
i
i

“4-Lee” — 2018/10/19 — 0:43 — page 701 — #1 i
i

i
i

i
i

journal of
symplectic geometry
Volume 16, Number 3, 701–719, 2018

Folded symplectic toric four-manifolds

Christopher R. Lee

We show that two orientable, four-dimensional folded symplectic
toric manifolds are isomorphic provided that their orbit spaces have
trivial degree-two integral cohomology and there exists a diffeomor-
phism of the orbit spaces (as manifolds with corners) preserving
orbital moment maps.

1. Introduction

The classification of compact, connected symplectic toric manifolds by their
moment images was completed by Delzant in 1988 [4]. Since then, a number
of extensions of Delzant’s Theorem have been proved. Notably, a classifica-
tion of compact, symplectic toric orbifolds was given by Lerman and Tolman
in [8] and, more recently, Karshon and Lerman classified noncompact sym-
plectic toric manifolds ([6]). Generally speaking, classification results of this
kind rely on existence and uniqueness results: for each classifying gadget one
must show there exists a corresponding class of manifolds and that, up to
some topological restriction, this class contains only one isomorphism type.
This paper deals with a different type of extension of Delzant’s results. In-
stead of changing the general assumptions about the manifold, we instead
focus on properties of the differential form. Namely, we consider folded sym-
plectic forms.

A folded symplectic form is, colloquially, a closed two-form that is sym-
plectic away from a hypersurface, Z, in a 2n-dimensional manifold,M , whose
degeneracies are reasonably well-controlled on Z. Here is the precise defini-
tion.

Definition 1.1. Let ω be a two-form on M2n such that the top exte-
rior power, ωn, is transverse to the zero section of the orientation bundle∧n(T ∗M). The zero locus, Z := (ωn)−1(0), is then a codimension one sub-
manifold of M . Let i : Z ↪→M be the inclusion. If i∗ωn−1 is nonvanishing
on Z, the two-form ω is a folded symplectic form. A folded symplec-
tic manifold is a pair (M,ω) where ω is a folded symplectic form on the
manifold M . The hypersurface Z is called the fold. The complement, M/Z
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of the fold is the symplectic locus. A folded symplectomorphism be-
tween folded symplectic manifolds (M,ω) and (M ′, ω′) is a diffeomorphism
f : M →M ′ such that

f∗ω′ = ω.

The theory of folded symplectic forms has some similarity with that of
symplectic forms, but there are some important and striking differences.

Example 1.2. 1) The two-form

ωfstd = x1dx1 ∧ dy1 +

n∑
j=2

dxj ∧ dyj

is the standard folded symplectic form on real Euclidean space

R2n = {(x1, . . . , xn, y1, . . . , yn) |xj , yj ∈ R}.

The fold is the hypersurface {x1 = 0}. By pulling ωfstd back by a choice
of isomorphism, any even dimensional vector space admits a folded
symplectic form. In particular, the standard folded symplectic form
on Cn is

i

2
Re(z1)dz1 ∧ dz̄1 +

i

2

n∑
j=2

dzj ∧ dz̄j .

2) Let Σ be a closed, orientable surface and Ω a nonvanishing two-form on
Σ. Let f : Σ→ R be a smooth function transverse to 0 ∈ R. Then, fΩ
is a folded symplectic form on Σ. For example, the two-form ω = hdh ∧
dθ is a folded symplectic form on the sphere S2 with fold {h = 0}.

The antipodal map

f : S2 → S2

(h, θ) 7→ (−h, θ + π)

satisfies f∗ω = ω and so ω descends to give the quotient S2/f the
structure of a folded symplectic manifold. This quotient is diffeomor-
phic to the real projective plane RP2 and so, in contrast to symplectic
manifolds, folded symplectic manifolds need not be orientable.

3) Cannas da Silva, Guillemin, and Woodward show (in [3]), that every
even-dimensional sphere, S2n, has a folded symplectic form obtained
by pulling back the standard symplectic form on R2n by the map
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Folded symplectic toric four-manifolds 703

on S2n that folds about a great circle. Note that a sphere admits a
symplectic form if and only if it is two-dimensional.

4) In [1], Cannas da Silva proves that every orientable four-manifold ad-
mits a folded symplectic structure. This result indicates that folded
structures are natural, ubiquitous, and worthy of further study.

5) If (M,ω) is a folded symplectic manifold and (N, η) is a symplectic
manifold, then M ×N is a folded symplectic manifold with fold-form
ω ⊕ η. Note, however, that the product of two arbitrary folded sym-
plectic manifolds may not be a folded symplectic manifold: the form
h1dh1 ∧ dθ1 + h2dh2 ∧ dθ2 is not a folded symplectic form on S2 × S2

since its second wedge power is not transverse to the zero section of∧2n(T ∗(S2 × S2)).

By Darboux’s Theorem, we know that every symplectic manifold looks
locally like R2n with its standard symplectic form. Similarly, there is a local
normal form theorem for folded symplectic manifolds. Following [3], we as-
sume that M is an oriented folded symplectic manifold and define a vector
bundle ker(ω)→ Z by setting

ker(ω)z = {X ∈ TzM | ιXωz = 0}

for each z ∈ Z. This is a rank two bundle and is oriented over Z via the
orientations induced on i∗TM/ker(ω) by ω and that of TM . Using the inclu-
sion i : Z →M , we regard TZ as the subbundle of i∗TM of vectors tangent
along Z. Then, the intersection ker(ω) ∩ TZ → Z is an oriented line bundle
of tangent vectors along Z. We also note that

TzZ + ker(ω)z = TzM

since the kernel of ωz is two-dimensional and ωn−1 is nonvanishing on Z.
The following is our version of the statement of Theorem 1 in [3].

Theorem 1.3. Let (M,ω) be a compact, oriented, folded symplectic man-
ifold with fold Z. Choose a positively oriented section V of ker(ω) ∩ TZ.
Then, for any α ∈ Ω1(Z) with α(V ) ≡ 1, there exists a neighborhood U of
Z and a diffeomorphism ψ : Z × R→ U such that ψ∗ω = p∗i∗ω + d(t2p∗α)
where p : Z × R→ Z is projection on the first factor, i : Z → Z × R is the
inclusion, and t is the standard coordinate on R.

For the remainder of this paper, our focus will be on Hamiltonian actions
of tori on folded symplectic manifolds.
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Definition 1.4. An action of a Lie group G on a folded symplectic manifold
(M,ω) is a folded Hamiltonian action if there is a moment map. That
is, for every ξ in the Lie algebra g of G there exists a smooth function Φ :
M → g∗ that is equivariant with respect to the coadjoint action of G on g∗

and is such that ι(ξ
M

)ω = −dΦξ. (Here, ξM is the vector field on M induced
by ξ, i.e., ξM = d

dt

∣∣
t=0

exp (tξ).) A folded symplectic manifold admitting a
folded Hamiltonian action of a Lie group G and a moment map Φ will be
called a folded Hamiltonian G-manifold and we denote such via a triple
(M,ω,Φ). An isomorphism of folded Hamiltonian G-manifolds (M,ω,Φ)
and (M ′, ω′,Φ′) is an equivariant folded symplectomorphism ψ : M →M ′

such that ψ∗Φ′ = Φ. For a torus T , a folded symplectic toric manifold
is a compact, connected, folded Hamiltonian T -manifold (M,ω,Φ) such that
the torus action is effective and 2 dim T = dimM .

Remark 1.5. The assumption that a folded symplectic toric manifold be
connected is included for convenience. Unless otherwise specified, we will
assume that a folded symplectic toric manifold is compact.

Since the torus is Abelian, the coadjoint action of T on the dual Lie alge-
bra t∗ is trivial. Hence, the moment map Φ : M → t∗ of a folded symplectic
toric manifold is invariant and thus descends to a map

Φ : M/T → t∗

called the orbital moment map. The orbital moment map has the same
image in t∗ as the moment map; that is, Φ = Φ ◦ π where π : M →M/T is
the orbit projection.

A general classification of folded symplectic toric manifolds is not yet
complete. A certain subclass, however, has been classified. In [2], Cannas da
Silva, Guillemin, and Pires classify the so-called origami manifolds, which
are orientable folded symplectic toric manifolds having extra conditions
regarding the restriction of the fold form to the folding hypersurface. In
what follows, we present a first step in the classification of folded symplec-
tic toric manifolds, a uniqueness result in the case of compact, orientable,
four-dimensional manifolds. Our main theorem follows.

Theorem 1.6. Let (M,ω,Φ) and (M ′, ω′,Φ′) be compact orientable folded
symplectic toric four-manifolds. Suppose that H2(M/T ;Z) = 0. Then, M
and M ′ are isomorphic if there exists a diffeomorphism h : M/T →M ′/T
of manifolds with corners such that h∗Φ′ = Φ.
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The following example illustrates the necessity for the appearance of the
orbital moment map in Theorem 1.6.

Example 1.7. The circle S1 acts on the two-torus T 2 = S1 × S1 by left
multiplication in the second coordinate. This action is Hamiltonian with
respect to a folded symplectic form whose fold is two disjoint circles. The
image of the moment map of this action is a closed interval. Similarly, there
is a circle action on the two-sphere S2 given by rotation about a fixed axis
that is Hamiltonian with respect to a folded symplectic form folding about
the equator. The moment map in this instance also has as its image a closed
interval.

By Example 1.2(5), the products T 2 × S2 and S2 × S2 are folded sym-
plectic toric manifolds where S2 is given the standard symplectic toric struc-
ture on the second factor. With respect to these folded symplectic structures,
the orbit space of T 2 × S2 is a cylinder while the orbit space of S2 × S2 is
a rectangle. Note, however, that with suitable rescalings of the folded sym-
plectic forms, the moment images of T 2 × S2 and S2 × S2 are the same (see
Figure 1). From this, we conclude that moment images are not enough to
differentiate between folded symplectic toric manifolds, in contrast to the
symplectic toric case.

Figure 1: Folded symplectic toric manifolds with the same moment image.

We will prove Theorem 1.6 in two steps. The first establishes a condition
under which folded symplectic toric manifolds are locally isomorphic. We
then turn to questions of global isomorphisms. In the last section, we provide
a proof of Theorem 1.6 by passing our local results to the global setting.
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2. The local picture

In this section, we establish the existence of local equivalence of folded sym-
plectic toric four-manifolds given a diffeomorphism of orbit spaces that pre-
serves the orbital moment maps. The first step is understanding the dif-
ferential structure of the orbit space. We then use that structure to help
in determining when two folded symplectic toric four-manifolds are locally
isomorphic, as defined below.

Definition 2.1. Let (M,ω,Φ) and (M ′, ω′,Φ′) be folded symplectic toric
manifolds. Denote by π : M →M/T and π′ : M ′ →M ′/T the orbit maps.
We say that (M,ω,Φ) and (M ′, ω′,Φ′) are locally isomorphic if there ex-
ists a diffeomorphism h : M/T →M ′/T of manifolds with corners such that
for each x ∈M/T , there exists a neighborhood U of x and an isomorphism

ψx : π−1(U)→ (π′)−1(h(U))

of (open) folded symplectic toric manifolds such that (h ◦ π)(p)=(π′ ◦ ψx)(p)
for every p ∈ π−1(U).

Remark 2.2. When two folded symplectic toric manifolds (M,ω,Φ) and
(M ′, ω′,Φ′) are locally isomorphic, it can be convenient to identify their orbit
spaces via a choice of diffeomorphism h that lifts locally to isomorphisms.
When this is done, we can write Φ′ = Φ ◦ π′ where π′ : M ′ →M ′/T is the
orbit projection and Φ : M/T → t∗ is the orbital moment map.

2.1. The structure of the orbit space

We certainly cannot expect the orbit space of a folded symplectic toric four
manifold to be a manifold itself, but there is a differential structure on the
orbit space that we may exploit. In particular, we will show that the orbit
space is a manifold with corners. Briefly, a manifold with corners is a
second countable Hausdorff space with a maximal atlas of charts modeled on
sectors [0,∞)k × Rn−k with 0 ≤ k ≤ n. The reader is referred to Appendix A
of [6] for more details. To establish such a differential structure on the orbit
space, we proceed as follows. At points not in the fold, we may appeal to
well-known results from symplectic geometry. At points in the fold, however,
it is necessary to know the types of stabilizer subgroups that can appear.
We begin by observing that, in the fold, orbits may be stabilized by a circle
subgroup of the torus.
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Example 2.3. Consider the product S2 × S2, equipped with local coordi-
nates (h1, θ1, h2, θ2), −1 ≤ hj ≤ 1. This is a folded symplectic manifold with
folded symplectic form ω = h1dh1 ∧ dθ1 + dh2 ∧ dθ2. The fold is the copy of
S1 × S2 defined by {h1 = 0}. The folded symplectic form is invariant under
the action of the two-torus given by

(λ1, λ2) · (h1, θ1, h2, θ2) = (h1, θ1 + λ1, h2, θ2 + λ2).

In fact, this is a folded Hamiltonian action with moment map

Φ(h1, θ1, h2, θ2) =

(
1

2
h21, h2

)
.

The circle subgroup {(0, λ2)} ⊂ S1 × S1 stabilizes every point in Φ−1(0, 1).

The other stabilizers that can appear in the fold are limited. In particu-
lar, the following result states that, at least in dimension four, no nontrivial
discrete subgroup of the torus can stabilize points in the fold. This in turn
implies that for a four-dimensional folded toric symplectic manifold, the set
of free orbits is dense (Theorem 4.27 in [7]).

Lemma 2.4. Suppose a torus, T n, acts effectively on a connected, ori-
entable manifold, M2n, preserving a hypersurface Z. Then, there are no fixed
points of the action in Z. Furthermore, if M is four-dimensional, the only
discrete subgroup of T n stabilizing points in the fold is the trivial subgroup.

Proof. By the Slice Theorem (see Theorem 4.10 in [7]), there is a neighbor-
hood U of an orbit in M that is equivariantly diffeomorphic to T ×Gp

Vp
where p is any point in the orbit, Vp is the differential slice at p, and Gp is
the stabilizer of the point p. Since the torus acts effectively on M , it acts
effectively on U , hence on T ×Gp

Vp. Since the torus is Abelian, the isotropy
action of Gp on Vp is effective. If p is a fixed point, then Gp = T . So, if p ∈ Z,
by utilizing a choice of invariant metric, we get a faithful representation

T n ↪→ O(2n− 1)×O(1)

since Z is an invariant hypersurface. The torus is connected, and so the image
lies in SO(2n− 1). Since the maximal torus in SO(2n− 1) has dimension
n− 1, we have arrived at a contradiction. Hence p cannot be a fixed point
in Z.

Now suppose that dimM = 4 and let H be a nontrivial discrete sub-
group of T stabilizing a point p ∈ Z. Again by the Slice Theorem, there
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is a neighborhood of an orbit through p equivariantly diffeomorphic to
U = T ×H (R× R). Since M is orientable, so are U and Z. We then have
a faithful representation H ↪→ SO(1)× SO(1) and conclude that H is triv-
ial. �

We are now in a position to prove the following.

Proposition 2.5. Let (M,ω,Φ) be an orientable, folded symplectic toric
four-manifold. Then, the orbit space M/T is a smooth surface with corners,
wherein the fold Z descends to a one-dimensional submanifold with bound-
ary.

Proof. On the components of the symplectic locus M \ Z the result follows
by the local normal form theorem for symplectic toric manifolds (Proposition
1.1 in [6]). On the fold Z, Lemma 2.4 and Example 2.3 assert that the only
possible stabilizers are S1 and the trivial subgroup. A neighborhood of a
point in the orbit space with trivial stabilizer is homeomorphic to an open
two-disk. If the orbit corresponding to a point in Z/T has a circle stabilizer,
then it has a neighborhood homeomorphic to R2/S1 × R = [0,∞)× R. �

2.2. Local equivalence of folded symplectic toric manifolds

Local models for neighborhoods of orbits through points in a folded symplec-
tic toric manifold (M,ω,Φ) depend necessarily on whether the point lies in
the symplectic locus M \ Z or in the fold Z. Knowing the image of the mo-
ment map is not enough to specify the local structure of an arbitrary folded
symplectic toric manifold; we must also incorporate information about the
orbital moment map. Critical to this is the fact that orbits are isotropic.
Recall that a submanifold L of a manifold N equipped with a two-form Ω
is isotropic if Ω|L vanishes.

Proposition 2.6. Orbits in a folded Hamiltonian T -manifold (M,ω,Φ) are
isotropic.

Proof. Since T is Abelian, the moment map Φ : M → t∗ is invariant and
hence constant on orbits. Therefore, for any ξ, ζ ∈ t and p ∈M ,

0 = ι(ξ
M

(p))dΦζ
p

= ωp(ξM (p), ζ
M

(p)).

�
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Lemma 2.7. Let (M,ω,Φ) be an orientable, folded symplectic toric four-
manifold. If V is a section of ker(ω) ∩ TZ, then V is tangent to orbits in
Z.

Proof. We first consider a neighborhood in Z of a free orbit T × R with
coordinates (θ1, θ2, s, 0). By Proposition 2.6, orbits are isotropic so the re-
striction of the folded symplectic form to this neighborhood is

i∗ω = f1dθ1 ∧ ds+ f2dθ2 ∧ ds
= (f1dθ1 + f2dθ2) ∧ ds

where f1 and f2 are invariant functions. It follows that if V is in the kernel
of i∗ω, then V is tangent to the orbit.

Now we consider singular orbits. By Proposition 2.5, the orbit space
Z/T is a compact one-manifold whose boundary components are images
of singular orbits under the orbit map. Since the boundary of a compact
one-manifold consists of isolated points and the orbit map is continuous,
singular orbits are isolated in Z. Pick a singular orbit O in Z and suppose
V is a section of ker(ω) ∩ TZ that is not tangent to O. Since the orbit is
isolated, there exists a neighborhood U of O whose intersection with the
set of singular orbits contains only O. Let φt denote the flow of V . Then,
since V was assumed not to be tangent to O and free orbits are dense by
Lemma 2.4, if x ∈ O there exists ε > 0 such that φε(x) 6∈ O and φε(x) lies in
a free orbit F . Since V is tangent to free orbits and T 2 is compact, φt(x) ∈ F
for all t ∈ R. This contradicts the fact that φ−ε ∈ O. Hence, V is tangent to
the singular orbit O. �

In order to get local isomorphisms of folded symplectic toric manifolds,
we need a diffeomorphism of orbit spaces that lifts locally to isomorphisms.
We now show that any diffeomorphism of orbit spaces that preserves the
orbital moment maps also preserves orbital folds.

Lemma 2.8. Let (M,ω,Φ) and (M ′, ω′,Φ′) be orientable, folded symplectic
toric four-manifolds. Suppose h : M/T →M ′/T is a diffeomorphism such
that h∗Φ′ = Φ. Then, h(Z/T ) = Z ′/T .

Proof. Let π : M →M/T be the orbit projection and consider, for a choice
p ∈ π−1(x),

F : t → T ∗pM

ξ 7→ ι(ξ
M

)ωp.
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This map is the transpose of

dφp : TpM → t∗

since 〈dΦ(Y ), ξ〉 = ω(ξ
M
, Y ) for any vector field Y on M . It follows that the

image of dΦp is isomorphic to the annihilator in t∗ of the kernel of F . The
kernel of F consists of vectors in the stabilizer algebra tp as well as any
ξ ∈ g with ξ

M
(p) ∈ ker(ω)p. By Lemma 2.7, any nonzero vector spanning

ker(ω)p ∩ TpZ lies in the image of the map g→ TpM given by ξ 7→ ξ
M

(p).
Hence, p is a fold point if and only if dim(im(dΦp)) = dim(t◦p)− 1 where t◦p
is the annihilator of tp.

Let x ∈M/T . Denote by stab(x) the stabilizer of any point p ∈ π−1(x).
Since h : M/T →M ′/T is a diffeomorphism, the proof of Proposition 2.5
implies that stab(x) = stab(h(x)). This in turn implies that t◦p = t◦p′ for any
p′ ∈ (π′)−1(h(x)). The result then follows since im(dΦ) = im(dΦ). �

The next result states that moment preserving diffeomorphisms also pre-
serve restriction of the folded symplectic form to the fold.

Lemma 2.9. Let (M,ω,Φ) and (M ′, ω′,Φ′) be orientable, folded symplectic
toric four-manifolds. Suppose g : M →M ′ is an equivariant diffeomorphism
such that g∗Φ′ = Φ. Then, i∗ω = i∗(g∗ω′) where i : Z ↪→M is the inclusion
of the fold.

Proof. It suffices to show that i∗ω = i∗(g∗ω′) on a dense set and hence, by
Lemma 2.4, it is enough to show the condition holds on free orbits. Let U ′

be a neighborhood in M ′ of a free orbit in Z ′. By the Slice Theorem, U is
equivariantly diffeomorphic to T 2 × R× R. Choose coordinates (θ′1, θ

′
2, s
′, t′)

on U where fold points have t′ = 0. Let U = g∗(U ′) be given coordinates
(θ1, θ2, s, t) = (g∗θ′1, g

∗θ′2, g
∗s′, g∗t′). With respect to theses coordinates, us-

ing the fact that the orbits are isotropic, the folded symplectic forms on U
and U ′ are

ω = f1ds ∧ dθ1 + f2ds ∧ dθ2 + α ∧ dt

and

ω′ = f ′1ds
′ ∧ dθ′1 + f ′2ds

′ ∧ dθ′2 + α′ ∧ dt′

where the coefficient functions are invariant and α, α′ are invariant one-forms
on T 2 × R× R. It follows that

dΦ = (f1ds+ k1dt, f2ds+ k2dt)
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and

dΦ′ = (f ′1ds
′ + k′1dt

′, f ′2ds
′ + k′2dt

′).

Now, since g∗Φ′ = Φ, and d(g∗Φ′) = g∗(dΦ′), we see that f1 = g∗f ′1 and f2 =
g∗f ′2. Thus, restricting to the fold Z, we have i∗ω = i∗(g∗ω). �

Remark 2.10. If U is an invariant open set in M and g : U → U ′ is an
equivariant diffeomorphism preserving moment maps, then the conclusion of
Lemma 2.9 still holds. If i : U ∩ Z → U is the (restriction of) the inclusion
of the fold, then i∗ω = i∗(g∗ω′).

We now state and prove an equivariant version of Theorem 1 in [3], which
provides a local normal form for a folded symplectic form on an orientable
manifold.

Lemma 2.11. Let G be a compact Lie group acting on a compact folded
symplectic manifold M preserving folded symplectic forms ω0 and ω1. Let
i : Z ↪→M be the inclusion of the fold. Then, if i∗ω0 = i∗ω1, there exists an
invariant neighborhood U of Z and an equivariant diffeomorphism ψ : U →
U such that ψ∗ω1 = ω0.

Proof. For each z ∈ Z, choose a basis {Vz,Wz} of ker(ω)z with Wz ∈ TzM
and Vz ∈ TzZ. We can equivariantly identify an invariant neighborhood of
Z with Z × R in such a way that the vector field W corresponds to d

dt .
By the proof of Theorem 1 in [3], we may write ω0 = p∗i∗ω0 + tµ0 where
p : Z × R→ Z is the projection and µ0(Wz, Vz)z > 0 for all z ∈ Z. Let η =
p∗i∗ω0 + d(t2p∗α) where α is an invariant one-form such that α(V ) > 0.
Then, η is an invariant folded symplectic form on Z × R with fold Z.

For all s ∈ [0, 1], the form ωs := (1− s)ω0 + sη is an invariant folded
symplectic form with fold Z. Since i∗ω0 = i∗η and ω0 − η is closed, we may
find an invariant one-form β on Z × R such that βz = 0 for all z ∈ Z and
dβ = ω0 − η. For each s ∈ [0, 1] there is an invariant vector field Xs such that
ι(Xs)ωs = β. The flow {φs} of Xs consists of equivariant diffeomorphisms
and φ∗1η = ω0. Since βz = 0 for all z ∈ Z, the flow of Xs fixes Z for all
s ∈ [0, 1].

We next note that

LXs
ωs = ι(Xs)dωs + dι(Xs)ωs

= dβ

so that
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d

ds
(φ∗sωs) = φ∗s

(
d

ds
ωs + LXs

ωs

)
= φ∗s(η − ω + dβ)

= φ∗s(η − ω + ω − η)

= 0.

We conclude that φ∗sωs is independent of s. Noting that ω = φ∗0ω0 = φ∗1ω1 =
φ∗1η, we define ψ0 := φ1. This yields an equivariant diffeomorphism satisfying
ψ∗0ω0 = η.

Since i∗ω0 = i∗ω1, this construction works for ω1 as well so that there
is an equivariant diffeomorphism ψ1 satisfying ψ∗1ω1 = η. The equivariant
diffeomorphism ψ := ψ1 ◦ ψ−10 then satisfies ψ∗ω1 = ω0. �

Remark 2.12. From the proof of Lemma 2.11, we can see that if X is a
closed, invariant subset of the fold Z (in particular, an orbit), and there is
an invariant neighborhood of X such that the restrictions of folded sym-
plectic forms ω0 and ω1 to X are equal, then we can find an equivariant
diffeomorphism ψ of a neighborhood U of X in M such that ψ∗ω1 = ω0.

Theorem 2.13. Let (M,ω,Φ) and (M ′, ω′,Φ′) be orientable, compact,
folded symplectic toric four-manifolds. If there exists a diffeomorphism h :
M/T →M ′/T of manifolds with corners such that h∗Φ′ = Φ, then M and
M ′ are locally isomorphic.

Proof. The result follows from Lemma B.4 in [6] on the symplectic lociM \ Z
and M ′ \ Z ′. We therefore need only focus on points in the fold. Choose x ∈
Z/T . By the Slice Theorem and Lemma 2.8, the diffeomorphism h : M/T →
M ′/T lifts to an equivariant diffeomorphism g : N → N ′ of neighborhoods
of the orbits π−1(x) ⊂ Z and (π′)−1(h(x)) ⊂ Z ′ respectively. Since h pre-
serves orbital moment maps, g preserves the restrictions of Φ and Φ′ to
N and N ′. By Lemma 2.9 and Remark 2.10, i∗ω = i∗(g∗ω) on N where
i : N ∩ Z → N is the inclusion. Lemma 2.11 and Remark 2.12 now imply that
there exists a neighborhood U in N containing π−1(x) and an equivariant
diffeomorphism ψ : U → U with ψ∗(g∗ω′) = ω. It follows that φ = g ◦ ψ is an
equivariant diffeomorphism on a neighborhood of the orbit π−1(x) such that
φ∗ω′ = ω. �



i
i

“4-Lee” — 2018/10/19 — 0:43 — page 713 — #13 i
i

i
i

i
i

Folded symplectic toric four-manifolds 713

3. The global picture

As we saw in the previous section, a diffeomorphism of orbit spaces pre-
serving orbital moment maps is enough to guarantee that two folded sym-
plectic toric four manifolds are locally isomorphic. We will now show that
under a suitable topological restriction on the orbit spaces, the existence of a
moment-preserving diffeomorphism of folded symplectic toric four manifolds
gives rise to an isomorphism between them. In all that follows, when given
a diffeomorphism g : M →M ′ of folded symplectic toric four-manifolds, we
denote by ωs the convex combination of ω and g∗ω′. That is, for s ∈ [0, 1],
ωs = (1− s)ω + sg∗ω′.

Lemma 3.1. Let (M,ω,Φ) and (M ′ω′,Φ′) be orientable, folded symplectic
four-manifolds, Z ⊂M the folding hyperurface, and g : M →M ′ an equiv-
ariant diffeomorphism such that g∗Φ′ = Φ. Then

(i) ker(ω) ∩ TZ = ker(ωs) ∩ TZ, and

(ii) for each z ∈ Z, if Wz ∈ ker(ω)z ∩ TzZ and W s
z ∈ ker(ωs)z ∩ TzZ, W s

z

and Wz differ by a vector tangent to the orbit through z.

Proof. By Lemma 2.9, if i : Z ↪→M is the inclusion, then i∗ω = i∗g∗ω ev-
erywhere on Z. Hence, i∗ωs = i∗ω. This establishes (i).

As in the proof of Lemma 2.7, it suffices to show (ii) assuming the orbit
through z is free. On a neighborhood U of such an orbit, the projection
π : U → U/T is a map of manifolds and

dπ(ker(g∗ω)) = dπ(d(g−1)(kerω))

= dπ(ker(ω)),

which proves (ii) on free orbits. �

Before continuing, it will be beneficial to recall some facts about the
basic cohomology of a manifold M admitting an action of a compact Lie
group G. A basic form on M is an element β ∈ Ω∗(M) such that β is in-
variant and satisfies ι(ξ

M
)β = 0 for all ξ ∈ g. The collection of basic forms

is a subcomplex Ω∗bas(M) ⊂ Ω∗(M) whose cohomology is isomorphic to the
singular cohomology H∗(M/G;R) of the orbit space. Thus, the basic co-
homology of a manifold is a topological invariant so that if M and N are
homotopy equivalent, then H∗bas(M) = H∗bas(N). Furthermore, the Poincaré
Lemma holds for basic cohomology. If p : M × R→M is projection on the
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first factor, then the induced map p∗ : Ω∗(M)→ Ω∗(M × R) induces an iso-
morphism on basic cohomology.

Lemma 3.2. Suppose a compact Lie group, G, acts on a manifold, M . Let
i : Z ↪→ U be the inclusion of an invariant submanifold into an invariant
tubular neighborhood in M . If η is a closed basic (k + 1)-form on U with
i∗η = 0, then there exists a basic k-form σ on U with

1) σz = 0 for all z ∈ Z, and

2) dσ = η on U .

Proof. For s ∈ [0, 1], define ρs : U → U by ρs(z, v) = (z, sv) where (z, v) are
tubular neighborhood coordinates. Then, ρs is equivariant and the vector
field χs defined by

χs(ρs) =
d

dr

∣∣∣∣
r=s

ρr

is invariant. Define

σ = Kη :=

∫ 1

0
ρ∗s(ι(χs)ν) ds

and note that σ is invariant. When s = 0 (i.e., at points of Z), σ = 0. Finally,
since η is basic, for any ξ ∈ g we have

ι(ξM )σ = ι(ξM )Kη

= ι(ξM )

∫ 1

0
ρ∗s(ι(χs)η) ds

=

∫ 1

0
ι(ξM )ρ∗s(ι(χs)η) ds

=

∫ 1

0
ρ∗s(ι(d(ρ−1s ))(ξM )ι(χs)η) ds

= 0.

We now prove that dσ = η. Let pr : U → Z be the projection of U onto Z
and note that since η is closed and i∗η = 0,
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dσ = dKη +Kdη

= d

∫ 1

0
ρ∗s(ι(χs)η) ds+

∫ 1

0
ρ∗s(ι(χs)dη) ds

=

∫ 1

0
ρ∗sLχs

η ds

=

∫ 1

0

d

ds
ρ∗sη ds

= ρ∗1η − ρ∗0ν
= η − (i ◦ pr)∗(η)

= η.

�

We are now ready to state a technical lemma that, along with a vari-
ant of Moser’s Trick, we will use to prove the existence of an equivariant
folded symplectomorphism given an equivariant diffeomorphism preserving
moment maps.

Lemma 3.3. Let (M,ω,Φ) and (M ′, ω′,Φ′) be orientable, folded symplectic
toric four-manifolds. Suppose that g : M →M ′ is an equivariant diffeomor-
phism such that g∗Φ′ = Φ. Then, if H2(M/T ;Z) = 0, there exists a basic
one-form β on M such that

1) dβ = g∗ω′ − ω, and

2) for all z ∈ Z, βz(Wz) = 0 whenever Wz ∈ ker(ωs)z.

Proof. The first fact to note is that η = g∗ω′ − ω is invariant since ω, ω′ are
invariant and g is equivariant. Also, for any ξ ∈ t,

ι(ξ
M

)η = ι(ξ
M

)g∗ω′ − ι(ξ
M

)ω

= −dΦξ + dΦξ

= 0

since g is moment-preserving. By assumption, H2(M/T ;Z) = 0 and so
H2(M/T ;R) = 0. It follows that the basic cohomology H2

bas(M) = 0 as well.
We conclude that there exists a basic one-form α on M such that dα = η.

By Lemma 2.9, the restriction i∗g∗ω′ − i∗ω = 0. In light of Lemma 3.2,
there exists a basic one-form σ on an invariant tubular neighborhood U1
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of Z in M such that σz = 0 for all z ∈ Z and dσ = η|U1
. Note that U1 is

orientable and is equivariantly diffeomorphic to Z × R.
Let U2 = M \ Z and be {ρU1

, ρU2
} an invariant partition of unity subor-

dinate to the open cover {U1, U2}. Define on M the one-form

τ := ρU1
σ + ρU2

α.

Note that τ is basic and τz = 0 for all z ∈ Z, but

dτ = η + dρU1
∧ σ + dρU2

∧ α.

The form σ − α is a closed, basic one-form on the tubular neighborhood
U1. By the Poincaré Lemma for basic cohomology, the map pr∗ : H1

bas(Z)→
H1

bas(U1) induced by the projection is an isomorphism and so σ − α = p∗ν +
df where ν ∈ H1

bas(Z) and f ∈ C∞(U1) is invariant. Rewriting, we have α =
σ − p∗ν − df .

Define

β := τ − ρU1
(p∗ν) + fdρU1

.

Then, β is a basic one-form on M and

dβ = dτ − dρU1
∧ p∗ν − dρU1

∧ df
= η + dρU1

∧ σ + dρU2
∧ α− dρU1

∧ p∗ν − dρU1
∧ df

= η + dρU1
∧ σ − dρU1

∧ α− dρU1
∧ p∗ν − dρU1

∧ df
= η.

Since β is basic, ι(V )β = 0 for all V ∈ ker(i∗ω) = ker(i∗ωs) by Lemma 2.7.
Lemma 3.1 implies that the vector field W s ∈ ker(ωs) tangent to M differs
from the radial vector field W = ∂

∂t ∈ ker(ω) by a vector field tangent to
orbits, Hence,

ι(W s
z )βz = ι

(
∂

∂t

)
βz

= ι

(
∂

∂t

)
(τz + ρU1

(z)(p∗ν)z − f(z)(dρU1
)z)

= ι

(
∂

∂t

)
ρU1

(z)(p∗ν)z

= 0

(recall that p∗ν is the pullback of a form on Z). Thus, ker(β) = ker(ωs) at
all points z ∈ Z. �
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We end this section with a theorem stating that, under a topological as-
sumption on the orbit space, the existence of a moment-preserving equivari-
ant diffeomorphism forces the existence of an isomorphism in the orientable,
four-dimensional case.

Theorem 3.4. Let (M,ω,Φ) and (M ′, ω′,Φ′) be compact, orientable, folded
symplectic toric four-manifolds. Suppose that H2(M/T ;Z) = 0. If there ex-
ists an equivariant diffeomorphism g : M →M ′ such that g∗Φ′ = Φ, then M
and M ′ are isomorphic.

Proof. By Lemma 3.3, there exists a basic form β such that dβ = g∗ω′ − ω.
Since βz(Wz) = 0 for all Wz ∈ ker(ωs)z, there exists Xs such that ι(Xs)ωs =
−β. For all ξ ∈ t we have

−ι(Xs)dΦξ = ι(Xs)ι(ξM )ωs

= ι(ξM )β

= 0

since β is basic. Hence, the flow {φs} preserves the moment map Φ.
The pullbacks φ∗sωs are independent of s since

d

ds
(φ∗sωs) = φ∗s

(
d

ds
ωs + LXs

ωs

)
= φ∗s

(
g∗ω′ − ω − dβ

)
= 0.

Consequently, ω = φ∗0ω0 = φ∗1ω1 = φ∗1g
∗ω′. Define ψ : M →M ′ by ψ := g ◦

φ1. By construction, ψ is an isomorphism. �

4. From local to global

We conclude by combining the results of the previous sections to prove
Theorem 1.6, which we restate for convenience.

Theorem 1.6. Let (M,ω,Φ) and (M ′, ω′,Φ′) be compact orientable folded
symplectic toric four-manifolds. Suppose that H2(M/T ;Z) = 0. Then, M
and M ′ are isomorphic if there exists a diffeomorphism h : M/T →M ′/T
of manifolds with corners such that h∗Φ′ = Φ.

Proof. Since h : M/T →M/T is a diffeomorphism preserving orbital mo-
ment maps, Theorem 2.13 implies that M and M ′ are locally isomorphic.
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So, h lifts locally to a collection of isomorphisms {gi} on an open cover
V = {Vi} of M . The maps

Vi ∩ Vj → Vi ∩ Vj
p 7→ (g−1i ◦ gj)(p)

are equivariant diffeomorphisms that fix orbits. By a theorem of Haefliger
and Salem (Theorem 3.1, [5]), there exists a collection {aij} of smooth maps
aij : Vi ∩ Vj → T such that (g−1i ◦ gj)(p) = aij(p) · p.

Note that since the aij preserve orbits, we may think of them as smooth,
T -valued functions on M/T and the collection {aij} forms a class [a] ∈
Ȟ1(M/T , T ), the Čech cohmology of the orbit space with respect to the
sheaf of smooth functions with values in T . Let ` and t be the sheaves of
smooth functions on M/T with values in the lattice ker{exp : t→ T } and
the Lie algebra of T , respectively. The short exact sequence

0→ `→ t→ T → 0

induces the long exact sequence in cohomology

· · · → Hk−1(M/T , t)→ Hk−1(M/T , T )

→ Hk(M/T , `)→ Hk(M/T , t)→ · · · .

Since M/T is paracompact, it admits partitions of unity so the sheaf t is fine
and hence acyclic. Thus, Hk(M/T, t) = 0 for all k > 0. As a consequence,
H1(M/T, T ) is isomorphic to H2(M/T, `). By assumption, H2(M/T,Z) = 0
implying H2(M/T, `) = 0 as well. The class [a] is thus trivial in H1(M/T, T )
and the diffeomorphisms gi glue to give a global diffeomorphism g : M →
M ′. Since g is a lift of h and h preserves orbital moment maps, we have
g∗Φ′ = Φ. By Theorem 3.4, this implies that there exists an isomorphism
ψ : M →M ′. �
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