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Leafwise symplectic structures on

Lawson’s foliation

Yoshihiko Mitsumatsu

The aim of this paper is to show that Lawson’s foliation on the
5-sphere admits a smooth leafwise symplectic structure. The main
part of the construction is to show that the Fermat type cubic
surface admits an end-periodic symplectic structure. The results is
paraphrased that the 5-sphere admits a regular Poisson structure
of symplectic dimension 4.

Introduction

In this article we show the following.

Theorem A (Theorem 3.1). Lawson’s foliation on the 5-sphere S5 admits
a smooth leafwise symplectic structure.

More generally, the Milnor fibration associated with one of the three
classes of simple elliptic singularities Ẽ6, Ẽ7, and Ẽ8 in complex three vari-
ables can be modified into a leafwise symplectic foliation on S5 of codimen-
sion 1. Lawson’s one is associated with Ẽ6.

We can paraphrase this result into the following.

Corollary B. Associated with each of the three classes Ẽ6, Ẽ7, or Ẽ8 of
simple elliptic singularities in three variables, the 5-sphere S5 admits regular
Poisson structures of symplectic dimension 4.

This work is motivated and inspired by the works ([SV], [MV1, MV2])
by Alberto Verjovsky and others in which they are discussing the existence
of leafwise symplectic and complex structures on Lawson’s foliation and on
its slight modifications. The author is extremely grateful to Verjovsky for
drawing his attentions to such interesting problems.

This research is partly supported by Grant-in-Aid for Scientific Research (B)
22340015.
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818 Yoshihiko Mitsumatsu

H. B. Lawson, Jr. constructed a smooth foliation of codimension one
on S5 ([L]), which we nowadays call Lawson’s foliation. It was achieved by
a beautiful combination of the complex and differential topologies and was
a breakthrough in an early stage of the history of foliations. The foliation
is composed of two components. One is a tubular neighbourhood of a 3-
dimensional nil-manifold and the other one is, away from the boundary,
foliated by Fermat-type cubic complex surfaces. As the common boundary
leaf, here appears one of Kodaira-Thurston’s 4-dimensional nil-manifolds. As
each Fermat cubic leaf is spiraling to this boundary leaf, its end is diffeomor-
phic to a cyclic covering of Kodaira-Thurston’s nil-manifold. (See Section 1
for the details.)

In order to introduce a leafwise symplectic structure (for a precise defi-
nition, see Section 2), we need to find a symplectic structure on the Fermat
cubic surface which (asymptotically) coincides on the end with that of the
cyclic covering of the Kodaira-Thurston nil-manifold. However, as a com-
plex surface, the Fermat cubic surface is affine and Stein, and thus its end
is strictly pseudo-convex. Therefore, being quite different from periodic, the
natural symplec structure on its end is ‘conic’ and expanding. This is the
crucial point of our problem. Once we find an appropriate end-periodic sym-
plectic structure on the Fermat cubic surface (Section 5), it is almost enough
to construct a smooth leafwise symplectic structure (Section 3), because it is
easy to see that a simple foliation on the tube component admits a leafwise
symplectic structure (Section 2).

This paper is organized as follows. Lawson’s foliation is reviewed in Sec-
tion 1. In Section 2, certain symplectic structures on Kodaira-Thurston’s
nil-manifold and its covering are presented. According to the choice of the
symplectic structures on Kodaira-Thurston’s nil-manifold, a leafwise sym-
plectic structures on the tube component is constructed. This enables us
to formulate our problem in Section 3 focusing on the modification of sym-
plectic structures on the Fermat cubic surface. Assuming this modification
which is accomplished in the later sections, a construction of a leafwise sym-
plectic structure on Lawson’s foliation is given in this section. Then, after
analysing natural symplectic structures on the Fermat cubic surface in Sec-
tion 4, the existence of an end-periodic symplectic structure on the Fermat
cubic surface is shown in Section5. In particular, Corollary 5.2 is the core of
the present article, on which we will discuss further in Section 7.

In Section 6 we remark that our construction holds almost verbatimly
in two other cases of the simple elliptic hypersurface singularities. In the
final section, some related topics concerning the method in this paper are
discussed.
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1. Review of Lawson’s foliation

First we review the structure of Lawson’s foliation L. For those who are
familiar with the materials it is enough to check our notations.

Let us take a Fermat type homogeneous cubic polynomial f(Z0, Z1, Z2) =
Z3

0 + Z3
1 + Z3

2 in three variables Z0, Z1, and Z2. The complex surface Fw =
{(Z0, Z1, Z2) ∈ C3; f(Z0, Z1, Z2) = w} for a complex value w is non-singular
if w 6= 0 and F0 has the unique singularity at the origin. The scalar multi-
plication c · (Z0, Z1, Z2) = (cZ0, cZ1, cZ2) by c ∈ C maps Fw to Fc3w. Hence
F0 is preserved by such homotheties and for w 6= 0 Fw is preserved iff c3 = 1.

Now we put F̃θ =
⋃

argw=θ Fw and Fθ = F̃θ ∩ S5 where S5 denotes the

unit sphere in C3. Also, we put N = Nil3(−3) = F0 ∩ S5. Let p and h denote
the projection p : Č3 → S5 and the Hopf fibration h : S5 → CP 2. Here Č3 de-
notes C3 \ {O}. Sometimes h also denotes the composition h ◦ p : Č3 → CP 2.
Let also H(t) (t ∈ R/2πZ) denote the Hopf flow obtained by scalar multi-
plication by eit, whose orbits are the Hopf fibres. Eω = {[z0 : z1 : z2]; z0 +

z1 + z2 = 0} = h(F0) is an elliptic curve in CP 2 with modulus ω = −1+
√
−3

2 .
The Hopf fibration restricts to N → Eω, which is an S1-bundle with c1 =
−3. Also put Sr = ∪θ∈R/2πZFreiθ = {Z = (Z0, Z1, Z2) ∈ C3; |f(Z)| = r} for
r > 0. Sr is also preserved by the Hopf flow.

The following facts are also easy to see, while they are listed as Propo-
sition for the sake of later use.

Proposition 1.1. 1) f |S5 has no critical points around N .

2) arg ◦f |S5\N : S5 \N → S1 has no critical points away from N and is
called the Milnor fibration. Each fibre is by Fθ (θ ∈ R/2πZ).

3) The projection p|Fw : Fw → Fθ (θ = argw) is a diffeomorphism for
w 6= 0.

4) The Hopf fibration h|Fθ : Fθ → CP 2 \ Eω restricted to Fθ is a three fold
regular covering, and so is Fw → CP 2 \ Eω for w 6= 0.

5) The normal bundle to N ↪→ S5 is trivialized by the value of f .

6) The projection p|Sr : Sr → S5 \K is a diffeomorphism for r > 0 and is
equivariant with respect to the Hopf flow. Sr fibers over the circle with
fibres Freiθ (θ ∈ R/2πZ) and the fibration structure coincides with that
of the Milnor fibration through p|Sr .

7) H(2π/3) gives the natural monodromy of the Milnor fibration.



i
i

“6-Mitsumatsu” — 2018/11/22 — 11:35 — page 820 — #4 i
i

i
i

i
i

820 Yoshihiko Mitsumatsu

Let Wr denote the tubular neighbourhood Wr = {Z = (Z0, Z1, Z2) ∈
S5; |f(Z)| ≤ r} of N ⊂ S5 for 0 < r. Take ε (0 < ε� 1) so small that f |Wε

has no critical points. (Later we will take ε again smaller for some reason. )
Then let Uε = h(Wε) ⊂ CP 2 be a tubular neighbourhood of Eω ⊂ CP 2. Wε

is invariant under the Hopf flow. We choose further smaller constants r0 and
r∗ satisfying 0 < r0 < r∗ < ε and take W∗ = Wr∗ , W = Wr0 and U∗ = Ur∗ ,
U = Ur0 .

We decompose S5 into W and C = S5 \ IntW , which are called the tube
component and the Fermat cubic component respectively. The statement
5) in the above proposition tells that Wr is diffeomorphic to the product
N ×D2

r , while Eω ↪→ CP 2 is twisted because [Eω]2 = 9. Here D2
r denotes

the disk of radius r in C.
The common boundary ∂W = ∂C is diffeomorphic to N × S1, which is

one of Kodaira-Thurston’s 4-dimensional nil-manifolds and is well-known to
be non-Kähler because b1 = 3. It admits symplectic structures as well as
complex structures but they are never compatible.

As the two components W and C are fibering over the circle, the follow-
ing lemma (a standard process of turbulization) is enough in order only to
obtain a smooth foliation. However, to put leafwise symplectic structures, it
is helpful to describe the foliation and the turbulization in more detail.

Lemma 1.2 ([L], Lemma 1). Let M be a compact smooth manifold with
boundary ∂M and ϕ : M → S1 be a smooth submersion to the circle. Ac-
cordingly so is ϕ|∂M : ∂M → S1. Then, there exists a smooth foliation of
codimension one for which the boundary ∂M is the unique compact leaf,
other leaves are diffeomorphic to the interior of the fibres, and the holonomy
of the compact leaf is trivial as a C∞-jet. If we have two such submersions
ϕi : Mi → S1 (i = 1, 2) with diffeomorphic boundaries ∂M1

∼= ∂M2, then on
the closed manifold M1 ∪∂M1=∂M2

M2, by gluing them we obtain a smooth
foliation of codimension one.

Let us formulate the turbulization process more explicitly. Firt take small
positive constants 0 < r0 < r1 < r2 < r∗ and smooth functions g(r) and h(r)
on R+ satisfying the following conditions.

g ≡ 0 (r ≤ r0), h ≡ 1 (r ≤ r1),
g = −6r (r1 ≤ r < r∗), h ≡ 0 (r2 ≤ r < r∗),
g′< 0 (r0 < r < r∗), h′< 0 (r1 < r < r2).
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Then take a smooth non-singular vector field X = g ∂
∂r + h ∂

∂θ on the punc-
tured plane C \ {O} ∼= R+ × R/2πZ where (r, θ) denotes the polar coordi-
nates. The integral curves of X define a smooth foliation FT on C \ {O}.
The constant −6 has no significance at this stage.

Now the turbulization on the side of the Fermat cubic component is
described as follows. The foliation L̃ = {Fθ} on S5 \N by the Milnor fibres
and the pull-back foliation f−1FT coincide with each other on W∗ \Wr2 .
On the Fermat cubic component C = S5 \ IntW , Lawson’s foliation L|C is
obtained as L|S5\Wr2

= L̃|S5\Wr2
and L|W∗\W = f−1FT |W∗\W . Let Lθ denote

one of the resulting leaves which contains Fθ \Wr2 . Lθ is diffeomorphic to
Fθ and only the embedding of the product end N × {r · eiθ} is modified by
the turbulization procedure. We will fix an identification of Lθ with Feiθ in
Section 3.

On the tube component W , we can describe the foliation L|W by a
simple turbulization as above, while it is also described by using the “Reeb
component” on S1 ×D2 as follows. The tube component W is diffeomorphic
to N ×D2 and N = Nil3(−3) is an S1-bundle over the elliptic curve Eω. We
take a smooth coordinate (x, y) for Eω where x, y ∈ S1 = R/2πZ. Then the
projection from Eω to S1 3 x gives rise to a fibration of N over S1 with
fibre T 2 and the monodromy

(
1−3
0 1

)
. Therefore the tube component W fibers

over the solid torus S1 ×D2 with the fibre T 2 and the monodoromy
(

1−3
0 1

)
,

namely, W = R×D2 × T 2/ ∼ where (x+ 2π, P,
(
y
z

)
) ∼ (x, P,

(
1−3
0 1

)(
y
z

)
).

As L|W , we can take the pull-back of the standard Reeb component
FR on S1 ×D2 to W . Thus we obtain Lawson’s foliation L on S5 with
a unique compact leaf which is diffeomorphic to Kodaira-Thurston’s nil-
manifold K = S1 ×N .

Remark 1.3. The 3-dimensional nil-manifold Nil3(c1) is often presented
as the quotient Nil3(c1) = Γ(c1) \H of the 3-dimensional Heisenberg group
H by its lattice Γ(c1), which are defined as

H =


 1 x z

0 1 y
0 0 1

 ; x, y, z ∈ R


⊃ Γ(c1) =


 1 x z

0 1 y
0 0 1

 ; x, y, c1z ∈ Z

 .

In the case c1 < 0, z must be understood to have opposite sign. In this
coordinate on H take ∂

∂x , ∂
∂y , and ∂

∂z at the unit element, and then extend
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them to be X, Y , and Z as left invariant vector fields. Let dx, dy, and ζ
be the dual basis for the invariant 1-forms, which satisfies dζ = dx ∧ dy. On
our N = Nil3(−3) we have x = 2πx, y = 2πy, z = 2πc1z, and ζ = 2πc1ζ.

2. Symplectic forms on the Kodaira-Thurston
nil-manifold and F0

In this section, we describe natural symplectic forms on Kodaira-Thurston’s
4-dimensional nil-manifold and show that the tube component L|W admits
a smooth leafwise symplectic structure which is tame around the boundary.

Definition 2.1. A smooth leafwise symplectic structure (or form) on a
smooth foliated manifold (M,F) is a smooth leafwise closed 2-form β which
is non-degenerate on each leaves.

More precisely, first, β is a smooth section to the smooth vector bundle∧2 T ∗F . For smooth sections to
∧∗ T ∗F naturally the exterior differential

in each leaves is defined. This exterior differential is often denoted by dF .
β is required to be dF -closed and is non-degenerate in each leaves, namely,
dFβ = 0 holds and βdimF/2 defines a volume form on each leaves.

The existence of such β is equivalent to that of a smooth 2-form β̃ on
M whose restriction to each leaf is a symplectic form of the leaf. It should
be remarked that β̃ may not be closed as a 2-form on M . In this paper we
do not have to distinguish β and β̃ and sometimes make abuse of these.

Definition 2.2. Let (M,F) be a smooth foliated manifold with a boundary
compact leaf ∂M and a leafwise symplectic form β. (M,F , β) is tame around
the boundary if the triple satisfies the following condition. We also simply
say that β is tame.

(1) The (one-sided) holonomy of the boundary leaf is trivial as C∞-jet.

(2) There exists a collar neighbourhood V ∼= [0, ε)× ∂M of the boundary
∂M with the projection Pr : [0, ε)× ∂M → ∂M for which β|V coin-
cides with the restriction to the leaves of the pull-back Pr∗(β|∂M ).

Corollary 2.3. Let (Mi,Fi, βi) (i = 0, 1) be two foliated manifolds with
leafwise symplectic structures. Assume that both are tame around their bound-
aries and there exists a symplectomorphism

ϕ : (∂M1, β1|∂M1
)→ (∂M2, β2|∂M2

)
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Leafwise symplectic structures on Lawson’s foliation 823

between their boundaries. Then gluing by ϕ yields a smooth foliated manifold
(M = M1 ∪ϕM2,F , β) with a smooth leafwise symplectic structure.

We adopt this corollary for our construction. The existence of tame
leafwise symplectic structures on the Fermat cubic component is discussed
in Section 3, 4, and 5. In this section we show the existence of tame ones on
the tube component.

For the 3-dimensional Reeb component (S1 ×D2,FR), as the leaves are
2-dimensional, it is easy to show that there exists a tame leafwise sym-
plectic structure. For any area form of the boundary, extend it to a collar
neighbourhood so as to satisfy the tameness condition, and then further
extend it to a leafwise 2-form on the whole component so that on each
leaf it gives an area form. In this construction we can start with the stan-
dard area form dx ∧ dθ of the boundary under the coordinates (x, r, θ) for
S1 ×D2 = {(x, r, θ) ; x ∈ S1 = R/2πZ, 0 ≤ r ≤ r0, θ ∈ S1 = R/2πZ}. The
resulting tame leafwise symplectic form on (S1 ×D2,FR) is denoted by βR.

Now let us construct tame leafwise symplectic forms on the tube com-
ponent, using the description of the tube component in the end of the
previsous section. Let ζ denote the standard connection 1-form for the
Hopf fibration h : S5 → CP 2. ζ coincides with the standard contact form
ζ =

∑3
j=1(xjdyj − yjdxj) on S5. On each fibre (with an arbitrary reference

point) ζ defines an identification with S1 = R/2πZ and the resulting co-
ordinate is denoted by z in the previous section. Once ζ is restricted to
N = F ∩ S5 it is denoted by ζN .

The tube component W admits a flat bundle structure T 2 ↪→W = N ×
D2 πR→ S1 ×D2 with the monodromy

(
1−3
0 1

)
. On N we have

dζN = −(−3)2π
dx

2π
∧ dy

2π
=

3

2π
dx ∧ dy

and hence dy ∧ ζN is a closed 2-form which restricts to a holonomy invariant
area form on each fibre ∼= T 2.

On L|W we also have a closed 2-form πR
∗βR which is pulled back from

the Reeb component. Therefore we obtain a tame leafwise symplectic form
βW,λ,µ = λπR

∗βR + µdy ∧ ζN for non-zero constants λ and µ. The restriction
of βW,λ,µ to the boundary ∂W is presented as λ dθ ∧ dx+ µdy ∧ ζN . Also it is
easy to see that the foliation L|W (in fact L itself) and the leafwise symplectic
form βW,λ,µ is invariant under the Hopf flow H(t). We have established the
following.



i
i

“6-Mitsumatsu” — 2018/11/22 — 11:35 — page 824 — #8 i
i

i
i

i
i

824 Yoshihiko Mitsumatsu

Proposition 2.4. On the tube component Lawson’s foliation L|W admits
a tame leafwise symplectic form βW,λ,µ = λπR

∗βR + µdy ∧ ζN for constants
λ 6= 0 and µ 6= 0, which is invariant under the Hopf flow. It restricts to
βK,λ,µ = λ dθ ∧ dx+ µdy ∧ ζN on the boundary leaf K = S1 ×N .

In order to make a better correspondence of these computations on W
with the Fermat cubic component, we introduce a new coordinate variable
τ = 2 log ρ where ρ =

√
|Z0|2 + |Z1|2 + |Z2|2 on C3. In the following sections

our Kodaira-Thurston nil-manifold K = ∂W = S1 ×N is also regarded as
K = F̌0/∼ where in the polar coordinate R+ × S5 for Č3 we have exactly
F̌0 = F0 \ {O} = R+ ×N and the quotient is given as P ∼ Q for P and
Q ∈ F̌0 iff Q = enπP for some n ∈ Z. Here, as in the S1 = R+/∼-factor, the
period is 2π in τ coordinate, τ exactly corresponds to θ and the above
symplectic form is also presented as λ dτ ∧ dx+ µdy ∧ ζN just by replacing
θ with τ .

This change of coordinates is because of the following reasons. In the
quotient space S1 × S5 = R+/∼ × S5, F1 spirals to K = R+/∼ ×N . On the
Fermat cubic component C, any of the interior leaf is diffeomorphic to the
Fermat cubic surface F1, and is spiraling to the boundary leaf K, almost
exactly in the same way as above. More precise correspondence will be ex-
plained in Section 3 and in Section 4.

From K the infinite cyclic covering pulls βK,λ,µ back to a periodic sym-
plectic form β0,λ,µ = λ dτ ∧ dx+ µdy ∧ ζN = λ 2

ρdρ ∧ dx+ µdy ∧ ζN on F̌0.

On the other hand, F̌0 inherits a natural symplectic structure from (C3, β∗ =
2
∑2

j=0 dxj ∧ dyj). One of its standard Liouville forms (the primitive of sym-

plectic form) λ∗ =
∑2

j=0(xjdyj − yjdxj) is presented as ρ2ζN in the polar

coordinate. Replacing ρ2 with ρ, we see that (F̌0, β0 = d(ρζN )) is the sym-
plectization of the contact manifold (N, ζN ). Replacing ρ with eτ , we have
an identification of F̌0 with R×N 3 (τ, P ). We will call this the product
coordinate on F̌0. The difference between β0,λ,µ and β0 will be the main
topic.

3. Leafwise symplectic structure on the Fermat
cubic component

3.1. Main theorem

Theorem 3.1. Lawson’s foliation L on S5 admits a smooth leafwise sym-
plectic form.
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This is the main result of the present article. Proposition 2.4 and Corol-
lary 2.3 imply that this is a direct consequence of the following proposition,
which we prove in this section assuming Corollary 5.2.

Proposition 3.2. For a sufficiently small constant 0 < µ� 1 and a suf-
ficiently large constant λ� 1 Lawson’s foliation restricted to the Fermat
cubic component admits a tame symplectic form which restricts to βK,λ,µ =
λ dθ ∧ dx+ µdy ∧ ζN on the boundary leaf K.

3.2. Coordinates

As a preparation, we start with a more precise description of tubular neigh-
bourhoods of N in S5 and those of F̌0 in Č3. For the tubular neighbour-
hood Wε of N in S5, we describe an identification of Wε with D2

ε ×N .
As f : Wε → D2

ε ⊂ C defines the first projection, it is enought to define the
projection to N .

In Section 1 we chosesmall enough. If necessary, we take ε smaller again
so that the following holds. Let νN denote the normal bundle to to N ⊂ S5.
With respect to the standard metric induced from C3, there exists a radius
δ > 0 for νN such that the exponential map νN → S5 is diffeomorphic up
to the radius δ. We choose ε > 0 so that Wε is included in this diffeomorphic
image. Thus the inverse of the exponential map defines the projection from
Wε to N . Simply, this projection asigns to any point in Wε its nearest point
in N . As the Hopf action is isometric and leaves N invariant, this projection
is equivariant with respect to the Hopf action.

We do the same on each sphere S5(ρ) of the radius ρ ≥ 1. Remark that
once ε has been chosen small enough for ρ = 1, we can choose ρ3ε on S5(ρ)
thanks to the homothety. But for ρ ≥ 1, ε is enough because ε ≤ ρ3ε. Then
the projection to F̌0 ∩ S5(ρ) = ρ ·N and thus to N is defined.

Collecting these identifications with respect to each ρ ≥ 1, it also defines
an identification of the tubular neighbourhood Č3 ∩ {ρ ≥ 1} ∩ {|f | < ε} of
F̌0 ∩ {ρ ≥ 1} with (F̌0 ∩ {ρ ≥ 1})×D2

ε and with [1,∞)×N ×D2
ε . The end

Fw ∩ {ρ ≥ 1} of the Fermat cubic surface Fw for |w| ≤ ε is exactly the graph
of the constant function ≡ w. From this we see that these ends are diffeomor-
phic to [1,∞)×N , which is called the product coordinate of the end. When
τ = 2 log ρ replaces ρ, the identification is changed into [0,∞)×N 3 (τ, P )
and is also called the product coordinate.

Remark 3.3. We have remarked that the identification of the end of Fw

with that of F̌0 is equivariant with respect to the Hopf flow. Therefore the
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product coordinate is also equivariant under the Hopf flow H(t) because
the action of H(t) on R+ ×N ×D2

ε is described as (ρ, P, z) 7→ (ρ,H(t) ·
P, ei3tz]) where H(t) · P is the restriction of the Hopf flow on N ⊂ S5 and is
nothing but the fibrewise multiplication by eit on each fibre of S1 ↪→ N →
Eω. Similarly, on Wε \N (∼= N ×D2

ε)
∼= N × (0, ε)× S1, the Hopf action is

indicated as H(t)(P, r, θ) = (H(t) · P, r, θ + 3t).

Remark 3.4. For any 0 < ε ≤ ε, as Fε triply covers CP 2 \ Eω and the
product coordinate is equivariant with respect to the monodromy H(2π

3 Z),
the product coordinate Fε

∼= [0,∞)×N induces a product coordinate of the
end of CP 2 \ Eω ∼= [0,∞)×N ′, where N ′ = −∂U ∼= N/Z/3

∼= Nil3(−9). We
will make use of this in Corollary 4.2 and in Lemma 5.3.

3.3. Proof of main proposition

We prove Proposition 3.2 assuming Corollary 5.2.
First let us introduce a leafwise symplectic sturcture on the Milnor fibra-

tion (S5 \N, {Fθ}). Then we will check that along the turbulization process
in Section 1 the leafwise symplectic sturcture on the Milnor fibration natu-
rally gives rise to what we are looking for.

Following Corollary 5.2, take and fix a symplectic form βλ,µ on Fε′ .
(The constant ε′ is given in Theorem 4.1 and in Proposition 4.3.) Each
leaf Fθ is identified with Fε′ through the projection and the Hopf actions;

Fε′
p−→F0

H(t)−→Fθ for t = θ+2kπ
3 (mod 2πZ) (k = 0, 1, 2). Let pθ,k = H(t) ◦

p = p ◦H(t) : Fε′ → Fθ denote this identification. Respecting the continuity
of the identification, we can not decide which one to choose among three
values of t. However as βλ,µ is invariant under the action of H(2π

3 Z) on Fε′ ,
these indentifications induce a well-defined symplectic form on each Fθ from
(Fε′ , βλ,µ), which gives rise to a smooth leafwise symplectic structure βL̃ on
the Milnor fibration.

Next we go back to the turbulizing process of obtaining the Fermat cubic
component. Here we need a pointwise identification of each interior leaf Lθ
of the Fermat cubic component with Fθ. On Wr∗ \N ∼= N × (D2

r∗ \ {0}),
take a vector field X̃ which is defined as (0, X), where X is the vector field
defined on D2

r∗ in Section 1 for the turbulization. Also take a vector field
R̃ = (0,−6r ∂∂r ).

We identify L0 with F0 and with Fε′ as follows. The core part L0 \
Wr2 is exactly identical with F0 \Wr2 . For t > −1

6(log r∗ − log r2), the point

exp(tX̃)(P, r2, 0) of L0 is identified with the point exp(tR̃)(P, r2, 0) of F0.
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Accordingly, these points are identified with the point (τ2 + t, P ) of F1 in
the product coordinate, where τ2 = −2

3 log r2. Similarly exp(tX̃)(P, r2, θ) ∈
Lθ and exp(tR̃)(P, r2, θ) ∈ Fθ are identified. Let lmθ : Fθ → Lθ denote this
identification. Remark that through these identifications a point (τ, P ) in
the end of Fε′ for large enough τ � 0 is sent to a point lm0 ◦ p(τ, P ) =
(P, r(τ), τ + c0) in L0 ∩Wr2 for some function r(τ) and some constant c0.
Also we have lmθ ◦ pθ,k(τ, P ) = (H( θ+2kπ

3 )P, r(τ), τ + c0 + θ).

The leafwise symplectic form βL̃ on the Milnor fibration is thus trans-
planted on the interior of the Fermat cubic component C of Lawson’s fo-
liation L to be a leafwise symplectic form βC . What remains to prove
is that βC |Wr1

\W coincides with Pr∗βK,λ,µ where Pr denotes the projec-

tion of the end Wr1 \W ∼= N × (r0, r1)× S1 of C to the boundary ∂C ∼=
N × {r0} × S1 ∼= N × S1( = K). Then we obtain a tame symplectic form
on C with the restriction βK,λ,µ to the boundary. By Corollary 2.3 the proof
will be completed.

From the above preparations, we see that the composition of the maps
Pr ◦ lmθ ◦ pθ,k : [the end of Fε′ ] = (T,∞)×N → ∂C = N × S1 sends the
points as (τ, P ) 7→ (H( θ+2kπ

3 )P, τ + c0 + θ)) for some T � 0. As is men-
tioned in Corollary 5.2, βλ,µ|(T,∞)×N is invariant under the Hopf flow and
the τ -translation, for any θ and k ∈ Z, (Pr ◦ lmθ ◦ pθ,k)∗βλ,µ|(T,∞)×N coin-
cide with each other and in fact with βK,λ,µ. �

4. Natural symplectic structure on Fermat cubic surface

4.1. Statements and notations

The natural symplectic structure which Fε′ inherits from C3 coincides with
that of F̌0 on the product ends after a small isotopy inside Fε′ and this fact
is not difficult to show. However, for our purpose the following weaker result
suffices and is much easier to prove.

Theorem 4.1. For a sufficiently small ε′ > 0, there exists a symplectic
form β1 on the Fermat cubic surface Fε′ which satisfies the following prop-
erties.

(1) On the end Fε′ ∩ {τ ≥ 2π} in the product coordinate [0,∞)×N ,
β1|[2π,∞)×N = d(eτζN ).

(2) β1 is invariant under the Hopf action H(t) for t ∈ 2π
3 Z.
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Corollary 4.2. For the same ε′ > 0 as above, there exists a symplectic
form β′ on CP 2 \ Eω whose restriction to the the product end satisfies

β′|[2π,∞)×N ′ = d(eτζN ′)

with respect to the product coordinate [0,∞)×N ′.

See Remark 3.4 for the product coordinates for the ends of CP 2 \ Eω
and N ′. The natural contact 1-form ζN ′ is obtained as ζ in Remark 1.3 and
is also obtained as the quotient (N ′, ζN ′) = (N, ζN )/Z/3 . Because CP 2 \ Eω
is regarded as the quotient of F1 by the Hopf action restricted to Z/3, on
its end the product coordinate ∼= (T,∞)×N ′ is also naturally induced from
the product coordinate (T,∞)×N for the end of F1 by simply regarding
N ′ = N/Z/3 .

4.2. Re-embedding of Fermat cubic surfaces

We prove Theorem 4.1. On the tubular neighbourhood {|f | ≤ ε} ∩ {τ ≥ 0}
of F̌0 ∩ {τ ≥ 0} in C3 ∩ {τ ≥ 0}, take the product coordinate [0,∞)×N ×
D2
ε . The end of an affine surface {τ ≥ 1} ∩ Fw is the graph of the constant

function cw ≡ w : [0,∞)×N → D2
ε in the product coordinate.

Take a smooth function φ : [0,∞)→ [0, 1] satisfying the conditions

φ(τ) ≡ 1 for τ ∈ [0, 1] and φ(τ) ≡ 0 for τ ∈ [π,∞)

and consider the graphs of the functions

σw : [0,∞)×N → D2
ε , σw(τ, P ) = φ(τ)w

for w ∈ D2
ε . The part {τ ≥ π} of the graph coincides with F̌0 ∩ {τ ≥ π}

and thus symplectic as submanifold of (C3, β∗). (See the last paragraph of
Section 2 for β∗. ) The family {σw ; w ∈ D2

ε} apparently depends smoothly
on w and the graphs converge to F0 ∩ {τ ≥ 0} when w → 0. Therefore the
following proposition follows easily from the compactness of [0, 2π]×N .

Proposition 4.3. There exists 0 < ε′ ≤ ε such that the graph of σw for
|w| ≤ ε′ is a symplectic submanifold of (C3, β∗).

For example, if we take w = ε′, the affine surface Fε′ has another smooth
embedding into C3 which is modified from the original one only on the end
{τ ≥ 0} by the graph of σε′ which is again, a symplectic submanifold and
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coincides with F̌0 on the end. Because the new embedding is respecting
the product coordinate, it is equivariant under the Hopf action H(t) for
t ∈ 2π

3 Z. The core part Fε′ ∩ {τ ≤ 1} is unchanged, it is also invariant under
H(2π

3 Z). It is clear that β∗ is invariant under the Hopf flow and β∗|F̌0
=

d(eτζN ). Therefore the induced symplectic form β1 from (C3, β∗) by the
new embedding is the desired one in Theorem 4.1. �

5. End-periodic symplectic form on Fermat cubic surface

Based on the preparations in the preceding sections, we prove the following
results, which are the core part of this article. We use the product coordinate
(τ, P ′) ∈ (−2

3 log ε,∞)×N ′ ∼= U \ Eω ⊂ CP 2 \ Eω.

Theorem 5.1. For a sufficiently small constant 0 < µ� 1 and sufficiently
large constants T � 2π and λ� 1, there exists a symplectic form β′λ,µ on

CP 2 \ Eω which restricts to λ dτ ∧ dx+ µdy ∧ ζN ′ on its end (T,∞)×N ′.

Corollary 5.2. For the same constants as above, there exists a symplectic
form βλ,µ on the Fermat cubic surface Fε′ which restricts to λ dτ ∧ dx+
µdy ∧ ζN ′ on its end (T,∞)×N . βλ,µ is invariant under the Hopf action
of H(t) for t ∈ 2π

3 Z. On the end (T,∞)×N naturally βλ,µ admits more
symmetries, namely, it is invariant under the translations in τ -direction
and also under the Hopf flow H(t) for any t ∈ R.

Being independent of the main result Theorem 3.1 of this article, this re-
sult might have an interest and an importance by itself. In the final section,
we will make a brief discussion on the generalization of this result, namely,
the (non-)existence of an end-periodic symplectic structure on Stein or glob-
ally convex symplectic manifolds. In the rest of this section, we prove the
above theorem.

Lemma 5.3. There exists a closed 2-form κ on CP 2 \ Eω which restricts
to dy ∧ ζN ′ on the product end.

Proof of Lemma 5.3. As dy ∧ ζN ′ is closed, it defines a de Rham cohomol-
ogy class [dy ∧ ζN ′ ] ∈ H2(N ′) ∼= R2. Let us look at the Meyer-Vietoris exact
sequence for the cohomologies of CP 2 = U ∪ (CP 2 \ U). It is easy to see that
the inclusion N ′ ↪→ U induces a trivial map 0 : H2(U)→H2(N ′). Therefore
the fact H3(CP 2) = 0 and the long exact sequence tells that the inclusion to
the other side induces a surjective homomorphism H2(CP 2 \ U) � H2(N ′).
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This also implies that the closed 2-form dy ∧ ζN ′ on the product end extends
to the whole CP 2 \ Eω as a closed 2-form κ. �

Remark 5.4. The origin of F0 is an isolated singularity of simple elliptic
type. Up to 3-fold branched covering U is orientation-reversing diffeomorphic
to the minimal blowing up resolution of F0. On the other hand, the 3-fold
covering of CP 2 \ Eω is biholomorphic to the Milnor fibre F1. The above
lemma reflects the fact that the resolution and the Milnor fibre are quite
different to each other. Such a phenomenon does not happen for simple
singularities. For singularity theory, see for example [D].

Let us proceed to construct an end-periodic symplectic form on CP 2 \
Eω. First take a positive constant µ small enough so that β′ + µdy ∧ ζN ′ is
still a symplectic form. On the product end {τ ≥ 2π}, from Corollary 4.2
we know β′ = d(eτζN ′) = eτdτ ∧ ζN ′ + eτ 3

2πdx ∧ dy. This implies β′ ∧ dy ∧
ζN ′ = 0 and hence we have (β′ + µdy ∧ ζN ′)2 = β′2 on the product end.
Therefore if we choose µ small enough, we can assure that even on the
compact core CP 2 \ U , the closed 2-form β′ + µdy ∧ ζN ′ is non-degenerate.
We fix such µ.

Next take constants 2π < T0 < T1 < T2 < T3 = T and non-negative
smooth functions k(τ) and l(τ) of τ on [T0,∞) satisfying the following con-
ditions:

k(τ) = eτ , l(τ) ≡ 0 : T0 ≤ τ ≤ T1,
k′(τ) > 0 , l(τ) > 0 : T1 ≤ τ < T2,
k(τ) > 0 , l(τ) ≡ λ : T2 ≤ τ ≤ T3,
k(τ) ≡ 0 , l(τ) ≡ λ : T3 ≤ τ.

This is done as follows. First choose such a smooth function k. Then take
a constant λ > 0 satisfying max{−3k′(τ)k(τ)

4µπ ; T2 ≤ τ ≤ T3} < λ. Then it is
easy to find a smooth function l(τ) which satisfies all of the above conditions.

Now we are ready to construct an end-periodic symplectic form. First
modify β′ on the product end. We can define β′] as

β′] =

{
β′ on CP 2 \ U ,
d(k(τ)ζN ′) + l(τ)dτ ∧ dx on [T0,∞)×N ′

because the two presentations of β′] coincide with each other on [T0, T1]×
N ′. Finally we put β′λ,µ = β′] + µκ. This is the desired symplectic form on

CP 2 \ Eω because of the following reasons. First of all, β′λ,µ is closed and co-
incides with λ dτ ∧ dx+ µdy ∧ ζN ′ on [T3,∞)×N ′ and with β′ + µdy ∧ ζN ′
on CP 2 \ U . Therefore it is non-degenerate on CP 2 \ U as already remarked
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above. On the product end, as d(k(τ)ζN ′) and l(τ)dτ ∧ dx+ µdy ∧ ζN ′ do
not interact at all under the exterior product, we have

(β′λ,µ)2 =

(
3k′(τ)k(τ)

2π
+ 2l(τ)µ

)
dτ ∧ dx ∧ dy ∧ ζN ′ .

Therefore β′λ,µ is non-degenerate on the product end as well. �

6. Ẽ7 and Ẽ8

Among simple elliptic singularities, the following three deformation classes
Ẽl (l = 6, 7, 8) are known to be realized as isolated hypersurface singularities
and their links are ismorphic to Nil3(−3), Nil3(−2), and to Nil3(−1) respec-
tively. They are defined by the following polynomials except for finitely many
values of λ.

fẼ6
= Z3

0 + Z3
1 + Z3

2 (+λZ0Z1Z2)

fẼ7
= Z4

0 + Z4
1 + Z2

2 (+λZ0Z1Z2)

fẼ8
= Z6

0 + Z3
1 + Z2

2 (+λZ0Z1Z2)

As the smooth topology of these objects does not depend on the choice of the
constant λ, in this paper we take it to be 0. Each of our constructions in this
paper for the Fermat cubic, i.e., the Ẽ6 polynomial also works in the other
two cases. In this section we verify this fact, by briefly reviewing the topology
of these singularities. For basic facts about hypersurface singularities, the
readers may refer to Milnor’s seminal text book [M] as well as Dimca’s
book [D].

The notations in §1 are used and interpreted in parallel or slightly mod-
ified meanings according to the context, unless otherwise specified. For f =
fẼl (l = 7, 8) the origin is an isolated and in fact unique critical point of the
polynomial f . Instead of scalar multiplication, we define the weighted homo-
geneous action of λ ∈ C× on C3 by λ · (Z0, Z1, Z2) = (λw0Z0, λ

w1Z1, λ
w2Z2)

where the weight vector w = (w0, w1, w2) takes value (2, 1, 1) [resp. (3, 2, 1)]
for Ẽl (l = 7, 8). By this action we have λ · Fw = Fλ4w [resp. λ · Fw = Fλ6w]
for l = 7 [resp. l = 8]. The weighted homogeneous action by positive real
numbers λ ∈ R+ plays the role of the euclidean homotheties in the Fermat
cubic case. The action by unit complex numbers λ = eit (t ∈ R) restricts
to an action on S5 and is again denoted by H(t) and called the weighted
Hopf action or flow. The quotient space P 2

w by this weighted Hopf action
is called the weighted projective space, which is a complex analytic orbifold.
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The quotient map h : S5 → P 2
w is called the weighted Hopf fibration, which

is a Siefert fibration. We take CP 2 = {[X0 : X1 : X2]} as a quotient of P 2
w as

follows. Define a map Φ : Č3 → CP 2 as Φ : (Z0, Z1, Z2) 7→ [X0 : X1 : X2] =
[Zd00 : Zd11 : Zd22 ] where (d0, d1, d2) = (1, 2, 2) [resp. (2, 3, 6)] for Ẽ7 [resp. Ẽ8].
Then Φ factors into Φ|S5 = Ψ ◦ h for some Ψ : P 2

w → CP 2. The homogeneous
equations

gẼ7
= X2

0 +X2
1 +X2

2 = 0

gẼ8
= X0 +X1 +X2 = 0

on CP 2 rewrites fẼl = 0 as gẼl ◦ Φ = 0 (l = 7, 8).

The first important fact to notice is that the open set of S5 consisting
of all regular orbits of the weighted Hopf flow H(t) contains N = F0 ∩ S5.
Therefore the orbit space E(l) = N/H is a non-singular holomorphic curve
which sits in the regular part of P 2

w.
‘gẼ7

= 0’ defines a non-singular projective curve of degree 2 and ‘gẼ8
=

0’ a projetive line. Both of them are biholomorphic to CP 1. Comparing
Φ and h|E(l)

, we easily see that Ψ|E(7)
: E(7) → {X2

0 +X2
1 +X2

2 = 0} is a
2-fold branched covering over the rational curve with 4 branched points
{X1 = 0 orX2 = 0} ∩ {X2

0 +X2
1 +X2

2 = 0} like the Weierstrass ℘-function
and E(7) is seen to be an elliptic curve. In the case of Ẽ(8), Ψ|E(8)

: E(8) →
{X0 +X1 +X2 = 0} is a 6-fold branched covering, branching over 3 points
{X0 = 0}, {X1 = 0}, and {X2 = 0} with branch indices 2, 3, and 6 respec-
tively. From this we also see that E(8) is an elliptic curve.

Similarly it is easy to see that the self-intersection (the c1 of the normal
bundle) of E(7) [resp. E(8)] in P 2

w is 8 [resp. 6] and that the c1 (the euler
class) of the weighted Hopf fibrations over E(7) [resp. E(8)] is −2 [resp. −1].

Like in the case of Ẽ(6), in both of the other two cases the weighted

projection Č3 → S5 = Č3/R+ by positive real numbers restricts to a dif-
feomorphism from Freiθ to the Milnor fibre Lθ. h|Lθ : Lθ → P 2

w \ Ẽ(l) is a
branched covering, but the number of branched points is finite and around
the ends it is a 4-fold [resp. 6-fold] regular covering for l = 7 [resp. l = 8].

We also remark here that the link N has a product type tubular neigh-
bourhood W in P 2

w because f gives the trivialization. The boundary ∂W
is a Kodaira-Thurston nil-manifold and F̌0 can be considered as its cyclic
covering.

Now let us verify that our constructions are transplanted to the cases
of Ẽ7 and Ẽ8. From the descriptions of the link N , the Milnor fibres Lθ,
and of F1, the contents in Section 1 and 2 are recovered. The fact that the
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weighted Hopf flow preserves the standard sphere S5(ρ) of radius ρ and the
standard symplectic form β∗ implies that the product coordinates introduced
in Section 3 can play the same role as in the case of Ẽ6 and the arguments
in Section 4 are valid without modifications.

As to the results in Section 5, once a parallel result to Lemma 5.3 is
verified, then the manipulations of differential forms on the product end
holds without major modifications. Together with the commutative diagram
below, the fact that the rational (or real) cohomology of P 2

w is isomorphic
to that of CP 2 (see e.g., [D]) tells that a parallel statement to Lemma 5.3
holds.

(T,∞)×N ∼= end of F̌0
∼= end of F1 ↪→ F1

∼= L0y y yh|L0

(T,∞)× ∂U ∼= end of P 2
w \ E(l) ↪→ P 2

w \ E(l)

The left and the middle vertical arrows are regular coverings and the right
one is a branched covering.

7. Concluding remarks

To close the article, we make some comments and raise some questions
related to our construction.

7.1. End-periodic symplectic structures on Stein or globally
convex symplectic manifolds

The construction of leafwise symplectic structure in this paper seems to
stand on a intersection of some fortunes.

Apart from constructing leafwise symplectic foliations of codimension
one, as is mentioned in the previous section, the existence of end-periodic
symplectic structures on Stein or globally convex symplectic manifolds might
be of an independent interest. While the possibility of such situations seems
to be limited. let us discuss it.

Example 7.1 (A trivial example). The Stein manifold C (or the upper
half plane H) carries an end-periodic symplectic form.

This example is in many senses trivial, because, first of all the fact itself
is trivial. Especially we do not have to change the symplectic form. Also, as
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this Stein manifold is not really convex, we should say this is a meaning-
less example. The convexity of symplectic structures must be discussed on
manifolds of dimension ≥ 4 (see [EG]). However, this example still exhibits
a clear contrast to the following case.

Example 7.2. The Stein manifold Cn (n ≥ 2) does not admit an end-
periodic symplectic structure, because S1 × S2n−1 does not admit a sym-
plectic structure.

As the non-existence this example is generalized to many cases.

For the case of symplectic dimension 4, the recent result by Friedl and
Vidussi, which has been known as Taubes’ conjecture, provides a strong
constraint.

Theorem 7.3 (Taubes’ conjecture, Friedl-Vidussi [FV]). For a closed
3-manifold M , the 4-manifold W 4 = S1 ×M3 admits a symplectic structure
if and only if M fibers over the circle.

Now in order to make the implication of this theorem clearer, let us take
the following definition.

Definition 7.4. Assume that an open 2n-manifold W has an end which is
diffeomorphic to R+ ×M2n−1 for some closed oriented manifold M . An end-
periodic symplectic structure on W is a symplectic structure on W whose
restriction to the end is invariant under the action of non-negative integers
N0 where m ∈ N0 acts on R+ ×M as (t, x) 7→ (t+m,ϕm(x)) for some fixed
monodromy diffeomorphism ϕ : M →M .

It follows directly from the definition that the mapping cylinder Mϕ

admits a symplectic structure. If the monodromy belongs to a mapping
class of finite order, S1 ×M also admits a symplectic structure.

The above theorem tells that in the case of trivial monodromy, M3

fibres over the circle. The same construction as in the case of the Kodaira-
Thurston nil-manifold in Section 2 gives rise to symplectic structures on the
4-manifold S1 ×M . The virtue of the theorem of Friedl-Vidushi is of course
in the converse implication.

Example 7.5 (Surfaces of higher degrees). Instead of taking the Fer-
mat cubic surface as in the present article, if we take, e.g., a Fermat type
quartic surface, then the end is diffeomorphic to R+ ×M3, where M3 is an
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S1-bundle over the closed oriented surface Σ3 of genus 3 with euler class
4. As this 3-manifold apparently does not fiber over the circle, the Fermat
quartic surface does not admit an end-periodic symplectic structure with at
most finite monodromy. The same applies to the Brieskorn type hyperbolic
singularities {Zp0 + Zq1 + Zr2 = 0} with 1/p+ 1/q + 1/r < 1.

Example 7.6 (Cusp singularities). For 1/p+ 1/q + 1/r < 1, the poly-
nomials equation Zp0 + Zq1 + Zr2 + Z0Z1Z2 = 0 defines one of so called the
cusp singularities at the origin. Remark that a cubic term is added to the
above Brieskorn type polynomial, which changes the topology of links and
fibres in this case. The link is a solv-3-manifold, which are explained in the
next example. Other than the simple elliptic singularities which we treated
in this paper, this seems to be only the possible case where the Milnor fibra-
tion is modified into a codimension 1 leafwise symplectic foliation. In fact it
turns out to be possible, but it requires different arguments so that it will be
done in a forthcoming paper [Mi2]. See also [Mo] and the next subsection.

If we extend our scope from Stein manifolds to globally convex symplec-
tic manifolds (see [EG] for details of this notion) we find one more example
for the existence of end-periodic symplectic structure, which is slightly less
trivial than Example 7.1.

Example 7.7 (Solvable manifold). Let M3 = Solv be a 3-dimensional
compact solv-manifold, namely, the mapping cylinder of a hyperbolic auto-
morphism of T 2.

Then it carries an algebraic Anosov flow of suspension type, whose strong
(un)stable direction corresponds to an eigenvalue of the monodromy. Then
from [Mi] we know that R×M admits a globally convex symplectic struc-
ture. As it has a disconnected end, it is not Stein. On the other hand, appar-
ently R×M admits an end-periodic symplectic structure because S1 ×M
admits a symplectic structure.

Some of higher genus surface bundles over the circle with pseudo-Anosov
monodromy admit Anosov flows. See [Go] and [FH] for Anosov flow on hy-
perbolic 3-manifolds. Of course in this formulation, Thurston’s virtual fibra-
tion conjecture (now it is a theorem) is involved. Then for such a 3-manifold
M , by [Mi] we know that R×M admits a globally convex symplectic struc-
ture while it also admits an end-periodic symplectic structure because M
fibres over the circle.
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These examples are again disappointing because the compact core part
has no more topology than the end.

7.2. Foliations on spheres

Meersseman and Verjovsky proved in [MV2] that the tube component of
Lawson’s foliation does not admit a leafwise complex structure. As it is
easy to show that the Fermat cubic component admits a leafwise complex
structure, the situation makes a clear contrast against the case of leafwise
symplectic structures.

At present, it still seems to the author that the problem on the exis-
tence of a foliation of codimension-one on S5 with smooth leafwise complex
structure is still totally open.

Also the existence of codimension-one foliation with leafwise symplectic
structures on higher odd dimensional spheres is unknown as well. As men-
tioned in the previous subsection, on S5 we can modify the Milnor fibrations
of the cusp singularities into foliations of codimension 1 with leafwise sym-
plectic structures ([Mi2] and [Mo]). In higher dimensions the link of isolated
hypersurface singularities in the holomorphic category are simply connected
([M]), so that our way of modification of Milnor fibrations into codimension
1 foliations does not apply.

A recent result by G. Meigniez ([Me]) claims that in dimension ≥ 4,
once a smooth foliation of codimension one exists on a closed manifold, it
can be modified into a minimal one, namely, one with every leaf dense. Espe-
cially it follows that in higher dimensions there is no more direct analogue of
Novikov’s theorem, that is, for any foliation of codimension 1 on S3 there ex-
ists a compact leaf. It is also mentioned by Meigniez that under the presence
of some geometric structures, like leafwise symplectic structures, it might be
of some interest to ask whether some similar statement to Novikov’s theorem
holds or not.

It is also an interesting and hard problem whether if there exists a 2-
calibrated foliation on S5, namely, a codimension 1 foliation and a closed
2-form ω on S5 whose restriction to every leaf is symplectic. Thanks to
Meigniez’s result, we can eliminate a complact leaf from our foliation, which
an apparent obstruction for the 2-calibration, while it seems very difficult to
carry out Meigniez’s modification respecting leafwise symplectic structures.
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[Me] Gaël Meigniez, Regularization and minimization of Γ1-structures,
J. Diff. Geom. 107 (2017), no. 1, 157–202.

[M] John W. Milnor, Singular Points of Complex Hypersurfaces, Annals
of Mathematics Studies 61, Princeton University Press, New Jersey,
(1968).

[Mi] Yoshihiko Mitsumatsu, Anosov flows and non-Stein symplectic man-
ifolds, Ann. Inst. Fourier, Grenoble 45 (1995), no. 5, 1407–1421.



i
i

“6-Mitsumatsu” — 2018/11/22 — 11:35 — page 838 — #22 i
i

i
i

i
i

838 Yoshihiko Mitsumatsu

[Mi2] Yoshihiko Mitsumatsu, Topological flexibility of symplectic convexity
and symplectic foliations, preprint, in preparation.

[Mo] Atsuhide Mori, A note on Mitsumatsu’s construction of a leafwise
symplectic foliation, Int. Math. Res. Not. IMRN, (2018), electronic
version, rnx321.
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