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Hamiltonian loops on the symplectic

one-point blow up

Andrés Pedroza

We lift a loop of Hamiltonian diffeomorphisms on a symplectic
manifold to loop of Hamiltonian diffeomorphisms on the symplec-
tic one-point blow up of the symplectic manifold. Then we use
Weinstein’s morphism to show that the lifted loop of Hamiltonian
diffeomorphisms has infinite order on the fundamental group of the
group of Hamiltonian diffeomorphisms of the blown up manifold.

1. Introduction

The rational homotopy type of the group of Hamiltonian diffeomorphisms
of the symplectic one-point blow up (M̃, ω̃ρ) of weight ρ is known for only
a special class of symplectic manifolds. In [1], M. Abreu and D. McDuff
computed the rational homotopy type of the group of symplectic diffeomor-
phisms of the symplectic one-point blow up of (CP 2, ωFS) In [4], F. Lalonde
and M. Pinsonnault computed the rational homotopy type of the above
group for the one-point blow up of (S2 × S2, ω ⊕ µω) for 1 ≤ µ ≤ 2; and in
[9] M. Pinsonnault worked out the case of the one-point blow up of rational
ruled symplectic 4-manifolds; see also [2]. The case of multiple points blown
up simultaneously has also been considered. J.D. Evans [3] considered the
group of symplectic diffeomorphisms that act trivially on homology for the
case of (CP 2, ωFS) blown up at 3, 4 and 5 generic points. The reason that all
the above examples are in dimension 4, has to do with the special behavior
of holomorphic curves in 4 dimensional symplectic manifolds. Apart from
these cases, only partial information is known about the homotopy type of
Ham(M̃, ω̃ρ). For example in [5], D. McDuff showed that if the Hurewicz
morphism π2(M)→ H2(M ;Q) is non trivial then there exists a non trivial

morphism π2(M)→ π1(Ham(M̃, ω̃ρ)).

In this paper we will focus on determining that π1(Ham(M̃, ω̃ρ)) is non
trivial for some particular class of symplectic manifolds (M,ω). Moreover,

the way that we show that π1(Ham(M̃, ω̃ρ)) is non trivial is by considering
a particular class of loops of Hamiltonian diffeomorphisms in Ham(M,ω),
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lift it to a loop in Ham(M̃, ω̃ρ) and then use Weinstein’s morphism to show
that is not null homotopic. What is surprising is that in some cases a non
constant null homotopic loop in Ham(M,ω) lifts to a loop that is not null

homotopic in Ham(M̃, ω̃ρ).
To be more precise about our statements, fix a base point x0 ∈M and

a symplectic embedding ι : (Bρ, ω0)→ (M,ω) of the closed ball of radius ρ
in (R2n, ω0) such that ι(0) = x0. Relative to the embedding ι we have the

symplectic one-point blow up (M̃, ω̃ρ) at x0 of weight ρ and the blow up map

π : M̃ →M. In Section 2 we review the construction of the symplectic one-
point blow up. Denote by HUρ the subgroup of Hamiltonian diffeomorphisms
ψ of (M,ω) such that

a) ψ(x0) = x0, and

b) ψ acts in a U(n)-way in a neighborhood of ιBρ.

(When we say that ψ behaves in a U(n)-way, we mean with respect to the co-
ordinates induced by the symplectic embedding.) Let HUρ,0 be the connected

component ofHUρ that contains the identity map and Φρ : HUρ → Ham(M,ω)
the inclusion morphism. It is well known that a diffeomorphism ψ that fixes
the base point x0 and behaves in a U(n)-way near ιBρ induces a unique

diffeomorphism ψ̃ of the one-point blow up M̃ such that π ◦ ψ̃ = π ◦ ψ.
In this case we say that ψ̃ lifts ψ. Now consider the symplectic structure
in the process of of lifting diffeomorphisms; in Section 3 we show that ψ̃
is symplectic if ψ is symplectic; moreover if ψ ∈ HUρ,0 then ψ̃ is a Hamil-

tonian diffeomorphism of (M̃, ω̃ρ). This gives rise to a group morphism

Ψρ : HUρ,0 → Ham(M̃, ω̃ρ) that consist of lifting a Hamiltonian ψ of (M,ω) to

a Hamiltonian ψ̃ of (M̃, ω̃ρ). Notice that elements in the image of Φρ are the

ones that lift to Hamiltonian diffeomorphisms of (M̃, ω̃ρ) via the morphism
Ψρ. The map Ψρ is known to be a homotopy equivalence in some cases [4];
for example in the case (S2 × S2, ω ⊕ µω) for µ ≥ 1 and 0 < ρ < 1. Indeed,
this is part of the argument that F. Lalonde and M. Pinsonnault use in
the computation of the rational homotopy type of the group of Hamiltonian
diffeomorphisms of the one-point blow up of (S2 × S2, ω ⊕ µω).

Now consider the induced maps Φρ,∗ and Ψρ,∗ on fundamental groups.
Thus we are interested in the image of Φρ,∗ : π1(HUρ,0)→ π1(Ham(M,ω)).
Contrary to the case when the lift of a single Hamiltonian diffeomorphism is
unique, the lift of ψ = [{ψt}] ∈ Im(Φρ,∗) to π1(Ham(M̃, ω̃ρ)) is not unique.

The way to single out one element in π1(Ham(M̃, ω̃ρ)) when ψ is in the image
of Φρ,∗ is by fixing a representative {ψt} of ψ in HUρ,0. In other words the map
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Φρ is injective, but the map Φρ,∗ is not necessarily injective. Once we fixed

a representative, by Proposition 3.7 we obtain a loop {ψ̃t} in Ham(M̃, ω̃ρ)

and define the lifted element as ψ̃ := [{ψ̃t}].

π1(HUρ,0) π1(Φρ(HUρ,0)) ⊂ π1(Ham(M,ω))

π1(Ham(M̃, ω̃ρ))

�
�

�
�
�

�
�

��+

-

?

Ψρ,∗

Φρ,∗

The argument we use to show that a Hamiltonian loop is not null ho-
motopic is by using Weinstein’s morphism [11],

A : π1(Ham(M,ω))→ R/P(M,ω).

Here P(M,ω) is the period group of (M,ω). In Section 4 we review Wein-
stein’s morphism.

Throughout, we have a fixed symplectic embedding ι : (Bρ, ω0)→ (M,ω)
such that ι(0) = x0. This embedding is used to define the symplectic one-
point blow up of (M,ω) at x0 as a coordinate chart about x0 and to define
the lift of Hamiltonian diffeomorphisms.

Theorem 1.1. Let (M,ω) be a closed symplectic manifold and ψ an el-
ement in π1(Ham(M,ω)) such that Φρ,∗([{ψt}]) =ψ, where the loop {ψt}
is given by the normalized Hamiltonian Ht. Then for ψ̃ = Ψρ,∗([{ψt}]) in

π1(Ham(M̃, ω̃ρ)) we have

A(ψ̃) =

[
A(ψ) +

1

Vol(M̃, ω̃nρ )

∫ 1

0

∫
ιBρ

Ht ω
ndt

]
(1)

in R/P(M̃, ω̃ρ).

There are two things to notice about expression (1) of A(ψ̃). The second
term on the right hand side depends on local information of ψ about x0;
and it also reflects the choice of the representative of ψ in order to lift it to
ψ̃, namely the Hamiltonian function Ht.
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In the special case when the normalized Hamiltonian function Ht of the
loop ψ takes the form

Ht(z1, . . . , zn) := −π
n∑
j=1

mj |zj |2 + ct(2)

on ιBρ where m1, . . . ,mn ∈ Z and ct ∈ R, Eq. (1) can be rewritten as

A(ψ̃) =

[
A(ψ)− m1 + · · ·+mn

(n+ 1)!

πn+1ρ2n+2

Vol(M,ωnρ )− πnρ2n
(3)

+
C πnρ2n

Vol(M,ωnρ )− πnρ2n

]
in R/P(M̃, ω̃ρ), where C =

∫ 1
0 ct dt.

A loop ψ in Ham(M,ω) based at the identity map is called ι-circle loop if
on ιBρ the corresponding normalized Hamiltonian takes the form of Eq. (2).
Denote by n(ψ) the order of A([ψ]) in R/P(M,ω)

Theorem 1.2. Let (M,ω) be a closed symplectic manifold such that ω is ra-
tional. If ψ1, . . . , ψk are ι-circle loops in Ham(M,ω) and {n(ψ1), . . . , n(ψk)}
are pairwise relative prime, then

rank π1(Ham(M̃, ω̃ρ0)) ≥ k

for some small ρ0 < ρ. Furthermore, the classes [ψ̃1], . . . , [ψ̃k] of the lifted

loops generate an abelian subgroup of rank k of π1(Ham(M̃, ω̃ρ0)).

The idea behind the proof of Theorem 1.2, is that from expression (3)
of A(ψ̃) we obtain a polynomial in πρ2 with rational coefficients. Hence the
hypothesis that the symplectic form must be rational. Then the fact that
A(ψ̃) has infinite order in π1(Ham(M̃, ω̃ρ)), is equivalent to the fact that
πρ2 is not a root of this polynomial. Hence the value ρ0 in Theorem 1.2 is
subject to the condition that πρ20 must be a transcendental number.

The most common examples of Hamiltonian loops are Hamiltonian S1-
actions. Recall that the fixed point set of a Hamiltonian circle action on a
closed symplectic manifold is non empty. Hence if ψ is a Hamiltonian circle
action on (M,ω), then by blowing up a fixed point the above result guar-

antees that π1(Ham(M̃, ω̃ρ)) has positive rank for some values of ρ as long
as A([ψ]) has finite order. This is true for (CPn, ω), where the symplec-
tic form is normalized to be rational. Hence by Theorem 1.2, the rank of
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π1(Ham(C̃Pn, ω̃ρ)) is greater than or equal to one. The results of D. McDuff

in [5] already imply that the rank of π1(Ham(C̃Pn, ω̃ρ)) is greater than or
equal to one; we provide an alternative solution and show that such element
of infinite order is induced from an element in π1(Ham(CPn, ω)) of finite
order.

Corollary 1.3. Let (M,ω) be a closed symplectic manifold such that ω is
rational. If ψ is a non trivial Hamiltonian circle action on (M,ω) such that

A([ψ]) has finite order, then for some small ρ the rank of π1(Ham(M̃, ω̃ρ))
is positive.

Remark. The conclusions of Theorem 1.2 and Corollary 1.3 are also valid
for the group π1(HUρ,0); since the elements guaranteed by these results are

induced by the map Φρ∗ : π1(HUρ,0)→ π1(Ham(M̃, ω̃ρ)).

We conjectured that for any closed symplectic manifold (M,ω), the rank

of π1(Ham(M̃, ω̃ρ)) must be positive for ρ small. More intriguing is to know
if for every positive integer k there exists a closed symplectic 4-manifold
such that the rank of π1(Ham(M,ω)) is precisely k.

The methods mentioned above, lifting Hamiltonian diffeomorphisms and
the relation between A(ψ) and A(ψ̃), also work in the case when k points
are blown up simultaneously. As well, in the non compact case a relation
analogous to Eq. (1) can be obtained for Calabi’s morphism, namely

Cal(ψ̃) = Cal(ψ)− 1

n!

∫ 1

0

∫
ιBρ

Ht ω
ndt.

Here ψ is a loop in Hamc(M,ω), Ht its Hamiltonian function with compact
support and ψ̃ a lift of the loop. As in Theorem 1.1, the lift ψ̃ is induced by
the representative of ψ given by the Hamiltonian Ht.

Finally, we make some comments on our notation. In order to simplify
notation we use ψ to denote either a loop {ψt}0≤t≤1 of diffeomorphisms
based at the identity map, or an element [{ψt}0≤t≤1] in the fundamental
group or a single diffeomorphism. From context it will be clear which of
these three objects ψ stands for.
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2. The symplectic blow up

In this section we review the symplectic one-point blow up of a manifold,
with the intention of setting up notation that will be used throughout the
paper.

To that end, first consider the blow up of Cn at the origin Φ : C̃n → Cn,
where

C̃n := {(z, `) : z ∈ Cn, ` ∈ CPn−1 and z ∈ `}

and Φ(z, `) = z. Recall that C̃n can also be identified with the tautolog-

ical line bundle pr : C̃n → CPn−1, where pr(z, `) = `. For the closed ball
Br ⊂ Cn of radius r centred at the origin, set Lr := Φ−1(Br). Let (M,ω)
be a symplectic manifold, ω0 is the standard symplectic form on Cn and
ι : (Br, ω0)→ (M,ω) a symplectic embedding such that ι(0) = x0. Then as
a smooth manifold, the blow up of M at x0 is defined as

M̃ := (M \ {x0}) ∪ Lr/ ∼,

where x = ι(z) ∈ ιBr ⊂M \ {x0} is identified with Φ−1(z) for z 6= 0. The

projection map π : M̃ →M , is such that π−1(x0) = E is the exceptional

divisor and it induces a diffeomorphism M̃ \ E →M \ {x0}.
As for the symplectic form on the blow up manifold, first we note that

C̃n carries a family of Kähler forms

ω(ρ) := Φ∗(ω0) + ρ2pr∗(ωFS)(4)

where ρ > 0 and the Fubini-Study form on (CPn−1, ωFS) is normalized so
that the area of any line is π. In order to define a symplectic form on the blow
up manifold M̃ , let ρ < r; then the symplectic form ω(ρ) on Lr is perturbed
so that near the boundary of Lr agrees with the canonical symplectic form
ω0. Let βρ : [0, r]→ [ρ, r] be defined as

βρ(s) :=

{√
ρ2 + s2 for 0 ≤ s ≤ δ

s for r − δ ≤ s ≤ r
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and on interval [δ, r − δ] is defined in any smooth way as long as 0 < β′ρ(s) ≤
1 for 0 < s ≤ r − δ. Define the diffeomorphism Fρ : Lr \ E → Br \Bρ as

Fρ(z) := βρ(|z|)
z

|z|

and set ω̃(ρ) := F ∗ρ (ω0). So defined ω̃(ρ) is a symplectic form such that it
equals ω0 on Lr \ Lr−δ and ω(ρ) on Lδ. We call (Lr, ω̃(ρ)) the local model of
the symplectic blow up. Now we can define a symplectic form on the blow
up manifold. The symplectic form of weight ρ < r on M̃ is defined as

ω̃ρ :=

{
ω on π−1

(
M \ ιB√ρ2+δ2

)
ω̃(ρ) on Lr.

For further details on the symplectic blow up see [7] and [8]. The above
observations are summarized in the next proposition.

Proposition 2.4. Let ι : (Br, ω0)→ (M,ω) be a symplectic embedding such

that ι(0) = x0, and (M̃, ω̃ρ) the symplectic blow up of weight ρ < r. Then

1) π : M̃ \ E →M \ {x0} is a diffeomorphism,

2) π∗(ω) = ω̃ρ on π−1(M \ ιBr), and

3) the area of any line in E is ρ2π.

3. Symplectic and Hamiltonian diffeomorphisms
on the blow up

In order to lift a symplectic diffeomorphism ψ on (M,ω) to a symplectic

diffeomorphism ψ̃ on (M̃, ω̃ρ), that is in order for the relation π ◦ ψ̃ = ψ ◦ π
to hold, we must focus on the behavior of ψ on the embedded ball ιBr ⊂M .
A necessary condition to lift ψ is that it must map the boundary of ιBρ to

it self. This is so because the relation π ◦ ψ̃ = ψ ◦ π implies that ψ̃ maps the
divisor to itself. Hence, ψ maps ιBρ to itself.

As expected the problem of lifting a symplectic diffeomorphism on M
to a diffeomorphism on the blow up is of local nature. For that matter we
consider ψ as a symplectic diffeomorphism of (Br, ω0) such that ψ(0) = 0.
Further assume that

ψ : (Br, ω0)→ (Br, ω0)
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is given by unitary linear map ψ = A ∈ U(n). In this case we define ψ̃ : Lr →
Lr by

ψ̃(z, `) = (A(z), A(`)).(5)

Recall the classification theorem of several complex variables of Cartan [10];
a holomorphic map on Cn that maps the ball to it self and fixes the origin
must be given by a unitary matrix.

Lemma 3.5. The map ψ̃ defined in (5) preserves the symplectic form ω̃ρ.

Proof. From the definitions of Fρ and ψ̃ we have that Fρ ◦ ψ̃ = ψ ◦ Fρ on
Lr \ E. Since ω̃ρ = F ∗ρ (ω0), then

(ψ̃)∗(ω̃ρ) = (ψ̃)∗ ◦ F ∗ρ (ω0) = F ∗ρ ◦ ψ∗(ω0) = ω̃ρ

on Lr \ E. Finally since A ∈ U(n), then ψ̃ preserves the Kähler form ω(ρ).
In particular the symplectic form ω̃ρ on E. �

We say that a symplectic diffeomorphism ψ of (M,ω) is liftable to

(M̃, ω̃ρ) if

• ψ(ιBr) = ιBr, and

• ι−1 ◦ ψ ◦ ι : Br → Br is given by a unitary matrix

where ρ < r. This is exactly the description of HUρ given in Section 1 for
the case when ψ is Hamiltonian. Thus if ψ admits a lift, by Lemma 3.5
we have that ψ̃ is a symplectic diffeomorphism of (M̃, ω̃ρ). It is important
to note that the above definition depends on the symplectic embedding
ι : (Br, ω0)→ (M,ω). Thus from now on we fix a symplectic embedding and
the lifted diffeomorphisms will be with respect to it.

Now we take into account the problem determining that the lift of a
Hamiltonian diffeomorphism is Hamiltonian. Again, we focus on the local
picture. Thus let ψ : Br → Br be liftable and Hamiltonian and assume that
there is a Hamiltonian path {ψt}, with ψ0 = 1, ψ1 = ψ and ψt liftable for
each t. Let Ht : (Br, ω)→ R and Xt be the Hamiltonian function and time-
dependent vector field induced by the path {ψt}. Since the path {ψt} is
liftable, it is actually a path in U(n); hence Xt is tangent to the sphere
centered at the origin. As for the Hamiltonian function we have the following.
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Lemma 3.6. Let ψt : (Br, ω0)→ (Br, ω0) as above; that is, a path of uni-
tary matrices starting at the identity matrix. Then Ht(z) = Ht(λz) for z ∈
Br and λ ∈ S1.

Proof. Denote by Xt the time-dependent vector field of the path {ψt}. For
λ ∈ S1, let φλ : Br → Br be matrix multiplication by λI. Since φλ is in the
center of U(n),

Xt ◦ φλ =
d

ds

∣∣∣∣
s=t

ψs ◦ ψ−1t ◦ φλ =
d

ds

∣∣∣∣
s=t

φλ ◦ ψs ◦ ψ−1t = (φλ)∗Xt.

Therefore

d(Ht ◦ φλ) = ω0(Xt, (φλ)∗(·)) = (φλ)∗ω0(Xt, ·) = dHt.

Note that both functions Ht and Ht ◦ φλ agree at the origin, thus Ht(z) =
Ht(λz). �

Since ψt is liftable, we have a symplectic path {ψ̃t} on (Lr, ω̃ρ) that

starts at the identity and ends at ψ̃1 = ψ̃. Moreover if X̃t is the vector field
induced by {ψ̃t}, then we have that π∗(X̃t) = Xt since ψ̃t is the lift of ψt.
Now define the function H̃t : (Lr, ω̃ρ)→ R as

(6) H̃t(z, `) :=

{
Ht ◦ Fρ(z) if (z, `) ∈ Lr \ E
Ht

(
ρ
|w|w

)
if z = 0 and [w] = `.

It follows by Lemma 3.6 that H̃t is well-defined and smooth. That is, is
independent of the representative of ` when evaluated at points in the ex-
ceptional divisor.

Proposition 3.7. The Hamiltonian function H̃t : (Lr, ω̃ρ)→ R defined a-

bove induces the path of Hamiltonian diffeomorphisms {ψ̃t} that is the lift
of the path {ψt}. Moreover X̃t is such that π∗(X̃t) = Xt.

Proof. We already showed that the vector fields X̃t and Xt are related by
the blow up map. It only remains to show that ι(X̃t)ω̃ρ = dH̃t. First note
that

(Fρ)∗,x(X) = βρ(x)X + dβρ(X)x.

Since βρ is radial, the kernel of dβρ agrees with the tangent space to the
sphere centred at the origin. Now ψt is defined by a unitary matrix, thus
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outside the origin and E, the vector fields Xt and X̃t lie in the tangent space
of the sphere. Thus Fρ,∗(X̃t) = βρXt and

ω̃ρ(X̃t, ·) = F ∗ρ (ω0)(X̃t, ·)
= ω0(Fρ,∗X̃t, Fρ,∗(·))
= ω0(βρ ·Xt, Fρ,∗(·))
= βρ ω0(Xt, β

−1
ρ · Fρ,∗(·))

= βρ(dHt) ◦ β−1ρ · Fρ,∗
= d(Ht ◦ Fρ).

on Lr \ E. �

Hence if {ψt} is a Hamiltonian path on (M,ω) with Hamiltonian function
Ht and each ψt is liftable, that is a path in HUρ,0, then the lift {ψ̃t} is a

Hamiltonian path with Hamiltonian function H̃t : (M̃, ω̃ρ)→ R given by

(7) H̃t(x) :=


Ht ◦ π(x) if π(x) /∈ ιBr
Ht ◦ ι ◦ Fρ ◦ ι−1 ◦ π(x) if π(x) ∈ ιBr \ {x0}
Ht

(
ρ
|w|w

)
if x = [x0, `] ∈ E and [w] = `.

Thus Proposition 3.7 can be stated in global terms.

Proposition 3.8. Let {ψt} be a path of Hamiltonian diffeomorphisms in
HUρ,0 with Hamiltonian function Ht. Then the lifted path {ψ̃t} is a Hamilto-

nian path on (M̃, ω̃ρ) with Hamiltonian function H̃t given by (7).

Remark. The Hamiltonian diffeomorphism on (M̃, ω̃ρ) induced by the map
Ht ◦ π, is not the one that lifts the Hamiltonian diffeomorphism of the base
manifold. Most importantly to our interest, if Ht generates a loop of Hamil-
tonian diffeomorphisms in (M,ω), then Ht ◦ π induces a path and not a

loop of Hamiltonian diffeomorphisms on (M̃, ω̃ρ); the time-one Hamiltonian
diffeomorphism of Ht ◦ π is not the identity map. Notice also that Ht ◦ π is
independent of ρ, whereas H̃t depends on Fρ.

There are two typical examples of symplectic diffeomorphisms that are
liftable. The first class of examples is when the support of ψ is disjoint from
ιBr. In this case the matrix representation of ψ on ιBr is the identity matrix.
Another example is a circle action with x0 a fixed point of the action. In this
case there is a Darboux chart about x0 so that the action can be described
by a loop of unitary matrices.
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Example. In this example we see how the definition of the Hamiltonian
function H̃t given in (7) coincides with the natural Hamiltonian function on

C̃n, in the case of a linear circle action on Cn. To that end, consider a linear
circle action on (Cn, ω0) with Hamiltonian function H : Cn → R given by

H(z1, . . . , zn) := −π
n∑
j=1

mj |zj |2,

where m1, . . . ,mn ∈ Z and ω0(X, ·) = dH. Since the action is linear, it in-
duces a Hamiltonian circle action on (CPn−1, ωFS) with Hamiltonian func-
tion

H ′([z1 : · · · : zn]) := −π
n∑
j=1

mj
|zj |2

|z|2

and ωFS(X ′, ·) = dH ′.
Thus we have a circle action on Cn × CPn−1 given by the diagonal ac-

tion. Furthermore C̃n is invariant under the action. Recall the symplectic
form ω(ρ) = Φ∗(ω0) + ρ2pr∗(ωFS) on C̃n. Then the circle action on (C̃n, ω(ρ))

is Hamiltonian, with Hamiltonian function H + ρ2H ′ restricted to C̃n.
Now we compute the Hamiltonian function H̃ on a small neighborhood

U of the exceptional divisor, following the definition given by Eq. (7), Recall

that the symplectic form ω̃ρ on C̃n equals ω(ρ) on U . Then for (z, [z1 : · · · :
zn]) ∈ U \ E we have

H̃(z, [z1 : · · · : zn]) = H ◦ Fρ(z)

= H

(√
ρ2 + |z|2 z

|z|

)
= −πρ

2 + |z|2

|z|2
n∑
j=1

mj |zj |2

= −π
n∑
j=1

mj |zj |2 − ρ2π
n∑
j=1

mj
|zj |2

|z|2
.

Now for (0, [w1 : · · ·wn]) in the exceptional divisor

H̃(0, [w1 : · · · : wn]) = H

(
ρ

|w|
w

)
= −π

n∑
j=1

mjρ
2 |wj |2

|w|2
.

That is H̃ = H + ρ2H ′ in a small neighborhood of the exceptional divisor.
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The process of blowing up a point has an alternative description than
the one presented in Section 2. Heuristically, the blow up of a point of weight
ρ can be described as removing the interior of the embedded ball Bρ and
collapsing its boundary to CPn−1 via the Hopf fibration. The next result is
a consequence of this fact.

Lemma 3.9. Let H : (M,ω)→ R be a smooth function with compact sup-

port and H̃ : (M̃, ω̃ρ)→ R defined as in (7). Then,∫
M̃
H̃ ω̃nρ =

∫
M
H ωn −

∫
ιBρ

H ωn.

Proof. By Proposition 2.4 the blow up map induces a symplectic diffeomor-
phism between (M̃ \ π−1(ιBr), ω̃ρ) and (M \ ιBr, ω). Since H̃ = H ◦ π on

M̃ \ π−1(ιBr) we get∫
M̃
H̃ ω̃nρ =

∫
M\ιBr

H ωn +

∫
π−1(ιBr)

H̃ ω̃nρ .

By the definition of H̃ on π−1(ιBr), the fact that F ∗ρ (ω0) = ω̃ρ on ιBr \ ιBρ
and removing the exceptional divisor from the domain of the second integral,
the claim follows:∫

M̃
H̃ ω̃nρ =

∫
M\ιBr

H ωn +

∫
π−1(ιBr)\E

H ◦ Fρ ω̃nρ

=

∫
M\ιBr

H ωn +

∫
ιBr\ιBρ

H ωn

=

∫
M
H ωn −

∫
ιBρ

H ωn.

�

Remark. Remember that we fix a symplectic embedding ι : (Br, ω0)→ (M,ω)
and respect to this embedding we have lifted symplectic and Hamiltonian
diffeomorphisms. Clearly a different embedding might yield a different set
of diffeomorphisms that are liftable. Recall from [6], that if the embeddings
are isotopic via symplectic embeddings then the symplectic blow ups are
symplectomorphic. Since we are interested in the topology of the group
Ham(M̃, ω̃ρ), for our purpose it suffices to fix a symplectic embedding and
to require the unitary condition on diffeomorphisms in a neighborhood of
ιBρ and not on all ιBr.
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4. Weinstein’s morphism on (M̃, ω̃ρ)

Now we consider the case of loops in Ham(M̃, ω̃ρ) when (M,ω) is a closed
manifold and πρ2 < cG(M,ω), where cG(M,ω) stands for the Gromov’s
width of (M,ω). As in Section 3, let x0 ∈M be a based point and ι :
(Br, ω0)→ (M,ω) be a fixed symplectic embedding such that ι(0) = x0 and
πρ2 < πr2 < cG(M,ω).

Recall that the period group P(M,ω) of (M,ω) is defined as the image
of the pairing [ω] ·H2(M ;Z)→ R. Weinstein’s morphism [11],

A : π1(Ham(M))→ R/P(M,ω)

is defined via the action functional as

A(ψ) = −
∫
D
u∗(ω) +

∫ 1

0
Ht(ψt(x0))dt.

Here D is the unit closed disk and u : D →M is a smooth function such that
u(∂D) is the loop {ψt(x0)} and Ht is the 1-periodic Hamiltonian function
induced by the Hamiltonian loop {ψt} subject to the normalized condition∫

M
Ht ω

n = 0

for every t ∈ [0, 1].
Remember that the dimension of (M,ω) is greater than two. Then for

the one-point blow up (M̃, ω̃ρ), we have that H2(M̃ ;Z) ' H2(M ;Z) + Z〈L〉
where L ⊂ E if the class of a line in the exceptional divisor of (M̃, ω̃ρ). Note
also that any class in H2(M ;Z) can be represented by a cycle away from
the embedded ball ιBr. Hence 〈[ω], c〉 = 〈[ω̃ρ], π−1(c)〉 for any c ∈ H2(M ;Z).

By definition of the symplectic form ω̃ρ on the blow up, L ⊂ (M̃, ω̃ρ) has
symplectic area ρ2π and

P(M̃, ω̃ρ) = P(M,ω) + Z〈πρ2〉 ⊂ R.

Now we give the proofs of the results mentioned at the Introduction.

Proof of Theorem. 1.1. Let {ψt} be a loop in Ham(M,ω) that is liftable with
respect to the symplectic embedding ι : (Br, ω0)→ (M,ω). That is ψt ∈ HUρ,0
for every t. Fix p0 ∈M outside the embedded ball ιBr, since ψ is liftable
the loop γ := {ψt(p0)} in M lies outside the embedded ball. Hence γ̃ :=

{ψ̃t(π−1(p0))} is a loop in M̃ that covers γ.
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Now let u : D →M be a smooth map such that u(∂D) = γ. Since M has
dimension greater than two, by the excision theorem for homotopy groups
we can assume that u(D) is disjoint from ιBr. Hence there is a smooth

map ũ : D → M̃ , such that ũ(∂D) = γ̃ and π ◦ ũ = u. Since π∗ω = ω̃ρ on

M̃ \ π−1(ιBr), we get ∫
D
u∗(ω) =

∫
D
ũ∗(ω̃ρ).

Let Ht : (M,ω)→ R be the normalized Hamiltonian function induced
by the loop ψ. Then by Lemma 3.9 the normalized Hamiltonian of the lifted
loop ψ̃ is H̃t + cρ(M,ω,Ht) where H̃t is given by Eq. (7) and

cρ(M,ω,Ht) := − 1

Vol(M̃, ω̃nρ )

∫
M̃
H̃t ω̃

n
ρ =

1

Vol(M̃, ω̃nρ )

∫
ιBρ

Ht ω
n.

Hence,

A(ψ̃) = −
∫
D
ũ∗(ω̃ρ) +

∫ 1

0
(H̃t + cρ(M,ω,Ht))(ψ̃t(π

−1(p0)))dt

= −
∫
D
u∗(ω) +

∫ 1

0
Ht(ψt(p0))dt+

∫ 1

0
cρ(M,ω,Ht)dt

=

[
A(ψ) +

1

Vol(M̃, ω̃nρ )

∫ 1

0

∫
ιBρ

Ht ω
n dt

]
.

�

In the case when the normalized Hamiltonian function takes the form

(8) Ht(z1, . . . , zn) := −π
n∑
j=1

mj |zj |2 + ct

on ιBr, we have∫ 1

0

∫
ιBρ

Ht ω
n dt = −(m1 + · · ·+mn)

πn+1ρ2n+2

(n+ 1)!
+ Vol(Bρ, ω

n
0 )

∫ 1

0
ct.

Since the volume of (Bρ, ω
n
0 ) is πnρ2n, then in this case A(ψ̃) takes the form

A(ψ̃) =

[
A(ψ)− m1 + · · ·+mn

(n+ 1)!

πn+1ρ2n+2

Vol(M,ωnρ )− πnρ2n
(9)

+
C πnρ2n

Vol(M,ωnρ )− πnρ2n

]
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where C =
∫ 1
0 ct.

As mentioned at the Introduction, the proof of Theorem 1.2 relies on
some polynomials with rational coefficients. In part, we take care of this by
assuming that the symplectic form must be rational. However some work
needs to be done in order to guarantee that the constant C that appears in
Eq. (9) is in fact a rational number.

Recall that an ι-circle loop ψ in Ham(M,ω), is a loop of Hamiltonian
diffeomorphisms based at the identity map such that its normalized Hamil-
tonian function on ιBρ takes the form as in Eq. (8).

Lemma 4.10. Let ψ be an ι-circle loop in Ham(M,ω). Then

A(ψ) = [C] .

Proof. Let Ht be the normalized Hamiltonian function of the loop. Since
the loop ψ is ι-circle, then Ht is given by Eq. (8) on ιBρ. In particular x0 is
fixed by each Hamiltonian in the loop. Therefore,

A(ψ) =

[∫ 1

0
Ht(x0)dt

]
=

[∫ 1

0
ctdt

]
= [C] . �

If ψ is an ι-circle loop in Ham(M,ω), denote by K(ψ, x0) the sum of its
weights m1 + · · ·+mn at x0.

Proof of Theorem 1.2. Since the symplectic form ω is rational and (M,ω)
is closed, the period group P(M,ω) is discrete and V := Vol(M,ωn) is a
rational number. Moreover P(M,ω) = Z〈a〉 for some a ∈ Q \ {0}.

Let ρ0 > 0 be such that πρ20 is transcendental and less than the Gromov
width of (M,ω). Then consider the blow up of (M,ω) at x0 of weight ρ0.
Since ψj is a loop inHU0 , it follows by Proposition 3.8 that it can be lifted to a

Hamiltonian loop ψ̃j on (M̃, ω̃ρ0). By hypothesis, there are positive integers
nj := n(ψj) such that A([ψj ]) = [a/nj ] in R/Z〈a〉 for 1 ≤ j ≤ k. Then by
Lemma 4.10, we have that A([ψj ]) = [Cj ] = [a/nj ]. Hence by Eq. (9) we get

(10) A([ψ̃j ]) =

[
a

nj

(
1 +

(πρ20)
n

V − (πρ20)
n

)
− K(γj , x0)

(n+ 1)!

(πρ20)
n+1

V − (πρ20)
n

]
in R/Z〈a, πρ20〉.

For k ∈ Z non zero the expression kA([ψ̃j ]) = 0 is equivalent to the fact

that kA([ψ̃j ]) lies in Z〈a, πρ20〉; that after multiplying it by V − (πρ20)
n gives

a polynomial of degree n+ 1 in πρ20 with rational coefficients equal to zero.

Since πρ20 is assumed to be a transcendental number, kA([ψ̃j ]) 6= 0 and each
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[ψ̃j ] has infinite order in π1(Ham(M̃, ω̃ρ0)). Note that ρ0 is independent of
j.

The rest of the proof is devoted to show that [ψ̃1], . . . , [ψ̃k] generate a

subgroup of π1(Ham(M̃, ω̃ρ0)) isomorphic to Zk. Assume that A([ψ̃r]) is in

the group generated by {A([ψ̃j ])|j 6= r}. Then there exist αj ∈ Z such that

A([ψ̃r]) = α1A([ψ̃1]) + · · ·+ αkA([ψ̃k])(11)

in R/Z〈a, πρ20〉, where there is no r-term on the right hand side. Substituting
Eq. (10) in each term of Eq. (11), we get that

(12) a

(
1

nr
− α1

n1
− · · · − αk

nk

)(
1 +

(πρ20)
n

V − (πρ20)
n

)
+
−K(γj , x0) + α1K(γ1, x0) + · · ·+ αkK(γk, x0)

(n+ 1)!

(πρ20)
n+1

V − (πρ20)
n

belongs to Z〈a, πρ20〉. In order to handle the above expression, set

α0 :=

(
1

nr
− α1

n1
− · · · − αk

nk

)
∈ Q

and

K0 :=
−K(γj , x0) + α1K(γ1, x0) + · · ·+ αkK(γk, x0)

(n+ 1)!
∈ Q.

Then expression (12) takes the form

(13) aα0

(
1 +

(πρ20)
n

V − (πρ20)
n

)
+K0

(πρ20)
n+1

V − (πρ20)
n

= aA+ πρ20B.

for some A,B ∈ Z. After multiplying Eq. (13) by V − (πρ20)
n, we obtain a

polynomial of degree n+ 1 in πρ20 with rational coefficients that is equal to
zero;

(B +K0)(πρ
2
0)
n+1 + aA(πρ20)

n −BV (πρ20) + (aα0V − aAV ) = 0.

Finally, since πρ20 is a transcendental number and a is the generator of
the period group of (M,ω), A and B must be zero. Thus K0 = 0 and α0 = 0.
Since {n1, . . . , nk} are pairwise relatively prime, from Lemma 4.11 we get
that α0 6= 0. This means that Eq. (11) holds only when the αj ’s are zero,

that is [ψ̃1], . . . , [ψ̃k] generate a subgroup of rank k. �
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In the last part of the proof of Theorem 1.2 we used the following fact
about integers. Only when quoting this lemma, we used the hypothesis that
the nj ’s are relative prime by pairs.

Lemma 4.11. Let n1, . . . , nk be integers, such that

• nj ≥ 2

• (n1, nj) = 1 for all j > 1.

Then for any α2, . . . , αk ∈ Z,

1

n1
− α2

n2
− · · · − αk−1

nk−1
− αk
nk

is not equal to zero.

Proof. Assume that

1

n1
− α2

n2
− · · · − αk−1

nk−1
− αk
nk

= 0,

thus

n2 · · ·nk =

k∑
j=2

n1 · · ·αj · · ·nk.

That is n2 · · ·nk is a multiple of n1, which is not possible. �
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