordinates are fiber-wise entire.

Theorem 4.23. The Jacobi bi-differential operator J is fiber-wise entire
iff, for all sections s ∈ Γ(NS), and λ ∈ Γ(L), the Maurer-Cartan series
MC(−s) converges to P (exp I(s)∗J), and the series δλ|SMC(−s) (4.14)
converges to P (exp I(s)∗∆λ), in the sense of point-wise convergence.

Proof. We already know that the bi-linear form ΛJ is fiber-wise entire if and
only ifMC(−s) converges for all s. Now, it is easy to see that P (expLI(s)∆λ) =
P (expLI(s)Xλ) for all s ∈ Γ(NS), and λ ∈ Γ(L) (cf. (4.4)). Moreover, from
the proof of Proposition 4.20, we get

δλ|SMC(−s) = −P (expLI(s)∆λ) = −P (expLI(s)Xλ).

Therefore, similarly as in the proof of Proposition 4.14, we find

δλ|SMC(−s) = −P
∞∑
k=0

1

k!

dk

dtk

∣∣∣∣
t=0

(Φ−t)∗Xλ.

The bi-differential operator J is locally given by (3.11), hence a straightfor-
ward computation shows that

δλ|SMC(−s)

=

∞∑
k=0

1

k!

dk

dtk

∣∣∣∣
t=0

[
2∂ig(Jai◦ts)−2tsaj∂ig(J ij◦ts)+g(Ja◦ts)−tsai g(J i◦s)

]
∂a,

where we used the same notations as in the proof of Proposition 4.14, and g
is the component of λ|S in the basis µ. The assertion now follows in a very
similar way as in the proof of Proposition 4.14. �

Corollary 4.24. Let (M,L, J ≡ {−,−}) be a Jacobi manifold, and let S ⊂
M be a compact coisotropic submanifold equipped with a fat tubular neighbor-
hood τ : ` ↪→ L. If τ−1

∗ J is fiber-wise entire, then two solutions s0, s1 : S →
NS of the (well-defined) Maurer-Cartan equation MC(−s) = 0 are Hamil-
tonian equivalent if and only if they are interpolated by a smooth family of
sections st ∈ Γ(NS) and there exists a smooth family of sections λt of ` such
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that st is a solution of the following well-defined evolutionary equation:

d

dt
(−st) = δλtMC(−st).

Remark 4.25. Immediately after a preliminary version of the present
work appeared on arXiv, Schätz and Zambon, independently, finalized a pre-
print, now published [40], where they discuss the moduli space of coisotropic
submanifolds of a symplectic manifold. In particular, they use our same
method to prove Corollary 4.24 in the symplectic case (see [40, Theorem
3.21]). Note that τ−1

∗ J is automatically fiber-wise entire in Schätz-Zambon
situation and, therefore, convergence issues don’t appear in their work.

5. The contact case

Contact manifolds form a distinguished class of Jacobi manifolds. In this
section we consider in some details (regular) coisotropic submanifolds in a
contact manifold (M,C). A normal form theorem is available in this case.
As a consequence, the L∞-algebra of a regular coisotropic submanifold S
in (M,C) does only depend on the intrinsic pre-contact geometry of S.
In particular, we get rather efficient formulas (from a computational point
of view) for the multibrackets, analogous to those of Oh and Park in the
symplectic case [35, Equation (9.17)].

5.1. Coisotropic submanifolds in contact manifolds

Let C be an hyperplane distribution on a smooth manifold M . Denote
by L the quotient line bundle TM/C, and by θ : TM → L, X 7→ θ(X) :=
X modC the projection. We will often interpret θ as an L-valued differ-
ential 1-form on M , and call it the structure form of C. The curvature
form of (M,C) is the vector bundle morphism ω : ∧2C → L well-defined
by ω(X,Y ) = θ([X,Y ]), with X,Y ∈ Γ(C). Consider also the vector bundle
morphism ω[ : C → C∗ ⊗ L, X 7→ ω[(X) := ω(X,−). The characteristic dis-
tribution of (M,C), is the (generically singular) distribution kerω[ = C⊥ω ,
where we denoted by V ⊥ω the ω-orthogonal complement of a subbundle
V ⊂ C. Note that the definition of curvature form works verbatim for dis-
tributions of arbitrary codimension (See also [35, Section 4] for a detailed
exposition on the curvature form).

Remark 5.1. The characteristic distribution of an hyperplane distribution
C is involutive.
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Definition 5.2. A pre-contact structure on a smooth manifold M is an
hyperplane distribution C on M such that its characteristic distribution
kerω[ has constant dimension. A pre-contact manifold (M,C) is a smooth
manifold M equipped with a pre-contact structure C. The integral foliation
of kerω[ is called the characteristic foliation of C and will be denoted by F .

See [36, Section 5] where essentially the same definition was given in
terms of the one-form generating the hyperplane distribution in relation to
the study of normal forms of a contact form of Morse-Bott type.

Remark 5.3. The curvature form ω of (M,C) measures how far is C from
being integrable. Indeed, C is integrable if and only if ω = 0, or, equivalently,
ω[ = 0. Accordingly, C is said to be maximally non-integrable when ω is non
degenerate, or, equivalently, kerω[ = 0. If C is maximally non-integrable,
then C is even-dimensional, M is odd-dimensional, and ω[ is a vector bundle
isomorphism, whose inverse will be denoted by ω# : C∗ ⊗ L→ C.

Definition 5.4. A contact structure on a smooth manifold M is a maxi-
mally non-integrable hyperplane distribution C on M . A contact manifold
is a smooth manifold M equipped with a contact structure C.

Let (M1, C1) and (M2, C2) be contact manifolds. A contactomorphism
φ : (M1, C1)→ (M2, C2) is a diffeomorphism φ : M1 →M2 such that

(dφ)C1 = C2.

An infinitesimal contactomorphism (or contact vector field) of a con-
tact manifold (M,C) is a vector field X ∈ X(M) whose flow consists of
local contactomorphisms. Equivalently, X ∈ X(M) is a contact vector field
if [X,Γ(C)] ⊂ Γ(C). Contact vector fields of (M,C) form a Lie subalgebra
of X(M) which will be denoted by XC (see e.g. [36, Proposition 2.3]).

Proposition 5.5 (cf. [7], [36, Proposition 2.3]). Let (M,C) be a contact
manifold. There is a natural direct sum decomposition of R-vector spaces:
X(M) = XC ⊕ Γ(C).

Proof. ForX ∈ X(M), let φX ∈ Γ(C∗ ⊗ L) be defined by φX(Y ) = θ([X,Y ]),
Y ∈ Γ(C). The first order differential operator φ : X(M)→ Γ(C∗ ⊗ L), X 7→
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φX , sits in a short exact sequence of R-linear maps

(5.1) 0 −→ XC ↪−→ X(M)
φ−→ Γ(C∗ ⊗ L) −→ 0,

where the second arrow is the inclusion. Now the C∞(M)-linear map Γ(C∗ ⊗
L)→ X(M) given by the composition

Γ(C∗ ⊗ L)
ω#

−→ Γ(C) −→ X(M)

splits the sequence (5.1). �

In what follows, for λ ∈ Γ(L), we denote by Xλ the unique contact vector
field such that θ(Xλ) = λ.

Proposition 5.6. A contact structure C induces a canonical Jacobi struc-
ture (L, {−,−}), where the Lie bracket {−,−} on Γ(L) is uniquely deter-
mined by X{λ,µ} = [Xλ, Xµ]. The symbol of the first order differential oper-
ator ∆λ := {λ,−} ∈ DL is Xλ.

Now, let (M,C) be a contact manifold, and let S ⊂M be a submanifold.
The intersection CS := C ∩ TS is a generically singular distribution on S.
More precisely S is the union of two disjoint subsets S0, S1 defined by

• p ∈ S0 if and only if dim(CS)p = dimS,

• p ∈ S1 if and only if dim(CS)p = dimS − 1.

If S = S0 then S is said to be an isotropic submanifold of (M,C). In other
words, an isotropic submanifold of (M,C) is an integral manifold of the
contact distribution C. Locally maximal isotropic, or, equivalently, locally
maximal integral submanifolds of C are Legendrian submanifolds.

Proposition 5.7. Let S = S1. The following conditions are equivalent:

1) CS is a pre-contact structure on S, with characteristic distribution
given by (CS)⊥ω ⊂ C|S,

2) (CS)p is a coisotropic subspace in the symplectic vector space (Cp, ωp),
i.e. (CS)⊥ωp ⊂ (CS)p, for all p ∈ S,

3) S is a coisotropic submanifold of the associated Jacobi manifold
(M,L, J ≡ {−,−}).

Proof. The equivalence 1)⇐⇒ 2) amounts to a standard argument in sym-
plectic linear algebra. The equivalence 2)⇐⇒ 3) is based on the following
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facts. Let (L, J ≡ {−,−}) be the Jacobi structure associated to (M,C). For
λ ∈ Γ(L), and f ∈ C∞(M) put Yf,λ := Λ#

J (df ⊗ λ) = Xfλ − fXλ. We have
the following:

• Yf,λ ∈ Γ(C).

• Let I(S) ⊂ C∞(M) be the ideal of functions vanishing on S. Then Yf,λ
is tangent to S if and only if Xfλ is tangent to S, for all f ∈ I(S), and
λ ∈ Γ(L).

• ω(Yf,λ, X) = X(f)λ, for all f ∈ C∞(M), λ ∈ Γ(L), and X ∈ Γ(C).

Now it is easy to see that (CS)⊥ω ⊂ CS if and only if S is coisotropic in
(M,L, {−,−}). �

Definition 5.8. If the equivalent conditions 1)–3) in Proposition 5.7 are
satisfied, then S is said to be a regular coisotropic submanifold of (M,C).

Remark 5.9. Unlike the equivalence 1)⇐⇒2), in Proposition 5.7, the
equivalence 2)⇐⇒3) continues to hold also without assuming that S=S1.

Remark 5.10. Let (M,L, {−,−}) be a Jacobi manifold. Then (L, {−,−})
is the Jacobi structure induced by a (necessarily unique) contact structure
if and only if the associated bi-linear form J : ∧2J1L→ L is non-degenerate
(see [45]). In particular, Hamiltonian derivations of a contact manifold, ex-
haust all infinitesimal Jacobi automorphisms, and Hamiltonian vector fields
exhaust all Jacobi vector fields.

5.2. Coisotropic embeddings and L∞-algebras from pre-contact
manifolds

From now till the end of this section we consider only closed regular coisotro-
pic submanifolds. The intrinsic pre-contact geometry of a regular coisotropic
submanifold S in a contact manifold M contains a full information about
the coisotropic embedding of S into M , at least locally around S. This is
an immediate consequence of the Tubular Neighborhood Theorem in contact
geometry (see [30], [36, Section 5], see also [11] for the analogous result in
symplectic geometry).

Let (S,CS) be a pre-contact manifold, with characteristic foliation F .

Definition 5.11. A coisotropic embedding of (S,CS) into a contact man-
ifold (M,C) is an embedding i : S ↪→M such that (di)CS = Ci(S), and

(di)TF = C⊥ωi(S), where ω is the curvature form of (M,C).
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Remark 5.12. Clearly, in view of Proposition 5.7, if i : S ↪→M is a coiso-
tropic embedding of (S,CS) into (M,C), then i(S) is a coisotropic subman-
ifold of (M,C).

Let i1 and i2 be coisotropic embeddings of (S,CS) into contact manifolds
(M1, C1) and (M2, C2), respectively.

Definition 5.13. The coisotropic embeddings i1 and i2 are said to be lo-
cally equivalent if there exist open neighborhoods Uj of ij(S) in Mj , j = 1, 2,
and a contactomorphism φ : (U1, C1|U1

)→ (U2, C2|U2
) such that φ ◦ i1 = i2.

Theorem 5.14 (Coisotropic embedding of pre-contact manifolds:
existence and uniqueness). Every pre-contact manifold admits a coiso-
tropic embedding. Additionally, any two coisotropic embeddings of a given
pre-contact manifold are locally equivalent.

Theorem 5.14 is a special case of Theorem 3 in [30]. We do not repeat
the “uniqueness part” of the proof here. The “existence part” can be proved
constructively via contact thickening. This is done for later purposes in the
next subsection.

Corollary 5.15 (L∞-algebra of a pre-contact manifold). Every pre-
contact manifold determines a natural isomorphism class of L∞-algebras.

Proof. The “existence part” of Theorem 5.14 and Proposition 3.12 guaran-
tee that a pre-contact manifold (S,CS) determines a L∞-algebra up to the
choice of a coisotropic embedding (S,CS) ⊂ (M,C), and a fat tubular neigh-
borhood τ : NS ×S ` ↪→ L of ` in L, where ` = TS/CS and L is the Jacobi
bundle of (M,C). Any two such L∞-algebras are L∞-isomorphic because of
Proposition 3.18 and the “uniqueness part” of Theorem 5.14. �

5.3. Contact thickening

We now show that every pre-contact manifold (S,CS) admits a coisotropic
embedding into a suitable contact manifold uniquely determined by (S,CS)
up to the choice of a complementary distribution to the characteristic dis-
tribution. Thus, let (S,CS) be a pre-contact manifold, F its characteristic
foliation, ` = TS/CS the quotient line bundle, and let θ : TS → ` be the
structure form. Theorem 5.14 is a “contact version” of a theorem by Gotay
[11] and can be proved by a similar technique as the symplectic thickening
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of [35]. Accordingly, we will speak about contact thickening. See also [36] for
a relevant discussion on contact thickenings in a different context.

Pick a distribution G on S complementary to TF , and let pTF ;G : TS →
TF be the projection determined by the splitting TS = G⊕ TF . Put
T`
∗F := T ∗F ⊗ `, and let q : T`

∗F → S be the natural projection. We equip
the manifold T`

∗F with the line bundle L := q∗`. The `-valued 1-form θ can
be pulled-back via q to an L-valued 1-form q∗θ on T`

∗F . There is also an-
other L-valued 1-form θG on T`

∗F . It is defined as follows: for α ∈ T`∗F ,
and ξ ∈ Tα(T`

∗F)

(θG)α(ξ) := (α ◦ pTF ;G ◦ dq)(ξ) ∈ `x = Lα, x := q(α),

where α is interpreted as a linear map TxF → `x. By definition, θG depends
on the choice of the splitting G.

Proposition 5.16. The distribution C := ker(θG + q∗θ) is a contact struc-
ture on a neighborhood U of im 0, the image of the zero section 0 of q. Ad-
ditionally 0 is a coisotropic embedding of (S,CS) into the contact manifold
(U,C|U ).

Proof. Use Darboux lemma and choose local coordinates (xi, ua, z) on S
adapted to CS , i.e.

Γ(TF) =
〈
∂/∂xi

〉
, Γ(CS) =

〈
∂/∂xi,Ca

〉
, Ca =

∂

∂ua
− Ca

∂

∂z
,

where the Ca’s are linear functions of the ub’s only. The section µ := θ(∂/∂z)
is a local generator of Γ(`). Moreover θ is locally given by θ = (dz − Cadua)⊗
µ, and the curvature form ωS of CS is locally given by

ωS =
1

2
ωabdu

a|C ∧ dub|C ⊗ µ, ωab =
∂Cb
∂ua
− ∂Ca
∂ub

.

In particular, the skew-symmetric matrix (ωab) is non-degenerate. We will
use the following local frame on S adapted to both CS and G:(

∂

∂xi
,C′a, Z

)
,

where C′a := (id− pTF ;G)(Ca), and Z := (id− pTF ;G)(∂/∂z). Now, let p =
(pi) be linear coordinates along the fibers of q : T`

∗F → S corresponding to
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the local frame (dxi|TF ⊗ µ). Then (∂/∂xi,C′a, Z, ∂
∂pi

) is a local frame on
T`
∗F . It is easy to check that locally

Γ(C) =

〈
Xi,C′a,

∂

∂pi

〉
,

where Xi := ∂/∂xi − piZ. Finally, the representative matrix of the curvature
of C with respect to the local frames (Xi,C′a, ∂

∂pi
) of C and Z modC of

T (T`
∗F)/C = L is

(5.2)

 0 0 δji
0 ωab 0
−δij 0 0

 up to infinitesimals O(p)

This shows that C is maximally non-integrable around the zero section of
T`
∗F . Moreover, it immediately follows from (5.2) that the zero section of

T`
∗F is a coisotropic embedding (transversal to fibers of q). This concludes

the proof. �

The contact manifold (U,C|U ) is called a contact thickening of (S,CS).
Now, let NS be the normal bundle of S in U . Clearly NS = T`

∗F , hence
N`S = T ∗F . According to the proof of Corollary 5.15 the choice of a comple-
mentary distribution G determines an L∞-algebra structure on Γ(∧•N`S ⊗
`)[1] = Γ(∧•T ∗F ⊗ `)[1]. Moreover, such L∞-structure is actually indepen-
dent of the choice of G up to L∞-isomorphisms. Sections of ∧•T ∗F ⊗ `
are `-valued leaf-wise differential forms on S and we also denote them by
Ω•(F , `) (see below).

5.4. The transversal geometry of the characteristic foliation

Similarly as in the symplectic case (cf. [35, Section 9.3]), the multi-brackets
in the L∞-algebra of a pre-contact manifold can be expressed in terms of
the “geometry transversal to the characteristic foliation”. To write down
this expression, we have to describe the relevant transversal geometry. Let
(S,CS) be a pre-contact manifold with characteristic foliation F . Denote by
NF := TS/TF the normal bundle to F , and by N∗F = (NF)∗ = T 0F ⊂
T ∗S the conormal bundle to F .

Recall that TF is a Lie algebroid. The standard Lie algebroid differential
in Ω•(F) := Γ(∧•T ∗F) will be denoted by dF and called the leaf-wise de
Rham differential. There is a flat TF-connection ∇ in N∗F well-defined by

∇Xη := LXη, X ∈ Γ(TF), η ∈ Γ(N∗F).
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Remark 5.17. The connection ∇ is “dual to the Bott connection” in NF .

As usual,∇ determines a differential in Ω•(F , N∗F) :=Γ(∧•T ∗F ⊗N∗F)
denoted again by dF . There exists also a flat TF-connection in `, denoted
again by ∇, and defined by

∇Xθ(Y ) := θ([X,Y ]), X ∈ Γ(TF), Y ∈ X(M).

The corresponding differential in Ω•(F , `) := Γ(∧•T ∗F ⊗ `) will be also de-
noted by dF . Now, let J1

⊥` be the vector subbundle of J1` given by the kernel
of the vector bundle epimorphism

ϕ∇ : J1` −→ T ∗F ⊗ `, j1
xλ 7−→ (dFλ)x.

Sections of J1
⊥` will be interpreted as sections of J1` “transversal to F”. Note

also that the Spencer sequence 0→ T ∗S ⊗ `→ J1`→ `→ 0 restricts to a
“transversal Spencer sequence” 0→ N∗F ⊗ `→ J1

⊥`→ `→ 0 and the two
fit in the following exact commutative diagram of vector bundle morphisms

0

��

0

��

0

��
0 // N∗F ⊗ ` //

��

J1
⊥`

//

��

` // 0

0 // T ∗S ⊗ ` //

��

J1` //

ϕ∇

��

`

��

// 0

0 // T ∗F ⊗ `

��

T ∗F ⊗ ` //

��

0

0 0

.

In what follows the embeddings γ : T ∗S ⊗ ` ↪→ J1` and N∗F ⊗ ` ↪→ J1
⊥`

will be understood, and we will identify df ⊗ λ with j1(fλ)− fj1λ, for
any f ∈ C∞(S), and λ ∈ Γ(`). Recall that an arbitrary α ∈ Γ(J1`) can be
uniquely decomposed as α = j1λ+ η, with λ ∈ Γ(`), and η ∈ Γ(T ∗S ⊗ `).
Then, by definition, for p ∈ S, αp is in J1

⊥` if and only if ϕ∇(ηp) = −(dFλ)p.
Finally, there is a flat TF-connection in J1

⊥`, also denoted by ∇, well-defined
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by

(5.3) ∇Xψ = L∇Xψ,

for all ψ ∈ Γ(J1
⊥L) and X ∈ Γ(TF). Accordingly, there exists a differential

in Ω•(F , J1
⊥`) := Γ(∧•T ∗F ⊗ J1

⊥`) which we also denote by dF .
Now, note that the curvature form of (S,CS), ωS : ∧2CS → `, descends

to a(n `-valued) symplectic form ω⊥ : ∧2(CS/TF)→ `. In particular, it de-
termines a vector bundle isomorphism ω[⊥ : CS/TF → (CS/TF)∗ ⊗ ` (see
Section 5.1).

Remark 5.18. Let p ∈ S, X ∈ X(S), and λ = θ(X). Recall that φX ∈
Γ(C∗S ⊗ `) is defined by φX(Y ) = θ([X,Y ]), for all Y ∈ Γ(CS) (cf. Section 5.1).
Then we have that j1

pλ ∈ J1
⊥` if and only if (φX)p ∈ (CS/TF)∗ ⊗ `. Further-

more it is easy to check, for instance using local coordinates, that when
j1
pλ = 0 the following holds:

1) Xp ∈ (CS)p, and

2) ω(Xp, Yp) = θ([X,Y ]p), for all Y ∈ Γ(CS).

Therefore, if j1
pλ = 0, then Xp modTpF = (ω[⊥)−1(φX)p, and the following

definition is well-posed.

Definition 5.19. Define σJ#
⊥ : J1

⊥`→ NF to be the vector bundle mor-
phism uniquely determined by:

(5.4) σJ#
⊥ (j1

pλ) := Xp modTpF − (ω[⊥)−1(φX)p,

where p ∈M , λ ∈ Γ(`), and X ∈ X(S), such that j1
pλ ∈ J1

⊥L, and λ = θ(X).

Proposition 5.20. There exists a vector bundle morphism J⊥ : ∧2J1
⊥`→ `

uniquely determined by putting

(5.5) J⊥(j1
pλ, j

1
pλ
′) = θ([Y, Y ′]p),

where p ∈M , λ, λ′ are ∇-constant local sections of ` and Y, Y ′ ∈ X(S) are
such that σJ#

⊥ (j1λ) = Y mod Γ(TF) and σJ#
⊥ (j1λ′) = Y ′mod Γ(TF).

Proof. First of all notice that every point in J1
⊥` is the first jet of a ∇-

constant local section of `. Hence Definition (5.5) makes sense. Moreover, the
right hand side of (5.5) does only depend on λ, λ′. Indeed, first of all, θ(Y ) =
λ, and θ(Y ′) = λ′. Moreover, if Y ∈ Γ(TF), then, 0 = ∇Y λ′ = θ([Y, Y ′]).
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Finally, one can check, e.g. using local coordinates, that the right hand side
of (5.5) does actually depend on the first jets at p of λ, λ′ only. This shows
that J⊥ is well-defined. �

The vector bundle morphism J⊥ : ∧2J1
⊥`→ ` will be interpreted as the

transversal version of the bi-linear form J associated to a Jacobi bi-differential
operator J .

5.5. An explicit formula for the multi-brackets

Retaining the notations from the previous subsection, choose a distribu-
tion G on S which is complementary to TF , i.e. TS = G⊕ TF . There is a
dual splitting T ∗S ∼= T ∗F ⊕N∗F and there are identifications NF ∼= G,
T ∗F ∼= G0. Furthermore the induced splitting of 0→ N∗F ⊗ `→ T ∗S ⊗
`→ T ∗F ⊗ `→ 0 lifts to a splitting of 0→ J1

⊥`→ J1`→ T ∗F ⊗ `→ 0. Hence
J1` ∼= J1

⊥`⊕ (T ∗F ⊗ `). Let F ∈ Γ(∧2G∗ ⊗ TS/G) be the curvature form of
G. The curvature F will be also understood as an element F ∈ Γ(∧2N∗F ⊗
TF) ⊂ Γ(∧2(J1

⊥`⊗ `∗)⊗ TF), where we used the embedding N∗F ⊗ ` ↪→
J1
⊥`.

Let dG : C∞(S)→ Γ(N∗F) be the composition of the de Rham differ-
ential d : C∞(S)→ Ω1(S) followed by the projection Ω1(S)→ Γ(N∗F) de-
termined by the decomposition T ∗S = T ∗F ⊕N∗F . Then dG is a Γ(N∗F)-
valued derivation of C∞(S) and will be interpreted as the “transversal de
Rham differential”.

Proposition 5.21. There exists a unique degree zero, graded R-linear map
ε : Ω(F)→ Ω(F , N∗F) such that

1) ε|C∞(S) = dG,

2) [ε, dF ] = 0, and

3) the following identity holds

ε(τ ∧ τ ′) = τ ∧ ε(τ ′) + (−)|τ ||τ
′|τ ′ ∧ ε(τ),

for all homogeneous τ, τ ′ ∈ Ω(F).

In order to prove Proposition 5.21, the following Lemma will be useful:

Lemma 5.22. Let f be a leaf-wise constant local function on S, i.e. dFf =
0, then dFdGf = 0 as well.
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Proof. Let f be as in the statement. First of all, note that df takes values
in N∗F , so that dGf = df . Now recall that dFdGf = 0 iff 0 = 〈dFdGf,X〉 =
∇XdGf=LXdGf for allX∈Γ(TF), where∇ is the canonical TF-connection
in N∗F . But LXdGf = LXdf = d(Xf) = 0. This completes the proof. �

Proof of Proposition 5.21. The graded algebra Ω(F) is generated in degree
0 and 1. In order to define ε, we first define it on the degree one piece Ω1(F)
of Ω(F). Thus, note that Ω1(F) is generated, as a C∞(S)-module, by leaf-
wise de Rham differentials dFf ∈ Ω1(F) of functions f ∈ C∞(S). The only
relations among these generators are the following

(5.6)

dF (f + g) = dFf + dFg,

dF (fg) = fdFg + gdFf,

dFf = 0 on every open domain where f is leaf-wise constant,

where f, g ∈ C∞(S). Now define ε : Ω1(F)→ Ω1(F , N∗F) on generators by
putting

εf := dGf and εdFf := dFdGf,

and extend it to the whole Ω1(F) by prescribing R-linearity and the following
Leibniz rule:

(5.7) ε(fσ) = fε(σ) + σ ⊗ dGf,

for all f ∈ C∞(S), and σ ∈ Ω1(F). In order to see that ε is well defined it
suffices to check that it preserves relations (5.6). Compatibility with the first
two relations can be checked by a straightforward computation that we omit.
Compatibility with the third relation immediately follows from Lemma 5.22.
Finally, in view of the Leibniz rule (5.7), dG and ε combine and extend to a
well-defined derivation Ω(F)→ Ω(F , N∗F). By construction, the extension
satisfies all required properties. Uniqueness is obvious. �

The graded differential operator ε will be also denoted by dG.
Similarly, there is a “transversal version of the first jet prolongation j1”.

Namely, let j1
G : Γ(`)→ Γ(J1

⊥`) be the composition of the first jet prolon-
gation j1 : Γ(`)→ Γ(J1`) followed by the projection Γ(J1`)→ Γ(J1

⊥`) de-
termined by the decomposition J1` = J1

⊥`⊕ (N∗F ⊗ `). Then j1
G is a first
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order differential operator from Γ(`) to Γ(J1
⊥`) such that

(5.8) j1
G(fλ) = fj1

Gλ+ (dGf)⊗ λ,

λ ∈ Γ(`) and f ∈ C∞(S), where, similarly as above, we understood the em-
bedding N∗F ⊗ ` ↪→ J1

⊥`. As announced, the operator j1
G will be interpreted

as the “transversal first jet prolongation”.

Proposition 5.23. There exists a unique degree zero graded R-linear map
δ : Ω(F , `)→ Ω(F , J1

⊥`) such that

1) δ|Γ(`) = j1
G,

2) [δ, dF ] = 0, and

3) the following identity holds

δ(τ ∧ Ω) = τ ∧ δ(ω) + dGτ ⊗ ω,

for all τ ∈ Ω(F), and ω ∈ Ω(F , `), where the tensor product is over
Ω(F), and we understood both the isomorphism

(5.9) Ω(F , N∗F) ⊗
Ω(F)

Ω(F , `) ∼= Ω(F , N∗F ⊗ `)

and the embedding N∗F ⊗ ` ↪→ J1
⊥`.

In order to prove Proposition 5.23, the following Lemma will be useful:

Lemma 5.24. Let µ be a leaf-wise constant local section of `, i.e. dFµ = 0,
then dFj

1
Gµ = 0 as well.

Proof. Let µ be as in the statement. First of all note that, by the very
definition of J1

⊥`, j
1µ takes values in J1

⊥` so that j1
Gµ = j1µ. Now recall

that dFj
1
Gµ = 0 iff 0 = 〈dFj1

Gµ,X〉 = ∇Xj1
Gµ for all X ∈ Γ(TF), where ∇

is the canonical TF-connection in J1
⊥`. But∇Xj1

Gµ = ∇Xj1µ = j1∇Xµ = 0,
where we used (5.3). This completes the proof. �

Proof of Proposition 5.23. In this proof a tensor product ⊗ will be over
C∞(S) unless otherwise stated. We can regard Ω(F , `) = Ω(F)⊗ Γ(`) as
a quotient of Ω(F)⊗R Γ(`) in the obvious way. Our strategy is defining
an operator δ′ : Ω(F)⊗R Γ(`)→ Ω(F , J1

⊥`) and prove that it descends to
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an operator δ : Ω(F , `)→ Ω(F , J1
⊥`) with the required properties. Thus, for

σ ∈ Ω(F) and λ ∈ Γ(`) put

(5.10) δ′(σ ⊗R λ) := σ ⊗ j1
Gλ+ dGσ ⊗Ω(F) λ ∈ Ω(F , J1

⊥`),

where, in the second summand, we understood both the isomorphism (5.9)
and the embedding N∗F ⊗ ` ↪→ J1

⊥` (just as in the statement of the propo-
sition). In order to prove that δ′ descends to an operator δ on Ω(F , `) it
suffices to check that δ′(fσ ⊗R λ) = δ′(σ ⊗R fλ) for all σ, λ as above, and
all f ∈ C∞(S). This can be easily obtained using the derivation property of
dG and (5.8). Now, Properties 1) and 3) immediately follows from (5.10).
In order to prove Property 2), it suffices to check that δdFλ = dFj

1
Gλ for

all λ ∈ Γ(`) (and then use Property 3)). It is enough to work locally. Thus,
let µ be a local generator of Γ(`) with the further property that dFµ = 0.
Moreover, let f ∈ C∞(S), and compute

δdF (fµ) = δ(dFf⊗µ) = dFf⊗j1
Gµ+ dGdFf⊗µ = dFf⊗j1

Gµ+ dFdGf⊗µ
= dF (fj1

Gµ+ dGf⊗µ) = dF (j1
Gfµ),

where we used dFµ = 0, Proposition 5.21, Lemma 5.24, and (5.8). Unique-
ness of δ is obvious. �

The graded differential operator δ will be also denoted by j1
G.

Now, interpret J⊥ ∈ Γ(∧2(J1
⊥`)
∗ ⊗ `) as a section # ∈ Γ((J1

⊥`⊗ `∗)∗ ⊗
(J1
⊥`)
∗). The interior product of # and F ∈ Γ(∧2(J1

⊥`⊗ `∗)⊗ TF) is a
section F# ∈ Γ(End(J1

⊥`)⊗ TF ⊗ `∗). For any µ ∈ Ωk+1(F , `), the interior
product of F# and µ is a section iF#µ ∈ Ωk(F ,End J1

⊥`). Now, we extend

1) the bi-linear map J⊥ : ∧2J1
⊥`→ ` to a degree +1, Ω(F)-bilinear, sym-

metric form

〈−,−〉C : Ω(F , J1
⊥`)[1]× Ω(F , J1

⊥`)[1] −→ Ω(F , `)[1]

2) the natural bilinear map ◦ : EndJ1
⊥`⊗ End J1

⊥`→ End J1
⊥` to a degree

+1, Ω(F)-bilinear map

Ω(F ,End J1
⊥`)[1]× Ω(F ,End J1

⊥`)[1] −→ Ω(F ,End J1
⊥`)[1],

also denoted by ◦, and
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3) the tautological action EndJ1
⊥`⊗ J1

⊥`→ J1
⊥` to a degree +1, Ω(F)-

linear action

Ω(F ,End J1
⊥`)[1]× Ω(F , J1

⊥`)[1] −→ Ω(F , J1
⊥`)[1].

Theorem 5.25. The first (unary) bracket in the L∞-algebra structure on
Ω(F , `)[1] is dF . Moreover, for k > 1, the k-th multi-bracket is given by

mk(ν1, . . . , νk)(5.11)

=
1

2

∑
σ∈Sk

ε(σ,ν)
〈
j1
Gνσ(1), (iF#νσ(2) ◦ · · · ◦ iF#νσ(k−1))j

1
Gνσ(k)

〉
C
,

for all homogeneous ν1 . . . , νk ∈ Ω(F , `)[1], where ε(σ,µ) is the Koszul sign
prescribed by the permutations of the µ’s.

Proof. See Appendix B. �

Remark 5.26. The explicit form of the contact thickening (see Subsec-
tion 5.3) shows that the Jacobi bracket is actually fiber-wise entire. In par-
ticular Corollaries 4.15 and 4.24 always apply to the contact case.

6. An example

In [48], Zambon presents an example of a coisotropic submanifold S0 in a
symplectic manifold whose coisotropic deformation problem is obstructed.
Zambon’s example was also considered by Oh and Park in [35], and in the
latter paper the obstruction is discussed in terms of the L∞-algebra of S0.
More recently the same example was reconsidered by Lê and Oh in [26],
where it is proved that S0 is also obstructed when seen as a coisotropic
submanifold in a l.c.s. manifold. There is a contact analogue of Zambon’s
example, discussed in some details in [42] (see also [41]). Here, we describe
another example of a regular coisotropic submanifold S in a contact manifold
whose coisotropic deformation problem is formally obstructed. Unlike the
example in [42, Section 4.8], S has a non-simple characteristic foliation.
From this point of view, this section is closely inspired by [35, Section 12]
(symplectic case, see also [22]). Actually, the S in this section can be guessed
from that in [35, Section 12] via “contactization”. Nonetheless the contact
and the symplectic cases seem to be independent: seemingly no result about
the one could be found from the other.
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Consider the 7-dimensional coorientable contact manifold (M,C), with
M := R6 × S1 and C := ker θ, where the global contact 1-form θ ∈ Ω1(M)
is given by

θ := dφ−
3∑
i=1

pidq
i.

Here (qi, pi) are the Cartesian coordinates on R6 ∼= T ∗R3 and φ is the angle
coordinate on S1. We will also use polar coordinates (ri, φi) on each plane
R2 = {(qi, pi)}, i = 1, 2, 3.

The contact distribution C possesses a global frame given by

∂

∂pi
, Di :=

∂

∂qi
+ pi

∂

∂φ
,

and, for f ∈ Γ(RM ) = C∞(M), the corresponding contact vector field Xf is
given by

Xf = Dif
∂

∂pi
−

3∑
i=1

∂f

∂pi
Di + f

∂

∂φ
.

In particular, ∂/∂φ is the Reeb vector field X1. As we know, there is an
induced Jacobi bracket J ≡ {−,−} on the trivial line bundle RM →M . It
is straightforward to check that

J = Di ∧
∂

∂pi
+ id∧ ∂

∂φ
.

Take the functions Hi := 1
2r

2
i ∈ C∞(M), i = 1, 2, 3. For every positive

real number α > 0, put H(α) := H1 + αH2, and define the 5-dimensional
submanifold Sα ⊂M by putting

Sα := H−1
(α) (1/4) ∩H−1

3 (1/2) .

Since {H(α), H3} = 0, and θ, dH(α), dH3, are linearly independent on a
neighborhood of Sα, from Proposition 5.7 we get that Sα is a regular coiso-
tropic submanifold of (M,C). Hence, it inherits the structure of a pre-contact
manifold, with pre-contact distribution Cα := C ∩ TSα, i.e. Cα is the kernel
of the global pre-contact form θα := θ|TSα ∈ Ω1(Sα). Moreover its character-
istic distribution TF possesses a global frame consisting of XH(α)−1/4|Sα and
XH3−1/2|Sα . In particular, all characteristic leaves of (Sα, Cα) are orientable.

Remark 6.1. For α = 1, the characteristic foliation F is simple, and its
leaf space is diffeomorphic to CP1 × S1. On the other hand, for α 6= 1, F
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is not simple. Specifically, for α /∈ Q, every characteristic leaf contained in
Sα ∩H−1

1 (]0, 1/4[) is dense in Sα. Finally, for α = m/n, with m and n co-
prime integers, there are characteristic leaves with non-trivial holonomy:
characteristic leaves contained in Sα ∩H−1

1 (0) (resp. Sα ∩H−1
1 (1/4)) have

cyclic holonomy group of order m (resp. n).

Put Uα := Sα ∩H−1
1 (]0, 1/4[). Then Uα is an open and dense subset of

Sα, covered by charts with local coordinates (u1, u2, x, y, z) defined by

u1 = φ3, u2 = φ1 + αφ2,

x = H2, y = φ2 − αφ1, z = φ+

3∑
i=1

Hi

(
φi −

1

2
sin(2φi)

)
.

The latter are actually (local) Darboux coordinates on Sα, i.e. locally θα =
dz − ydx. So, locally, we also have

(6.1) Cα =

〈
∂

∂u1
,
∂

∂u2
,
∂

∂y
,D :=

∂

∂x
+ y

∂

∂z

〉
, TF =

〈
∂

∂u1
,
∂

∂u2

〉
.

Note that the vector fields ∂
∂u1

, ∂
∂u2

, ∂
∂y , D, ∂

∂z do not depend on the
Darboux chart, and are globally defined on Uα. Moreover, the vector fields
∂
∂u1

and ∂
∂u2

(resp. leaf-wise differential forms dFu1 ≡ (du1)|TF and dFu2 ≡
(du2)|TF ) uniquely prolong to a global frame of TF (resp. T ∗F). Hence, for
any 0 < ε < 1/8, we can pick a distribution G on Sα complementary to TF
and satisfying the following additional property

(6.2) G|Uα,ε =

〈
∂

∂y
, D,

∂

∂z

〉∣∣∣∣
Uα,ε

,

where Uα,ε ⊂ Uα is the open subset defined by Uα,ε := Sα ∩H−1
1 (]ε, 1/4−

ε[). From now on we assume we have fixed such a distribution G. After this
choice:

• around Sα, (M,C) identifies with the contact thickening of (Sα, Cα)
determined by the splitting TSα = TF ⊕G (see Section 5.3),

• the L∞-algebra of Sα is given by (Ω•(F), {mk}) with the multibrackets
determined by G as in Theorem 5.25.

Focus on the explicit expressions of m1 and m2. From coorientability,
m1 : Ω•(F)→ Ω•(F) boils down to the leaf-wise de Rham differential dF :
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Ω•(F)→ Ω•(F). Hence, for f, g ∈ C∞(Sα), the following identities hold:

(6.3)

m1(f) =
∂f

∂u1
dFu1 +

∂f

∂u2
dFu2,

m1(fdFu1 + gdFu2) =

(
∂g

∂u1
− ∂f

∂u2

)
dFu1 ∧ dFu2.

Let

Jα ≡ {−,−}α : C∞(Uα)× C∞(Uα)→ C∞(Uα)

be the bi-differential operator defined by

Jα = D ∧ ∂

∂y
+ id∧ ∂

∂z
.

From (6.1), (6.2), and Theorem 5.25 we get that

(6.4)

m2(f, g) = −{f, g}α,
m2(f, g1dFu1 + g2dFu2) = −{f, g1}αdFu1 − {f, g2}αdFu2,

m2(f1dFu1 + f2dFu2, g1dFu1 + g2dFu2)

= ({f1, g2}α − {f2, g1}α) dFu1 ∧ dFu2,

on Uα,ε.
We can extract from (6.3) and (6.4) information about the coisotropic

deformation problem of Sα. Take s = fdFu1 + gdFu2 ∈ Ω1(F). From Corol-
lary 4.11, it is an infinitesimal coisotropic deformation if and only if

(6.5)
∂g

∂u1
− ∂f

∂u2
= 0.

Additionally, from Corollary 4.21, two infinitesimal coisotropic deformations
si = fidFu1 + gidFu2, with i = 0, 1, are infinitesimally Hamiltonian equiva-
lent if and only if there exists h ∈ C∞(Sα) such that

f1 = f0 +
∂h

∂u1
, g1 = g0 +

∂h

∂u2
.

Let s = fdFu1 + gdFu2 be an infinitesimal coisotropic deformation, with
supp(s) ⊂ Uα. Assume that s can be prolonged to a formal coisotropic de-
formation. Since ε can be chosen arbitrarily small, from Proposition 4.13,
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there exist h, k ∈ C∞(Sα) such that

(6.6) f
∂g

∂z
− g∂f

∂z
+ (Df)

∂g

∂y
− (Dg)

∂f

∂y
=

∂k

∂u1
− ∂h

∂u2
.

Integrating (6.6) over a compact characteristic leaf L, we get the following
(weaker) necessary condition for the formal prolongability of s

(6.7)

∫∫
L

(
f
∂g

∂z
− g∂f

∂z
+ (Df)

∂g

∂y
− (Dg)

∂f

∂y

)
dFu1dFu2 = 0.

Proposition 6.2. If α ∈ Q, then the coisotropic submanifold Sα of (M,C)
is formally obstructed.

Proof. Let α = m
n , with m and n coprime integers. In this case the charac-

teristic foliation Fα has orientable compact leaves. Pick two non-constant
functions χ ∈ C∞(S1) and ρ ∈ C∞(R) such that supp(ρ) ⊂ ]0, 1/4α[. Then
there exist two functions f, g ∈ C∞(Sα) uniquely determined by

(6.8) f(u1, u2, x, y, z) = ρ(x), g(u1, u2, x, y, z) = ρ(x)χ(ny).

Put s := fdFu1 + gdFu2 ∈ Ω1(F). The latter is an infinitesimal coisotropic
deformation of Sα which is formally obstructed. Indeed s fulfills (6.5), but
it fails to fulfill the constraint (6.7):

∫∫
L(x̄,ȳ,z̄)

(
f
∂g

∂z
− g∂f

∂z
+ (Df)

∂g

∂y
− (Dg)

∂f

∂y

)
dFu1dFu2

= m2+n2

n (2π)2ρ(x̄)ρ′(x̄)χ′(nȳ) 6= 0,

where, for any (x̄, ȳ, z̄), we denoted by L(x̄, ȳ, z̄) the characteristic leaf given
by the level set x = x̄, y = ȳ, z = z̄. �

Remark 6.3. The case α /∈ Q is more involved. In particular, it requires a
better understanding of the characteristic foliation of (Sα, Cα). We hope to
discuss it in details elsewhere.
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Appendix A. Derivations, infinitesimal automorphisms of
vector bundles and the Schouten-Jacobi

algebra

Let M be a smooth manifold, and let E →M be a vector bundle over M . A
first order differential operator ∆ : Γ(E)→ Γ(E) is a derivation of E if there
exists a (necessarily unique) vector field X such that ∆(fe) = X(f)e+ f∆e
for all f ∈ C∞(M), and e ∈ Γ(E). In this case we write σ(∆) = X, and call
it the symbol of ∆. The space of derivations of E will be denoted by DE.
It is the space of sections of a (transitive) Lie algebroid DE →M over M ,
sometimes called the gauge algebroid of E, whose Lie bracket is the com-
mutator of derivations, and whose anchor is the symbol σ : DE → TM (see,
e.g., [25, Theorem 1.4] for details). The fiber DxE of DE through x ∈M
consists of R-linear maps δ : Γ(E)→ Ex such that there exists a, necessarily
unique, tangent vector v ∈ TxM , called the symbol of δ and also denoted by
σ(δ), satisfying the obvious Leibniz rule δ(fe) = v(f)e(x) + f(x)δ(e), for all
f ∈ C∞(M) and e ∈ Γ(E).

Remark A.1. If E is a line bundle, then every first order differential op-
erator Γ(E)→ Γ(E) is a derivation of E. Consider the trivial line bun-
dle RM := M × R. Then Γ(RM ) = C∞(M). First order differential oper-
ators Γ(RM )→ Γ(RM ) or, equivalently, derivations of RM , are the oper-
ators of the form X + a : C∞(M)→ C∞(M), where X is a vector field
on M and a ∈ C∞(M) is interpreted as an operator (multiplication by
a). Accordingly, in this case, there is a natural direct sum decomposition
DRM = X(M)⊕ C∞(M), the projection DRM → C∞(M) being given by
∆ 7→ ∆1.

The construction of the gauge algebroid of a vector bundle is functo-
rial, in the following sense. Let φ : E → F be a morphism of vector bundles
E →M , F → N , over a smooth map φ : M → N . We assume that φ is reg-
ular, in the sense that it is an isomorphism when restricted to fibers. In
particular a section f of F can be pulled-back to a section φ∗f of E, defined
by (φ∗f)(x) := (φ|−1

Ex
◦ f ◦ φ)(x), for all x ∈M . Then φ induces a morphism

of Lie algebroids Dφ : DE → DF defined by

Dφ(δ)f := φ(δ(φ∗f)), δ ∈ DE, f ∈ Γ(F ).

We also denote φ∗ := Dφ.
Derivations of a vector bundle E can be also understood as infinitesimal

automorphisms of E as follows. First of all, a derivation ∆ of E determines a
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derivation ∆∗ of the dual bundle E∗, with the same symbol as ∆. Derivation
∆∗ is defined by ∆∗ϕ := σ(∆) ◦ ϕ− ϕ ◦∆, where ϕ : Γ(E)→ C∞(M) is a
C∞(M)-linear form, i.e. a section of E∗. Now, recall that an automorphism of
E is a regular morphism φ : E → E covering a diffeomorphism φ : M →M .
An infinitesimal automorphism of E is a vector field Y on E whose flow
consists of (local) automorphisms. In particular, Y projects onto a (unique)
vector field Y ∈ X(M). Note that one parameter families of infinitesimal au-
tomorphisms generate one parameter families of automorphisms and vice-
versa, any one parameter family of automorphisms is generated by a one pa-
rameter family of infinitesimal automorphisms. Infinitesimal automorphisms
of E are sections of a (transitive) Lie algebroid over M , whose Lie bracket
is the commutator of vector fields on E, and whose anchor is Y 7→ Y . It
can be proved that a vector field Y on E is an infinitesimal automorphism
if and only if it preserves fiber-wise linear functions on E, i.e. sections of
the dual bundle E∗. Finally, note that the restriction of an infinitesimal
automorphism to fiber-wise linear functions Y |Γ(E∗) : Γ(E∗)→ Γ(E∗) is a
derivation of E∗, and the correspondence Y 7→ Y |∗Γ(E∗) is a well-defined iso-
morphism between the Lie algebroid of infinitesimal automorphisms and the
gauge algebroid of E.

If ∆ is a derivation of E, Y is the corresponding infinitesimal automor-
phism, and {φt} is its flow, then we will also say that ∆ generates the flow
{φt} by automorphisms. We have

d

dt

∣∣∣∣
t=0

φ∗t e = ∆e,

for all e ∈ Γ(E). Similarly, if {∆t} is a smooth one parameter family of
derivations of E, {Yt} is the corresponding one parameter family of infinites-
imal automorphisms, and {ψt} is the associated one parameter family of
automorphisms, then we will say that {∆t} generates {ψt}. We have

d

dt
ψ∗t e = (ψ∗t ◦∆t)e.

We now pass to multiderivations. We limit ourselves to the case when E
is a line bundle, and we denote it by L. First of all, notice that, in this case,
DL⊗ L∗ is the dual vector bundle to the first jet bundle J1L→M of L. In
the paper we often adopt the following notation: J1L := DL⊗ L∗. The ex-
terior algebra Γ(∧•J1L) consists of alternating, first order multi-differential
operators from Γ(L) to C∞(M), i.e. R-multi-linear maps which are first or-
der differential operators on each entry separately. Let ∆ ∈ Γ(∧kJ1L), and
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∆′ ∈ Γ(∧k′J1L). If we interpret ∆ and ∆′ as multi-differential operators,
then their exterior product is given by

(∆ ∧∆′)(λ1, . . . , λk+k′)(A.1)

=
∑

σ∈Sk,k′
(−)σ∆(λσ(1), . . . , λσ(k))∆

′(λσ(k+1), . . . , λσ(k+k′)),

where λ1, . . . , λk+k′ ∈ Γ(L), and Sk,k′ denotes (k, k′)-unshuffles. Similarly,
Γ(∧•J1L⊗ L) consists of alternating, first order multi-differential operators
from Γ(L) to itself. For this reason we often denote D•L := Γ(∧•J1L⊗ L),
where D0L = Γ(L) and D1L = DL. Note that D•L does also identify with
L-valued, skew-symmetric forms on J1L. We will often understand this iden-
tification.

We also consider the graded space (D•L)[1] obtained from D•L by shift-
ing degrees by 1. Beware that an element of DkL is a multi-differential oper-
ator with k-entries but its degree in (D•L)[1] is k − 1. There is a Γ(∧•J1L)-
module structure on (D•L)[1] given by the same formula (A.1) as above.

Remark A.2. A Jacobi bracket {−,−} on L will be interpreted as an
element of D2L. So, it corresponds to the associated bi-linear form J :
∧2J1L→ L via the identification D2L = Γ(Hom(∧2J1L,L)). Accordingly,
we will sometimes identify {−,−} and J (see Section 2 for more details).

The Lie bracket on D1L = Γ(DL) and the tautological action of DL on
L extend to a Lie bracket on (D•L)[1]. This Lie bracket is a “Jacobi version”
of the Schouten bracket between multi-vector fields, therefore we call it the
Schouten-Jacobi bracket and denote it by [−,−]SJ . It is defined by

[�,�′]SJ := (−)kk
′
� ◦�′ −�′ ◦�,

where � ∈ Dk+1L, �′ ∈ Dk′+1L, and � ◦�′ is given by the following “Ger-
stenhaber formula”:

(� ◦�′)(λ1, . . . , λk+k′+1)

=
∑

τ∈Sk′+1,k

(−)τ�(�′(λτ(1), . . . , λτ(k′+1)), λτ(k′+2), . . . , λτ(k+k′+1)),

where λ1, . . . , λk+k′+1 ∈ Γ(L).
The Schouten-Jacobi bracket satisfies the following Leibniz property :

there is an action by (graded) derivation � 7→ X� of ((D•L)[1], [−,−]SJ)
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on the graded algebra Γ(∧•J1L) such that

(A.2) [�,∆ ∧�′]SJ = X�(∆) ∧�′ + (−)|�||∆|∆ ∧ [�,�′]SJ ,

for all �,� ∈ (D•L)[1] and all ∆ ∈ Γ(∧•J1L). The action � 7→ X� is de-
fined as follows. For � ∈ Dk+1L, the symbol of �, denoted by σ� ∈ Γ(TM ⊗
∧kJ1L), is, by definition, the ∧kJ1L-valued vector field on M implicitly de-
fined by:

σ�(f)(λ1, . . . , λk)λ := �(fλ, λ1, . . . , λk)− f�(λ, λ1, . . . , λk),

where f ∈ C∞(M). Finally, for any ∆ ∈ Γ(∧lJ1L), and � ∈ Dk+1L, the sec-
tion X�(∆) ∈ Γ(∧k+lJ1L) is given by

X�(∆)(λ1, . . . , λk+l)(A.3)

:= (−)k(l−1)
∑
τ∈Sl,k

(−)τσ�(∆(λτ(1), . . . , λτ(l)))(λτ(l+1), . . . , λτ(k+l))

−
∑

τ∈Sk+1,l−1

(−)τ∆(�(λτ(1), . . . , λτ(k+1)), λτ(k+2), . . . , λτ(k+l)).

Remark A.3. Denote by X•(M) = Γ(∧•TM) the Gerstenhaber algebra
of (skew-symmetric) multi-vector fields on M . When L = RM , then DkL =
Γ(∧kJ1L). Moreover, there is a canonical direct sum decompositionDk+1L =
Xk+1(M)⊕ Xk(M), where the projection Dk+1L→ Xk(M) is given by � 7→
�(1,−, . . . ,−). In particular, the Schouten–Jacobi bracket on (D•L)[1] can
be expressed in terms of the Schouten–Nijenhuis bracket on multi-vector
fields (see [14] for more details).

Appendix B. The L∞-algebra of a pre-contact manifold

In this appendix we provide a coordinate proof of Theorem 5.25.
Let (S,CS) be a pre-contact manifold, with normal line bundle ` :=

TS/CS , and characteristic foliation F , and let G be a complementary dis-
tribution to TF , i.e., TS = G⊕ TF . As shown in Subsection 5.3, the bun-
dle T ∗` F := T ∗F ⊗ ` is equipped with an hyperplane distribution C which
is contact in a neighborhood of the zero section 0: the contact thickening
of (S,CS). Moreover 0 is a coisotropic embedding. In particular, there is
an L∞-algebra (Γ(∧•N`S ⊗ `)[1], {mk}) attached to (S,CS). In this case,
NS = T ∗` F , so that Γ(∧•N`S ⊗ `) ∼= Ω(F , `). In the following we will un-
derstand this isomorphism. We will show below that the multi-brackets mk
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are given by formula (5.11) which is the contact analogue of Oh-Park for-
mula (see [35, Formula (9.17)]). We will do this in local coordinates. From
now on, we freely use notations and conventions from Subsections 5.3, 5.4
and 5.5.

Let (xi, ua, z, pi) be local coordinates on T ∗` F chosen as in the proof of
Proposition 5.16. Distribution G on S is then locally spanned by vector fields
of the form

Ga :=
∂

∂ua
+Gia

∂

∂xi
, G =

∂

∂z
+Gi

∂

∂xi
,

and the structure and curvature forms of CS are locally

θ = (dz − Cadua)⊗ µ, ω =
1

2
ωabdu

a ∧ dub.

The matrix (ωab) is invertible. Denote by (ωab) its inverse. We also need the
curvature form F ∈ Γ(∧2N∗F ⊗ TF) of G. It is locally given by

F =

(
1

2
F iabdu

a ∧ dub + F iadu
a ∧ dz

)
⊗ ∂

∂xi
,

where

F iab := Ga(G
i
b)−Gb(G

i
a) and F ia = Ga(G

i)−G(Gia).

It is easy to see that the structure form Θ of the contact distribution on the
contact thickening is locally given by

Θ =
[
(1− piGi)dz − (Ca + piG

i
a)du

a + pidx
i
]
⊗ µ,

A long, but straightforward computation then shows that the bi-linear form
J ∈ Γ(∧2J1L⊗ L) of the Jacobi stucture on the contact thickening is locally
given by

J =

(
1

2
(W−1

p )αβ�α ∧�β +∇i ∧∇i
)
⊗ µ,

where Wp := W + piFi, and

W :=

 0 Cb −1
−Ca ωab 0

1 0 0

 and Fi :=

 0 0 0
0 F iab F ia
0 −F ib 0

 .

Moreover ∇i,∇i ∈ Diff1(L,RT ∗` F ) = Γ(J1L) are given by

∇i(fµ) :=
∂f

∂pi
and ∇i(fµ) =

∂f

∂xi
.
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Finally, �α = �,�a,�◦ ∈ Γ(J1L) with

� := µ∗ − pi∇i,

�a := ∇a − pj
∂Gja
∂xi
∇i +Gia∇i,

�◦ := ∇− pj
∂Gj

∂xi
∇i +Gi∇i,

where

µ∗(fµ) := f, ∇a(fµ) :=
∂f

∂ua
and ∇(fµ) :=

∂f

∂z
.

Now, the mk’s are graded first order multi-differential operators. In partic-
ular, they are completely determined by their action on elements in Ω(F , `)
of the form fµ, f ∈ C∞(S), and dFx

i ⊗ µ. The right hand side of Equation
(5.11) is also a graded first order multi-differential operator in its arguments.
We conclude that Equation (5.11) is satisfied, provided only it is satisfied
for ν1, . . . , νk being generators of the above mentioned kind.

An easy computation in local coordinates shows that m1 = −dF . More-
over, from Corollary 3.17 we see that mk depends on the derivatives of W−1

p

with respect to the pi’s at p := (pi) = 0 up to order k. By induction on k
we get

(B.1)
∂kWp

∂pi1 · · · ∂pik

∣∣∣∣
p=0

= (−)k
∑
σ∈Sk

W−1Fiσ(1)W−1 · · ·Fiσ(k)W−1.

Now, formula (5.11) follows from Corollary 3.17, equation (B.1) and the
remark that

j1
G(fµ) = fj1µ+ (Gaf)dua ⊗ µ+ (Gf)dz ⊗ µ,

and

j1
G(dFx

i ⊗ µ) = dFx
i ⊗ j1µ+

∂Gia
∂xj

dFx
j ⊗ (dua ⊗ µ)

+
∂Gi

∂xj
dFx

j ⊗ (dz ⊗ µ),

after a straightforward computation.
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