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Two constructions of virtually contact

structures

Kevin Wiegand and Kai Zehmisch

Motivated by recent developments in proving the Weinstein conjec-
ture we introduce the notion of covering contact connected sum for
virtually contact manifolds and construct virtually contact struc-
tures on boundaries of subcritical handle bodies.

1. Introduction

Virtually contact structures naturally appear in classical mechanics in the
study of magnetic flows on compact Riemannian manifolds (Q, h) of neg-
ative sectional curvature. The appearance of the magnetic 2-form σ on Q
is reflected in the use of the twisted symplectic form on T ∗Q obtained by
adding the pull back of σ along the cotangent bundle projection to dp ∧ dq.
As it turns out, energy surfaces M ⊂ T ∗Q of twisted cotangent bundles need
not to be of contact type in general.

It was pointed out by Cieliebak–Frauenfelder–Parternain [8] that in
many interesting cases a certain covering π : M ′ →M of the energy sur-
face M ⊂ T ∗Q admits a contact form α whose Reeb flow projects to the
Hamiltonian flow on the energy surface M ⊂ T ∗Q up to parametrization.
Moreover, the contact form α admits uniform upper and lower bounds with
respect to a lifted metric. In this situation, the manifold M together with
the odd-dimensional symplectic form ω obtained by restriction of the twisted
symplectic form to TM is called a virtually contact manifold. In particular,
questions about periodic orbits on virtually contact manifolds (M,ω) can
be answered on the covering space M ′ with help of the contact form α.

If the covering space M ′ of a virtually contact manifold (M,ω) is com-
pact, and hence the covering π is finite, the energy surface M will be of
contact type. The existence question about periodic orbits in this case is sub-
ject to the Weinstein conjecture, see [26], and the virtually contact manifold
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(M,ω) is called to be trivial. If the covering π is infinite with a non-amenable
covering group, one is intended to study periodic orbits on a non-compact
contact manifold (M ′, α). This is because the covered energy surface M is
not necessarily of contact type.

In general, open contact manifolds do admit aperiodic Reeb flows as
the standard contact form dz + ydx on Euclidean spaces shows. In order to
achieve existence of periodic Reeb orbits additional conditions are required,
cf. [1, 6–8, 23, 24]. It was asked by G. P. Paternain whether virtually con-
tact manifolds have to admit periodic orbits. The question was answered
positively in many instances by Cieliebak–Frauenfelder–Parternain [8] and,
more recently, by Bae–Wiegand–Zehmisch [2]. The content of the following
theorem is to give a large class of examples to which the existence theory
developed in [2] applies.

Theorem 1.1. For all n ≥ 2 there exist non-trivial closed virtually contact
manifolds M of dimension 2n− 1 which topologically are a connected sum
such that the corresponding belt sphere represents a non-trivial homotopy
class in π2n−2M . The involved covering space M ′ is obtained by covering
contact connected sum.

The virtually contact structures studied by Cieliebak–Frauenfelder–Par-
ternain [8] are diffeomorphic to unit cotangent bundles of negatively curved
manifolds. The examples we are going to construct in Section 2.6 are ob-
tained by covering connected sum, which is an extension of the contact
connected sum operation to the class of virtually contact manifolds. In Sec-
tion 2.7 we will show that unit cotangent bundles of aspherical manifolds
are prime. This implies that the covering connected sum produces virtually
contact structure that differ from those studied in [8].

Motivated by Hofer’s [19] verification of the Weinstein conjecture for
closed overtwisted contact 3-manifolds Bae [1] constructed virtually contact
manifolds in dimension 3 using a covering version of the Lutz twist. The
topology of the base manifold of the covering thereby stays unchanged. The
total space of the resulting covering is an overtwisted contact manifold and
the virtually contact structure will be non-trivial. In Proposition 2.6.2 we
present a tool to produce more examples of that nature. Let us remind that
non-trivially here and in Theorem 1.1 means that the symplectic form on
the odd-dimensional manifold is not the differential of a contact form.

The verification of the Weinstein conjecture by Hofer [19] for closed
reducible 3-manifolds suggests the question about the existence of non-
trivial virtually contact 3-manifolds with non-vanishing π2. This question
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is answered by Theorem 1.1. In fact, the results in [11–15] motivated the
definition of the covering contact connected sum. Extending the work of
Geiges–Zehmisch [13] the existence of periodic orbits for virtually contact
structures addressed by Theorem 1.1 that in addition admit a C3-bounded
contact form on the total space of the covering is shown in [2].

In Section 3 we will give a second construction of virtually contact struc-
tures that will be obtained via energy surfaces of classical Hamiltonian func-
tions in twisted cotangent bundles. The corresponding energy will be below
the Mañé critical value of the involved magnetic system so that the energy
surfaces intersect the zero section of the cotangent bundle. The topology of
the energy surface is determined by the potential function on the configura-
tion space according to Morse theoretical considerations.

Theorem 1.2. For any n ≥ 2 and given b ∈ N there exists a closed virtually
contact manifold M of dimension 2n− 1 such that πnM and the image in
HnM under the Hurewicz homomorphism, resp., contain a subgroup isomor-
phic to Zb. The virtually contact manifold M appears as the energy surface
of a classical Hamiltonian function in a twisted cotangent bundle T ∗Q. The
rank b of the subgroup Zb is the first Betti number of the configuration space
Q. If n ≥ 3 the virtually contact structure on M is non-trivial.

Based on the work of Ghiggini–Niederkrüger–Wendl [15] existence of
periodic solutions in the context of Theorem 1.2 can be shown provided that
the magnetic form has a C3-bounded primitive on the universal cover of Q,
see [2, Theorem 1.1 and 1.2]. Furthermore, by the classification obtained by
Barth–Geiges–Zehmisch in [4, Theorem 1.2.(a)] the contact structure on M
obtained by homotoping the magnetic term of the twisted cotangent bundle
T ∗Q to zero is different from the standard contact structure on the unit
cotangent bundle ST ∗P of any Riemannian manifold P .

2. A construction via surgery

This section is devoted to a proof of Theorem 1.1.

2.1. Definitions

The following terminology was introduced in [1, 8]. Let M be a (2n− 1)-
dimensional manifold for n ≥ 2. A closed 2-form ω on M is called sym-
plectic if kerω is a 1-dimensional distribution. The pair (M,ω) is an odd-
dimensional symplectic manifold. It is called virtually contact if the
following two conditions are satisfied:
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Primitive: There exist a covering π : M ′ →M and a contact form α
on M ′ such that π∗ω = dα, so that α is a primitive of the lift of ω and α
defines a contact structure ξ = kerα on the covering space M ′.

Bounded geometry: There exist a metric g of bounded geometry on
M and a constant c > 0 subject to the following geometric bounds:

(gb1) sup
M ′
|α|(π∗g)[ <∞

with respect to the dual of the pull back metric π∗g; and for all v ∈ ker dα

(gb2) |α(v)| > c|v|π∗g .

If the manifold M is closed any metric g will be of bounded geometry,
i.e. the injectivity radius injg > 0 of (M, g) is positive and the absolut value
of the sectional curvature |secg| is bounded.

The tuple (
π : M ′ →M,α, ω, g

)
is called virtually contact structure and (M,ω) a virtually contact
manifold. A virtually contact manifold is non-trivial if ω is not the differ-
ential of a contact form on M . In particular, the covering π of a non-trivial
virtually contact structure is infinite and M has a non-amenable fundamen-
tal group. A virtually contact structure is called somewhere contact if
there exist an open subset U of M and a contact form αU on U such that
π∗αU = α on π−1(U).

2.2. Covering connected sum

For i = 1, 2 we consider two somewhere contact virtually contact structures(
πi : M

′
i →Mi, αi, ωi, gi

)
.

Denote by Ui, i = 1, 2, an open subset of Mi on which a contact form αUi

exists according to the definition of being somewhere contact. Given a bi-
jection b between the fibers of the coverings π1 and π2 over the respective
base points of M1 and M2 we define a covering connected sum as follows:

Let D2n−1
i , i = 1, 2, be a closed embedded disc contained in Ui such that

a neighbourhood of the disc is equipped with Darboux coordinates for the
contact form αUi

. We perform contact index-1 surgery as described in [10]
identifying ∂D2n−1

i with the boundary {i} × S2n−2 of the upper boundary
of [1, 2]× S2n−2 the 1-handle [1, 2]×D2n−1. The resulting contact form on
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the connected sum U1#U2 is denoted by αU1
#αU2

. Notice, that αU1
#αU2

coincides with αUi
on Ui \D2n−1

i . Let ω be the odd-dimensional symplectic
form on M1#M2 that coincides with ωi on Mi \ Ui for i = 1, 2 and with
d(αU1

#αU2
) on U1#U2. Similarly, a metric g of bounded geometry can be

defined via extension of g1 and g2 over the handle part.
In order to define a connected sum of the coverings πi we may assume

that the base point xi of Mi lies on the boundary of D2n−1
i . Moreover, we

choose the subset Ui, i = 1, 2, so small such that π−1i (Ui) decomposes into
a disjoint union of open sets Uyi , y ∈ π−1i (xi), and that the restriction of
πi to Uyi is an embedding into Mi for all y ∈ π−1i (xi). Then, topologically,

we define a family of connected sums Uy1 #U
b(y)
2 according to the bijection b

between the fibers over the base points.
The restrictions of the contact forms αi|Uy

i
correspond to the local con-

tact form αUi
diffeomorphically via πi, i = 1, 2. A contact form on Uy1 #U

b(y)
2

can be defined equivariantly via contact connected sum as follows: Let
M ′1#bM

′
2 be the manifold obtained by gluing M ′i \ π

−1
i (Ui), i = 1, 2, with

Uy1 #U
b(y)
2 , y ∈ π−1i (x1), along their boundaries in the obvious way. We ob-

tain a covering

π : M ′1#bM
′
2 −→M1#M2

that restricts to πi on M ′i \ π
−1
i (Ui), i = 1, 2, and defines the trivial covering

over the handle parts being the identity restricted to each of the sheets.
Then M ′1#bM

′
2 carries a contact form α whose restriction to the union of

the Uy1 #U
b(y)
2 , y ∈ π−11 (x1), coincides with π∗

(
αU1

#αU2

)
and that restricts

to αi on M ′i \ π
−1
i (Ui), i = 1, 2. Because each of the involved handles is com-

pact the covering π : M ′ →M of M = M1#M2 by M ′ = M ′1#bM
′
2 defines

a virtually contact structure given by
(
π : M ′ →M,α, ω, g

)
.

Remark 2.2.1. Observe, that the model contact handle used for the con-
tact connected sum carries obvious periodic characteristics of

ker
(
d(αU1

#αU2
)
)

inside the belt sphere {3/2} × S2n−2. The situation changes after a per-
turbation of αU1

#αU2
obtained by a multiplication with a positive function

that is constantly equal to 1 in the complement of the handle. This operation
changes the virtually contact structure on the connected sum M = M1#M2

but not the contact structure ξ = kerα on the covering M ′. Still, there exists
a contact embedding of the model contact handle into (M ′, ξ).
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Lemma 2.2.2. For i = 1, 2 let
(
πi : M

′
i →Mi, αi, ωi, gi

)
be a somewhere

contact virtually contact structure. If ω1 is non-exact, then the odd-dimensio-
nal symplectic form ω on M1#M2 corresponding to the virtually contact
structure (

π : M ′ →M,α, ω, g
)

obtained by covering contact connected sum is non-exact.

Proof. We argue by contradiction and continue the use of notation from
above. Suppose that the symplectic form ω on the (2n− 1)-dimensional
connected sum M = M1#M2 has a primitive. Then the restriction ω1 of
ω to M1 \D2n−1

1 does. An interpolation argument for primitives in terms
of Mayer–Vietoris sequence in de Rham cohomology using H1

dR(S2n−2) = 0
shows that the odd-dimensional symplectic form ω1 on M1 has a primitive.

A more elementary argument goes as follows: Denote the primitive of the
restriction of ω1 to M1 \D2n−1

1 by λ. Observe that λ|U is a closed 1-form and,
hence, exact in a neighbourhood D′ of the disc D2n−1

1 . Cutting a primitive
function of λ|D′ down to zero in radial direction we can assume that λ
vanishes near ∂D2n−1

1 ⊂ U ⊂M . In other words, a perturbation of λ extends
over D2n−1

1 by zero resulting in a primitive of ω1. This is a contradiction. �

2.3. Magnetic flows

Virtually contact structures appear naturally on energy surfaces of classical
Hamiltonians on twisted cotangent bundles. We briefly recall the construc-
tion following [5, 8].

Let (Q, h) be a closed n-dimensional Riemannian manifold and let σ
be a closed 2-form on Q, which is called the magnetic form. The Liou-
ville form on the cotangent bundle τ : T ∗Q→ Q is the 1-form λ on the
total space T ∗Q that is given by λu = u ◦ Tτ for all covectors u ∈ T ∗Q. The
twisted symplectic form by definition is

ωσ = dλ+ τ∗σ .

For a smooth function V on Q, the so-called potential, and the dual metric
h[ of h we consider the Hamiltonian of classical mechanics

H(u) =
1

2
|u|2h[ + V

(
τ(u)

)
.
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For energies k > maxQ V we consider the energy surfaces {H = k}, which
are regular and in fact diffeomorphic to the unit cotangent bundle ST ∗Q
via a diffeomorphism induced by a fibrewise radial isotopy.

It is of particular interest whether the Lorentz force induced by the mag-
netic 2-form σ comes from a potential 1-form. Up to lifting σ to a certain
cover this will be the case at least for so-called weakly exact 2-forms: De-
noting by µ : Q̃→ Q the universal covering of Q we call the 2-form σ on Q
weakly exact if there exists a 1-form θ on Q̃ such that µ∗σ = dθ. In the fol-
lowing we will assume that the magnetic form σ is weakly exact. Therefore,
it is natural to lift the Hamiltonian system to the universal cover.

The covering map µ induces a natural map T ∗µ : T ∗Q̃→ T ∗Q that is
given by

ũ 7−→ ũ ◦
(
Tµτ̃(ũ)

)−1
,

where τ̃ : T ∗Q̃→ Q̃ denotes the cotangent bundle of Q̃ and µτ̃(ũ) is the germ
of local diffeomorphism at τ̃(ũ) that coincides with µ near τ̃(ũ). Naturallity
can be expressed by saying that µ ◦ τ̃ = τ ◦ T ∗µ so that(

T ∗µ
)∗
λ = λ̃ ,

where λ̃ denotes the Liouville form on T ∗Q̃. Moreover, T ∗µ itself is a cover-
ing, which because of the homotopy equivalence T ∗Q̃ ' Q̃ can be used to rep-
resent the universal covering of T ∗Q. The lifted Hamiltonian H̃ = H ◦ T ∗µ
is a Hamiltonian of classical mechanics

H̃(ũ) =
1

2
|ũ|2

(h̃)[
+ Ṽ

(
τ̃(ũ)

)
,

ũ ∈ T ∗Q̃, with respect to the lifted metric h̃ = µ∗h and the lifted potential
energy function Ṽ = V ◦ µ. The preimage of {H = k} under T ∗µ is equal
to {H̃ = k}. In fact, an application of the implicit function theorem yields
that the restriction

π = T ∗µ|{H̃=k}

defines a covering projection

M ′ = {H̃ = k} −→ {H = k} = M .

Because there exists a 1-form θ on Q̃ such that µ∗σ = dθ we find that(
T ∗µ

)∗
τ∗σ = d(τ̃∗θ) ,
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so that (
T ∗µ

)∗
ωσ = dλ̃+ τ̃∗dθ =: ω̃dθ

has primitive λ̃+ τ̃∗θ. The restriction to TM ′ is denoted by

α =
(
λ̃+ τ̃∗θ

)
|TM ′ .

Setting ω = ωσ|TM we obtain a map

π :
(
M ′, dα

)
−→

(
M,ω

)
of odd-dimensional symplectic manifolds. The question that we will address
in the following is under which conditions the 1-form α will be a contact
form on M ′.

Remark 2.3.1. The topology of the covering π can be determined as fol-
lows. By the choice k > maxQ V the covering space M ′ is diffeomorphic

to ST ∗Q̃ so that M ′ carries the structure of a Sn−1-bundle over Q̃. The
long exact sequence of the induced Serre fibration shows that the inclusion
Sn−1 →M ′ of the typical fibre yields a surjection of fundamental groups.
Therefore, if Q is not a surface, i.e. n > 2, then M ′ is simply connected and
π the universal covering. If Q is a surface, then in view of uniformization
π is a covering of M = ST ∗Q with covering space M ′ equal to R2 × S1 for
Q 6= S2; otherwise, if Q = S2, then π is the trivial one-sheeted covering of
RP 3.

2.4. Bounded primitive

We assume that the primitive θ of µ∗σ, viewed as a section Q̃→ T ∗Q̃ of τ̃ ,
is bounded with respect to the lifted metric h̃, i.e.

sup
Q̃

|θ|(h̃)[ <∞ .

This will be the case for negatively curved Riemannian manifolds (Q, h) as it
was pointed out by Gromov [17], see Example 2.4.2 below. By compactness of
Q the lifted potential Ṽ is bounded on Q̃ so that the function H̃ ◦ θ : Q̃→ R
is bounded from above, i.e.

sup
Q̃

H̃(θ) <∞ .

The following proposition is contained in [8, Lemma 5.1].
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Proposition 2.4.1. We assume the situation described in Section 2.3. Let
g be a metric on M . If µ∗σ has a bounded primitive θ, then for all k >
supQ̃ H̃(θ) the tuple

(
π : M ′ →M,α, ω, g

)
is a virtually contact structure.

The odd-dimensional symplectic form ω of the virtually contact structure is
non-exact provided dimQ ≥ 3 and the magnetic form σ on Q is not exact.
On closed hyperbolic surfaces Q there exist magnetic forms σ on Q for which
the construction yields non-trivial virtually contact structures.

Proof. Choose k such that k > supQ̃ H̃(θ). As in [8, Lemma 5.1] we find a
ε > 0 such that

|θ|(h̃)[ + ε ≤
√

2(k − V )

uniformly on Q̃. Notice, that(
λ̃+ τ̃∗θ

)(
XH̃

)
(ũ) = |ũ|2

(h̃)[
+ (h̃)[(ũ, θ) ≥ |ũ|(h̃)[

(
|ũ|(h̃)[ − |θ|(h̃)[

)
,

whereXH̃ is the Hamiltonian vector field of the Hamiltonian system (ω̃dθ, H̃).

Because M ′ is the regular level set {H̃ = k} we get α
(
XH̃

)
≥ ε2 on M ′. In

particular, α is a contact form on M ′, see [20, Chapter 4.3]. Because (ω̃dθ, H̃)
is the lift of (ωσ, H) via T ∗µ we obtain T (T ∗µ)

(
XH̃

)
= XH . Hence, the re-

striction of XH̃ to M ′ is bounded for any choice of metric on M , which by
construction is a closed manifold. This implies (gb2).

In order to verify (gb1) we choose the metric on the total space T ∗Q̃
induced by the splitting into horizontal and vertical distribution with respect
to the Levi–Civita connection of h̃. This induces a metric on M ′ and turns
T τ̃ into an orthogonal projection operator, whose operator norm is bounded
by 1. Hence, τ̃∗θ = θτ̃ ◦ T τ̃ and λ̃ũ = ũ ◦ T τ̃ are uniformly bounded because
θ and 1

2 |ũ|
2
(h̃)[

= k − Ṽ
(
τ̃(ũ)

)
are. This shows that the contact form α is

bounded.
Therefore,

(
π : M ′ →M,α, ω, g

)
is a virtually contact structure. It re-

mains to show that the virtually contact structure has a non-exact odd-
dimensional symplectic form provided that n ≥ 3 and σ is not exact. Observe
that as in Remark 2.3.1 one verifies that M is an Sn−1-bundle over Q.
The Gysin sequence yields an injection (τ |M )∗ from the second de Rham
cohomology of Q into the one of M . Hence, τ∗σ|TM is non-exact too so that
the restriction ω of the twisted symplectic form ωσ to TM is non-exact.
This shows non-exactness of the symplectic form of the resulting virtually
contact structures for n ≥ 3.

We discuss non-triviality of the virtually contact structure for n = 2.
Only closed orientable surfaces Q admit non-exact 2-forms. By the Gysin
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sequence the 2-form τ∗σ|TM is non-exact only for the 2-torus. The argu-
mentation from [17, Example 0.1.A] shows that any primitive of µ∗σ on the
cover R2 is unbounded and, therefore, can not result into a virtually contact
structure. This excludes the case that Q is a torus. By Remark 2.3.1 we
also can ignore the case Q being S2. For the remaining hyperbolic surfaces
it was shown in [9, Theorem B.1] that there are induced virtually contact
structures

(
π : M ′ →M,α, ω, g

)
that are non-trivial, cf. [8, p. 1833, (ii)] and

[20, Chapter 4.3]. We remark that examples of contact type are constructed
in [16]. �

Example 2.4.2. Let (Q, h) be a closed Riemannian manifold of negative
sectional curvature and let σ be a closed 2-form on Q. Then the lift µ∗σ
along the universal covering µ : Q̃→ Q has a bounded primitive θ on (Q̃, h̃),
see [17, 0.2.A.] or [3, Proposition 8.4]. We remark that by the theorem of
Hadamard–Cartan Q̃ is diffeomorphic to Rn so that M ′ = Rn × Sn−1 and
Q is an aspherical manifold.

By Preissmann’s theorem the product Q1 ×Q2 of two negatively curved
manifolds does not admit a metric of negative sectional curvature. But still
such a product Q1 ×Q2 is aspherical and any closed 2-form of the form
σ1 ⊕ σ2 has a bounded primitive on the universal cover of Q1 ×Q2.

For more examples the reader is referred to [21].

2.5. Somewhere contact

We will use Proposition 2.4.1 for a construction of somewhere contact virtu-
ally contact structures. The main observation for that is that if the magnetic
term σ vanishes, then the restriction of λ to TM defines a contact form on
M = {H = k} for all k > maxQ V . Indeed, for ε > 0 and u ∈M satisfying
1
2ε

2 ≤ k − V
(
τ(u)

)
we get

λ
(
XH

)
(u) = |u|2h[ ≥ ε2

so that [20, Chapter 4.3] applies. The same holds true for the Hamiltonian
system that is obtained via a lift along µ, or if Q is replaced by a relatively
compact open subset U of Q.

We consider a closed 2-form σ on Q such that {σ = 0} contains a non-
empty relatively compact open subset U . If the lift of σ along µ has a
bounded primitive θ that vanishes on µ−1(U), then the resulting virtually
contact structure that is described in Proposition 2.4.1 will be somewhere
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contact. Indeed, the restriction of the contact form

α =
(
λ̃+ τ̃∗θ

)
|TM ′

to M ′ ∩
(
T ∗µ

)−1
(T ∗U) equals the one of λ̃|TM ′ , which is mapped to the

contact form

λ|
T
(
M∩T ∗U

)
via π = T ∗µ|M ′ .

Lemma 2.5.1. Let σ be a closed 2-form on Q and V be a non-empty
relatively compact open subset of Q such that σ|V = 0. Let θ be a bounded
primitive of µ∗σ. Then there exist an open subset U ⊂ Ū ⊂ V of Q and
a bounded primitive θ̂ of µ∗σ that coincides with θ on the complement of
µ−1(V ) and vanishes on µ−1(U) such that the virtually contact structure(

π : M ′ →M,α =
(
λ̃+ τ̃∗θ̂

)
|TM ′ , ω, g

)
obtained in Proposition 2.4.1 is somewhere contact for all k > supQ̃ H̃(θ̂).
The odd-dimensional symplectic form ω of the virtually contact structure is
non-exact provided dimQ ≥ 3 and the magnetic form σ on Q is not exact.

Proof. In view of the preceding remarks it is enough to show that µ∗σ has
a bounded primitive that vanishes on µ−1(U) for an open subset U of Q.
In order to do so we will assume that σ vanishes on an embedded closed
disc Dn ∼= V ⊂ Q. The open set U is taken to be the Euclidean ball B1/2(0)
inside Dn. Additionally, we choose V so small that µ−1(V ) decomposes into
a disjoint union of subsets V p of the universal cover of Q where the union
is taken over all p ∈ µ−1(q), q ≡ 0, so that

µp := µ|V p : V p −→ V

is a diffeomorphism for all p. In a similar way the preimage of U is decom-
posed into sets denoted by Up. Taking the metric h̃ = µ∗h on Q̃ the maps
µp are in fact isometries.

Consider the given bounded primitive θ of µ∗σ and denote the restriction
of θ to V p by θp := θ|V p . Notice, that dθp = 0 for all p. By the Poincaré–
Lemma there exists a function fp : V p → R such that dfp = θp. Choose a
cut-off function χ on Q that vanishes on B1/2(0) ∼= U and is identically 1 in
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a neighbourhood of Q \ IntV . Set χp = χ ◦ µp and

θ̂p = d(χpfp)

and observe that θ̂p|Up = 0. This defines a 1-form θ̂ on Q̃ that is equal to
θ in the complement of the V p’s and coincides with θ̂p on each V p. By
construction θ̂ is a primitive of µ∗σ that vanishes on µ−1(U).

It remains to show boundedness of θ̂ on (Q̃, h̃). For this it will suffice to
obtain a bound for

θ̂p = fpdχp + χpθp

independently of p. Of course χp is bounded by 1. By chain rule we have

dχp = dχ ◦ Tµp .

Because µp is an isometry we obtain a uniform bound on |dχp|(h̃)[ . Moreover,

|θp|(h̃)[ can be estimated by the supremum of |θ|(h̃)[ , which is bounded by

assumption. Therefore, in order to obtain a uniform bound on |θ̂p|(h̃)[ we

need a uniform bound on |fp|.
For this recall the Poincaré–Lemma. Identify Dn ∼= V with V p isometri-

cally via µp. In order to simplify the following computation in local coordi-
nates we suppress the superscript p from the notation. The 1-form θ, which
got identified with θp, is closed. Write θx = θj(x)dxj using summation con-
vention for x = (x1, . . . , xn) in Dn. For t ∈ [0, 1] we get θtx(x) = θj(tx)xj so
that a primitive of θ is given by

f(x) =

∫ 1

0
θtx(x)dt .

Hence, by the mean value theorem there exists t0 ∈ [0, 1] such that

|f(x)| ≤ |θt0x(x)| ≤ ‖θ‖ht0x
|x|ht0x

.

Observe that the operator norm ‖θ‖h equals |θ|(h̃)[ pointwise and is, there-
fore, uniformly bounded. Moreover, by compactness of Dn the restriction of
the metric h to Dn is uniformly equivalent to the Euclidean metric so that
|x|ht0x

admits a uniform bound. Therefore, the same holds true for |f(x)|.
Consequently, the perturbed primitive θ̂ of µ∗σ is bounded.

In order to finish the proof of the lemma we have to verify non-exactness
of the odd-dimensional symplectic form of the resulting virtually contact
structure if dimQ ≥ 3 and σ is non-exact. But this follows exactly as for
Proposition 2.4.1. �
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2.6. Proof of Theorem 1.1

In view of Example 2.4.2 we choose a closed Riemannian manifold (Q, h)
that is not simply connected. Moreover, choose a closed non-exact 2-form
σ on Q whose lift to the universal cover has a bounded primitive. By a
use of a cut-off function χ as in the proof of Lemma 2.5.1 we can cut-
off a local primitive θV of σ|V for an embedded closed disc V . Setting σ
equal to d(χθV ) on V this results into a new magnetic 2-form that vanishes
somewhere. Notice, that the cohomology class of σ is unchanged and the
lift of σ still has a bounded primitive. In this situation Lemma 2.5.1 yields
a somewhere contact virtually contact structure

(
π : M ′ →M,α, ω, g

)
with

ω being non-exact if dimQ ≥ 3 and with M being not simply connected, cf.
Remark 2.3.1. With these preliminaries Theorem 1.1 will be a consequence
of the following proposition if n ≥ 3.

Proposition 2.6.1. Let
(
π : M ′ →M,α, ω, g

)
be a somewhere contact vir-

tually contact structure with non-exact ω and denote by (T, kerαT ) a contact
manifold. Assume that M and T are of dimension 2n− 1. Then the con-
nected sums M#M and M#T admit somewhere contact virtually contact
structures whose odd-dimensional symplectic forms are non-exact. Moreover,
if M and T are not simply connected, then the belt spheres of the connected
sums M#M and M#T represent non-trivial elements in π2n−2.

Proof. Denote by x ∈ U the base point of M where U is an open subset of
M according to the definition of being somewhere contact, see Section 2.1.
Performing a covering connected sum of

(
π : M ′ →M,α, ω, g

)
with itself

for any bijection b of the base point fibre π−1(x) yields a virtually con-
tact structure on M#M , see Section 2.2. In order to obtain a virtually
contact structure on M#T consider the covering obtained by the disjoint
union of (T × {y}, αT ), y ∈ π−1(x) and perform covering connected sum.
Non-exactness of the odd-dimensional symplectic form of the constructed
virtually contact structures follows with Lemma 2.2.2. Further, in both cases
the resulting covering contact manifold admits a contact embedding of the
upper boundary of a standard symplectic 1-handle as it is discussed in Re-
mark 2.2.1. In particular, the virtually contact structures on the surgered
manifolds are somewhere contact. Moreover, if M and T both are not simply
connected, then the belt sphere represents a non-trivial homotopy class in
π2n−2 by the proof of [18, Proposition 3.10]. �

This finishes the proof of Theorem 1.1 if n ≥ 3. The reason why the
above argumentation does not work for n = 2 is that the odd-dimensional
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symplectic structure obtained from a twisted cotangent bundle of a surface
Q is necessarily exact if Q is not a 2-torus, cf. the discussion on the end
of the proof of Proposition 2.4.1. In order to construct non-trivial virtually
contact structures in dimension 3 that are a non-trivial connected sum we
make the following observations:

Proposition 2.6.2. Let (M, kerαM ) be a closed connected contact mani-
fold. Assume that M carries a metric of negative sectional curvature and a
non-exact closed 2-form η. Then there exists a somewhere contact virtually
contact structure

(
π : M ′ →M,α, ω, g

)
on M such that ω is cohomologous

to a positive multiple of η.

Proof. By using a suitable local cut-off of η we assume that there exists an
open subset V ⊂M such that η|V = 0. This does not change the cohomology
class of η. As explained in the proof of Lemma 2.5.1 we can further assume
that θ|π−1(U) = 0 for an open subset U ⊂ Ū ⊂ V of M . With [17, 0.2.A.]
π∗η has a bounded primitive θ on the universal cover denoting by π the
corresponding covering map. For ε > 0 sufficiently small the lift of the 2-form
ω = dαM + εη along π has a bounded primitive α = π∗αM + εθ in the sense
of (gb1) that is a contact form. By shrinking ε > 0 if necessary the contact
form α satisfies (gb2) as an argumentation by contradiction shows. �

Observe that M is aspherical in contrast to the examples given in Propo-
sition 2.6.1 and that by the theorem of Hadamard–Cartan the compact
manifold M can not be simply connected. Examples in dimension 3 can be
obtained as follows:

Example 2.6.3. Let M be the mapping torus of a closed orientable surface
of higher genus with monodromy diffeomorphism being pseudo-Anosov. By
a theorem of Thurston [25] M is hyperbolic. Moreover, the Betti numbers
b1 = b2 of M are non-zero so that a non-exact closed 2-form η can be found.
By Martinet’s theorem [10, Theorem 4.1.1] M has a contact form αM .

A covering contact connected sum of the somewhere contact virtually
contact manifold M obtained with Example 2.6.3 and Proposition 2.6.2
as described in Proposition 2.6.1 results in a non-trivial virtually contact
manifold. such that the related belt sphere represents a non-trivial class in
π2n−2. This finishes the proof of Theorem 1.1. Q.E.D.
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2.7. Being prime

Recall that a closed connected manifold M is called prime if whenever writ-
ten as a connected sum M = M1#M2 one of the summands M1 and M2 is
a homotopy sphere. The connected sum with a homotopy sphere is called
to be trivial. We remark that the virtually contact manifolds constructed
in Section 2.6 are obtained by a non-trivial connected sum and are, there-
fore, not prime. This follows from the corresponding belt sphere not to be
contractible inside the surgered manifold.

The aim of the following proposition is to show that the examples of
virtually contact structures given in Section 2.6 differ from the one obtained
on unit cotangent bundles M ∼= ST ∗Q of n-dimensional Riemannian mani-
folds of negative sectional curvature studied in Section 2.4. Recall, that by
Hadamard–Cartan’s theorem the universal cover of a Riemannian manofold
of non-positive sectional curvature is diffeomorphic to Rn.

Proposition 2.7.1. The total space ST ∗Q of the unit cotangent bundle of
a closed connected aspherical n-dimensional manifold Q with respect to any
metric on Q is prime.

Proof. As Q is aspherical by Whitehead’s theorem the universal cover Q̃ of Q
contracts to its base point, see [18, Theorem 4.5]. Therefore, the cotangent
bundle of Q̃ is trivial and ST ∗Q̃, which is diffeomorphic to Q̃× Sn−1, is
homotopy equivalent to Sn−1.

If n = 2, then the universal cover of ST ∗Q is R3, see Remark 2.3.1. By
Alexander’s theorem R3 is irreducible, i.e. any embedded 2-sphere bounds
a ball, see [18, Theorem 1.1]. With [18, Proposition 1.6] the closed 3-manifold
ST ∗Q itself is irreducible and, therefore, prime.

If n ≥ 3, then the universal cover of ST ∗Q is diffeomorphic to Q̃× Sn−1.
Consider an embedded (2n− 2)-sphere Sb in ST ∗Q thinking of it as the belt
sphere of a connected sum decomposition of ST ∗Q. Let S̃b be a lift of Sb to
the universal cover of ST ∗Q. Because the homology of the universal cover of
ST ∗Q vanishes in degree 2n− 2 any lift of Sb is the boundary of a bounded
domain whose closure we denote by Ω0. We choose S̃b so that Ω0 does not
contain any other of the lifts of Sb. The closure of the unbounded component
of the complement of S̃b is denoted by Ω1. Therefore, we obtain

Q̃× Sn−1 ∼= S̃T ∗Q = Ω0 ∪S̃b
Ω1 .

By Seifert–van Kampen’s theorem Ω0 must be simply connected. Moreover,
the boundary operator of the Mayer–Vietoris sequence with respect to the
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above decomposition vanishes in all positive degrees. Indeed, we can take
the image of {q} × Sn−1, for q ∈ Q̃ ' {∗}, as a generator of the homology in
degree n− 1 so that its intersection with Ω0, and hence with S̃b, is empty.
Therefore, the Mayer–Vietoris sequence reduces to the following short exact
sequences

0→ HkS̃b → HkΩ0 ⊕HkΩ1 → Hk

(
Q̃× Sn−1

)
→ 0

for all positive k. This implies that Ω0 has the homology of a ball. To see this
for k = n− 1 notice that the generator of the homology in degree n− 1 of
the universal cover of ST ∗Q is chosen to be contained in Ω1. The vanishing in
degree 2n− 2 follows with S̃b ∼= S2n−2 being the boundary of Ω0. Therefore,
Ω0 is a simply connected (2n− 1)-dimensional homology ball with bound-
ary S2n−2. With [22, p. 108, Proposition A and p. 110, Proposition C] it
follows that Ω0 is diffeomorphic to a (2n− 1)-dimensional disc. With the
arguments used in the proofs of [18, Proposition 1.6 and Proposition 3.10]
this yields that Sb bounds a (2n− 1)-dimensional disc in ST ∗Q meaning
that the assumed connected sum decomposition is trivial. After all, we see
that ST ∗Q has to be prime. �

3. Morse potentials

This section is devoted to a proof of Theorem 1.2.

3.1. Morsification

We consider the Hamiltonian function

H(u) =
1

2
|u|2h[ + V

(
τ(u)

)
of classical mechanics on T ∗Q, where τ : T ∗Q→ Q is the cotangent bun-
dle and (Q, h) is a closed oriented connected Riemannian manifold. The
linearization of H at a point u ∈ T ∗Q can be written as

TuH = h[
(
u,Ku( . )

)
+ Tτ(u)V ◦ Tuτ ,

where Ku : Tu(T ∗Q)→ T ∗τ(u)Q is the connection operator of h[. In particu-
lar, u is a critical point of H if and only if u is contained in the zero section
Q of T ∗Q and is a critical point of the potential V : Q→ R.

This is of particular interest if V is a Morse function what we will assume
in the following. Then H will be a Morse function too. This is because to
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the potential V a positive definite quadratic form with respect to the fibre
direction is added. In particular, the Morse indices of a critical point are the
same for both functions V and H.

3.2. Topology of the energy surface

We choose a Morse function V on Q that has a unique local maximum. We
assume that the maximum of V is equal to 1 and that all critical points of
index less or equal than n− 1 have critical value smaller than −1. For the
regular value 0 we consider the energy surface M = {H = 0}.

The sublevel set W = {H ≤ 0} is a CW-complex of dimension less or
equal than n− 1. In particular, HkW = 0 for all k ≥ n and Hn−1W is
torsion-free. Hence, the boundary operator of the long exact sequence of
the pair (W,M) induces an isomorphism Hn+1(W,M)→ HnM . Moreover,
by the universal coefficient theorem and Poincaré duality Hn−1W injects
into Hn+1(W,M) naturally. In fact, the Poincaré duality isomorphism

Hn−1W → Hn+1(W,M)

can be given in terms of the Morse functions meaning that the classes in
Hn+1(W,M) can be represented by cocore discs {∗} ×Dn+1, see [22, Remark
on p. 35/36 and Theorem 7.5]. Therefore, the corresponding belt spheres
{∗} × Sn generate a free subgroup of HnM that is isomorphic to Hn−1W as
an application of the boundary operator shows.

The negative set N = {V ≤ 0} ⊂ Q is a deformation retract of W .
Hence, Hn−1W and Hn−1N are isomorphic. By the assumptions on the
Morse function V we have N ' Q \ {∗} so that Hn−1N = Hn−1Q. There-
fore, Hn−1Q injects into HnM whose image is freely generated by belt
spheres. Denoting by bkQ the Betti numbers of Q and using b1Q = bn−1Q
the Hurewicz homomorphism yields

πnM ≥ Zb1Q .

This verifies the claim on the n-th homotopy group in Theorem 1.2.

Example 3.2.1. If Q is a closed Riemann surface of genus g, then M is
equal to the connected sum S3#(2g)

(
S1 × S2

)
.
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3.3. Virtually contact type

Let σ be a 2-form on Q that vanishes on {V > −1} and consider the twisted
symplectic form ωσ = dλ+ τ∗σ on T ∗Q. Let θ be a bounded primitive of µ∗σ
denoting by µ : Q̃→ Q the universal covering. By the proof of Lemma 2.5.1
we can assume that θ vanishes on µ−1

(
{V > −1}

)
.

By multiplying σ with a small positive constant we achieve that

1

2
|θ|2

(h̃)[
<

1

2
.

This implies that H̃(θ) is negative on µ−1
(
{V ≤ −1}

)
. Therefore, as in the

proof of Proposition 2.4.1, (
λ̃+ τ̃∗θ

)
|TM ′

is a contact form on the intersection of M ′ with
(
T ∗µ

)−1
(T ∗{V ≤ −1})

satisfying (gb1) and (gb2).
Over the remaining part U := {V > −1} we perturb the Liouville form

as follows: Choose a function F on T ∗Q whose support is contained in T ∗U
such that (λ+ dF )(XH) > 0 on M ∩ T ∗U , see [8, Lemma 5.2] or [24, p. 137].
Therefore, (λ+ dF )|TM defines a contact form on M ∩ T ∗U . Consequently,

α =
(
λ̃+ τ̃∗θ + dF̃

)
|TM ′

is a contact form on M ′, where F̃ = F ◦ T ∗µ. Observe, that Ū is a compact
set and that the magnetic term σ and the chosen primitive θ of the lift
µ∗σ vanish over µ−1(U). Hence, all involved differential forms are lifts of
differential forms that are defined on a compact set. In other words, (gb1)
and (gb2) are satisfied along M ′ ∩ T ∗

(
µ−1(U)

)
so that α defines a virtually

contact structure.

Remark 3.3.1. The Mañé critical value of the described magnetic system
equals 1 as the maximum of V is always a lower bound.

3.4. Exactness

The resulting odd-dimensional symplectic form on M is equal to

ω = (dλ+ τ∗σ)|TM .
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This form is exact precisely if τ∗σ|TM is exact, which is the case provided
that σ restricts to an exact form on N̄ . Invoking de Rham’s theorem and
N ' Q \ {∗} we see that ω will be exact in dimension 2n− 1 = 3. If n ≥ 3
the exactness of τ∗σ|TM is equivalent to the one of σ on Q. This follows with
the Gysin sequence for the unit cotangent bundle of {V ≤ −1}, for which
the map induced by τ is injective in degree 2, and an extension argument
for primitive 1-forms over U , which is diffeomorphic to Dn.

In other words, for n = 2 the odd-dimensional symplectic form ω is al-
ways exact; for n ≥ 3 the odd-dimensional symplectic form ω can be chosen
to be non-exact precisely if the Betti number b2Q does not vanish.

3.5. Proof of Theorem 1.2

According to the construction given in Sections 3.2, 3.3, and 3.4 and Ex-
ample 2.4.2 it suffices to find oriented closed manifolds Q with non-trivial
Betti numbers b1Q and b2Q that allow a Riemannian metric and a closed
non-exact 2-form σ such that the lift of σ has a bounded primitive.

In dimension n = 2 we can take any closed oriented hyperbolic surface
and any 2-form as magnetic term. With Example 2.6.3 the case n = 3 can be
treated similarly. In view of Künneth’s formula taking products in the sense
of Example 2.4.2 yields higher dimensional examples. Because for any b ∈ N
we find a manifold Q with the above listed properties satisfying b1Q ≥ b the
claim of Theorem 3.5 follows. Q.E.D.

Remark 3.5.1. For b ≥ 2 the manifold M constructed in Section 3.5 is not
diffeomorphic to a unit cotangent bundle of a closed aspherical manifold Q
as such a Sn−1-bundle over Q has vanishing π2 if n = 2, π3 equal to Z2 if
n = 3, and πn equal to Z if n ≥ 4.
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