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Quasi-isometry type of the metric space

derived from the kernel of the Calabi

homomorphism

Tomohiko Ishida

We prove that the set of symmetrized conjugacy classes of the
kernel of the Calabi homomorphism on the group of area-preserving
diffeomorphisms of the 2-disk is not quasi-isometric to the half line.

1. Introduction

Suppose that G is a simple group and K ⊆ G is a subset. Here, we assume
that K contains non-trivial elements of G. Since the group G is simple,
any non-trivial element g of G can be written as a product of conjugates
of elements of K ∪K−1. We define for each g ∈ G the number qK(g) by
the minimal number of conjugates of elements of K ∪K−1 whose product
is equal to g. Here, for the identity element e, we define qK(e) = 0. The
function qK : G → Z≥0 is obviously invariant under conjugations and defines
a conjugation-invariant norm on G. Such a conjugation-invariant norm is
called a conjugation-generated norm. In this paper, we mainly consider the
case K consists of a single non-trivial element.

Elements f and g of a group G are symmetrized conjugate to each other
if f is conjugate to g or g−1. It is easy to see that symmetrized conjugacy
is an equivalence relation. We denote by [g] the symmetrized conjugacy
class represented by g ∈ G. We define M(G) to be the set of non-trivial
symmetrized conjugacy classes of elements of G. In [17], Tsuboi introduced
a metric d on M(G) defined by

d([f ], [g]) = logmax{q{g}(f), q{f}(g)}.

In fact, it is easy to see that the inequality

q{f}(h) ≤ q{f}(g)q{g}(h)
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holds for any f, g, h ∈ G and thus the function d : M(G)×M(G) → R≥0

satisfies the triangle inequality. We are interested in this metric spaceM(G),
which is an invariant of simple group.

In [12], Kodama studied the metric space (M(G), d) for the case G is
the infinite alternating group A∞ and proved the following.

Theorem 1.1 (Kodama [12]). The metric space (M(A∞), d) is quasi-

isometric to the half line.

We define the 2-disk D2 and the standard area form Ω on D2 to be

D2 = {(x, y) ∈ R;x2 + y2 ≤ 1} and Ω =
1

π
dx ∧ dy

respectively. Let Diff∞
Ω (D2, ∂D2) be the group of C∞-diffeomorphisms of

the 2-disk D2, which preserve Ω and are the identity on a neighborhood of
the boundary. It is classically known that the group Diff∞

Ω (D2, ∂D2) admits
a homomorphism

Cal : Diff∞
Ω (D2, ∂D2) → R

called the Calabi homomorphism. The Calabi homomorphism gives an
abelianization of Diff∞

Ω (D2, ∂D2) and its kernel KerCal is simple [1]. In this
paper, we study the metric space (M(G), d) for the case G = KerCal and
prove the following theorem.

Theorem 1.2. For any non-trivial element f ∈ KerCal, there exist a se-

quence {fn}n≥0 contained in KerCal with f0 = f , an element g ∈ KerCal
and positive constants C1, C2, C3 which satisfy the following.

(i) d([fn], [fm]) ≥ C1|n−m|,

(ii) d([fn], [fn+1]) ≤ C2,

(iii) d([fn], [g
m]) ≥ logm+ C3.

As a corollary, we obtain the following statement answering to a problem
raised by Tsuboi [18, Problem4.4].

Theorem 1.3. The metric space (M(KerCal), d) is not quasi-isometric to

the half line.
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2. Quasi-morphisms

In this section, we prepare a notion of quasi-morphism, which is a useful tool
to evaluate a lower bound for a conjugation-generated norm qK and prove
Proposition 2.2. On quasi-morphisms and conjugation-generated norms, see
[7] for more details.

Let G be a group. A quasi-morphism on G is a function φ : G → R such
that there exists a constant C ≥ 0 satisfying |φ(gh)− φ(g)− φ(h)| ≤ C for
any g, h ∈ G. The real number

D(φ) = sup
g,h∈G

|φ(gh)− φ(g)− φ(h)|

is called the defect of φ. A quasi-morphism φ on G is homogeneous if φ(gp) =
pφ(g) for any g ∈ G and any p ∈ Z. For any quasi-morphism φ on an arbi-
trary group G, there exists a unique homogeneous quasi-morphism φ̃ on G
such that φ̃− φ is a bounded function on G and φ̃ is explicitly written as

φ̃(g) = lim
p→∞

1

p
φ(gp).

We denote by Q(G) the R-vector space consisting of homogeneous quasi-
morphisms on G. Note that homogeneous quasi-morphisms are invariant
under conjugations.

2.1. Conjugation-invariant norms and quasi-morphisms

Let K be a subset of G. We define the vector subspace Q(G,K) of Q(G) by

Q(G,K) = {φ ∈ Q(G);φ is bounded on K}.

Note that this definition is different from that given in [7]. Suppose that
g ∈ G is written as

g = f1 · · · fn,

where f1, . . . , fn are conjugates of elements of K ∪K−1. Then for each φ ∈
Q(G,K) the inequation

|φ(g)− φ(f1)− · · · − φ(fn)| ≤ (n− 1)(D(φ))

holds. If we set CK = suph∈K |φ(h)|, then we have

|φ(g)|

D(φ) + CK

≤ n.
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This means that
|φ(g)|

D(φ) + CK

≤ qK(g).

Denoting by [K] the set of symmetrized conjugacy classes represented by
the elements of K, we have the following lemma on the metric d of M(G).

Lemma 2.1. Let φ ∈ Q(G,K) and g ∈ G such that φ(g) 6= 0. Then

log
|φ(g)|

D(φ) + CK

≤ d([g], [K]).

In particular,

log n+ log
|φ(g)|

D(φ) + CK

≤ d([gn], [K]) for any n.

A simple group G is uniformly simple if the metric space (M(G), d) is
bounded. This is equivalent to saying that (M(G), d) is quasi-isometric to a
point. Since Q(G,K) = Q(G) for any bounded set K, if the group G admits
a non-trivial quasi-morphism then (M(G), d) is unbounded by Lemma 2.1
and thus G is not uniformly simple.

2.2. Gambaudo-Ghys’ construction of quasi-morphisms on
Diff∞

Ω
(D2, ∂D2)

It is known that the vector space Q(Diff∞
Ω (D2, ∂D2)) is infinite-dimensional

[8][9][10]. To prove Theorem 1.2, we use quasi-morphisms on KerCal ob-
tained by Brandenbursky generalizing Gambaudo-Ghys’ construction [4].

Let Xn(D
2) be the n-fold configuration space of D2. Fix a base point

x0 = (x01, . . . , x
0
n) ∈ Xn(D

2). For any g ∈ Diff∞
Ω (D2, ∂D2) and almost every

x = (x1, . . . , xn) ∈ Xn(D
2), we set a loop l(g;x) : [0, 1] → Xn(D

2) by

l(g;x)(t) =































{(1− 3t)x0i + 3txi}

(

0 ≤ t ≤
1

3

)

{g3t−1(xi)}

(

1

3
≤ t ≤

2

3

)

{(3− 3t)g(xi) + (3t− 2)x0i }

(

2

3
≤ t ≤ 1

)

,

where {gt}t∈[0,1] is a path in Diff∞
Ω (D2, ∂D2) such that g0 is the identity and

g1 = g. Of course for some x ∈ Xn(D
2) the loop l(g;x) may not be defined.
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However, for almost every x the loop l(g;x) is well-defined. We define the
pure braid γ(g;x) to be the homotopy class relative to the base point x0

represented by the loop l(g;x). Since the group of diffeomorphisms of D2 is
contractible [16] and is homotopy equivalence to Diff∞

Ω (D2, ∂D2) [15], the
pure braid γ(g;x) is independent of the choice of the path {gt}. Let Pn(D

2)
be the pure braid group on n-strands. For a homogeneous quasi-morphism
φ on Pn(D

2), if we consider the function

g 7→

∫

x∈Xn(D2)
φ(γ(g;x))Ωn,

then this function is well-defined [4][6] and is further a quasi-morphism on
Diff∞

Ω (D2, ∂D2) since the diffeomorphism g preserves Ω. Thus we have the
linear map Γn : Q(Pn(D

2)) → Q(Diff∞
Ω (D2, ∂D2)) defined by

Γn(φ)(g) = lim
p→∞

1

p

∫

x∈Xn(D2)
φ(γ(gp;x))Ωn.

Let Bn(D
2) be the braid group on n strands and i : Pn(D

2) → Bn(D
2)

the natural inclusion. Then the linear map Q(i) : Q(Bn(D
2)) → Q(Pn(D

2))
is induced. For n ≥ 3, the vector space Q(Bn(D

2)) is infinite-dimensional
[3] and the composition Γn ◦Q(i) : Q(Bn(D

2)) → Q(Diff∞
Ω (D2, ∂D2)) of the

linear maps is injective [10]. Hence the image ImΓn ⊂ Q(Diff∞
Ω (D2, ∂D2)) is

also infinite dimensional.
For r > 1, we denote the small disk {(x, y) ∈ R;x2 + y2 ≤ r−2} of radius

1/r by D(r−1). Let ϕr : D
2 → D(r−1) be the C∞-diffeomorphism defined by

ϕr(x, y) =
(x

r
,
y

r

)

.

We define the homomorphism sr : Diff∞
Ω (D2, ∂D2) → Diff∞

Ω (D2, ∂D2) by

sr(f)(x, y) =

{

ϕr ◦ f ◦ ϕ−1
r (x, y) if (x, y) ∈ D(r−1)

(x, y) if (x, y) /∈ D(r−1).

Note that if f is in KerCal, then sr(f) is also.
Let σ1 ∈ B3(D

2) be the braid on 3 strands as indicated in Figure 1. The
following proposition is essentially introduced in [6, Lemma 3.11].
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Figure 1: the braid σ1.

Proposition 2.2. If φ ∈ Q(B3) satisfies φ(σ1) = 0, then

Γ3 ◦Q(i)(φ)(sr(f)) =
1

r6
Γ3 ◦Q(i)(φ)(f)

for any f ∈ Diff∞
Ω (D2, ∂D2) and any r > 1.

Proof. Let x = (x1, x2, x3) be in X3(D
2). For any f ∈ Diff∞

Ω (D2, ∂D2) and
any r > 1, if two or three of x1, x2, x3 are not in D(r−1), then the pure braid
γ(sr(f);x) is trivial. Hence we have

∫

x∈X3(D2)
φ(γ(sr(f);x))Ω

3 =

∫

x1,x2,x3∈D(r−1)
φ(γ(sr(f);x))Ω

3

+ 3

∫

x1,x2∈D(r−1),x3 6∈D(r−1)
φ(γ(sr(f);x))Ω

3

for any φ ∈ Q(B3(D
2)).

If x1, x2 ∈ D(r−1) and x3 6∈ D(r−1), then the pure braid γ(sr(f);x) is a
conjugate of a power of σ1 and hence φ(γ(sr(f);x)) = 0. Since

∫

x1,x2,x3∈D(r−1)
φ(γ(sr(f);x))Ω

3 =
1

r6

∫

x∈X3(D2)
φ(γ(f ;x))Ω3,

we have the desired equality. �

3. Proof of the main theorem

In this section, we prove the main theorem. Before starting the proof, we
show the following lemma as a preliminary step.

Lemma 3.1. For any f ∈ Diff∞
Ω (D2, ∂D2) and r > 1, the following holds.
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(I) d([smr (f)], [snr (f)]) ≥ (2 log r)|m− n| .

(II) d([snr (f)], [s
n+1
r (f)]) ≤ d([f ], [sr(f)]).

Proof. Assume that m < n. Since the area of the support of smr (f) is just
r2(n−m) times of that of snr (f), we have q{sn

r
(f)}(s

m
r (f)) ≥ r2(n−m). This im-

plies (I).
Suppose that sr(f) is written as a product

sr(f) = (h1f
ε1h−1

1 ) · · · (hkf
εkh−1

k ),

where each εi is 1 or −1. Since the map

sr : Diff∞
Ω (D2, ∂D2) → Diff∞

Ω (D2, ∂D2)

is a homomorphism, we have

sn+1
r (f) = (snr (h1)s

n
r (f)

ε1snr (h1)
−1) · · · (snr (hk)s

n
r (f)

εksnr (hk)
−1)

and thus q{sn
r
(f)}(s

n+1
r (f)) ≤ q{f}(sr(f)). The inequality q{sn+1

r (f)}(s
n
r (f)) ≤

q{sr(f)}(f) similarly follows. Hence we have (II). �

Proof of Theorem 1.2. Fix f ∈ KerCal and r > 1. If we set fn = snr (f), then
the properties (i) and (ii) immediately follow from Lemma 3.1.

Since the vector space Q(Bn(D
2)) is infinite-dimensional for n ≥ 3 [3],

considering the linear combination it is guaranteed that there exists a non-
trivial homogeneous quasi-morphism φ on B3 satisfying φ(σ1) = 0. Since the
composition of the linear maps Γn ◦Q(i) : Q(Bn(D

2)) → Q(Diff∞
Ω (D2, ∂D2))

is injective for n ≥ 3 [10], its image Γ3 ◦Q(i)(φ) is also non-trivial. If we
denote it by φ′, then |φ′(fn)| ≤ |φ′(f)| by Proposition 2.2 and thus φ′ is
in Q(Diff∞

Ω (D2, ∂D2), {fn;n ≥ 0}). Moreover, choose g ∈ KerCal such that
φ′(g) 6= 0. Then we have by Lemma 2.1

logm+ log
|φ′(g)|

D(φ′) + |φ′(f)|
≤ d([gm], [fn;n ≥ 0]) for any m ∈ N,

which is the property (iii). �

Proof of Theorem 1.3. If the metric spaces M(KerCal) and R≥0 are quasi-
isometric, then there exists a quasi-isometric embedding Φ: M(KerCal) →
R≥0. By the property (iii), we have Φ([f ]) < Φ([gm]) for sufficiently large
m ∈ N. By the property (i), there exists n ∈ N such that Φ([gm]) < Φ([fn]).
If we set nm = min{n ∈ N; Φ([gm]) < Φ([fn])}, then Φ([fnm

])− Φ([gm]) is
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bounded independently on m by the property (ii). However this contradicts
the property (iii) since we can make nm arbitrarily large by taking larger m.

�

Remark 3.2. Let M be a closed C∞-manifold and fix a symplectic form
ω of M . Then the group Ham∞(M) of Hamiltonian diffeomorphisms of M
is a simple group [1].

Let U be a closed ball in M . Taking the subgroup Ham∞(U) of
Ham∞(M), consisting of diffeomorphisms supported by U , as in the case of
D2 we can consider the shrinking homomorphism sr : Ham

∞(U)→Ham∞(U)
and construct a sequence {fn} in Ham∞(M) which satisfies the proper-
ties (i) and (ii) in Theorem 1.2. Hence if there exists a quasi-morphisms
on Ham∞(M) whose restriction in Ham∞(U) have the property as Propo-
sition 2.2, then Theorem 1.2 holds for Ham∞(M) and Theorem 1.3 for
M(Ham∞(M)).

When M is a closed surface, we can construct quasi-morphisms on
Diff∞

Ω (M)0 by Gambaudo-Ghys’ way [5] and verify by an argument simi-
lar to the case of D2 that there exists a quasi-morphism φ on Ham∞(M)
satisfying φ(sr(f)) = r−6φ(f) for any f ∈ Ham∞(U).

When M is the one point blow up of a closed symplectic 4-manifold
(X,ωX) such that ωX and the first Chern class c1(X) vanish on π2(X),
then Ham∞(M) admits a non-trivial quasi-morphism µ, which is called a
Calabi quasi-morphism [8][14]. If we take U sufficiently small, then µ satisfies
µ(sr(f)) = r−8µ(f) for any f ∈ Ham∞(U).

Remark 3.3. Let Ham∞
C (D2n) and Ham∞

C (R2n) be the groups of Hamil-
tonian diffeomorphisms of D2n and R

2n respectively with respect to the
standard symplectic form ω. These groups admits the Calabi homomor-
phisms Cal : Ham∞

C (D2n) → R and CalR : Ham
∞
C (R2n) → R and their ker-

nels KerCal and KerCalR are simple [1]. The group Ham∞
C (D2n) admits a

quasi-morphism τ , which is constructed by Barge and Ghys [2]. The quasi-
morphism τ ∈ Q(Ham∞

C (D2n)) satisfies τ(sr(f)) = r−2n(f).
Although the group KerCalR does not admit non-trivial quasi-morphisms

[13], Kawasaki constructed a homogeneous conjugation invariant function on
KerCalR, which is called a partial quasi-morphism [11]. If we denote it by
µ, then the equation µ(sr(f)) = r−2nµ(f) is satisfied.

Therefore a statement similar to Lemma 2.1 hold for τ and µ. Hence
Theorem 1.2 holds for KerCal and KerCalR and Theorem 1.3 for M(KerCal)
and M(KerCalR).
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[9] J-. M. Gambaudo and É. Ghys, Commutators and diffeomorphisms of

surfaces, Ergodic Theory Dynam. Systems 24 (2004), no. 5, 1591–1617.

[10] T. Ishida, Quasi-morphisms on the group of area-preserving diffeomor-

phisms of the 2-disk via braid groups, Proc. Amer. Math. Soc. Ser. B 1
(2014), 43–51.

[11] M. Kawasaki, Relative quasimorphisms and stably unbounded norms on

the group of symplectomorphisms of the Euclidean spaces, J. Symplectic
Geom. 14 (2016), no. 1, 297–304.



✐

✐

“6-Ishida” — 2019/1/24 — 16:14 — page 1050 — #10
✐

✐

✐

✐

✐

✐

1050 Tomohiko Ishida

[12] H. Kodama, On non-uniformly simple groups, arXiv:1107.5125.

[13] D. Kotschick, Stable length in stable groups, Groups of diffeomorphisms,
Adv. Stud. Pure Math., Vol. 52, Math. Soc. Japan, Tokyo, 2008,
pp. 401–413.

[14] D. McDuff, Monodromy in Hamiltonian Floer theory, Comment. Math.
Helv. 85 (2010), no. 1, 95–133.

[15] J. Moser, On the volume elements on a manifold, Trans. Amer. Math.
Soc. 120 (1965), 286–294.

[16] S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10
(1959), 621–626.

[17] T. Tsuboi, On the uniform simplicity of diffeomorphism groups, Differ-
ential geometry, World Sci. Publ., Hackensack, NJ, 2009, pp. 43–55.

[18] T. Tsuboi, Several problems on groups of diffeomorphisms, Geometry
and Foliations 2013, Adv. Stud. Pure Math., Vol. 72, Math. Soc. Japan,
Tokyo, 2018, pp. 239–248.

Department of Mathematics, Kyoto University

Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

E-mail address: ishidat@math.kyoto-u.ac.jp

Current E-mail address: tomohiko.ishida.0@gmail.com

Received September 5, 2015

Accepted February 12, 2016


	Introduction
	Quasi-morphisms
	Proof of the main theorem
	References

