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In this paper, we prove that in the system of bending flows on
the moduli space of polygons with fixed side lengths introduced
by Kapovich and Millson, the singular fibers are isotropic homoge-
neous submanifolds. The proof covers the case where the system is
defined by any maximal family of disjoint diagonals. We also take
in account the case where the fixed side lengths are not generic. In
this case, the phase space is an orbispace, and our result holds in
the sense that singular fibers are isotropic orbispaces. In a last part
we provide leads in favor of a similar study of the integrable sys-
tems defined by Nohara and Ueda on the Grassmaniann of 2-planes
in Cn.
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1. Introduction

In the theory of integrable Hamiltonian systems, singular fibers of the asso-
ciated Lagrangian fibrations play a very important role. Indeed, according
to the classical Liouville–Mineur theorem, each connected component of a
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compact regular level set of the momentum map is an invariant Lagrangian
torus, called a Liouville torus, on which the system is quasi-periodic. More-
over, near each Liouville torus there exists a system of action-angle variables
in which the foliation by Liouville tori is trivial. But the geometry near sin-
gular fibers is not so simple in general, and yet it has to be studied in order
to understand the local and global geometrical structure of the system. Of
particular importance are the nondegenerate singular fibers (those which
satisfy some natural nondegeneracy conditions), because most singularities
of well-known integrable Hamiltonian systems are of this kind. According
to a result of Zung [22], there is a topological description of nondegener-
ate singularities in terms of almost direct products of simplest (corank 1
elliptic, corank 1 hyperbolic and corank 2 focus–focus) singularities. Those
singularities have been extensively studied, see e.g. [2–4, 19].

On the other hand, degenerate singularities of integrable Hamiltonian
systems can be much more complicated. In particular, degenerate singular
fibers are not immersed submanifolds in general. However, there is a partic-
ular class of integrable Hamiltonian systems whose singular fibers, even the
degenerate ones, still look very nice: they are all isotropic homogeneous sub-
manifolds (or more generally isotropic orbispaces when the phase space itself
is a symplectic orbispace). This class of singularities, that might be called
spherical singularities, is closely related to the so called toric degenerations
in algebraic geometry (see e.g. [10, 11]). The classical Gel’fand–Cetlin sys-
tem introduced by Guillemin and Sternberg [9] is an example of integrable
systems in this class. The proof that its singularities are spherical has been
made by Alamidinne [1] for the Gel’fand–Cetlin system on su(3), and then
simultaneously by Miranda, Zung and the author [17] and by Cho et. al. [7]
for the case of su(n).

In this paper, we study another family of integrable Hamiltonian sys-
tems with spherical singularities: the so called bending flows introduced by
Kapovich and Millson [15] on the moduli space Mr of 3D polygons with
fixed side lengths r = (r1, . . . , rn), which happens to be a manifold when r
is generic. These moduli spaces of polygons and their bending systems have
been studied from various points of views afterwards [5, 6, 12–14, 18]. Our
results here concern their singular fibers and state that the systems of bend-
ing flows onMr are indeed examples of systems with spherical singularities:

Theorem A. For r generic, the singular fibers of any system of bend-
ing flows on Mr are isotropic homogeneous submanifolds of the moduli
space Mr.
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Also, we do not limit ourselves to the case when the side lengths are
generic. When those lengths are chosen in such a way that the configuration
space fails to be a manifold, it is still possible to work in the category of
orbispaces. Using the concepts of tangent space, vector fields and symplectic
structure on an orbispace (see e.g. [8, 20, 21]), we extend the definition of
the considered Hamiltonian systems to the non-generic case.

Proposition B. When r is not generic, the moduli space Mr is a sym-
plectic orbispace, and the systems of bending flows still make sense.

The proof of Theorem A in this paper actually includes the non-generic
case, leading to the following more general result:

Theorem C. Let r = (r1, . . . , rn) be any n-tuple of positive numbers. The
singular fibers of systems of bending flows carry the same structure (manifold
or orbispace) as the moduli space Mr. Moreover, the symplectic structure
defined on Mr vanishes on those singular fibers.

The organization of this paper is as follows. In §2, we recall the defini-
tion of the Hamiltonian system associated to a maximal family of disjoint
diagonals on the configuration space of 3D polygons with fixed side lengths,
and we describe its singularities. In §3, we give more details about how these
definitions extend to the non-generic case when one uses the notion of sym-
plectic orbispace. In §4, we show that the lifts of singular fibers in the space
of polygons are manifolds. This allows us to prove that, after projection to
the moduli space of polygons, a singular fiber belongs to the same category
as the moduli space containing it (i.e. manifolds or orbispaces). After that,
we prove in §5 that the singular fibers are isotropic. Finally in §6, we de-
scribe how the systems of bending flows onMr relate to integrable systems
on the Grassmannian Gr(2, n) defined by Nohara and Ueda [18] and to the
Gel’fand–Cetlin system on U(n). In particular we provide some arguments
suggesting that the techniques employed in this paper would also apply to
the integrable systems on Gr(2, n).
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2. Geometry of polygons in Euclidean space

2.1. Notations

In this section, we recall some results on the configuration space of polygons
in the Euclidean space R3 established by Kapovich and Millson in [15] and
by Hausmann and Knutson in [12].

Fix n ≥ 4 and a n-tuple of positive numbers r = (r1, . . . , rn). Denote by
‖.‖ the usual Euclidean norm on R3 and let S2 be the unit sphere for this
norm. A polygon in R3 with side lengths r is given by its vertices (p1, . . . , pn)
in R3, satisfying the length condition

∀1 ≤ i ≤ n, ‖pi+1 − pi‖ = ri

(with the convention pn+1 = p1). Up to translations in R3, such a polygon
is actually uniquely determined by the directions

ui =
pi+1 − pi
‖pi+1 − pi‖

∈ S2

of its edges. That is why the set of n-gons in Euclidean space whose edges
have lengths r1, . . . , rn will be identified with the manifold

M̃r =
{
u = (u1, . . . , un) ∈ (S2)n | r1u1 + · · ·+ rnu

n = 0
}
.

Here we will be interested in those polygons up to isometric transformations.
We denote byMr the quotient space of M̃r by the diagonal action of SO(3).

Define a symplectic form ω on the Cartesian product (S2)n by

ω =

n∑
i=1

riωi,

where ωi is the pull-back by the i-th projection of the canonical SO(3)-
invariant area form on the sphere S2. Then the diagonal action of SO(3)
on (S2)n is Hamiltonian with respect to this form ω, and the associated
momentum map is

µ(u1, . . . , un) = r1u
1 + · · ·+ rnu

n

(here we have implicitly identified so(3)∗ with R3, via the usual mapping
u ∈ R3 7→ adu = u× · ∈ so(3), and the isomorphism (R3)∗ ' R3 given by
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the canonical Euclidean structure). The set of 3D polygons with lengths
(r1, . . . , rn) is exactly the zero level-set of this momentum map.

Suppose r = (r1, . . . , rn) is generic, that is to say there is no (ε1, . . . , εn) ∈
{±1}n such that

n∑
i=1

εiri = 0.

Then the action of SO(3) on µ−1(0) = M̃r is free, hence the quotient space
Mr has a natural manifold structure. Denote by TuM̃r the tangent space at
u ∈ M̃r to the space of polygons in Euclidean space. It is the set of n-tuples
X̃ = (X̃1, . . . , X̃n) ∈ (R3)n satisfying 〈ui, X̃i〉 = 0 for all 1 ≤ i ≤ n, and the
infinitesimal closing condition

n∑
i=1

riX̃i = 0.

Because the group SO(3) is compact, the orbit O(u) of the SO(3)-action
passing through an element u ∈ M̃r is a closed submanifold of M̃r. Its
tangent space TuO(u) is the set of all n-tuples

(x× u1, . . . , x× un)

with x ∈ R3, where × stands for the vector cross product. The pairing
〈X̃, Ỹ 〉 =

∑
ri〈X̃i, Ỹ i〉 defines a Riemannian metric on M̃r, and then in-

duces a canonical splitting

TuM̃r = TuO(u)⊕ T hor
u M̃r.

We then have a natural identification T[u]Mr ' T hor
u M̃r between the tan-

gent space to the configuration space Mr at [u] and the horizontal compo-
nent of this splitting.

For 1 ≤ i, j ≤ n such that i 6= j, denote by

µi,j(u) =

{
riu

i + ri+1u
i+1 + · · ·+ rj−1u

j−1 if i < j,

−µj,i(u) if i > j,

the vector going from the i-th vertex to the j-th vertex of the polygon
u ∈ M̃r. If |i− j| = 1, then µi,j(u) is a side of the polygon u, else it is
a diagonal of u. Its length depends only on the configuration [u] of the
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polygon, so the differentiable map f̃i,j : M̃r → R given by

f̃i,j(u) =
1

2
‖µi,j(u)‖2

induces a well-defined map fi,j :Mr → R.
Most definitions and results in this section are adapted without new ideas

from [15], where the authors mainly work with the caterpillar configuration
where all the diagonals emanate from the first vertex of the polygon (i = 1
in our definition).

Proposition 2.1 (Kapovich, Millson [15, Lemma 3.5]). For all 1 ≤
i < j ≤ n, the vector field

X̃i,j(u) = (0, . . . , 0, µi,j(u)× ui, . . . , µi,j(u)× uj−1, 0, . . . , 0)

satisfies df̃i,j = ω(X̃i,j , ·). In particular, its image Xi,j in (Mr, ω) is the
Hamiltonian vector field associated to fi,j.

Proof. Let Ỹu = (Ỹ 1, . . . , Ỹ n) ∈ TuM̃r. We have

ωu(X̃i,j(u), Ỹu) =

j−1∑
k=i

rk det(uk, µi,j(u)× uk, Ỹ k).

It suffices to apply the vector calculus identities

det(a, b, c) = 〈a, b× c〉 and (a× b)× c = 〈a, c〉b− 〈b, c〉a

and use the fact that 〈uk, Ỹ k〉 = 0 to obtain

ωu(X̃i,j(u), Ỹu) =

j−1∑
k=i

rk〈µi,j(u), Ỹ k〉 = df̃i,j(u)Ỹ

�

Geometrically, when µi,j(u) is a non-vanishing diagonal of u, this vector
field corresponds via its flow to the bending of the polygon u along this
diagonal with angular speed ‖µi,j(u)‖. From now on, we will refer to X̃i,j

as the bending vector field associated to the diagonal µi,j . On the subset of
M̃r consisting of polygons u such that µi,j(u) 6= 0, one can divide X̃i,j(u)
by ‖µi,j(u)‖ and obtain a vector field B̃i,j , which corresponds to the same
bending with unit angular speed. Note that those flows are well defined on



i
i

“1-Bouloc” — 2018/10/29 — 22:41 — page 591 — #7 i
i

i
i

i
i

Singular fibers of the bending flows of 3D polygons 591

the quotient space Mr, and we denote by Xi,j and Bi,j the images of X̃i,j

and B̃i,j respectively. For later use, we also introduce the inverse bending
vector field associated to d = µi,j

X̃ inv
i,j (u) = −(d(u)× u1, . . . , d(u)× ui−1, 0, . . . , 0, d(u)× uj , . . . , d(u)× un)

which corresponds geometrically to the bending which rotates (with inverse
orientation) the half of the polygon that X̃i,j fixes, and vice versa. Of course,
X̃i,j and X̃ inv

i,j have same image in the moduli space Mr. Indeed,

X̃i,j(u)− X̃ inv
i,j (u) = (µi,j(u)× u1, . . . , µi,j(u)× un) ∈ TuO(u).

Following the definitions in [15], we will say that two diagonal maps µi,j
and µp,q are disjoint if the corresponding diagonals µi,j(u0) and µp,q(u0)
in a convex planar n-gon u0 do not intersect in the interior of u0. This
condition is necessary to obtain the Poisson-commutativity of the associated
maps (fi,j), that we will use to define a integrable Hamiltonian system on
(Mr, ω).

Proposition 2.2 (Kapovich, Millson [15, Proposition 3.6]). If µi,j
and µp,q are two disjoint diagonal maps, then the associated vector fields
X̃i,j and X̃p,q satisfy

ω(X̃i,j , X̃p,q) = 0.

In particular the maps fi,j and fp,q Poisson-commute in (Mr, ω).

Proof. Without loss of generality, we can assume i < j, p < q and i < p. For
any u ∈ M̃r,

ωu(X̃i,j(u), X̃p,q(u)) =
∑
k∈I

rk det(uk, µi,j(u)× uk, µp,q(u)× uk)

where I is the set of integers k such that i ≤ k ≤ j − 1 and p ≤ k ≤ q − 1.
Using vector calculus identities, we obtain

ωu(X̃i,j(u), X̃p,q(u)) =
∑
k∈I

rk det(µi,j(u), µp,q(u), uk).

Now it suffices to remark that if µi,j and µp,q are disjoint, then I is either
{p, . . . , q − 1} or the empty set. In the second case the right-hand side of the
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equation is zero, in the first case it can be written as

det(µi,j(u), µp,q(u), µp,q(u))

and then it vanishes too. �

Given a family of n− 3 disjoint diagonal maps d1, . . . , dn−3, define a
map F̃ = (F̃1, . . . , F̃n−3) : M̃r → Rn−3 by

F̃k(u) =
1

2
‖dk(u)‖2 = f̃i,j(u),

where 1 ≤ k ≤ n− 3 and dk = µi,j . This map induces a well-defined map F :
Mr → Rn−3, which is the integrable Hamiltonian system we are interested
in. Now we will recall some results established by Kapovich and Millson [15].
They prove most of these results in the case where dk = µ1,k for all 1 ≤ k ≤
n− 3, but they obviously hold for any choice of disjoint diagonals.

Remark 2.3. The two diagonals µi,j and µj,i provide the same map f̃i,j =
f̃j,i, so when fixing a family of disjoint diagonals (d1, . . . , dn−3), we can
always assume that each dk = µik,jk satisfies ik < jk. In other words, the
system F does not depend on the orientation of the diagonals d1, . . . , dn−3.
That is why a diagonal dk will be often considered up to orientation with
no further precision.

2.2. Singular points of the system

Suppose fixed a family of disjoint diagonals (d1, . . . , dn−3), and let F :Mr →
Rn−3 be the corresponding integrable Hamiltonian system on (Mr, ω). For
1 ≤ i < j < k ≤ n, the face of the polygon u ∈ M̃r between the vertices i,
j and k is the triple

∆i,j,k(u) = (µi,j(u), µj,k(u), µk,i(u)).

Such a face will be said adapted to the system F if each component of
the triple ∆i,j,k(u) is either a side µi,i(u) = riu

i of u, or one of the fixed
diagonal d1(u), . . . , dn−3(u) (up to orientation, that is µi,j = ±dp, see Re-
mark 2.3 above). This obviously depends only on the integers i, j, k: the
family of adapted faces (∆i,j,k) is uniquely determined by the choice of dis-
joint diagonals. Those faces are exactly the ones with constant edge lengths
along the fibers F−1(c1, . . . , cn−3) of the system. Adapted faces provide the
following characterization for singular points:
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Proposition 2.4 (Charles [6, Theorem 4.1]). The configuration [u] ∈
Mr is a singular point of the system F if and only if there exists a face
∆i,j,k adapted to F such that ∆i,j,k(u) is degenerate (in the sense that its
components are linearly dependent).

Proof. We will see later that when no adapted face ∆i,j,k(u) is degener-
ate, then the fiber N = F−1(c1, . . . , cn−3) containing [u] is diffeomorphic to
Tn−3. This implies that [u] is a regular value of F . Hence it suffices to prove
now that when some adapted face ∆i,j,k(u) is degenerate, [u] is a singular
value of the system.

Suppose first that a component of ∆i,j,k(u) vanishes, say µi,j(u). Then
necessarily j > i+ 1, in other words µi,j is a diagonal and not a side. It
follows that the Hamiltonian vector field X̃i,j(u) vanishes, and then by non-
degeneracy of ω, so does the differential of f̃i,j at u. By definition of being
an adapted face, f̃i,j is precisely a component of the map F̃ , hence u is a
singular value of F̃ . It follows that [u] is a singular value of F .

Suppose now that none of the components of ∆i,j,k(u) vanishes. Recall
that n ≥ 4, so at least one of the components of ∆i,j,k(u) is a diagonal of
u. We will distinguish the cases when exactly one, two or three components
are diagonals while the other are sides of the polygon.

1) Only one component of ∆i,j,k(u) is a diagonal dq(u). Then the sides
of ∆i,j,k(u) are either
• dq(u) = µp,p+2(u), a = rpu

p and b = rp+1u
p+1, with 1 ≤ p ≤ n− 2,

• dq(u) = µn−1,1(u), a = rn−1u
n−1 and b = rnu

n,
• dq(u) = µn,2(u), a = rnu

n and b = r1u
1.

The degeneracy of ∆i,j,k(u) implies dq(u)× a = dq(u)× b = 0. In the
first case, this gives

X̃p,p+2(u) = (0, . . . , 0),

while in the two other cases the Hamiltonian vector field X̃ associated
to F` can be written

X̃(u) = (dq(u)× u1, . . . , dq(u)× un) ∈ TuO(u)

and then its image X(u) vanishes in T[u]Mr. Geometrically, that cor-
responds to the fact that the bending flow associated to dq(u) either
has no effect on u, or rotates the whole polygon u (and then has no
effect on [u]).

2) Two components of ∆i,j,k(u) are diagonals dp(u) and dq(u).
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If those two diagonals are µ1,`(u) and µ`,n(u) (with, necessarily,
3 ≤ ` ≤ n− 2), then the third side of ∆i,j,k is rnu

n. The condition of
degeneracy implies the existence of α, β 6= 0 such that αµ1,`(u) = un =
βµ`,n(u). Then we have

αX̃1,`(u) + βX̃`,n = (un × u1, . . . , un × un) ∈ TuO(u),

therefore αX1,`(u) + βX`,n(u) = 0 in T[u]Mr. Geometrically, this il-
lustrate the fact that the flows associated to dp(u) and dq(u) are “al-
most” collinear, except they do not bend the same half of the polygon.
They become rigorously collinear once we consider the configuration
space Mr.

Now if those two diagonals are µa,b(u) and µa,b+1(u), then it suffices
to remark that the degeneracy condition µa,b+1(u) = αµa,b(u) = βub

leads to

X̃a,b+1 = αX̃a,b.

An analogous equality is obtained when dp(u) = µa,b(u) and dq(u) =
µa+1,b(u).

3) The three sides µi,j(u), µj,k(u), µi,k(u) of the face ∆i,j,k are diagonals
of u. Then µi,k(u) = αµi,j(u) = βµj,k(u) implies

αX̃i,j(u) + βX̃j,k(u) = X̃i,k(u).

In the three cases, we obtain that the Hamiltonian vector fields associated
to the maps F1, . . . , Fn−3 are linearly dependent at [u]. Equivalently, the
differential maps dF1([u]), . . . ,dFn−3([u]) are linearly dependent, therefore
[u] is a singular point of F . �

2.3. Global action–angle coordinates on the regular
configurations

Denote by M0
r the regular part of Mr, that is the set of configurations [u]

such that no adapted face ∆i,j,k is degenerate at u. This subset of Mr is
equipped with global action–angle coordinates.

For 1 ≤ k ≤ n− 3, define `k :M0
r → R by

`k([u]) = ‖dk(u)‖ = 2
√
Fk(u).

The diagonals d1, . . . , dn−3 do not vanish onM0
r, so `1, . . . , `n−3 are smooth

functions on M0
r. If dk = µi,j , the Hamiltonian vector field associated to
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`k is the normalized bending vector field Bi,j defined previously. Its flow is
defined by

ψtk([u]) = [u1, . . . , ui−1, Rtdk(u)u
i, . . . , Rtdk(u)u

j−1, uj , . . . , un]

where Rtdk(u) is the rotation of angle t around the axis dk(u). Note that

4{fp, fq} = {`2p, `2q} = 4`p`q{`p, `q}

so Proposition 2.2 implies the Poisson-commutativity:

{`p, `q} = 0.

For 1 ≤ k ≤ n− 3, the diagonal dk belongs to the boundaries of exactly
two adapted faces ∆1 and ∆2. For u ∈M0

r, denote by θ̂k(u) the dihedral
angle between ∆1 and ∆2, oriented in such a way that θ̂k decreases when
applying the flow ψtk with positive values of t. Then define a map θk :M0

r →
T1 by

θk([u]) = π − θ̂k(u).

It is defined this way so that the condition θk([u]) = 0 for all 1 ≤ k ≤ n− 3
corresponds to a planar polygon. Lemma 4.5 of [15] states that

{θp, θq} = 0.

By the definitions above, we have

θp(ψ
t
q([u])) = θp([u]) + tδp,q,

which after differentiation gives the relation

{θp, `q} = δp,q.

Therefore `1, . . . , `n−3, θ1, . . . , θn−3 are global action–angle coordinates on
M0

r.
If N = F−1(c1, . . . , cn−3) is a fiber of the system where no adapted face

vanishes, these coordinates provide a diffeomorphism

N ' T1 × · · · × T1 = Tn−3,

where each T1 component correspond to the bending flow around some di-
agonal dk.
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3. Extension to the non-generic case

Suppose now that r = (r1, . . . , rn) is not generic, that is

n∑
i=1

εiri = 0

for some (ε1, . . . , εn) ∈ {±1}n. Then there exist polygons u = (u1, . . . , un) ∈
M̃r such that u1, . . . , un belong to a same line. For example, take u =
(ε1u

0, . . . , εnu
0) for any u0 ∈ S2. The existence of such degenerate polygons

implies that the action of G = SO(3) on M̃r is not free anymore. Indeed,
if u is a degenerate polygon contained in the line

{
λu0 | λ ∈ R

}
, then its

isotropy group Gu is the set of all rotations of axis u0. The quotient space
Mr is not a manifold anymore.

However, the configuration space Mr still has the structure of a sym-
plectic orbispace in the sense of [21]. Indeed, the orbispace atlas on Mr

consists of the single chart (M̃r, SO(3), π), where π : M̃r →Mr is the
canonical projection on the quotient space. We take as a SO(3)-invariant
symplectic form on this chart the form ω defined above. By definition, the
smooth maps f : U → R on an open subset U ⊂Mr are the maps such that
f ◦ π : π−1(U)→ R is smooth. This is the case in particular for the maps
fi,j defined above.

Recall that a symplectic orbispace has a natural stratification into sym-
plectic manifolds:

Proposition 3.1 (Pflaum [21, §1.3, §2.4, and Proposition 3.3]). Let
G be a Lie group acting properly on a smooth manifold M̃ . Denote by M =
M̃/G the corresponding quotient space. If x ∈ M̃ , denote by Gx the isotropy
group of the action at x, by N(Gx) its normalizer in G, and by MGx the
submanifold of elements in M with same isotropy group. Then:

1) The manifold M̃ admits a natural stratification by isotropy type. The
strata are the submanifolds consisting of elements of M̃ whose isotropy
groups are conjugate to each other.

2) This stratification induces a stratification of the quotient space M .
The stratum Sx containing [x] ∈M is diffeomorphic to the (smooth)
quotient space of Mx by the proper and free action of Γx = Gx/N(Gx).

Let X be an orbispace. Fix x ∈ X and consider a local orbispace chart
(Ũ , G, π) around x.
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3) Let Sx be the stratum containing x in the stratification of U = Ũ/G
by isotropy type. Then Sx does not depend on the choice of the local
chart (Ũ , G, π). It follows that X admits a canonical stratification.

4) Moreover if X is a symplectic orbispace, then every stratum Sx carries
the structure of a Poisson manifold in a canonical way.

In our case, this decomposition coincides with the one between degener-
ate and nondegenerate polygons.

Proposition 3.2. Let r = (r1, . . . , rn) be non-generic. Then the configura-
tion space Mr is a symplectic orbispace whose corresponding stratification
is

Mr =Mnd
r tMd

r,

where Mnd
r (resp. Md

r) is the manifold consisting of [u] ∈Mr with u non-
degenerate polygon (resp. with u degenerate polygon).

The Mnd
r component is open and dense in Mr, while the Md

r compo-
nent is a finite union of points. Each stratum carries in a natural way the
structure of a Poisson manifold.

Proof. Let g ∈ SO(3) be different from the identity. The set of elements in
S2 fixed by g is {v0,−v0}, where v0 ∈ S2 spans the axis of the rotation g.
Then g belongs to the isotropy group Gu of a polygon u ∈ M̃r if and only if
u is a degenerate polygon contained in the axis of g. So, the isotropy group
of u ∈ M̃r is

Gu =

{{
rotations of axis u1

}
if u is degenerate,

{id} if u is nondegenerate.

The subgroups of rotations around a fixed axis are conjugate to each other
in SO(3), so the decomposition of M̃r with respect to the conjugacy classes
of the isotropy groups is the partition

M̃r = M̃nd
r t M̃d

r

between nondegenerate and degenerate polygons, leading to the stratifica-
tion of Mr by the sets Mnd

r = π(M̃nd
r ) and Md

r = π(M̃d
r).

Now remark the following. The set M̃nd
r is exactly the set of polygons u

with trivial isotropy group, so the action of SO(3) is free on M̃nd
r andMnd

r

is exactly the corresponding quotient manifold. If u ∈ M̃d
r is a degenerate
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polygon, then MGu
is the set of degenerate polygons in Mr with same

direction as u. It is a subset of{
(ε1u

1, . . . , εnu
1) | ε1 = ±1, . . . , εn = ±1

}
which is finite, so Mnd

r is also finite. �

Denote by TMr the tangent orbibundle ofMr. It is the orbispace whose
atlas contains the single chart (TM̃r, G, p), where the action of G on TM̃r is
obtained by differentiating the action of G on M̃r, and p : TM̃r → G\TM̃r

is the canonical projection to the quotient space. To a vector orbibundle is
naturally associated a stratified vector bundle:

Proposition 3.3 (Pflaum [21, §2.10]). Let E be a vector orbibundle.
Let (Ẽ,G, p) be a local orbibundle chart of E and (Ũ , G, π) the associated
orbispace chart. For x ∈ Ũ , denote by Gx the isotropy subgroup of the action
at x, and let ẼGxx be the linear subspace of Gx-invariant elements of the fiber
Ẽx.

1) If S is a stratum of Ũ (in the stratification by isotropy type), then the
space

ẼS = ∪x∈S̃ Ẽ
Gx
x

is a smooth vector bundle over S̃, and ẼS/G is a smooth vector bundle
over S = S̃/G.

2) These spaces define a stratification of Estrat
U = ∪SẼS/G.

We call stratified vector bundle associated to E the stratified space

Estrat = ∪U p(Estrat
U ) ⊂ E.

In our case, the stratification takes the following simple form.

Proposition 3.4. The stratified vector bundle associated to the vector or-
bibundle TMr is given by the stratification

TMstrat
r = TMnd

r t TMd
r.

Moreover, TMstrat
r is dense in TMr.

Proof. Take (TM̃r, G, p) the single chart of the tangent orbibundle of Mr,
and let u ∈ M̃r. Recall that X = (X1, . . . , Xn) ∈ TuMr satisfies 〈Xi, ui〉 =



i
i

“1-Bouloc” — 2018/10/29 — 22:41 — page 599 — #15 i
i

i
i

i
i

Singular fibers of the bending flows of 3D polygons 599

0 for all 1 ≤ i ≤ n, and that the action of g ∈ SO(3) on X is defined by

g ·X = (gX1, . . . , gXn).

If u is nondegenerate, then Gu = {id} and hence TuM̃Gu
r = TuM̃r. If u is

degenerate, then Gu is the subgroup of SO(3) consisting of rotations around
the axis spanned by any ui (they are all collinear). Because Xi is orthogonal
to ui, gXi = Xi holds if and only if Xi = 0, so we have TuM̃Gu

r = {0}.
Then define the vector bundles End = ∪u∈M̃nd

r
TuM̃r over M̃nd

r and

Ed = M̃d
r × {0} over M̃d

r. Taking the quotient by SO(3), one obtains the
stratification given in the proposition. The fact that TMstrat

r is dense in
TMr comes from the fact that the tangent orbibundle of an orbispace is
always a reduced orbibundle. �

A smooth section X :Mr → TMr is a smooth stratified section of the
tangent orbibundle TMr if there exists a smooth SO(3)-invariant section
X̃ : M̃r → TM̃r such that

p ◦ X̃ = X ◦ π.

The space Γ∞strat(TMr) of smooth stratified sections of the tangent orbibun-
dle is a C∞(X)-module. In particular, the vector fields X̃i,j on TM̃r defined
above induce smooth stratified sections of the tangent orbibundle, that we
denote by Xi,j as before.

Fix n− 3 disjoint diagonals (d1, . . . , dn−3) and consider the restrictions
to the stratumMnd

r of the functions F1, . . . , Fn−3 ∈ C∞(Mr) defined above.
They define a classical integrable system on Mnd

r . Indeed, these maps al-
ready Poisson-commute pairwise in M̃r according to Proposition 2.2, and
the description of singular points given by Proposition 2.4 holds on Mnd

r

with the same proof. Actually, this description even holds on Mr because
a degenerate polygon is necessarily a singular point of F = (F1, . . . , Fn−3),
and in the same time all its faces are degenerate. So in this sense, the in-
tegrable system F = (f1, . . . , fn−3) on Mr extends to the non-generic case
using the notion of symplectic orbispace.

4. Structure of the singular fibers

The goal of this section is to prove that a singular fiberN=F−1(c1, . . . , cn−3)
is generically a submanifold ofMr. To do so, we will first prove that its lift
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Ñ = F̃−1(c1, . . . , cn) is a submanifold of M̃r diffeomorphic to a product

M̃ = SO(3)× · · · × SO(3)× T1 × · · · × T1 × S2 × · · · × S2,

and such that the action of SO(3) on Ñ corresponds to the multiplication
on the left on the SO(3) and S2 components on M̃ . Then it will suffice to
prove that the resulting quotient space SO(3)\M̃ is a manifold.

Suppose first that none of the diagonals d1, . . . , dn−3 vanishes on Ñ (fol-
lowing [12], we say that the polygons in the fiber Ñ —or the fiber itself—
are prodigal). Let ∆i,j,k be an adapted face which is degenerate on Ñ (re-
call that ∆i,j,k(u) keeps constant side lengths as u varies in Ñ , hence the
degeneracy of ∆i,j,k(u) is independent of the choice of u ∈ Ñ). If we cut the
polygon u along the line segment containing the degenerate face ∆i,j,k(u),
we obtain three polygons

u1 =

(
− µi,j(u)

‖µi,j(u)‖
, ui, . . . , uj−1

)
∈ M̃r1 , r1 = (ρ1, ri, . . . , rj−1)

u2 =

(
−

µj,k(u)

‖µj,k(u)‖
, uj , . . . , uk−1

)
∈ M̃r2 , r2 = (ρ2, rj , . . . , rk−1)

u3 =

(
µi,k(u)

‖µi,k(u)‖
, uk, . . . , un, u1, . . . , ui−1

)
∈ M̃r3 , r3 = (ρ3, rk, . . . , ri−1)

where ρ1, ρ2, ρ3 ∈ {r1, . . . , rn, c1, . . . , cn−3} do not depend on u ∈ Ñ (see Fig-
ure 1). Note that some of these polygons might actually be digons. Be-
cause the diagonals d1, . . . , dn−3 are disjoint, for each 1 ≤ p ≤ 3 such that
card(rp) ≥ 4, they induce a system F̃p on M̃rp such that up take values in a
fiber Ñp of F̃p as u varies in Ñ . If M̃rp is just a space of digons or triangles,
we set Ñp = M̃rp and we consider that it is a “regular fiber of the system”
(although there is actually no system defined on M̃rp) in the sense that
it is a manifold diffeomorphic to either S2 (space of digons or degenerate
triangles) or SO(3) (space of nondegenerate triangles). The map

ϕ : u ∈ Ñ 7−→ (u1,u2,u3) ∈ Ñ1 × Ñ2 × Ñ3

is clearly one-to-one, and its image is the set

(4.1) S =
{

(u1,u2,u3) ∈ Ñ1 × Ñ2 × Ñ3 | α1u
1
1 + α2u

1
2 + α3u

1
3 = 0

}
where the triple (α1, α2, α3) 6= (0, 0, 0) is determined by the relation of linear
dependence between the sides of ∆i,j,k(u).
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i jk

u1
u3

u2
u

Figure 1: Splitting of a singular polygon along a degenerate face.

Proposition 4.1. The fiber Ñ is a manifold diffeomorphic to either

• the sphere S2,

• a product SO(3)× T1 × · · · × T1 where each T1 component corresponds
to a bending flow on Ñ .

Proof. If Ñ is a fiber consisting in degenerate polygons u, it is uniquely
determined by the first edge u1, and then it is diffeomorphic to the sphere
S2.

Suppose now that Ñ contains nondegenerate polygons. Assume that
Ñ1, Ñ2 and Ñ3 are regular fibers. Then S and Ñ are manifolds and ϕ is a
diffeomorphism. Define three kinds of actions on S:

1) For g ∈ SO(3), consider the diagonal action

g · (u1,u2,u3) = (g · u1, g · u2, g · u3).

2) For every 1 ≤ p ≤ 3 such that card(rp) ≥ 4, define an action of some
torus Tq on S using the bending flows of the system F̃p. Equivalently,
it can be defined as the image by ϕ of some bending flow of the system
F̃ . Note that if this flows moves u1p, we replace it by its inverse flow,
which fixes u1p, so that the action is well-defined on S.

3) For every Ñp containing nondegenerate polygons but one, consider the
action of T1 on S by rotation of up around its first edge u1p (e.g. if

only one Ñp contains nondegenerate polygons then there is no action
of this kind, if only Ñ1 and Ñ2 contains nondegenerate polygon then
consider only the rotation of u2, etc.). It is also the image by ϕ of
some (possibly inverse) bending flow of F̃ .
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All those actions are commuting pairwise, and therefore induce an action of
some group

G = SO(3)× Tr+`

on S, with r ≥ 0 and 0 ≤ ` ≤ 2, such that each toric component can be
interpreted as some bending flow of the system F̃ . Let us prove that this
action is free and transitive.

Let x = (g, θ1, θ2, . . . , θr+`) ∈ G such that x · (u1,u2,u3) = (u1,u2,u3)
for some (u1,u2,u3) ∈ S. By definition of our action,

x · (u1,u2,u3) = (gg1 · ϕt11 (u1), gg2 · ϕt22 (u2), gg3 · ϕt33 (u3))

where each ϕp is a composition of bending flows, and gq is either the identity
or the rotation with angle θr+1 or θr+2 around the axis spanned by u1q ∈ S2.
Hence for each 1 ≤ p ≤ 3 we have

[up] = [ϕtpp (up)]

in the fiber Np of the moduli spaceMrp . But on regular fibers, the bending

flows act freely so we have ϕ
tp
p = id, or equivalently

θ1 = · · · = θr = 0.

By construction of our action, there is one nondegenerate up such that
gp = id. Thus we have g · up = up, which implies g = id. Therefore for all
1 ≤ p ≤ 3, either up is degenerate and then gp = id by definition of the
action, or up is nondegenerate and then gp · up = up implies gp = id. Then
θr+1 and θr+2, when they exist, vanish. This proves that x is the identity of
G, so the action is free.

Take now u = (u1,u2,u3) and v = (v1,v2,v3) in S, and let us suitably
choose x ∈ G so that x · u = v. For convenience, let us assume ` = 2 (the
proof is similar for 0 ≤ ` ≤ 1). First, using the transitivity of the bending
flows on regular fibers, we can fix θ1, . . . , θr such that

(id, θ1, . . . , θr, 0, 0) · u = (ϕt11 (u1), ϕ
t2
2 (u2), ϕ

t3
3 (u3))

satisfies [ϕ
tp
p (up)] = [vp] in Np for all 1 ≤ p ≤ 3. In particular, there exists

g ∈ SO(3) such that g · ϕt11 (u1) = v1. Denote by (w1,w2,w3) the triple

(g, θ1, . . . , θr, 0, 0) · u = (g · ϕt11 (u1), g · ϕt22 (u2), g · ϕt33 (u3)).

We have w1 = v1 and [wq] = [g · ϕtqq (uq)] = [ϕ
tq
q (uq)] = [vq] for 2 ≤ q ≤ 3.

Hence there exists gq ∈ SO(3) such that gq ·wq = vq. Recall that elements
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in S have their components linked by a fixed relation, namely for q = 1, 2,
there exists εq = ±1 such that u11 = εqu

1
q and v11 = εqv

1
q . On one hand, the

flow ϕq preserves the first edge, and gq ∈ SO(3) preserves the orientation,
so the first expression implies w1

1 = εqw
1
q . On the other hand, the second

expression implies w1
1 = εqgqw

1
q . Therefore gqw

1
q = w1

q , which implies that
gq is a rotation of axis w1

q with some angle αq (possibly equal to 0). Then
we have

(g, θ1, . . . , θr, α2, α3) · u = (w1, g2 ·w2, g3 ·w3) = (v1,v2,v3).

Thus the action of G on S is transitive.
This proves the proposition in the case where Ñ1, Ñ2 and Ñ3 are reg-

ular. We then extend it to the general case by induction on the number of
degenerate faces of Ñ . �

Suppose now that some diagonal dk = µi,j vanishes on Ñ . Then the
polygon u can be seen as the wedge sum of two polygons with fewer sides

u1 = (u1, . . . , ui−1, uj , . . . , un) ∈ M̃r1 , r1 = (r1, . . . , ri−1, rj , . . . , rn),

u2 = (ui, . . . , uj−1) ∈ M̃r2 , r2 = (ri, . . . , rj−1).

As before, because the diagonals d1, . . . , dn−3 are disjoint, we have two nat-
ural systems on M̃r1 and M̃r2 such that (u1,u2) belongs to a product of
fibers Ñ1 × Ñ2 as u varies in Ñ . Repeating this process of splitting, we
obtain a map

ϕ : u ∈ Ñ 7−→ (u1, . . . ,uq) ∈ Ñ1 × · · · × Ñq

one-to-one and onto where each Ñp is a prodigal fiber of some smaller system
F̃p. Hence

Ñ1 × · · · × Ñq

is a manifold and ϕ−1 is an embedding, leading to the following proposition:

Proposition 4.2. Let [u] ∈Mr be a singular point of some system F :
Mr → Rn−3 defined by a family of disjoint diagonals. Then the fiber Ñ
containing u is a manifold, diffeomorphic to a product

(4.2) SO(3)× · · · × SO(3)× T1 × · · · × T1 × S2 × · · · × S2

The action of SO(3) on Ñ correspond by this diffeomorphism to the multi-
plication on the left on the SO(3) and S2 components in the product.
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T1

T1

T1
T1

SO(3)

SO(3)

S2

Figure 2: Geometrical meaning of SO(3), T1 and S2 components.

This decomposition can be explained geometrically as follows (see Fig-
ure 2). Consider a polygon u in the fiber Ñ . If some of its diagonals vanish,
it can be seen as a wedge product of prodigal polygons with fewer sides. If
one of these smaller polygons is degenerate, one can rotate it around the
origin without changing the diagonal lengths of the whole polygon u: this
is the meaning of the corresponding S2 component. Similarly, a nondegen-
erate smaller polygon can be rotated around the origin. Once one chooses
a face of this polygon as a reference, this rotation is uniquely determined
by an element of SO(3). Applying to u those two transformations and the
bending flows of each smaller polygon (the T1 components), one can obtain
any other polygon in Ñ .

Remark 4.3. It was pointed out to us by the referee that the above decom-
postion of non-prodigal polygons into wedge sums of prodigal polygons is
closely related to the toric manifold constructed by Kamiyama and Yoshida
in [14]. Let us recall briefly their construction. Define an equivalence relation
on M̃r (with the caterpillar configuration) by setting u ∼ v if the following
two conditions are satisfied:

1) u and v are in the same fiber of F̃ (so in particular the same diagonals
vanish in u and v),
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2) if u = (u1, . . . ,uq) and v = (v1, . . . ,vq) are the decompositions of u
and v into prodigal polygons, then there exists (g1, . . . , gq) ∈ SO(3)q

such that for any 1 ≤ i ≤ q we have gi · ui = vi.

Then the quotient V = M̃r/ ∼ is a symplectic toric manifold whose momen-
tum map has same image as F in Rn−3 and we have a natural projection
p :Mr → V .

Let Ñ be a fiber of F̃ . Consider the diffeomorphism 4.2 given by the
above proposition that identifies a polygon u with (g,θ,v) ∈ (SO(3))p ×
Tq × (S2)k. From the diagonal actions of SO(3)p on itself and of SO(3)k on
(S2)k we define an action of SO(3)p+k on Ñ by:

(h,h′) · u = (h · g,θ,h′ · v)

for any (h,h′) ∈ SO(3)p × SO(3)k = SO(3)p+k. Then the orbits for this ac-
tion are exactly the elements in p(N) ⊂ V .

Now we would like to determine the structure of the corresponding fiber
N in the moduli space Mr. If Ñ contains at least one SO(3) component,
then considering a polygon u ∈ Ñ up to isometric transformation is equiv-
alent to fixing a given face of a nondegenerate polygon forming u. So the
fiber N should be diffeomorphic to the same product as Ñ but with one
SO(3) component removed. However, if the decomposition of Ñ does not
contain any SO(3) component, or equivalently if Ñ contains only polygons
which are wedge sums of degenerate polygons, then the structure of N is
much less obvious. We will then distinguish those two cases, saying that:

• Ñ is of type I if there is at least one SO(3) component after reduction,

• Ñ is of type II if there are only S2 components after reduction.

Now we can formulate the following result:

Theorem 4.4. Let N be a singular fiber of the Hamiltonian integrable sys-
tem F = (F1, . . . , Fn−3) on Mr. Denote by Ñ the corresponding fiber in
M̃r.

• If Ñ is of type I, then N is a manifold diffeomorphic to

SO(3)× · · · × SO(3)× T1 × · · · × T1 × S2 × · · · × S2.

In particular it is an homogeneous manifold.
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• If Ñ is of type II, then N is an orbispace whose associated stratification
is

N = Nnd tNd,

where Nnd (resp. Nd) is the manifold N ∩Mnd
r consisting in config-

urations of nondegenerate polygons (resp. the manifold N ∩Md
r con-

sisting in configurations of degenerate polygons).

Proof. Suppose Ñ is of type I. It is a homogeneous manifold with at least
one SO(3) component. Recall that the action of SO(3) on

Ñ ' SO(3)p × Tq × (S2)k

is given by

g · (g1, . . . , gp, θ1, . . . , θq, v1, . . . , vk) = (gg1, . . . , ggp, θ1, . . . , θq, gv1, . . . , gvk),

the corresponding quotient space being N by definition. SO(3) is com-
pact, and the action is free because there is at least one SO(3) compo-
nent, on which gg1 6= g1 as long as g 6= id. Hence N is a manifold. Let
M = SO(3)p−1 × Tq × (S2)k be the same product as Ñ with one SO(3)
component removed. The map ϕ̃ : Ñ →M defined by

ϕ̃(g, θ, v) = ((g−11 g2, . . . , g
−1
1 gp), θ, g

−1
1 v)

is differentiable and onto. Moreover we have ϕ̃(g, θ, v) = ϕ̃(g′, θ′, v′) if and
only if [(g, θ, v)] = [(g′, θ′, v′)] in N , so we obtain a diffeomorphism ϕ : N →
M .

Now if Ñ is of type II, the action of SO(3) is not free anymore. For
example if g ∈ SO(3) is a non-trivial rotation around some axis v0 ∈ S2,
then one has g · (v0, . . . , v0) = (v0, . . . , v0) even though g 6= id. However, it
is still the quotient space of the smooth action of a compact group on a
manifold, so N is an orbispace. The decomposition of M̃r with respect to
the isotropy type restricts to a decomposition

Ñ = Ñnd t Ñd

with Ñnd = M̃nd
r ∩N and Ñd = M̃d

r ∩N . The quotient of Ñnd (resp. of
Ñd) by the action of SO(3) can be naturally identified withMnd

r ∩N (resp.
with Md

r ∩N), leading to the stratification stated in the theorem. �
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Remark 4.5. Note that M̃r admits type II fibers only if r is not generic.
Indeed, suppose the polygon u ∈ M̃r belongs to some type II fiber

Ñ ' S2 × · · · × S2.

Then u is a wedge sum of degenerate polygons. Up to rotating each com-
ponent of this wedge sum, we can construct a polygon u′ ∈Mr which is
degenerate, so r is not generic.

Remark 4.6. Let ι̃ : Ñ ↪→ M̃r be the inclusion of some fiber Ñ in the
space of 3D polygons with lengths r. It is a smooth map compatible with
the action of SO(3), so it induces a morphism ι : N →Mr of manifolds or
orbispaces (depending on whether r is generic or not). Theorem 4.4 states
that N is a sub-object of Mr carrying the same structure.

5. Isotropicness of the fibers

The goal of this section is to prove that any fiber N of the system F =
(F1, . . . , Fn−3) defined by disjoint diagonals d1, . . . , dn−3 is isotropic, that is
that the symplectic structure ω on Mr vanishes on the vectors tangent to
N . Recall that we have the stratification

Mr =Mnd
r tMd

r

with Mnd
r dense open submanifold of Mr and Md

r finite union of points
(empty when r is generic). The tangent space TMr contains the dense
stratified space

TMstrat
r = TMnd

r t TMd
r.

Hence it suffices to prove that

∀[u] ∈ Nnd, ∀X,Y ∈ T[u]Nnd, ω[u](X,Y ) = 0,

where ω is the symplectic form induced onMnd
r . That is why we will use the

following abuse of notation throughout this section: for purpose or clarity,
we will write N (respectivelyMr, Ñ , M̃r) for Nnd (respectivelyMnd

r , Ñnd,
M̃nd

r ), as if r was generic.

5.1. Generators of the tangent space

As a first step, it will be useful to exhibit, for any polygon u in a singular
fiber Ñ , a family of vectors that spans the tangent space TuÑ .
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For 1 ≤ i < j ≤ n and v ∈ R3, set

Ỹ v
i,j(u) = (0, . . . , 0, v × ui, . . . , v × uj−1, 0, . . . , 0).

Recall that, for Ỹ v
i,j(u) to be a well-defined vector in TuM̃r, the infinitesimal

closing condition has to be verified, namely

j−1∑
`=i

r`(v × u`) = v × µi,j(u) = 0.

Note that this condition is automatically satisfied when v = µi,j(u), and
the vector obtained is exactly the image at u of the bending vector field
associated to µi,j .

The vector Ỹ v
i,j(u) is also well-defined when µi,j(u) = 0. Therefore if u

is the wedge sum of proper polygons u1, . . . ,uq (as in §4), then in particular
we can define vectors Ỹ v

u1
, . . . , Ỹ v

uq corresponding to the rotation of each

component of the wedge sum around the axis v ∈ R3.

Lemma 5.1. Let Ñ be a singular fiber of the system F̃ defined by a family
of disjoint diagonals d1, . . . , dn−3. Let u 7→ (u1, . . . ,uq) be the decomposition
of polygons in Ñ into wedge sums of prodigal polygons.

For every 1 ≤ j ≤ q, let (vj,1, vj,2, vj,3) be a basis of R3. Then for every
u ∈ Ñ , the family{

X̃i, Ỹ
vj,k
uj (u) | 1 ≤ i ≤ n− 3, 1 ≤ j ≤ q, 1 ≤ k ≤ 3

}
spans the tangent space TuÑ .

Proof. According to §4, Ñ is diffeomorphic to a product Ñ1 × · · · × Ñq where
each component of the product satisfies

Ñi '

{
S2 if ui is degenerate,

SO(3)× Tki if ui is nondegenerate.

Fix u ∈ Ñ . For 1 ≤ i ≤ q, denote by πi the projection from Ñ onto Ñi.
If Ñi ' S2, then the diffeomorphism is provided by a map

ϕi : v ∈ S2 7→ (ε1v, . . . , εniv) ∈ Ñi

with εj ∈ {±1}. If ui = ϕi(v), the tangent space

TvS
2 =

{
X ∈ R3 | 〈X, v〉 = 0

}
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is identified with the set
{
X × v, X ∈ R3

}
which is the quotient of R3 by the

relation X ≡ X ′ if X −X ′ = αv for some α ∈ R. Under this identification,
the push-forward ϕi∗ : R3 → TuiÑi is defined by

ϕi∗(X) = X × ui = (X × u1i , . . . , X × u
ni
i ).

If Ñi ' SO(3)× Tki , recall that a diffeomorphism ϕi : SO(3)× Tki →
Ñi is provided by ϕi(g, t1, . . . , tki) = (g, t1, . . . , tki) · ui where the action con-
sidered in the right-hand term of the expression above is the one defined in
§4. In particular, ϕi(g, 0, . . . , 0) = g · ui. By the identification TidSO(3) =
R3, we have for all X ∈ R3,

ϕi∗(X, 0, . . . , 0) = X × ui,

while ϕi∗(0, . . . , 0, 1, 0, . . . , 0) is some normalized bending flow of the polygon
ui.

Hence, under the diffeomorphism ϕ = (ϕ1 ◦ π1, . . . , ϕq ◦ πq) identifying
Ñ with a product of SO(3), S2 and T1, the image of a vector tangent to a T1

component is collinear to some bending flow X̃k(u), and a vector tangent
to a SO(3) or S2 component is mapped to some vector Ỹ X

ui (u), X ∈ R3.
Decomposing X in the basis (vi,1, vi,2, vi,3), this vector can be expressed as
a linear combination of Ỹ

vi,1
ui (u), Ỹ

vi,2
ui (u) and Ỹ

vi,3
ui (u). �

5.2. Fibers without vanishing diagonals

First we suppose that the fixed diagonals d1, . . . , dn−3 do not vanish on
N , and we prove the isotropicness of N by recursion on the number of
degenerate adapted faces on N . More precisely, we approximate elements of
Ñ by elements in different polygon spaces, belonging to fibers with a lower
number of degenerate adapted faces.

Lemma 5.2. Let N be a prodigal fiber of F , and suppose some adapted
face ∆i,j,k is degenerate on N .

Then for any u0 ∈ Ñ , there exists a neighborhood I of zero in R, a
sequence (ut)t∈I of polygons in R3 and a sequence (rt)t∈I of positive side
lengths such that:

(5.2.1) the polygon ut belongs to the space M̃rt,

(5.2.2) rt tends to r in (R>0)
n as t tends to zero,

(5.2.3) ut tends to u0 in (S2)n as t tends to zero,
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(5.2.4) for all t ∈ I, t 6= 0, the face ∆i,j,k(ut) is nondegenerate,

(5.2.5) if some face ∆a,b,c(u0) is nondegenerate, then ∆a,b,c(ut) is nondegen-
erate for any t ∈ I,

(5.2.6) for any t ∈ I, ut is a prodigal polygon.

Moreover, if we denote by Ñt the fiber containing ut for the function F̃t
defined on M̃rt by the same choice of diagonal d1, . . . , dn−3 as for F̃ , then:

(5.2.7) for any X̃ ∈ Tu0
Ñ , there exists a sequence (X̃t)t∈I that converges to

X̃ in Rn as t tends to zero and such that for any t ∈ I, X̃t ∈ TutÑt.

Proof. We construct these sequences explicitly. Fix x ∈ S2 a vector orthog-
onal to µi,j(u0) and set

ut =

u10, . . . , uj−20 ,
rj−1u

j−1
0 + tx∥∥∥rj−1uj−10 + tx

∥∥∥ , rju
j
0 − tx∥∥∥rjuj0 − tx∥∥∥ , uj+1

0 , . . . , un0


and

rt = (r1, . . . , rj−2,
∥∥∥rj−1uj−10 + tx

∥∥∥ ,∥∥∥rjuj0 − tx∥∥∥ , rj+1, . . . , rn).

Geometrically, the polygon ut is obtained by moving the j-th vertex of u0

in the direction x ∈ S2 as illustrated in Figure 3. Properties (5.2.1), (5.2.2)
and (5.2.3) are straightforward.

For Property (5.2.4), remark that µi,k(ut) = µi,k(u0) but

µi,j(ut) = µi,j(u0) + tx.

As x 6= 0 is orthogonal to µi,j(u0) 6= 0, we obtain that µi,j(ut) is no more
collinear to µi,k(ut) when t 6= 0. For Property (5.2.5), we use the fact that
the map t 7→ µa,b(ut)× µa,c(ut) is continuous, so if µa,b(u0) and µa,c(u0) are
linearly independent, then µa,b(ut) and µa,c(ut) are linearly independent
for any t in some neighborhood of zero. The same argument is used for
Property (5.2.6).

Finally, for Property (5.4.4), it sufficed to show that any vector in the
family of generators given by Lemma 5.1 can be approximated as claimed.
For the bending vector fields, this comes from the fact that the map t 7→
X̃i(ut) ∈ Rn is continuous for any 1 ≤ i ≤ n− 3. The same argument is used
for Ỹ v

1,n(u0) once one remarks that Ỹ v(ut) is well-defined for any t ∈ I. �
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rj−1u
j−1
0

rju
j
0

µi,k(ut) i
jk

rtj−1u
j−1
t

rtju
j
t

µj,k(ut)

i

j

k
µi,j(ut)

µj,k(ut)

µi,k(ut)
µi,j(ut)

Figure 3: Approximation of a polygon with a degenerate face.

Proposition 5.3. For any side lengths r ∈ (R>0)
n and any choice of di-

agonals on Mr, the prodigal fibers of the associated integrable system are
isotropic.

Proof. We prove it by recursion on the number of degenerate face on the
fiber N . If there are no degenerate face, then the fiber is regular and hence
it is Lagrangian.

Suppose now that m > 0 adapted faces are degenerate on N . Take u0 in
Ñ and consider the approximation (ut)t of u0 provided by Lemma 5.2. By
Properties (5.2.4) and (5.2.5), the polygon ut has at most m− 1 degenerate
faces when t 6= 0 and then the fiber Nt containing [ut] is isotropic.

Let X̃1, X̃2 ∈ Tu0
Ñ , and (X̃1,t)t, (X̃

′
2,t)t their approximations provided

by Property (5.2.7). Denote by ωt the symplectic form on Mrt . Recall that
it is the restriction of a two-form on (S2)n that satisfies

ωtut(X̃1,t(ut), X̃2,t(ut)) =
∑

i∈I(p,q)

rti det(uit, X
i
1,t, X

i
2,t)

where I(p, q) is a subset of {1, . . . , n− 3} uniquely determined by the choice
of diagonals d1, . . . , dk (see proof of Proposition 2.2). It follows that

lim
t→0

ωtut(X̃1,t(ut), X̃2,t(ut)) = ωu0
(X̃1, X̃2)

Since Nt is isotropic for t 6= 0 we have ω[u0](X1,X2) = 0. �

5.3. Fibers with vanishing diagonals

We now prove the isotropicness in the general case, assuming that some of
the disjoint diagonals d1, . . . , dn−3 vanish on N . We will prove the result by
recursion on the number of vanishing diagonals.
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Lemma 5.4. Let N ⊂Mr be a singular fiber of F , and Ñ its lift in Mr.
If some diagonal dk vanishes on Ñ , then there exists a dense subset S̃ ⊂ Ñ
such that for any u0 ∈ S̃, there exists a neighborhood I of zero in R and a
sequence of polygons (ut)t∈I in Mr such that

(5.4.1) ut tends to u0 as t tends to zero,

(5.4.2) for all t ∈ I, t 6= 0, dk(ut) 6= 0,

(5.4.3) for all 1 ≤ ` ≤ n− 3, if d`(u0) 6= 0 then d`(ut) 6= 0 for all t ∈ I,

Moreover, if we denote by Ñt the fiber of F̃ containing ut, then:

(5.4.4) for any X̃ ∈ Tu0
Ñ , there exists a sequence (X̃t)t∈I that converges to

X̃ in Rn as t tends to zero and such that for any t ∈ I, X̃t ∈ Tu0
Ñt.

Proof. Let u0 = (u0,1, · · · ,u0,q) be the decomposition of u0 into prodigal
polygons. Up to a change of indices, we can assume that this decomposition
is given by a sequence

1 = p0 < p1 < · · · < pq = n+ 1

such that ui = (u
pi−1

0 , · · · , upi−10 ) for any 0 ≤ i ≤ q and dk = µp0,p1 .
The diagonal dk is the side of exactly two adapted faces ∆p0,k1,p1 and

∆p0,p1,k′2 with 1 < k1 < p1 < k′2. Suppose k′2 = pj for some j ≥ 2. Then
µk′2,k1 = µpj ,p1 is the side of two adapted faces: one is ∆p0,p1,k′2 and the other
is ∆p1,k′′2 ,pj for some p1 < k′′2 < pj . Now k′′2 may be equal to pj′ for some
2 < j′ < j, but iterating the previous construction, we obtain after a finite
number of steps a sequence

1 < k1 < p1 < k2

such that k2 6= pj for all 1 ≤ j ≤ q and ∆p1,k2,pj0
is an adapted face for some

j0.
Define the subset S̃ = {u ∈ Ñ | µk1,p1(u)× µp1,k2(u) 6= 0} ⊂ Ñ and for

fixed u0 ∈ S̃, set

ut = (u10, . . . , u
p1−2
0 , Rtup1−10 , Rtup10 , u

p1+1
0 , . . . , un0 )

where Rt is the rotation of angle t around the axis

µk1,k2(u0) = rk1u
k1
0 + · · ·+ rk2−1u

k2−1
0 .
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Remark that the family of polygon ut is geometrically obtained by bending
the polygon u0 along its diagonal µk1,k2(u0), as illustrated in Figure 4. From
this definition Property (5.4.1) is immediate and Property (5.4.3) follows
from continuity of the map t 7→ d`(ut) ∈ R3.

The diagonals of ut satisfy

µp,q(ut) = µp,q(u0) +
∑
i∈I

ri(R
tui0 − ui0)

where I = {p, . . . , q − 1} ∩ {k1, . . . , k2 − 1}. In particular, this implies

µp0,p1(ut) = 0 +

p1−1∑
i=k1

ri(R
tui0 − ui0) = Rtµk1,p1(u0)− µk1,p1(u0).

Since µk1,p1(u0)× µk1,k2(u0) = µk1,p1(u0)× µp1,k2(u0) does not vanish for
u0 ∈ S̃, the rotation Rt does not act trivially on µk1,p1(u0), whence Prop-
erty (5.4.2).

Finally for Property (5.4.4) it suffices to show that we can approximate
any vector among the generators given in Lemma 5.1. It is clear that for any
1 ≤ ` ≤ n− 3,

lim
t→0

X̃`(ut) = X̃`(u0).

The decomposition of ut, t 6= 0, into prodigal polygons is given by the se-
quence

1 = p0 < p2 < p3 < · · · < pq = n+ 1.

For any 3 ≤ i ≤ q and for any v ∈ R3, the vector Ỹ v
pj−1,pj (ut) is tangent to

the fiber Ñt containing ut and we have

lim
t→0

Ỹ v
pj−1,pj (ut) = Ỹ v

pj−1,pj (u0).

For v1 = µk1,p1(u0) and v2 = µp1,k2(u0) we have

Ỹ v1
p0,p1(u0) = lim

t→0
(Ỹ

µk1,p1 (ut)
k1,p1

(ut)− Ỹ
µp0,k1 (ut)
p0,k1

(ut)),

Ỹ v1
p1,p2(u0) = lim

t→0
(Ỹ

µk1,p2 (ut)
k1,p2

(ut)− Ỹ
µk1,p1 (ut)
k1,p1

(ut)),

Ỹ v2
p0,p1(u0) = lim

t→0
(Ỹ

µp0,k2 (ut)
p0,k2

(ut)− Ỹ
µp1,k2 (ut)
p1,k2

(ut)),

Ỹ v2
p1,p2(u0) = lim

t→0
(Ỹ

µp1,k2 (ut)
p1,k2

(ut)− Ỹ
µk2,p2 (ut)
k2,p2

(ut)),

where in each expression the right-hand side is a limit of well-defined vectors
tangent to the fibers Ñt. Since u0 ∈ S̃, the vectors v1 and v2 are linearly
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p0 p0 p1p1

k1 k1

k2k2

Figure 4: Approximation of a polygon with a vanishing diagonal.

independent and together with

v3 =
v1 × v2
‖v1 × v2‖

they form a basis of R3. Note that{
µp0,p1(ut) = Rtx1 − x1 where x1 = µk1,p1(u0),

µp1,p2(ut) = Rtx2 − x2 where x2 = µp1,k2(u0).

Since xi × µk1,k2(u0) = ±µk1,p1(u0)× µp1,k2(u0) = ±v1 × v2, we have

lim
t→0

Rtxi − xi
‖Rtxi − xi‖

= ±v3

and thus the normalized bending vector fields associated to µp0,p1(ut) and
µp1,p2(ut) converge to ±Ỹ v3

p0,p1(u0) and ±Ỹ v3
p1,p2 respectively. �

Theorem 5.5. Let F be the integrable Hamiltonian system on (Mr, ω)
defined by a family of disjoint diagonals (d1, . . . , dn−3). Let N be a singular
fiber of F . Then N is isotropic.

Proof. It suffices to prove the result by induction on the number of vanish-
ing diagonals. If no diagonal vanishes, the istropicness follows from Propo-
sition 5.3.
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If m > 0 diagonal vanish, then we approximate any polygon u0 in S̃ ⊂ Ñ
by a sequence of polygons with at most m− 1 diagonals using Lemma 5.4
and as in the proof of Proposition 5.3 we show that the symplectic form
vanishes on T[u0]N . Since S̃ is dense in Ñ the result extends to any u0 ∈ Ñ
and then the fiber N is isotropic. �

Let us conclude this section by characterizing the cases where these
isotropic singular fibers have maximal dimension, and therefore are La-
grangian.

Corollary 5.6. Let N be a singular fiber of F = (F1, . . . , Fn−3), and Nnd

the manifold consisting of the nondegenerate polygons in N (for generic side
lengths, Nnd = N). Consider the decomposition

Ñ ' Ñ1 × · · · × Ñq

of Ñ into prodigal fibers.
Then Nnd is a Lagrangian manifold if and only if each Ñi is either a

space of digons, a space of nondegenerate triangles, or a regular fiber of F̃i.

Proof. By Theorem 5.5, Nnd is Lagrangian if and only if it has dimension
n− 3. Therefore we just have to compute the dimension of Nnd.

Recall that Ñi is diffeomorphic to
S2 if Ñi is a space of digons,

SO(3) if Ñi is a space of nondegenerate triangles,

SO(3)× Tni−3 if Ñi is a regular fiber of a system on a space of

polygons with ni ≥ 4 sides.

In each of the above cases, the dimension of Ñi is equal to the number of
sides ni of the polygons in Ñi. Therefore, if each Ñi corresponds to one of
the above cases, then the product Ñ has dimension n1 + · · ·+ nq = n. It
follows that the quotient Nnd of the (free) action of SO(3) on the manifold
Ñnd dense and open in Ñ has dimension n− 3.

On the other hand, Ñi is diffeomorphic to
S2 if Ñi is a space of degenerate ni-gons, ni ≥ 3,

SO(3)× Tpi−3 with 0 ≤ pi < ni if Ñi is a singular fiber of a

system on a space of ni-gons
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In both cases, we have dim Ñi < ni. Therefore, if such a component appears
in the product Ñ , we have dimNnd < n− 3. �

6. Relation to Grassmannians and Gel’fand–Cetlin

6.1. From Grassmannians to polygon spaces

In this subsection, we recall the relation described by Hausmann and Knut-
son [12] between the Grassmannian manifold of 2-planes in Cn and the family
of polygon spaces with n sides.

Fix n ≥ 3 and denote by V2(Cn) the manifold of 2-frames in Cn, that
is the set of pairs (z,w) of orthogonal unit vectors in Cn, identified with a
subspace of n× 2 matrices. The right action of U(2) on V2(Cn) by matrix
multiplication corresponds to the orthogonal transformations of Cn leaving
the plane spanned by z and w invariant. The quotient manifold

Gr(2, n) = V2(C2)/U(2)

can then be identified as the space of 2-planes in Cn.
Let H = C⊕ jC be the skew-field of quaternions. The Euclidean space

R3 will be identified with the space IH = iR⊕ jR⊕ kR of imaginary quater-
nions, with inner product induced by the canonical Hermitian structure on
H = C2. A 3-dimensional polygon (based at the origin) will now be de-
fined as a vector q = (q1, . . . , qn) ∈ (IH)n satisfying the closing condition
q1 + · · ·+ qn = 0. Given r = (r1, . . . , rn) ∈ (R>0)

n, the space of 3d polygons
with side lengths r is now defined as the manifold

M̃r = {q ∈ (IH)n | q1 + · · ·+ qn = 0,
∥∥q1∥∥ = r1, . . . , ‖qn‖ = rn}.

We will also consider the manifold M̃(2) of polygons q with perimeter |q| =∥∥q1∥∥+ · · ·+ ‖qn‖ equal to 2. Note that, at this point, we haven’t excluded
improper polygons q, for which some side qi vanishes. We have⋃

r∈(R>0)n,|r|=2

M̃r = M̃proper
(2) ( M̃(2).

Consider the application ϕ : H→ IH defined by ϕ(q) = q̄iq, or equiva-
lently ϕ(z + jw) = i(|z|2 − |w|2 + 2z̄wj). It maps the 3-sphere of radius

√
r

in H onto the 2-sphere of radius r in IH. Observe that, for any z,w ∈ Cn,
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one has
n∑
`=1

ϕ(z` + jw`) = i(‖z‖2 − ‖w‖2 + 2〈z,w〉j).

In particular, if (z,w) ∈ V2(Cn), then the n-tuple

Φ̃(z,w) = (ϕ(z1 + jw1), . . . , ϕ(zn + jwn))

defines a polygon in IH, with perimeter

|Φ̃(z,w)| =
n∑
`=1

∥∥∥φ(z` + jw`)
∥∥∥
IH

=

n∑
`=1

∥∥∥z` + jw`
∥∥∥2
H

= ‖z‖2 + ‖w‖2 = 2.

We thus have defined a map Φ̃ : V2(Cn)→ M̃(2) which is onto.
Let η be the usual inclusion of H in the space of 2× 2 complex matrices

defined by

η(z + jw) =

(
z w
−w̄ z̄

)
.

We define actions of U(2) on H on the left and on the right as the pull-backs
by η of matrix multiplication (on the left and on the right). For these actions
we have the relation: for any q ∈ H and P ∈ U(2),

ϕ(q · P ) = P−1 · ϕ(q) · P.

Note that Trace(η(q)η(q′)∗) = 2〈q, q′〉H hence q 7→ P−1 · q · P belongs to
the group SO(IH) of orthogonal transformations on IH. It follows that
Φ̃((z,w)P ) lies in the orbit of Φ̃(z,w) for the diagonal action of SO(IH)
on (IH)n, and thus we obtain a well-defined map

Φ : Gr(2, n) −→M(2) = M̃(2)/SO(IH).

Denote by TU(n) the maximal torus of diagonal matrices in U(n), acting
on V2(Cn) by multiplication. We have the following:

Proposition 6.1 (Hausmann, Knutson [12, Theorem 3.6]). The re-
striction Φ̃proper of Φ̃ : V2(Cn)→ M̃(2) above the space M̃proper

(2) of proper
polygons is smooth a principal TU(n)-bundle.

On can check that the action of TU(n) on V2(Cn) descends to an action on
Gr(2, n). However this action is no longer effective: its center is the subspace
∆ ' S1 of homothetic transformations of TU(n).
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Proposition 6.2 (Hausmann, Knutson [12, Theorem 3.9]). The re-
striction Φproper of Φ : Gr(2, n)→M(2) above the space Mproper

(2) of (classes

of) proper polygons is a smooth principal (TU(n)/∆)-bundle.

Actually, the action of TU(n) on Gr(2, n) is Hamiltonian, with momentum
map µTU(n)

: Gr(2, n)→ Rn given by:

µTU(n)
([z,w]) =

(
|z1|2 + |w1|2

2
, . . . ,

|zn|2 + |wn|2

2

)
=

1

2
(
∥∥ϕ(z1 + jw1)

∥∥ , . . . , ‖ϕ(zn + jwn)‖).

It follows that, for any r ∈ (R>0)
n, the application Φ maps µ−1TU(n)

(12r) onto

Mr. Identifying Gr(2, n) with a (co)adjoint orbit, we obtain a canonical
symplectic structure on Gr(2, n) an the above result rephrases as:

Proposition 6.3 (Nohara, Ueda [18, Proposition 2.2]). The moduli
space Mr of polygons with side length r in R3 ' IH is isomorphic to the
symplectic reduction of Gr(2, n) by the TU(n)-action at the value 1

2r.

6.2. Completely integrable systems on Gr(2, n)

Let us recall here how Nohara and Ueda [18] defined a family of completely
integrable systems on Gr(2, n), one for each maximal family of disjoint di-
agonals in the planar convex regular polygon with n sides, that generalizes
systems of bending flows on Mr.

Given a subset I of {1, . . . , n}, define a subgroup UI of U(n) as the set
of matrices A = (ai,j)1≤i,j≤n ∈ U(n) such that

(ai,j)i,j∈I ∈ U(card I) and ai,j = δi,j for (i, j) /∈ I × I.

To a formal side qi of some polygon q we associate the subgroup

Uqi = U{i} =

Ii−1 0 0
0 U(1) 0
0 0 In−i

 ,

where Ik denotes the identity matrix of size k × k. The momentum map
ψqi : Gr(2, n)→ R of the action of Uqi on Gr(2, n) is defined by

ψqi([z,w]) =
|zi|2 + |wi|2

2
.
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More generally, to some diagonal d =
∑

i∈I q
i we associate the subgroup

Ud = UI . Its momentum map µUd : Gr(2, n)→
√
−1u(card I) is given by

µUd([z,w]) =

(
ziz̄j + wiw̄j

2

)
i,j∈I

.

The matrix µUd([z,w]) has rank two and real eigenvalues, denote by

λd,1([z,w]) ≥ λd,2([z,w]) ≥ 0

its first two eigenvalues. We will restrict our attention to the second one and
define the second-eigenvalue fonction ψd = λd,2 : Gr(2, n)→ R.

Proposition 6.4 (Nohara, Ueda [18, Proposition 4.5]). Let d1, . . . ,
dn−3 be a maximal family of disjoint diagonals. Then

{ψq1 , . . . , ψqn , λd1,1, . . . , λdn−3,1, λd1,2, . . . , λdn−3,2}

is a family of Poisson commutative functions on Gr(2, n).

Of course, this family of 3n− 6 functions is too large to define a com-
pletely integrable system on the (2n− 4)-dimensional manifold Gr(2, n). Ac-
tually, each adapted face of a polygon induces a linear dependence of some
of these functions. Indeed, denote by v1, v2, v3 the sides of an adapted face,
where vi can be either a side qi or one of the chosen diagonals dα. There is
a simple linear dependence between them, say v3 = v1 + v2. It follows that
Uv1 × Uv2 is a subgroup of Uv3 and the respective momentum maps of these
three groups satisfy:

µUv3 =

(
µUv1 ∗
∗ µUv2

)
Comparing the traces between these two matrices gives a linear relation in
the above family.

However, getting rid of the redundant information we obtain a com-
pletely integrable system:

Proposition 6.5 (Nohara, Ueda [18, Proposition 4.6]). The map

Ψ = (Ψd,Ψq) = (ψd1 , . . . , ψdn−3
, ψq1 , . . . , ψqn−1)

defines a completely integrable system on Gr(2, n). Its n− 3 first compo-
nents induce via Φ : Gr(2, n)→ M̃(2) the systems of bending flows on Mr

associated to the diagonals d1, . . . , dn−3 (up to sign and additive constant).
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More precisely, for any diagonal dα =
∑

i∈Iα q
i, for any r ∈ (R≥0)n such

that |r| = 2, and for any [z,w] ∈ Ψ−1q (12r1, . . . ,
1
2rn−1),

(6.1) 4ψdα([z,w]) = −fα ◦ Φ([z,w]) +
∑
i∈Iα

ri,

where fα([q]) =
∥∥∑

i∈Iα qi
∥∥ maps a (class of) polygon [q] ∈Mr to the length

of its diagonal dα.

Let 1
2 ṙ = 1

2(r1, . . . , rn−1) ∈ Rn−1 be a value of Ψq. Suppose ṙ satisfies

(6.2) r1 > 0, . . . , rn−1 > 0 and rn := 2− r1 − · · · − rn−1 > 0.

Then Ψ−1q (12 ṙ) is exactly Φ−1(Mr), the preimage by Φ of the moduli space
of polygons with side lengths fixed to r = (r1, . . . , rn).

Fix now a value c = (c1, . . . , cn−3) ∈ Rn−3 of Ψd. Then [z,w] lies in
Ψ−1(c, 12 ṙ) = Ψ−1d (c) ∩Ψ−1q (12 ṙ) if and only if Φ([z,w]) lies in the fiber

N = F−1(c′1, . . . , c
′
n−3)

of the system of bending flows on Mr, where each c′i is an affine transform
(depending on r) of ci that can be explicitly computed from Formula 6.1. It
follows that Ψ−1(c, 12 ṙ) is exactly Φ−1(N), the preimage by Φ of this fiber.

Note that when ṙ satisfies Condition 6.2, we have

N ⊂Mr ⊂Mproper
(2) .

Hence each preimage above can be seen as a preimage by Φproper, for which
we have the nice Proposition 6.2.

6.3. Singular fibers of the systems on Gr(2, n)

Fix n ≥ 4 and d1, . . . , dn−3 a choice of disjoint diagonals in an arbitrary
planar convex n-gon. Consider the associated system Ψ : Gr(2, n)→ R2n−4.

In this subsection, we give some facts that might suggest that the method
we used in this paper to study the singular fibers of the system of bending
flows on Mr could be applied as well to the system Ψ on Gr(2, n).
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Singular points. Let us follow the proof of [18, Lemma 4.7]. Remark that

µTU(n)
=

1

2
(ψq1 , . . . , ψqn),

hence the Hamiltonian vectors fields of the functions ψq1 , . . . , ψqn−1 are lin-
early independent and span the TU(n)-orbits. The maps ψd1 , . . . , ψdn−3

cor-
responds to the unit bending vector fields Bd1 , . . . , Bdn−3

under the identi-
fication provided by Proposition 6.3. It follows that if Φ([z,w]) is a regular
point of the system onMr (with r = (ψq1([z,w]), . . . , ψqn([z,w])), then the
Hamiltonian vector fields associated to ψd1 , . . . , ψdn−3

at [w, z] are linearly
independent and transverse to the TU(n)-fibers. It follows that [z,w] is a
regular value of the system Ψ on Gr(2, n). This holds even for non generic
r since we can work on the dense manifold of non lined polygons.

Conversely, if Φ([z,w]) is a singular point of the system on Mr, then
[z,w] is a singular point of the system on Gr(2, n).

Lifting property. In §4, we chose not to work with the maps F and
f1, . . . , fn−3 on Mr, but rather with their lifts F̃ , f̃1, . . . , f̃n−3 on M̃r. It is
interesting to note that the same can be done with the system Ψ. Namely,
the functions ψq, λd,j : Gr(2, n)→ R involved in the definition of Ψ admit
natural lifts

ψ̃q, λ̃d,j : V2(Cn)→ R

with explicit expressions.

Decomposition into simpler fibers. An important step in §4 is to no-
tice that it suffices to work with prodigal fibers, because any non-prodigal
fiber Ñ is isomorphic to a product Ñ1 × · · · Ñk of prodigal fibers of “smaller”
systems. The same holds for a system on Gr(2, n).

Suppose that the value (c, ṙ) ∈ (R≥0)2n−4 is such that some c′` = 0. That
is to say, polygons Φ̃(z,w) satisfy (up to a cyclic permutation of the indices)

(6.3) ϕ(z1 + jw1) + · · ·+ ϕ(zk + jwk) = 0

for k < n when (z,w) lies in L̃ = Ψ̃−1(c, ṙ). Set

z1 = (z1, . . . , zk), z2 = (zk+1, . . . , zn),
w1 = (z1, . . . , zk), w2 = (zk+1, . . . , zn).

It is immediate to check that Condition 6.3 implies

α1(z1,w1) ∈ V2(Ck) and α2(z2,w2) ∈ V2(Cn−k),
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where α1, α2 are two positive constants used to normalize: ‖αjzj‖ =
‖αjwj‖ = 1. The function ψ̃qi depends only on zi and wi, so in particu-
lar it depends solely on either (z1,w1) or (z2,w2). Similarly, let d =

∑
i∈I qi

be a diagonal. If d is disjoint from the vanishing diagonal d`, then either
I ⊂ I1 = Iα = {1, . . . , k} or I ⊂ I2 = I{α = {k + 1, . . . , n} (up to replacing I
by its complement I{, which geometrically doesn’t change the diagonal d).
It follows that f̃ depends only on {qi, i ∈ Ij} and the sum∑

i∈Iα

ri

can be expressed using only the components of rj = (ri)i∈Ij . By Formula 6.1,

ψ̃d then depends only on (zj ,wj).
The map Ψ̃ can then be split into two maps Ψ̃1 : V2(Ck)→ R2k−4 and

Ψ̃2 : V2(Cn−k)→ R2n−2k−4 such that Ψ̃j depends only on (zj ,wj), and

L̃ = Ψ−1(c, ṙ) ' Ψ−11 (c1, ṙ1)×Ψ−12 (c2, ṙ2) = L̃1 × L̃2.

Iterating the process, we can restrict the study to products of “prodigal”
fibers and possible particular sets (typically V2(C1) and V2(C2), analogous
to digons and triangles appearing in the case of polygons).

A similar reduction might be possible when ṙ has some component r`
equal to zero. Indeed, the set of two frames (z,w) in Cn satisfying ψq` = 0 is
naturally identified with the set of two frames in the hyperplane {e` = 0} '
Cn−1. Formula 6.1 shows that suppressing q` and r` in the expression of any
ψ̃d : V2(Cn)→ R, one obtains the expression of some ψ̃d′ : V2(Cn−1)→ R.
The fiber L̃ = Ψ−1(c, r) can then be identified with the fiber L̃′ of some
system Ψ̃′ on V2(Cn−1) obtained by removing ψ̃q` and a redundant ψ̃d.

Study of “prodigal” fibers. Suppose

a, b, c ∈ {q1, . . . , qn−1, d1, . . . , dn−3}

are the sides of an adapted face ∆ for the choice of diagonals d1, . . . , dn−3.
Let L̃ be a singular fiber of Ψ such that a nontrivial linear relation

(6.4) αa+ βb+ γc = 0

holds in the polygon Φ([z,w]) when [z,w] ∈ L̃. Then we decompose a 2-
frame (z,w) in L̃ into three smaller 2-frames as we did for prodigal polygons
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in §4, as follows. To a side of ∆, say a, we associate:

(za,wa) = αa

(zi, wi)i∈Ia

(za, wa)

 ,

where za, wa in Cn and αa > 0 are (uniquely) chosen such that (za,wa) is
a 2-frame in Cna , na = |Ia|+ 1. The non-crossing condition on the diago-
nals ensures that for each diagonal (or side)

∑
I q

i, the action of UI ⊂ U(n)
on V2(Cn) induces naturally an action of U ′I ⊂ U(na) on V2(Cna), with
UI ' U ′I ' U(|I|). It also guarantees that the system Ψ̃ on V2(Cn) induces a
system Ψ̃a on V2(Cna) such that the fiber L̃ is mapped onto a fiber L̃a. More
precisely, L̃ is isomorphic to a submanifold of L̃a × L̃b × L̃c characterized by
Relation 6.4 (similarly to 4.1). The remaining question is then the existence
of a result similar to Proposition 4.1.

Isotropicness of the fibers. Assuming the singular fibers of the system
on Gr(2, n) are submanifolds, it is reasonable to expect that a vector tangent
to a fiber can be approximated by vectors on neighboring fibers. More pre-
cisely, a vector X tangent to a fiber Ñ = Ψ̃(c, ṙ) should be approximable by
a sequence (Xt)t>0 such that Xt is tangent to a fiber Ñt = Ψ̃(ct, ṙt), where
ct → c is chosen such that Nt is “less singular” than N (e.g. it provides poly-
gons with a lower number of degenerate faces) and ṙt → ṙ is chosen such
that it defines generic positive side lengths rt for any t > 0. The isotropicness
would follow by continuity, as in §5.

6.4. Relation to Gel’fand–Cetlin

Define the sequence of inclusions K1 ⊂ · · · ⊂ Kn = U(n) where Ki is the
group of matrices of the form (

A 0
0 T

)
with A ∈ U(i), T = diag(ξ1, . . . , ξn−i), ξ1, . . . , ξn−i ∈ U(1). The dual of the
Lie algebra ki of Ki can be identified with the set of matrices of the form(

X 0
0 B

)
with X an Hermitian i× i matrix, B = diag(θ1, . . . , θn−i), θ1, . . . , θn−i ∈
R. Under a similar identification, the coadjoint orbit of U(n) through a
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λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn−1 ≥ λn

µn−11 µn−12 µn−13
· · · µn−1n−1

≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

µn−21 µn−22
· · · µn−2n−2

≥ ≥ ≥ ≥ ≥ ≥

· · · · · ·≥ ≥ ≥ ≥
µ21 µ22≥ ≥

µ11

Figure 5: The Gel’fand–Cetlin diagram.

Hermitian matrix A is the set of all Hermitian matrices with same spectrum
as A. In other words, a coadjoint orbit O(λ) is uniquely determined by a
n-tuple λ = (λ1, . . . , λn) ∈ R of fixed eigenvalues.

Given a matrix M in some coadjoint orbit O(λ), denote by Mk the
upper-left submatrix of size k × k of M . The matrix Mk as eigenvalues

µk1(M) ≥ µk2(M) ≥ · · · ≥ µkk(M).

The Gel’fand–Cetlin system on O(λ) introduced by Guillemin and Stern-
berg [9] is the one defined by the functions µki , 1 ≤ i ≤ k ≤ n. It was orginally
defined on generic coadjoint orbits, i.e. for λ satisfying

(6.5) λ1 > λ2 > · · · > λn,

but the definition can be extended to non-generic orbits as well. The func-
tions of the Gel’fand–Cetlin system satisfy inequalities summarized in the
Gel’fand–Cetlin diagram (Figure 5). Regular points of this system are the
matrices for which all the inequalities in the diagram are strict.

Back to the system on Gr(2, n), consider the caterpillar configuration
where all the diagonals emanate from the same vertex, say the origin. That
is, the family of disjoint diagonals {d1, . . . , dn−3} is defined by dα = q1 +
· · ·+ qα+1. In this case we have a natural inclusion

Uq1 ⊂ Ud1 ⊂ · · · ⊂ Udn−3
⊂ U−qn ⊂ U(n)
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where U−qn denotes the subgroup associated to q1 + · · ·+ qn−1. This induces
a similar chain of subalgebras in u(n). Proposition 9 of [16] implies that the
singular fibers of the system are connected, embedded submanifolds.

Let M be the Hermitian matrix defined by

M =

(
ziz̄j + wiw̄i

2

)
1≤i,j≤n

The upper-left submatrix Mk of size k of M can be obtained as the product
Mk = 1

2AkA
∗
k where

Ak =

z
1 w1

...
...

zk wk


is the matrix made of the k first rows of (z,w). Hence the nonzero eigen-
values of Mk are the same as the nonzero eigenvalues of the 2× 2 matrix
1
2A
∗
kAk. Using this fact, one obtains
µn1 (M) = µn2 (M) = 1

2

µn−11 (M) = 1
2 =

∑n−1
i=1 ψ̃qi(z,w)− µn−12 (M)

µk2(M) = ψ̃dk−1
(z,w) =

∑k
i=1 ψ̃qi(z,w)− µk1(M) if 2 ≤ k ≤ n− 2

µ11(M) = ψ̃q1(z,w), µ12(M) = 0

and µki (M) = 0 for i > 2. In other words, the Gel’fand–Cetlin system on the
non-generic orbit O(12 ,

1
2 , 0, . . . , 0) is isomorphic to the system on Gr(2, n). In

this case, under the identification M = (z,w), the Gel’fand–Cetlin diagram
becomes as in Figure 6 and the inequalities involved are exactly the triangle
inequalities in the adapted faces for the caterpillar configuration, as already
noticed by Hausmann and Knutson. More precisely:

Theorem 6.6 (Hausmann, Knutson [12, Theorem 5.2]). The bending
flows for the caterpillar configuration on Mr are the residual torus action
from the Gel’fand–Cetlin system on O(12 ,

1
2 , 0, . . . , 0).

Fix positive side lengths r = (r1, . . . , rn) = (ṙ, rn) ∈ (R>0)
n and a value

c = (c1, . . . , cn−3) ∈ Rn−3. Let N = f−1(c) be the corresponding fiber in
Mr, and L = Ψ−1(c, 12 ṙ) the corresponding fiber in Gr(2, n). To the fiber
N is associated a graph as follows. The vertices are the functions appearing
in the Gel’fand–Cetlin diagram, and there is an edge between two functions
if and only if they are constant to the same value on L. This graph has the
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1
2

= 1
2 > 0 = · · · = 0 = 0

=
=
≥ ≥

1
2 µn−12 0
≥ ≥ ≥ ≥
µn−21

ψdn−3

· · · · · · 0
≥ ≥ ≥ ≥
µ21 ψd1
≥ ≥
ψq1

Figure 6: The Gel’fand–Cetlin diagram for the caterpillar configuration on
Gr(2, n).

Dn−3

. . .

D2

D1

Figure 7: Diamonds in the graph ΓN .

form illustrated in Figure 7, where a dashed edge correspond to the possible
degeneracy of some adapted face of the polygons in N . The filled parts are
common to all such graphs and can be ignored. Remark that

4µki =

k∑
j=1

rj + (−1)i+1ck−1
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along L, for any i = 1, 2 and 1 ≤ k ≤ n− 1 (with the convention c0 = r1
and cn−2 = rn). The condition µ = µ′ becomes a condition of the form α1 +
α2 = α3 with αi ∈ {r1, . . . , rn, c1, . . . , cn−3} that can be explicitly checked
(as mentioned above, this condition simply derives from a triangle inequality
in an adapted face).

Thus from solely the combinatorics of the graph ΓN we can recover the
geometric description of the fiber N . Of particular interest are the “dia-
monds” D1, . . . , Dn−3. The existence of a diamond-shaped cycle Di in ΓN
implies that the i-th diagonal di vanishes on N , and in this case we know
that (at least in the generic case) the fiber N is geometrically the product
of two spaces. The correspondence between the combinatorics of those dia-
monds and the geometry of the fibers was established by Miranda, Zung and
the author [17] for the classical Gel’fand–Cetlin system on U(n). However in
their case the diamond-shaped cycles can have bigger length and can cross
each other, if they do then the geometry of the fiber is more subtle and
involves cross-products.

References
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Paul Sabatier (2009).

[2] O. Babelon and B. Doucot, Higher index focus–focus singularities in
the Jaynes–Cummings–Gaudin model: Symplectic invariants and mon-
odromy, Journal of Geometry and Physics 87 (2015), 3–29.

[3] A. Bolsinov and A. Izosimov, Singularities of bi-Hamiltonian systems,
Communications in Mathematical Physics 331 (2014), no. 2, 507–543.

[4] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems:
Geometry, Topology, Classification, CRC Press (2004).

[5] J. Cantarella, T. Deguchi, and C. Shonkwiler, Probability theory of
random polygons from the quaternionic viewpoint, Communications on
Pure and Applied Mathematics 67 (2014), no. 10, 1658–1699.

[6] L. Charles, On the quantization of polygon spaces, Asian J. Math. 14
(2010), no. 1, 109–152.

[7] Y. Cho, Y. Kim, and Y.-G. Oh, Lagrangian fibers of Gelfand–Cetlin
systems, preprint (2017), arXiv:1704.07213.



i
i

“1-Bouloc” — 2018/10/29 — 22:41 — page 628 — #44 i
i

i
i

i
i

628 Damien Bouloc

[8] R. L. Fernandes, J.-P. Ortega, and T. S. Ratiu, The momentum map in
Poisson geometry, Amer. J. Math. 131 (2009), no. 5, 1261–1310.

[9] V. Guillemin and S. Sternberg, The Gelfand–Cetlin system and quanti-
zation of the complex flag manifolds, Journal of Functional Analysis 52
(1983), no. 1, 106–128.

[10] M. Harada, The symplectic geometry of the Gel’fand–Cetlin–Molev basis
for representations of Sp(2n,C), Journal of Symplectic Geometry 4
(2006), no. 1, 1–41.

[11] M. Harada and K. Kaveh, Integrable systems, toric degenerations and
Okounkov bodies, Inventiones mathematicae (2012), 1–59.

[12] J.-C. Hausmann and A. Knutson, Polygon spaces and Grassmannians,
Enseign. Math. (2) 43 (1997), no. 1-2, 173–198.

[13] B. Howard, C. Manon, and J. Millson, The toric geometry of triangu-
lated polygons in Euclidean space, Canad. J. Math. 63 (2011), no. 4,
878–937.

[14] Y. Kamiyama and T. Yoshida, Symplectic Toric Space Associated to
Triangle Inequalities, Geometriae Dedicata 93 (2002), no. 1, 25–36.

[15] M. Kapovich and J. J. Millson, The symplectic geometry of polygons in
Euclidean space, J. Differential Geom. 44 (1996), no. 3, 479–513.

[16] J. Lane, Convexity and Thimm’s Trick, preprint (2015), arXiv:

1509.07356.

[17] D. Bouloc, E. Miranda, and N. T. Zung, Singular fibers of the Gelfand–
Cetlin system on u(n)∗, Philosophical Transactions or the Royal Society
A 376 (2018), no. 2131. DOI:10.1098/rsta.2017.042.

[18] Y. Nohara and K. Ueda, Toric degenerations of integrable systems on
Grassmannians and polygon spaces, Nagoya Mathematical Journal 214
(2014), 125–168.

[19] A. Pelayo and S. Vu Ngoc, Semiclassical inverse spectral theory for sin-
gularities of focus–focus type, Communications in Mathematical Physics
329 (2014), no. 2, 809–820.

[20] M. J. Pflaum, Analytic and Geometric Study of Stratified Spaces,
Vol. 1768 of Lecture Notes in Mathematics, Springer-Verlag, Berlin
(2001).

[21] M. J. Pflaum, On the deformation quantization of symplectic orbispaces,
Differential Geom. Appl. 19 (2003), no. 3, 343–368.



i
i

“1-Bouloc” — 2018/10/29 — 22:41 — page 629 — #45 i
i

i
i

i
i

Singular fibers of the bending flows of 3D polygons 629

[22] N. T. Zung, Symplectic topology of integrable Hamiltonian systems,
I: Arnold-Liouville with singularities, Compositio Mathematica 101
(1996), 179–215.
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