JOURNAL OF
SYMPLECTIC GEOMETRY
Volume 16, Number 3, 857-{883] 2018

Continuum families of non-displaceable
Lagrangian tori in (CP!)*™

RENATO VIiANNA

We construct a family of Lagrangian tori ©7 C (CPY)", s € (0,1),
where ©7,, = ©", is the monotone twist Lagrangian torus described
in [7]. We show that for n = 2m and s > 1/2 these tori are non-
displaceable. Then by considering ©%1 x - -+ x ©F x (qu)”fzi ki C
(CPY)", with s; € [1/2,1) and k; € 2Z~, Y., ki < n we get several
l[-dimensional families of non-displaceable Lagrangian tori. We also
show that there exists partial symplectic quasi-states Cg; and lin-
early independent homogeneous Calabi quasimorphims ugz [18]
for which ©%™ are Cé’:—superheavy and pgz—superheavy. We also
prove a similar result for (CP?#3CP?2,w,), where {w;0 < e < 1}
is a family of symplectic forms in CP2#3CP2, for which w; /2 18
monotone.

1. Introduction

In [19], Fukaya-Oh-Ohta-Ono construct a one-dimensional family of non-
displaceable Lagrangian tori in (CP')2. They arise as fibres of a (informally
called) semi-toric moment map [28, Section 3], where the fibres over the
interior of the semi-toric moment polytope are Lagrangian tori, but over a
special vertex of the polytope lies a Lagrangian S? (the anti-diagonal) where
the semi-toric moment map is not differentiable.

The weighted barycentre of the semi-toric polytope was proven by Oakley-
Usher [22] to be the Chekanov torus [7] in (CP')2. The other regular fibres
are Hamiltonian isotopic to so called Chekanov type tori described in [2]
Example 3.3.1]. In fact, the semi-toric Lagrangian fibration described in [19]
can be seen as a limit of almost toric fibrations, in which ‘most of the fibres
are Chekanov type tori, see [27, Section 6.4] and [24, Remark 3.1].

The definition of Chekanov type tori can be easily extended to higher
dimensions, see Definition In particular, we can get analogues of the
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non-displaceable tori [I9]. We can show that these tori are non-displaceable
in (CP1)?m.

1.1. Results

Theorem 1.1. For a positive even integer n = 2m, there is a continuum
of non-displaceable Lagrangian tori ©2™ C (CPY)?™, s € [1/2,1), for which
@%75 = ©%™ js the monotone twist Lagrangian torus described in [7]. More
precisely, for any Hamiltonian ¥ € Ham((CPY)?>™), we have that |©2™ N
U(2m)| > 22m,

The case n = 2 was proven in [19]. The case n = 1 is clearly false, since
only the monotone circle is non-displaceable.

Question 1.2. For n >3 odd and s € [1/2,1), are the tori ©F from Defini-
tion (non)-displaceable?

An immediate consequence of the proof of Theorem [I.1]is

Corollary 1.3. For s; € [1/2,1), and positive even integers k;, i =1,...,1,
and n > . k;, the Lagrangian tori

Of x -+ x OF x (Sk)nmxk c (cPh"

are non-displaceable.

Just by looking to the symplectic area spectrum of Maslov index 2 relative
homology classes we can conclude:

Proposition 1.4. The tori ©F is not symplectomorphic to @’;11 X oo X
OF x (SL )=k ifn >3 k.

Consider the counts of holomorphic (for the standard complex structure in
(CPY)™) Maslov index 2 disks with boundary in ©7, respectively ©F x - .- x
@’;l (n =), ki), passing through a fixed point. Among these, look at the count
of disks that have minimal area. For s,s; € (1/2,1), this area is a = 1 — s,
respectively 1 —s; for some i € {1,...,l}. It follows from Proposition
that these counts of disks of smaller area are different if [ > 1. Moreover,
we show in Proposition that higher Maslov index holomorphic disks
with boundary on ©7 must have symplectic area bigger than a. Hence, one
expect that in a generic family J; of almost complex structures, where Jy is
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the standard complex structure and J; is another regular almost complex
structure, Jy-holomorphic disks of positive Maslov index and area smaller
than a can only appear in a “birth-death” phenomenon. This should imply
that the count of Maslov index 2 disks of symplectic area a with boundary
in ©F is an invariant under generic choice of almost complex structure, and
hence under symplectomorphisms (in particular Hamiltonian isotopies) acting
on ©F. This would allow us to prove:

Conjecture 1.5. The tori O} is not symplectomorphic to @’;11 X e X @’S“j,
n=7y ki — unlessl=1 and s; = s.

A rigorous statement proving the invariance of the count of the Maslov
index 2 disks of minimal area in the above scenario and hence Conjecture [1.5
appears in the preprint [23, Proposition 5.1]. We keep calling the above a
Conjecture for chronological reasons and because |23, Remark 5.1] refers to
this Conjecture.

Therefore we see that the tori obtained here differ from products of copies
of the tori obtained in [19] and copies of the equator in CP?.

The idea of the proof of Theorem [T.1]is that we are able to find bulk defor-
mations by for which the bulk deformed Floer Homology of ©%™ (decorated
with some weakly bounding cochain o) is non-zero. The invariance property
of the bulk deformed Floer Cohomology under the action of Hamiltonian
diffeomorphisms [I7, Theorem 2.5], allow us to conclude that the above
Lagrangian tori are non-displaceable.

Based on the work of Fukaya-Oh-Ohta-Ono [18], regarding spectral
invariants with bulk deformations, quasimorphisms and Lagrangian Floer
theory, we are able to strengthen our result and find families of homogeneous
Calabi quasimorphisms ,ugj and partial symplectic quasi-states Cg:, for which
e is ,ugz-superheavy and Cg;-superheavy.

For the definition of homogeneous Calabi quasimorphisms, partial sym-
plectic quasi-states and the notion of superheaviness we refer the reader to
11, 12, [18].

Following closely the notation of [18, Lemma 23.3, Theorem 23.4] we
summarise the above discussion as:

Theorem 1.6. For s € [1/2,1), there exists a bulk-deformation

b, € H2((CPY*™,A,),
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and a weak bounding cochain by € HY(©2™ Ag) for which
HF(@zmv (bSa bs); AO,nov) = H*(@zmS AO,nov)

Moreover, there are idempotents es in the bulk-deformed quantum-cohomology
QH;‘S(((CPl)Qm; Ao nov), s0 that ©™ s ,ugj -superheavy and CE: -superheavy.
Here ugj, CE’: are respectively the homogeneous Calabi quasimorphism and
partial symplectic quasi-states coming from the bulk-deformed spectral invari-
ant associated with es [18, Section 14).

Here A, Ag, Apov, Aonov and A4 are the Novikov rings:

A= ZaiT)‘ﬂaiGC,AiGR,)\iS)\Hl,_lim A =00 p,

1—00

i>0

Ao = Z%Tﬂ a; € C, N € Ro0, A < Ajgq, lim Ay =00 o,
>0 - 1—00

MNpov = E aiq"iT)‘i\ n;, €7 a; € (C, AN ERN )‘i+17 .lim A =00y,
=0 i—00
>

Aonov = 4 Y aig™ T ni € Z a; € C, N € Rz, \i < Ait, lim A = o0 o,

i>0
Ay = Z%’T)"' a; € C, N\ € Rog, N < >\i+1,i1g£10 Ai =00 ¢,
i>0

The formal parameter T is used to keep track of area of pseudo-
holomorphic disks, while the formal parameter ¢ € Ag oy is used to keep
track of the Maslov index.

The following Corollary follows immediately from [I8 Corollary 1.10],
see [I8| Section 19] for a proof.

Corollary 1.7. The uncountable set {ug} of homogeneous Calabi quasi-
morphisms is linearly independent [18, Definition 1.9].

To prove linear independency of the above homogeneous Calabi quasi-
morphisms we use that the tori are disjoint, for different values of s. One
could ask:
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Question 1.8. Are the tori ©F Hamiltonian displaceable from @’;11 X e X
OF x (St )2k for s, € (1/2,1)?

We note that by construction, these tori intersect for s,s; > 1/2. See
[24], for non-displaceability in the case n = 2, between O7 (i.e. tori from [19])
s > 3/2 and the Clifford torus Sg, x Si,.

Question 1.9. Are the quasimorphisms arising from (particular choice of
bulk-deformation and weak-bounding cochain for) the tori in Corollary
linearly independent for different partitions (k1,...,k;,n — ), ki) of n?

We finish our results by pointing out that the family given in [I9] remain
non-displaceable after we perform two blowups (of the same size) on the rank
zero corners of the singular fibration described in [19], see Figure |1} This
follows from applying the same ideas as Fukaya-Oh-Ohta-Ono did for the
CP! x CP! case.

Theorem 1.10. There exists a continuous family of non-displaceable
Lagrangian tori LS in (CP2#3CP2,w,.) = (CP! x CP'#2CP?,w,), where
s€[1/2,1) and {we|0 < € < 1} is a family of symplectic forms for which

(CP2#3(CP2,w1/2) 1§ monotone, containing a monotone Lagrangian L}g

Remark 1.11. It is shown in [I7], Section 5] and [I8, Section 22] a family of
non-displaceable Lagrangian tori in CP2#kCP?2, k > 2, endowed with some
non-monotone symplectic form.

Theorem follows, in the same spirit as [I8, Theorem 1.11] and
Theorem from:

Theorem 1.12. Let (CP?#3CP2,w.) and LS be as in Theorem . For
s € [1/2,1), there exists a bulk-deformation bS € H?(CP?#3CP2,A ), and
a weak bounding cochain bS € HY (LS, Ag) for which

HF(CP?*#3CP2, (b5, %); Aonov) = H*(LE; Ao noo)

There are idempotents € in the bulk-deformed gquantum-cohomology
B be

QH(CP?#3CP2; \), so that LS is Wt -superheavy and (e -superheavy, where

,ugg, C:{ are the homogeneous Calabi quasimorphism and partial symplectic

quasi-states coming from the bulk-deformed spectral invariant associated with

€S [18, Section 14]. Moreover, the uncountable set {,uz} of homogeneous

Calabi quasimorphisms is linearly independent.
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The rest of the paper is organised as follows:

In Section [2] we make a quick introduction of bulk deformed potential
and Floer cohomology for a Lagrangian L satisfying Assumption We
refer the reader to [I7HI9] for a complete account. We then prove Lemma
and Corollary to show that, for a Lagrangian torus 7', critical points of
the potential gives rise to (bulk deformed) Floer cohomology isomorphic to
the usual cohomology of T. We believe that is known by experts on the
field, but we are not aware of it being written.

In Section [3| we define the notion of a pair (X, L) consisting of a Kéhler
manifold X and a Lagrangian submanifold L being K -pseudohomogeneous,
for some Lie group K acting holomorphically and Hamiltonianly on X,
leaving L invariant. We showed that if (X, L) is K-pseudohomogeneous, any
Maslov index 2 holomorphic disk with boundary on L such that its boundary
is transverse to K-orbits, is regular. We use that to show regularity for the
Maslov index 2 disks with boundary in ©7.

In Section [4] we define the Lagrangian tori ©, establish its potential
function, essentially computed in [2, 3], and prove it satisfies Assumption
for some regular almost complex structure J with the same potential function
of the standard complex structure. We also prove Proposition and show
that holomorphic disks of Maslov index bigger than 2 have area bigger than
a =1 — s, which we use to argue why Conjecture holds once we have [23]
Proposition 5.1].

In Section 5], we compute the critical points of the potential bulk deformed
by some cocycle in C2((CP1)", A, ). We show that for n = 2m, there are bulk
deformation by 2and a weak bounding cochain b; which is a critical point of the
potential mDEjm. It then follows from Corollary that the bulk deformed
Floer cohomology HF(©2™, (b, by); A) is isomorphic to the cohomology of
the torus. Non-displaceability then follows from [I6, Theorem G| which is
also stated as [I7, Theorem 2.5].

In Section [ we finish the proof of Theorem [1.6

Finally in Section |7, we describe

(CP?#3CP2?,w,.) = (CP' x CP*#2CP2,w,)

as two blowups of capacity € on two corners of the moment polytope of
CP! x CP!. The Lagrangian tori LS on the blowup comes from ©2 € CP! x
CP!. We compute the potential for LS and show the existence of critical
points for some bulk deformation. This allow us to prove Theorems
and These tori are equivalent to the fibres of the singular fibration
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given by blowing up the corners of the “semi-toric polytope” described in
[19], see Figure
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2. Floer homology and the potential function

Let X be a symplectic manifold and J a regular and compatible almost
complex structure. Let L be a Lagrangian submanifold of X (with a chosen
spin structure). We consider a unital canonical Ay, algebra structure {my}
on the classical cohomology H (L; Ag nov) [19, Section 6], [16, Corollary 5.4.6,
Theorem A]. The potential function is defined from the space of weak
bounding cochains M(L) of L to Ag. We refer the reader to [16-19] for the
definition.

Suppose we are given an compatible almost complex structure Jy for
which (X, L, Jy) satisfy:

Assumption 2.1. Let 8 € my(X, L). Assume that:

(Ay) If 5 is represented by a non-constant Jy-holomorphic disk, then ur(8) >
2,

(A2) Maslov index 2 Jp-holomorphic disks are regular,

where py, is the Maslov index.

Throughout the paper we say an almost complex structure J is regular
if it satisfies assumption (Az).

An almost complex structure satisfying Assumption [2.1] automatically
satisfies [I9, Condition 6.1], hence by [I9, Theorem A.1, Theorem A.2] there

is an embedding of H'(L, Ag) into M(L) and restricted to H'(L,Ag) the
potential function POT is so that

(2.1) mg (1) = PO (b)q[L],
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where

(2.2) mf(1) =Y my(b,...,b)
k=0

= > ¢OPTLY exp(b N 0B)evos([441(B))).
Bema(X,L),
pr(B)=2

Here [.#,(5)] is the (virtual) fundamental class of the moduli space of
J-holomorphic disks in the class 8 with 1 marked point and evg : .#1(8) — L
is the evaluation map.

Using a notation closer to [2), B] we define for 5 € mo(X, L):

(2.3) 23(L,b) = T)s“ exp(b N ).

Letting 73 be the degree of evq : #1(3) — L, we can write:

(2.4) POL(D) = D mpzs(L,b)
Bem(X,L),
pr(8)=2

We want to consider the Floer cohomology of L bulk-deformed by a
class b = T*[s] € H*(X,Ay) [17). The potential function will depend on the
cocycle b € C?(X, L;Z), even though the Floer cohomology doesn’t. Since
we use a cocycle in degree 2 (Poincaré dual to a cycle of codimension 2) the
degree of the bulked deformed A maps m} [I7, (2.6)] is unaffected by the
bulk and the bulk deformed potential is given by:

(2.5) BOY(B) = Y mgexpl(s N B)T?)zs(L,b),
Bems(X,L),
pr(8)=2

where b € H'(L, Ap), is a weak bounding cochain for the curved A, algebra
(H(L,Aonov), {mf}), with
(2.6) mg(1) = " mi(b,...,b) = PO (b)a[L)-

k=0

The fact that b € H(L, Ag) is a weak bounding cochain for

(H(L, o), {m{})



Continuum families of non-displaceable Lagrangian tori 865

implies that we can define a (not curved) A algebra (H (L, Ao nov), {mZ’b ),
where

(2.7) mp®(z1,..om) =y mi(b,... bywr,b,. .. bwa,b, .. b wp, b, b).
j=0

In particular,

(2.8) (my®)? =0
b

2.9 mb,b mb,b z,y)) = :Emb’b m b,b b,b
1 2 2

PO (2),y) £ my" (@, m)* (y)).
Definition 2.2. We define the bulk deformed Floer cohomology:

ker(ml{’b)
(210) HF(L, (b, b), AO,nov) = TN

im(mjy

~—

Remark 2.3. Strengthening Assumption to assume regularity of holo-
morphic disks with Maslov index smaller than n — 1, one should be able to
define the Floer cohomology using the Pearl version [4], and analogously
define its bulk-deformed version, which should be isomorphic to the one in
Definition In that framework, the proof of Leibniz rule follows the
same ideas as [6, Theorem 4].

By the work of Fukaya-Oh-Ohta-Ono, we have:

Theorem 2.4 ( Theorem G [16], Theorem 2.5 [17]). If¢: X — X is
a Hamiltonian diffeomorphism, then the order of ¥ (L) N L is not smaller
than the rank of HF (L, (b, 5); Ao nov) @Ag e Anov-

We would like to point out that the product mgb can be thought as
deformation of the cup product in the sense that for x,y € H(L, Ap) of pure
degrees |z| and |y],

(2.11) mg’b(x, y) = x Uy + other terms

where x Uy comes from counting constant disks and the other terms
is a sum of elements of degree smaller than |z| + |y| in H (L, Agnov), since
it comes from evaluating moduli spaces .#}, ;11(8) to a cycle of dimension
2| + |y| — pr(B) and (X, L, J) satisfies Assumption [(4;)]

The following Lemma is well established for the monotone case in [6],
and in the general case in [19].
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Lemma 2.5 (Theorem 2.3 of [19]). Take (X,L) satisfying Assump-
tion |2.1. Also assume that H(L, Ao) is generated by H' (L, Ao) as an algebra

P L —

with respect to the classical cup product. If ml{’b|H1(L’A0mv) = 0 then mli b=

Proof. First we point out that ml{’b‘HO(LV/\O,nOU) = 0. Since H (L, Ay) is gener-
ated by H(L,Ag) with respect to the cup product, we only need to show
by induction on the degree that for = and y of pure degree |z| > 1, |y| > 1,
mli’b(:c Uy) =0, if ml{’b(z) = 0 for all 2, such that |z| < |z| + |y|. Using (2.11)),

ml{’b(:c Uy) = m?’b(mg’b(m, y)) — ml{’b(other terms) =0

by induction hypothesis and using the Leibniz rule (2.9). O

Remark 2.6. Lemma strengthen the result of [16, Theorem 6.4.35]
and [0], showing that the minimal Maslov number My, of any Lagrangian
torus L (or any orientable Lagrangian such that the cohomology ring is
generated by H') in C" is 2, provided T satisfies Assumption for some J.
That is because the Lagrangian is orientable and HF (T, (b,b); A) = 0 (from
Theorem since T is displaceable), so there must be a Maslov index 2
disk. The inequality 2 < My <n + 1 was proven in [16, Theorem 6.1.17],
for any spin Lagrangian L C C" satisfying Assumption [2.1} via the use of
spectral sequence.

Definition 2.7. Take (X, L) satisfying the assumptions of Lemma
Assume that m(L) = H1(L,Z) and m2(X, L) = m(X) & Hi(L,Z). So, we
are able to write the Potential function in terms of z; = zg,, for some
Biy-..,Bn € ma(X, L), where 91, ...,008, is a basis of Hy(L,Z). We say that
bis a critical point of POL(b) if:

OO (b)
Zi
ﬁzi

Corollary 2.8 (Theorem 2.3 of [19]). Take (X, L) satisfying the as-
sumptions of Lemma and Definition|2.7. If b is a critical point of POE(b)
[.5) for b =T°[s] € H*(X,Ay), then HF(L, (b,b); A) = H(L; \).

= 0.

Proof. Take a basis x1,...,z, a basis of H1(L,Z). Let
617 cet 7ﬁn € 71'2(X, L) = 772(X) @ Hl(va)7

be so that d8; = x; € Hy(L,Z) and write the Potential BOE(b) ([@2.5) in terms
of i = ZB;-
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Since s is of degree 2, we have that m?’b(a) for 0 € H'(L,A), only counts
contributions of Maslov index 2 disks. A Maslov index 2 J-holomorphic disk
in the class f =~y + k181 + - - + knfBn, 7 € m2(X) contributes to m?’b(a) as

S kilo N ai)ng expl(s N B)TIT 2k . ke

(2

Summing all contributions of Maslov index 2 J-holomorphic disks we
have:
PO (b)
b,b
m; (o) =0N % Z; <zz 8;;

Therefore, if b is a critical point of POL(b), we have that ml{’b|H1(L7A) =0
and by Lemma [2.5 ml{’b =0, s0 HF(L, (b,b); Ao nov) = H(L; Aonov)- O

3. Regularity Lemma

We now move to the Kahler setting and we discuss a Lemma that we will
use to prove regularity for Maslov index 2 disks with boundary on ©7 with
respect to the standard complex structure in (CP!)". The following definition
is inspired in [I3] Definition 1.1.1].

Definition 3.1. Let L be a n dimensional Lagrangian in a Kahler manifold
X. Assume that K is a Lie group of dimension n — 1 acting Hamiltonianly
and holomorphically on X preserving L. Assume that the action restricted
to L is free. Then we say that (X, L) is K-pseudohomogeneous.

We get then the following Lemma:

Lemma 3.2. Let (X, L) be K-pseudohomogeneous, for some Lie group K.
If u is a Maslov index 2 holomorphic disk such that Ou is transverse to the
K-orbits, then u is reqular.

The proof of the above Lemma relies on the Lemmas below, very similar
to [25, Lemmas 5.19, 5.20].

Lemma 3.3. Letu: DD — X be a Maslov index 2 disk in a Kdhler manifold
X of complex dimension n with boundary on a Lagrangian L. Assume that
ujgp s an immersion. Call W = du(r9/00) a holomorphic vector field along
u vanishing at 0 and tangent to the boundary. Assume also that there exists
Vi, ..., Va1 holomorphic vector fields in w*TX such that W AVE A+ A
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Vi—1 # 0 along the boundary of w. Then u is an immersion and no linear
combination of the V;’s is tangent to u(D).

Proof. Up to reparametrization, we may assume du(0) # 0. The result follows
from the fact that the zeros of det*(W AVy A---AV,_1) computes the
Maslov index, which is assumed to be 2. So W AV A--- AV,_1 can only
vanish once (with order 1). Since W already vanishes at 0, we cannot have
either du(z) = 0 or a linear combination of the V;’s being a complex multiple
of W. 0

Lemma 3.4. Letug, . g, , be ann — 1 dimensional family of Maslov index
2 holomorphic disks in a Kdhler manifold X of complex dimension n, 6; €
(—e,€). Ifu:=up, o and V; := g—g satisfy the hypothesis of Lemma then
u 18 reqular.

Proof. Tt follows similar arguments as in [25, Lemma 5.19]. Using Lemma
3.3 we are able to split u*TX =TD & £1 @ --- @ £, as holomorphic vector
bundles where £; is the trivial line bundle generated by V;. Also, ur‘aDTL =
TOD @ Re(£1) & --- ® Re(L,). As in [25, proof of Lemma 5.19], we see that
the kernel of the linearised 9 operator is isomorphic to

n—1
TiaAut(D) @5 hol((D, oD), (C, R))
=1

Hence the kernel has dimension n + 2 = n + pen(u) = index. O
We proceed to:

Proof of Lemma[3.3 Since the K action is holomorphic and du is transverse
to the K-orbits, we can build ug, . g, from a neighbourhood of Id € K,
satisfying all the hypothesis of Lemma [3.4] O

4. The Lagrangian tori OF

In this section we give an explicit description of the tori ©7 and of its
potential function, which encodes the number of Maslov index 2 disks that
©? bounds. For a definition of the potential, we refer the reader to [14]
Section 4],[16]. See also the definition of superpotential in [3, Section 2.2].

The tori ©F appears as fibres of a singular Lagrangian fibration analogous
to the one described in [3, Example 3.3.1].
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4.1. Definition of ©F

Consider (CP!')"™ with the standard symplectic form, for which the sym-
plectic area of each CP! factor is 1. For 1 <1i < n, let [z; : y;] denote the
i-th coordinate of (CP)". Consider the function f = H 2 defined from
the complement of V = U”{azZ =0} N {y; =0} to CP1, Whose fibres are
preserved by the 77! action given by

(4.1) 01,y 0n—1) - ([x1:y1]s oy [Tn=1: Yn—-1]s [Tn : Yn))

([691$1 yl]v RN [ei0n71$n717 ynfl]’ [e_izj ejxn : yn]);

and m : (CPYH)™ — R ! its moment map.

Definition 4.1. Let v be an embedded circle on C*, not enclosing 0 € C,
and A € R"~!. Define the ©"-type Lagrangian torus:

"y =A{z € (CPY"\V; f(z) € yv,m(z) = A}

Noting that m~1(0) = {|z;/vi| = |70 /yn|, Vi = 1,. — 1}, one can see,
by using the maximum principle, that ©F ; bounds only one (n — 1)-family
of holomorphic disks that project mJectlvely to the interior of . Call 3, €
mo((CPH™, " o) the class represented by each of the above disk. We note that
there are n disjoint holomorphic disks in the class 3, inside the line A = {[z; :
Yi) = [&n 1 yn), Vi =1,...,n — 1}. Since [, w = n, we see that fﬂvw € (0,1).

Foliate C \ R<q by curves ~,, s € [0, 1) so that 7 is a point, say 1 € C,
and for s € (0,1), s is an embedded circle so that fB% w = Ss.

Definition 4.2. Define the Lagrangian torus O3 to be ©F ,

The hamiltonian isotopy class of ©F, does not depend in the curve ~s
inside C \ R<q, but only on s = f w.

Consider the divisor D = f ( )U;{ys = 0} and the holomorphic n-
form Q = ([[, #; — 1)"'dz1 A - -+ A dzy, defined on (CP')" \ D, in coordinates
charts y; = 1.

Proposition 4.3 (Auroux). The tori ©F are special Lagrangians [2, Def-
inition 2.1] with respect to €2

Proof. See [3, Example 3.3.1] and [2, Proposition 5.2]. O

Also, we clearly have:
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Proposition 4.4. We have that ((CPY)", O7) is T -pseudohomogeneous,

for the action (4.1)).

4.2. The Potential of @?

We come back to our Lagrangian tori ©7. We would like to describe the
potential PO in coordinates of the form with respect to a nice basis
for mo((CPY)™,07). Fix a point as € vs. Consider the S! action given by
the i-th coordinate of the 7"~ ! action described in . Take the orbit
lying in ©" N f~!(a,) and consider its parallel transport over the segment
[0,as], formed by orbits of the considered S' action that collapse to a
point over 0, giving rise to a Lagrangian disk. Define o; € m(©7, (CPH)™)
to be the class of the above disk. Also, from now one we write 5 = 3,
and H; = p;[CP!] € my((CPY)™) the pullback of the class of the line by
the i-th projection. Note that 8,1, ...,an—1, H1,..., H, are generators of
mo((CPY)™, 7). We assume that our monotone symplectic form is so that
f W= 1.
Set u = zg and w; = 2q,, 1 € (1,...,n — 1). Note that

2, (V') = Tm exp(bn 0H;) = T.

Proposition 4.5 ([2, B]). The potential function encoding the count of
Maslov index 2 holomorphic disks with boundary on the Lagrangian tori ©F
(for some spin structure) is given by

n T 1 1
(4.2) ‘BDGS:u+(1+W1+---—|—wn1)<1+—I—-'-—i— )
U w1 Wp—1

Idea of proof. First we consider positivity of intersection of an holomorphic
disk with the complex submanifolds {x; = 0}, {y; = 0}, {[[, z: =[], v}, for

all i € (1,...,n), to conclude that Maslov index 2 classes admitting holo-
morphic representatives must be of the form 3, H; — 38 — a; + «j, where
i,7=1,...,n and a, = 0. Computations of the holomorphic disks and their

algebraic count can be done explictly. We omit here since it follows a straight-
forward procedure as in [2, Proposition 5.12], see final remark after Proposi-
tion 3.3 in [3]. See also [25], Section 5] for similar computations.

We can choose a spin structure so that every disk counts positively, i.e.,
evg : A1 — OF is orientation preserving, e.g. by choosing a trivialisation
of TO? using the boundary of {ay,...,a,_1, 5}, as spin structure. See [25]
Section 5.5] and [8, Section 8], for a complete discussion in a similar scenario.

O
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Remark 4.6. The potential of ©F can be obtained from the known potential
for the Clifford torus, xSelq. It is given by
n

. T T
(,BDChf:Zl+"‘+2n+7+"'+7‘
21 Zn
We obtain the potential for ©F via wall-crossing transformation u = z, (1 +
wy + - Wp—1), W = 2i/zp. See  [3, Example 3.3.1].

Proposition 4.7. The tori ©F satisfy Assumption with respect to the
standard complex structure of (CPY)™.

Proof. To prove Assumption |(A;)| we use similar argument as in [2, Exam-
ple 3.3.1]. First we use that O7 are special Lagrangians, and hence, by [2]
Lemma 3.1], the Maslov index is twice the intersection with the divisor D.
This shows that pe»(8) > 0, V3 € ma((CP')", ©F) represented by an holo-
morphic disk u. Now, if u is a Maslov index 0 holomorphic disk, then f ow is
well define and lies in C \ {1}, hence it is a constant in ;. Since the regular
fibres of f are diffeomorphic to (C*)"~!, we have that wu is itself is constant.

The proof of Assumption follows from ((CP)", ©") being T 1-
pseudohomogeneous together with Lemma We just need to check that
since the T~ '-orbit in O7 is generated by Oc;, therefore transverse to the
boundary of the Maslov index 2 disks with boundary in ©%, whose relative
homotopy classes are 8 and H; — f — a; + aj, 7,5 =1,...,nand o, =0. [

4.3. Regarding Proposition and Conjecture

We start noting that Maslov index 2 classes in Ha((CP)™,©%;7Z) are of the
form

(4.3) 8+ kl(Hl — 25) —+ -+ ]{n(Hn — 25) +lhoar+ -+ 10,1,
where [ is the Maslov index 2 and «; the Maslov index 0 classes de-
scribed in Section viewed in Hy((CPH™, O7;Z) via m((CPH™, O7) —

Hy((CPY)™, 07, Z). Recalling that fH w =1 and f w = 0, we see that area
of Maslov index 2 disks belongs to {s + (1 — 2s)Z} C R.

Proof of Proposition[1.J, We note that each torus

@’;11 X oo X @Z X (Selq)”_zi ki
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bounds a disk of Maslov index 2 and symplectic area 1/2,ifn > ). k;, coming
from a Maslov index 2 disk in the last CP?! factor, with boundary in its equator
Sty We see that 1/2 is in {s + (1 — 2s)Z} if and only if s = 1/2. This rules
out the possibility of ©% x ... x @k x (Séq)"_zi ki being symplectomorphic
to ©F for s # 1/2.

For s =1/2 the torus O is monotone, hence the Maslov index 2 J-
holomorphic disks becomes an invariant of its symplectomorphism class —
this was first pointed out in [I0], see also [25, Theorem 6.4]. This invariant
allows us to distinguish between (the symplectomorphism classes of) ©7 and
O x .. x ©F x (qu)"*zi ki, For instance, one could look for pairs (o1, 9)
of (relative homotopy classes represented by) Maslov index 2 holomorphic
disks with 001 = —0o3. For the torus ©F, we must have do; = £090, i.e.,
only one possibility for do; modulo sign, see Proposition But for each
torus ©F x .- x OF x (Séq)”*zi ki we have more than one possibility for
0o;, modulo sign. O

Remark 4.8. Note that, by Proposition the total number of Maslov
index 2 holomorphic disks with boundary in ©7 is 1 + n?, while for the tori
Ot x -+ x OF x (S 2k it is iy (14+k7) +2(n = 3i_y ki) = 2n+
Zﬁzl(ki — 1)2. Hence they can be equal if (n — 1)% = Zé:l(ki —1)2

Remark 4.9. The above argument also proves the monotone version (s =

1/2) of Conjecture

We proceed now to show that holomorphic disks with boundary in O
with Maslov index bigger than 2 have area bigger than a =1 — s — the
minimal area of Maslov index 2 holomorphic disks for s > 1/2.

Proposition 4.10. For k>0 and s € [1/2,1), the area of holomorphic
Maslov index 2k disk with boundary on O is least 1 — s, with respect to the
standard complex structure in (CPY)". The minimum only occur if k = 1.

Proof. Maslov index 2k disks are in relative classes of the form
(4.4) kB + k‘l(Hl — 25) + -+ k‘n(Hn — 2ﬁ) +lar+ -+l 1o, 1.

If they are represented by holomorphic disks, their intersection with

the divisors {y; = 0} and {[[_; x; = [[;—, vi} = {f~1(1)} is non-negative —
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recall from Definitions (.1} [£:2] that 1 is in the interior of v C C*. Noting that

B-Ayi=0}=0, a;-{y;=0}=0, H; {yi=0}=70y,

and
gAY =1, - {1} =0, H- {11} =1,
1,7 =1,...,n, we get that

n
ki>0Vi=1,...,n and k—) k >0.
=1

The result follows from taking the symplectic area of (4.4]), which is

ks—l—zn:k:i(l—Qs) =s (k;—zn:k@> +(1-s) (ih)
i=1 i=1 i=1

O

As pointed out before the above Proposition allows us to argue why
Conjecture holds, using [23, Proposition 5.1]. Indeed, for s > 1/2, the
number of Maslov index 2 holomorphic disks with boundary in ©7 and with
minimal area a = 1 — s is n?, by Proposition Hence the number of Maslov
index 2 disks with boundary in ©% x --- x ©% and with minimal area is at
most ZZ L K? (Zizl ki)? =n?, for | > 1.

5. Proof of Theorem [1.1 — Bulk deformations

In this section we use bulk deformations to prove that the tori ©% are non-
displaceable for n even and s € [1/2,1), as done in [19] for the case n = 2. In
[19], Fukaya-Oh-Ohta-Ono used the cocycle Poincaré dual to the anti-diagonal
in CP! x CP! to bulk-deform Floer-homology. In this section we will bulk-
deform Floer-homology by an element of the form T?[h] € H*((CPY)", A.),
where [h] € H2((CPYH)", Z).

For 1 < i < n, let h; be the cocycle Poincaré dual to {y; = 0} C (CP')".

Proposition 5.1. The potential for the Lagrangian tori ©F, bulk deformed
by the cocycle

b=T°[(k1 4+ kn)hy + -+ (kn1 + kn)hn1 + knhn] € C2((CPYH)™, AL)

s given by
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ele”

or T ehnaT" ,
mgbs(b):u+u(1+w1+...+wn_1)<1+ 4+ 4+ >€knT

w1 Wn—1

Proof. The relative classes 3, o have no intersection with {y; = 0} viewed
as a cycle in (CP1)™\ ©7. Therefore the disk in the class H; — 8 — o; + a;
intersect {y; = 0} if and only if k¥ = ¢, and with multiplicity 1. Hence, the
coefficient of the monomial 7w; /uw, is bulk-deformed by b to etk k)T [

Lemma 5.2. The potential for the Lagrangian tori OF, bulk deformed by
the cocycle

b="T°[(ki + kp)hi 4 -+ (kn1 + kn)hn_1 + knhy] € C2((CPYHY™, AY)

have 1its critical points given by:

kn

n—1
kip knpp 1 kirpp
wi:eie2T, uzenezTT2 l—i—E eiezT ,
i>1

where ¢, = £1.

Proof. For easier notation, let b; = e*1”. Taking the differential of the bulk
deformed potential mDSS (b) with respect to w; and equating to 0, we get,
after multiplying by w;, equations

Y - bjwi 1 wi | _
g j#i

Summing all the equations (1),...,(n), we end up with

n—1 n—1 b

(2

2 wim D, =0

=1 =1
Let

n—1 n—1 b:
(2
1=

i=1



Continuum families of non-displaceable Lagrangian tori 875

We have that

Substituting the above into equations (z) (see (5.1))), we get that

(5.2) <wi - bi) (1+L)=0

(2

So if w,wi,...wy_1 are critical points of the bulk deformed potential
8]353?5 (b), besides equation (5.2]), we must have

b, T
(5.3) 0PO, =1 - "5 (1+L)* =0

Hence L # —1, and therefore

n—1
wi = Vb = e 3T u= b T3(1+ L) = e T T3 (143 ed T
i>1

O

We call the valuation of an element in Ay the smallest exponent with
non-zero coefficient. Looking at the expression of the critical points of the
previous Lemma, one can see that:

Lemma 5.3. Looking at the critical points given on Lemma |5.4 we have
that, the valuation of u is not 1/2 if and only if n = 2m and m — 1 ¢;’s are

equal to 1 while the other m €;’s are equal to —1, where i =1,...,2m — 1.
In that case, the valuation of u is TV/?*P, provided 222;”1_1 eik; # 0.

Now we recall that
u=2z3=T%exp(bNap)

for the class 8 defined in the beginning of Section By Lemma [5.3] we
have:
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Corollary 5.4. Take s > 1/2 and consider the cocycle by = T V/2[(ky +
kom)hi + -+ (k2m—1 + kom)hom—1 + kamhom] € C2((CPY)?™ AL). Assume
that not all k;’s are 0, fori=1,...,2m — 1, i.e., [bs] is not a multiple of the
monotone symplectic form. Then there exists bs a critical point of ‘BD?}m.

Recalling that ©2™ satisfy Assumption (Propositions , for some
almost complex structure .J, and noting that ©2™ is a contractible Lagrangian
torus of (CP1)?™ we have that ((CP1)?™ ©2™) satisfy all the hypothesis of
Corollary Therefore, from Corollaries [2.8 and we deduce:

Theorem 5.5. For s > 1/2 there exists a bulk [bs] € H*((CPY)?*™,AL) and
a weak bounding cochain by € H(©2™ Ag) such that

HF(sza (bs> bs)? AO,nov) = H(@gm, AO,nov)'

This proves the first part of Theorem Theorem follows from
Theorem 2.4l and Theorem 5.5l [
Corollary follows from the same arguments as above using that

—Zi kj

O8] X xOb! x (82"~ ki el ol (82"
PO, l = PO, " + -+ PO, + PO,

6. Quasi-morphisms and quasi-states

In this section we prove the last part of Theorem It follows arguments
similar to [I8, Theorem 23.4].

Lemma 6.1. For any
b=TP[lihy + -+ lo—1hn—1 + lnhy) € C((CPYH™ AL),
the bulk deformed Quantum cohomology [18, Section 5] is semi-simple.

Proof. By [20, Theorem 1.1.1] (see also [14, Theorem 6.1], for the Fano case)
we have an isomorphism between the bulk deformed Quantum cohomology
of a toric symplectic manifold and the Jacobian Ring of the bulk deformed
toric potential. If the bulk deformed toric potential has only non-degenerate
critical points, we can split the Quantum cohomology ring into orthogonal
algebra summands according to the factors corresponding to the critical
points under the isomorphism given in [20, Theorem 1.1.1].
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Naming now z; = z, (2.3)), for 3; the class of Maslov index 2 holomorphic
disk intersecting {x; = 0}, we have that the bulk deformed potential of a
toric fiber is:

Teh™” Tel1"
(6.1) POy =21+ + 2, + + 4 ,

Z1 Zn

whose critical points are given by
(s1vees2a) = (@TV2ETI2, e T2,

Hence, there are 2" idempotents of QH[,((CPI)”;A[),”OU), el, ..., e5, for

which
2"1

QHb (((Cpl A0 nov @ A0 nove
O

In [18, Section 17, (17.18)], given X a symplectic manifold and L a
relatively spin Lagrangian submanifold, Fukaya-Oh-Ohta-Ono construct an
homomorphism:

(62) i;:m,(b,b) : QH[,(X, AO,nov) — HF(L, (b, b), AO,nov)a

which is proven to be a ring homomorphism in [I], see [I8, Remark 17.16]
and [I5, Section 4.7].

Applying Lemma for (CP')?™ and by given in Theorem using
that z m (bs,6.) is unital and HF(©2™, (b, bs); Agnov) # 0, we have:

Proposition 6.2. There exists an idempotent es € QHp, ((CPY)?™; Ao nov)
for which i:;m,(bs,bs)(es) #0 in HF(©2™ (bs, bs); Ao nov)-

Theorem [I.6] follows then from Proposition [6.2] and Theorem 18.8 of
[18]. O

7. Tori in CP?#3CP2?
In this section we prove Theorem We will describe a model for
(CP?#3CP2?,w,.) = (CP' x CP'#2CP2,w,)
which is equivalent to performing two blowups of capacities € centred at the

rank 0 elliptic singularities (corners) of the singular fibration of CP! x CP!
described in [19], see Figure
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CP243CP

52

2 — 2¢

Figure 1: Singular fibrations of CP! x CP! and CP?#3CP?2.

Consider CP! x CP! with coordinates ([z1 : 1], [z2 : y2]) as in Section
Consider also the tori @2, the function f = z1x9/y1y2, the relative class 3
and « := a1 and the divisor D = f~1(1) U {y1 = 0} U {y2 = 0}, as defined
in Section

From Proposition and [2, Lemma 3.1], we have that 2[D] € Hy(CP* x
CP'\ ©2) is Poincaré dual to the Maslov class pe: € H*(CP' x CP',0?).
In particular the Maslov index 2 holomorphic disks, computed in Proposi-
tion. for n = 2, do not intersect f~1(1)N{y; =0} = ([1:0],[0:1]) =p;
and f1(1) 1 {y = 0} = ([0 1],[1: 0)) = ps.

Let B;(e€) be the ball of capacity [21], Section 12] € (radius y/¢/7) centered
at p;, in the coordinate plane x; =1, y; =1, 4,5 = 1,2, ¢ # j. Denote S;(e) =
OB;(¢). Let (CP?#3CP2,w,) be the result of blowing up [21, Section 7]
CP! x CP" with respect to By(e) and Ba(e), so that the exceptional curves
E; (coming from collapsing the Hopf fibration in S;(€)) have symplectic
area we(F;) =€, i =1,2. Let j. be the induced complex structure and L
correspond to ©2 after the blowup. Note that € can take any value in (0, 1),
so that By(e) N Ba(e) = 0.

Note also that f = z1x2/y1y2 is constant along the fibers of the Hopf
fibration of both Si(€) and S2(e). In particular it give rise to a (je, j)-
holomorphic function f : CP243CP2 — CP!.

For computing the potential for Lf it is interesting that the disks of Propo-
sition [4.5] remain essentially the same. This can be obtained by stretching the
complex structure je. So take ¢ small enough so that B;(d) U Ba(J) does not
intersect any Maslov index 2 holomorphic disk. Consider a diffeomorphism
¢ : (CP?2#3CP?%,w.) — (CP?*#3CP2,ws) coming from a finite neck stretch
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[5,19] along S;(e + &) € (CP2#3CP2,w,) [5, 9], see also [26] Section 3], which
sends L to L5 The diffeomorphism ¢ is equivalent to considering an inflation
along the exceptional curves F;, ¢ = 1,2. Set Js = ¢*j5, an w, compatible
almost complex structure.

Lemma 7.1. We have that (CP2#3CP2, LS, Js5) satisfy Assumption .
The potential function for L with respect to Js, is given by:

(7.1) pOL: :u—l—z(l—i-w) <1+1> + T <w—|—1>
u w w

Proof. 1t is enough to compute the js-holomorphic disks with boundary in
Lg. The js-holomorphic disks that don’t intersect the exceptional divisors
E4, Es, corresponds to the holomorphic disks in CP! x CP! with boundary
in ©2, which gives the terms

u—i—%(l—i—w) <1+;>

of ‘BDL and are regular.

Let D be the proper transform of the divisor D € CP! x CP'. 1t can be
checked that, twice D+ FEy + E5 is Poincaré dual to the Maslov class Ls-
This implies Assumption as in the proof of Proposition Moreover,
Maslov index 2 disks intersects D + E; + E9 once. Which means that if a

js-holomorphic disk u intersects either 7 or Eo, by positivity of intersection,
it does not intersect D and hence f ou: D — C* must be constant. There
are two Maslov index 2 disks in the fiber f L(¢), for ¢ € v,. Looking at the
intersections with Fj;, and the proper transform of {z; = 0} and {y; = 0},
we can see that the relative classes of these disks are H; — F7 + « and
Hy — E5 — « (for some orientation of «). Since, we(H; — E; £ a) =1 — €, we

get the remaining term
1
T (w + ) .
w

To show regularity of the above disks, one notes that the pre-image under
f of a small neighbourhood N of v, contain the whole family of the above
disks and is actually toric. Moreover, (f~'(N,), L?) is T?-homogeneous [13],
or if you will, S*-pseudohomogeneous (Definition for a js-holomorphic
Sl-action transverse to da, which shows Assumption

The choice of spin structure is given by trivialising T'L¢ according to
{a, 5} and is so that the evaluation map is orientation preserving, as in the
proof of Proposition See also [25], Section 5.5] and [8, Section 8§]. O
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Remark 7.2. The above potential can also be computed by a technique
similar to the one developed in [19] and also by some gluing procedure similar
to the one developed in Section 5.2 of the arXiv.1002.1660v1 version of
[19] and in [2§].

Remark 7.3. For each ¢’ > 0, the family {LS : s € [1/2,1 — §’]} can be seen
as fibres of an almost toric fibration (ATF) of CP2#3CP2, represented by
an almost toric base diagram (ATBD) analogous to the one in Figure 9 (As3)
of [27]. In fact, the singular fibration described by the second diagram in
Figure [1] can be thought as a limit of ATFs described by sliding nodes of
the ATBD in Figure 9 (As) of [27]. Moreover, the potential POL: can be
obtained from the toric potential

: T T Tl Tl
POWIC = uy +up + — + — + -+ 2,
(75} u9 u9 (51

via wall-crossing transformation u = u; (1 + w), w = ua/uy, giving another
example where actual computations meet wall-crossing predictions [2] [3] 25].

Let s € C?(CP?#3CP?) be the cocycle Poincaré dual to {y; =0} U By,
so [s] = Hy — F2 + E;. Analogous to Proposition we have:

Proposition 7.4. The potential for L, bulk deformed by the cocycle b =
Trs € C?(CP2#3CP2, A,) is given by:

e T o1 o 1
(7.2) ‘BD&S =u+— (14 w) <€T + > + 71 <eT w+ ) )
u w w
We can then compute the critical points of ‘435352 and obtain:
Lemma 7.5. We have thatw = —e 5~ andu = +7T2(1 — e#)%(ew*e?)%

are critical points of ’BD?Z. The valuations of w and u are respectively 0 and
1/2 + p.

Since we have that fﬁ we =5 and [ we=0:

Lemma 7.6. For s > 1/2 and b = T~ /2[s], there exists a weak bounding
cochain bS € HY(LE, Ag) which is a critical point of ‘BD&E.

Following similar arguments as in Sections [§| and [6] we are able to prove
Theorem [1.12| and consequently Theorem [1.10 g
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