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Continuum families of non-displaceable

Lagrangian tori in (CP 1)2m

Renato Vianna

We construct a family of Lagrangian tori Θn
s ⊂ (CP 1)n, s ∈ (0, 1),

where Θn
1/2 = Θn, is the monotone twist Lagrangian torus described

in [7]. We show that for n = 2m and s ≥ 1/2 these tori are non-
displaceable. Then by considering Θk1

s1 × · · · ×Θkl
sl
× (S2

eq)n−
∑
i ki ⊂

(CP 1)n, with si ∈ [1/2, 1) and ki ∈ 2Z>0,
∑
i ki ≤ n we get several

l-dimensional families of non-displaceable Lagrangian tori. We also
show that there exists partial symplectic quasi-states ζbses and lin-
early independent homogeneous Calabi quasimorphims µbs

es [18]
for which Θ2m

s are ζbses -superheavy and µbs
es -superheavy. We also

prove a similar result for (CP 2#3CP 2, ωε), where {ωε; 0 < ε < 1}
is a family of symplectic forms in CP 2#3CP 2, for which ω1/2 is
monotone.

1. Introduction

In [19], Fukaya-Oh-Ohta-Ono construct a one-dimensional family of non-
displaceable Lagrangian tori in (CP 1)2. They arise as fibres of a (informally
called) semi-toric moment map [28, Section 3], where the fibres over the
interior of the semi-toric moment polytope are Lagrangian tori, but over a
special vertex of the polytope lies a Lagrangian S2 (the anti-diagonal) where
the semi-toric moment map is not differentiable.

The weighted barycentre of the semi-toric polytope was proven by Oakley-
Usher [22] to be the Chekanov torus [7] in (CP 1)2. The other regular fibres
are Hamiltonian isotopic to so called Chekanov type tori described in [2,
Example 3.3.1]. In fact, the semi-toric Lagrangian fibration described in [19]
can be seen as a limit of almost toric fibrations, in which ‘most of the fibres’
are Chekanov type tori, see [27, Section 6.4] and [24, Remark 3.1].

The definition of Chekanov type tori can be easily extended to higher
dimensions, see Definition 4.1. In particular, we can get analogues of the
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non-displaceable tori [19]. We can show that these tori are non-displaceable
in (CP 1)2m.

1.1. Results

Theorem 1.1. For a positive even integer n = 2m, there is a continuum
of non-displaceable Lagrangian tori Θ2m

s ⊂ (CP 1)2m, s ∈ [1/2, 1), for which
Θ2m

1/2 = Θ2m is the monotone twist Lagrangian torus described in [7]. More

precisely, for any Hamiltonian Ψ ∈ Ham((CP 1)2m), we have that |Θ2m
s ∩

Ψ(Θ2m
s )| ≥ 22m.

The case n = 2 was proven in [19]. The case n = 1 is clearly false, since
only the monotone circle is non-displaceable.

Question 1.2. For n ≥ 3 odd and s ∈ [1/2, 1), are the tori Θn
s from Defini-

tion 4.2 (non)-displaceable?

An immediate consequence of the proof of Theorem 1.1 is

Corollary 1.3. For si ∈ [1/2, 1), and positive even integers ki, i = 1, . . . , l,
and n ≥

∑
i ki, the Lagrangian tori

Θk1
s1 × · · · ×Θkl

sl × (S1
eq)n−

∑
i ki ⊂ (CP 1)n

are non-displaceable.

Just by looking to the symplectic area spectrum of Maslov index 2 relative
homology classes we can conclude:

Proposition 1.4. The tori Θn
s is not symplectomorphic to Θk1

s1 × · · · ×
Θkl
sl × (S1

eq)n−
∑
i ki, if n >

∑
i ki.

Consider the counts of holomorphic (for the standard complex structure in
(CP 1)n) Maslov index 2 disks with boundary in Θn

s , respectively Θk1
s1 × · · · ×

Θkl
sl (n =

∑
i ki), passing through a fixed point. Among these, look at the count

of disks that have minimal area. For s, si ∈ (1/2, 1), this area is a = 1− s,
respectively 1− si for some i ∈ {1, . . . , l}. It follows from Proposition 4.5
that these counts of disks of smaller area are different if l > 1. Moreover,
we show in Proposition 4.10 that higher Maslov index holomorphic disks
with boundary on Θn

s must have symplectic area bigger than a. Hence, one
expect that in a generic family Jt of almost complex structures, where J0 is
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the standard complex structure and J1 is another regular almost complex
structure, Jt-holomorphic disks of positive Maslov index and area smaller
than a can only appear in a “birth-death” phenomenon. This should imply
that the count of Maslov index 2 disks of symplectic area a with boundary
in Θn

s is an invariant under generic choice of almost complex structure, and
hence under symplectomorphisms (in particular Hamiltonian isotopies) acting
on Θn

s . This would allow us to prove:

Conjecture 1.5. The tori Θn
s is not symplectomorphic to Θk1

s1 × · · · ×Θkl
sl ,

n =
∑

i ki — unless l = 1 and s1 = s.

A rigorous statement proving the invariance of the count of the Maslov
index 2 disks of minimal area in the above scenario and hence Conjecture 1.5
appears in the preprint [23, Proposition 5.1]. We keep calling the above a
Conjecture for chronological reasons and because [23, Remark 5.1] refers to
this Conjecture.

Therefore we see that the tori obtained here differ from products of copies
of the tori obtained in [19] and copies of the equator in CP 1.

The idea of the proof of Theorem 1.1 is that we are able to find bulk defor-
mations bs for which the bulk deformed Floer Homology of Θ2m

s (decorated
with some weakly bounding cochain σ) is non-zero. The invariance property
of the bulk deformed Floer Cohomology under the action of Hamiltonian
diffeomorphisms [17, Theorem 2.5], allow us to conclude that the above
Lagrangian tori are non-displaceable.

Based on the work of Fukaya-Oh-Ohta-Ono [18], regarding spectral
invariants with bulk deformations, quasimorphisms and Lagrangian Floer
theory, we are able to strengthen our result and find families of homogeneous
Calabi quasimorphisms µbs

es and partial symplectic quasi-states ζbses , for which
Θ2m
s is µbs

es -superheavy and ζbses -superheavy.
For the definition of homogeneous Calabi quasimorphisms, partial sym-

plectic quasi-states and the notion of superheaviness we refer the reader to
[11, 12, 18].

Following closely the notation of [18, Lemma 23.3, Theorem 23.4] we
summarise the above discussion as:

Theorem 1.6. For s ∈ [1/2, 1), there exists a bulk-deformation

bs ∈ H2((CP 1)2m,Λ+),
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and a weak bounding cochain bs ∈ H1(Θ2m
s ,Λ0) for which

HF (Θ2m
s , (bs, bs); Λ0,nov) ∼= H∗(Θ2m

s ; Λ0,nov)

Moreover, there are idempotents es in the bulk-deformed quantum-cohomology
QH∗bs((CP

1)2m; Λ0,nov), so that Θ2m
s is µbs

es -superheavy and ζbses -superheavy.
Here µbs

es , ζbses are respectively the homogeneous Calabi quasimorphism and
partial symplectic quasi-states coming from the bulk-deformed spectral invari-
ant associated with es [18, Section 14].

Here Λ, Λ0, Λnov, Λ0,nov and Λ+ are the Novikov rings:

Λ =

∑
i≥0

aiT
λi | ai ∈ C, λi ∈ R, λi ≤ λi+1, lim

i→∞
λi =∞

 ,

Λ0 =

∑
i≥0

aiT
λi | ai ∈ C, λi ∈ R≥0, λi ≤ λi+1, lim

i→∞
λi =∞

 ,

Λnov =

∑
i≥0

aiq
niT λi | ni ∈ Z ai ∈ C, λi ∈ R, λi ≤ λi+1, lim

i→∞
λi =∞

 ,

Λ0,nov =

∑
i≥0

aiq
niT λi | ni ∈ Z ai ∈ C, λi ∈ R≥0, λi ≤ λi+1, lim

i→∞
λi =∞

 ,

Λ+ =

∑
i≥0

aiT
λi | ai ∈ C, λi ∈ R>0, λi ≤ λi+1, lim

i→∞
λi =∞

 ,

The formal parameter T is used to keep track of area of pseudo-
holomorphic disks, while the formal parameter q ∈ Λ0,nov is used to keep
track of the Maslov index.

The following Corollary follows immediately from [18, Corollary 1.10],
see [18, Section 19] for a proof.

Corollary 1.7. The uncountable set {µbs
es} of homogeneous Calabi quasi-

morphisms is linearly independent [18, Definition 1.9].

To prove linear independency of the above homogeneous Calabi quasi-
morphisms we use that the tori are disjoint, for different values of s. One
could ask:
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Question 1.8. Are the tori Θn
s Hamiltonian displaceable from Θk1

s1 × · · · ×
Θkl
sl × (S1

eq)n−
∑
i ki , for s, si ∈ (1/2, 1)?

We note that by construction, these tori intersect for s, si ≥ 1/2. See
[24], for non-displaceability in the case n = 2, between Θn

s (i.e. tori from [19])
s ≥ 3/2 and the Clifford torus S1

eq × S1
eq.

Question 1.9. Are the quasimorphisms arising from (particular choice of
bulk-deformation and weak-bounding cochain for) the tori in Corollary 1.3
linearly independent for different partitions (k1, . . . , kl, n−

∑
i ki) of n?

We finish our results by pointing out that the family given in [19] remain
non-displaceable after we perform two blowups (of the same size) on the rank
zero corners of the singular fibration described in [19], see Figure 1. This
follows from applying the same ideas as Fukaya-Oh-Ohta-Ono did for the
CP 1 × CP 1 case.

Theorem 1.10. There exists a continuous family of non-displaceable
Lagrangian tori Lεs in (CP 2#3CP 2, ωε) = (CP 1 × CP 1#2CP 2, ωε), where
s ∈ [1/2, 1) and {ωε|0 < ε < 1} is a family of symplectic forms for which

(CP 2#3CP 2, ω1/2) is monotone, containing a monotone Lagrangian L
1/2
1/2.

Remark 1.11. It is shown in [17, Section 5] and [18, Section 22] a family of
non-displaceable Lagrangian tori in CP 2#kCP 2, k ≥ 2, endowed with some
non-monotone symplectic form.

Theorem 1.10 follows, in the same spirit as [18, Theorem 1.11] and
Theorem 1.6, from:

Theorem 1.12. Let (CP 2#3CP 2, ωε) and Lεs be as in Theorem 1.10. For
s ∈ [1/2, 1), there exists a bulk-deformation bεs ∈ H2(CP 2#3CP 2,Λ+), and
a weak bounding cochain bεs ∈ H1(Lεs,Λ0) for which

HF (CP 2#3CP 2, (bεs, b
ε
s); Λ0,nov) ∼= H∗(Lεs; Λ0,nov)

There are idempotents eεs in the bulk-deformed quantum-cohomology

QH(CP 2#3CP 2; Λ), so that Lεs is µ
bεs
eεs

-superheavy and ζ
bεs
eεs

-superheavy, where

µ
bεs
eεs

, ζ
bεs
eεs

are the homogeneous Calabi quasimorphism and partial symplectic
quasi-states coming from the bulk-deformed spectral invariant associated with
eεs [18, Section 14]. Moreover, the uncountable set {µbεs

eεs
} of homogeneous

Calabi quasimorphisms is linearly independent.
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The rest of the paper is organised as follows:
In Section 2, we make a quick introduction of bulk deformed potential

and Floer cohomology for a Lagrangian L satisfying Assumption 2.1. We
refer the reader to [17–19] for a complete account. We then prove Lemma 2.5
and Corollary 2.8, to show that, for a Lagrangian torus T , critical points of
the potential gives rise to (bulk deformed) Floer cohomology isomorphic to
the usual cohomology of T . We believe that 2.5 is known by experts on the
field, but we are not aware of it being written.

In Section 3, we define the notion of a pair (X,L) consisting of a Kähler
manifold X and a Lagrangian submanifold L being K-pseudohomogeneous,
for some Lie group K acting holomorphically and Hamiltonianly on X,
leaving L invariant. We showed that if (X,L) is K-pseudohomogeneous, any
Maslov index 2 holomorphic disk with boundary on L such that its boundary
is transverse to K-orbits, is regular. We use that to show regularity for the
Maslov index 2 disks with boundary in Θn

s .
In Section 4, we define the Lagrangian tori Θn

s , establish its potential
function, essentially computed in [2, 3], and prove it satisfies Assumption 2.1,
for some regular almost complex structure J with the same potential function
of the standard complex structure. We also prove Proposition 1.4 and show
that holomorphic disks of Maslov index bigger than 2 have area bigger than
a = 1− s, which we use to argue why Conjecture 1.5 holds once we have [23,
Proposition 5.1].

In Section 5, we compute the critical points of the potential bulk deformed
by some cocycle in C2((CP 1)n,Λ+). We show that for n = 2m, there are bulk
deformation bs and a weak bounding cochain bs which is a critical point of the

potential PO
Θ2m
s

bs
. It then follows from Corollary 2.8 that the bulk deformed

Floer cohomology HF (Θ2m
s , (bs, bs); Λ) is isomorphic to the cohomology of

the torus. Non-displaceability then follows from [16, Theorem G] which is
also stated as [17, Theorem 2.5].

In Section 6, we finish the proof of Theorem 1.6.
Finally in Section 7, we describe

(CP 2#3CP 2, ωε) = (CP 1 × CP 1#2CP 2, ωε)

as two blowups of capacity ε on two corners of the moment polytope of
CP 1 × CP 1. The Lagrangian tori Lεs on the blowup comes from Θ2

s ∈ CP 1 ×
CP 1. We compute the potential for Lεs and show the existence of critical
points for some bulk deformation. This allow us to prove Theorems 1.10
and 1.12. These tori are equivalent to the fibres of the singular fibration
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given by blowing up the corners of the “semi-toric polytope” described in
[19], see Figure 1.

Acknowledgements

We are very grateful to Georgios Dimitroglou Rizell, Ivan Smith, Dmitry
Tonkonog and Kaoru Ono for useful discussions.

2. Floer homology and the potential function

Let X be a symplectic manifold and J a regular and compatible almost
complex structure. Let L be a Lagrangian submanifold of X (with a chosen
spin structure). We consider a unital canonical A∞ algebra structure {mk}
on the classical cohomology H(L; Λ0,nov) [19, Section 6], [16, Corollary 5.4.6,
Theorem A]. The potential function is defined from the space of weak
bounding cochains M̂(L) of L to Λ0. We refer the reader to [16–19] for the
definition.

Suppose we are given an compatible almost complex structure J0 for
which (X,L, J0) satisfy:

Assumption 2.1. Let β ∈ π2(X,L). Assume that:

(A1) If β is represented by a non-constant J0-holomorphic disk, then µL(β) ≥
2,

(A2) Maslov index 2 J0-holomorphic disks are regular,

where µL is the Maslov index.
Throughout the paper we say an almost complex structure J is regular

if it satisfies assumption (A2).
An almost complex structure satisfying Assumption 2.1, automatically

satisfies [19, Condition 6.1], hence by [19, Theorem A.1, Theorem A.2] there
is an embedding of H1(L,Λ0) into M̂(L) and restricted to H1(L,Λ0) the
potential function POL is so that

(2.1) mb
0(1) = POL(b)q[L],
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where

mb
0(1) =

∞∑
k=0

mk(b, . . . , b)(2.2)

=
∑

β∈π2(X,L),

µL(β)=2

qµL(β)/2T
∫
β
ω exp(b ∩ ∂β)ev0∗([M1(β)]).

Here [M1(β)] is the (virtual) fundamental class of the moduli space of
J-holomorphic disks in the class β with 1 marked point and ev0 : M1(β)→ L
is the evaluation map.

Using a notation closer to [2, 3] we define for β ∈ π2(X,L):

(2.3) zβ(L, b) = T
∫
β
ω exp(b ∩ ∂β).

Letting ηβ be the degree of ev0 : M1(β)→ L, we can write:

(2.4) POL(b) =
∑

β∈π2(X,L),

µL(β)=2

ηβzβ(L, b)

We want to consider the Floer cohomology of L bulk-deformed by a
class b = T ρ[s] ∈ H2(X,Λ+) [17]. The potential function will depend on the
cocycle b ∈ C2(X,L;Z), even though the Floer cohomology doesn’t. Since
we use a cocycle in degree 2 (Poincaré dual to a cycle of codimension 2) the
degree of the bulked deformed A∞ maps mb

k [17, (2.6)] is unaffected by the
bulk and the bulk deformed potential is given by:

(2.5) POL
b (b) =

∑
β∈π2(X,L),

µL(β)=2

ηβ exp[(s ∩ β)T ρ]zβ(L, b),

where b ∈ H1(L,Λ0), is a weak bounding cochain for the curved A∞ algebra
(H(L,Λ0,nov), {mb

k}), with

(2.6) mb,b
0 (1) =

∞∑
k=0

mb
k(b, . . . , b) = POL

b (b)q[L].

The fact that b ∈ H1(L,Λ0) is a weak bounding cochain for

(H(L,Λ0), {mb
k})
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implies that we can define a (not curved) A∞ algebra (H(L,Λ0,nov), {mb,b
k }),

where

(2.7) mb,b
k (x1, . . . , xk) =

∞∑
j=0

mb
j (b, . . . , b, x1, b, . . . , b, x2, b, . . . , b, xk, b, . . . , b).

In particular,

(mb,b
1 )2 = 0;(2.8)

mb,b
1 (mb,b

2 (x, y)) = ±mb,b
2 (mb,b

1 (x), y)±mb,b
2 (x,mb,b

1 (y)).(2.9)

Definition 2.2. We define the bulk deformed Floer cohomology:

(2.10) HF (L, (b, b); Λ0,nov) =
ker(mb,b

1 )

im(mb,b
1 )

Remark 2.3. Strengthening Assumption 2.1 to assume regularity of holo-
morphic disks with Maslov index smaller than n− 1, one should be able to
define the Floer cohomology using the Pearl version [4], and analogously
define its bulk-deformed version, which should be isomorphic to the one in
Definition 2.2. In that framework, the proof of Leibniz rule (2.9) follows the
same ideas as [6, Theorem 4].

By the work of Fukaya-Oh-Ohta-Ono, we have:

Theorem 2.4 ( Theorem G [16], Theorem 2.5 [17]). If ψ : X → X is
a Hamiltonian diffeomorphism, then the order of ψ(L) ∩ L is not smaller
than the rank of HF (L, (b, b); Λ0,nov)⊗Λ0,nov

Λnov.

We would like to point out that the product mb,b
2 can be thought as

deformation of the cup product in the sense that for x, y ∈ H(L,Λ0) of pure
degrees |x| and |y|,

(2.11) mb,b
2 (x, y) = x ∪ y + other terms

where x ∪ y comes from counting constant disks and the other terms
is a sum of elements of degree smaller than |x|+ |y| in H(L,Λ0,nov), since
it comes from evaluating moduli spaces Mk,l+1(β) to a cycle of dimension
|x|+ |y| − µL(β) and (X,L, J) satisfies Assumption (A1).

The following Lemma is well established for the monotone case in [6],
and in the general case in [19].
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Lemma 2.5 (Theorem 2.3 of [19]). Take (X,L) satisfying Assump-
tion 2.1. Also assume that H(L,Λ0) is generated by H1(L,Λ0) as an algebra
with respect to the classical cup product. If mb,b

1 |H1(L,Λ0,nov) = 0 then mb,b
1 ≡ 0.

Proof. First we point out that mb,b
1 |H0(L,Λ0,nov) = 0. Since H(L,Λ0) is gener-

ated by H1(L,Λ0) with respect to the cup product, we only need to show
by induction on the degree that for x and y of pure degree |x| ≥ 1, |y| ≥ 1,
mb,b

1 (x ∪ y) = 0, if mb,b
1 (z) = 0 for all z, such that |z| < |x|+ |y|. Using (2.11),

mb,b
1 (x ∪ y) = mb,b

1 (mb,b
2 (x, y))−mb,b

1 (other terms) = 0

by induction hypothesis and using the Leibniz rule (2.9). �

Remark 2.6. Lemma 2.5 strengthen the result of [16, Theorem 6.4.35]
and [6], showing that the minimal Maslov number ML of any Lagrangian
torus L (or any orientable Lagrangian such that the cohomology ring is
generated by H1) in Cn is 2, provided T satisfies Assumption 2.1 for some J .
That is because the Lagrangian is orientable and HF (T, (b, b); Λ) ≡ 0 (from
Theorem 2.4, since T is displaceable), so there must be a Maslov index 2
disk. The inequality 2 ≤ML ≤ n+ 1 was proven in [16, Theorem 6.1.17],
for any spin Lagrangian L ⊂ Cn satisfying Assumption 2.1, via the use of
spectral sequence.

Definition 2.7. Take (X,L) satisfying the assumptions of Lemma 2.5.
Assume that π1(L) ∼= H1(L,Z) and π2(X,L) ∼= π2(X)⊕H1(L,Z). So, we
are able to write the Potential function (2.5) in terms of zi = zβi , for some
β1, . . . , βn ∈ π2(X,L), where ∂β1, . . . , ∂βn is a basis of H1(L,Z). We say that
b is a critical point of POL

b (b) if:

zi
∂POL

b (b)

∂zi
= 0.

Corollary 2.8 (Theorem 2.3 of [19]). Take (X,L) satisfying the as-
sumptions of Lemma 2.5 and Definition 2.7. If b is a critical point of POL

b (b)
(2.5) for b = T ρ[s] ∈ H2(X,Λ+), then HF (L, (b, b); Λ) ∼= H(L; Λ).

Proof. Take a basis x1, . . . , xn a basis of H1(L,Z). Let

β1, . . . , βn ∈ π2(X,L) ∼= π2(X)⊕H1(L,Z),

be so that ∂βi = xi ∈ H1(L,Z) and write the Potential POL
b (b) (2.5) in terms

of zi = zβi .
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Since s is of degree 2, we have that mb,b
1 (σ) for σ ∈ H1(L,Λ), only counts

contributions of Maslov index 2 disks. A Maslov index 2 J-holomorphic disk
in the class β = γ + k1β1 + · · ·+ knβn, γ ∈ π2(X) contributes to mb,b

1 (σ) as∑
i

ki(σ ∩ xi)ηβ exp[(s ∩ β)T ρ]T
∫
γ
ωzk11 · · · z

kn
n

Summing all contributions of Maslov index 2 J-holomorphic disks we
have:

mb,b
1 (σ) = σ ∩

∑
i

xi

(
zi
∂POL

b (b)

∂zi

)
Therefore, if b is a critical point of POL

b (b), we have that mb,b
1 |H1(L,Λ) = 0

and by Lemma 2.5, mb,b
1 ≡ 0, so HF (L, (b, b); Λ0,nov) ∼= H(L; Λ0,nov). �

3. Regularity Lemma

We now move to the Kähler setting and we discuss a Lemma that we will
use to prove regularity for Maslov index 2 disks with boundary on Θn

s with
respect to the standard complex structure in (CP 1)n. The following definition
is inspired in [13, Definition 1.1.1].

Definition 3.1. Let L be a n dimensional Lagrangian in a Kähler manifold
X. Assume that K is a Lie group of dimension n− 1 acting Hamiltonianly
and holomorphically on X preserving L. Assume that the action restricted
to L is free. Then we say that (X,L) is K-pseudohomogeneous.

We get then the following Lemma:

Lemma 3.2. Let (X,L) be K-pseudohomogeneous, for some Lie group K.
If u is a Maslov index 2 holomorphic disk such that ∂u is transverse to the
K-orbits, then u is regular.

The proof of the above Lemma relies on the Lemmas below, very similar
to [25, Lemmas 5.19, 5.20].

Lemma 3.3. Let u : D→ X be a Maslov index 2 disk in a Kähler manifold
X of complex dimension n with boundary on a Lagrangian L. Assume that
u|∂D is an immersion. Call W = du(r∂/∂θ) a holomorphic vector field along
u vanishing at 0 and tangent to the boundary. Assume also that there exists
V1, . . . , Vn−1 holomorphic vector fields in u∗TX such that W ∧ V1 ∧ · · · ∧
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Vn−1 6= 0 along the boundary of u. Then u is an immersion and no linear
combination of the Vi’s is tangent to u(D).

Proof. Up to reparametrization, we may assume du(0) 6= 0. The result follows
from the fact that the zeros of det2(W ∧ V1 ∧ · · · ∧ Vn−1) computes the
Maslov index, which is assumed to be 2. So W ∧ V1 ∧ · · · ∧ Vn−1 can only
vanish once (with order 1). Since W already vanishes at 0, we cannot have
either du(x) = 0 or a linear combination of the Vi’s being a complex multiple
of W . �

Lemma 3.4. Let uθ1,...,θn−1
be an n− 1 dimensional family of Maslov index

2 holomorphic disks in a Kähler manifold X of complex dimension n, θi ∈
(−ε, ε). If u := u0,...,0 and Vi := ∂u

∂θi
satisfy the hypothesis of Lemma 3.3, then

u is regular.

Proof. It follows similar arguments as in [25, Lemma 5.19]. Using Lemma
3.3, we are able to split u∗TX = TD⊕ L1 ⊕ · · · ⊕ Ln, as holomorphic vector
bundles where Li is the trivial line bundle generated by Vi. Also, u∗|∂DTL =

T∂D⊕ Re(L1)⊕ · · · ⊕ Re(Ln). As in [25, proof of Lemma 5.19], we see that
the kernel of the linearised ∂̄ operator is isomorphic to

TIdAut(D)

n−1⊕
i=1

hol((D, ∂D), (C,R))

Hence the kernel has dimension n+ 2 = n+ µΘn
s
(u) = index. �

We proceed to:

Proof of Lemma 3.2. Since the K action is holomorphic and ∂u is transverse
to the K-orbits, we can build uθ1,...,θn from a neighbourhood of Id ∈ K,
satisfying all the hypothesis of Lemma 3.4. �

4. The Lagrangian tori Θn
s

In this section we give an explicit description of the tori Θn
s and of its

potential function, which encodes the number of Maslov index 2 disks that
Θn
s bounds. For a definition of the potential, we refer the reader to [14,

Section 4],[16]. See also the definition of superpotential in [3, Section 2.2].
The tori Θn

s appears as fibres of a singular Lagrangian fibration analogous
to the one described in [3, Example 3.3.1].
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4.1. Definition of Θn
s

Consider (CP 1)n with the standard symplectic form, for which the sym-
plectic area of each CP 1 factor is 1. For 1 ≤ i ≤ n, let [xi : yi] denote the
i-th coordinate of (CP 1)n. Consider the function f =

∏
i
xi
yi

, defined from

the complement of V =
⋃
i,j{xi = 0} ∩ {yj = 0} to CP 1, whose fibres are

preserved by the Tn−1 action given by

(θ1, . . . , θn−1) · ([x1 : y1], . . . , [xn−1 : yn−1], [xn : yn])(4.1)

= ([eθ1x1 : y1], . . . , [eiθn−1xn−1, yn−1], [e−i
∑
j θjxn : yn]),

and m : (CP 1)n → Rn−1 its moment map.

Definition 4.1. Let γ be an embedded circle on C?, not enclosing 0 ∈ C,
and λ ∈ Rn−1. Define the Θn-type Lagrangian torus:

Θn
γ,λ = {x ∈ (CP 1)n \ V ; f(x) ∈ γ,m(x) = λ}

Noting that m−1(0) = {|xi/yi| = |xn/yn|,∀i = 1, . . . , n− 1}, one can see,
by using the maximum principle, that Θn

γ,0 bounds only one (n− 1)-family
of holomorphic disks that project injectively to the interior of γ. Call βγ ∈
π2((CP 1)n,Θn

γ,0) the class represented by each of the above disk. We note that
there are n disjoint holomorphic disks in the class βγ inside the line ∆ = {[xi :
yi] = [xn : yn],∀i = 1, . . . , n− 1}. Since

∫
∆ ω = n, we see that

∫
βγ
ω ∈ (0, 1).

Foliate C \ R≤0 by curves γs, s ∈ [0, 1) so that γ0 is a point, say 1 ∈ C,
and for s ∈ (0, 1), γs is an embedded circle so that

∫
βγs

ω = s.

Definition 4.2. Define the Lagrangian torus Θn
s to be Θn

γs,0.

The hamiltonian isotopy class of Θn
s , does not depend in the curve γs

inside C \ R≤0, but only on s =
∫
βγs

ω.

Consider the divisor D = f−1(1)
⋃
i{yi = 0} and the holomorphic n-

form Ω = (
∏
i xi − 1)−1dx1 ∧ · · · ∧ dxn defined on (CP 1)n \D, in coordinates

charts yi = 1.

Proposition 4.3 (Auroux). The tori Θn
s are special Lagrangians [2, Def-

inition 2.1] with respect to Ω

Proof. See [3, Example 3.3.1] and [2, Proposition 5.2]. �

Also, we clearly have:
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Proposition 4.4. We have that ((CP 1)n,Θn
s ) is Tn−1-pseudohomogeneous,

for the action (4.1).

4.2. The Potential of Θn
s

We come back to our Lagrangian tori Θn
s . We would like to describe the

potential POL in coordinates of the form (2.3) with respect to a nice basis
for π2((CP 1)n,Θn

s ). Fix a point as ∈ γs. Consider the S1 action given by
the i-th coordinate of the Tn−1 action described in (4.1). Take the orbit
lying in Θn

s ∩ f−1(as) and consider its parallel transport over the segment
[0, as], formed by orbits of the considered S1 action that collapse to a
point over 0, giving rise to a Lagrangian disk. Define αi ∈ π2(Θn

s , (CP 1)n)
to be the class of the above disk. Also, from now one we write β = βγs
and Hi = p∗i [CP 1] ∈ π2((CP 1)n) the pullback of the class of the line by
the i-th projection. Note that β, α1, . . . , αn−1, H1, . . . ,Hn are generators of
π2((CP 1)n,Θn

s ). We assume that our monotone symplectic form is so that∫
Hi
ω = 1.
Set u = zβ and wi = zαi , i ∈ (1, . . . , n− 1). Note that

zHi(∇′) = T
∫
Hi
ω

exp(b ∩ ∂Hi) = T.

Proposition 4.5 ([2, 3]). The potential function encoding the count of
Maslov index 2 holomorphic disks with boundary on the Lagrangian tori Θn

s

(for some spin structure) is given by

(4.2) POΘn
s = u+

T

u
(1 + w1 + · · ·+ wn−1)

(
1 +

1

w1
+ · · ·+ 1

wn−1

)
Idea of proof. First we consider positivity of intersection of an holomorphic
disk with the complex submanifolds {xi = 0}, {yi = 0}, {

∏
i xi =

∏
i yi}, for

all i ∈ (1, . . . , n), to conclude that Maslov index 2 classes admitting holo-
morphic representatives must be of the form β, Hi − β − αi + αj , where
i, j = 1, . . . , n and αn = 0. Computations of the holomorphic disks and their
algebraic count can be done explictly. We omit here since it follows a straight-
forward procedure as in [2, Proposition 5.12], see final remark after Proposi-
tion 3.3 in [3]. See also [25, Section 5] for similar computations.

We can choose a spin structure so that every disk counts positively, i.e.,
ev0 : M1 → Θn

s is orientation preserving, e.g. by choosing a trivialisation
of TΘn

s using the boundary of {α1, . . . , αn−1, β}, as spin structure. See [25,
Section 5.5] and [8, Section 8], for a complete discussion in a similar scenario.

�
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Remark 4.6. The potential of Θn
s can be obtained from the known potential

for the Clifford torus, ×
n
S1

eq. It is given by

POClif = z1 + · · ·+ zn +
T

z1
+ · · ·+ T

zn
.

We obtain the potential for Θn
s via wall-crossing transformation u = zn(1 +

w1 + · · ·wn−1), wi = zi/zn. See [3, Example 3.3.1].

Proposition 4.7. The tori Θn
s satisfy Assumption 2.1, with respect to the

standard complex structure of (CP 1)n.

Proof. To prove Assumption (A1) we use similar argument as in [2, Exam-
ple 3.3.1]. First we use that Θn

s are special Lagrangians, and hence, by [2,
Lemma 3.1], the Maslov index is twice the intersection with the divisor D.
This shows that µΘn

s
(β) ≥ 0, ∀β ∈ π2((CP 1)n,Θn

s ) represented by an holo-
morphic disk u. Now, if u is a Maslov index 0 holomorphic disk, then f ◦ u is
well define and lies in C \ {1}, hence it is a constant in γs. Since the regular
fibres of f are diffeomorphic to (C∗)n−1, we have that u is itself is constant.

The proof of Assumption (A2) follows from ((CP 1)n,Θn
s ) being Tn−1-

pseudohomogeneous together with Lemma 3.2. We just need to check that
since the Tn−1-orbit in Θn

s is generated by ∂αi, therefore transverse to the
boundary of the Maslov index 2 disks with boundary in Θn

s , whose relative
homotopy classes are β and Hi − β − αi + αj , i, j = 1, . . . , n and αn = 0. �

4.3. Regarding Proposition 1.4, and Conjecture 1.5

We start noting that Maslov index 2 classes in H2((CP 1)n,Θn
s ;Z) are of the

form

(4.3) β + k1(H1 − 2β) + · · ·+ kn(Hn − 2β) + l1α1 + · · ·+ ln−1αn−1,

where β is the Maslov index 2 and αi the Maslov index 0 classes de-
scribed in Section 4.2, viewed in H2((CP 1)n,Θn

s ;Z) via π2((CP 1)n,Θn
s ) ↪→

H2((CP 1)n,Θn
s ;Z). Recalling that

∫
Hi
ω = 1 and

∫
αi
ω = 0, we see that area

of Maslov index 2 disks belongs to {s+ (1− 2s)Z} ⊂ R.

Proof of Proposition 1.4. We note that each torus

Θk1
s1 × · · · ×Θkl

sl × (S1
eq)n−

∑
i ki
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bounds a disk of Maslov index 2 and symplectic area 1/2, if n >
∑

i ki, coming
from a Maslov index 2 disk in the last CP 1 factor, with boundary in its equator
S1

eq. We see that 1/2 is in {s+ (1− 2s)Z} if and only if s = 1/2. This rules

out the possibility of Θk1
s1 × · · · ×Θkl

sl × (S1
eq)n−

∑
i ki being symplectomorphic

to Θn
s for s 6= 1/2.

For s = 1/2 the torus Θn
s is monotone, hence the Maslov index 2 J-

holomorphic disks becomes an invariant of its symplectomorphism class —
this was first pointed out in [10], see also [25, Theorem 6.4]. This invariant
allows us to distinguish between (the symplectomorphism classes of) Θn

s and
Θk1
s1 × · · · ×Θkl

sl × (S1
eq)n−

∑
i ki . For instance, one could look for pairs (σ1, σ2)

of (relative homotopy classes represented by) Maslov index 2 holomorphic
disks with ∂σ1 = −∂σ2. For the torus Θn

s , we must have ∂σi = ±∂β, i.e.,
only one possibility for ∂σi modulo sign, see Proposition 4.5. But for each
torus Θk1

s1 × · · · ×Θkl
sl × (S1

eq)n−
∑
i ki we have more than one possibility for

∂σi, modulo sign. �

Remark 4.8. Note that, by Proposition 4.5, the total number of Maslov
index 2 holomorphic disks with boundary in Θn

s is 1 + n2, while for the tori
Θk1
s1 × · · · ×Θkl

sl × (S1
eq)n−

∑
i ki it is

∑l
i=1(1 + k2

i ) + 2(n−
∑l

i=1 ki) = 2n+∑l
i=1(ki − 1)2. Hence they can be equal if (n− 1)2 =

∑l
i=1(ki − 1)2.

Remark 4.9. The above argument also proves the monotone version (s =
1/2) of Conjecture 1.5.

We proceed now to show that holomorphic disks with boundary in Θn
s

with Maslov index bigger than 2 have area bigger than a = 1− s — the
minimal area of Maslov index 2 holomorphic disks for s > 1/2.

Proposition 4.10. For k > 0 and s ∈ [1/2, 1), the area of holomorphic
Maslov index 2k disk with boundary on Θn

s is least 1− s, with respect to the
standard complex structure in (CP 1)n. The minimum only occur if k = 1.

Proof. Maslov index 2k disks are in relative classes of the form

(4.4) kβ + k1(H1 − 2β) + · · ·+ kn(Hn − 2β) + l1α1 + · · ·+ ln−1αn−1.

If they are represented by holomorphic disks, their intersection with
the divisors {yi = 0} and {

∏n
i=1 xi =

∏n
i=1 yi} = {f−1(1)} is non-negative —
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recall from Definitions 4.1, 4.2 that 1 is in the interior of γ ⊂ C∗. Noting that

β · {yi = 0} = 0, αj · {yi = 0} = 0, Hj · {yi = 0} = δij ,

and

β · {f−1(1)} = 1, αj · {f−1(1)} = 0, Hj · {f−1(1)} = 1,

i, j = 1, . . . , n, we get that

ki ≥ 0 ∀i = 1, . . . , n and k −
n∑
i=1

ki ≥ 0.

The result follows from taking the symplectic area of (4.4), which is

ks+

n∑
i=1

ki(1− 2s) = s

(
k −

n∑
i=1

ki

)
+ (1− s)

(
n∑
i=1

ki

)

�

As pointed out before the above Proposition allows us to argue why
Conjecture 1.5 holds, using [23, Proposition 5.1]. Indeed, for s > 1/2, the
number of Maslov index 2 holomorphic disks with boundary in Θn

s and with
minimal area a = 1− s is n2, by Proposition 4.5. Hence the number of Maslov
index 2 disks with boundary in Θk1

s1 × · · · ×Θkl
sl and with minimal area is at

most
∑l

i=1 k
2
i < (

∑l
i=1 ki)

2 = n2, for l > 1.

5. Proof of Theorem 1.1 — Bulk deformations

In this section we use bulk deformations to prove that the tori Θn
s are non-

displaceable for n even and s ∈ [1/2, 1), as done in [19] for the case n = 2. In
[19], Fukaya-Oh-Ohta-Ono used the cocycle Poincaré dual to the anti-diagonal
in CP 1 × CP 1 to bulk-deform Floer-homology. In this section we will bulk-
deform Floer-homology by an element of the form T ρ[h] ∈ H∗((CP 1)n,Λ+),
where [h] ∈ H2((CP 1)n,Z).

For 1 ≤ i ≤ n, let hi be the cocycle Poincaré dual to {yi = 0} ⊂ (CP 1)n.

Proposition 5.1. The potential for the Lagrangian tori Θn
s , bulk deformed

by the cocycle

b = T ρ[(k1 + kn)h1 + · · ·+ (kn−1 + kn)hn−1 + knhn] ∈ C2((CP 1)n,Λ+)

is given by
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PO
Θn
s

b (b) = u+
T

u
(1 + w1 + · · ·+ wn−1)

(
1 +

ek1T
ρ

w1
+ · · ·+ ekn−1T ρ

wn−1

)
eknT

ρ

Proof. The relative classes β, αj have no intersection with {yk = 0} viewed
as a cycle in (CP 1)n \Θn

s . Therefore the disk in the class Hi − β − αi + αj
intersect {yk = 0} if and only if k = i, and with multiplicity 1. Hence, the
coefficient of the monomial Twj/uwi is bulk-deformed by bs to e(ki+kn)T ρ . �

Lemma 5.2. The potential for the Lagrangian tori Θn
s , bulk deformed by

the cocycle

b = T ρ[(k1 + kn)h1 + · · ·+ (kn−1 + kn)hn−1 + knhn] ∈ C2((CP 1)n,Λ+)

have its critical points given by:

wi = εie
ki
2
T ρ , u = εne

kn
2
T ρT

1

2

1 +

n−1∑
i≥1

εie
ki
2
T ρ

 ,

where εi = ±1.

Proof. For easier notation, let bi = ekiT
ρ

. Taking the differential of the bulk
deformed potential PO

Θn
s

b (b) with respect to wi and equating to 0, we get,
after multiplying by wi, equations

(i) : wi +
∑
j 6=i

bjwi
wj
− bi

 1

wi
+
∑
j 6=i

wj
wi

 = 0.(5.1)

Summing all the equations (1), . . . , (n), we end up with

n−1∑
i=1

wi −
n−1∑
i=1

bi
wi

= 0

Let

L =

n−1∑
i=1

wi =

n−1∑
i=1

bi
wi
.
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We have that

wiL− bi =
∑
j 6=i

bjwi
wj

,

L

wi
− 1 =

∑
j 6=i

wj
wi
.

Substituting the above into equations (i) (see (5.1)), we get that

(5.2)

(
wi −

bi
wi

)
(1 + L) = 0

So if u,w1, . . . wn−1 are critical points of the bulk deformed potential

PO
Θn
s

b (b), besides equation (5.2), we must have

(5.3) ∂uPO
Θn
s

b = 1− bnT

u2
(1 + L)2 = 0

Hence L 6= −1, and therefore

wi =
√
bi = εie

ki
2
T ρ , u =

√
bnT

1

2 (1 + L) = εne
kn
2
T ρT

1

2

1 +

n−1∑
i≥1

εie
ki
2
T ρ

 ,

�

We call the valuation of an element in Λ+ the smallest exponent with
non-zero coefficient. Looking at the expression of the critical points of the
previous Lemma, one can see that:

Lemma 5.3. Looking at the critical points given on Lemma 5.2 we have
that, the valuation of u is not 1/2 if and only if n = 2m and m− 1 εi’s are
equal to 1 while the other m εi’s are equal to −1, where i = 1, . . . , 2m− 1.
In that case, the valuation of u is T 1/2+ρ, provided

∑2m−1
i=1 εiki 6= 0.

Now we recall that

u = zβ = T s exp(b ∩ ∂β)

for the class β defined in the beginning of Section 4.2. By Lemma 5.3, we
have:
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Corollary 5.4. Take s > 1/2 and consider the cocycle bs = T s−1/2[(k1 +
k2m)h1 + · · ·+ (k2m−1 + k2m)h2m−1 + k2mh2m] ∈ C2((CP 1)2m,Λ+). Assume
that not all ki’s are 0, for i = 1, . . . , 2m− 1, i.e., [bs] is not a multiple of the

monotone symplectic form. Then there exists bs a critical point of PO
Θ2m
s

bs
.

Recalling that Θ2m
s satisfy Assumption 2.1 (Propositions 4.7), for some

almost complex structure J , and noting that Θ2m
s is a contractible Lagrangian

torus of (CP 1)2m, we have that ((CP 1)2m,Θ2m
s ) satisfy all the hypothesis of

Corollary 2.8. Therefore, from Corollaries 2.8 and 5.4, we deduce:

Theorem 5.5. For s ≥ 1/2 there exists a bulk [bs] ∈ H2((CP 1)2m,Λ+) and
a weak bounding cochain bs ∈ H1(Θ2m

s ,Λ0) such that

HF (Θ2m
s , (bs, bs); Λ0,nov) ∼= H(Θ2m

s ,Λ0,nov).

This proves the first part of Theorem 1.6. Theorem 1.1 follows from
Theorem 2.4 and Theorem 5.5. �

Corollary 1.3 follows from the same arguments as above using that

PO
Θ
k1
s1×···×Θ

kl
sl
×(S2

eq)n−
∑
i ki

b = PO
Θ
k1
s1

b + · · ·+ PO
Θ
kl
sl

b + PO
(S2

eq)n−
∑
i ki

b

6. Quasi-morphisms and quasi-states

In this section we prove the last part of Theorem 1.6. It follows arguments
similar to [18, Theorem 23.4].

Lemma 6.1. For any

b = T ρ[l1h1 + · · ·+ ln−1hn−1 + lnhn] ∈ C2((CP 1)n,Λ+),

the bulk deformed Quantum cohomology [18, Section 5] is semi-simple.

Proof. By [20, Theorem 1.1.1] (see also [14, Theorem 6.1], for the Fano case)
we have an isomorphism between the bulk deformed Quantum cohomology
of a toric symplectic manifold and the Jacobian Ring of the bulk deformed
toric potential. If the bulk deformed toric potential has only non-degenerate
critical points, we can split the Quantum cohomology ring into orthogonal
algebra summands according to the factors corresponding to the critical
points under the isomorphism given in [20, Theorem 1.1.1].
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Naming now zi = zβi (2.3), for βi the class of Maslov index 2 holomorphic
disk intersecting {xi = 0}, we have that the bulk deformed potential of a
toric fiber is:

(6.1) POb = z1 + · · ·+ zn +
Tel1T

ρ

z1
+ · · ·+ TelnT

ρ

zn
,

whose critical points are given by

(z1, . . . , zn) = (ε1T
1/2el1T

ρ/2, . . . , εnT
1/2elnT

ρ/2).

Hence, there are 2n idempotents of QHb((CP 1)n; Λ0,nov), eb
1 , . . . , eb

2n for
which

QHb((CP 1)n; Λ0,nov) =

2n⊕
i=1

Λ0,nove
b
i .

�

In [18, Section 17, (17.18)], given X a symplectic manifold and L a
relatively spin Lagrangian submanifold, Fukaya-Oh-Ohta-Ono construct an
homomorphism:

(6.2) i∗qm,(b,b) : QHb(X; Λ0,nov)→ HF (L, (b, b); Λ0,nov),

which is proven to be a ring homomorphism in [1], see [18, Remark 17.16]
and [15, Section 4.7].

Applying Lemma 6.1 for (CP 1)2m and bs given in Theorem 5.5, using
that i∗qm,(bs,bs)

is unital and HF (Θ2m
s , (bs, bs); Λ0,nov) 6= 0, we have:

Proposition 6.2. There exists an idempotent es ∈ QHbs((CP 1)2m; Λ0,nov)
for which i∗qm,(bs,bs)

(es) 6= 0 in HF (Θ2m
s , (bs, bs); Λ0,nov).

Theorem 1.6 follows then from Proposition 6.2 and Theorem 18.8 of
[18]. �

7. Tori in CP 2#3CP 2

In this section we prove Theorem 1.12. We will describe a model for

(CP 2#3CP 2, ωε) = (CP 1 × CP 1#2CP 2, ωε)

which is equivalent to performing two blowups of capacities ε centred at the
rank 0 elliptic singularities (corners) of the singular fibration of CP 1 × CP 1

described in [19], see Figure 1.
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Figure 1: Singular fibrations of CP 1 × CP 1 and CP 2#3CP 2.

Consider CP 1 × CP 1 with coordinates ([x1 : y1], [x2 : y2]) as in Section 4.1.
Consider also the tori Θ2

s, the function f = x1x2/y1y2, the relative class β
and α := α1 and the divisor D = f−1(1) ∪ {y1 = 0} ∪ {y2 = 0}, as defined
in Section 4.2.

From Proposition 4.3 and [2, Lemma 3.1], we have that 2[D] ∈ H2(CP 1 ×
CP 1 \Θ2

s) is Poincaré dual to the Maslov class µΘ2
s
∈ H2(CP 1 × CP 1,Θ2

s).
In particular the Maslov index 2 holomorphic disks, computed in Proposi-
tion 4.5 for n = 2, do not intersect f−1(1) ∩ {y1 = 0} = ([1 : 0], [0 : 1]) = p1

and f−1(1) ∩ {y2 = 0} = ([0 : 1], [1 : 0]) = p2.
Let Bi(ε) be the ball of capacity [21, Section 12] ε (radius

√
ε/π) centered

at pi, in the coordinate plane xi = 1, yj = 1, i, j = 1, 2, i 6= j. Denote Si(ε) =

∂Bi(ε). Let (CP 2#3CP 2, ωε) be the result of blowing up [21, Section 7]
CP 1 × CP 1 with respect to B1(ε) and B2(ε), so that the exceptional curves
Ei (coming from collapsing the Hopf fibration in Si(ε)) have symplectic
area ωε(Ei) = ε, i = 1, 2. Let jε be the induced complex structure and Lεs
correspond to Θ2

s after the blowup. Note that ε can take any value in (0, 1),
so that B1(ε) ∩B2(ε) = ∅.

Note also that f = x1x2/y1y2 is constant along the fibers of the Hopf
fibration of both S1(ε) and S2(ε). In particular it give rise to a (jε, j)-
holomorphic function f̃ : CP 2#3CP 2 → CP 1.

For computing the potential for Lεs it is interesting that the disks of Propo-
sition 4.5, remain essentially the same. This can be obtained by stretching the
complex structure jε. So take δ small enough so that B1(δ) ∪B2(δ) does not
intersect any Maslov index 2 holomorphic disk. Consider a diffeomorphism
ϕ : (CP 2#3CP 2, ωε)→ (CP 2#3CP 2, ωδ) coming from a finite neck stretch
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[5, 9] along Si(ε+ δ′) ⊂ (CP 2#3CP 2, ωε) [5, 9], see also [26, Section 3], which
sends Lεs to Lδs. The diffeomorphism ϕ is equivalent to considering an inflation
along the exceptional curves Ei, i = 1, 2. Set Jδ = ϕ∗jδ, an ωε compatible
almost complex structure.

Lemma 7.1. We have that (CP 2#3CP 2, Lεs, Jδ) satisfy Assumption 2.1.
The potential function for Lεs with respect to Jδ, is given by:

(7.1) POLεs = u+
T

u
(1 + w)

(
1 +

1

w

)
+ T 1−ε

(
w +

1

w

)
Proof. It is enough to compute the jδ-holomorphic disks with boundary in
Lδs. The jδ-holomorphic disks that don’t intersect the exceptional divisors
E1, E2, corresponds to the holomorphic disks in CP 1 × CP 1 with boundary
in Θ2

s, which gives the terms

u+
T

u
(1 + w)

(
1 +

1

w

)
of POLδs , and are regular.

Let D̃ be the proper transform of the divisor D ∈ CP 1 × CP 1. It can be
checked that, twice D̃ + E1 + E2 is Poincaré dual to the Maslov class µLδs .
This implies Assumption (A1), as in the proof of Proposition 4.7. Moreover,
Maslov index 2 disks intersects D̃ + E1 + E2 once. Which means that if a
jδ-holomorphic disk u intersects either E1 or E2, by positivity of intersection,
it does not intersect D̃ and hence f̃ ◦ u : D→ C∗ must be constant. There
are two Maslov index 2 disks in the fiber f̃−1(c), for c ∈ γs. Looking at the
intersections with Ei, and the proper transform of {xi = 0} and {yi = 0},
we can see that the relative classes of these disks are H1 − E1 + α and
H2 − E2 − α (for some orientation of α). Since, ωε(Hi − Ei ± α) = 1− ε, we
get the remaining term

T 1−ε
(
w +

1

w

)
.

To show regularity of the above disks, one notes that the pre-image under
f̃ of a small neighbourhood Ns of γs contain the whole family of the above
disks and is actually toric. Moreover, (f̃−1(Ns), L

δ
s) is T 2-homogeneous [13],

or if you will, S1-pseudohomogeneous (Definition 3.1) for a jδ-holomorphic
S1-action transverse to ∂α, which shows Assumption (A2).

The choice of spin structure is given by trivialising TLεs according to
{α, β} and is so that the evaluation map is orientation preserving, as in the
proof of Proposition 4.5. See also [25, Section 5.5] and [8, Section 8]. �
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Remark 7.2. The above potential can also be computed by a technique
similar to the one developed in [19] and also by some gluing procedure similar
to the one developed in Section 5.2 of the arXiv.1002.1660v1 version of
[19] and in [28].

Remark 7.3. For each δ′ > 0, the family {Lεs : s ∈ [1/2, 1− δ′]} can be seen
as fibres of an almost toric fibration (ATF) of CP 2#3CP 2, represented by
an almost toric base diagram (ATBD) analogous to the one in Figure 9 (A3)
of [27]. In fact, the singular fibration described by the second diagram in
Figure 1 can be thought as a limit of ATFs described by sliding nodes of
the ATBD in Figure 9 (A3) of [27]. Moreover, the potential POLεs can be
obtained from the toric potential

POtoric = u1 + u2 +
T

u1
+
T

u2
+
T 1−εu1

u2
+
T 1−εu2

u1
,

via wall-crossing transformation u = u1(1 + w), w = u2/u1, giving another
example where actual computations meet wall-crossing predictions [2, 3, 25].

Let s ∈ C2(CP 2#3CP 2) be the cocycle Poincaré dual to {y1 = 0} ∪ E1,
so [s] = H1 − E2 + E1. Analogous to Proposition 5.1, we have:

Proposition 7.4. The potential for Lεs, bulk deformed by the cocycle b =
T ρs ∈ C2(CP 2#3CP 2,Λ+) is given by:

(7.2) PO
Lεs
b = u+

T

u
(1 + w)

(
eT

ρ

+
1

w

)
+ T 1−ε

(
eT

ρ

w +
1

w

)
.

We can then compute the critical points of PO
Lεs
b and obtain:

Lemma 7.5. We have that w = −e
−Tρ

2 and u = ±T
1

2 (1− e
−Tρ

2 )
1

2 (eT
ρ−eT

ρ

2 )
1

2

are critical points of PO
Lεs
b . The valuations of w and u are respectively 0 and

1/2 + ρ.

Since we have that
∫
β ωε = s and

∫
α ωε = 0:

Lemma 7.6. For s > 1/2 and bεs = T s−1/2[s], there exists a weak bounding

cochain bεs ∈ H1(Lεs,Λ0) which is a critical point of PO
Lεs
bεs

.

Following similar arguments as in Sections 5 and 6, we are able to prove
Theorem 1.12 and consequently Theorem 1.10. �
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(2016).

[16] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection
Floer Theory: Anomaly and Obstruction, Vol. 46 of Stud. Adv. Math.,
American Mathematical Society, International Press (2010).

[17] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory on
compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17
(2011), no. 2, 609–711.

[18] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Spectral invariants with
bulk quasimorphisms and Lagrangian Floer theory, arXiv:1105.5123,
(2011).

[19] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Toric Degeneration and
Nondisplaceable Lagrangian Tori in S2 × S2, Internat. Math. Res. No-
tices 13 (2012), 2942–2993.

[20] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory
and mirror symmetry on compact toric manifolds, Astérisque (2016),
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