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1. Introduction

In [21], Kronheimer and Mrowka introduced a powerful invariant of a knot
or link in a 3-manifold L ⊂ X called singular instanton knot homology. De-
noted I\(Y, L), their invariant is defined in the context of gauge theory.
Roughly, the theory associates to L a chain group C\(X,L) generated by
flat SO(3) connections on X \ L which have a prescribed singularity near L.
This group is endowed with a differential that counts anti-self-dual instan-
tons on X × R which limit to given flat connections on the ends. Singular
instanton knot homology has an important computational tool called the
skein exact triangle. This is a long exact sequence relating the homology
groups of links which agree outside of a small 3-ball, where they differ in a
simple way. Iterated application of the exact triangle using a collection of 3-
balls leads to a spectral sequence which converges to I\(X,L). This spectral
sequence, when applied to a collection of 3-balls containing all the crossings
of a diagram for a link in the 3-sphere, has E2 page isomorphic to the well-
known combinatorial knot invariant Khovanov homology [24]. The existence
of this spectral sequence, together with a non-triviality result for I\(S3, L)
coming from its relation to another knot invariant (sutured instanton knot
homology) [22], allowed Kronheimer and Mrowka to prove the striking result
that Khovanov homology detects the unknot. Despite this triumph, I\(X,L)
remains rather mysterious. This is due in large part to the fact that compu-
tations are extremely scarce. Initially, the only route for computation was
through the aforementioned spectral sequence, but, aside from the instances
where it collapses for simple reasons at Khovanov homology, little headway
has been made in this direction (though see [25, 28] for more sophisticated
computations using the spectral sequence).

Motivated by a desire for a more explicit understanding of the singu-
lar instanton chain complexes, we began a project in [18] which aims to
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make concrete direct calculations of I\(X,L). This is not so easy, and a
serious initial sticking point arises from the fact that the flat connections
which generate C\(X,L) are never isolated. Indeed, aside from the case of
the unknot in S3, the spaces of flat connections studied by the theory are
always positive dimensional varieties. For this reason, one needs to perturb
the Chern-Simons functional that gives rise to I\(X,L) through its Morse
homology. The robust holonomy perturbations used to set up the general
theory destroy the concrete algebraic interpretation of the generating set for
C\(X,K) in terms of certain traceless representations of the fundamental
group of X \ L, and the goal of our first paper was to retain such an in-
terpretation by way of explicit local, and in some sense minimal, holonomy
perturbations. The main idea from [18] was to pick a particular distinguished
3-ball in X which intersects L in a trivial 2-stranded tangle. We then per-
formed an explicit holonomy perturbation to the Chern-Simons functional
in the neighborhood of a curve living in this ball. Using this perturbation
allowed us, in a variety of examples, to perform computations of singular
instanton chain groups for many knots (e.g., many torus knots) which im-
plied that the spectral sequence from Khovanov homology necessarily had
large rank higher differentials. In many of these cases we produced perfect
complexes, i.e., complexes with trivial differential, so that our computation
determined the singular instanton homology despite the fact that the spec-
tral sequence from Khovanov homology was not understood.

The key perspective for the computations of [18] is that the generators of
the singular instanton chain groups can be interpreted as the intersections of
two immersed 1-manifolds in a 2-dimensional orbifold, the pillowcase, which
arises as the quotient of the torus by the hyperelliptic involution (see Sec-
tion 3 for more details). This perspective results from the observation that
the choice of trivial 2-stranded tangle (D,U) ⊂ (X,L) where we perform the
perturbation results in a decomposition of the link

(X,L) = (X \D,L \ U) ∪(S2,{4 points}) (D,U)

We let (Y, T ) := (X \D,L \ U) denote the complementary tangle. Now
C\(X,L) is generated by certain conjugacy classes of perturbed traceless rep-
resentations ρ : π1(X \ L)→ SU(2). Using the above decomposition, they
can be viewed as the intersection of the restrictions

R(Y, T ) R\π(D,U)

R(S2, {4 points}) ' P

HHH
HHHj

���
����
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where R(Y, T ) denotes the traceless SU(2) character variety of the comple-
mentary tangle, R\π(D,U) denotes the perturbed traceless character variety
of the trivial tangle (suitably summed with the Hopf link to allow for a
non-trivial bundle), and R(S2, {4 points}) is the traceless character variety
of the 4-punctured 2-sphere where the tangles intersect. The latter variety
is isomorphic to the pillowcase, which we denote by P [18, Proposition 3.1].
In [18, Theorem 1] we calculated the restriction map L0 : R\π(D,U)→ P ,
showing that for certain perturbation data its image was an immersed circle
with exactly one double point, a “figure eight.” Provided that the image
of the restriction L1 : R(Y, T )→ P is an immersed 1-manifold transverse to
this figure eight, there is a bijection between generators for C\(X,L) and
intersections of the images of L0 and L1:

C\(X,L) =
⊕

x∈{Image L0 ∩ Image L1}

Z/2〈x〉

This perspective allows for the computation of C\(X,L) for an arbitrary
2-bridge or torus knot and for certain pretzel knots (see [18, Sections 10
and 11] and [15]).

Though it made progress towards our goal of making the singular in-
stanton complexes more computable, the approach of [18] had two serious
drawbacks. The first is that it was not clear whether, given a link (X,L), a
trivial tangle (D,U) ⊂ (X,L) can be found for which L1 : R(Y, T )→ P is an
immersed 1-manifold transverse to the image of L0. The second is that even
when such a tangle can be found, we had no way to compute the instanton
differential on the resulting chain group. The purpose of the present article
is to address this second issue.

A hint towards a possible understanding of the differential is gleaned by
viewing our setup through the lens of an ever growing body of conjectured
or established relationships between gauge theoretic and symplectically de-
fined Floer theories (e.g., [2, 3, 11, 13, 34, 36, 37] discuss relationships be-
tween Yang-Mills gauge theory and symplectic invariants). These relation-
ships are often described as “Atiyah-Floer Conjectures”, and our description
of C\(X,L) suggests looking for a differential on the instanton complex in
terms of the symplectic geometry of the pillowcase. In fact such a differen-
tial exists, and in the first half of this paper we introduce an elementary
Z/4 relatively graded Lagrangian-Floer type chain complex for appropri-
ate immersions of compact 1-manifolds (restricted immersed Lagrangians)
into the pillowcase. That is, we define a complex generated by intersec-
tions of the images of immersed 1-manifolds, whose boundary operator is
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defined by counting the analog of holomorphic disks connecting them (in
this low-dimensional setting, it will suffice to count orientation preserving
immersions of disks into the pillowcase connecting intersections of L0 and
L1). In pursuit of our chain complexes, we draw liberally from the founda-
tional work of Abouzaid [1] on Floer homology for immersed Lagrangians in
Riemann surfaces and de Silva-Robbin-Salamon [31] for combinatorial and
homotopy-theoretic aspects of Lagrangian Floer homology in this setting.
Our work here can be viewed both as generalization and specialization of
the existing literature, and our primary contribution is clarifying invariance
proofs and properties of immersed Lagrangian Floer homology in the Z/4
graded setting, and when some of the Lagrangians are immersed arcs (as
opposed to circles). The main result towards this end is Theorem 4.1, which
can be paraphrased as follows.

Theorem 1. Let (L0, L1) be a pair of restricted immersed 1-manifolds in
the pillowcase such that at least one of Li consists only of circles. Then
there is a well-defined Floer homology group HF (L0, L1) whose relatively
Z/4 graded isomorphism type depends only on the free homotopy type of the
pair (L0, L1).

The second half of the article applies this construction to the situa-
tion described above, when L0 : R\π(D,U)→ P is the restriction map from
the perturbed traceless SU(2) character variety of the trivial tangle and
L1 : Rπ(Y, T )→ P is the restriction of the perturbed traceless character va-
riety of a tangle T in a homology 3-ball Y (e.g., the complementary tangle
to an embedded trivial tangle in a pair (X,L) as above). In favorable cir-
cumstances, such as when (Y, T ) is a certain tangle naturally associated to a
2-bridge or torus knot, the map L1 : Rπ(Y, T )→ P is a restricted Lagrangian
without perturbations, so that the chain complex C\(Y, T, π) := CF (L0, L1)
and its homology H\(Y, T, π), which we refer to as the pillowcase homol-
ogy of (Y, T ), are defined. We then calculate the pillowcase homology for
a number of examples, and show that it agrees with the singular instanton
homology in cases where the latter is known (e.g., 2-bridge knots and many
torus knots). More generally, our computations of pillowcase homology agree
with conjectures for I\(S3,K) in many other cases. We make the following
Atiyah-Floer type conjecture:

Conjecture. Given a knot K in a homology sphere X, there exists a 2-tangle
decomposition (X,K) = (Y, T ) ∪ (D,U) with (D,U) a trivial 2-tangle, and
arbitrarily small perturbations π, so that L1 : Rπ(Y, T )→ P is a restricted
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immersed 1-manifold for which the resulting pillowcase homology H\(Y, T, π)
is isomorphic to I\(X,K) as a Z/4 relatively graded group.

We should note that the holonomy perturbations π that we use to make
the traceless character varieties regular and transverse are compatible with
the perturbations used to make the moduli spaces regular in the construction
of I\(S3,K). We should also note that while we have in some sense dealt
with the second drawback from our first paper, in the sense that we have
constructed a differential, the present results still leave us quite far from
achieving our goal of computing I\(X,K). Indeed, we do not yet know how
to construct the general perturbations necessary to even define the pillowcase
homology (nor do we know how to pick the embedded trivial tangle (D,U)).
Moreover, even in the cases that we can find perturbations which make the
pillowcase homology well-defined, it is not true that any such perturbations
will yield a complex whose homology agrees with I\(X,K).

We hope to remedy these concerns for the case of links in the 3-sphere in
a subsequent article, which will develop a spectral sequence from Khovanov
homology to pillowcase homology. Our approach will be to apply our con-
struction to a particular trivial tangle, and then iterate a skein exact trian-
gle satisfied by pillowcase homology in a similar manner to Kronheimer and
Mrowka’s construction. This will involve picking diagrammatically defined
perturbation curves for the diagram of the complementary tangle (Y, T ).
Provided that we can construct this spectral sequence, it will have the ad-
vantage of providing an algebraic route to proving not only that pillowcase
homology can be defined for arbitrary links in the 3-sphere, but also that
it is an invariant of the isotopy type of the link (in reality, we will prove
the stronger result that the quasi-isomorphism type of a certain twisted
complex built from Lagrangian immersions is a tangle invariant living in an
appropriately defined Fukaya category of the pillowcase). Moreover, it will
provide a mechanism for calculating the higher differentials in the spectral
sequence, since they will be combinatorially computable via the Riemann
mapping theorem for polygons. While much remains to be done to achieve
this goal, we are given hope from the fact that we have already established
the skein exact triangle for pillowcase homology in our work-in-progress.

Outline. We now summarize the results of the article. In Section 2 we recall
and extend work of Abouzaid [1] to construct a Lagrangian-Floer theory for
curves in surfaces, and outline the basic properties of the Maslov index.

In Section 3 we recall the construction of the pillowcase P as a quotient
of R2 by Z2 n Z/2. This is a 2-sphere with four singular points (corners).
Motivated by the main result of our previous article [18], we fix a family
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{Lε,g0 }ε,g of immersed circles with one double point in a certain regular ho-
motopy class. We define a restricted immersed 1-manifold in P (roughly) to
be an immersion L1 : R→ P , where either R is a circle and L1 misses the
corners of P , or R is an arc with endpoints mapping to the corners; see Def-
inition 3.6. Choosing L0 = Lε,g0 transverse to a restricted lagrangian L1, we
then define a chain complex (C\(L0, L1), ∂) with differential ∂ determined
by immersed bigons in the smooth part of P with boundary lying on L0

and L1, following Floer [14] and Abouzaid [1]. We show how to endow this
complex with a relative Z/4 grading, a variant of an idea due to Seidel [33].

In Section 4, we prove that the resulting Floer homology HF (L0, L1)
depends only on the homotopy classes of the restricted immersed curves
L0, L1 (the result paraphrased as the theorem above). This result, together
with some basic observations described in Section 5, provides a set of tools
to calculate HF (L0, L1).

In Section 6, we apply this construction to traceless character varieties
of knots. We first recall that the traceless character variety of the pair
(S2, {a, b, c, d}) is the pillowcase P . The main theorem of [18] shows that if
(X,K) is a knot in a 3-manifold and (S2, {a, b, c, d}) ⊂ (X,K) is a 2-sphere
which separates (X,K) into a trivial 2-tangle in the 3-ball (D,U) and its
complement (Y, T ), then generators of Kronheimer-Mrowka’s reduced in-
stanton knot complex can be identified with the intersection of Lε,g0 and
L1 : R(Y, T )→ P . Hence, in favorable circumstances, to such a decompo-
sition and an appropriate holonomy perturbation π we can assign the cor-
responding Floer homology HF (Lε,g0 , L1), which we denote by H\(Y, T, π).
This leads us to make the Atiyah-Floer conjecture stated above (see Con-
jectures 6.3 and 6.5 for more precise statements).

We show in Section 7 that this conjecture holds for 2-bridge knots (where
all differentials are zero in both complexes). Sections 8 and 9 establish some
general properties of Rπ(Y, T ), such as identifying the two boundary points,
and showing that they are stable under holonomy perturbations and they
map to the corners of the pillowcase. We also examine the effect of applying
holonomy perturbations in a collar neighborhood of the separating 2-sphere;
in particular, this is used to make L0 and L1 transverse.

In Sections 10 and 11 we turn to calculations for torus knots, which dis-
play a rich and complicated collection of examples. We find two appropriate
perturbation curves in a useful tangle decomposition for any (p, q) torus
knot, and prove (Theorem 10.1) that there exist perturbations π so that
Rπ(Y, T ) is a compact 1-manifold with two boundary points. We extend the
work of [15], identifying Rπ(Y, T ) and its image in the pillowcase, to give
many calculations of H\(Y, T, π) for tangles associated to torus knots. We
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give examples where different tangle decompositions and perturbations of
a knot yield the same Lagrangian-Floer homology, which agrees with re-
duced instanton homology. We give examples with non-zero differentials.
The reader is encouraged to examine Figures 19 through 25 to get a feel for
how calculations are carried out.

The upshot of our calculations is that the conjecture stated above holds
for all the calculations of H\(Y, T ) for which the corresponding instanton
homology I\(S3,K) is known, and is consistent with the conjectured equality
of ranks of I\(S3,K) and the Heegaard knot Floer homology of K when the
instanton homology is unknown.

As an important final remark, we should say that while this article is
rather lengthy we believe the results are quite natural and can be relatively
easily understood through examples. Thus for the benefit of the reader we
have included a running example which is illustrated in Figures 1, 5, 6, and 8,
and with details of the resulting calculations in Section 3.9. Understanding
this example, and its relation to the traceless character variety associated
to a 2-tangle decomposition of the (5, 11) torus knot (Section 11.1) should
make our ideas quickly accessible.

2. Immersed Lagrangian Floer theory on a surface

In [1], Abouzaid constructs a Lagrangian-Floer theory for unobstructed im-
mersed curves in an oriented surface. In this section we recall his contruction,
adapted slightly for our purposes. We also recall and relate various versions
of the Maslov index for curves and n-gons in a surface equipped with a line
field.

2.1. Unobstructed immersed curves

Let S be a compact oriented surface, possibly with boundary, with infinite
fundamental group.

Definition 2.1. An unobstructed immersed arc is an immersion L : [0, 1]→
S which maps the endpoints to distinct points in the boundary of S, which
is transverse to the boundary at its endpoints, and so that some (and hence
every) lift of L to the universal cover of S is embedded.

An unobstructed immersed circle is an immersion of a circle L : S1 → S
so that each lift of the composite R e−→ S1 L−→ S to the universal cover of S
is a properly embedded line. Here e(t) = exp(2πit).

Either one of these is called an unobstructed immersed curve.
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Figure 1: An immersed circle L1 in the 4-punctured 2-sphere.

An immersion of a 1-manifold R to S is said to contain a fishtail if there
is an interval I ⊂ R whose endpoints are sent to the same point in S and
so that the resulting loop is nullhomotopic. Lemma 2.2 of [1] shows that an
immersed circle is unobstructed if and only if it is homotopically essential
and contains no fishtails. Similarly, an immersed arc is unobstructed if and
only if it contains no fishtails.

The reader can easily verify that the immersed circle illustrated in Fig-
ure 1 is essential and contains no fishtails, and hence is unobstructed.

2.2. Intersection points

Let L0 : R0 → S and L1 : R1 → S be unobstructed immersed curves which
intersect transversely.

Definition 2.2. Define an intersection point of L0 and L1 to be a pair
p = (r0, r1) ∈ R0 ×R1 where L0(r0) = L1(r1).

By transversality and compactness, there are only finitely many inter-
section points. We will frequently abuse notation and write “L0 ∩ L1” for
the set of intersection points of L0 with L1, or confuse p = (r0, r1) with its
image L0(r0) = L1(r1) in S.
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Define C(L0, L1) to be the F2 vector space generated by the intersection
points of L0 and L1.

2.3. Line fields and the Maslov index

We recall some well known facts about the Maslov index in the 2-dimensional
setting for the convenience of the reader, but also to make our conventions
precise.

First, suppose that α : [0, 1]→ S1 is a smooth map. Define the degree of
α to be the sum of the local degrees of α over the preimages of a regular
value eδi for any small δ ≥ 0 chosen so that α(0), α(1) 6∈ {etδi | t ∈ (0, 1]}:

deg(α) :=
∑

x∈α−1(eδi)

degx(α)

(degx(α) denotes the sign of dα at x). Typically α(0) 6= 1 6= α(1) so that we
may take δ = 0. The integer deg(α) has the property that it is additive under
composition of paths, and invariant under homotopy of α rel endpoints.
Define the degree of a continuous path to be the degree of any smooth
approximation with the same endpoints.

Next, suppose that P→ B is a principal circle bundle over a space B
and `0, ` are two sections. The section ` defines a trivialization P ∼=` B × S1

sending ` to 1 ∈ S1. Given a path α : [0, 1]→ B, define the Maslov index of α
with respect to `0 and `, denoted µ(`0, `)α, to be the degree of the composite

[0, 1]
α−→ B

`0−→ P ∼=` B× S1 π−→ S1.

For the rest of this section we consider a pair (S, `), where S is an oriented
Riemannian surface equipped with a line field ` (so S is either a torus or
else S is not closed). Formally, ` is a section of the projective tangent bundle
P(T∗S), which we consider as a principal S1 = SO(2)/(Z/2) bundle. Hence
` defines a trivialization P(T∗S) ∼=` S × S1.

An immersion of a 1-manifold R in S defines a line field along R and
hence a Maslov index for any path in R. More precisely, given an immersion
L0 : R→ S, the subspaces dL0(TrR) ⊂ TL0(r)S of L define a section, which
we denote `0, of the pullback bundle L∗0(P(T∗S))→ R. Taking account of
the pullback of the line field `, this yields the composite map

(1) R
`0−→ L∗(P(T∗S)) ∼=` R× S1 π−→ S1



i
i

“5-Hedden” — 2018/10/30 — 17:15 — page 731 — #11 i
i

i
i

i
i

The pillowcase and traceless representations II 731

Definition 2.3. Given an immersion L0 : R→ S of a 1-manifold and a
path α : [0, 1]→ R, the Maslov index µ(L0, `)α, is defined to be µ(`0, `)α,
the Maslov index of α with respect to `0 and `. When clear from context
this will be denoted µ(α, `) or simply µ(α).

As explicit examples (and to explain our conventions), if S = R2, ` is
the horizontal line field, and R is the parabola y = x2, then the path α :
[−1, 1]→ R given by t 7→ (t, t2) satisfies µ(α) = 1. If β : [0, 1]→ R is given
by β(t) = (t, t2) and γ : [−1, 0]→ R is given by γ(t) = (t, t2), then µ(β) = 1
and µ(γ) = 0.

The basic properties of µ, including its dependence on the choice of
the background line field ` on S, are well known and easily understood
using obstruction theory. We summarize the facts we need in the following
Proposition.

Proposition 2.4.

1) If L0 : R→ S is an immersion of a 1-manifold and α, β : [0, 1]→ R
are continuous paths with α(1) = β(0), then µ(L0, `)α and µ(L0, `)β
depend only on the homotopy classes of α and β rel boundary. More-
over, µ(L0, `)α∗β = µ(L0, `)α + µ(L0, `)β.

2) If R = S1 and α(t) = e2πit, 0 ≤ t ≤ 1, then µ(L0, `)α is unchanged by a
regular homotopy of L0. More generally, if R is any 1-manifold and α :
[0, 1]→ R arbitrary, then µ(L0, `)α is unchanged by a regular homotopy
of L0 : R→ S which leaves α(0) and α(1) and the tangent spaces of
L0 at these points stationary.

3) If `′ is any other line field, let z ∈ [S, S1] = H1(S;Z) = Hom(H1(S),Z)
denote the homotopy class of the difference map (i.e., `′(s) = z(s)`(s)).
Here, we identify S1 with RP1, so that one rotation corresponds to a
rotation of a line through an angle of π. If α : [0, 1]→ R is a loop, then
µ(L0, `

′)α = µ(L0, `)α + z(L0 ◦ α).

We next define the triple index τ(`0, `1, `).

Definition 2.5. Suppose that s ∈ S. Given a pair `0, `1 of transverse 1-
dimensional subspaces of TsS, let `t, t ∈ [0, 1] be the shortest clockwise path
from `0 to `1. Then define the triple index

τ(`0, `1, `) = −µ(`t, `)[0,1] ∈ {0, 1}
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When `0, `1 and ` are pairwise transverse, τ(`0, `1, `) is equal to 1 if `0
passes through ` when rotating `0 negatively (clockwise) to `1; otherwise
τ(`0, `1, `) = 0. See Figure 2.

`

`0

`1

`

`1

`0
τ = 0 τ = 1

Figure 2: The triple index τ(`0, `1, `).

The triple index has the following properties: if `0, `1, `2 are pairwise
transverse, then

(2) τ(`1, `2, `0) = τ(`0, `1, `2) and τ(`1, `0, `) = 1− τ(`0, `1, `2)

Let Lk : Rk → S, k = 0, 1, 2, . . . , n− 1, be a sequence of pairwise trans-
verse unobstructed immersed curves. Let pk be an intersection point of Lk−1
and Lk for k = 1, . . . , n. We consider the indices cyclically ordered, so that
Ln = L0 and p0 = pn. Figure 3 illustrates the notation.

L0 = L5
L1

L2

L3

L4

p0 = p5
p1

p2p3

p4

Figure 3: A 5-gon.
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Definition 2.6. Given an ordered list L0, L1, . . . , Ln−1 of pairwise trans-
verse unobstructed immersed curves and a sequence of intersection points
pn = p0, p1, . . . , pn−1 with pi ∈ Li−1 ∩ Li, define π1(p1, . . . , pn) to be the ho-
motopy rel boundary classes of n-tuples of paths (γ0, . . . , γn−1), where γk is
a path in Rk from (the first coordinate of the) intersection point pk to pk+1.

The reader will notice that pn = p0 is placed last in the notation, in
contrast to the order of the Li (and γi) where L0 is placed first. This is
motivated by the fact that it is often useful to treat p0 = pn differently than
the rest of the pk, for example in the definition of the differential and, more
generally, the A∞ structure on the Fukaya category of S (see Definition 2.13
below). In particular, this ensures that notation to be introduced below for
an n-gon from (p1, . . . , pn−1) to pn = p0 is as simple as possible.

Definition 2.7. Define π2(p1, . . . , pn) to be homotopy classes of pairs
(u, (γ0, . . . , γn−1)) where (γ0, . . . , γn−1) ∈ π1(p1, . . . , pn), and u : D2 → S is
a continuous map so that the (counterclockwise) boundary of D2 is sent to
the loop (

(L0 ◦ γ0) ∗ · · · ∗ (Ln−1 ◦ γn−1)
)−1

.

There is a well defined forgetful map π2(p1, . . . , pn)→ π1(p1, . . . , pn) ob-
tained by sending the equivalence class of (u, (γ0, . . . , γn−1)) to that of
(γ0, . . . , γn−1).

There is a well defined function

θ : π1(p1, . . . , pn)→ H1(S),

θ(γ0, . . . , γn−1) = − [(L0 ◦ γ0) ∗ · · · ∗ (Ln−1 ◦ γn−1)]

which vanishes on the image of the forgetful map

π2(p1, . . . , pn)→ π1(p1, . . . , pn).

We use a “label clockwise, but orient the boundary of a disk counter-
clockwise” convention. This is why the inverse of the loop L0(γ0) ∗ · · · ∗
Ln−1(γn−1) appears in Definition 2.7, and that the negative sign is used in
the definition of θ.

Given an intersection point pk of Lk−1 and Lk, π2(pk, pk) is a group. If
π2(p1, . . . , pn) is non-empty, then π2(pk, pk) acts on π2(p1, . . . , pn) by attach-
ing τ ∈ π2(pk, pk) to φ ∈ π2(p1, . . . , pn) along the vertex pk to form a new
map of the disk τ · φ ∈ π2(p1, . . . , pn).
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In the case of a pair (L0, L1), it is easy to check that π2(p1, p1) acts freely
and transitively on π2(p1, p2) for any p2 for which π2(p1, p2) is non-empty.

Definition 2.8. Given an ordered list L0, L1, . . . , Ln−1 of pairwise trans-
verse unobstructed immersed curves, intersection points pk ∈ Lk−1 ∩ Lk, and
an n-tuple of paths (γ0, . . . , γn−1) representing a class in π1(p1, . . . , pn), de-
fine

Mas`(γ0, . . . , γn−1) = 1−
n−1∑
k=0

(
µ(Lk, `)γk + τ(Lk, Lk−1, `)pk

)
We describe a few equivalent formulas for Mas`. First notice that letting

αk denote the reverse of the path γk,

αk(t) = γk(1− t),

then

µ(Lk, `)γk = −µ(Lk, `)αk .

Next, −τ(Lk, Lk−1, `)pk is equal to µ(Mk(t), `)[0,1], where Mk(t) is the path
of lines in TpkS obtained as the shortest clockwise rotation of TpkLk to
TpkLk−1. Hence

(3) Mas`(γ0, . . . , γn−1) = 1 +

n−1∑
k=0

(
µ(Lk, `)αk + µ(Mk(t), `)[0,1]

)
which, by path additivity of the Maslov index, is one greater than the Maslov
index with respect to the line field ` of the continuous loop in the projective
tangent bundle of S:

M := TLn−1|αn−1
∗Mn−1 ∗ TLn−2|αn−2

∗Mn−2 ∗ · · · ∗ TL0|α0
∗M0,

i.e.,

Mas`(γ0, . . . , γn−1) = 1 + µ(M, `).

As mentioned before, p0 plays a special role, which motivates taking the
continuous loop obtained by rotating clockwise at pk, k > 0, but rotating
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counterclockwise at p0:

A := TLn−1|αn−1
∗Mn−1 ∗ TLn−2|αn−2

∗Mn−2 ∗ · · · ∗ TL0|α0
∗N0

where N0(t) is the shortest counterclockwise rotation of Tp0L0 to Tp0Ln−1
in Tp0S. Then using (2),

(4) Mas`(γ0, . . . , γn−1) = µ(A, `),

justifying the use of the notation Mas`.

Proposition 2.9. Given an ordered set L0, . . . , Ln−1 of pairwise transverse
unobstructed immersed curves and intersection points pk of Lk−1 and Lk,
then Mas` defines a function π1(p1, . . . , pn)→ Z. If `′ is another line field
and z ∈ H1(S) = [S, S1] is the difference class, then

Mas`′(γ0, . . . , γn−1)−Mas`(γ0, . . . , γn−1) = z(θ(γ0, . . . , γn−1)).

In particular, Mas` depends only on the homotopy class of `, and the com-
posite

π2(p1, . . . , pn)→ π1(p1, . . . , pn)
Mas`−−−→ Z

is independent of the choice of line field `.
Furthermore, Mas` has the properties:

1) (Splicing) If q is another intersection point of L0 and Lk, and γ′0, γ′′0 ,
γ′k, γ′′k are paths so that γ′0(1) = q = γ′′0 (0), γ′k(1) = q = γ′′k (0), γ0 =
γ′0 ∗ γ′′0 , and γk = γ′k ∗ γ′′k , then

Mas`(γ0, . . . , γn−1) = Mas`(γ
′′
0 , γ1, . . . , γk−1, γ

′
k)

+ Mas`(γ
′′
k , γk+1, . . . , γn−1, γ

′
0).

2) (Path reversal) Let αk(t) = γk(1− t). Then

Mas`(αn−1, αn−2, . . . , α0) = 2− n−Mas`(γ0, γ1, . . . , γn−1).

3) (Cyclic invariance) Mas`(γ0, γ1, . . . , γn−1) = Mas`(γ1, . . . , γn−1, γ0).

Proof. The homotopy invariance property of the Maslov index µ and Equa-
tion (4) shows that Mas`(γ0, . . . , γn−1) depends only on the homotopy class
of ` and the class of (γ0, . . . , γn−1) in π1(p1, . . . , pn).



i
i

“5-Hedden” — 2018/10/30 — 17:15 — page 736 — #16 i
i

i
i

i
i

736 M. Hedden, C. M. Herald, and P. Kirk

If `, `′ are two different line fields and z ∈ H1(S) is their difference class,
Proposition 2.4 gives

Mas`′(γ0, . . . , γn−1)−Mas`(γ0, . . . , γn−1) = µ(A, `′)− µ(A, `)
= z(θ(γ0, . . . , γn−1)).

If (γ0, . . . , γn−1) lies in the image of π2(p1, . . . , pn)→ π1(p1, . . . , pn), then
θ(γ0, . . . , γn−1) = 0 in H1(S), and hence Mas`(γ0, . . . , γn−1) is independent
of `.

The three properties are easily checked using path additivity of µ(−, `)
and the identity τ(`0, `1, `) + τ(`1, `0, `) = 1. �

2.4. Immersed polygons

Define an n-gon in R2 to be a pair (D, (β0, β1, . . . , βn−1)) where D ⊂ R2

is a closed topological disc, and (β0, β1, . . . , βn−1) is a sequence of smooth
embeddings of the unit interval in R2 with image in the boundary of D so
that

1) βk(1) = βk+1(0) for k = 0, . . . , n (with βn = β0),

2) the composite path β0 ∗ · · · ∗ βn−1 forms an embedded simple closed
curve in R2, which forms the clockwise boundary of D,

3) the βk meet transversely at their endpoints.

Definition 2.10. Given a pair (S, (L0, . . . , Ln−1)), where S is an oriented
surface and Lk : Rk → S, k = 0, . . . , n− 1 are pairwise transverse immer-
sions of 1-manifolds into S, define an an immersed n-gon in S for the or-
dered n-tuple (L0, . . . , Ln−1) through the points (p1, . . . , , pn) to be a triple
consisting of

1) an n-gon in R2, (D, (β0, β1, . . . , βn−1)),

2) a representative n-tuple of paths (γ0, . . . , γn−1) for a class in
π1(p1, . . . , pn),

3) an orientation preserving immersion u : D → S satisfying u ◦ βk = Lk ◦
γk.

We use the brief notation u for the triple

((D, (β0, . . . , βn−1)), (γ0, . . . , γn−1), u : D → S),



i
i

“5-Hedden” — 2018/10/30 — 17:15 — page 737 — #17 i
i

i
i

i
i

The pillowcase and traceless representations II 737

and we call this an immersed n-gon for the ordered n-tuple (L0, . . . , Ln−1)
from (p1, . . . , pn−1) to p0 = pn.

Define the Maslov index of an immersed n-gon in S by

Mas(u) = Mas`(γ0, . . . , γn−1)

for any line field `. Since an immersed n-gon represents an element of
π2(p1, . . . , pn), it follows from Proposition 2.9 that Mas(u) is independent of
the choice of line field `.

Figure 4 indicates the corresponding model examples of 2-gons and 3-
gons in S = R2:

L0

L1

p q

L0

L2L1

r

q

p

Figure 4: A 2-gon of Maslov index 1 from p to q for the ordered pair
(L0, L1) and a 3-gon of Maslov index 0 from (p, q) to r for the ordered
triple (L0, L1, L2).

Notice that an n-gon in R2 is just a special (embedded) case of an im-
mersed n-gon in the surface S = R2. As such, its Maslov index can be easily
computed by taking, for example, any line field of constant slope. For ex-
ample, the 5-gon of Figure 3 has Maslov index −1. One can see this by
taking ` to be the vertical line field. Then µ(Lk, `)γk = 0 for i = 0, 1, 2, 3
and µ(L4, `)γ4 = −2. Also τ(Lk, Lk−1, `)pk equals 1 for k = 0, 2, 3, 4 and
τ(L1, L0, `)p1 = 0, so Mas = 1− (−2 + 4) = −1. This calculation easily gen-
eralizes to yield the following proposition.

Proposition 2.11. Let (D,β0, . . . , βn−1) be an n-gon in R2. Let κ(D) ∈
{0, . . . , n} denote the number of non-convex corners of D.

Then any immersed n-gon u : D → S satisfies

Mas(u) = 3− n+ κ(D).
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2.5. The differential and An maps.

We recall the definitions of the differential and maps µn next. Our goal is to
relate a Lagrangian-Floer theory to singular instanton homology, which is
the homology of a chain complex rather than a cochain complex, and hence
our orientation conventions differ slightly from the similar constructions in
the literature which typically produce cochain complexes.

Definition 2.12. Fix an ordered n-tuple (L0, L1, . . . , Ln−1) of distinct un-
obstructed pairwise transverse immersed curves in S and intersection points
pk of Lk−1 and Lk.

Two immersed n-gons in S through (p1, . . . , pn), u : D → S, u′ : D′ → S
are called equivalent if there is an orientation preserving diffeomorphism
ψ : D → D′ so that u = u′ ◦ ψ.

The set of equivalence classes of immersed n-gons with Maslov index
3− n for the ordered n-tuple (L0, . . . , Ln−1) through (p1, . . . , pn) is denoted
by ML0,...,Ln−1

(p1, . . . , pn), or simply by M(p1, . . . , pn) when the order of
the Lk is clear from context.

When n ≥ 3, the list (p1, . . . , pn) determines the order (L0, . . . , Ln−1).
Cyclically permuting the n-tuple (L0, . . . , Ln−1) and the points (p1, . . . , pn)
preserves immersed bigons and the Maslov index, and hence

ML0,L1,...,Ln−1
(p1, . . . , pn) =ML1,...,Ln−1,L0

(p2, . . . , pn, p1).

When n = 2, care must be taken with the ordering since the ordered pair
(p0, p1) does not determine the order of L0, L1. In particular,ML0,L1

(p, q) =
ML1,L0

(q, p), but these are different from ML1,L0
(p, q) =ML0,L1

(q, p).

Given a finite set X, let #X ∈ F2 denote the number of elements of X
mod 2. Recall that C(L0, L1) is defined to be the free F2 vector space on
the intersection points of L0 and L1.

Definition 2.13. Fix an ordered n-tuple (L0, . . . , Ln−1) of unobstructed
pairwise transverse curves in S. Suppose n− 1 intersection points pk of
Lk−1 and Lk are given for k = 1, . . . , n− 1, with the property that for every
intersection point q of L0 and Ln−1, ML0,...,Ln−1

(p1, . . . , pn−1, q) is finite.
Define

µn−1(p1, . . . , pn−1) =
∑

q∈L0∩Ln−1

(
#ML0,...,Ln−1

(p1, . . . , pn−1, q)
)
q

in C(L0, Ln−1).
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If ML0,...,Ln−1
(p1, . . . , pn) is finite for all choices of intersection points

(p1, . . . , pn−1) and pn, then µn−1 defines a linear map:

µn−1 : C(L0, L1)⊗ C(L1, L2)⊗ · · · ⊗ C(Ln−2, Ln−1)→ C(L0, Ln−1).

Most important for us is the map µ1, which we also denote by ∂. Ex-
plicitly

(5) ∂ : C(L0, L1)→ C(L0, L1), ∂p =
∑

q∈L0∩L1

#ML0,L1
(p, q) q

Recall that we call representatives of ML0,L1
(p, q) 2-gons from p to q for

(L0, L1), so ∂p is the linear combination of intersection points q weighted
by the mod 2 count of 2-gons with Maslov index 1 from p to q.

Since they occur frequently, we call a 2-gon with Maslov index 1 a bigon.
Note that a bigon from p to q for the ordered pair (L0, L1) is also a bigon
from q to p for (L1, L0), but is not a bigon from q to p for (L0, L1). See the
paragraph following Definition 2.12.

Figure 5 shows the curve L1 of Figure 1 and another unobstructed curve
L0. These intersect in eight points. Two intersection points p, q are indicated,
and the image of a bigon from p to q for the pair (L0, L1) is shaded. The
reader should check that there is precisely one other bigon between L0 and
L1, joining a different pair of intersection points.

p

q

Figure 5: A bigon from p to q.
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The following is proved in Abouzaid’s article [1]. In that article, coeffi-
cients are taken in a Novikov ring (over Z) to account for the possibility that
ML0,L1

(q, p) is infinite. Since this will not be the case in our applications,
we set the Novikov variable t equal to 1 and reduce the coefficients from Z
to F2.

Theorem 2.14 (Abouzaid [1]). Let (L0, L1) be a pair of unobstructed
transverse immersed curves in S, and assume that ML0,L1

(p, q) is finite for
all intersection points p, q of L0 and L1. Then ∂ : C(L0, L1)→ C(L0, L1)
satisfies ∂2 = 0.

For example, the chain complex C(L0, L1) for the pair (L0, L1) illus-
trated in Figure 5 (see also Figures 6 and 8) is generated by the eight inter-
section points of L0 and L1. Two bigons (one of which is shaded in Figure 5)
define a non-trivial differential ∂ of rank 2. The resulting homology has rank
four.

More generally, Abouzaid proves in [1] that the µn, n ≥ 2 satisfy the An
relations for all n when (L0, . . . , Ln−1) are pairwise transverse unobstructed
immersed curves with no triple points.

We will only use the A2 and A3 relations in the present article and so
we write them out explicitly. (We refer to [1, 4] for the formulas for the An
relations.) The A2 relation says

(6) µ2(µ1(x), y) + µ2(x, µ1(y)) + µ1(µ2(x, y)) = 0,

and the A3 relation says

µ3(µ1(x), y, z) + µ3(x, µ1(y), z) + µ3(x, y, µ1(z)))(7)

+ µ2(µ2(x, y), z) + µ2(x, µ2(y, z)) + µ1(µ3(x, y, z)) = 0

These hold when all the sets of equivalence classes of n-gons of Maslov
index 3− n, n = 2, 3, 4 which appear in the formulas defining each term in
Equation (6) or (7) are finite.

3. Restricted Lagrangians in the pillowcase

In this section, we will apply the constructions of Section 2 to the pillowcase.
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3.1. The pillowcase

The pillowcase P is the quotient of the torus by the hyperelliptic involution.
It is a topological 2-sphere with four singular points corresponding to the
four fixed points of the involution. For concreteness, define P to be the
quotient of R2 by the group of orientation preserving isometries generated
by the maps

(γ, θ) 7→ (γ + 2π, θ), (γ, θ) 7→ (γ, θ + 2π), (γ, θ) 7→ (−γ,−θ)

(this group is a semi-direct product Z2 n Z/2). The quotient map is a
branched covering

(8) R2 → P.

A fundamental domain for the action is given by the rectangle (γ, θ) ∈
[0, π]× [0, 2π]. We will frequently specify a point in P by giving its coor-
dinates (γ, θ) ∈ R2. We refer to points in (πZ)2 as lattice points. The four
singular points of P , which we call the corners, make up the image of the
lattice points. Our theory will take place in the complement of the corners,
so it is convenient to adopt the notation P ∗ =

(
R2 \ (πZ)2

)
/(Z2 n Z/2).

Note that P ∗ inherits an orientation and a symplectic structure from the
standard orientation and symplectic structure dγ ∧ dθ on R2 \ (πZ)2 via the
branched covering (8).

The pillowcase P is illustrated in two ways in Figure 6. One should
view the figure on the left as obtained by folding the fundamental domain
[0, π]× [0, 2π] for the branched cover (8), illustrated on the right, along
[0, π]× {π} and making identifications along the edges as indicated. The
front face is the image of [0, π]× [0, π] and the back face is the image of
[0, π]× [π, 2π], upside down. In Figure 6 we have also indicated the immersed
circle L1 of Figure 1.

3.2. A line field on the pillowcase

To apply the Maslov index constructions described in Section 2, a line field
on P ∗ is needed. We fix a line field `inst in a particular homotopy class, so
that the Z/4 grading we construct below using the Maslov index matches
the Z/4 grading on singular instanton knot homology. The connection to
gauge theory is explained in Section 6.

The line field `inst is somewhat complicated to depict or calculate with,
as it twists along the edges of the pillowcase. Our approach in calculations
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0 π

2π

Figure 6: Two depictions of the pillowcase P . The immersed circle L1 of
Figure 1 is indicated on the right.

is to keep track of the mod 4 Maslov index information determined by `inst
by instead using a pair (`, z), where ` is a simple (constant slope) line field
and z ∈ H1(P ∗;Z/4) keeps track of the extra twisting of `inst relative to `,
as described in Proposition 2.4.

Any constant slope line field on R2 is invariant under the Z2 n Z/2 action
and hence its restriction to R2 \ (πZ)2 descends to a line field on P ∗. Call
such a line field a constant slope line field on P ∗. We will make frequent use
of the slope one line field on R2, and hence we give it the label `1.

Definition 3.1. Let z ∈ H1(P ∗;Z/4) = Hom(H1(P
∗),Z/4) denote the

unique cohomology class which assigns 1 ∈ Z/4 to each small loop circling
a corner counterclockwise.

Immersed circles γ : S1 → P ∗ satisfy µ(γ, `1) ≡ z(γ) mod 2. They need
not be equal modulo 4, however. For example, if γ is the boundary of a
smoothly embedded disk in P ∗, then µ(γ, `1) = ±2 and z(γ) = 0. For a small
embedded loop encircling one corner of P counterclockwise, µ(γ, `1) = 1 =
z(γ). For the curve L1 illustrated in Figure 1 and the right in Figure 6,
µ(L1, `1) = 0 = z(L1). For the curves Lε,g0 depicted in Figure 7, µ(Lε,g0 , `1) =
0 = z(Lε,g0 ).
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Definition 3.2. Fix a map z̃ : P ∗ → S1 so that its class z̃ ∈ H1(P ∗;Z) =
[P ∗, S1] is a lift of the class z. Think of S1 as acting freely and transitively
on lines in R2. Define the instanton line field by:

(9) `inst(p) = z̃(p)`1(p).

The homotopy class of the line field `inst depends on choice of lift z̃, as
do Maslov indices computed using `inst, however,

(10) µ(L, `inst) ≡ µ(L, `1) + z(L) mod 4.

3.3. Proper arcs in P

Definition 3.3. Define a proper immersion of an interval L : I → P to be
the image under the branched cover (8) of a smooth immersion L̃ : I → R2

which takes the two endpoints of the interval to (πZ)2 and the interior to
R2 \ (πZ)2. We call the slopes of L̃ at the endpoints (which are determined
by L) the limiting slopes of L. Note that a proper immersion cannot spiral
infinitely many times as it limits to a corner.

In order to easily apply the results of [1], it is convenient to work in a
compact surface with boundary. It will suffice for our purposes to simply
remove a small neighborhood of the corners. More precisely, given some
small δ > 0, let P δ ⊂ P denote the image under the branched cover (8) of
the subspace of R2 obtained by removing open δ neighborhoods of the lattice
points.

If R is a compact 1-manifold with boundary and L1 : R→ P is a proper
immersion (as defined above) on each arc, and maps each circle of R into P ∗,
then for δ > 0 small enough so that the δ disks miss the circle components,
L1(R) ∩ P δ is a properly immersed compact 1-manifold in the compact sur-
face P δ. In the following, we will typically write P instead of P δ, with the
understanding that δ is chosen small enough to miss circle components and
result in arc components transverse to the boundary.

3.4. Perturbation functions and a family of isotopies of P

Let

X = {f ∈ C∞(R,R) | f(x+ 2π) = f(x), f odd}.
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We call this the space of perturbation functions. It is a vector space, and is
preserved by pre-composition by x 7→ x+ π. In particular, f(π) = 0 for all
f ∈ X . The sine function is a member of X .

The usual terminology in the literature describes perturbation data as
a choice of an embedded solid torus and a conjugation invariant function
on SU(2), which together are used to define a gauge invariant perturbation
of the Chern-Simons functional. In our notation, an element f ∈ X is the
derivative of such a conjugation invariant function on SU(2), restricted to
the maximal torus. The function f determines the effect on the critical set of
Chern-Simons function. More precisely, f determines which flat connections
on the complement of the perturbation solid torus extend to be perturbed
flat on the solid torus, so it is more convenient for us to refer to these
functions in our pertubation data. See Section 8.2 for more details.

We associate, to each perturbation function g ∈ X , an isotopy of the
pillowcase by:

(11) cg : P × I → P, cg((γ, θ), s) = (γ, θ + sg(γ)).

Since c−g(cg(p, s), s) = p, cg(−, s) is a homeomorphism and hence cg is an
isotopy starting at the identity. Notice that cg fixes the left and right edges
of the pillowcase.

The formula (11) shows that cg lifts to a Hamiltonian isotopy of R2 which
is Z n Z/2 invariant and fixes the vertical lines {x = nπ}. In particular, we
can think of cg as a Hamiltonian isotopy of P ∗, or of the orbifold P .

3.5. The family Lε,g0 of immersed circles in the pillowcase

In the applications to singular instanton homology in Section 6, we show that
a 2-tangle decomposition of a knot gives rise to two unobstructed immersed
curves L0, L1 in P ∗, which in turn define a chain complex C(L0, L1) as
in Section 2. Identification of the immersed circle L0, which depends on a
parameter ε 6= 0, was accomplished in [18, Theorem 7.1]. In order to ensure
we can choose L0 transverse to L1 we enlarge the family of L0 to include
the isotopies described above.

Let ∆ ⊂ P denote the arc of slope one, i.e., the diagonal arc

(12) ∆ = {(γ, γ) | γ ∈ [0, π]}.
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Definition 3.4. Fix an ε > 0 and g ∈ X . Let Lε,g0 : S1 → P ∗ denote the
immersion given as the composite of the map

L̃ε,g0 (t) = (t+ ε sin(t) + π
2 , t− ε sin(t) + π

2 + g(t+ ε sin(t) + π
2 )),(13)

t ∈ [0, 2π]

with the branched cover R2 → P of Equation (8), so

(14) Lε,g0 : [0, 2π]
L̃ε,g0−−→ R2 → P ∗.

The image of Lε,g0 in P ∗ for g = 0 and ε small is illustrated in Figure 7
and also in Figure 5. As ε and g approach zero, Lε,g0 limits to a generically
2-1 map onto ∆, with two points mapping to corners.

Figure 7: The curve Lε,00 in P .

Note that Lε,g0 (t) = cg(L
ε,0
0 (t), 1), so that Lε,g0 is isotopic to Lε,00 . In par-

ticular, the family of immersions Lε,g0 for ε > 0 small are self-transverse with
one double point. Furthermore, Lε,g0 is an unobstructed circle in the sense of
Definition 2.1.

The following easily proved genericity lemma says that given any unob-
structed immersed curve L1, arbitrarily small ε, g can be found so that L1

and Lε,g0 are transverse.

Lemma 3.5. Given an unobstructed immersed circle or arc L1, there exist
ε > 0 and δ > 0 arbitrarily close to zero so that, with g(x) = δ sin(x), Lε,g0
and L1 are transverse.
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3.6. Restricted immersed arcs and circles

To complete the construction of a Z/4 relatively graded chain complex we
refine the notion of an unobstructed curve. Experts will recognize this notion
as a Z/4 variant of Seidel’s notion of a graded Lagrangian ([4, 33]).

Definition 3.6.
A restricted immersed circle in P ∗ is an unobstructed immersed cir-

cle L1 : S1 → P ∗ which satisfies µ(L1(S
1), `inst) ≡ 0 mod 4, or, equivalently,

µ(L1(S
1), `1) + z(L1(S

1)) ≡ 0 mod 4.
A restricted immersed arc in P is a proper immersion on an interval (in

the sense of Definition 3.3) L1 : I → P such that L1(I) ∩ P δ is unobstructed
for small δ > 0.

A restricted immersed curve is either a restricted immersed circle or a
restricted immersed arc.

The curves Lε,g0 and the curve L1 of Figure 1 are restricted immersed
circles. An embedded circle L encircling one corner of P counterclockwise is
unobstructed but not restricted since µ(L, `1) + z(L) = 2. The image of any
straight line segment in R2 joining two lattice points whose interior misses
the lattice is mapped via the branched cover (8) to a restricted immersed
arc.

3.7. A relative Z/4 grading

We revisit the notation and constructions of Section 2 in the context of
restricted immersed curves. Recall that for simplicity we write Lk ∩ Lj for
the set of intersection points of Lk with Lj (see Definition 2.2).

Definition 3.7. Given an ordered list (L0, . . . , Ln−1) of pairwise transverse
restricted immersed curves, define

grL0,L1,...,Ln−1
: (L0 ∩ L1)× (L1 ∩ L2)× · · ·

× (Ln−2 ∩ Ln−1)× (Ln−1 ∩ L0)→ Z/4

by

grL0,L1,...,Ln−1
(p1, . . . , pn) = Mas`inst(γ0, . . . , γn−1) mod 4

for any choice of (γ0, . . . , γn−1) ∈ π1(p1, . . . , pn).
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Proposition 3.8. Given an ordered list (L0, . . . , Ln−1) of pairwise trans-
verse restricted immersed curves,

1) grL0,L1,...,Ln−1
(p1, . . . , pn) is independent of the choice of (γ0, . . . , γn)

and is invariant under simultaneous cyclic permutations of L0, L1, . . . ,
Ln−1 and p1, . . . , pn−1, pn = p0.

2) If q is another intersection point of L0 and Lk, then

grL0,L1,...,Ln−1
(p1, . . . , pn) = grL0,L1,...Lk(p1, p2, . . . , pk, q)

+ grL0,Lk,Lk+1,...Ln−1
(q, pk+1, . . . , pn−1, pn).

3) grLn−1,Ln−2,...,L0
(pn−1, pn−1, . . . , p1, pn)

= 2− n− grL0,L1,...,Ln−1
(p1, p2, . . . , pn−1, pn).

In particular,

grL0,L1
(p, r) = grL0,L1

(p, q) + grL0,L1
(q, r), grL0,L1

(p, p) = 0,

grL1,L0
(q, p) = grL0,L1

(p, q) = −grL0,L1
(q, p),

and if ML0,L1
(p, q) is non-empty, then grL0,L1

(p, q) = 1.

Proof. The assumption that the Lk are restricted immersed curves implies
that the mod 4 reduction of Mas`inst(γ0, . . . , γn−1) is independent of the
choice of paths γk and therefore grL0,L1,...,Ln−1

(p1, . . . , pn) is well defined.
The remaining assertions follow from their counterparts in Proposi-

tion 2.9. �

The function grL0,L1
: (L0 ∩ L1)

2 → Z/4 is called the relative Z/4 grad-
ing on C(L0, L1). Proposition 3.8 and Equation (5) imply that the differen-
tial (if defined) ∂ : C(L0, L1)→ C(L0, L1) lowers the relative grading by 1,
i.e., (C(L0, L1), ∂) is a chain (rather than a cochain) complex.

We thank Matt Hogancamp for formulating the following corollary. Its
proof follows quickly from Proposition 3.8, and we omit it.

Corollary 3.9. Given an ordered list (L0, . . . , Ln−1) of pairwise transverse
restricted immersed curves,

grL0,L1,...,Ln−1
(p1, . . . , pn)− grL0,L1,...,Ln−1

(q1, . . . , qn) =

n∑
k=1

grLk−1,Lk(pk, qk).
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Moreover, if there exists a Maslov index kp immersed n-gon through (p1, . . . ,
pn) and a Maslov index kq immersed n-gon through (q1, . . . , qn), then

grL0,Ln−1
(pn, qn) = kq − kp +

n−1∑
k=1

grLk−1,Lk(pk, qk)

In the next lemma, we provide a practical formula for grL0,L1
in terms

of the slope 1 line field and the reversed paths αk(t) = γk(1− t). We find
this formula to be the simplest to remember, and most of the subsequent
calculations of relative gradings in this paper are obtained using this formula,
without referring back to Maslov index definitions and conventions. The
omitted proof consists applying Equation (2) and Proposition 2.9 to the
difference class z.

Lemma 3.10. The relative Z/4 grading on C(L0, L1) is given as follows.
Let p, q be intersection points of L0 with L1, let α0 be a path in L0 from

p to q, let α1 be a path in L1 from q to p, τ(L0, L1, `1)p and τ(L0, L1, `1) the
triple indices with respect to the slope 1 line field `1. Then

grL0,L1
(p, q) = µ(L0, `1)α0

+ µ(L1, `1)α1
+ τ(L0, L1, `1)p(15)

− τ(L0, L1, `1)q + z(L0(α0) ∗ L1(α1)).

When the order is clear from context, we write gr(p, q) rather than
grL0,L1

(p, q) for the relative Z/4 grading on C(L0, L1).

3.8. Finiteness of bigons

When (L0, L1) is an transverse pair of restricted immersed curves, we have
constructed a relative Z/4 grading on the vector space C(L0, L1) spanned
by the intersection points of L0 : R0 → P ∗ and L1 : R1 → P . To show that
C(L0, L1) is a chain complex, we must show that M(p, q) =ML0,L1

(p, q)
is finite for any pair intersection points p, q. To this end we introduce the
notion of an admissible pair.

Definition 3.11. A pair

(L0 : R0 → P,L1 : R1 → P )

of restricted immersed curves in P is called an admissible pair provided:

1) at least one of L0 or L1 is a restricted immersed circle,
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2) if α0 : S1 → R0 and α1 : S1 → R1 are loops so that L0 ◦ α0 and L1 ◦ α1

are freely homotopic, then both α0 and α1 are nullhomotopic (this
holds automatically if one of L0, L1 is a restricted immersed arc, since
restricted immersed circles are essential),

3) L0 and L1 intersect transversely.

If we put a complete hyperbolic metric on P ∗, then the second assump-
tion is equivalent to the requirement that the unique geodesic representatives
of the homotopy classes of L0 and L1 are transverse.

Given an admissible pair of restricted curves L0, L1, to each element of
u ∈ π2(p, q) one can assign a local degree function fu, which is an integer
valued function with domain the set of complementary regions of L0 ∪ L1,
i.e., the path components of P ∗ \ (L0 ∪ L1). Its value on a complementary
region is the signed number of preimages of a regular value of any smooth
representative of u.

Lemma 3.12. For each pair (p, q) of intersection points, π2(p, q) is either
empty or contains a unique element.

Proof. Since π2(p, q) is either empty or else π2(p, p) acts transitively on
π2(p, q), it suffices to prove that π2(p, p) contains a unique class, namely
the class of the constant map.

Write p = (p0, p1) ∈ R0 ×R1. Given (u, (γ0, γ1)) ∈ π2(p, p), γ0 (resp. γ1)
is a loop in R0 (resp. R1) based at p0 (resp. p1). If R1 is an arc, then L1 ◦ γ1
is homotopic rel endpoints to the constant path, and hence so is γ0. If R1 is
a circle, then the second assumption of Definition 3.11 implies that γ0 and
γ1 are nullhomotopic loops. Either way, the images L0 ◦ γ0 and L1 ◦ γ1 in
P ∗ are homotopic loops based at p.

By the homotopy extension property, (u, (γ0, γ1)) may be homotoped in
π2(p, p) so that γ0 and γ1 are constant. But then u sends the entire boundary
of the bigon to p, and hence represents a class in π2(P

∗) = 0. Thus we may
further homotop u rel boundary to the constant map and so π2(p, p) = 0, as
desired. �

Corollary 3.13. Given an admissible pair (L0, L1), each set M(p, q) is
either empty or contains one equivalence class of bigons.

Proof. Fix intersection points p and q, and suppose that M(p, q) is non-
empty. Choose two immersed bigons u, u′ from p to q. Lemma 3.12 implies
that π2(p, q) contains a unique element, so their local degree functions are



i
i

“5-Hedden” — 2018/10/30 — 17:15 — page 750 — #30 i
i

i
i

i
i

750 M. Hedden, C. M. Herald, and P. Kirk

equal. Moreover, since u (and u′) are immersed by an orientation preserving
immersion, fu = fu′ takes only non-negative values.

Standard arguments now show that u and u′ can be reconstructed from
the data of their local degrees up to reparameterization, so that u and u′ are
equivalent. For example, see [31, Theorem 6.8], whose proof applies verbatim
to our setting by passing to a compact simply connected submanifold of the
universal cover of P ∗. �

Remark 3.14. ThatM(p, q) is finite (which is all we require for the asser-
tions in the present article) when L0 and L1 are self-transverse immersions
can be shown even more easily, as follows. Label the closure of the comple-
mentary regions of P ∗ \ ( image(L0) ∪ image(L1)) by A1, . . . , Am. Notice
that the boundary of each Ai is a union of arcs αi,j meeting at convex dou-
ble points. The set of all such arcs, {αi,j}, can be partitioned into pairs which
map to the same arc in P ∗, and hence each pair comes with an identification
so that the surface obtained by identifying these two arcs immerses into P ∗.

If u ∈ π2(p, q) has all local degrees fu(Ai) non-negative, take fu(Ai)
copies of Ai, i = 1, . . . ,m, and label the corresponding edges as αi,j;k, k =
1, . . . , fu(Ai). There are finitely many ways of pairing all the arcs {αi,j;k}
and gluing them to get a surface which immerses each copy of Ai to its cor-
responding complementary region. Any immersed bigon from p to q must be
equivalent to one of these resulting glued surfaces, hence there are finitely
many bigons.

From Theorem 2.14, Proposition 3.8, and Corollary 3.13 we conclude the
following.

Theorem 3.15. If (L0, L1) is an admissible pair, then (C(L0, L1), ∂) is a
relatively Z/4 graded chain complex with F2 coefficients.

Definition 3.16. Call the Z/4 graded homology of (C(L0, L1), ∂) the
Lagrangian-Floer homology of (L0, L1) and denote it by HF (L0, L1).

3.9. Example: Calculation of HF (L0, L1) for L0 = Lε,00 and L1

the restricted immersed circle of Figure 1

The pair (L0, L1) is admissible. In Figure 8, the eight intersection points of
the Lagrangian L1 of Figure 1 with Lε,00 are labeled p, q, r, s, t, u, v, w. There
is a bigon from p to q and hence gr(p, q) = 1. Similarly, there is a bigon from
w to v and hence gr(w, v) = 1.
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We compute gr(q, s) = 1 in detail next. Let α0 be the path in L0 starting
at q, heading down and to the left, around the lower left corner, then back
up to s. Let α1 be the short arc on L1 form s back to q. Then µ(L0, `1)α0

= 1
(there is one tangency at the upper right part of the figure, near (0, 2π)),
µ(L1, `1)α1

= 0 since the arc α1 is everywhere transverse to the slope 1 line
field `1. Next, τ(L0, L1, `1) equals 0 at q and 1 at s, and z(L0(α0) ∗ L1(α1)) =
1 since the loop L0(α0) ∗ L1(α1) goes once around the lower left corner
counterclockwise. Using Equation (15) we conclude:

gr(q, s) = 1 + 0 + 0− 1 + 1 = 1.

An identical argument gives gr(t, p) = 1, gr(v, r) = 1, and gr(u,w) = 1.
One more calculation is required to complete the calculation of the rel-

ative grading, for example gr(t, r). Take α0 to be the path in L0 from t to r
which heads down and to the left, around the bottom left corner clockwise,
then back up to t. Take α1 the path in L1 from r back to t which starts by
heading to the right, then down and continuing along L1 until it returns to t.
Then µ(L0, `1)α0

= 1, µ(L1, `1)α1
= 1, τ(L0, L1, `1)t = 0, τ(L0, L1, `1)r = 1,

and z(L0(α0) ∗ L1(α1)) = 0. Thus

gr(t, r) = 1 + 1 + 0− 1 + 0 = 1.

From these calculations and additivity of the relative grading, we con-
clude that gr(p, r) = 0, gr(p, q) = gr(p, u) = 1, gr(p, s) = gr(p, w) = 2,
gr(p, t) = gr(p, v) = 3. Hence C(L0, L1) has rank 2 in each grading. There
are only two Maslov index 1 bigons, and hence the differential is given by
∂p = q and ∂v = w, and so the homology has rank 1 in each grading.

We introduce a bit of notation that will simplify our descriptions of the
Z/4 gradings. The notation (n0, n1, n2, n3) with ni non-negative integers
denotes the Z/4 graded vector space (over F2) whose dimension on grading
i is ni. Thus, for this example,

C(L0, L1) = (2, 2, 2, 2) and HF (L0, L1) = (1, 1, 1, 1).

4. Homotopy invariance

We show that the relatively Z/4 graded group HF (L0, L1) depends only
on the homotopy classes of L0 and L1 (rel boundary) in P ∗. Our argument
follows the approach taken in [1, Proposition 4.1] and presumably will be
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Figure 8: The eight intersection points of L0 and L1 generating C(L0, L1).

somewhat familiar to experts. It is worth noting that we make no require-
ment that the curves be related by a Hamiltonian isotopy.

Theorem 4.1. Let (L0, L1) and (L′0, L
′
1) be two admissible pairs which

satisfy:

1) the admissible circles L0, L
′
0 are freely homotopic.

2) If L1, L
′
1 are immersed restricted circles they are freely homotopic. If

L1, L
′
1 are immersed restricted arcs, they are homotopic rel endpoints.

Assume also that near their endpoints, L1 and L′1 intersect only at
their endpoint.

3) L0, L1, L
′
0, L

′
1 are pairwise transverse and have no triple points.

Then

HF (L0, L1) ∼= HF (L′0, L
′
1).

as relatively Z/4 graded F2 vector spaces.
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Proof. In order to avoid the proliferation of sub and superscripts, we make
the following notational changes. Set

A := L0, B := L1 C := L′0, D := L′1.

And we must show that

HF (A,B) = HF (C,D).

Consider A and C as immersions of the unit circle A,C : S1 → P ∗. Also,
consider B and D as immersions of the real line R to P ∗, with the under-
standing that if R1 is a circle, then B and D are 2π periodic and, if R1 is an
arc, then we identify the interior of R1 (which maps by B,D to P ∗) with R.
In brief, B and D are immersions of R to P ∗ which are periodic if R1 is a
circle and proper if R1 is an arc. The second condition in the hypotheses im-
plies that outside some compact set in R, B and D are disjoint embeddings,
but with the same limit points at ±∞.

Let x = A(1). The immersion A induces a homomorphism on fundamen-
tal groups. Consider the infinite cyclic subgroup

Z = Image A# : π1(S
1, 1)→ π1(P

∗, x)

and let

f : (Σ, x̂)→ (P ∗, x)

denote the (non-regular) cover corresponding to Z. Thus A : S1 → P ∗ lifts
to Â : S1 → Σ, with Â(1) = x̂.

Since Â : S1 → Σ generates π1(Σ, x̂) = Z ∼= Z, the preimage of Â in the
universal cover P̃ ∗ ∼= R2 is connected, in fact the image of an immersion
Ã : R→ R2. Since A = L0 is unobstructed, Ã is an embedding, from which
it follows that Â : S1 → Σ is an embedding. (In the following, we use the
notation Â, B̂, Ĉ, D̂ for lifts of A,B,C to Σ, and Ã, B̃, C̃, D̃ for lifts to the
universal cover R2.)

It can be easily shown, for example using elementary hyperbolic geom-
etry, that Σ is diffeomorphic to the cylinder S1 × R. Fix such a diffeomor-
phism and the corresponding cover

(S1 × R, x̂)→ (P ∗, x).

Let F : S1 × [0, 1]→ P ∗ be a homotopy from A to C. Let F̂ : S1 ×
[0, 1]→ S1 × R be the unique lift of F satisfying F̂ (1, 0) = x̂. Let Ĉ(z) =
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F̂ (z, 1). Then Ĉ is a lift of C to S1 × R, and, as with Â, Ĉ is an embedding.
In particular, since Â and Ĉ are homotopic embedded curves in S1 × R, Â
and Ĉ are isotopic.

The following three lemmas will complete the proof of Theorem 4.1.

Lemma 4.2. If Â and Ĉ meet transversely in precisely two points, then
HF (A,B) ∼= HF (C,B) and HF (A,D) ∼= HF (C,D) as relatively Z/4 graded
F2 vector spaces.

Lemma 4.3. There exists a sequence A0, A1, . . . , Ar of homotopic restricted
immersed circles so that A0 = A, Ar = C, and Âk intersects Âk+1 trans-
versely in two points.

Lemma 4.4. HF (A,B) ∼= HF (A,D) as relatively Z/4 graded F2 vector
spaces.

Proof of Lemma 4.2. Up to diffeomorphism of the cylinder S1 × R, the curves
Â and Ĉ are illustrated in Figure 9. Also illustrated is a third curve Â′ which
meets Â transversely in two points. We assume that Â′ is very (C1) close
to Â, so that the preimage of B is also transverse to Â′ and induces a
bijection between the intersection points. Three pairs of intersection points
â, b̂ ∈ Â ∩ B̂, f̂ , ĉ ∈ Â′ ∩ Ĉ, and b̂, d̂ ∈ Â ∩ Â′ are illustrated. Define A′ to be
the image of Â′ under the covering map S1 × R→ P ∗, and let a, b, . . . , f
denote the images of â, b̂, . . . , f̂ in P ∗.

We now summarize some facts about the maps µ2 and µ3, defined in
Definition 2.13, that will be used to complete Lemma 4.2.

Lemma 4.5. Consider b as a generator of C(A,C), e as a generator of
C(A,A′) and f as a generator of C(C,A′). Then:

1) For any x ∈ C ∩B and y ∈ A ∩B, the set MA,C,B(b, x, y) is finite.

2) For any x ∈ A′ ∩B and y ∈ C ∩B, the set MC,A′,B(f, x, y) is finite.

3) For any x ∈ A′ ∩B and y ∈ A ∩B, the set MA,A′,B(e, x, y) is finite.

4) For any x ∈ A′ ∩B and y ∈ A ∩B, the set MA,C,A′,B(b, f, x, y) is fi-
nite.

Hence the maps µ2(b,−) : C(C,B)→C(A,B), µ2(f,−) : C(A′, B)→C(C,B),
µ2(e,−) : C(A′, B)→ C(A,B) and µ3(b, f,−) : C(A′, B)→ C(A,B) are well
defined.
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â

f̂

ê

Ĉ

Â
Â′

b̂ ĉ

d̂

Figure 9: The curves Â, Â′, and Ĉ in S1 × R.

Proof. For the first statement, first note that to each class φ ∈ π2(b, x, y)
one can assign an integer local degree to each complementary region of
A ∪ C ∪B, i.e., to each path component of P ∗ \ (A ∪ C ∪B) (see the proof
of Corollary 3.13).

The homotopy group π2(b, b) corresponding to the pair A,C acts on
π2(b, x, y) corresponding to the ordered triple (A,C,B) by attaching a bigon
from b to b to the vertex of a triangle with vertices b, x, y at b. We show this
action is transitive. From Figure 9 one sees that there exists τ1 ∈ π2(b, b)
whose two boundary loops represent generators of π1(A) and π1(C). Let τn
denote the nth power of τ1.

Suppose that φ1, φ2 ∈ π2(b, x, y). Denote the image of φk in π1(b, x, y)
by (αk, γk, βk), k = 1, 2, where αk is a path in A from y to b, γk is a path
in C from b to x and βk is a path in B from x to y.

The loop γ1 ∗ γ−12 in C based at b represents some multiple of the gen-
erator of π1(C). Hence, by replacing φ2 by τn · φ2 for the appropriate n, one
may assume that γ1 ∗ γ−12 is nullhomotopic. Using the homotopy extension
property we may arrange that γ1 = γ2.

The triangles φ1 and φ2 then glue together along γ1 and γ2 to provide
a free homotopy of the loop β1 ∗ β−12 in B to the loop α1 ∗ α−12 in B. Since
A,B form an admissible pair (Definition 3.11) it follows that α1 ∗ α−12 and
β1 ∗ β−12 are nullhomotopic, so that α1, α2 (resp. β1, β2) are homotopic rel
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endpoints. We may therefore replace φ2 by another map in the same homo-
topy class so that α1 = α2 and β1 = β2. Gluing φ1 to φ2 along the boundary
arcs αk, βk and γk yields a class in π2(P

∗) = 0. Hence φ1 = φ2. We have
shown that π2(b, b) acts transitively on π2(b, x, y).

A class τ ∈ π2(b, b) determines local degrees for each complementary
region of A ∪ C, and hence also for each complementary region of A ∪ C ∪
B. Lifting to the cylinder, one sees that π2(b, b) ∼= π2(b̂, b̂) ∼= Z, with n ∈ Z
corresponding to the class τn ∈ π2(b̂, b̂), whose local degrees in S1 × R \ (A ∪
C) are n and −n in the two bounded regions of S1 × R \ (Â ∪ Ĉ), and 0 in
both unbounded regions. Let W1 and W3 denote the two bounded regions
in S1 × R \ (Â ∪ Ĉ), and W2 and W4 denote the two unbounded regions,
indexed so that moving clockwise around b̂ they are ordered W1,W2,W3,W4

and so that the local degrees of τn are n, 0,−n, 0. (see Figure 10, with n = n1
and n2 = 0.)

If U ⊂ P ∗ is a small evenly covered disc neighborhood of b, only finitely
many of the components of the preimage of U in S1 × R meet W1 and
W3. Suppose that K1 such components meet W1 and K2 meet W3. Let
K = K1 −K2. Then in P ∗, the local degrees of τn about b are, in clockwise
order, n+Kn,Kn,−n+Kn,Kn.

Fix φ ∈ π2(y, x, b) and let d1, d2, d3, d4 denote local degrees of φ in the
four quadrants around b. The local degrees of τn · φ are just the sum of the
local degrees of τn and φ. Thus the local degrees of τn · φ around b are, in
clockwise order, d1 + n+Kn, d2 +Kn, d3 − n+Kn, d4 +Kn.

On the other hand, if τn · φ is represented by a Maslov index 0 immersed
3-gon, then all its corners are convex (Proposition 2.11) and so the local
degrees near b must take the form r + 1, r, r, r moving clockwise around b,
for some non-negative integer r. In particular,

|d1 − d3 + 2n| = |(d1 + n+Kn)− (d3 − n+Kn)| ≤ 1,

and so at most two of the classes τn · φ support Maslov index 0 immersed
3-gons. Each such class determines a finite number of immersed 3-gons, by
the same argument given in Remark 3.14. Thus M(b, x, y) is finite.

The proofs of the second and third assertions are the same, and we leave
them to the reader.

The last assertion has a similar proof, so we outline it, highlighting
the differences. The ordered 4-tuple (A,C,A′, B) gives rise to the sets
M(b, f, x, y) and π2(b, f, x, y). Since A,C,A′ are homotopic and A,B form
an admissible pair, a similar argument to that used in the triangle case
shows that any two classes φ1, φ2 ∈ π2(b, f, x, y) are related by the action
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of π2(b, b)× π2(f, f): one first lets π2(b, b) act on φ1 to make the boundary
paths of φ1 and φ2 along A agree, then let π2(f, f) act to make the bound-
ary paths along C agree. Gluing the two rectangles along these edges yields
a twice punctured sphere, giving a free homotopy from a loop in A′ to a
loop in B, and since (A′, B) forms an admissible pair, these loops are both
nullhomotopic. The argument then proceeds as in the 3-gon case to conclude
that there exists τn1

∈ π2(b, b) and ρn2
∈ π2(f, f) so that τn2

· ρn1
· φ1 = φ2.

Fix φ ∈ π2(b, f, x, y) and assume its local multipicities in the four quad-
rants clockwise around b are (d1, d2, d3, d4). In the four quadrants near b̂,
the multiplicities of τn1

∈ π1(b, b) are, in clockwise order, n1, 0,−n1, 0 and
the multiplicities of ρn2

∈ π2(f, f) are n2, n2, 0, 0. Figure 10 illustrates the
contributions of τn1

and ρn2
to the local multiplicities near b.

0

A

A′

Cn2

−n1

n1 + n2

Figure 10: The local multiplicities of ρn2
and τn1

around b.

As in the triangle case, the local multiplicities of τn2
· ρn1

· φ near b are, in
clockwise order, d1 + n1 + n2 +K, d2 +K, d3 − n1 + n2 +K, d4 +K, where
K is a function of n1 and n2 which takes into account how many of the
preimages of b in S1 × R lie in the complementary regions on which τn2

and ρn1
are supported. But to represent an orientation preserving immersed

4-gon of Maslov index −1, all corners are convex (Proposition 2.11), and
hence these numbers must be a cyclic permutation of (r + 1, r, r, r) for some
non-negative integer r. This implies that

|d1 − d3 + 2n1| ≤ 1 and |d1 + n1 + n2 − d4| ≤ 1,
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which is only possible for at most four choices of n1, n2. Thus only finitely
many classes in π2(b, f, x, y) support immersed Maslov index −1 rectangles,
and as in Remark 3.14, this implies that M(b, f, x, y) is finite. �

Continuing the proof of Lemma 4.2. Consider b as a generator of C(A,C).
Any bigon from b to another intersection point of A with C has a unique
lift to the cover S1 × R, and hence must be a bigon from b to a. From
Figure 9 one sees that there are precisely 2 such bigons up to equivalence,
and hence ∂b = 2a = 0 (we are using F2 coefficients). Thus b is a cycle.
Similar arguments show that e ∈ C(A,A′) and f ∈ C(C,A′) are also cycles.

The map µ2 satisfies the A2 relation, which, applied to b and an arbitrary
x ∈ C(C,B) (writing ∂ instead of µ1) says:

0 = µ2(∂b, x) + µ2(b, ∂x) + ∂µ2(b, x).

Since ∂b = 0, this implies that µ2(b,−) : C(C,B)→ C(A,B) is a chain map.
The cycle f ∈ C(C,A′) determines a chain map µ2(f,−) : C(A′, B)→

C(C,B). The product µ2(b, f) ∈ C(A,A′) equals e, since immersed trian-
gles lift to the cover, and there is precisely one oriented immersed Maslov
index zero triangle for the ordered triple (A,C,A′) from (b̂, f̂) to x̂ for an
intersection point x̂ of Â and Â′, namely the embedded triangle with x̂ = ê.
Similarly, the cycle e = µ2(b, f) determines a chain map

µ2(e,−) : C(A′, B)→ C(A,B).

The A3 relation gives, for an arbitrary generator x of C(A′, B):

0 = µ3(∂b, f, x) + µ3(b, ∂f, x) + µ3(b, f, ∂x)

+ µ2(µ2(b, f), x) + µ2(b, µ2(f, x)) + ∂µ3(b, f, x)

= H(∂x) + µ2(e, x) + µ2(b,−) ◦ µ2(f, x) + ∂H(x)

where H : C(A′, B)→ C(A,B) is defined by H(x) = µ3(b, f, x). In other
words, H is a chain homotopy from the composite

C(A′, B)
µ2(f,−)−−−−−→ C(C,B)

µ2(b,−)−−−−→ C(A,B)

to

µ2(e,−) : C(A′, B)→ C(A,B).

Now µ2(e,−) is a chain isomorphism: this is an immediate consequence
of the fact that Â and Â′ are C1 close, so that each intersection point p′ of
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A′ with B corresponds to precisely one intersection point p of A with B,
the correspondence induced by a unique Maslov index 0 immersed triangle
associated to the ordered triple (A,A′, B) From (e, p′) to p. This proves that
the map µ2(b,−) : C(C,B)→ C(A,B) induces a surjection HF (C,B)→
HF (A,B), for any B.

The fact that µ2(b,−) induces an injection HF (C,B)→ HF (A,B) for
any B is proved by a very similar argument as surjection, using the immersed
curves illustrated in Figure 11. In this case, Ĉ ′ is a curve C1 close to C, and
one shows that z ∈ C(C ′, A) is a cycle, µ2(z, b) = w ∈ C(C ′, C), and the
composite of chain maps

C(C,B)
µ2(b,−)−−−−→ C(A,B)

µ2(z,−)−−−−−→ C(C ′, B)

is chain homotopic to the chain isomorphism µ2(w,−) : C(C,B)→ C(C ′, B).
This proves µ2(b,−) induces an injection HF (C,B)→ HF (A,B) for any B.

â
ŵ

Ĉ

Â

Ĉ ′

b̂
ẑ

Figure 11: The curves Â, Ĉ, and Ĉ ′ in S1 × R.

Finally we show that the relative Z/4 grading is preserved. Suppose
that x1, x2 ∈ C(C,B) and µ2(b, x1) =

∑
imiyi and µ2(b, x2) =

∑
j njzj in

C(A,B), with mi, nj non-zero. Hence there exist Maslov index zero im-
mersed 3-gons for the ordered triple (A,C,B) from (b, x1) to yi and from
(b, x2) to zj .
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Then Corollary 3.9 gives

grA,B(yi, zj) = grC,B(x1, x2) + grA,C(b, b) = grB,C(x1, x2).

This says that the chain map µ2(b,−) : C(C,B)→ C(A,B) preserves the
relative Z/4 grading, and hence also the induced map on homology. The same
argument shows the chain maps µ2(f,−) and µ2(e,−) preserve the relative
grading. Thus, µ2(b,−) induces an isomorphism HF (A,B)→ HF (A,C) of
relatively Z/4 graded vector spaces. �

Proof of Lemma 4.3. If Â and Ĉ intersect non-trivially (hence in an even
number of points), then the existence of the sequence Â0 = Â, Â1, . . . , Âr =
Ĉ with the stated property is an immediate consequence of Lemma 4.2 of
[1]. If Â and Ĉ are disjoint, then one can take a parallel copy of Â and
perform a Reidemeister 2 move that introduces a pair of intersection points
with Â and a pair with B̂. �

Proof of Lemma 4.4. If B and D are homotopic restricted immersed cir-
cles, then the proof follows exactly along the same lines as the proof of
Lemmas 4.2 and 4.3, reversing the roles (and order) of A,C and B,D.

If B and D are homotopic restricted immersed arcs, then a different
proof is needed. It is convenient to put a complete hyperbolic metric on P ∗

and to let H→ P ∗ denote the universal cover. Let B̃ : R→ H be a lift of
B. Since D is homotopic rel endpoints to B, there is a lift D̃ : R→ H of
D with the same limit points at the circle at infinity. The assumption that
the limiting slopes at the endspoints are distinct and that B and D are
transverse imply that the closures of B̃ and D̃ in the closed disk H intersect
in finitely many points.

If B̃ and D̃ are disjoint, then their closures bound a bigon in H with ver-
tices on the circle at infinity. If B̃ and D̃ intersect in one point, then clearly
there are a pair of bigons with boundary in their closures, each including
one point on the boundary of H. Finally, if B̃ ∩ D̃ consists of more than one
point, then the result of D.B.A Epstein [12, Lemma 3.2] (see also [6, Lemma
A.10]) shows that one can find an embedded bigon in H for B̃ and D̃.

In each of these three cases, one can find a sequence of embedded arcs
B̃ = B̃0, B̃1, . . . , B̃r = D̃ in H so that B̃k intersects B̃k+1 transversely in
one interior point and in their endpoints. The argument is illustrated in
Figure 12. The figure on the left corresponds to the first case, when B̃ ∩ D̃ =
∅. The figure on the right corresponds to the third case, where an interior
bigon between B̃ and D̃ is used to construct an arc B̃1 which intersects B̃0 =
B̃ in one interior point and D̃ in two fewer points, providing the required
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induction step. If B̃ and D̃ started out with an odd number of intersection
points in their interior, one eventually reaches B̃r which meets D̃ in one point
in their interior, and if they started out with an even number of intersection
points in their interior, one reaches B̃r whose interior misses D̃, in which
case one can add one more step as in the first case.

B̃

D̃

B̃1

B̃

B̃1

D̃

Figure 12: Configurations of B̃, B̃1 and D̃ in H.

Thus, proving HF (A,B) = HF (A,D) reduces to the case when the lifts
B̃ and D̃ intersect transversely in one interior point, as illustrated in Fig-
ure 13 (after perhaps exchanging the notation for B and D).

We choose an arc D̃′ close to and isotopic rel endpoints to D̃, as in
Figure 13. Not shown is the restricted immersed circle Ã, but we assume
that there are no triple points of A,B,D. This ensures that Ã misses a
neighborhood of x containing u and w. We also assume that the bigons near
the ends involving e, g, f, and z are small enough that that Ã misses them.
We use these facts, the fact that immersed n-gons lift to the universal cover,
and the An relations to finish the proof of Lemma 4.4.

The counterpart to Lemma 4.5 is much simpler in the case of arcs. Con-
sider the ordered triple (A,D,B). If p ∈ A ∩D, q ∈ D ∩B, and r ∈ A ∩B,
and then π2(p, q, r) is either empty or contains a single class. If fact, if
(ui, (αi, γi, βi)) ∈ π2(p, q, r), i = 1, 2, then since B and D are arcs we may
use the homotopy extension property to assume β1 = β2 and γ1 = γ2. Then
gluing u1 to u2 along αi and βi shows that α1α

−1
2 is nullhomotopic, so that we

may assume further than γ1 = γ2. Since π2(P
∗) = 0, it follows that u1 = u2

in π2(p, q, r), As before, this implies that M(p, q, r) is finite, and hence
µ2 : C(A,D)× C(D,B)→ C(A,B) is defined. The same argument applies
to the triple (A,D,D′) to show that µ2 : C(A,D)× C(D,D′)→ C(A,D′)
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B̃

D̃′

D̃

y

e
u

w

x f
z

Figure 13: B̃, D̃, D̃′ in H.

is defined, and to the 4-tuple (A,D,B,D′) to show that µ3 : C(A,D)×
C(D,B)× C(B,D′)→ C(A,D′) is defined.

Using the same notation for points in the universal cover and their im-
ages in P ∗, we see that ∂x = 0 in C(D,B), hence the A2 relation shows that
µ2(−, x) : C(A,D)→ C(A,B) is a chain map.

Observe that ∂(y + z) = 2w = 0 in C(B,D′). Also, e+ f = µ2(x, y + z)
in C(D,D′). Furthermore, ∂(e+ f) = 2u = 0. Hence

µ2(−, e+ f) : C(A,D)→ C(A,D′)

is a chain map. In fact , µ2(−, e+ f) is a chain isomorphism, since D̃ is close
to D̃′ and A misses neighborhoods of ±∞, so there is a unique intersection
point w′ of A with D′ for each intersection point w of A with D. If w lies
between e and u, then µ2(w, e) = w′ and µ2(w, f) = 0, and if w lies between
x and f , then µ2(w, f) = w′ and µ2(w, e) = 0.

Substituting these calculations into the A3 relation

0 = µ3(∂w, x, y + z) + µ3(w, ∂x, y + z) + µ3(w, x, ∂(y + z))

+ µ2(µ2(w, x), y + z) + µ2(w, µ2(x, y + z)) + ∂µ3(w, x, y + z)
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and defining H : C(A,D)→ C(A,D′) by H(w) = µ3(w, x, y + z) yields

0 = H∂(w) + µ2(µ2(w, x), y + z) + µ2(w, e+ f) + ∂H(w).

So that the chain isomorphism µ2(−, e+ f) : C(A,D)→ C(A,D′) is chain

homotopic to the composite C(A,D)
µ2(−,x)−−−−−→ C(A,B)

µ2(−,y+z)−−−−−−→ C(A,D′).
Hence the chain map µ2(−, x) : C(A,D)→ C(A,B) is injective for all re-
stricted immersed circles A so that (A,B) and (A,D) are admissible.

The reader can safely be left the task of showing that

µ2(−, x) : C(A,D)→ C(A,B)

is injective for all restricted immersed circles A, by producing an embedded
B̃′ close to B̃ and constructing a right inverse to µ2(−, x). This is done by
analogy with the symmetry between Figures 9 and 11. The fact that the
relative Z/4 gradings is preserved is proved as before.

This completes the proof of Lemma 4.4, and hence also the proof of
Theorem 4.1. �

Corollary 4.6. HF (Lε,g0 , L1) is independent of ε > 0, the function g and
the homotopy class of L1.

5. Calculus

In this section, we make four technical but useful observations which stream-
line the calculation of HF (L0, L1) when L0 = Lε,g0 . These calculations
demonstrate the ease of working with the slope 1 line field `1 and Equa-
tion (15).

5.1. gr(x+, x−) = 1

We show gr(x+, x−) = 1 when x is a transverse intersection of L1 with the
diagonal arc, and x+, x− the two corresponding intersection points with
L0 = Lε,g0 for ε > 0 and g small, as indicated in Figure 14. We take α0 to be
the path in L0 starting at x+ which heads down and to the left, around the
bottom left corner, and back up to x−. The path α1 from x− back to x+ is
the short path which contains the diagonal intersection point x.
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In this case,

µ(α0, `1) = 1, µ(α1, `1) = 0, τ(L0, L1, `1)x+
= 0,

τ(L0, L1, `1)x− = 1, and z(α0 ∗ α1) = 1

yielding gr(x+, x−) = 1.

L1

L0

x−

x+

Figure 14: The intersection points x+ and x− of L0 with L1.

5.2. gr(p+, q+)

Suppose that L1 intersects the diagonal arc ∆ transversely and that L0 =
Lε,g0 for ε > 0 and g small. Suppose p, q are intersection points between L0

and ∆. Let p+, q+ be the corresponding intersection points with the part
of L0 in the front of P which has slope slightly less than 1, as indicated in
Figure 14.

Then the arc α0 along L0 from p+ to q+ can be chosen to lie entirely
on the front face of the pillowcase, and has slope slightly than 1, hence
µ(α0, `1) = 0. Moreover, since the slope of `1 equals 1, L1 is transverse to
∆, and ε and g are small, the triple index terms τ at p+ and q+ are both
zero. This leaves only the terms µ(α1, `1) and z(α0α1) in the formula for the
grading. Therefore, in this situation

(16) gr(p+, q+) = µ(α1, `1) + z(α0 ∗ α1).

A similar calculation applies to the other pair p−, q−.
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5.3. Distinguished point on a restricted immersed arc

If R is an arc, L0 ∩ L1 may (and in our applications will) contain a dis-
tinguished point which may be used to promote the relative grading to an
absolute grading. To understand the meaning of the following lemma, the
reader should locate the distinguished point rε+ in the examples illustrated
below in Figures 15, 21, 22, and 23.

Lemma 5.1. Suppose that L1 : R→ P is a restricted immersed arc and
one of the endpoints (which we denote by r+), maps to the corner (0, 0) of
P with limiting slope bounded away from 1. Then for all small ε, there is
a unique continuously varying intersection point rε+ of Lε0 and L1 satisfying
limε→0 r

ε
+ = r+.

Proof. This follows simply from the requirement that limiting slope bounded
away from 1. �

If L1 satisfies the hypothesis of Lemma 5.1, then, given the additional
data of a choice of σ ∈ Z/4, one can endow HF (L0, L1) with the absolute
Z/4 grading which places rε+ in grading σ.

In our applications below, L1 will be associated to a knot K in a homol-
ogy 3-sphere. In this setting the hypotheses of Lemma 5.1 hold and we take
σ to be the signature of the knot K.

5.4. Vertically monotonic circles

A special class of restricted immersed circles, which we call vertically mono-
tonic, arise in many of our examples and have particularly simple Lagrangian-
Floer homology.

Definition 5.2. Suppose that L1 : R→ P ∗ is a restricted immersed circle,
with domain parameterized by [0, 2π], and let L̃1 = (γ(t), θ(t)) : [0, 2π]→ R2

denote its lift to the branched cover (8).

• Call L1 : R→ P ∗ vertically monotonic if L̃1 misses the vertical line
segments γ = kπ, k ∈ Z, and if its tangent slope satisfies | ddt L̃1| > 1.
Thus L1 winds around the pillowcase without intersecting the left or
right edges, and is everywhere transverse to the line field `1 (as well
as the slope −1 line field).
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• Define the vertical degree of L1 to be the absolute value of the difference
of the vertical coordinates of L̃1(2π) and L̃1(0). Thus

d =
1

2π
|θ(0)− θ(2π)|.

Notice that the vertical degree is a homotopy invariant. In particular,
it is well defined for any circle homotopic to a vertically monotonic
circle.

Proposition 5.3. Suppose that L1 : R→ P ∗ is a vertically monotonic re-
stricted immersed circle. Then the vertical degree d of L1 is even. Moreover,
for ε small enough, all differentials are zero and HF (L0, L1) has rank d

2 in
each of the 4 grading degrees.

Proof. Since L1 : R→ P ∗ is vertically monotonic, it is transverse to the line
field `1 and hence µ(L1(R), `1) = 0. Moreover, Lε,g0 is transverse to L1 for
all small enough ε, g. Fix a transverse L0 = Lε,g0 with ε, g small.

Since L̃1 : [0, 2π]→ R2 misses the vertical line segments γ = kπ, z(L1(R))
is equal to twice the vertical degree d of L1. Since z(L1(R)) ≡ −µ(L1(R))
mod 4, 2d ≡ 0 mod 4 so that d is even.

Let p, q be intersection points of L0 and L1 and suppose that there were
a bigon (u, α0, α1) from p to q. The bigon misses the corners of P and hence
lifts to a bigon (ũ, α̃0, α̃1) in R2 with one edge along the preimage of L1 and
one along the preimage of L0.

For ε > 0 sufficiently small, the connected components of the preimage
in R2 of L0 are very close to lines of slope 1 through (0, kπ), and hence α̃0 is
nearly a straight segment of slope 1. On the other hand, since the tangent
lines to L̃1 have slope bounded away from 1, the lift α̃1, which starts at
α̃0(1), cannot terminate at α̃0(0), contradicting the fact that α̃0 and α̃1

bound a bigon. Hence, for sufficiently small ε, there are no bigons, so that
all differentials are zero. The circle L1(R) winds monotonically around P ,
intersecting the diagonal arc ∆ in d points, and hence intersecting L0 in 2d
points, so that HF (L0, L1) has rank 2d.

It remains to calculate the relative gradings. Since L1 is transverse to
`1, Equation 16 shows that this reduces to calculating z. One vertical wind
around P encircles two corner points and therefore changes z by 2 mod 4.
Hence the generators come in d

2 pairs, and, as explained in Section 5.1 and
indicated in Figure 14, alternate between contributing in (relative) gradings
0, 1 and 2, 3. This completes the argument. �
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Proposition 5.3 can be strengthened by combining it with Corollary 4.6
as follows.

Theorem 5.4. Suppose that L1 : R→ P ∗ is a restricted immersed circle
which misses the left and right edges of the pillowcase. Then the vertical
degree d is defined and even, and for any ε > 0 and g, HF (Lε,g0 , L1) has
rank d

2 in each of the 4 grading degrees.

Proof. Since L1 misses the right and left edges of the pillowcase, it is ho-
motopic to a vertically monotonic immersed circle. The proof is therefore a
consequence of Corollary 4.6. �

5.5. Pillowcase homology

Hereafter, a restricted immersed 1-manifold in the pillowcase P is a disjoint
union of a single restricted immersed arc and a finite number of restricted im-
mersed circles. More precisely, suppose L1 : R→ P is a map of a 1-manifold
R to the pillowcase, where R is the disjoint union of an arc R0 and finitely
many circles R1, . . . , Rn, and the restriction of L1 to each component is a
restricted immersed curve. Assume ε, g are chosen so that (Lε,g0 , L1|Ri) form
an admissible pair for each i.

Define the pillowcase homology of L1 to be the direct sum of the homolo-
gies HF (Lε,g0 , L1|Ri),

H\(L1) = ⊕ni=0HF (Lε,g0 , L1|Ri).

Each summand is relatively Z/4 graded, although initially there is nei-
ther a relative nor absolute Z/4 grading on all of H\(L1) if L1 is not con-
nected. The notation H\ is adopted in order to indicate the relationship to
the reduced instanton homology IH\.

6. Pillowcase homology of 2-stranded tangles and reduced
instanton homology

6.1. Traceless representation varieties of 2-stranded tangles

We now introduce traceless character varieties. We identify SU(2) with the
set of unit quaternions throughout. For the basic properties of the unit
quaternions and their Lie algebra, we refer the reader to Section 2 of [18].
A traceless quaternion means a quaternion with zero real part.
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Given a pair (A,B) consisting of a (compact) manifold and a properly
embedded codimension 2 submanifold, call a representation π1(A \B)→
SU(2) traceless if it sends all meridians of B to the conjugacy class C(i) of
i. Define the traceless character variety (or traceless flat moduli space)

R(A,B) = {ρ : π1(A \B)→ SU(2) | ρ is traceless}/conjugation

An embedding of pairs (A1, B1) ⊂ (A2, B2) induces a restriction map
R(A2, B2)→ R(A1, B1).

Consider a decomposition of a pair (X,K), where K is a knot (or link)
in a homology 3-sphere X, and X contains a separating 2-sphere S ⊂ X
which intersects K transversally in four points. We assume that one of the
two regions S bounds is a 3-ball D, and that D ∩K is a standard trivial
2-stranded tangle.

(17) (X,K) = (Y, T ) ∪(S,{a,b,c,d}) (D,U)

We refer to (17) as a 2-tangle decomposition associated to the knot (X,K).
We fix an identification D = B3 so that

U =
{(
± 1√

2
, 0, t

)
| t ∈

[
− 1√

2
, 1√

2

]}
and fix an identification ∂(D,U) = (S2, {a, b, c, d}) with a =

(
1√
2
, 0, 1√

2

)
, b =(

− 1√
2
, 0, 1√

2

)
, c =

(
− 1√

2
, 0,− 1√

2

)
, d =

(
1√
2
, 0,− 1√

2

)
. We call (Y, T ) a 2-

tangle associated to the knot (X,K).
Observe that to recover (X,K) from (Y, T ) requires only a choice of

identification

ι : ∂(Y, T ) ∼= (S2, {a, b, c, d})

(in the same way that a Dehn filling is determined by a manifold with torus
boundary and an identification of its boundary with the boundary of a solid
torus). We will omit the choice of ι from the notation since the identification
will be clear from context.
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To a 2-tangle decomposition of (X,K), one associates the diagram

(18)

R(S, {a, b, c, d})

Rπ(Y, T ) R\πε(D,U)

R\π′′(X,K)

��
�
��*L1

HH
H
HHY L0

H
HH

HHY

�
��
�*

where π, πε refer to certain holonomy perturbations π′′ = π ∪ πε, and
Rπ(M,L) denotes the corresponding π-perturbed traceless character variety.

Holonomy perturbations are used to make the Chern-Simons function
(whose Morse theory defines instanton homology) have only non-degenerate
critical points. They are constructed and explained in the context of the
traceless character varieties in [18, Section 7] and also in Section 8.2 below.
They were introduced in gauge theory by by Donaldson, Floer, Taubes, and
others [9, 14, 34].

It is not necessary for this article to understand precisely what the \
superscript means beyond knowing the statement of Theorem 6.2 below.
But roughly, R\πε(D,U) refers to Rπε(D,U ∪ E), where E is an additional
small meridian component to one of the components of U and one considers
representations which come from flat connections on an SO(3) bundle with
w2 dual to an arc spanning U and E. This construction, introduced by
Kronheimer-Mrowka in [21], is an ingredient in the definition of reduced
instanton knot homology. We refer to [18, 21] for the details.

The space R(S2, {a, b, c, d}) is a pillowcase. Indeed the following sim-
ple proposition is proved in [18] (and elsewhere). In the statement we abuse
notation and let a, b, c, d also denote the oriented meridians of the four punc-
tures.

Proposition 6.1 ([18], Proposition 3.1). There is a surjective quotient
map

ψ : R2 → R(S2, {a, b, c, d})

given by

ψ(γ, θ) : a 7→ i, b 7→ eγki, c 7→ eθki, d 7→ e(θ−γ)ki.
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The map ψ induces a homeomorphism of the pillowcase P with R(S2, {a, b,
c, d}). The four corner points are the image under ψ of the lattice (πZ)2,
and correspond to abelian non-central representations. All other points cor-
respond to non-abelian representations.

We urge the reader not to confuse (S2, {a, b, c, d}) with the pillowcase
P = R(S2, {a, b, c, d}), a homeomorphic space!

The only fact we will need to recall about R\πε(D,U) is the follow-
ing, which follows immediately by combining [18, Theorem 7.1] with Theo-
rem 9.1, proved below.

Theorem 6.2. Given any ε > 0 and g ∈ X , there is a holonomy perturba-
tion πε depending on ε and g so that R\πε(D,U) is a circle, and the restriction
to the pillowcase (the northwest map in Diagram (18)) is given by a map
Lε,g0 of Definition 3.4.

What Proposition 6.1 and Theorem 6.2 tell us is that a decomposition of
a knot or link into two 2-tangles, one of which is trivial, gives the pillowcase
P and the map Lε,g0 : S1 → P ∗.

The remaining input needed to define the pillowcase homology (as in Sec-
tion 5.5) associated to the 2-tangle decomposition is a restricted immersed 1-
manifold. Loosely speaking, L1 : R(Y, T )→ R(S2, {a, b, c, d}) is generically
a union of a restricted immersed arc and some number of restricted im-
mersed circles. The arc arises as one component of the space of traceless
binary dihedral representations of π1(Y \ T ), and the endpoints are the two
conjugacy classes of abelian traceless representations (Theorem 3.2 of [15].)

It is not always literally true, however, that L1 : R(Y, T )→ P is a re-
stricted immersed 1-manifold. It is true for certain tangles associated to
2-bridge knots [18, Section 10], and for some, but not all torus knots [15].

In fact, there exist decompositions of knots for which R(Y, T ), rather
than being a smooth 1-manifold, is instead a singular real algebraic variety
of dimension greater than or equal to 1. For example in [18, Section 11]
(see Figure 19) it is shown that for a tangle associated to the (3, 4) torus
knot, R(Y, T ) is a singular 1-dimensional variety, homeomorphic to the let-
ter φ. Many more examples are given in [15]. In general one can construct
examples so that R(Y, T ) is highly singular and has strata of high dimen-
sion by placing local knots in one of the strands of a 2-tangle. Hence the
traceless character variety R(Y, T ) must first be desingularized before we
can construct its pillowcase homology. In order to preserve the relationship
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to gauge theory and instanton homology, we use holonomy perturbations to
smooth R(Y, T ).

The space R(Y, T ) for a certain natural 2-tangle decomposition of a
torus knot is typically singular ([15, 18]). We prove below that any torus
knot admits a 2-tangle decomposition and an arbitrarily small holonomy
perturbation π so that Rπ(Y, T ) is a compact 1-manifold with two boundary
points, and L1 an immersion which satisfies all the requirements to be a
restricted immersed 1-manifold except possibly the requirement that it have
no fishtails. Based on index calculations and examples, it is reasonable to
expect that for any knot, arbitrarily small holonomy perturbations exist
which make L1 : Rπ(Y, T )→ P a restricted immersed 1-manifold.

Conjecture 6.3. For any 2-tangle (Y, T ) in the 3-ball (or a homology 3-
ball), there exist arbitrarily small holonomy perturbations π so that Rπ(Y, T )
is a compact 1-manifold with two boundary points and the restriction map
L1 : Rπ(Y, T )→ R(S2, {a, b, c, d}) is a restricted immersed 1-manifold on
each component in the sense of Definition 3.6.

Given a 2-tangle decomposition of a knot and a perturbation π which
satisfies the conclusion of Conjecture 6.3, denote by H\(Y, T, π) the resulting
pillowcase homology of L1 : Rπ(Y, T )→ P ,

H\(Y, T, π) = H\(L1) = ⊕iHF (Lε,g0 , L1|Ri).

We will simplify this to H\(Y, T ) if the perturbation π is clear from context.

As explained in [18], if ε 6= 0 is small and L0 = Lε,00 intersects L1 trans-
versely, then the intersection points of L0 and L1 also form generators of the
reduced instanton homology I\(X,K). Theorem 9.1 implies that this holds
for L0 = Lε,g0 for any small g ∈ X .

We state this formally.

Proposition 6.4. Given a small perturbation π which makes L1 : Rπ(Y, T )
→ P a restricted immersed 1-manifold, and given a transverse L0 = Lε,g0
with ε and g small, there is a (possibly different) differential

∂KM : C(L0, L1)→ C(L0, L1)

so that the homology of (C(L0, L1), ∂KM ) is the reduced instanton homology
I\(X,K).
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The differential ∂KM is defined by Kronheimer-Mrowka in terms of sin-
gular instantons on cylinders (X,K)× R. There is a well known procedure
for producing approximate instantons from bigons in character varieties as-
sociated to lagrangian intersection diagrams; see for example [36, Section
4]. It is therefore not unreasonable to conjecture that there is a relationship
between I\(X,K) and H\(Y, T, π). Indeed, we have found these to be iso-
morphic in every example we have computed. We extend Conjecture 6.3 to
an optimistic “Atiyah-Floer” type conjecture:

Conjecture 6.5. Given a knot (X,K) in a homology 3-sphere, there ex-
ists a 2-tangle decomposition as in Equation (17), such that for suitably
small generic perturbations π, L1 : Rπ(Y, T )→ P is a restricted immersed
1-manifold and H\(Y, T, π) is isomorphic to the reduced instanton homology
I\(X,K).

In the remainder of this article we establish some partial results and carry
out calculations which provide evidence for these conjectures. The reader
should realize, however, that there are no non-zero differentials in C(L0, L1)
between generators which lie on different path components of L1. We know
of no reason why this should be true for the instanton complex. It is likely
that there are differentials in the instanton complex which don’t appear in
C(L0, L1). For example, the pairs of generators p+, p− near each intersection
point p of L1 with the diagonal arc ∆, described in Section 5.1, arise from
a holomony perturbation which “tilts” a Bott-Morse circle of critical points
of the Chern-Simons function [18]. Analogy with finite-dimensional Morse
theory suggests that there exists a cancelling pair of gradient flow lines (i.e.,
instantons) from p+ to p− in the Kronheimer-Mrowka instanton complex,
whereas there are no bigons connecting these points of intersection.

6.2. Absolute grading

We remark that, by construction, H\(Y, T, π) splits as the direct sum over
the path components R0, R1, . . . , Rn of R(Y, T ):

H\(Y, T, π) = ⊕iH\(L1|Ri).

and that each of the summands admits a relative Z/4 grading. The relative
grading of the summand corresponding to the arc component R0 can be
promoted to an absolute Z/4 grading for small perturbations, using the
knot signature, as follows.
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Assume that (X,K) := (Y, T ) ∪ι (D,U) is a 2-tangle decomposition of a
knot K in an integer homology sphere X. The signature of K, σ(K), is an
even integer. There are two traceless abelian representations of π1(Y \ T ),
r+ and r− distinguished by the property that r+ extends to π1(X \K) (and
r− does not). The point r+ is a Morse critical point of the Chern-Simons
function, and a regular point of R(X,K). In particular, it remains regular
after small perturbations.

The points r+ and r− are endpoints of an embedded arc of binary di-
hedral representations, which, by Theorem 3.2 of [15], is the image in the
pillowcase under the branched cover (8) of an embedded linear segment join-
ing two lattice points. This line segment has slope different from 1 (the slope
is different from 1 since the 2-fold branched cover of a knot in a homology
sphere is a rational homology sphere, so the integer h(bc−1) in Theorem 3.2
of [15] is non-zero). In particular, the arc of binary dihedral representations
is properly immersed (in fact, embedded) in P .

Small perturbations only change the slopes near the endpoints slightly,
and one can keep them bounded away from 1. By Lemma 5.1 there is a
unique intersection point rε+ ofR(Y, T ) and Lε,g0 for all small ε, g. We promote
the relative grading of the subcomplex corresponding to the component R0

by declaring

(19) gr(rε+) = σ(K)

for small perturbations.
We have not found an elementary approach to promote the relative grad-

ing of the generators of the subcomplexes associated to the circle components
Ri, i > 0, and so we will use the following awkward definition as a conse-
quence of Proposition 6.4: choose a generator on each circle component and
declare its absolute grading to be the one assigned to it by Kronheimer-
Mrowka in [24, Proposition 4.4].

A proof that the relative Z/4 grading of generators of C(L0, L1) (Defini-
tion 3.7) coincides with the grading assigned the these generators (by Propo-
sition 6.4) of singular instanton knot homology by [24, Proposition 4.4] is
given by using splitting theorems for spectral flow [5, 8, 26]. We outline how
this is done, referring to [5] for details.

First, the relative grading is defined to be the mod 4 reduction of the
spectral flow of the Hessian of the Chern-Simons function (acting on sin-
gular connections) along a path joining a pair a0, a1 of critical points, i.e.,
perturbed flat connections. If the restrictions of a0, a1 to Y \ T can be joined
by a smooth path of flat connections, i.e., by a smooth path in Rπ(Y, T ),
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then the approach of [5, Theorem 3.9] can be modified to show that the
spectral flow equals the Maslov index along the path of the tangent space of
the immersed 1-manifold Rπ(Y, T )→ P ∗ in the pillowcase, with respect to
some a priori unknown line field `inst, and hence is given as in Definition 3.7.

Changing the homotopy class of a line field determines a difference class
z ∈ H1(P ∗;Z/4). The identification of `inst is therefore equivalent to the
identification of z. Its identification with the explicit class of Definition 3.1 is
completed by calculating a few examples of 2-bridge knots, whose instanton
homology is known, to deduce the values of z on a basis of 1-cycles inH1(P

∗).

This argument, combined with the additivity of spectral flow under com-
position of paths of self-adjoint operators, also shows that if L1 : Ri → P ∗ is
an immersion of a smooth circle component Ri ⊂ Rπ(Y, T ), then L1 satisfies
the condition µ(L1(Ri), `inst) ≡ 0 mod 4 required of restricted immersed cir-
cles. In this case, one uses the fact that the two smooth paths in Ri joining
a0 to a1 must give the same relative Z/4 grading, since the relative grading
in the singular instanton complex is well defined (and independent of the
tangle decomposition). As the proof of Proposition 3.8 shows, this is only
possible if L1 : Ri → P ∗ satisfies µ(L1(Ri), `inst) ≡ 0 mod 4.

7. Examples: 2-bridge knots

Two-bridge knots can be described as the union of two trivial tangles along
a 4-punctured sphere. We recall some of the results about their tangle de-
compositions from [18]. In particular, we will show that for such a tangle
decompositions of a 2-bridge knot K, L1 : R(Y, T )→ P is a restricted im-
mersed (in fact linearly embedded) arc which meets Lε,00 transversely in
det(K) points, and that all differentials in the Lagrangian-Floer complex
are zero.

These facts, together with the identification of the relative Z/4 grad-
ings in C(L0, L1) and the singular instanton complex via a spectral flow
splitting theorem as explained above, imply that H\(Y, T ) is isomorphic to
the reduced instanton homology I\(S3,K), which is known [24] to equal
the reduced Khovanov homology Khred(Km) of the mirror of K for a 2-
bridge knot. We conjectured in [18] that placing the distinguished generator
rε+ in grading σ(K) agrees with Kronheimer-Mrowka’s absolute grading [24,
Proposition 4.4] (a conjecture borne out in all our calculations) and, modulo
this point, for 2-bridge knots, H\(Y, T ), I\(S3,K), and Khred(Km) (with its
bigrading (i, j) reduced to i− j + 1 mod 4) contain the same information.
In particular, Conjecture 6.5 holds for 2-bridge knots.
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Suppose that (p, q) are relatively prime integers, with p odd and positive.
Then there is a 2-bridge knot K = K(p, q) determined by the condition that
its 2-fold branched cover is the lens space L(p, q). In [18, Figure 13], a 2-
tangle decomposition (S3,K) = (Y, T ) ∪ (D,U) determined by a continued
fraction expansion of p

q is described. It is proved that R(Y, T ) is a smooth

arc and the restriction map to the pillowcase is given, in R2 coordinates, by

R(Y, T ) ∼= [0, π] 3 t 7→ (qt, (q − p)t) ∈ P.

Thus L1 : R(Y, T )→ P is a restricted embedded arc. In particular, no
perturbation π is needed to smooth R(Y, T ). Hence we can choose L0 = Lε,00
for a small ε and form the chain complex C(L0, L1). Since L1 maps in linearly
and L0 is close to the linear arc ∆, there can be no immersed bigons, and
therefore all differentials are zero.

There are p intersection points of L1 with L0. In fact, there are p+1
2

intersection points of (γ(t), θ(t)) = (qt, (q − p)t), t ∈ [0, π] with the arc ∆,
these occur at

(20) x` =
(
q 2π`p , (q − p)

2π`
p

)
, ` = 0, 1, . . . , p−12 .

The points x`, ` > 0, each give rise to a pair of intersection points x+` , x
−
`

of L1 with Lε0, and the point x0 gives rise to the distinguished point rε+ of
Lemma 5.1. Hence C(L0, L1) and H\(Y, T ) have rank p. The intersection
points are illustrated in the case of K = K(11,−5) (72 in the knot tables)
in Figure 15.

We show how to calculate the gradings. First, the observation of Sec-
tion 5.1 shows that gr(x+` , x

−
` ) = 1. Next, recall that we promote the relative

grading to an absolute grading by setting gr(rε+) = σ(K) mod 4, where σ(K)
denotes the signature of the knot K. Thus the determination of all other
gradings is reduced to calculating gr(rε+, x

+
` ) for ` = 1, . . . , p.

The slope q−p
q is not equal to ±1 since p and q are relatively prime.

There are four different cases to be considered, depending on the slope. For
simplicity we assume q−p

q is positive and greater than 1; the other cases are
treated similarly.

For each x+` , ` = 1, . . . , p, one can find a path α0 in L0 from rε+ to x+`
which lies on the front of the pillowcase. One can then take a path α1 in L1

from x+` back to rε+. Notice that since L1 is an arc, the path α1 is unique.
We are in the situation explained in Section 5.2 and can calculate grad-

ings using the Equation (16). Since the tangent line to L1 is everywhere
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transverse to the slope one line field `1, Equation (16) simplifies further to
gr(rε+, x

+
` ) = z(α0α1).

The same formula holds when q−p
q < −1. When −1 < q−p

q < 1, an en-

tirely similar calculation yields gr(rε+, x
−
` ) = z(α0α1).

We summarize:

Theorem 7.1. Let K = K(p, q) ⊂ S3 be a 2-bridge knot with p > 0 odd,
and equip it with the 2-tangle decomposition described in [18, Figure 13].
Then L1 : R(Y, T )→ P is a linearly embedded arc of slope q−p

q , and hence

a restricted immersed arc. Taking L0 = Lε,00 with ε > 0 small, C(L0, L1) has
rank p, generated by the points rε+ and x+` , x

−
` , ` = 1, . . . p−12 . The Z/4 grad-

ing is determined by

gr(rε+) = σ(K), gr(x+` , x
−
` ) = 1

and, letting x◦` denote x+` if | q−pq | > 1 and x−` if | q−pq | < 1

gr(rε+, x
◦
` ) = z(α)

where α is the loop in P ∗ which starts at rε+, follows L0 to x◦` , then re-
turns to rε+ along L1, and z ∈ H1(P ∗;Z/4) is the class of Definition 3.1. All
differentials are zero and hence C(L0, L1) ∼= H\(Y, T ).

The knot K(11,−5) has signature σ = 2, and hence gr(rε+) = 2. The
generators are illustrated in Figure 15. The loop α which follows L0 from rε+
to x+1 on the front of the pillowcase and then follows L1 back to rε+ satisfies
z(α) = 2. Hence gr(rε+, x

+
1 ) = 2. A similar calculation applies to the other

x+` and yields

gr(rε+, x
+
2 ) = 1, gr(rε+, x

+
3 ) = 0, gr(rε+, x

+
4 ) = 3, and gr(rε+, x

+
5 ) = 2.

The gradings gr(rε+, x
−
` ) are computed using the fact that gr(x+` , x

−
` ) = 1.

Thus, in the notation introduced above, H\(Y, T ) = (3, 2, 3, 3).
The choice (p, q) = (11, 6) gives a different tangle decomposition for

the same knot K = K(11,−5) = K(11, 6). The resulting homology is again
(3, 2, 3, 3).

The choice (p, q) = (5,−3) yields a tangle decomposition of the Fig-
ure 8 knot. The map L1 is illustrated (with different notation) in [18, Fig-
ure 16]. There are 5 generators, rε+, x

±
1 , x

±
2 , and computing gradings us-

ing z yields gr(rε+) = σ(K) = 0, gr(x+1 ) = 3, gr(x+2 ) = 2, and hence H\ =
(1, 1, 2, 1). This agrees with the calculation of reduced instanton homology
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2π

0

0 π

rε+

x−2

x+2

x+4

x−4

x+5

x−5 x+3

x−3
x+1

x−1

Figure 15: The intersection of L0 and L1 in P for the 2-bridge knot
K(11,−5).

and reduced Khovanov homology of the Figure 8 knot. Choosing (p, q) =
(5, 2) gives a different tangle decomposition for the Figure 8 knot, but again
yields H\ = (1, 1, 2, 1).

The trefoil knot corresponds to (p, q) = (3,−1); one calculates H\ =
(1, 0, 1, 1). The same answer is obtained when taking instead (p, q) = (3, 2).

Theorem 7.1 can easily be used (and implemented in a computer algebra
program) to compute H\(Y, T ) ∼= I\(S3,K) ∼= Khred(Km) for any 2-bridge
knot K. In particular, this gives a novel approach to computing the reduced
Khovanov homology of 2-bridge knots (with its bigrading (i, j) reduced to
i− j + 1 mod 4).

We point out that the main new ingredients contained in this discussion
of 2-bridge knots which were not implicit in [18] are first, the construction
of the complex C(L0, L1) associated to a tangle decomposition of a 2-bridge
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knot, and second, the use of the cohomological invariant z ∈ H1(P ∗;Z/4)
and the Maslov index to define and compute the relative grading.

8. Some general properties of R(Y, T )

8.1. Structure of R(Y, T ) near the abelian points

Suppose that (Y, T ) is a 2-tangle. Our goal (not fully realized in this article)
is to establish Conjecture 6.3. To this end, we start by showing that the two
boundary points of Rπ(Y, T ) are well defined for small perturbations, and
correspond to the precisely two abelian representations in R(Y, T ), namely
the conjugacy classes of the two representations

r± : π1(Y \ T )→ {±1,±i} ⊂ SU(2)

uniquely characterized (since H1(Y \ T ) = Z⊕ Z, generated by µ1, µ2) by

r±(µ1) = i, r±(µ2) = ±i.

The following proposition proves that r+ and r− each have a neigh-
borhood in R(Y, T ) homeomorphic to a half-open interval. The outline of
the argument is as follows: the space R(Y, T ) is identified with a subspace
of the space of conjugacy classes of representations of the 2-fold branched
cover (the equivariant representations in the sense of [32]). Then a Kuranishi
model argument shows that the representation space is locally a half open
interval near the lifts of r±.

Proposition 8.1. For a 2-tangle T in an integer homology ball Y , each of
the two abelian traceless representations r± has a neighborhood in R(Y, T )
homeomorphic to a half-open interval. The restriction map to the pillowcase
P properly embeds each half-open interval, taking the endpoints to distinct
corners with limiting slope not equal to 1.

The proof is an extension of [15, Theorem 3.2]. That theorem identifies
the subvariety Rtbd(Y, T ) ⊂ R(Y, T ) of traceless binary dihedral representa-
tions with the disjoint union of one arc and a number of circles (the number
determined by the torsion submodule of the homology of the 2-fold branched
cover of Y branched along T ). The endpoints of the arc are precisely r+ and
r−, and the arc of binary dihedrals is linearly embedded into the pillowcase
with slope different from 1 (see Section 6.2). Hence what must be shown
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is that there are no non-binary dihedral representations in small enough
neighborhoods of r±.

We begin with a lemma which permits us to transfer the problem to one
about the 2-fold branched cover of (Y, T ). To this end, Let c : π1(Y \ T )→
{±1} be the unique homomorphism sending both µ1 and µ2 to −1 (this is
just the homomorphism r2+ = r2−). Let B → Y denote the corresponding 2-

fold branched cover. Denote the preimage of T by T̃ . Consider π1(B \ T̃ ) as
the index 2 subgroup of π1(Y \ T ), i.e., as the kernel of c. Let µ̃1, µ̃2 denote
the meridians of the two components of T̃ . Hence, in π1(Y \ T ), µ̃i = µ2i .

Denote by R±1(B, T̃ ) the space of conjugacy classes of representations
of π1(B \ T̃ ) which take the µ̃i to ±1. Since the square of a traceless element
of SU(2) is −1, restriction to the index 2 subgroup defines a map

R(Y, T )→ R−1(B, T̃ ).

Lemma 8.2. Pointwise multiplication by c defines a Z/2 action on R(Y, T )
with fixed points the traceless binary dihedral representations. The restriction
map R(Y, T )→ R−1(B, T̃ ) is constant on Z/2 orbits and embeds the quotient
R(Y, T )/Z/2 ⊂ R−1(B, T̃ ).

Assuming Lemma 8.2, the proof of Proposition 8.1 can be completed as
follows.

Denote by by r̃± the restrictions of r± to the index 2 subgroup π1(B \ T̃ ).
Then r̃± takes values in the center {±1} of SU(2) and r̃±(µ̃i) = r±(µ2i ) =
−1.

It follows that pointwise multiplication of a representation by r̃+ defines
a continuous map R−1(B, T̃ )→ R1(B, T̃ ). This map is a homeomorphism
(in fact real analytic isomorphism) with inverse given again by multiplication
by r̃+.

Let χ(B) denote the space of conjugacy classes of (all) SU(2) representa-
tions of π1(B). The Seifert-Van Kampen theorem shows that the restriction
χ(B)→ R1(B, T̃ ) is a homeomorphism. Hence we have a sequence of maps:

R(Y, T )→ R(Y, T )/Z/2 ⊂ R−1(B, T̃ ) ∼= R1(B, T̃ ) ∼= χ(B).

It therefore suffices to prove that a neighborhood of r̃+r̃± in χ(B) is
homeomorphic to a half-open interval. Notice that r̃+r̃+ : π1(B)→ SU(2)
is the trivial representation, and r̃+r̃− : π1(B)→ SU(2) is central but non-
trivial (it takes µ1µ2 to −1).
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The 3-manifold B has torus boundary and has first homology isomor-
phic to Z⊕O for O an odd torsion abelian group, since T is a tangle in a
homology ball (see [15, Section 3] for details).

The Kuranishi method identifies a neighborhood of c± in R(B) with
K−1(0)/SU(2), where K : H1(B; su(2)ad c±)→ H2(B; su(2)ad c±). The ad-
joint action of c± is trivial since c± is central, and hence these are untwisted
cohomology groups with coefficients in su(2) = R3. The universal coefficient
theorem gives H1(B;R3) = R3 and H2(B,R3) = 0, so that c± has a neigh-
borhood homeomorphic to R3/SU(2) = R3/SO(3) ∼= [0, 1), as desired.

Proof of Lemma 8.2. First, if ρ represents a conjugacy class in R(Y, T ), then
the function cρ(γ) = c(γ)ρ(γ) is again a representation, since c takes values
in the center {±1}. Moreover, since ker c = π1(B \ T̃ ), the restrictions of ρ
and cρ to π1(B \ T̃ ) agree. Since c2 = 1, this shows that multiplication by
c defines a Z/2 action on R(Y, T ) and the restriction R(Y, T )→ R1(B, T̃ )
factors through the quotient of this Z/2 action.

Conversely, suppose ρ1, ρ2 : π1(Y \ T )→ SU(2) are two traceless repre-
sentations whose restriction to the index 2 subgroup π1(B \ T̃ ) are equal.
For clarity, denote this restriction by ρ̄, so ρ̄ = ρ1|ker c = ρ2|ker c.

We claim that, perhaps after conjugating ρ2 without changing its re-
striction to ker c, ρ1(µ1) and ρ2(µ1) commute. To see this, first note that for
each τ ∈ ker c,

(21) ρ1(µ1τµ
−1
1 ) = ρ̄(µ1τµ

−1
1 ) = ρ2(µ1τµ

−1
1 )

so that

(22) [ρ2(µ1)
−1ρ1(µ1), ρ̄(τ)] = 1 for all τ ∈ ker c.

If ρ̄ has non-abelian image, Equation (22) implies that ρ2(µ1)
−1ρ1(µ1)

is central, so that ρ2(µ1) = ±ρ1(µ1) and hence they commute. If ρ̄ has cen-
tral image, then conjugating ρ2 by any element of SU(2) does not change
its restriction to ker c, and since ρ1(µ1) and ρ2(µ1) are traceless, they are
conjugate. Hence ρ2 can be conjugated so that ρ1(µ) = ρ2(µ) and their re-
strictions to ker c agree.

Consider as a final case that ρ̄ has abelian non-central image. We show
that again ρ2 can be conjugated without changing its restriction to ker c to
make ρ1(µ1) and ρ2(µ1) commute. Choose a traceless quaternion q so that
the image of ρ̄ lies in the circle subgroup S := {eθq}. Then Equation (22)
shows that ρ2(µ1)

−1ρ1(µ1) lies in S. If one of ρ1(µ1) or ρ2(µ1) lies in S then
they both do since their product does, and hence they commute. Suppose
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that neither lies in S. Equation (21) shows that conjugation by ρ1(µ1) and
ρ2(µ1) leaves the circle S invariant. This in turn shows that there exists an
element of S which conjugates ρ2(µ1) to ρ1(µ1). This conjugation leaves S
fixed, so that we have shown that in this final case, ρ2 can be conjugated
without changing its restriction to ker c to make ρ1(µ1) and ρ2(µ1) commute.

Define f : π1(Y \ T )→ {±1} by the formula

f(γ) =

{
1 if γ ∈ ker c

ρ1(µ1)ρ2(µ1)
−1 if γ 6∈ ker c.

Then it is easy to see that f is a homomorphism (using the fact that ρ1(µ1)
and ρ2(µ1) commute). Moreover, a simple calculation shows that

ρ2(γ) = f(γ)ρ1(γ) for all γ ∈ π1(Y \ T ).

Note that there are exactly two possibilities for f since ker c has order 2. In
fact, the two possibilitites are the trivial homomorphism and c. This proves
that the restriction map R(Y, T )→ R(B, T̃ ) factors through an injective
map on the orbit space of this Z/2 action.

It remains to prove that the fixed points are exactly the traceless binary
dihedral representations ([15, Definition 3.1]). Suppose that cρ is conju-
gate to ρ for ρ ∈ R(Y, T ). Thus there exists g ∈ SU(2) so that gρ(γ)g−1 =
c(γ)ρ(γ) for all γ ∈ π1(Y \ T ). In particular, gρ(γ)g−1 = ρ(γ) for all γ ∈
ker c. Since c(µ1) = −1, g 6= ±1, so that g lies in a unique circle subgroup
which we denote S.

If ρ sends every γ ∈ ker c to the center {±1}, then the image of ρ lies in
the subgroup {±1,±ρ(µ1)} of order 4, and ρ is traceless binary dihedral.

On the other hand, if there exists γ ∈ ker c such that ρ(γ) 6= ±1, then g
and ρ(γ) commute, and hence ρ sends all of ker c into S. Furthermore, for
each γ in the non-trivial coset, ρ(γ)−1gρ(γ) = −g, which implies that ρ(γ)
is traceless and S ∪ ρ(γ)S is (a conjugate of) the binary dihedral subgroup
containing the image of ρ. Hence ρ is traceless binary dihedral. �

8.2. Perturbations

Proposition 8.1 shows that R(Y, T ) is a 1-manifold with boundary near the
two abelian representations r±. The space R(Y, T ) is a real algebraic variety,
but in general it may be singular. To prove Conjecture 6.3 for some (Y, T )
one must first desingularize R(Y, T ).
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There are various ways to smooth the singular space R(Y, T ); we re-
strict attention to holonomy perturbations since these have a gauge theo-
retical counterpart which permits us to compare our constructions to those
of [21, 24]. In particular, with this choice of perturbations, Proposition 6.4
identifies the generators of the reduced knot instanton homology chain com-
plex with the intersection points of Rπ(Y, T ) and L0 in the pillowcase for
any appropriate perturbation π.

We recall how to understand holonomy perturbations on the level of
representations. What follows can be taken as a definition. The reader should
keep in mind, however, that the perturbed equations we give below arise from
a perturbation of the Chern-Simons functional on the space of traceless
SU(2) connections. In particular, what we call a perturbation function is
essentially the derivative of the conjugacy invariant function on SU(2) which
is used to perturb the Chern-Simons function.

A holonomy perturbation is associated to a pair π = (E, f), where

1) E is an embedding E : S1 ×D2 ⊂ Y \ T (we use E also as notation
for the image E(S1 ×D2)), and

2) f is a perturbation function, i.e.,

f ∈ X = {f ∈ C∞(R,R) | f is odd, 2π periodic}.

Call a representation ρ : π1(Y \ (T ∪ E))→ SU(2) a π-perturbed traceless
representation if ρ takes the meridians of T to C(i), the conjugacy class of i,
and satisfies the perturbation condition on the meridian µE = E({1} × ∂D2)
and longitude λE = E(S1 × {1}):

(23) ρ(λE) = eαQ implies ρ(µE) = ef(α)Q

for Q ∈ su(2). Then define the perturbed traceless flat moduli space Rπ(Y, T )
to be the space of conjugacy classes of π-perturbed traceless representations.
We refer the reader to [10, 14, 34]; expositions tailored to our notation can
be found in [16, Lemma 61] and [18, Section 7].

More generally, one can choose a collection Ei, i = 1, . . . , n of disjoint
embeddings, and corresponding functions fi define π = {Ei, fi}, and take
Rπ(Y, T ) to be the space of conjugacy classes of π-perturbed traceless repre-
sentations, defined by requiring the perturbation condition (23) to hold for
each i. One useful choice is fi(x) = εi sin(x) for some small εi.

The following proposition shows that the two abelian representations are
stable with respect to (sup norm of fi) small perturbations.
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Proposition 8.3. For small enough perturbations, Rπ(Y, T ) contains ex-
actly two conjugacy classes of abelian representations. These are sent to
distinct corner points in the pillowcase by the restriction map Rπ(Y, T )→
R(S2, {a, b, c, d}).

Proof. Let µ1, µ2 denote meridians of the two components of T . Let µE1
, . . . ,

µEn denote the meridians of the pertubation curves. Then µ1, µ2, µE1
, . . . , µEn

generate H1(Y \ T ).
Let `i(µ1, µ2, µE1

, . . . , µEn), i = 1, . . . , n, express the longitude λEi in
H1(Y \ T ) as a linear combination of the meridians of the meridians.

Identify the diagonal maximal torus in SU(2) with the circle S1 and
let Tn+2 = (S1)n+2. For each δ ≥ 0, Let π(δ) denote the perturbation data
obtained by multiplying each fi by δ. Then define a self-map of Tn+2

Q(δ) : Tn+2 → Tn+2

as follows. The first two coordinates encode the traceless condition and are
given by

Q(δ)1(e
θ1i, eθ2i, eα1i, . . . , eαni) = −e2θ1i,

Q(δ)2(e
θ1i, eθ2i, eα1i, . . . , eαni) = −e2θ2i.

The remaining coordinates encode the perturbation condition:

Q(δ)i+2(e
θ1i, eθ2i, eα1i, . . . , eαni) = eαiie−δfi(`i(θ1,θ2,α1,...,αn))i.

Then Q(δ)−1(1, . . . , 1) parameterizes the perturbed traceless abelian repre-
sentations (not conjugacy classes) with values in the diagonal maximal torus
of SU(2), with respect to the functions δfi: the point (eθ1i, eθ2i, eα1i, . . . , eαni)
∈ Q(δ)−1(1, . . . , 1) corresponds to the representation

π1(B \ (T ∪ E))→ H1(B \ (T ∪ E))→ S1 ⊂ SU(2)

sending each meridian to its corresponding coordinate.
The proof is completed by observing that Q(0) is a covering map, hence

a submersion. Since submersions are stable, Q(δ)−1(1, . . . , 1) varies by an
isotopy for small δ. �
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For any perturbation π, restricting to the boundary punctured sphere
induces a map to the pillowcase

Rπ(Y, T )→ R(S2, {a, b, c, d}).

The two abelian representations guaranteed to persist after small perturba-
tions by Proposition 8.3 necessarily are mapped to corners of the pillowcase,
since the restriction of an abelian representation is abelian, and non-corner
points are non-abelian, as one can see from Proposition 6.1.

Putting the Propositions 6.1, 8.1 and 8.3, together, we conclude the
following.

Theorem 8.4. Let (Y, T ) be a 2-tangle in a Z-homology ball. Then, for any
sufficiently small holonomy perturbation π, there are two abelian perturbed
flat representations r± ∈ Rπ(Y, T ) with neighborhoods U± in Rπ(Y, T ) half-
open intervals. The restriction map

Rπ(Y, T )→ R(S2, {a, b, c, d})

restricts to an immersion on U+ ∪ U− which takes r± to distinct corners of
the pillowcase, with slope 6= 1.

Thus Theorem 8.4 reduces the problem of defining H\(Y, T ) for a 2-
tangle T to finding an (arbitrarily) small holonomy perturbation π so that

1) Rπ(Y, T ) \ {r+, r−} is a smooth 1-manifold.

2) The restriction of L1 : Rπ(Y, T )→ P to the arc component is an im-
mersion into P ∗ containing no fishtails.

3) The restriction of L1 : Rπ(Y, T )→ P ∗ to each circle component is an
immersion into P ∗ containing no fishtails.

It is well known that calculations of Zariski tangent spaces using
Poincaré-Lefschetz duality show that if Rπ(Y, T ) is a smooth 1-manifold
away from the two endpoints, then the restriction map L1 : Rπ(Y, T )→ P
immerses Rπ(Y, T ) \ {r+, r−} into P ∗. Thus for a given (Y, T ), what is
needed is a holonomy perturbation which desingularizes R(Y, T ) so that
the resulting restriction to P has no fishtails.
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9. Perturbing near the 2-sphere

In this section we construct holonomy perturbations in (S2, {a, b, c, d})× I
which induce a family of Hamiltonian isotopies of the pillowcase. These were
used in Sections 3 and 6 to make L0 and L1 transverse. These will also be
used for other purposes below and in further work.

Consider the product pair

(S2 × I, {a, b, c, d} × I).

Its traceless character variety is P , and the traceless character variety of its
boundary

(S2 × {0, 1}, {a, b, c, d} × {0, 1})

is P × P . The restriction map

R(S2 × I, {a, b, c, d} × I)→ R(S2 × {0, 1}, {a, b, c, d} × {0, 1})

is the diagonal map P → P × P , which we consider as the graph of the
identity map P → P .

Given suitable perturbation data π for (S2 × I, {a, b, c, d} × I), the re-
striction map

Rπ(S2 × I, {a, b, c, d} × I)→ R(S2 × {0, 1}, {a, b, c, d} × {0, 1})

gives a Lagrangian correspondence cπ : P → P . Choosing a path from the
trivial perturbation to π gives a homotopy of the identity to cπ. We focus
on a special class of π for which cπ is an explicitly defined diffeomorphism.

Figure 16 shows the 4-punctured 2-sphere with the four based meridian
generators a, b, c, d based at a point s. An additional curve e is also indicated.

Let E : S1 ×D2 → S2 \ {a, b, c, d} × I be a tubular neighborhood of the
curve obtained by pushing e into the interior of S2 × I. Fix a perturbation
function f ∈ X and let δ = (E, f) denote the perturbation data. Recall that
f can be any smooth odd, 2π periodic function.
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b a

c d

e

s

Figure 16: Generators a, b, c, d for the fundamental group of the 4-punctured
sphere and an embedded curve e.

Theorem 9.1. With perturbation data δ = (E, f), the map

P → Rδ(S
2 × I, {a, b, c, d} × I)

induced by the inclusion S2 × {0} → S2 × I is a homeomorphism, and the
composite

P → Rδ(S
2 × I, {a, b, c, d} × I)

→ R(S2 × {0, 1}, {a, b, c, d} × {0, 1}) = P × P

is the graph of the self homeomorphism (smooth away from the corners) of
the pillowcase

(24) cδ : P → P, cδ(γ, θ) = (γ, θ + 2f(γ + π)).

Using the 1-parameter family of perturbations tf, t ∈ [0, 1] gives an isotopy
from the identity Id : P → P to cδ : P → P .

Proof. Let a′, b′, c′, d′ and µE be based loops in π1(S
2 × I \ ({a, b, c, d} ×

I ∪ E), s) so that a′, b′, c′, d′ represent the meridians of the punctures in the
other boundary component S2 × {1}, and µE denotes the meridian to the
perturbation curve E. These curves are illustrated in Figure 17, where, for
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convenience, the four-punctured sphere is identified with a three-punctured
disk.

a

bc

a′

b′

c′

µE E

d

d′

s

Figure 17: The perturbation curve E in the cylinder

The curves a, b, c, d, µE generate π1(S
2 × I \ ({a, b, c, d} × I ∪ E), s) and

the relations

ba = cd, a′ = a, b′ = b, c′ = µEcµ̄E , d′ = µEdµ̄E ,

hold. The natural longitude λE for E is represented by the homotopy class
ba.

As explained in [18, Proposition 3.1] (see Proposition 6.1 above), any
representation of 〈a, b, c, d | ba = cd〉 taking a, b, c, d to traceless elements is
conjugate to one given by

(25) a 7→ i, b 7→ eγki, c 7→ eθki, d 7→ e(θ−γ)ki,

for some (γ, θ) ∈ P . Thus, to any representation ρ : π1(S
2 × I \ ({a, b, c, d} ×

I ∪ E))→ SU(2) sending a, b, c, d to traceless elements, one can associate
(γ, θ) ∈ P . Then ρ(λE) = ρ(ba) = −eγk = e(γ+π)k.

If ρ ∈ Rδ(S2 × I, {a, b, c, d} × I), then ρ satisfies the perturbation con-
dition (see Equation (23)):

(26) ρ(µE) = ef(γ+π)k.
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Hence

(27) ρ(a′) = i, ρ(b′) = eγki, ρ(c′) = ef(γ+π)keθkie−f(γ+π)k = eθ+2f(γ+π)k

Conversely, given any (γ, θ) ∈ P and eαk there exists a unique traceless rep-
resentation ρ : π1(S

2 × I \ ({a, b, c, d} × I ∪ E))→ SU(2) and ρ(µE) = eαk.
This satisfies the perturbation condition, and hence

ρ ∈ Rδ(S2 × I, {a, b, c, d} × I)

provided eαk = ef(γ+π)k.
We have shown that to each (γ, θ) ∈ P there exists a unique ρ ∈ Rδ(S2 ×

I, {a, b, c, d} × I), given by (25), (26), and (27). Moreover the restriction

Rδ(S
2 × I, {a, b, c, d} × I)→ R(S2 × {0, 1}, {a, b, c, d} × {0, 1}) = P × P

has image (γ, θ, γ, θ + 2f(γ + π)).
This shows that d = (E, f) induces the map cδ(γ, θ) = (γ, θ + 2f(γ +

π)), as asserted. This map is invertible, with inverse (γ, θ) 7→ (γ, θ − 2f(γ +
π)), and hence is a homeomorphism. �

We stated Theorem 9.1 for a specific curve e in S2 \ {a, b, c, d} but one
may conjugate by any diffeomorphism φ of the punctured sphere to replace e
by φ(e), generating many more homeomorphisms of the pillowcase. Although
not used in the rest of this article, these perturbations will be important in
forthcoming work.

Theorem 9.2. Given any relatively prime pair of integers p, q and φ ∈ X ,
there exists a holonomy perturbation along a single curve in

(S2 × I, {a, b, c, d} × I)

inducing the homeomorphism

cp,q,φ(γ, θ) = (γ − qφ(pγ + qθ), θ + pφ(pγ + qθ))

of the pillowcase. This homeomorphism is Hamiltonian isotopic to the iden-
tity.

Proof. Given (γ, θ) ∈ R2, Let ψ(γ, θ) : π1(S
2 \ {a, b, c, d})→ SU(2) be the

traceless representation of Proposition 6.1.
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Let g : (S2, {a, b, c, d})→ (S2, {a, b, c, d}) be the half-Dehn twist diffeo-
morphism supported in the hemisphere containing c and d which sends c
to d and d to c. (Thus g2 is the Dehn twist about the curve labeled e in
Figure 16.) Choosing a base point near a, the induced automorphism on
π1(S

2 \ {a, b, c, d}) is given by

g∗(a) = a, g∗(b) = b, g∗(c) = d, g∗(d) = d−1cd.

Then ψ(γ, θ)(g∗(b)) = eγki and ψ(γ, θ)(g∗(c)) = e(θ−γ)ki, i.e.,

g∗ψ(γ, θ) = (γ, θ − γ).

In other words, g induces the linear map on the pillowcase:

(28) g∗
(
γ
θ

)
= Ag

(
γ
θ

)
, Ag =

(
1 0
−1 1

)
.

Let h : (S2, {a, b, c, d})→ (S2, {a, b, c, d}) be the diffeomorphism which
fixes (a neighborhood of) a, and cyclically permutes b, c, d. This can be
chosen to induce the automorphism π1(S

2 \ {a, b, c, d}) is given by

h∗(a) = a, h∗(b) = c−1, h∗(c) = d, h∗(d) = (cd)−1b−1(cd).

Then ψ(γ, θ)(h∗(b)) = −eθki = e(θ+π)ki and ψ(γ, θ)(g∗(c)) = e(θ−γ)ki, i.e., h
induces the affine map on the pillowcase:

(29) h∗
(
γ
θ

)
= Ah

(
γ
θ

)
+ v, Ah =

(
0 1
−1 1

)
, v =

(
π
0

)
.

The matrices

S = AgA
4
h =

(
0 −1
1 0

)
and T = AhA

−1
g =

(
1 1
0 1

)
are the standard generators of the modular group. It follows that given any
relatively prime pair of integers p, q, there exists a word w = w(g, h) in g and
h so that the resulting diffeomorphism w : (S2, {a, b, c, d})→ (S2, {a, b, c, d})
satisfies

(30) w∗
(
γ
θ

)
= A

(
γ
θ

)
+ u, A =

(
p q
r s

)
where ps− qr = 1 and u is a vector whose entries are integer multiples of π.
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The diffeomorphism w induces a level preserving diffeomorphism

w : (S2 × I, {a, b, c, d} × I)→ (S2 × I, {a, b, c, d} × I).

This diffeomorphism takes perturbed flat connections with respect to the
perturbation curve E of Theorem 9.1 to perturbed flat connections with
respect to w(E).

To simplify notation, write φ(x) = 2f(x+ π) + u1 where f ∈ X is the
function used in Theorem 9.1, and u1 is the first component of the vector u.
Note that φ ∈ X if and only if f ∈ X . Then the self-homeomorphism of the
pillowcase given by perturbing along w(E) is the conjugate (w∗)−1 ◦ cδ ◦ w∗,
which we compute

(
(w∗)−1 ◦ cδ ◦ w∗

)(γ
θ

)
= (w∗)−1 ◦ cδ

(
A

(
γ
θ

)
+ u

)
= (w∗)−1

(
A

(
γ
θ

)
+ u +

(
0

φ(pγ + qθ + u1)

))
= A−1

(
A

(
γ
θ

)
+ u + φ(pγ + qθ + u1)

(
0
1

))
−A−1u

=

(
γ
θ

)
+ φ(pγ + qθ + u1)

(
−q
p

)
.

If u1 is an even multiple of π, then we are done, since these are pillowcase
coordinates. If u1 is an odd multiple of π, replace φ(x) by φ(x+ π); this
induces a bijection of X .

To see that cp,q,φ is Hamiltonian isotopic to the identity, first note that if
φ ∈ X , then so is tφ for all t ∈ R. Hence cp,q,tφ, t ∈ [0, 1] is an isotopy from
the identity to cp,q,φ. Consider φp,q,tφ as a flow on R2. Then the tangent field
to this flow at (γ, θ) equals X = (−qφ(pγ + qθ), pφ(pγ + qθ)).

Define the smooth function g : R→ R by g(0) = 0 and g′(x) = −1
2φ(x).

Then g is even and 2π periodic since φ is odd and 2π periodic. The func-
tion F (γ, θ) = g(pγ + qθ) descends to the pillowcase P since g is even and
periodic.

An elementary computation shows that with ω = dγ ∧ dθ,

ω(X,−)(γ,θ) = dF(γ,θ)
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so that X is the Hamiltonian vector field associated to F , and hence cp,q,φ
is Hamiltonian isotopic to the identity. �

10. Holonomy perturbations to smooth the traceless
character variety of a 2-tangle decomposition

of a torus knot

For the rest of this article we provide a detailed study of the traceless char-
acter varieties associated to a certain 2-tangle decomposition of a torus knot
Tp,q. In the present section we establish that (S3, Tp,q) admits a 2-tangle de-
composition as in Equation 17 which verifies Conjecture 6.3 except possibly
for the absence of fishtails.

In the next section we identify L1 : Rπ(Y, T )→ P for a number of Tp,q
and verify that in all our examples, L1 is indeed a restricted immersed 1-
manifold, and that H\(Y, T ) is either isomorphic to I\(S3, Tp,q), or, in exam-
ples where the calculation of I\(S3, Tp,q) is unknown, that the calculation of
H\(Y, T ) combined with Conjecture 6.5 is consistent with the conjecture [22]

that the ranks of I\(S3,K) and knot Heegaard-Floer homology ĤFK(K)
are equal.

We recall the description of the traceless SU(2) character variety of a
tangle associated to the (p, q)-torus knot from [15, 18]. Figure 18 illustrates a
3-component link HA ∪HB ∪K in S3, with the component K intersecting a
3-ball D in a trivial 2-tangle U . Integers r, s satisfying pr + qs = 1 are fixed
throughout.

Performing − s
p Dehn surgery on the component labeled HA and q

r Dehn

surgery on the component labeled HB yields S3 again, and the knot labeled
K becomes the (p, q) torus knot. In this S3, let Y denote the complement
of the illustrated 3-ball D, and T the part of the (p, q) torus knot contained
in Y . Precisely, Y is obtained from S3 \D by performing − s

p and q
r surgery

on HA and HB, and T ⊂ Y denotes that part of K which lies in Y . Note
that Y is itself diffeomorphic to a 3-ball.

Let PA and PB in Y be the cores of the Dehn surgery solid tori which
are added after neighborhoods of HA and HB are removed. We will perform
holonomy perturbations along these curves in Y .

Generators a, b, c, d, x, y of the fundamental group

π1(Y \ (T ∪ PA ∪ PB)) = π1(S
3 \ (D ∪K ∪HA ∪HB))

are illustrated.
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y

d

ab

c

x

HB

HA

K

Figure 18: A 2-tangle decomposition of the (p, q) torus knot.

One computes (see [18]) that

π1(Y \ (T ∪ PA ∪ PB)) = 〈x, y, a, b, c | c = x̄ax, adā = yxbx̄ȳ,

[y, xb] = 1, [x, dāy] = 1〉.

The curves

A1 = (xb)qyr and A2 = (xb)−pys

form a longitude-meridian pair for the component PA. The curves

B1 = (dāy)−sxp and B2 = (dāy)rxq

form a (commuting) longitude-meridian pair for the component PB. In par-
ticular, π1(Y \ T ) is obtained from π1(Y \ (T ∪ PA ∪ PB)) by killing A2 and
B2.

Working with the presentation of π1(Y \ (T ∪ PA ∪ PB)) given above,
together with the fact that pr + qs = 1 yields:

As1 = (xb)qsyrs = (xb)(xb)−pryrs = xb((xb−pys)r = xbAr2
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and so

xb = As1A
−r
2 .

Similar calculations give

y = Aq2A
p
1, x = Bs

2B
r
1, dāy = B−q1 Bp

2 ,

from which one obtains

(31)
a = yxbx̄(dāy)−1 = As+p1 Aq−r2 Bq−r

1 B
−(s+p)
2

and b = x̄xb = B−r1 B−s2 As1A
−r
2 .

Since c = x̄ax and d = āyxbx̄ȳa, it follows that the four elements A1,
A2, B1, B2 generate π1(Y \ (T ∪ PA ∪ PB)). A simple extension of the ob-
servation in [18] that π1(Y \ T ) is free on A1 and B1 (they are labeled A
and B in that article) shows that π1(Y \ (T ∪ PA ∪ PB)) is the free product
of the free abelian group generated by A1, A2 and the free abelian group
generated by B1, B2.

We use the perturbation functions εA sinx on PA and εB sinx on PB
for some (ε1, ε2) ∈ R2. Recall from Equation (23) that with this choice,
perturbed-flat connections modulo gauge are identified with representations
ρ : π1(Y \ (T ∪ PA ∪ PB))→ SU(2) which satisfy the perturbation conditions

(32) ρ(A2) = eεA sinuQA if ρ(A1) = euQA for some QA ∈ C(i)

ρ(B2) = eεB sin v QB if ρ(B1) = evQB for some QB ∈ C(i).

If (εA, εB) = (0, 0), then perturbed-flat connections send A2 and B2 to
1 ∈ SU(2), hence by the Seifert-Van Kampen theorem correspond exactly
to SU(2) representations of π1(Y \ T ).

As above, we define the perturbed traceless flat moduli space

RεA,εB(Y, T )

= {ρ : π1(Y \ (T ∪ PA ∪ PB))→ SU(2) | ρ traceless, satisfying (32)}/conj

Theorem 10.1. There exists a neighborhood O ⊂ R2 of (0, 0) such that
for any (εA, εB) ∈ O, the space RεA,εB(Y, T ) is a smooth compact 1-manifold
with two boundary points and such that the restriction map to the pillow-
case RεA,εB(Y, T )→ P satisfies the conditions to be a restricted immersed
1-manifold except possibly the absence of fishtails.
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In extensive calculations we have not found any small non-zero εA, εB
for which RεA,εB(Y, T )→ P is not a restricted immersed 1-manifold.

The strategy to prove Theorem 10.1 is standard: we form a parameter-
ized moduli space, prove it is a smooth manifold, and apply Sard’s theorem
to the projection to R2. We start with a gauge fixing theorem which identifies
RεA,εB(Y, T ) with a subset of the box [0, π]× [0, π]× [−1, 1].

A representation ρ : π1(Y \ (T ∪ PA ∪ PB))→ SU(2) satisfying the per-
turbation conditions with respect to (εA, εB) is traceless if and only if ρ(a)
and ρ(b) are traceless. From Equation (31) this holds if and only if

Re(ρ(As+p1 Aq−r2 Bq−r
1 B

−(s+p)
2 )) = 0 and Re(ρ(B−r1 B−s2 As1A

−r
2 )) = 0.

Assuming that ρ(A1) = euQA and ρ(B1) = evQB for some pair of purely imag-
inary unit quaternions QA, QB ∈ C(i), these can be expressed equivalently
as

Re
(
e((s+p)u+(q−r)εA sinu)QAe((q−r)v−(s+p)εB sin v)QB

)
= 0

and

Re
(
e(−rv−sεB sin v)QBe(su−rεA sinu)QA)

)
= 0

or equivalently (see [18, Proposition 2.1]) as Ψ(εA, εB, u, v, τ) = (0, 0), where
Ψ = (Ψ1,Ψ2) is defined by

Ψ1(εA, εB, u, v, τ)(33)

= cos((q − r)v − (s+ p)εB sin v) cos((s+ p)u+ (q − r)εA sinu)

− sin((q − r)v − (s+ p)εB sin v) sin((s+ p)u+ (q − r)εA sinu)τ

and

Ψ2(εA, εB, u, v, τ) = cos(−rv − sεB sin v) cos(su− rεA sinu)(34)

− sin(−rv − sεB sin v) sin(su− rεA sinu)τ,

with τ the cosine of the angle between QA and QB.
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Theorem 10.2. Fix (εA, εB) ∈ R2 and let

WεA,εB = {(u, v, τ) ∈ [0, π]× [0, π]× [−1, 1] | Ψ(εA, εB, u, v, τ) = 0}.

Then the assignment

A1 7→ eui, A2 7→ eεA sinui, B1 7→ eve
arccos τkiB2 7→ eεB sin vearccos τki

defines a surjection

f : WεA,εB → RεA,εB(Y, T )

whose fiber over f(u, v, τ) is the single point {(u, v, τ)} unless sinu = 0 or
sin v = 0, in which case the fiber is the arc {(u, v)} × [−1, 1]. The map f
sends the points of WεA,εB interior to the box to non-abelian perturbed rep-
resentations and boundary points to perturbed abelian representations.

The proof of this lemma is identical to [18, Theorem 11.1] (see also
[15, Theorem 4.2]). The essential point is that if sinu 6= 0 6= sin v then any
representation can be uniquely conjugated so that A1 is sent to eui and B1 is
sent to eve

arccos τki for τ the cosine of the angle between this representation’s
QA and QB. The perturbation condition then determines where A2 and B2

are sent. We leave the details to the reader.
A point (u, v, τ) ∈WεA,εB which lies on the boundary of the box cor-

responds to a representation which sends A1 and A2 to the center ±1 if
sinu = 0, sends B1 and B2 to ±1 if sin v = 0, and sends A1, A2, B1, B2 to
commuting elements if |τ | = 1. It follows that points in WεA,εB meeting the
boundary of the cube correspond exactly to abelian representations (i.e., rep-
resentations with abelian image). There are two conjugacy classes of (un-
perturbed) traceless abelian representations. This property is stable with
respect to small perturbations, as shown in Proposition 8.3.

The result needed to prove complete the proof of Theorem 10.1 is the
following. It says that the map Ψ of Equations (33), (34) is submersive near
non-abelian points of the unperturbed traceless character variety R(Y, T ).
Hence for generic small (εA, εB), the non-abelian part of RεA,εB(Y, T ) is
smooth.

Lemma 10.3. Suppose that u, v, τ are chosen so that Ψ(0, 0, u, v, τ) = 0,
with sinu 6= 0, sin v 6= 0, and |τ | 6= 1. Then dΨ(0,0,u,v,τ) : R5 → R2 is surjec-
tive, and hence Ψ is a submersion near (0, 0, u, v, τ).

Proof. The proof is essentially a lengthy second-year calculus computation,
and we recommend the reader skip it.
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Consider first Ψ2. To clarify, we adopt the following notation

A = cos(−rv), B = sin(−rv), C = cos(su), D = sin(su).

From Equation (34), the partial derivatives of Ψ2 at the point (0, 0, u, v, τ)
are given by

∂Ψ2

∂εA

∣∣∣∣
(0,0,u,v,τ)

= A(−D)(−r) sinu−BC(−r)τ sinu = r(AD +BCτ) sinu

∂Ψ2

∂εB

∣∣∣∣
(0,0,u,v,τ)

= −B(−s sin v)C −A(−s sin v)Dτ = s(BC +ADτ) sin v

∂Ψ2

∂u

∣∣∣∣
(0,0,u,v,τ)

= A(−D)s−BCsτ = −s(AD +BCτ)

∂Ψ2

∂v

∣∣∣∣
(0,0,u,v,τ)

= −B(−r)C −A(−r)Dτ = r(BC +ADτ)

∂Ψ2

∂τ

∣∣∣∣
(0,0,u,v,τ)

= −BD.

Moreover, the equation Ψ2(0, 0, u, v, τ) = 0 is equivalent to

AC −BDτ = 0.

Similarly, adopting the notation

E = cos((q − r)v), F = sin((q − r)v),

G = cos((s+ p)u), H = sin((s+ p)u),

we obtain

∂Ψ1

∂εA

∣∣∣∣
(0,0,u,v,τ)

= −(q − r)(EH + FGτ) sinu

∂Ψ1

∂εB

∣∣∣∣
(0,0,u,v,τ)

= (s+ p)(FG+ EHτ) sin v

∂Ψ1

∂u

∣∣∣∣
(0,0,u,v,τ)

= −(s+ p)(EH + FGτ)

∂Ψ1

∂v

∣∣∣∣
(0,0,u,v,τ)

= −(q − r)(FG+ EHτ)

∂Ψ1

∂τ

∣∣∣∣
(0,0,u,v,τ)

= −FH.
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Moreover, the equation Ψ1(0, 0, u, v, τ) = 0 is equivalent to

EG− FHτ = 0.

Suppose that Ψ were not a submersion at (0, 0, u, v, τ). Then dΨ1 and
dΨ2 are linearly dependent.

If dΨ2 = 0, then AD +BCτ = 0, BC +ADτ = 0 and BD = 0. There-
fore AD = ADτ2. Since |τ | 6= 1, this implies AD = 0 and BC = 0. If A =
cos(−rv) = 0, then B = sin(−rv) 6= 0, so cos(su) = C = 0 and hence
sin(su) = D 6= 0, contradicting BD = 0. But if A 6= 0, sin(su) = D = 0 and
so cos(su) = C 6= 0 and hence B = 0. But this contradicts AC −BDτ = 0.
Therefore, dΨ2 6= 0. Similarly, dΨ1 6= 0.

Since neither dΨ1 nor dΨ2 is zero, there there exists a non-zero α ∈ R
so that αdΨ1 = dΨ2. Comparing the first columns, (i.e., ∂

∂εA
) and using the

fact that sinu 6= 0 one sees

AD +BCτ = α

(
r − q
r

)
(EH + FGτ).

Similarly, comparing third columns gives

AD +BCτ = α

(
s+ p

s

)
(EH + FGτ).

Since (r−q)s
(s+p)r = 1− 1

r(s+p) 6= 1, and α 6= 0, this implies that EH + FGτ = 0,
and hence also AD +BCτ = 0. Comparing the second and fourth columns
and applying the same argument yields FG+ EHτ = 0 and AD +BCτ =
0.

Then FG = −EHτ = FGτ2. Since |τ | 6= 1, FG = 0 = EH and, simi-
larly, AD = BC = 0. Since neither dΨ1 nor dΨ2 is zero, BD 6= 0 and FH 6=
0. Thus A = C = 0 and G = E = 0.

Recalling their definitions, this says that

(35) cos(−rv) = cos(su) = cos((q − r)v) = cos((s+ p)u) = 0.

Hence there exist odd integers k, ` so that −rv = k π2 and (q − r)v = `π2 .
Thus (q − r)k = −r`. Since r and q − r are relatively prime, there exist
odd integers m,n so that k = rm and ` = (q − r)n. Thus v = k

−r
π
2 = −mπ

2 .
Similarly, u is an odd multiple of π2 . Equation (35) then implies that r, s, q −
r, s+ p are all odd, but then p, q are both even, contradicts the fact that p
and q are relatively prime. Thus the assumption that Ψ is not a submersion
leads to a contradiction.
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Hence Ψ is a submersion at (0, 0, u, v, τ), and so also near (0, 0, u, v, τ).
�

Proof of Theorem 10.1. Recall that W0,0 denotes the preimage in the box
[0, π]× [0, π]× [−1, 1] of 0 by the map (u, v, τ) 7→ Ψ(0, 0, u, v, τ). Let V be
the intersection of a small open neighborhood of W0,0 with the interior of
the box.

Lemma 10.3 implies that (after perhaps choosing a smaller V ), there is
a neighborhood O of 0 in R2 so that Ψ : R2 × [0, π]× [0, π]× [−1, 1]→ R2

restricts to a submersion on O × V . The parameterized moduli space P :=
O × V ∩Ψ−1(0) is a smooth submanifold ofO × V . By Sard’s theorem, there
exist regular values (εA, εB) of the composite P ⊂ O × V πO−−→ O arbitrarlily
close to 0. Its preimage in the interior of the box is identified with the non-
abelian part of RεA,εB(Y, T ) by Theorem 10.2. The structure near the two
abelian representations was identified in Theorem 8.4. �

11. Calculations for torus knots

In this section we carry out calculations of C\(L0, L1) for some torus knots,
including examples with non-trivial differentials. In what follows, we con-
tinue to use the description of the torus knot K = Tp,q illustrated in Fig-
ure 18, where we perform − s

p Dehn surgery on the component labeled HA

and q
r surgery on the component labeled HB. Figure 18 illustrates a decom-

position

(S3, Tp.q) = (Y, T ) ∪(S2,{a,b,c,d}) (D,U).

Recall that this decomposition depends on the choice of integers r, s satisfy-
ing pr + qs = 1. Different choices of r, s lead to different pairs R(Y, T ) and
restriction maps L1.

The identification of the spaces Rπ(Y, T ) and their image in the pillow-
case was done using a computer algebra package.

Recall that Kronheimer-Mrowka prove ([23, 24], also Lim [27]) that the
rank of the reduced singular instanton homology I\(S3,K) is bounded below
by the sum of the absolute value of coeffcients of the Alexander polynomial,
which we denote by |∆K |.

It is conjectured that the reduced instanton homology of a torus knot K
has rank equal to |∆K |. This is a special case of a more sweeping conjecture
which relates singular instanton homology of a knot and its Heegaard-Floer
homology.

If Conjecture 6.5 is true, then the rank of H\(Y, T, π) must be at least as
large as |∆K | for a tangle decomposition of a torus knot K, and if in addition
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the conjecture of the previous paragraph is true, then rank(H\(Y, T, π)) =
|∆K |. The reader can verify that in all the examples given below, the rank
of H\(Y, T, π) equals |∆K |.

In the following calculations, we take L0 = Lε,00 for a small ε > 0. We
calculate Maslov indices relative to the slope 1 line field `1, making use of
Equation (16) to simplify grading calculations. We make frequent use of the
calculus described in Section 5.

11.1. The (5, 11) torus knot

Consider the tangle associated to the (5, 11) torus knot, corresponding to the
choice (p, q, r, s) = (5, 11, 9,−4). The unperturbed traceless character variety
R(Y, T ) is a restricted immersed 1-manifold.

In fact, R(Y, T ) is a union of an arc R0 and four circles R1, R2, R3, R4.
The arc R0 embeds linearly with slope 2. Two of the circles, say R1, R2 are
vertically monotonic with vertical degree 2. The remaining circles R3, R4

each map precisely in the way illustrated in the example of Figures 1, 6, 5,
and 8.

Since the signature of the (5, 11) torus knot is −24 ≡ 0 mod 4, R0 con-
tributes (1, 0, 0, 0) to H\(Y, T ) by our absolute grading convention. Proposi-
tion 5.3 implies that the two vertically monotonic circles R1, R2 contribute
(1, 1, 1, 1) each to H\(Y, T ).

The contributions of R3 and R4 to C(L0, L1) and H\(Y, T ) were com-
puted in detail in Section 3.9; it was shown that each contributes a (2, 2, 2, 2)
summand to C(L0, L1), each has two bigons contributing to the differential,
and each contributes (1, 1, 1, 1) to the homology H\(Y, T ). Thus the differ-
ential ∂ : C(L0, L1)→ C(L0, L1) has rank 8 and

H\(Y, T ) = (1, 0, 0, 0)⊕4
i=1 (1, 1, 1, 1) = (5, 4, 4, 4).

In particular, the rank of H\(Y, T ) is 17, which equals |∆K |. The calcula-
tion of I\(S3, T5,11) is unknown, but Conjecture 6.5 would imply that the
Kronheimer-Mrowka lower bound is attained for T5,11.

11.2. The (3,7) torus knot

Taking the decomposition of the (3, 7) torus knot corresponding to the choice
(p, q, r, s) = (3, 7, 5,−2), it is shown in [15] that the space R(Y, T ) is the dis-
joint union of an arc R0 (consisting of binary dihedral representations) and
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two circles R1, R2. In particular, L1 : R(Y, T )→ P is a restricted immersed
1-manifold.

The restriction L1|R0
: R0 → P is the linear embedding of slope 2 ([15,

Theorem 4.1]), given by [0, π] 3 t 7→ (t, 2t) ∈ P . The restrictions of L1 to R1

and R2 have the same image, and each is a vertically monotonic circle of
vertical degree 2.

The line segment of slope 2 has a unique intersection point with L0,
namely the point rε+. The signature of T3,7 is −8 ≡ 0 mod 4 and so R0

contributes (1, 0, 0, 0) to H\(Y, T ).
Since R1 and R2 are vertically monotonic with vertical degree 2, Propo-

sition 5.3 implies that R1 and R2 each contribute a summand (1, 1, 1, 1) to
C(L0, L1) and the differential is zero in these summands. Hence

H\(Y, T ) = (1, 0, 0, 0)⊕2
i=1 (1, 1, 1, 1) = (3, 2, 2, 2).

This agrees with the calculation of the reduced instanton homology of the
(3, 7) torus knot I\(S3, T3,7) (see [18]), as well as the calculation of the (Z/4
graded) reduced Khovanov homology Khred(Tm3,7).

11.3. The (5,7) torus knot

It is established in [15] that taking (p, q, r, s) = (5, 7, 3,−2), R(Y, T ) is
smooth, and has two components, an arc R0 and a circle R1. The restriction
of L1 to R0 is linear with slope 2. The restriction of L1 to the circle is a
2-1 cover onto its image which winds four times vertically around P ∗. In
particular, L1 : R1 → P is vertically monotonic with vertical degree d = 8.

The arc component R0 has a unique intersection point with L0, namely
the point rε+. The signature of the (5, 7) torus knot is −16 ≡ 0 mod 4,
and hence R0 contributes (1, 0, 0, 0) to C(L0, L1) and H\(Y, T ). Since R1

is vertically monotonic with vertical degree 8, Proposition 5.3 implies that
R1 contributes (4, 4, 4, 4) to C(L0, L1). Moreover, all differentials are zero in
this summand. Thus we conclude that all differential vanish and

H\(Y, T ) = (5, 4, 4, 4).

This agrees with the calculation of the reduced instanton homology
I\(S3, T5,7). Moreover, the reduced Khovanov homology Khred(Tm5,7) equals
(8, 6, 7, 8), which has stricly larger rank, corresponding to the fact that there
are non-trivial higher differentials in the Kronheimer-Mrokwa spectral se-
quence from Khovanov to instanton homology [24].
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11.4. The (5,12) torus knot

Taking (p, q, r, s) = (5, 12, 5,−2), it is shown in [15] that R(Y, T )→ P is a
restricted immersed 1-manifold composed of one arc R0 mapping with slope
6, and two vertically monotonic circles R1, R2 each of vertical degree 6.

Proposition 5.3 shows that the components R1 and R2 each contribute
(3, 3, 3, 3) to C(L0, L1) and H\(Y, T ). For the component R0, we calcu-
late in exactly the same manner as was done for 2-bridge knots. There
are 5 representations, rε+, x

±
1 , y

±
1 , and gr(rε+, x

+
1 ) = 2, gr(x+1 , x

+
2 ) = 2, and

gr(x+i , x
−
i ) = 1. The signature of K5,12 is −28, and hence gr(rε+) = 0 mod 4.

Since R0 maps linearly with slope 6 to the pillowcase, there can be no bigons,
and thus all differentials are zero. Therefore, the component R0 contributes
(2, 1, 1, 1) to H\(Y, T ), generated by {rε+, x+2 }, {x

−
1 }, {x

+
1 }, {x

−
2 } respectively.

We conclude that

H\(Y, T ) = (2, 1, 1, 1)⊕2
i=1 (3, 3, 3, 3) = (8, 7, 7, 7).

This agrees with the calculation of I\(S3, T5,12) in [18], and is smaller than
the reduced Khovanov homology Khred(Tm5,12) = (20, 19, 19, 19).

11.5. The (5,17) torus knot

Taking (5, 17, 7,−2), it is shown in [15] that R(Y, T )→ P is a restricted
immersed 1-manifold, the union of an arc R0 mapping linearly with slope
2 and three circles R1, R2, R3 are vertically monotonic with vertical degrees
6, 6 and 8. The signature equals−40 ≡ 0 mod 4, and so the single intersection
rε+ on the arc R0 contributes (1, 0, 0, 0) to C(L0, L1) and H\(Y, T ). Propo-
sition 5.3 implies that the circles R1, R2, R3 contribute (3, 3, 3, 3), (3, 3, 3, 3)
and (4, 4, 4, 4) respectively to C(L0, L1) and H\(Y, T ). Hence

H\(Y, T ) = (11, 10, 10, 10),

which agrees with the calculation of the instanton homology I\(S3, T5,17) in
[18]. Two of the circles (the degree 6 circles) have the same image and the
degree 8 circle double covers its image.

11.6. The (3,4) torus knot

We next give an example of a tangle decomposition so that the unperturbed
traceless character variety R(Y, T ) is not smooth. After smoothing it using a
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holonomy perturbation, Rπ(Y, T ) becomes a restricted immersed 1-manifold
and one finds a non-trivial differential in the summand corresponding to the
arc component.

Take (p, q, r, s) = (3, 4, 3,−2), it was shown in [18, Proposition 11.4] that
R(Y, T ) is a singular space, obtained from 3 arcs I0 ∼= [0, π], I± ∼= [π6 ,

5π
6 ] by

identifying the endpoints of I+ and I− to I0 at π
6 and 5π

6 to form a singular
variety homeomorphic to the letter φ. The restriction map to the pillowcase
takes the arc I0 (consisting of binary dihedral representations) to the arc of
slope −2 via [0, π] 3 t 7→ (π − t,−2t) and takes each of the two arcs I± to
linear arcs of slope 4. The space R(Y, T ) and its image in the pillowcase is
illustrated in Figure 19.

θ

2π

0

0 π
γ

α

I−

I+

Figure 19: R(Y, T ) and its image in the pillowcase for the (3,4) torus knot.

Applying Theorem 10.1, we can find an arbitrarily small perturbation
so that RεA,εB(Y, T ) is smooth. A lengthy calculation (or using a computer
algebra package) reveals that RεA,0(Y, T ) is the union of an arc and a circle
for any small non-zero εA, as illustrated in Figure 20.

The image of the perturbed character variety, a restricted immersed 1-
manifold composed of one arc and one circle, is illustrated in Figure 21, along
with the image of L0. The arc component R0 intersects L0 in three points,
rε+, x

+
1 and x−1 . The signature of the (3, 4) torus knot is −6 ≡ 2 mod 4, and
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Figure 20: R(Y, T ) resolving to RεA,0(Y, T ) for the (3,4) torus knot.

so gr(rε+) = 2. The relative gradings are gr(x+1 , x
−
1 ) = 1 and gr(x−1 , r

ε
+) = 1.

Hence gr(x−1 ) = 3 and gr(x+1 ) = 0.
A bigon from x−1 to rε+ is indicated in in Figure 21. This is the only bigon

and gives the non-zero differential ∂x−1 = rε+. Thus R0 contributes (1, 0, 0, 0)
to H\(Y, T, π). The circle component R1 is vertically monotonic of vertical
degree 2 and hence contributes (1, 1, 1, 1) to C(L0, L1) and H\(Y, T ). Hence

H\(Y, T, π) = (2, 1, 1, 1),

which is isomorphic to the reduced instanton homology I\(S3, T3,4), as well
as the reduced Khovanov homology Khred(Tm3,4).

11.7. The (3,5) torus knot

Taking (p, q, r, s) = (3, 5, 2,−1), the space R(Y, T ) is again a (singular) φ
curve, made up of an arc I0 = [0, π] of traceless binary dihedral represen-
tations which maps to the bottom edge of the pillowcase with slope 0:
[0, π] 3 t 7→ (t, 0) and two arcs I± = [π6 ,

5π
6 ] whose interiors consist of non-

binary dihedral representations and which map to the pillowcase linearly
with slope 6: I± = [π6 ,

5π
6 ] 3 t 7→ (t, 6(t− π

6 )).
However, the singularities resolve differently than in the case of the

(3, 4) torus knot which was illustrated in Figure 20: the perturbed vari-
ety RεA,εB(Y, T ) is a single arc R0. The image of this arc in the pillowcase
is illustrated in Figure 22.

One can easily see a bigon from x−1 to rε+. This is the only bigon, so
that ∂x−1 = rε+ is the only non-zero differential, and gr(x−1 , r

ε
+) = 1. The

signature of the (3, 5) torus knot is −8, so that gr(rε+) = 0. One computes
gr(x−1 , x

−
2 ) = gr(x−2 , x

−
3 ) = gr(x−3 , x

−
4 ) = 2. Together with gr(x+` , x

−
` ) = 1,



i
i

“5-Hedden” — 2018/10/30 — 17:15 — page 804 — #84 i
i

i
i

i
i

804 M. Hedden, C. M. Herald, and P. Kirk

rε+

x−1

x+1 x−2

x+2

x+3

x−3

Figure 21: The image of RεA,0(Y, T ) in the pillowcase for the (3,4) torus
knot. The bigon giving a non-trivial differential is shaded.

this gives C(L0, L1) = (3, 2, 2, 2) and

H\(Y, T, π) = (2, 1, 2, 2).

Once again, this agrees as an absolutely Z/4 graded group, with I\(S3, T3,5)
(and Khred(Tm3,5)).

11.8. The (4,5) torus knot

This example is interesting in the context of instanton homology, as it was
shown by Kronheimer-Mrowka [25] that there is a non-trivial higher dif-
ferential in their spectral sequence from Khovanov homology to instanton
homology.

The description of R(Y, T ) for the (4, 5) torus knot, corresponding to the
tangle decomposition associated to (p, q, r, s) = (4, 5, 4,−3), is analyzed in
detail in [15, Section 4]. We refer the reader to that article, where it is shown
that R(Y, T ) is again a φ curve, and its restriction map to P is illustrated,
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rε+

x−1

x+1

x+2

x−2

x−3

x+3 x+4

x−4

Figure 22: The image of RεA,εB(Y, T ) and L0 in the pillowcase for the (3,5)
torus knot. The bigon giving a non-trivial differential is shaded.

along with its nine intersection points with L0 generating C(L0, L1) and the
reduced instanton complex.

A computer-aided calculation shows that RεA,0(Y, T ) is the union of an
arc R0 and a circle R1 and that the restriction to the pillowcase is a restricted
immersed 1-manifold. The circle R1 is vertically monotonic of vertical degree
2. Hence R1 contributes (1, 1, 1, 1) to C(L0, L1) and H\(Y, T ).

The image of the arc R0 ⊂ RεA,0(Y, T ) in the pillowcase is illustrated in
Figure 23. There is only one bigon and, in contrast to the examples of the
(3, 5) and (4, 5) torus knots given above, the non-trivial differential does not
involve the canonical generator rε+. The signature of the (4, 5) torus knot is
−8, so that gr(rε+) = 0.

One computes that R0 contributes (2, 1, 1, 1) to C(L0, L1). This uses
the observation that R0 has two slope 1 tangencies. The differential takes
a generator in grading 1 to a generator in grading 0. Hence R0 contributes



i
i

“5-Hedden” — 2018/10/30 — 17:15 — page 806 — #86 i
i

i
i

i
i

806 M. Hedden, C. M. Herald, and P. Kirk

Figure 23: The image of the immersed arc R0 ⊂ RεA,εB(Y, T ) and L0 in the
pillowcase for the (4,5) torus knot. The bigon giving a non-trivial differential
is shaded.

(1, 0, 1, 1) to H\(Y, T, π), so that

H\(Y, T, π) = (2, 1, 2, 2).

Once again, this is isomorphic as a Z/4 graded group to I\(S3, T4,5), com-
puted in [25].

It is worth contrasting this calculation with the one Kronheimer-Mrowka
give of the instanton homology I\(S3,K). They start with the count of the
nine generators and their relative grading to get the relatively graded chain
complex with ranks (up to cyclic reordering) (3, 2, 2, 2). They then com-
pare this to Khred(T4,5) = (2, 1, 3, 3) to conclude, from the incompatibility
of gradings, that there must be a non-trivial differential. A further non-
trivial argument identifies this differential. By contrast, the differential is
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manifest in our pictures. Of course, Conjecture 6.5 may be false, and so one
should be cautious in drawing conclusions.

11.9. The (4,7) torus knot

We take the tangle decomposition of the (4, 7) torus knot determined by
the choice (p, q, r, s) = (4, 7, 2,−1). The singular variety R(Y, T ) and its im-
age in the pillowcase is illustrated in [15, Figure 9]. The smoothed variety
RεA,εB(Y, T ) is the union of an arc R0 and two circles R1, R2. The map to
the pillowcase is a restricted immersed 1-manifold.

Figure 24: R(Y, T ) and its smoothing RεA,εB(Y, T ) = R0 ∪R1 ∪R2 for the
(4,7) torus knot.

The two circles each map to vertically monotonic circles of vertical degree
2; each contributes (1, 1, 1, 1) to H\(Y, T, π). The restriction map of the arc
R0 to the pillowcase is illustrated in Figure 25. There are seven intersection
points, and two bigons are shaded. Notice also the four points where the
tangent line of L1(R0) is tangent to the slope 1 line field `1. The (4, 7)
torus knot has signature −14 ≡ 2 mod 4, so that gr(rε+) = 2. From this
one computes that the contribution of R0 to C(L0, L1) is (2, 1, 2, 2) and to
H\(Y, T, π) is (1, 0, 1, 1). Therefore,

H\(Y, T, π) = (3, 2, 3, 3).

In particular, the rank is 11, equal to the sum of the absolute value of the
coefficients of the Alexander polynomial of T4,7.

The calculation of I\(S3, T4,7) is unknown to us. Notice that C(L0, L1) =
(4, 3, 4, 4) (with one non-trivial differential from grading 1 to 0 and the other
from grading 3 to 2). This is consistent with the relative gradings computed
for the instanton chain complex in [18]. In that article we computed grad-
ings using a spectral flow splitting formula approach (suggested in [24]),
based, not on a tangle decomposition as in the current article, but rather
on the decomposition of the form (S3,K) = (S3 \N(K), φ) ∪T 2 (N(K),K).
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Figure 25: The image of the immersed arc R0 ⊂ RεA,εB(Y, T ) in the pillow-
case for the (4, 7) torus knot. The two bigons are shaded.

This yielded CI\(S3, T4,7) = (1, 0, 0, 0)a ⊕ (4, 4, 3, 3)b, where the subscripts
denote a possible cyclic reordering. We conjecture in that article that a =
σ(K) and b = 3, which implies that CI\(S3, T4,7) = (0, 0, 1, 0)⊕ (4, 3, 3, 4) =
(4, 3, 4, 4). Thus, although we do not know the instanton homology, we do
see that the generators of the instanton chain complex occur in the same
gradings as for C(L0, L1).

11.10. Changing ε to cancel bigons

Consider the effect of varying ε in the definition for Lε,00 : S1 → P ∗ in Defi-
nition 13 and illustrated in Figure 7.

For very small ε > 0, there are 2n+ 1 intersection points of L1(R(Y, T ))
and Lε0(R(D,U)), where n corresponds to the number of intersections of
L1(R(Y, T )) with the diagonal arc ∆, or equivalently (see [18]) n equals the
number of conjugacy classes of non-abelian traceless representations of the
corresponding knot complement. This is doubled to account for the fact that
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Lε,00 is a figure 8 close to ∆, and the extra intersection point corresponds
to the perturbation of the unique abelian traceless representation which is
mapped to the corner. An illustration of this is given in Figure 15, where
one sees 10 = 2 · 5 points, labeled x±i , corresponding to the five intersection
points with the interior of ∆, and one extra point rε+ which converges to the
bottom left corner as ε→ 0.

Increasing the parameter ε in the holonomy perturbation function makes
the figure 8 Lε,00 wider (see [18]). In some circumstances, the regular homo-
topy of Lε,00 obtained by increasing ε can be used to cancel pairs of intersec-
tion points, and hence reduce the rank C(L0, L1).

For example, for the (3, 5) torus knot, a bigon is illustrated in Figure 22.
As ε increases, the pair of intersection points rε+ and x−1 get closer to-
gether and eventually cancel. Explicitly, when ε = 0.2, εA = 0.1, and εB = 0,
L1(RεA,0(Y, T )) intersects L0 in 7 points. This is the minimum possible by
the lower bound given by the sum of absolute value of the coefficients of the
Alexander polynomial t8 − t7 + t5 − t4 + t3 − t+ 1 of the (3, 5) torus knot,
since, by Proposition 6.4, the rank of C(Lε,g0 , L1) cannot be smaller than the
rank of the instanton homology.

The same method works for the tangle decomposition of the (3, 4) torus
knot with R(Y, T ) illustrated in Figure 19; increasing ε to 0.8 removes the
two generators spanned by a bigon. This shows that a suitably perturbed
Chern-Simons function on the configuration space of the (3, 4) torus knot is
perfect.

We summarize:

Proposition 11.1. There exists a holonomy perturbations CS + h of the
Chern-Simons function on the orbit space of singular connections on
(S3, T3,4) and on (S3, T3,5) so that CS + h is perfect, and hence all dif-
ferentials in the singular instanton complex vanish.

In general, simply increasing ε does not eliminate every pair of generators
spanned by a bigon. For example, in the 2-tangle decomposition of the (4, 5)
torus knot, increasing ε increases the number of intersection points of Lε0
with L1. For the (4, 7) torus knot, one pair (rε+ and x−3 in Figure 25) can be
eliminated by increasing ε but the second pair (x+2 and x−1 ) cannot.

Theorem 4.1 implies that H\(L1) = HF (Lε,g0 , L1) is unchanged by a ho-
motopy of Lε,g0 , and, in particular, bigons can be used as guides to regularly
homotop away pairs of intersection points. For example, in the case of the
(4, 7) torus knot, one can easily find a curve L′0 homotopic to Lε,g0 so that all
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differentials in the resulting complex are zero. It is not clear whether such
an L′0 can can be found only using holonomy pertubations.

12. Loose ends

Several problems remain to be settled before our approach can be considered
as producing a functioning invariant of knots. Conjectures 6.3 and 6.5 need
to be further investigated.

An important first problem is to determine the extent to which
H\(Y, T, π) depends on the perturbation π. Given two perturbations π, π′

for which Rπ(Y, T )→ P and Rπ′(Y, T )→ P are both restricted immersed
1-manifolds, they are not necessarily related by a regular homotopy, but
rather by a Legendrian cobordism [16]. For example, in the calculations
with torus knots described in Section 11, we used the perturbation cor-
responding to εA > 0, εB = 0 with εA small to smooth R(Y, T ). Typically,
using εA < 0, εB = 0 resolves the normal crossing singularities along the arc
of binary dihedrals in the opposite way. For these examples, the resulting
H\(Y, T, π) is unchanged by reversing the sign of εA. But in general, Legen-
drian cobordisms need not preserve Lagrangian-Floer homology.

A closely related question concerns the existence of fishtails, which ob-
struct ∂2 = 0. We would like to know that there are no fishtails for small
perturbations π.

A third question concerns the relationship of H\(Y, T, π) to reduced Kho-
vanov homology, a question already solved for Heegaard-Floer theory in [29]
and for singular instanton homology in [24]. In forthcoming work we explore
this question, extending the definition of H\(Y, T ) to include links, and we
have established a skein exact triangle for H\(Y, T, π). We expect this to
lead to a spectral sequence from Khovanov homology to H\(Y, T, π) and to
an approach to prove Conjecture 6.3.

A fourth question concerns the promoting of the constructions of this
article to n-tangle decompositions of knots and links. Some related work in-
cludes [20], which studies decompositions of a knot into two trivial n-tangles.
The symplectic variety corresponding to the pillowcase in this setting is no
longer 2-dimensional, making it much more difficult to understand and com-
pute with.

In a different direction, the rich collections of isotopies of the pillow-
case described in Theorems 9.1 and 9.2 are induced by holonomy perturba-
tions, which also induce analytically appropriate perturbations of the Chern-
Simons functional for the construction of instanton homology. These should
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prove useful in isotoping Lε0 to reduce the number of generators of the in-
stanton chain complex.

Two developments have occurred since this article was completed. First,
Poudel and Saveliev [30] have confirmed the conjecture of [18, Section 12.6]
that the distinguished point rε+∈Rπ(S3,K) identified in Sections 5.3 and 6.2,
when considered as a generator the instanton chain complex CI\(S3,K),
has absolute grading equal to the signature of the knot K modulo 4. Hence
the two ways of determining an absolute Z/4 grading of generators of the
pillowcase complex which lie on the same path component of Rπ(Y, T ) agree.

Second, the second and third author have proved [19] that, for any 2-
tangle T in a homology ball Y , there exist arbitrarily small perturbations
π so that Rπ(Y, T ) is a smooth 1-manifold with two boundary points, and
the restriction L1 : Rπ(Y, T )→ R(S2, {a, b, c, d}) is an immersion to the pil-
lowcase satisfying all the conditions to be a restricted immersed 1 manifold,
except possibly that it be unobstructed, in the sense of Definition 2.1. Hence
Conjecture 6.3 is reduced to the problem of proving that L1 is unobstructed
for arbitrarily small π.
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