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We show that a suitable notion of Dirac-Jacobi structure on a
generic line bundle L, is provided by Dirac structures in the omni-
Lie algebroid of L. Dirac-Jacobi structures on line bundles gener-
alize Wade’s E1(M)-Dirac structures and unify generic (i.e. non-
necessarily coorientable) precontact distributions, Dirac structures
and local Lie algebras with one dimensional fibers in the sense of
Kirillov (in particular, Jacobi structures in the sense of Lichnerow-
icz). We study the main properties of Dirac-Jacobi structures and
prove that integrable Dirac-Jacobi structures on line-bundles inte-
grate to (non-necessarily coorientable) precontact groupoids. This
puts in a conceptual framework several results already available in
literature for E1(M)-Dirac structures.
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1. Introduction

A Dirac structure on a manifold M is a maximal isotropic subbundle of the
generalized tangent bundle TM ⊕ T ∗M , whose sections are preserved by the
Courant (equivalently, the Dorfman) bracket [1, 9]. Dirac structures unify
presymplectic and Poisson structures. While every submanifold of a presym-
plectic manifold is equipped with an induced presymplectic structure, not
every submanifold of a Poisson manifold is equipped with an induced Pois-
son structure. However, every submanifold of a Poisson manifold is (almost
everywhere) equipped with a Dirac structure. From the point of view of
Hamiltonian mechanics, submanifolds in a Poisson manifold are constraints
on the phase space. Hence Dirac geometry is the right conceptual framework
for constrained Hamiltonian mechanics on Poisson manifolds.

In [40] Wade defines E1(M)-Dirac structures. They play a similar role in
precontact/Jacobi geometry as Dirac structures do in presymplectic/Poisson
geometry. However, Wade’s definition does not capture non-coorientable pre-
contact distributions, nor local Lie algebras with one dimensional fibers in
the sense of Kirillov [22]. Recall that a precontact manifold is a manifold
M equipped with a precontact distribution, i.e. a hyperplane distribution
C. The quotient bundle L := TM/C is a non-necessarily trivial line bun-
dle. When L is trivial, C is called coorientable. A coorientable precontact
distribution can be presented as the kernel of a globally defined 1-form.
Hence coorientable precontact distributions are simpler than generic ones
and most authors prefer to work with the former. However, there are impor-
tant (pre)contact distributions which are not coorientable, e.g. the canonical
contact distribution on the manifold of contact elements is not. Actually, a
large part of the theory of coorientable precontact manifolds can be extended
to the generic case, after developing a suitable language to deal with generic
line bundles.

A similar situation is encountered in Jacobi geometry. A Jacobi manifold
in the sense of Lichnerowicz [27] can be regarded as a manifold M equipped
with a Lie bracket on smooth functions which is a first order differential
operator in each entry. Now, functions on M are sections of the trivial line
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bundle RM := M ×R→M . If we take sections of a generic line bundle,
instead of functions, we get the notion of a local Lie algebra with one dimen-
sional fibers in the sense of Kirillov [22]. Lichnerowicz’s Jacobi manifolds are
simpler than Kirillov’s local Lie algebras and most authors prefer to work
with the former. However, there are important local Lie algebras which do
not come from Jacobi manifolds. For instance, a non coorientable contact
manifold (M,C) defines a local Lie algebra (containing a full information
on C) which doesn’t come from a Jacobi structure. Actually, a large part of
the theory of Jacobi manifolds can be extended to local Lie algebras with
one dimensional fibers.

In this paper we show that a suitable notion of Dirac-Jacobi structure
on a generic line bundle L, is provided by Dirac structures in the omni-Lie
algebroid of L. The omni-Lie algebroid of a vector bundle E, here denoted
by DE, and Dirac structures therein, have been introduced by Chen and Liu
in [6], and further studied by Chen, Liu and Sheng in [8]. In the case when
E is a line bundle, Dirac structures in DE encompass local Lie algebras
with one dimensional fibers (see [6]), as well as non necessarily coorientable
precontact distributions, and Wade’s E1(M)-Dirac structures. We study sys-
tematically Dirac-Jacobi bundles, i.e. line bundles L equipped with a Dirac
structure in DL, extending to this general context a number of results al-
ready available for E1(M)-Dirac manifolds. We also find completely new
results, including a useful theorem on the local structure of Dirac-Jacobi
bundles (Theorem 6.1), a general discussion on backward/forward images of
Dirac-Jacobi structures (Section 8), and a coisotropic embedding theorem
(Section 9), paralleling similar results holding for Dirac manifolds (see [15],
[1], and [5] respectively). In our opinion, the omni-Lie algebroid approach to
Dirac-Jacobi structures clarifies Wade’s theory, putting it in a simple and
efficient conceptual framework.

The paper is organized as follows. In Section 2 we recall those aspects of
differential geometry of line bundles that we will need in the sequel. Specif-
ically, we discuss, in some details, the Atiyah algebroid (also called gauge
algebroid) of a vector bundle and its functorial properties. In Section 3 we
present an alternative point of view on (pre)contact geometry: it turns out
that (pre)contact geometry can be obtained from (pre)symplectic geometry
“replacing smooth functions with sections of an arbitrary line bundle L, and
vector fields with sections of the Atiyah algebroid of L”. This principle is a
guide-line throughout the paper. Actually, Dirac-Jacobi geometry can be ob-
tained from Dirac geometry “replacing the tangent bundle with the Atiyah
algebroid of a line bundle”. This vague statement will be much clearer after
Section 4 where we define Dirac-Jacobi structures on generically non-trivial



i
i

“4-Vitagliano” — 2018/7/4 — 17:40 — page 488 — #4 i
i

i
i

i
i

488 Luca Vitagliano

line bundles. The examples show that Dirac-Jacobi bundles encompass (non-
necessarily coorientable) precontact manifolds, local Lie algebras with one
dimensional fibers (in particular, Jacobi manifolds and flat line bundles), and
Dirac manifolds. In Section 5 we begin a systematic analysis of Dirac-Jacobi
bundles. In particular, we show that a Dirac-Jacobi bundle is essentially the
same as a (generically singular) foliation equipped with precontact or lo-
cally conformal presymplectic (lcps) structures on its leaves (see [20] for the
trivial line bundle version of this result). In Section 6 we describe, to some
extent, the local structure of a Dirac-Jacobi bundle around a point in ei-
ther a precontact or a lcps leaf of the characteristic foliation (Theorem 6.1).
This description is not a full local normal form theorem. Nonetheless it is
useful for several purposes (see, e.g., Corollary 6.4, and Proposition 7.3).
In addition, it allows to prove the existence of certain structures transverse
to characteristic leaves (Propositions 6.8 and 6.9). In Section 7 we define
the null distribution of a Dirac-Jacobi bundle. It plays a similar role as the
null distribution of a Dirac manifold, in particular, that of a presymplectic
manifold. Namely, under suitable regularity conditions, the null distribu-
tion can be quotiented out. The quotient manifold is naturally equipped
with a local Lie algebra with one dimensional fibers, which, together with
the null foliation, completely determines the original Dirac-Jacobi struc-
ture. This allows to describe the structure of Dirac-Jacobi bundles, with
sufficiently regular null distribution, in a similar way as for Dirac manifolds.
In Section 8 we discuss how to pull-back and push-forward a Dirac-Jacobi
structure along a smooth map. This allows us to define two different kind of
morphisms (backward, and forward morphisms) between Dirac-Jacobi bun-
dles. The analysis in this section closely parallels a similar analysis for Dirac
manifolds in [1, Section 5]. In Section 9 we discuss coisotropic submani-
folds in manifolds equipped with a local Lie algebra structure. Under suit-
able regularity conditions, a coisotropic submanifold inherits a Dirac-Jacobi
structure. Conversely, under suitable regularity conditions, a Dirac-Jacobi
bundle can be coisotropically embedded in a manifold equipped with a lo-
cal Lie algebra with one dimensional fibers (Theorem 9.2) (see [5, Theorem
8.1] for a Poisson geometric version of this result). In Section 10 we prove
that Dirac-Jacobi bundles are infinitesimal counterparts of (non-necessarily
coorientable) precontact groupoids. Every Dirac structure comes equipped
with a Lie algebroid structure integrating (if at all integrable) to a presym-
plectic groupoid [2]. Similarly every E1(M)-Dirac structure comes equipped
with a Lie algebroid structure integrating (if at all integrable) to a coori-
ented precontact groupoid [21]. Theorem 10.11 generalizes these results to
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Dirac-Jacobi bundles. Finally, recall that a local Lie algebra with one di-
mensional fibers can be regarded as a homogenous Poisson manifold via the
so called Poissonization trick. Similarly, a E1(M)-Dirac structure can be
regarded as a homogeneous Dirac structure via a Dirac-ization trick [20],
and this is sometimes useful in proving theorems in Dirac-Jacobi geometry
from available theorems in Dirac geometry (see, e.g., [21], see also [41]). In
Appendix A we show how to adapt the Dirac-ization trick to Dirac-Jacobi
structures on non-necessarily trivial line bundles.

Notation, conventions and terminology

Let M be a smooth manifold, and let E →M be a vector bundle. A dis-
tribution V in E is the assignment x 7→ Vx of a subspace Vx of the fiber
Ex of E over x for all points x ∈M . Let V be a distribution in E. The
rank of V is the integer-valued map rankV on M defined by rankV : x 7→
rankx V := dimVx. A (smooth) section of V is a section e of E such that
e(x) ∈ Vx for all x ∈M . Distribution V is smooth if Vx is spanned by values
at x of sections of V , for all x ∈M . The rank of a smooth distribution is a
lower semi-continuous function. A smooth distribution is regular if its rank
is locally constant. Hence a regular distribution in a vector bundle over a
connected manifold is a vector subbundle. If E is a Lie algebroid, a distri-
bution V in E is called involutive if sections of V are preserved by the Lie
bracket on Γ(E).

Typical examples of distributions in vector bundles are kernels and im-
ages of vector bundle morphisms over the identity. The kernel of a vector
bundle morphism (in particular, the intersection of two vector subbundles)
is a distribution with upper semi-continuous rank. Hence it is smooth if and
only if its rank is locally constant. The image of a vector bundle morphism
is a smooth distribution. In particular, its rank is a lower semi-continuous
function.

A distribution K in TM is integrable if every point of M is contained in
a plaque, i.e. a connected, immersed submanifold O such that TO = K|O.
An integrable distribution K in TM determines a partition F of M into
leaves, i.e. maximal plaques. Partition F will be referred to as a foliation
(of M), specifically the integral foliation of K, and K will be also called the
tangent distribution to F and denoted by TF . (A version of) Stefan-Sussman
Theorem asserts that a smooth distribution K in TM is integrable if and
only if it is involutive and, additionally, rankK is constant along the flow
lines of sections ofK. In particular, a regular distribution in TM is integrable
if and only if it is involutive (Frobenius theorem). The integral foliation of a
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regular distribution in TM will be called regular. A regular foliation of M is
simple if the space Mred of leaves carries a smooth manifold structure such
that the canonical projection M →Mred is a (surjective) submersion.

We assume that the reader is familiar with (fundamentals of) the theory
of Lie groupoids, Lie algebroids and their representations (see, e.g., [10] and
references therein). The unfamiliar reader will find a quick introduction to
those aspects of the theory relevant for this paper in [33] (see Section 1.2
therein, see also Chapter 4). We only recall here that, given a Lie algebroid
A→M , with Lie bracket [−,−]A and anchor ρA, and a vector bundle E →
M equipped with a representation of A, i.e. a flat A-connection, there is an
E-valued Cartan calculus on A consisting of the following operators:

• the E-valued Lie algebroid differential

dA,E : Γ(∧•A∗ ⊗ E)→ Γ(∧•A∗ ⊗ E),

and, for every section α of A,

• the contraction iα : Γ(∧•A∗ ⊗ E)→ Γ(∧•A∗ ⊗ E) taking an E-valued,
skew-symmetric multilinear form ω on A to iαω = ω(α,−, . . . ,−),

• the Lie derivative Lα : Γ(∧•A∗ ⊗ E)→ Γ(∧•A∗ ⊗ E), defined as Lα :=
[iα, dA,E ] = iαdA,E + dA,Eiα.

The above operators fulfill the following (additional) Cartan identities

[Lα, iβ] = i[α,β]A , [Lα,Lβ] = L[α,β]A ,

[dA,E , dA,E ] = [dA,E ,Lα] = [iα, iβ] = 0.

for all α, β ∈ Γ(A), where [−,−] denotes the graded commutator.

2. Reminder on the Atiyah algebroid of a vector bundle

In order to fix the notation, we collect, in this section, some already known
facts about the Atiyah algebroid of a vector bundle, including its defini-
tion and its interaction with vector bundle morphisms. For more informa-
tion about the Atiyah algebroid the reader may refer, e.g., to Mackenzie’s
book [28] and references therein (especially reference [23] of the present pa-
per). Beware that our terminology and notation are slightly different from
Mackenzie’s ones.

Let M be a smooth manifold, and let E →M be a vector bundle over
it. A derivation of E is an R-linear map ∆ : Γ(E)→ Γ(E) such that there
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exists a, necessarily unique, vector field X ∈ X(M), called the symbol of ∆
and also denoted by σ(∆), satisfying the following Leibniz rule

∆(fe) = X(f)e+ f∆(e),

for all f ∈ C∞(M) and e ∈ Γ(E).

Remark 2.1. Derivations are first order differential operators. If E is a
line bundle, then every first order differential operator Γ(E)→ Γ(E) is a
derivation.

Derivations of E can be regarded as sections of a Lie algebroid DE →M ,
the Atiyah algebroid of E, defined as follows. The fiber DxE of DE through
x ∈M consists of R-linear maps ∆ : Γ(E)→ Ex such that there exists a,
necessarily unique, tangent vector X ∈ TxM , called the symbol of ∆ and
also denoted by σ(∆), satisfying the following Leibniz rule

∆(fe) = X(f)ex + f(x)∆(e),

f ∈ C∞(M) and e ∈ Γ(E). It is easy to see that DxE is a vector space.
Choose coordinates (xi) on M , and a local basis (εa) of Γ(E). Then a basis
of DxE is (δi, ε

b
a) defined as follows. For e = faε

a ∈ Γ(E) put

δi(e) :=
∂fa
∂xi

(x)εax and εba(e) := fa(x)εbx.

This shows that the DxE’s are fibers of a vector bundle DE →M whose
rank is dimM + (rankE)2. Sections of DE →M are denoted by DerE.
They identify with derivations of E. Hence DE →M is a Lie algebroid,
whose Lie bracket is the commutator of derivations and whose anchor σ :
DE → TM maps a derivation to its symbol. A representation of a Lie
algebroid A→M in a vector bundle E →M can then be regarded as a
morphism of Lie algebroids A→ DE. In particular, there is a tautological
representation of the Lie algebroid DE in E itself, given by the identity
id : DE → DE. The de Rham complex Γ(∧•(DE)∗ ⊗ E) of DE with values
in E is sometimes called the der-complex [32]. We denote be dD the differ-
ential in the der-complex. The der-complex is actually acyclic. Even more,
it possesses a canonical contracting homotopy given by contraction with the
identity derivation 1 : E → E, 1e = e. The Atiyah algebroid DE is often
called the gauge algebroid of E.

Correspondence E → DE is functorial in the following sense. Let VBreg

be the category whose objects are vector bundles (over possibly different base
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manifolds) and whose morphisms are regular morphisms of vector bundles,
i.e. vector bundle maps that are isomorphisms on fibers. Then correspon-
dence E 7→ DE can be promoted to a functor from VBreg to the category
of Lie algebroids, with morphisms of Lie algebroids over possibly different
base manifolds. Namely, let E →M and E′ →M ′ be vector bundles, and
let F : E → E′ be a regular vector bundle morphism over a smooth map
F : M →M ′. In particular, a section e′ of E′ can be pulled-back to a section
F ∗e′ of E, defined by (F ∗e′)(x) := (F |−1

Ex
◦ e ◦ F )(x), for all x ∈M . Then F

induces a morphism of Lie algebroids dDF : DE → DE′ defined by

((dDF )∆)e′ := ∆(F ∗e′), ∆ ∈ DE, e′ ∈ Γ(E′).

It is easy to see that rankx dDF = rankx dF + (rankE)2 for all x ∈M . If
there is no risk of confusion, we also denote by F∗ the vector bundle mor-
phism dDF . Of a special interest is the case when F : M →M ′ is the in-
clusion of a submanifold and F : E = E′|M → E′ is the inclusion of the re-
stricted vector bundle. In this case dDF : D(E′|M )→ DE′ is an embedding
whose image consists of derivations of E′ whose symbol is tangent to M .
We will often regard D(E′|M ) as a subbundle of DE′ (over the submanifold
M).

Remark 2.2. There is a more geometric interpretation of derivations of a
vector bundle which is often useful. Namely, derivations of a vector bundle
E →M can be understood as infinitesimal vector bundle automorphisms of
E, as follows. let {∆t} be a smooth one-parameter family of derivations of
E, and let Xt = σ(∆t). Denote by {Φt} the one-parameter family of diffeo-
morphisms generated by {Xt}. Then there exists a unique one-parameter
family {Φt} of vector bundle automorphisms Φt : E → E, over {Φt} such
that

d

dt
Φ∗t e = Φ∗t∆te,

for all e ∈ Γ(E). If ∆t = ∆ is constant, then family {Φt} is a flow, over the
flow of X = σ(∆), and

∆e =
d

dt

∣∣∣∣
t=0

Φ∗t e.

In the case when E = L is a line bundle, then rankDL = dimM + 1 and
a basis of DxL is (δi, 1x), where 1x maps section e to ex. Moreover, the dual
bundle of DL is J1L⊗ L∗, where J1L is the first jet bundle of L. In this
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case, der-complex looks like

0 −→ Γ(L) −→ Γ(J1L) −→ Γ(∧2(DL)∗ ⊗ L) −→ · · · ,

and the first differential Γ(L)→ Γ(J1L) agrees with the first jet prolongation
j1 : Γ(L)→ Γ(J1L). Let L→M and L′ →M ′ be line bundles and let F :
L→ L′ be a regular morphism of vector bundles over a smooth map F :
M →M ′. A sections ψ′ of J1L′ can be pulled-back to a section F ∗ψ′ of J1L
as follows. First define a vector bundle morphism j1F : F ∗J1L′ → J1L by
putting (j1F )j1

F (x)λ
′ := j1

x(F ∗λ′), for all x ∈M . Next put F ∗ψ = j1F ◦ ψ ◦
F . By definition j1F ∗λ′ = F ∗j1λ′ for all λ′ ∈ Γ(L′). If there is no risk of
confusion we also denote by F ∗ the vector bundle morphism j1F .

The pull-backs F ∗ : Γ(L′)→ Γ(L) and F ∗ : Γ(J1L′)→ Γ(J1L) can be
extended to a degree zero map, also denoted by F ∗ : Γ(∧•(DL′)∗ ⊗ L′)→
Γ(∧•(DL)∗ ⊗ L), in the obvious way. Moreover,

F ∗dDω
′ = dDF

∗ω′

for all ω′ ∈ Γ(∧•(DL′)∗ ⊗ L′).
Vector bundle morphism j1F is adjoint to dDF in the sense that

〈F∗∆, ψ′〉 = 〈∆, F ∗ψ〉 for all ∆ ∈ DxL and ψ ∈ J1
F (x)L

′, where 〈−,−〉 : DL⊗
J1L→ L, is the duality pairing twisted by L. Hence, if ∆ ∈ DerL and
∆′ ∈ DerL′ are F -related, i.e. ∆(F ∗λ′) = F ∗(∆′λ′) for all λ′ ∈ Γ(L′) (in
other words, F∗(∆x) = ∆′F (x) for all x ∈M), then

(2.1)
i∆F

∗ω′ = F ∗i∆′ω
′

L∆F
∗ω′ = F ∗L∆′ω

′

for all ω′ ∈ Γ(∧•(DL′)∗ ⊗ L′).

3. A new look at contact and locally conformal symplectic
geometries

A precontact manifold is a manifold M equipped with a precontact distri-
bution C, i.e. a hyperplane distribution on M . Let (M,C) be a precontact
manifold. Denote by L the quotient line bundle TM/C, and by θ : TM → L
the projection. We also interpret θ as an L-valued 1-form on M . It con-
tains a full information on C. Actually, a precontact distribution on M
can be equivalently defined as a line bundle L equipped with a precon-
tact form θ : TM → L, i.e. a nowhere zero L-valued 1-form θ : TM → L.
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The curvature form ωC : ∧2C → L, (X,Y ) 7→ θ([X,Y ]), defines a morphism
(ωC)[ : C → C∗ ⊗ L of vector bundles whose kernel KC is a, generically sin-
gular, involutive, subdistribution of C called the null distribution of C. Since
the rank of KC is an upper semi-continuous function on M , then KC is
smooth if and only if it is regular. In this case, the rank of KC is locally
constant and KC is integrable by involutivity.

A precontact distribution C is contact if ωC is non-degenerate, i.e. (ωC)[
is an isomorphism. A contact distribution C defines a local Lie algebra (L =
TM/C, {−,−}) in the sense of Kirillov (see Remark 3.1 below). Following
Marle’s terminology [29] we will use the name Jacobi bundle for a local
Lie algebra with one dimensional fiber. A Jacobi bundle is a line bundle L
equipped with a Lie bracket {−,−} : Γ(L)× Γ(L)→ Γ(L) on its sections,
which is, additionally, a first order differential operator (hence a derivation)
in each entry. The Lie bracket of a Jacobi bundle will be called a Jacobi
bracket. Jacobi manifolds in the sense of Lichnerowicz [27] are natural sources
of (trivial) Jacobi bundles and Jacobi brackets, but there are interesting
examples of non-trivial Jacobi bundles.

Remark 3.1. The Jacobi bracket {−,−} defined by C can be described
as follows (see, e.g., [11]). Let X ∈ X(M). The map φX : C → C∗ ⊗ L, Y 7→
θ([X,Y ]) is a well-defined morphism of vector bundles. Put

X ′ = (ωC)−1
[ (φX) ∈ Γ(C).

It can be showed that X −X ′ does only depend on λ := θ(X). We denote
it by Xλ. Now, let λ = θ(X), µ = θ(Y ) ∈ Γ(L), with X,Y ∈ X(M). Then
{λ, µ} = θ([Xλ, Xµ]). Notice, additionally, that the vector field Xλ is the
symbol of the derivation {λ,−} and, moreover, its flow preserves C.

In the following, it will be convenient to take a slightly more general
point of view on precontact geometry. Namely, we relax the requirement
that a precontact form is nowhere zero, and call a precontact form any 1-
form θ on M with values in a line bundle L→M . The kernel of θ is a
non-necessarily regular distribution on M whose rank is dimM at points
where θ vanishes, and dimM − 1 at points where θ is not zero. When ker θ
is not regular, the null distribution cannot be defined as above. However,
there is still a way out as discussed below (Remark 3.7).

Now, we propose an alternative approach to precontact geometry, in-
spired by the (pre)symplectization trick. The latter consists in regarding a
precontact manifold as a homogeneous symplectic manifold, which is always
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possible. In our approach, precontact geometry is, in a sense, symplectic ge-
ometry on the Atiyah algebroid of a line bundle. Let L→M be any line bun-
dle. Consider the Atiyah algebroid DL of L and let DerL be sections of DL
(see Section 2). As already remarked, there is a tautological representation
of DL in L, and an associated (acyclic) de Rham complex (Γ(∧•(DL)∗ ⊗
L), dD) (remember that (DL)∗ = J1L⊗ L∗). In the following, we denote
by Ω•L the graded space Γ(∧•(DL)∗ ⊗ L). Since the contraction i1 with the
identity operator 1 := idΓ(L) ∈ DerL is a contracting homotopy for (Ω•L, dD),
i.e. [i1, dD] = id, it immediately follows that Ω•L = ker dD ⊕ ker i1 with pro-
jections Ω•L → ker dD, ω 7→ ω − i1dDω, and Ω•L → ker i1, ω 7→ i1dDω. In par-
ticular, dD : ker i1 → ker dD is a (degree one) isomorphism of graded vector
spaces, and i1 : ker dD → ker i1 is its inverse isomorphism.

Remark 3.2. The C∞(M)-linear operator i1 does actually come from a
constant rank morphism of vector bundles ∧•(DL)∗ ⊗ L→ ∧•(DL)∗ ⊗ L
also denoted by i1. In particular, it induces acyclic differentials on fibers
(also denoted i1).

Proposition 3.3. Precontact forms on M with values in L are in one-
to-one correspondence with 2-cocycles in (Ω•L, dD). Nowhere zero precontact
forms correspond to 2-cocycles ω such that ωx /∈ ker i1 for any x ∈M .

Proof. Let θ : TM → L be a precontact form on M . Denote by Θ : DL→ L
the composition

DL
σ−→ TM

θ−→ L,

where σ is the anchor of DL, i.e. the symbol map. Regard Θ as a 1-cochain
in (Ω•L, dD) and put ω := −dDΘ. Then ω is a 2-cocycle. From σ1 = 0, we get
i1Θ = 0, hence Θ = −i1ω. Conversely, let ω be a 2-cocycle in (Ω•L, dD). Put
Θ := −i1ω, so that Θ ∈ ker i1. Since the kernel of σ is actually generated by
1, it follows that Θ descends to an L-valued 1-form θ : TM → L, i.e. Θ =
θ ◦ σ.

For the second part of the statement, let ∆ ∈ DerL and x ∈M . We have
ω(1x,∆x) = ω(1,∆)x = −Θ(∆)x = −θx(σ(∆x)), and the claim follows from
surjectivity of σ. �

Remark 3.4. Let x ∈M . The proof of Proposition 3.3 shows that θx = 0
if and only if ω(1x,−) = 0.

Clearly, every 2-cochain ω ∈ Ω2
L defines a morphism ω[ : DL→ (DL)∗ ⊗

L = J1L. Put Kω := kerω[. It is a generically non-smooth distribution in
DL.
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Remark 3.5. By definition, the 2-cochain ω is non-degenerate if ω[ is an
isomorphism, i.e. Kω = 0. In this case the inverse isomorphism ω] : J1L→
DL defines a skew-symmetric bracket {−,−}ω : Γ(L)× Γ(L)→ Γ(L) via,

{λ, µ}ω := 〈ω](j1λ), j1µ〉,

where 〈−,−〉 : DL⊗ J1L→ L is the duality pairing twisted by L. By defi-
nition, {−,−}ω is a first order differential operator in each entry. Moreover,
it is easy to see that {−,−}ω is a Lie bracket, i.e. it satisfies the Jacobi
identity, if and only if dDω = 0. In this case (L, {−,−}ω) is a Jacobi bundle.

Proposition 3.6. Let θ : TM → L be a nowhere zero precontact form with
values in the line bundle L→M , let C := ker θ be the corresponding precon-
tact distribution, and let ω ∈ Ω2

L be the associated 2-cocycle. The symbol map
σ : DL→ TM establishes a linear bijection between Kω and KC . In partic-
ular, θ is a contact form, i.e. C := ker θ is a contact distribution, if and only
if ω is non-degenerate. In this case the bracket {−,−}ω of Remark 3.5 is the
Jacobi bracket defined by C.

Proof. We use the same notations as in the proof of Proposition 3.3. Work
point-wise taking a generic x ∈M . First of all we remark that, from Propo-
sition 3.3, 1x /∈ Kω. Since 1 generates kerσ, it follows that the restric-
tion σ : Kω → TM is injective. Now, let ∆ ∈ DerL be such that ∆x ∈ Kω.
Compute θ(σ(∆x)) = Θ(∆x) = −ω(1x,∆x) = 0. This shows that σ(Kω) ⊂
C. Since ker Θ is a regular distribution in DL, we can choose ∆ ∈ ker Θ. We
have to show that, for all such ∆, σ(∆x) ∈ KC , i.e. that, for all X ∈ Γ(C),
ωC(σ(∆x), Xx) = 0, where ωC : ∧2C → L is the curvature form of C. Thus,
let � ∈ DerL be such that σ(�) = X. In particular, � ∈ Γ(ker Θ). Compute

ωC(σ(∆x), σ(�x)) = θ([σ(∆), σ(�)])x

= Θ([∆,�])x

= ω(∆x,�x)−∆(Θ(�))x + �(Θ(∆))x

= 0.

Conversely, let Y ∈ Γ(C) be such that Yx ∈ KC , and let ∆ ∈ DerL be such
that Y = σ(∆). Then the same computation as above shows that ker Θx ⊂
kerω(∆x,−). Since Θx 6= 0, it follows that ω(∆x,−) = rΘx = ω(r1x,−) for
some real number r. Hence ∆x − r1x ∈ Kω. But σ(∆x − r1x) = σ(∆x) =
Xx. This concludes the proof of the first part of the proposition.

It remains to show that, when ω is non degenerate, {−,−}ω agrees with
the Jacobi bracket {−,−} determined by C. To see this, first notice that
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derivations of the form {λ,−} preserve Θ. Namely, let λ ∈ Γ(L) and let
∆λ = {λ,−}. The Lie derivative L∆λ

Θ of Θ along ∆λ vanishes identically.
Indeed, for all ∆ ∈ DerL, put µ = Θ(∆) = θ(σ(∆)) ∈ Γ(L), and compute

(L∆λ
Θ)(∆) = ∆λ(Θ(∆))−Θ([∆λ,∆])

= {λ, µ} − θ([σ(∆λ), σ(∆)])

= θ([σ(∆λ), σ(∆−∆µ)]

= 0,

where the last equality follows from the fact that σ(∆−∆µ) ∈ Γ(C), and
σ(∆λ) = Xλ preserves C (see Remark 3.1). Now

ω[(∆λ) = −i∆λ
dDΘ = dDi∆λ

Θ = dDλ = j1λ,

i.e. ω](j1λ) = ∆λ, which concludes the proof. �

Remark 3.7. Propositions 3.3 and 3.6 show that the information con-
tained in a precontact distribution C can be actually encoded in a 2-cocycle
ω in (Ω•L, dD). Moreover, from ω, we immediately recover the notion of null
subdistribution of a precontact distribution and Jacobi bracket of a contact
distribution. Finally, Proposition 3.6 suggests how to define the null distri-
bution of a (non-necessarily nowhere zero) precontact 1-form θ : TM → L:
it is σ(Kω), where ω ∈ Ω2

L is the 2-cocycle corresponding to θ. Notice that
σ : Kω → σ(Kω) is not injective precisely at points where θ vanishes. Specif-
ically, from Remark 3.4, we see that 1x ∈ kerσ ∩Kω whenever θx = 0.

Now we turn to locally conformal presymplectic (lcps) geometry. Recall
that a lcps manifold is a manifold M equipped with a lcps structure, i.e. a
pair (ω, b) where b is a closed 1-form and ω is a 2-form such that dω + b ∧ ω =
0. A lcps structure (ω, b) is locally conformal symplectic (lcs) if ω is non
degenerate. There is a more conceptual approach to lcps geometry (see, e.g.,
[36, Appendix A])). Namely, a closed 1-form b can be understood as a flat
connection in the trivial line bundle RM := R ×M , and d+ b ∧ (−) is the
associated flat connection differential. This suggests to revise the definition
of a lcps structure as follows. A lcps structure on M is a triple (L,∇, ω)
where L→M is a line bundle,∇ is a flat connection in L and ω : ∧2TM → L
is an L-valued 2-form such that d∇ω = 0, where d∇ is the flat connection
differential associated to∇ (notation ω instead of ω will be clear in few lines).
A lcps structure (L,∇, ω) is lcs if ω is non-degenerate, i.e. the induced vector
bundle morphism ω[ : TM → T ∗M ⊗ L is an isomorphism. For instance,
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even-dimensional characteristic leaves of a Jacobi bundle are equipped with
lcs structures in this more general (line bundle theoretic) sense.

Remark 3.8. A lcs structure (L,∇, ω) defines a Jacobi bracket {−,−} on
Γ(L) as follows. Let λ ∈ Γ(L), and let d∇λ : TM → L be its flat connection
differential. Put Xλ := (ω[)

−1(d∇λ). Then {λ, µ} = ω(Xλ, Xµ). The Jacobi
identity for {−,−} is equivalent to d∇ω = 0.

Now we show that lcps geometry can be put in the same framework
as that proposed for precontact geometry. Specifically, a flat connection in
L is an injective Lie algebroid morphism ∇ : TM → DL. Hence the image
I∇ := im∇ is a subalgebroid in DL and the symbol σ : I∇ → TM is an
isomorphism of Lie algebroids. Conversely, it follows by dimension counting
that a transitive Lie subalgebroid of DL is either DL itself or is of the form
I∇ for a unique flat connection ∇. Hence there is a one-to-one correspon-
dence between flat connections in L and transitive, proper Lie subalgebroids
in DL. Differential d∇ is the L-valued Lie algebroid differential of I∇ up to
the identification I∇ ' TM . This shows that precontact/lcps geometry is
the geometry of an L-valued, closed 2-form on a transitive Lie subalgebroid
of the Atiyah algebroid of a line bundle L.

Remark 3.9. Let ω be an L-valued 2-form on the manifold M . It can
be also regarded as a 2-form on DL itself as follows. Let ω = σ∗ω ∈ Ω2

L be
given by (σ∗ω)(∆,�) := ω(σ(∆), σ(�)), for all ∆,� ∈ DerL. In particular,
ω ∈ ker i1. Conversely, let ω ∈ ker i1 ∩ Ω2

L. Then it descends to an L-valued
2-form on M , i.e. ω = σ∗ω for some ω : ∧2TM → L. In other words, an L-
valued 2-form ω on M is equivalent to a 2-cochain ω in (Ω•L, dD) such that
i1ω = 0. Now, let (L,∇, ω) be a lcps structure and ω = σ∗ω. If the rank
of ω is at least four, then ω determines ∇. However, in general, it doesn’t
(consider the case ω = 0), and ∇ is an extra piece of information. Finally, a
direct computation shows that

(3.1) (dDω)(∇X ,∇Y ,∇Z) = (d∇ω)(X,Y, Z)

for all X,Y, Z ∈ X(M). Hence condition d∇ω = 0 is equivalent to condition
(dDω)|I∇ = 0.

4. Dirac-Jacobi bundles

Wade defined a Jacobi version of a Dirac structure, and originally called it a
Dirac structure on E1(M) [40]. Later the terms E1(M)-Dirac structure [20]
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and Dirac-Jacobi structure [21] were also used to indicate the same object.
Wade’s definition is based on the following remark. Let M be a smooth
manifold and let RM := M ×R be the trivial line bundle over M . Sections
of the bundle E1(M) := (TM ⊕RM )⊕ (T ∗M ⊕RM ) are equipped with a
canonical bracket extending the Courant bracket on sections of TM ⊕ T ∗M
[40, Section 3]. An E1(M)-Dirac structure is then a maximal isotropic sub-
bundle of E1(M) whose sections are preserved by the canonical bracket.
E1(M)-Dirac structures encompass cooriented precontact distributions and
Jacobi structures in the sense of Lichnerowicz [27] as special cases. Wade
also defined conformal Dirac structures in the same spirit as conformal Ja-
cobi structures [14, Section 1.4], which are essentially equivalent to Jacobi
bundles, but she didn’t develop the theory beyond the definition (except for
the special case of locally conformal Dirac structures [38]). In this section
we propose an alternative, and easy to use, definition of a conformal Dirac
structure, which we call a Dirac-Jacobi bundle. Dirac-Jacobi bundles are
slightly more general than E1(M)-Diract structures, and encompass non-
coorientable precontact distributions and Jacobi bundles.

With the new understanding of precontact (and lcps) structures pre-
sented in the previous section, it is actually easy to find a common frame-
work for precontact distributions and Jacobi bundles. Namely, let L→M be
a line bundle. Similarly as in the presymplectic/Poisson case (or in Wade’s
E1(M)-Dirac case) consider the vector bundle

DL := DL⊕ J1L.

Vector bundle DL was first considered by Chen and Liu in [6]. They named
it the omni-Lie algebroid because it plays a similar role for Lie algebroids
as Weinstein’s omni-Lie algebras do for Lie algebras [40]. The omni-Lie al-
gebroid DL is an instance of E-Courant algebroid [7] and of AV -Courant
algebroid [26]. Additionally, it is a contact Courant algebroid in the sense
of Grabowski [17]. Grabowski’s contact Courant algebroids are actually line
bundle theoretic versions of Courant-Jacobi algebroids [18] (called general-
ized Courant algebroids in [30]). For the purposes of this paper we will not
need the whole technology developed in References [7, 17, 18, 26, 30]. It will
suffice to notice that DL possesses the following structures:

1) two natural projections

(4.1) prD : DL −→ DL, and prJ1 : DL −→ J1L,
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2) a non-degenerate, symmetric, L-valued 2-form

〈〈−,−〉〉 : Γ(DL)× Γ(DL)→ Γ(L),

given by:

〈〈(∆, ϕ), (�, ψ)〉〉 := 〈∆, ψ〉+ 〈�, ϕ〉,

and

3) a (non-skew symmetric, Dorfman-like) bracket

[[−,−]] : Γ(DL)× Γ(DL)→ Γ(DL),

given by:

(4.2) [[(∆, ϕ), (�, ψ)]] := ([∆,�],L∆ψ − i�dDϕ)

for all ∆,� ∈ DerL, and all ϕ,ψ ∈ Γ(J1L).
An easy computation exploiting Cartan calculus on the Lie algebroid

DL shows that the bracket [[−,−]] satisfies

[[α, β]] + [[β, α]] = dD〈〈α, β〉〉,(4.3)

[[α, [[β, γ]]]] = [[[[α, β]], γ]] + [[β, [[α, γ]]]],(4.4)

[[α, fβ]] = f [[α, β]] + (σ ◦ prD)(α)(f)β,(4.5)

and, moreover,

(4.6) 〈〈[[α, β]], γ〉〉+ 〈〈[[α, γ]], β〉〉 = prD(α) (〈〈β, γ〉〉) .

for all α, β, γ ∈ Γ(DL) and f ∈ C∞(M).

Remark 4.1. When L = RM is the trivial line bundle, then DL = E1(M),
and (the skew-symmetrization of) bracket (4.2) is to be compared with the
bracket on Γ(E1(M)) used by Wade [40, Section 3].

Definition 4.2. A Dirac-Jacobi bundle over a manifold M is a line bundle
L→M equipped with a Dirac-Jacobi structure, i.e. a vector subbundle L ⊂
DL such that

1) L is maximal isotropic with respect to 〈〈−,−〉〉, and

2) Γ(L) is involutive with respect to [[−,−]], i.e. [[Γ(L),Γ(L)]] ⊂ Γ(L).
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Remark 4.3. Maximal isotropic, involutive subbundles L of the omni-Lie
algebroid DL were first considered in [6]. Among other things, the authors
show that, if L ∩ J1L = 0, then L is the graph of a Jacobi structure and vice-
versa. See Example 4.8 below for more details. Dirac structures in omni-Lie
algebroids were also considered in [8] from a somewhat different perspective.

Remark 4.4. The bilinear map 〈〈−,−〉〉 has split signature in any local
basis of Γ(L). Hence a subbundle L ⊂ DL is maximal isotropic if and only
if it is both isotropic and coisotropic, if and only if it is either isotropic
or coisotropic and, additionally, rankL = (rankDL)/2 = dimM + 1. Now,
for a vector bundle V →M and a distribution W in V , denote by W 0

the annihilator of W in V ∗ ⊗ L = Hom(V,L), i.e. W 0 is the distribution
consisting of φ ∈ V ∗ ⊗ L such that 〈φ,w〉 = 0 for all w ∈W . The following
point-wise equalities hold

(4.7) prD(L)0 = L ∩ J1L and prJ1(L) = (L ∩DL)0,

for every maximal isotropic subbundle L of DL.
Consider the short exact sequence

(4.8) 0 −→ 〈1〉 −→ DL
σ−→ TM −→ 0,

where 1 : Γ(L)→ Γ(L) is the identity operator and generates the subbundle
〈1〉 = EndL of linear endomorphisms of L. Taking duals and tensoring by
L in (4.8), we get the so called Spencer sequence

(4.9) 0←− L prL←− J1L←− T ∗M ⊗ L←− 0,

where prL is the canonical projection given by j1λ 7→ λ, and the embedding
T ∗M ⊗ L ↪→ J1L adjoint to the symbol σ is given by df ⊗ λ 7→ j1(fλ)−
fj1λ, where λ ∈ Γ(L), and f ∈ C∞(M). In what follows we will always re-
gard T ∗M ⊗ L as a subbundle of J1L understanding the embedding T ∗M ⊗
L ↪→ J1L (beware that a different convention for the Spencer sequence is
often used where the embedding T ∗M ⊗ L ↪→ J1L maps df ⊗ λ to fj1λ−
j1fλ. However, this choice is not adjoint to (4.8)).

In addition to (4.7), one can easily check two more pairs of point-wise
equalities:

(4.10)
((σ ◦ prD)L)0 = L ∩ (T ∗M ⊗ L),

(prL ◦ prJ1)L = (L ∩ 〈1〉)0,
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and

(4.11)
(prDL ∩ 〈1〉)0 = prL(L ∩ J1L),

prJ1(L) ∩ (T ∗M ⊗ L) = (σ(L ∩DL))0.

for every maximal isotropic subbundle L of DL.

Remark 4.5. Let L be a maximal isotropic subbundle of DL. It is involu-
tive (with respect to bracket [[−,−]]) iff

〈〈[[α, β]], γ〉〉 = 0,

for all α, β, γ ∈ Γ(D). Now, from (4.3), (4.5), and (4.6), the expression

ΥL(α, β, γ) := 〈〈[[α, β]], γ〉〉

is skew-symmetric and C∞(M)-linear in its arguments α, β, γ. Hence it de-
fines a section ΥL of ∧3D∗ ⊗ L. We call ΥL the Courant-Jacobi tensor of
L. The involutivity condition on a maximal isotropic subbundle L is thus
ΥL = 0.

Remark 4.6. When L = RM , Definiton 4.2 gives back Wade’s definition
of a Dirac structure in E1(M) [40, Definition 3.2]. However, there are inter-
esting examples of Dirac-Jacobi structures on non-trivial line bundles. For
instance, every Jacobi bundle is a Dirac-Jacobi bundle of a specific kind (see
Example 4.8 below). Finally, it should be mentioned that Dirac structures
in E1(M) are special instances of Vaisman’s Dirac structures in the stable
big tangent bundle of index h (see [34] for more details).

Example 4.7. Let ω ∈ Ω2
L = Γ(∧2(DL)∗ ⊗ L) be a 2-cochain in the der-

complex (see Section 2). Since ω is skew-symmetric, the graph

Dω := graphω[ = {(∆, ω[(∆)) : ∆ ∈ DL}

of ω[ : DL→ J1L is a maximal isotropic subbundle of DL. Moreover Lω is
involutive if and only if dDω = 0. Indeed, an easy computation shows that

ΥLω(α1, α2, α3) = (dDω)(∆1,∆2,∆3),

for all αi = (∆i, ω[(∆i)) ∈ Γ(Lω), i = 1, 2, 3. So Lω is a Dirac-Jacobi struc-
ture on L if and only if ω is a 2-cocycle in (Ω•L, dD). Conversely, a Dirac-
Jacobi structure L ⊂ DL is of the form Lω for some 2-cocycle ω in (Ω•L, dD)
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if and only if L ∩ J1L = 0. If, additionally, (1, 0) /∈ Lx, then ωx /∈ ker i1, and
vice-versa, x ∈M . Hence, from Proposition 3.3, L-valued precontact forms
θ : TM → L identify with Dirac-Jacobi structures L on L such that

(4.12) L ∩ J1L = 0,

and nowhere zero precontact forms correspond to Dirac-Jacobi structures
such that (4.12) and, additionally, (1, 0) /∈ Lx for any x ∈M . In particular,
Dirac-Jacobi bundles encompass (non-necessarily coorientable) precontact
manifolds.

Example 4.8. Let {−,−} : Γ(L)× Γ(L)→ Γ(L) be a skew-symmetric, first
order bidifferential operator. Interpret {−,−} as a section J of ∧2(J1L)∗ ⊗
L, by putting

J(j1λ, j1µ) = {λ, µ}

for all λ, µ ∈ Γ(L). Clearly, J defines a morphism J ] : J1L→ (J1L)∗ ⊗ L =
DL. Since J is skew-symmetric, the graph

LJ := graphJ ] = {(J ](ψ), ψ) : ψ ∈ J1L}

of J ] is a maximal isotropic subbundle of DL. Moreover LJ is involutive if
and only if J is a Lie bracket. Indeed, an easy computation shows that

ΥLJ (α1, α2, α3) = 2{λ1, {λ2, λ3}}+ cyclic permutations,

for all αi ∈ Γ(LJ) of the form αi = (J ](j1λi), j
1λi), λi ∈ Γ(L), i = 1, 2, 3. So

LJ is a Dirac-Jacobi structure on L if and only if (L, {−,−}) is a Jacobi
bundle. Conversely, a Dirac-Jacobi structure L ⊂ DL is of the form LJ for
some Jacobi bundle (L, {−,−}) if and only if L ∩DL = 0. Hence Jacobi
bundles (L, {−,−}) identify with Dirac-Jacobi bundles (L,L) such that

(4.13) L ∩DL = 0,

as first noticed in [6] (see Theorem 3.16 therein).

Example 4.9. Let V ⊂ DL be a vector subbundle and let V 0 ⊂ J1L be its
annihilator, i.e. V 0 := {ψ ∈ J1L : 〈∆, ψ〉 = 0 for all ∆ ∈ V }. Clearly, V ⊕
V 0 ⊂ DL is an isotropic subbundle. Moreover, it is maximal isotropic by
dimension counting. Finally it is involutive if and only if V is involutive,
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i.e. Γ(V ) is preserved by the commutator of derivations. Indeed, an easy
computation shows that

ΥV⊕V 0(α1, α2, α3) = 〈[∆1,∆2], ψ3〉+ 〈[∆2,∆3], ψ1〉+ 〈[∆3,∆1], ψ2〉,

for all αi = (∆i, ψi) ∈ Γ(V ⊕ V 0), i = 1, 2, 3. So, involutive vector subbun-
dles of DL can be regarded as Dirac-Jacobi structures on L. Notice that
the image of a flat linear connection ∇ : TM → DL is an involutive vector
subbundle of DL. Accordingly, a flat connection in L can be regarded as a
Dirac-Jacobi structure on L which we denote by L∇. On the other hand, the
identity operator 1 : Γ(L)→ Γ(L) also spans an involutive vector subbundle
of DL. We denote by L1 the corresponding Dirac-Jacobi structure. Notice
that DL = L∇ ⊕ L1 for every flat linear connection ∇ in L.

Example 4.10. A lcps structure (L,∇, ω) (see discussion preceding Re-
mark 3.9) defines a Dirac-Jacobi bundle as follows. Put ω := σ∗ω (see Re-
mark 3.9) and consider the Dirac-Jacobi structure L∇ defined by ∇ (Exam-
ple 4.9). Deform L∇ to a new vector subbundle

L∇,ω := {(∆, ψ + ω[(∆)) : (∆, ψ) ∈ L∇}.

of DL. Since ω is skew-symmetric, and 〈∆, ψ〉 = 0 for all (∆, ψ) ∈ L∇, then
L∇,ω is a maximal isotropic subbundle. Moreover, it is involutive if and only
if d∇ω = 0. Indeed, an easy computation shows that

ΥL∇,ω(α1, α2, α3) = (dDω)(∇X1
,∇X2

,∇X3
) = (d∇ω)(X1, X2, X3),

for all αi ∈ Γ(L∇,ω), where Xi := σ(prDαi), i = 1, 2, 3, and, in the last equal-
ity, we used (3.1). Dirac-Jacobi bundle (L,L∇,ω) contains a full information
on the lcps structure (L,∇, ω). Hence lcps manifolds identify with certain
Dirac-Jacobi bundles.

Example 4.11. Recall that a homogeneous Poisson structure is a pair
(π, Z) where π is a Poisson bivector, and Z is a vector field such that LZπ =
−π. A homogeneous Poisson structure on M can be regarded as a Dirac-
Jacobi structure on the trivial line bundle RM as follows. Let π be a bivector
field and let Z be a vector field on M . Put

L(π,Z) := {(h− hZ + π](η), η ⊗ 1 + η(Z)j11) ∈ DRM : h ∈ R, η ∈ T ∗M},
(4.14)

where π] : T ∗M → TM is the vector bundle morphism induced by π. It is
easy to see that L(π,Z) ⊂ DRM is a maximally isotropic subbundle, and it is
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a Dirac-Jacobi structure if and only if (π, Z) is a homogeneous Poisson struc-
ture [40, Section 4]. In this case, (π, Z) is completely determined by L(π,Z).
Even more, Dirac-Jacobi structures of the form L(π,Z) can be characterized
according to the following

Proposition 4.12. A Dirac Jacobi structure L ⊂ DRM is of the form
L(π,Z) for some homogeneous Poisson structure (π, Z) if and only if τ :
L ∩DRM → RM is an isomorphism (here τ : DRM → RM is the projection
∆ 7→ ∆(1)).

Proof. Let (π, Z) be a homogeneous Poisson structure. It follows from (4.14)
that L(π,Z) ∩DRM = {h− hZ : h ∈ R}, hence pr : L(π,Z) ∩DRM → RM ,
h− hZ 7→ h is an isomorphism.

Conversely, let L ⊂ DRM be a Dirac-Jacobi structure such that τ : L ∩
DRM → RM is an isomorphism. Put

∆ := τ−1(1) ∈ Γ(DRM ) and Z := −σ(∆) = ∆(1)−∆ ∈ X(M).

Next we define a bivector field π. To do this, notice, first of all, that prJ1(L) =
(L ∩DRM )0 is a vector subbundle in J1RM . Even more, the canonical pro-
jection ζ : J1RM → T ∗M , j1h 7→ dh, restricts to an isomorphism

ζ : prJ1(L)→ T ∗M.

In the following we denote T := prJ1(L). The vector bundle T is equipped
with a skew-symmetric bilinear map Π : ∧2T → RM given by

Π(φ, ψ) := 〈∆, ψ〉,

for all (∆, φ), (�, ψ) ∈ L. From the fact that L is isotropic and the first
identity in (4.7), Π is well defined. It is easy to see that Π (and T ) completely
determine L. Indeed

(4.15) L = {(∆, ψ) : ψ ∈ T and Π(ψ, φ) = 〈∆, φ〉 for all φ ∈ T }.

Now, bilinear map Π, identifies, via isomorphism ζ : T → T ∗M , with a bivec-
tor field π ∈ Γ(∧2TM). Define L(π,Z) ⊂ DRM via (4.14). Then, as already
noticed, L(π,Z) is a maximally isotropic subbundle of DRM . Using (4.15) it
is easy to see that L(π,Z) ⊂ L, hence L(π,Z) = L (in particular, (π, Z) is a
homogeneous Poisson structure). �
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We conclude that homogeneous Poisson structures identify with Dirac-Jacobi
structures L ⊂ DRM such that τ : DRM ∩ L→ RM is an isomorphism, or,
in other words, the vector subbundle L ∩DL in DRM has rank 1 and is
transversal to the image of the standard inclusion TM ↪→ DRM .

Example 4.13. A Dirac structure L ⊂ TM ⊕ T ∗M can be regarded as a
Dirac-Jacobi structure L̂ on the line bundle RM by putting [40, Remark 3.1]:

L̂ := {(X, η ⊗ 1 + hj11) ∈ DRM : h ∈ R and (X, η) ∈ L}.

Being the image of L̂ under projection DRM → TM ⊕ T ∗M , Dirac structure
L is completely determined by L̂. In other words, correspondence L 7→ L̂ is
an inclusion of Dirac structures on M into Dirac-Jacobi structures on RM .

Example 4.14. New Dirac-Jacobi structures can be obtained via gauge
transformations (see also [1, Example 3.6]). Let ω ∈ Ω2

L and let L be a Dirac-
Jacobi structure on L. Define a vector subbundle τωL ⊂ DL by putting

τωL := {(∆, ψ + ω[(∆)) : (∆, ψ) ∈ L}.

Since ω is skew symmetric, τωL is isotropic. Moreover, it shares the same
rank as L, hence it is maximal isotropic. An easy computation shows that

ΥτωL(α1, α2, α3) = ΥL(α′1, α
′
2, α
′
3) + (dDω)(∆1,∆2,∆3)

= (dDω)(∆1,∆2,∆3),

for all αi = α′i + (0, ω[(∆i)) ∈ Γ(τωL), where α′i ∈ Γ(L), and ∆i = prD(αi) =
prD(α′i), i = 1, 2, 3. Hence τωL is a Dirac-Jacobi structure whenever

dDω|prD(L) = 0

(as in the case of L∇,ω in Example 4.10). In particular, if ω is dD-closed,
then τωL is a Dirac-Jacobi structure for all L.

5. Characteristic foliation of a Dirac-Jacobi bundle

Dirac structures are equivalent to presymplectic foliations, i.e. foliations
equipped with a presymplectic structure on each leaf. Similarly, Dirac-Jacobi
bundles are equivalent to foliations equipped with either a precontact form
or an lcps structure on each leaf. This was proved in [20] for Dirac-Jacobi
structures on the trivial line bundle RM . In this section we discuss the gen-
eral case.
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Let (L,L) be a Dirac-Jacobi bundle over a manifold M . Vector bundle
L→M is naturally a Lie algebroid acting on the line bundle L. Indeed,
denote by [−,−]L : Γ(L)× Γ(L)→ Γ(L) the restriction of the bracket (4.2)
to sections of L. Moreover, denote by ρL : L→ TM the composition of prD
(see (4.1)) restricted to L, followed by the symbol map σ : DL→ TM . From
(4.3) and (4.5), [−,−]L and ρL are the Lie bracket and the anchor of a Lie
algebroid. Additionally, denote by ∇L : L→ DL the restriction of prD to
L so that ρL = σ ◦ ∇L. Since prD intertwines the bracket (4.2) and the
commutator of derivations, ∇L is a Lie algebroid representation.

As usual, the image of the anchor ρL is an integrable, non-necessarily
regular, smooth distribution in TM , integrating to a foliation which we
denote by FL and call the characteristic foliation of the Dirac-Jacobi bundle
(L,L). Leaves of FL are called characteristic leaves of (L,L). Similarly, the
image of the flat connection ∇L is an involutive, non-necessarily regular,
smooth distribution in the Lie algebroidDL. We denote it by IL. The symbol
σ : DL→ TM maps IL surjectively onto TFL.

Distribution IL is equipped with an L-valued, skew-symmetric bilinear
map ω : ∧2IL → L given by

ω(∆,�) := 〈�, ϕ〉,

for all (∆, ϕ), (�, ψ) ∈ L. From the fact that L is isotropic and the second
identity in (4.7), ω is well defined.

Our next aim is to show that IL and ω induce, on every characteristic
leaf, either a precontact form, or a lcps structure. First we prove a

Lemma 5.1. The rank of IL is constant along characteristic leaves.

Proof. Let O be a characteristic leaf. The bundle map ρL : L|O → TO is
surjective. Hence it splits and, for every vector field X ∈ X(O), there ex-
ists α ∈ Γ(L|O), such that ρL(α) = X. It follows that ∇L

α is a derivation of
D(L|O). So ∇L

α generates a flow Φ = {Φt} of infinitesimal automorphisms
of the line bundle L|O → O (see Remark 2.2) which lifts to a flow dDΦ :=
{dDΦt} of infinitesimal automorphisms of the vector bundle D(L|O)→ O.
Since IL is an involutive distribution, it is preserved under dDΦ. In particu-
lar, rank IL is constant along the integral curves of X. The assertion follows
from arbitrariness of X and connectedness of O. �

Corollary 5.2. For every characteristic leaf O, the rank of IL|O is either
dimO + 1, or dimO. In the first case, IL|O = D(L|O), while in the second
case, IL|O is the image of a flat connection in L|O.
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Proof. It immediately follows from Lemma 5.1 and surjectivity of σ ◦ ∇L =
ρL : L|O → TO. �

According to the above corollary, and similarly as for Jacobi bundles,
characteristic leaves can be of two different kinds.

Definition 5.3. A characteristic leaf O is said

• precontact if rank IL|O = dimO + 1,

• lcps if rank IL|O = dimO.

Every point in a precontact (resp. lcps) leaf is said a precontact (resp. lcps)
point.

Definition (5.3) is motivated by the following

Proposition 5.4. The 2-form ω induces, on every characteristic leaf O, a
2-cochain ωO in (Ω•L|O , dD).

1) If O is precontact, then ωO = −dD(θO ◦ σ) is the 2-cocycle correspond-
ing to a (necessarily unique) L|O-valued precontact form θO : TO →
L|O.

2) If O is lcps, then IL|O is the image of a flat connection ∇O in L|O, and
ωO = σ∗ωO, for a (necessarily unique) lcps structure (L|O,∇O, ωO).

Proof. Let O be a characteristic leaf. Then, IL|O is a transitive subalgebroid
in D(L|O).

1) Let O be precontact. From Corollary 5.2, IL|O = D(L|O), and ωO :=
ω|O is a 2-cochain in (Ω•L|O , dD). A direct computation shows that

(dDω)(∆1,∆2,∆3) = ΥL(α1, α2, α3) = 0,

for all αi = (∆i, ψi) ∈ L|O, i = 1, 2, 3. So ωO is a 2-cocycle. Hence, from
the proof of Proposition 3.3, there is θO as in the statement.

2) Now, let O be lcps. From Corollary 5.2, IL|O is the image of a flat
connection ∇O in L|O. Use connection ∇O to split D(L|O) as im∇O ⊕
〈1〉. The restriction ω|O is only defined on IL|O = im∇O but can be
uniquely prolonged to a 2-cochain ωO in (Ω•L|O , dD) such that i1ωO = 0.

It follows that ωO = σ∗ωO for a unique L|O-valued 2-form ωO on O
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(cf. Remark 3.9). A direct computation shows that

(d∇OωO)(X1, X2, X3) = (dDω)(∇OX1
,∇OX2

,∇OX3
) = ΥL(α1, α2, α3) = 0,

for all αi = (∇OXi , ψi) ∈ L|O, Xi ∈ TO, i = 1, 2, 3. So (L|O,∇O, ωO) is
a lcps structure on O.

�

Remark 5.5. Let (L,L) be a Dirac-Jacobi bundle on M . The Dirac-Jacobi
structure L is completely determined by the distribution IL and the 2-form
ω : ∧2IL → L. Specifically,

(5.1) L = {(∆, ψ) : ∆ ∈ IL and i∆ω = ψ|IL}.

Indeed, it is immediate to check that the right hand side of (5.1) contains
L while it is contained in the orthogonal complement of L with respect to
〈〈−,−〉〉.

Equivalently, L is completely determined by its characteristic foliation
equipped with the induced precontact/lcps structures on leaves. In more
details, let O be a characteristic leaf. By the very definition of character-
istic foliation, the restricted bundle L|O can be regarded as a subbundle
in D(L|O). Actually (L|O,L|O) is a Dirac-Jacobi bundle. Specifically, L|O
is the Dirac-Jacobi structure corresponding to ωO if O is precontact (see
Example 4.7) and to (∇O, ωO) if O is lcps (see Example 4.10).

Conversely, let L→M be a line bundle, and let F be a foliation
equipped with either an L|O-valued precontact form θO or a lcps structure
(L|O,∇O, ωO) on each leaf O. The foliation F determines a distribution I
in DL and a 2-form ω : ∧2I → L by

I|O =

{
D(L|O) if O is a precontact leaf

im∇O if O is a lcps leaf

and

ω|O =

{
−dD(θO ◦ σ) if O is a precontact leaf

σ∗ωO if O is a lcps leaf.

In its turn, the pair (I, ω) determines a distribution L in DL by

L := {(∆, ψ) : ∆ ∈ I and i∆ω = ψ|I}.
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If L is a smooth subbundle, we call F a (smooth) precontact/lcps foliation.
In this case, L is a Dirac-Jacobi structure and F is its characteristic foliation.
So Dirac-Jacobi bundles are equivalent to precontact/lcps foliations.

6. On the local structure of Dirac-Jacobi bundles

In this section we study the local structure of Dirac-Jacobi bundles around
both precontact, and lcps points. As a corollary we show that the parity
of the dimension of precontact (resp. lcps) leaves is locally constant (Corol-
lary 6.4). We also discuss the transverse structures to characteristic leaves
(Propositions 6.8 and 6.9). Our analysis parallels that of Dufour and Wade
for Dirac manifolds [15].

Let L→M be a line bundle. Moreover, let (zi) be coordinates on M
and let µ be a local basis of Γ(L). Recall that Γ(J1L) is locally generated by
(dzi ⊗ µ, j1µ). Here we regard T ∗M ⊗ L as a vector subbundle in J1L via
the embedding T ∗M ⊗ L ↪→ J1L adjoint to the symbol map σ : DL→ TM
(see Remark 4.4). The adjoint basis of (dzi ⊗ µ, j1µ) in DerL is (δi, 1), where
δi(fµ) := ∂f

∂ziµ, for all f ∈ C∞(M).

Theorem 6.1. Let (L,L) be a Dirac-Jacobi bundle over a smooth manifold
M , let x0 ∈M , and let O be the leaf of the characteristic foliation FL through
x0.

If O is lcps, then, locally around x0, there are coordinates (xi, ya) on
M , a generator µ of Γ(L), and there is a basis (αi, β

a, β) of Γ(L), where
i = 1, . . . ,dimO, and a = 1, . . . , codimO, such that

(6.1)

αi =
(
δi + Eai δa + Ei1, Fijdx

j ⊗ µ
)
,

βa =
(
Gabδb +Ga1, (dya − Eai dxi)⊗ µ

)
,

β =
(
−Gbδb, j1µ− Eidxi ⊗ µ

)
,

with Fij + Fji = Gab +Gba = 0.
On the other hand, if O is precontact, then, locally around x0, there

are coordinates (xi, ya) on M , a generator µ of Γ(L), and there is a basis
(αi, α, β

a) of Γ(L), where i = 1, . . . ,dimO, and a = 1, . . . , codimO, such
that

(6.2)

αi =
(
δi + Eai δa, Fijdx

j ⊗ µ− Fij1µ
)
,

α =
(
1 + Eaδa, Fidx

i ⊗ µ
)
,

βa =
(
Gabδb, (dya − Eai dxi)⊗ µ− Eaj1µ

)
,
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with Fij + Fji = Gab +Gba = 0.

Proof. The proof is an adaptation of the proof of [15, Theorem 3.2]. Let
O be a lcps leaf. Choose coordinates (xi, ya) on M around x0 such that
O = {ya = 0}, and let µ be a local generator of Γ(L) around x0 such that
µ|O is constant with respect to the flat connection ∇O induced by L in L|O
(see Proposition 5.4). In particular, IL|O is locally generated by δi|O. So,
there is a local basis of Γ(L), around x0, of the form

αi = (δi + ∆i, ki),

βa = (�a, ha),

β = (�, h),

with ∆i|O = �a|O = �|O = 0. In particular,

δi + ∆i = (δji + ∆j
i )δi + a linear combination of (δa, 1),

for some smooth functions ∆j
i (here δji is the Kronecker symbol). Since

∆j
i (x0) = 0, matrix ‖δji + ∆j

i‖ is invertible around x0. Let ‖Aij‖ be its in-

verse, and put αi := Ajiαj . Then αi is of the form

αi = (δi + a linear combination of (δa, 1) vanishing on O, ki).

On the other hand, �a,� are of the form

�a = Baiδi + a linear combination of (δa, 1),

� = Biδi + a linear combination of (δa, 1).

Put βa = βa −Baiαi, and β = β −Biαi . Then βa, β are of the form

βa = (a linear combination of (δa, 1) vanishing on O, ha),
β = (a linear combination of (δa, 1) vanishing on O, h).

Moreover, since L is isotropic, 〈δi, ha〉|O = 〈δi, h〉|O = 0. System (αi, β
a, β)

is a local basis of Γ(L) around x0. Its representative matrix in the basis
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(δi, δa, 1, dx
i ⊗ µ, dya ⊗ µ, j1µ) of Γ(DL) is of the form:

δx δy, 1 dx⊗ µ dy ⊗ µ, j1µ
α Id A ∗ ∗
β 0 B C D

,

where Id is the identity matrix, and A,B,C vanish at x0. It follows that
matrix D is invertible at x0, hence it is invertible around x0. Put(

βa

β

)
= D−1

(
βa

β

)
.

Finally, let ki be locally given by

ki = (kijdx
j + kiady

a)⊗ µ+Kij
1µ,

and put

αi = αi − kiaβa −Kiβ.

System (αi, β
a, β) is a local basis of Γ(L) around x0. Its representative matrix

is of the form:

δx δy, 1 dx⊗ µ dy ⊗ µ, j1µ
α Id E F 0

β 0 G H Id

.

Since L is isotropic,

F + F t = G + Gt = H + Et = 0,

where (−)t denotes transposition. This concludes the proof of the first part
of the statement.

The proof of the second part is very similar. We report it here for com-
pleteness. Let O be a precontact leaf. Choose again coordinates (xi, ya) on
M , around x0, such that O = {ya = 0}, and let µ be any local generator of
Γ(L) around x0. Thus, there is a local basis of Γ(L), around x0, of the form

αi = (δi + ∆i, ki),

α = (1 + ∆, k),

βa = (�a, ha),
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with ∆i|O = �a|O = ∆|O = 0. In particular,(
δi + ∆i

1 + ∆

)
= (Id + M)

(
δi
1

)
+ a linear combination of (δa),

for some function matrix M. Since M(x0) = 0, matrix Id + M is invertible
around x0. Put (

αi
α

)
= (Id + M)−1

(
αi
α

)
.

Then αi, α are of the form

αi = (δi + a linear combination of δa, ki),

α = (1 + a linear combination of δa, k).

On the other hand, the �a are of the form

�a = Baiδi +Ba1 + a linear combination of δa.

Put βa = βa −Baiαi −Baα. Then the βa are of the form

βa = (a linear combination of δa vanishing on O, ha).

Moreover, since L is isotropic, 〈δi, ha〉|O = 0. System (αi, α, β
a) is a local

basis of Γ(L) around x0. Its representative matrix is of the form:

δx, 1 δy dx⊗ µ, j1µ dy ⊗ µ
α Id A ∗ ∗
β 0 B C D

,

where A,B,C vanish at x0. It follows that matrix D is invertible at x0,
hence it is invertible around x0. Let ‖∆b

a‖ be its inverse and put βa = ∆a
bβ

b.
Finally, let ki, k be locally given by

ki = (kijdx
j + kiady

a)⊗ µ+Kij
1µ,

k = (K ′jdx
j + kady

a)⊗ µ+Kj1µ,

and put

αi = αi − kiaβa,
α = α− kaβa.
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System (αi, α, β
a) is a local basis of Γ(L) around x0. Its representative matrix

is of the form:

δx, 1 δy dx⊗ µ, j1µ dy ⊗ µ
α Id E F 0

β 0 G H Id

.

Since L is isotropic,

F + F t = G + Gt = H + Et = 0.

This concludes the proof. �

Corollary 6.2. Let (L,L) be a Dirac-Jacobi bundle over a manifold M
and let O = {x0} ⊂M be a zero-dimensional lcps leaf of the character-
istic foliation. Then, around x0, L = LJ for some (local) Jacobi bracket
J : Γ(L)× Γ(L)→ Γ(L), vanishing at x0 (see Example 4.8).

Proof. Since dimO = 0, it follows from Theorem 6.1 (6.1) that, locally
around x0, there are coordinates (ya), a generator µ of Γ(L), and a basis
(βa, β) of Γ(L), a = 1, . . . ,dimM , such that

βa =
(
Gabδb +Ga1, dya ⊗ µ

)
,

β =
(
−Gbδb, j1µ

)
.

Hence L ∩DL = 0. This concludes the proof. �

Corollary 6.3. Let (L,L) be a Dirac-Jacobi bundle over a manifold M and
let O = {x0} ⊂M be a zero-dimensional precontact leaf of the characteristic
foliation. Then, around x0, after trivializing L, we have L = L(π,Z) for some
(local) homogeneous Poisson structure (π, Z) such that both π and Z vanish
at x0 (see Example 4.11).

Proof. Since dimO = 0, it follows from Theorem 6.1 (6.2) that, locally
around x0, there are coordinates (ya), a generator µ of Γ(L), and a basis
(α, βa) of Γ(L), a = 1, . . . ,dimM , such that

α = (1 + Eaδa, 0),

βa =
(
Gabδb, dy

a ⊗ µ− Eaj1µ
)
.
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Now, L ∩DL is generated by 1 + Eaδa which is transversal to the subbundle
generated by the δa’s. Upon using µ to identify L with RM around x0, the
assertion follows from Proposition 4.12. �

Corollary 6.4. Let (L,L) be a Dirac-Jacobi bundle over a manifold M .
Then the parity of the dimension of precontact (resp. lcps) leaves of the
characteristic foliation FL is locally constant on M .

Proof. Pick a point x0 ∈M and let x be a point in a connected neighborhood
of x0 where L has one of the forms given by Theorem 6.1. Let O (resp. O′)
be the characteristic leaf through x0 (resp. x). If O and O′ are both lcps
then Lx is given by (6.1) and (IL)x = ∇O′(TxO′) is spanned by

δi + Eai δa + Ei1, G
abδb +Ga1, −Gbδb.

Hence

dimO′ = rankxIL = rankx0
IL + rankxG = dimO + rankxG.

Since G is a skew-symmetric matrix, it follows that the parity of dimO′
and dimO is the same. The precontact case can be discussed in a similar
way. �

Remark 6.5. Locally, the dimension of a lcps leaf and the dimension of a
precontact leaf have different parities. This can be proved either in a similar
way as in the proof of Corollary 6.4, or exploiting the Dirac-ization trick
(see Remark A.8 in the Appendix).

Theorem 6.1 shows also that the regularity of the characteristic foliation
on one side and that of distribution IL on the other side are (partially) in-
tertwined. Namely, notice, first of all, that, when the smooth distribution IL
is regular, FL is not necessarily a regular foliation as the following example
shows.

Example 6.6. Let M = R, L = RM , and L = V ⊕ V 0 (Example 4.9), with
V ⊂ DL = TR ×R the smooth, involutive, vector subbundle generated by
x∂/∂x+ 1. Then IL = V which is a vector subbundle, hence a regular dis-
tribution, but TFL = σ(IL) = 〈x∂/∂x〉 which has rank zero for x = 0, and
rank one otherwise.

However, when FL is a regular foliation, then IL is necessarily a regular
distribution.
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Corollary 6.7. Let (L,L) be a Dirac-Jacobi bundle over a smooth man-
ifold M . If FL is a regular foliation, then IL is a regular distribution. In
particular, it is a vector bundle over each connected component of M .

Proof. We need to prove that the rank of IL is locally constant. First prove
that rank IL is constant around every precontact point. Thus, let O be a
precontact leaf of the characteristic distribution, x0 ∈ O, and let x be a point
in a connected neighborhood U of x0 where L has the form (6.2). Then (IL)x
is spanned by

δi + Eai , 1 + Eaδa, G
abδb.

In particular, rankx IL = dimO + 1 + rankxG, and it can only change in U
if the rank of G changes. On the other hand, TxFL = σ(IL)x is spanned by

∂

∂xi
+ Eai

∂

∂ya
, Ea

∂

∂ya
, Gab

∂

∂yb
,

and there are two cases. Either E := ‖Ea‖t is in the image of G, and in this
case dimTxFL = dimO + rankxG, or E is not in the image of G, and in
this case dimTxFL = dimO + 1 + rankxG. Since dimTxFL is locally con-
stant, we conclude that rankxG can only change by one in U . However, G
is skewsymmetric so that rankxG is even for all x. Hence rankxG is con-
stant in U and rankx IL is constant in U as well. In a similar way one can
prove that rank IL is constant around every lcps point. Details are left to
the reader. �

We conclude this section with one further application of Theorem 6.1.
Namely, we show that, similarly as for Poisson structures [39], for Jacobi
structures [14], and for Dirac structures [15], for every Dirac-Jacobi bundle
over M , and every point x0 ∈M , there is

1) a Jacobi structure transverse to O, if x0 is a lcps point,

2) a homogeneous Poisson structure transverse to O, if x0 is a precontact
point,

where O is the characteristic leaf through x0.

Proposition 6.8. Let (L,L) be a Dirac-Jacobi bundle over a smooth mani-
fold M , let O be a leaf of the characteristic foliation FL, and let x0 ∈ O. Ad-
ditionally, let Q ⊂M be a submanifold transverse to O at x0, with dimQ =
codimO, i.e. x0 ∈ Q and Tx0

M = Tx0
O ⊕ Tx0

Q. Locally around x0,
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1) if O is a lcps leaf, then L induces a Jacobi bracket JQ : Γ(L|Q)×
Γ(L|Q)→ Γ(L|Q) on the restricted line bundle L|Q, with (JQ)x0

= 0;

2) if O is a precontact leaf, then L, together with a trivialization of the
restricted line bundle L|Q, induces a homogeneous Poisson structure
(πQ, ZQ) on Q, with (πQ)x0

= (ZQ)x0
= 0.

Proof. Let x0 be a lcps (resp. precontact) point. First we show that L induces
a Dirac-Jacobi structure on LQ, at least around x0. This is a consequence of
Proposition 8.4 below, and of Theorem 6.1. Namely, from Example 8.7, it is
enough to check that L ∩ (N∗Q⊗ L|Q) has constant rank around x0 (here
N∗Q is the conormal bundle to Q). Thus, choose coordinates around x0 as
in Theorem 6.1 (6.1) (resp. (6.2)) with the additional property that Q =
{xi = 0}. Using (6.1) (resp. (6.2)), it is straightforward to check that L ∩
(N∗Q⊗ L|Q) = 0. Hence L induces a Dirac-Jacobi structure on L|Q given
by

LQ := {(∆, i∗Qψ) ∈ DL|Q : (∆, ψ) ∈ L},

where iQ : Q ↪→M is the inclusion (see Example 8.7 (8.3) for more details).
Finally, it is easy to see that {x0} is a lcps (resp. precontact) leaf of the char-
acteristic distribution of (L|Q,LQ). The assertion now follows from Corol-
lary 6.2 (resp. 6.3). �

Similarly as for Poisson [39], Jacobi [14] and Dirac [15] manifolds, the
transverse structures described in Proposition 6.8 are actually independent
of the choice of Q, up to isomorphisms, and do only depend on the charac-
teristic leaf O, as explained by the following

Proposition 6.9. Let (L,L) be a Dirac-Jacobi bundle over a smooth man-
ifold M , let O be a leaf of the characteristic foliation FL, and let x0, x

′
0 ∈ O.

Additionally, let Q,Q′ ⊂M be submanifolds transverse to O at x0, x
′
0, re-

spectively, with dimQ = dimQ′ = codimO, i.e. x0 ∈ Q, x′0 ∈ Q′, and

Tx0
M = Tx0

O ⊕ Tx0
Q, Tx′0M = Tx′0O ⊕ Tx′0Q

′.

1) if O is a lcps leaf, then there are neighborhoods U,U ′ of x0, x
′
0 in Q,Q′,

respectively, and a Jacobi isomorphism (U,L|U , JQ) ' (U ′, L|U ′ , JQ′),
where JQ, JQ′ are the Jacobi structures induced by L as in Proposi-
tion 6.8.(1);

2) if O is a precontact leaf, and we fix a trivialization of L in a neigh-
borhood of both x0 and x′0, then there are neighborhoods U,U ′ of x0, x

′
0
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in Q,Q′, respectively, and an isomorphism of homogeneous Poisson
manifolds (U, πQ, ZQ) ' (U ′, πQ′ , ZQ′), where (πQ, ZQ), (πQ′ , ZQ′) are
the homogeneous Poisson structures induced by L, and the fixed trivi-
alizations, as in Proposition 6.8.(2).

Proof. If dimO = 0 there is nothing to prove. So, assume dimO > 0. Then
we can choose x0 6= x′0.

1) Let O be a lcps leaf. Since O is connected there is no loss of gener-
ality if we assume that x0, x

′
0 are in the same neighborhood V where

L has the form (6.1). Additionally, it follows from the proof of The-
orem 6.1, that we can choose the coordinates (xi, ya) so that, around
x0 and x′0, Q = {xi = 0} and Q′ = {xi = ci}, respectively, where the
ci’s are constants. Consider the (local) derivations ∆i := prD(αi) =
δi + Eai δa + Ei1 ∈ Γ(DL), i = 1, . . . ,dimO. They correspond to (lo-
cal) infinitesimal automorphisms of L→M . Integrating, and com-
posing their flows if necessary, we can construct a (local) automor-
phism F of L→M , mapping L|Q → Q to L|Q′ → Q′. It remains to
show that F : L|Q → L|Q′ is a Jacobi map, i.e. it identifies JQ and
JQ′ . To see this, consider the skewsymmetric bidifferential operator
JV : ∧2J1L|V → L|V given by:

JV
(
j1λ, j1ν

)
=

(
2Gab

∂f

∂ya
∂g

∂yb
+Ga

(
f
∂g

∂ya
− g ∂f

∂ya

))
µ,

where λ = fµ and ν = gµ for some local functions f, g. A direct com-
putation shows that the conditions ΥL(βa, βb, βc) = 0 are equivalent
to JV being a Jacobi structure, and the conditions ΥL(βa, βb, αi) = 0
are equivalent to ∆i being an infinitesimal Jacobi automorphism. It
follows that F : L|V → L|V is a Jacobi map. Additionally JV restricts
to both Q and Q′ and the restrictions agree with JQ and JQ′ respec-
tively. Hence F : L|Q → L|Q′ is a Jacobi map as well.

2) First of all recall that, according to Dazord, Lichnerowicz and Marle
[14], an isomorphism of homogeneous Poisson manifolds (M,π,Z),
(M,π′, Z ′) is a Poisson isomorphism F : (M,π)→ (M ′, π′) such that
F∗Z − Z ′ is a Hamiltonian vector field, i.e. F∗Z − Z ′ = (π′)](dh) for
some function h ∈ C∞(M ′).

Now, go back to the statement and let O be a precontact leaf. Fix
once for all a nowhere zero section µ of L in a connected neighbor-
hood containing both x0 and x′0. This is always possible (e.g., choose
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an embedded curve γ connecting x0 and x′0 and a nowhere zero sec-
tion µ′ of L along γ. Now extend µ′ to a global section µ of L. It
follows that µ is nowhere zero in a tubular neighborhood of γ). Simi-
larly as above, we can restrict to the case when x0, x

′
0 are in the same

neighborhood V where L has the form (6.2), and, additionally, Q =
{xi = 0}, Q′ = {xi = ci}, for some constants ci. Consider the vector
fields Xi = (σ ◦ prD)(αi) = ∂

∂xi + Eai
∂
∂ya , i = 1, . . .dimO. Integrating

them, and composing their flows if necessary, we can construct a (lo-
cal) diffeomorphism F : V → V mapping Q to Q′. It remains to show
that F : Q→ Q′ is an isomorphism of homogeneous Poisson manifolds,
i.e. it identifies πQ and πQ′ , and, additionally, F∗ZQ − ZQ′ = π]Q′(dh)
for some function h ∈ C∞(Q′). To see this, consider the bivector πV
and the vector field ZV on V given by

πV = Gab
∂

∂ya
∧ ∂

∂yb
, ZV = −Ea ∂

∂ya
.

A direct computation shows that the conditions ΥL(βa, βb, βc) = 0
are equivalent to πV being a Poisson bivector, and the conditions
ΥL(βa, βb, α) = 0 are quivalent to LZV πV = −πV . Hence (πV , ZV ) is a
homogeneous Poisson structure on V . Additionally, ΥL(βa, βb, αi) = 0
are equivalent to Xi being an infinitesimal Poisson isomorphism, and
conditions ΥL(βa, α, αi) = 0 are equivalent to LXiZV = π]V (dFi). It
follows that the flow of Xi consists of automorphisms of the homo-
geneous Poisson manifold (V, πV , ZV ) so that F : V → V itself is an
automorphism of (V, πV , ZV ). Finally, both πV and ZV restrict to Q
(resp. Q′) and their restrictions agree with πQ and ZQ (resp. πQ′ and
ZQ′). Hence F : Q→ Q′ is an isomorphism of homogeneous Poisson
manifolds. �

7. Null distributions, admissible sections and admissible
functions

7.1. Null distributions of a Dirac-Jacobi bundle

Let L→M be a line bundle and let θ : TM → L be an L-valued precontact
form on M . Denote by K the null distribution of θ (see Remark 3.7). We
make the following
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Assumption 7.1. Distribution K is simple and L is the pull-back, along
the projection π : M →Mred, of a line bundle Lred →Mred over the leaf
space Mred of K.

If, additionally, a certain cohomology class vanishes (see below), then θ
descends to a unique contact form θred : TMred → Lred such that θ = π∗θred.
Contact manifold (Mred, θred) is the contact reduction (M, θ). All the above
assumptions are always valid locally when K is regular. So, morally, precon-
tact forms are pull-backs of contact forms along submersions.

Similarly, let (L,∇, ω) be a lcps structure on a smooth manifold M .
Denote by K := kerω[ the null distribution of ω. Make Assumption 7.1 as
above. If a certain cohomology class vanishes, then ∇ = π∗∇red, and ω =
π∗ωred for a unique lcs structure (Lred,∇red, ωred) on Mred. The lcs manifold
(Mred, Lred,∇red, ωred) is the lcs reduction of (M,L,∇, ω). Again all the
above assumptions are always valid locally when K is regular. So, morally,
lcps structures are pull-backs of lcs structures along submersions.

We can repeat the above discussion for each leaf of a precontact/lcps fo-
liation and conclude that, morally, precontact/lcps foliations are pull-backs
of contact/lcs foliations along submersions. In their turn precontact/lcps
foliations are equivalent to Dirac-Jacobi bundles (see Remark 5.5), and con-
tact/lcs foliations are equivalent to Jacobi bundles [22]. So, morally, Dirac-
Jacobi bundles are pull-backs of Jacobi bundles along submersions. In this
section, we clarify this claim (see, e.g., [1, Section 4.3] for the analogous
situation in Dirac geometry).

Let (L,L) be a Dirac-Jacobi bundle over a smooth manifold M . There
are distinguished subdistributions EL ⊂ IL ⊂ DL, and KL ⊂ TFL ⊂ TM ,
defined by

EL := L ∩DL, and KL := σ(EL).

We call EL and KL the null der-distribution and the null distribution of
(L,L), respectively. This terminology is motivated by the following remark,
which immediately follows from (5.1). LetO be a characteristic leaf of (L,L).
If O is precontact, then EL|O = KωO is the null distribution of the 2-cocycle
ωO in (Ω•L|O , dD) corresponding to the precontact form θO on O. Hence

KL|O is the null distribution of θO (see Remark 3.7). On the other hand,
if O is lcps, then EL|O = KωO ∩ im∇O, and KL|O = ker(ωO)[ is the null
distribution of the lcps structure (L|O,∇O, ωO) on O.

The following remark provides a way how to characterize Dirac-Jacobi
structures in Examples 4.7–4.13.

Remark 7.2. It is straightforward to check the following.
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• When L = Lω for some 2-cocycle ω in (Ω•L, dD) (Example 4.7), then
FL consists of just one precontact leaf O = M , and ωO = ω. Moreover,
EL = Kω, and KL is the null distribution of the L-valued precontact
form corresponding to ω.

• When L = LJ for some Jacobi bracket J : Γ(L)× Γ(L)→ Γ(L) (Ex-
ample 4.8), then FL is the contact/lcs characteristic foliation of the
Jacobi bundle (L, J). Hence EL = 0 and KL = 0.

• When L = V ⊕ V 0 for some involutive vector subbundle V ⊂ DL (Ex-
ample 4.9), then V is a Lie algebroid and FL is its characteristic foli-
ation. Moreover, IL|O = V |O, and ωO = 0 for every characteristic leaf
O. Hence EL = V and KL = TFL. In particular, if V is the image of a
flat connection ∇ : TM → DL in L, then FL consists of just one lcps
leaf O = M and IL = im∇. On the other hand, if L = L1, then FL is
a precontact foliation with zero dimensional leaves.

• When L = L∇,ω for a lcps structure (L,∇, ω) (Example 4.10), then
FL consists of just one lcps leaf O = M , IL = im∇, and ωO = σ∗ω.
Moreover KL is the null distribution of ω and EL is the image via ∇
of KL.

• When L = RM and L = L(π,Z) for some homogeneous Poisson struc-
ture (π, Z) (Example 4.11), then TFL is spanned by Z and the Hamil-
tonian vector fields with respect to π. In particular, the characteristic
leaves are the flowouts of the symplectic leaves of π along Z. For every
symplectic leaf P of π, the vector field Z is either everywhere tangent
or everywhere transversal to P. Accordingly, there are two kinds of
characteristic leaves O of L(π,Z). Either O = P for some symplectic
leaf P of π such that Z is tangent to P, or O is a disjoint union of a
one-parameter family of symplectic leaves of π, and Z is everywhere
transversal to the symplectic leaves in the family (in particular, Z|O
is everywhere non null). In the first case, O is a precontact leaf (with
respect to L(π,Z)) and its precontact form θ : TO → RO is θ = iZω,
where ω is the symplectic structure induced by π on O. In the second
case, O is a lcps leaf. Specifically, ∇O is the connection in RO whose
connection 1-form η := ∇O1 is uniquely determined by the conditions
1) η vanishes on symplectic leaves of π, and 2) η(Z) = 1. Moreover,
the lcps form ωO : ∧2TO → RO, is uniquely determined by the condi-
tions 1) ωO agrees with the symplectic structures induced by π on the
symplectic leaves of π, and 2) iZωO = 0. Finally KL is spanned by Z.
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• When L = RM and L = L̂ for some standard Dirac structure L (Ex-
ample 4.13), then FL is the presymplectic foliation of L [1, Section 4.2].
This means that all leaves O are lcps. In more details, ∇O is the trivial
connection in RO, ωO is the presymplectic structure on O induced by
L, and KL|O is its null distribution, for every leaf O.

The rank of the null der-distribution EL is an upper-semicontinuous
function. Hence, if EL is smooth, then it is also regular. On the other hand,
the null distribution KL may well be smooth, without being regular, as
Example 6.6 above shows. In that case EL = IL = V which is smooth, while
KL = σ(V ) = TFL which is smooth but not regular. So, even when EL is
a vector bundle, KL may fail to be regular. However, when KL is regular,
then EL is necessarily regular, according to the following

Proposition 7.3. Let (L,L) be a Dirac-Jacobi bundle over a smooth man-
ifold M . If the null distribution KL is regular, so is the null der-distribution
EL. In particular, both KL and EL are vector bundles over each connected
component of M .

Proof. The statement follows from Theorem 6.1. Recall that we defined
IL := prDL, and let ω : ∧2IL → L, be the bilinear form induced by L. Notice
preliminarily that

(7.1) EL = {∆ ∈ IL : i∆ω = 0}.

Now, first prove that rankEL is constant around every point of a precontact
characteristic leaf O. Thus, let x0 ∈ O and let x be a point in a neighborhood
U of x0 where L has the form (6.2) and, additionally, the rank of KL is
constant in U . An easy computation shows that

(7.2) (EL)x = {Xi(δi + Eai δa) +X(1 + Eaδa) : F ·X = 0}

where we denote X := ‖Xi, X‖t. Hence,

rankxEL = dimO + 1− rankx F .

It follows from (7.2) that

(7.3) (KL)x =

{
Xi

(
∂

∂xi
+ Eai

∂

∂ya

)
+XEa

∂

∂ya
: F ·X = 0

}
.

Now, distinguish two cases:
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Case I: E := ‖Ea(x)‖ 6= 0. In this case,

∂

∂xi
+ Eai

∂

∂ya
, and Ea

∂

∂ya

are linearly independent. Hence

rankxKL = dimO + 1− rankx F .

Case II: E := ‖Ea(x)‖ = 0. In this case

(KL)x =

{
Xi

(
∂

∂xi
+ Eai

∂

∂ya

)
: F ·X = 0

}
.

and there are two possibilities:

• Case IIa: E = 0 and F := ‖Fi(x)‖ 6= 0. Then the kernel of projection
X 7→ ‖Xi‖ does not intersect ker F and

rankxKL = dimO + 1− rankx F ,

again.

• Case IIb: E = 0 and F := ‖Fi(x)‖ = 0. Then ker F contains the kernel
of projection X 7→ ‖Xi‖ and

rankxKL = dimO − rankx F .

Since F is a skew-symmetric matrix, its rank is even. So Case IIb (on one
side) and Case I or IIa (on the other side) cannot occur simultaneously for
two different points x, x′ in U , if rankKL is to be constant in U . Hence
either

rankxKL = dimO + 1− rankx F = rankxEL,

or

rankxKL = dimO − rankx F = rankxEL − 1,

for all x ∈ U . In any case, rankEL is constant in U .
It remains to prove that rankEL is constant around every point of a lcps

chracteristic leaf O. This case is simpler. Let x0 ∈ O and let x be a point in
a neighborhood of x0 where L has the form (6.1), and, additionally, rankKL
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is constant in U . Then

(EL)x = {Xi(δi + Eai δa + Ei1) : F ·X = 0},

where X = ‖Xi‖. Hence rankxEL = dimO − rankx F . On the other hand,

(KL)x =

{
Xi

(
∂

∂xi
+ Eai

∂

∂ya

)
: F ·X = 0

}
.

Hence rankxKL = dimO − rankx F = rankxEL. This concludes the proof.
�

Remark 7.4. Suppose that the null distribution KL is regular, so that
the null der-distribution EL is regular as well. It is easy to see that Case
IIb in the proof of Proposition 7.3 occurs precisely when (1, 0) ∈ Γ(L) (use
E = F = 0 in (6.2)). Hence the same proof shows that, when KL is regular,
(in each connected component of M) there are only two possibilities:

• (1x, 0) /∈ Lx for any x ∈M , and rankEL = rankKL, or

• there are only precontact leaves, (1, 0) ∈ Γ(L), and rankEL =
rankKL + 1.

When the second case occurs, then IL ⊂ T ∗M ⊗ L = 〈1〉0.

7.2. Jacobi reduction of Dirac-Jacobi bundles

Let (L,L) be a Dirac-Jacobi bundle over a smooth manifold M . In the
following, we denote by J1L→M the bundle of first order differential op-
erators L→ RM . It is the dual vector bundle of J1L, and J1L⊗ L = DL.
Moreover, denote by σ∗ : T ∗M → (DL)∗ = J1L⊗ L∗ the dual map of the
symbol σ : DL→ TM . In other words, σ∗ is obtained from the embedding
T ∗M ⊗ L ↪→ J1L tensoring by L∗.

Definition 7.5. A (possibly local) section λ ∈ Γ(L) is admissible for the
Dirac-Jacobi structure L if there exists ∆ ∈ DerL such that (∆, j1λ) ∈ Γ(L).
A derivation ∆ like that is called Hamiltonian. The space of admissible sec-
tions is denoted by Γadm(L). Similarly, a function f ∈ C∞(M) is admis-
sible for L if there exists F ∈ Γ(J1L) such that (F, σ∗(df)) ∈ Γ(L⊗ L∗) ⊂
DL⊗ L∗ = J1L⊕ (DL)∗. A differential operator F like that is called Hamil-
tonian. The space of admissible functions is denoted by C∞adm(M).
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Remark 7.6. The Hamiltonian derivation (resp. differential operator) as-
sociated to an admissible section (resp. function) is not uniquely determined.
Namely, it can be changed by adding any (smooth) section of EL (resp. KL).

Proposition 7.7. The pair (C∞adm(M),Γadm(L)) is a Jacobi module in the
sense that

1) C∞adm(M) is a commutative, associative, unital algebra (actually a sub-
algebra in C∞(M)), and Γadm(L) is a C∞adm(M)-module,

2) Γadm(L) is a Lie algebra and C∞adm(M) is a Γadm(L)-module,

3) the action λ 7→ Xλ of Γadm(L) on C∞adm(M) satisfies

(7.4) Xλ(fg) = fXλ(g) + gXλ(f)

for all λ∈Γadm(L), and f, g∈C∞adm(M), i.e. Γadm(L) acts on C∞adm(M)
by derivations,

4) the Lie bracket {−,−} on Γadm(L) satisfies

(7.5) {λ, fµ} = Xλ(f)µ+ f{λ, µ},

for all λ, µ ∈ Γadm(L), and f ∈ C∞adm(M), i.e. {−,−} is a first order,
differential operator with scalar-type symbol in each entry.

Proof. The product of two admissible functions f, g is admissible as well. In-
deed, let F,G : J1L→RM be linear maps such that (F, σ∗(df)), (G, σ∗(dg)) ∈
Γ(L⊗ L∗). Since σ∗d(fg) = fσ∗(dg) + gσ∗(df), then (fG+ gF, σ∗d(fg)) ∈
Γ(L⊗ L∗) as well. Similarly, the product of an admissible function times an
admissible section is an admissible section as well. Next, let λ, µ be admis-
sible sections and let f be an admissible function. Define

{λ, µ} := ∆(µ),

with (∆, j1λ) ∈ Γ(L). Well-posedness of {−,−} follows from Lemma 7.8.
Skew-symmetry follows from isotropy, and the Jacobi identity follows from
involutivity of L. Similarly, define

Xλ(f) := σ(∆)(f).

The same arguments as above show that correspondence λ 7→ Xλ is a well-
defined Lie-algebra action. Identities (7.4), (7.5) are straightforward. Details
are left to the reader. �
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Lemma 7.8. Let λ (resp. f) be an admissible section (resp. function), and
let x ∈M . Then �(λ) = 0 (resp. X(f) = 0) for all � ∈ (EL)x (resp. X ∈
(KL)x).

Proof. Let λ, x and � be as in the statement, then (∆, j1λ) ∈ Γ(L) for some
∆ ∈ DerL and (�, 0) ∈ L. Hence �(λ) = 〈�, j1

xλ〉 = 〈〈(∆x, j
1
xλ), (�, 0)〉〉 = 0

by isotropy of L. Similarly for admissible functions. �

When KL is a regular distribution, Lemma 7.8 can be inverted giving
the following

Proposition 7.9. Let KL be a regular distribution. A section λ of L (resp. a
function f on M) is admissible if and only if �(λ) = 0 for all � ∈ Γ(EL)
(resp. X(f) = 0 for all X ∈ Γ(KL)).

Proof. The “only if part” of the statement follows from Lemma 7.8. For the
“if part”, recall that, in view of Proposition 7.3, when KL is regular, EL is
regular as well. Hence, in view of the second of (4.7), prJ1(L) is a regular
distribution in J1L. Now, �(λ) = 0 for all � ∈ Γ(EL) tells us that j1λ is
a section of the annihilator of EL, and, from (4.7) again, there is a section
α of L such that prJ1(α) = j1λ, whence α = (∆, j1λ) for some ∆ ∈ DerL.
Similarly for admissible functions. �

Now recall that, when KL is a regular distribution, then, in each con-
nected component of M , either (1, 0) ∈ Γ(L) and, in this case, rankEL =
rankKL + 1, or (1x, 0) /∈ Lx for any x ∈M , and, in this case, rankEL =
rankKL (Remark 7.4). Hence we have the following

Corollary 7.10. Let KL be a regular distribution. In each connected com-
ponent of M , if (1, 0) ∈ Γ(L), then there are no admissible sections, oth-
erwise there is a canonical KL-connection ∇K in L, and a section of L is
admissible if and only if it is ∇K-constant.

Proof. If (1, 0) ∈ Γ(L) then prJ1(L) ⊂ T ∗M ⊗ L and there cannot be admis-
sible sections. Otherwise rankEL = rankKL, hence EL is the image of a flat
KL-connection ∇K in L. The last part of the statement is obvious. �

Example 7.11. Let L = L1. Then EL = 〈1〉, and KL = 0. Hence every
function is admissible but there are no admissible sections. This simple ex-
ample shows that the situation here is slightly different from that in Dirac
geometry. Namely, under similar regularity conditions, a Dirac structure
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does always possess admissible functions, while Dirac-Jacobi structures may
fail to possess admissible sections.

Remark 7.12. Let KL be a regular distribution. The case (1, 0) ∈ Γ(L)
is exceptional and can be completely characterized as follows. First of all,
if (1, 0) ∈ Γ(L), then all characteristic leaves O are precontact, moreover
1 ∈ Γ(IL) and Remark 3.4 shows that θO, and hence ωO, vanish. It follows
that KL = TFL. So L = V ⊕ V 0 for some Lie subalgebroid V ⊂ DL such
that 1 ∈ Γ(V ) (see Example 4.9 and the third item in Remark 7.2).

Now on, in this section, we assume that KL is regular and (1, 0) /∈ Γ(L).
Moreover, we make the following

Assumption 7.13.

1) The distribution KL is simple, i.e. its leaf space Mred is a smooth
manifold and the projection π : M →Mred is a submersion.

2) The line bundle L is isomorphic to the pull-back bundle π∗Lred for
some line bundle Lred →Mred.

From Assumption 7.13.(1) and Proposition 7.9, admissible functions
identify with functions on Mred. Similarly, we would like to use Assump-
tion 7.13.(2) to identify admissible sections with sections of Lred. However,
for sections the situation is slightly more delicate. From Corollary 7.10, ad-
missible sections are ∇K-constant sections of L. Denote by φ : L→ π∗Lred

the isomorphism in the Assumption 7.13.(2). Isomorphism φ induces another
KL-connection ∇K0 in L characterized by the property that ∇K0 -constant
sections correspond to pull-back sections π∗λred via φ, with λred ∈ Γ(Lred).
Hence the composition of the pull-back followed by φ−1 identifies sections
of Lred with ∇K0 -constant sections. In general, ∇K 6= ∇K0 and the difference
A := ∇K −∇K0 : KL → DL is a 1-form on KL with values in the vector
bundle of endomorphisms of L. In its turn, the bundle of endomorphisms of
L is the trivial line bundle generated by 1, hence A can be regarded as a
section of K∗L. Since both ∇K and ∇K0 are flat connections, A is a 1-cocycle
in the de Rham complex of the Lie algebroid KL:

0 // C∞(M)
dKL // Γ(K∗L)

dKL // Γ(∧2K∗L)
dKL // · · · .
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Assume that the cohomology class of A in Γ(∧•K∗L) vanishes. Then con-
nection ∇K is trivial in the following sense: there exists an(other) isomor-
phism L ' π∗Lred which identify ∇K-constant sections with pull-back sec-
tions. To see this, let A = dKL

f for some function f . The required isomor-
phism is the composition ψ : L→ π∗Lred of ef : L→ L, λ 7→ efλ followed
by φ : L→ π∗Lred. Summarizing, the composition of the pull-back followed
by ψ−1 identifies sections of Lred with admissible sections, and Proposition
7.7 reveals that the line bundle Lred, equipped with the bracket {−,−}, is
a Jacobi bundle. We have thus proved the following

Proposition 7.14. Let (L,L) be a Dirac-Jacobi bundle with regular null
distribution, and (1, 0) /∈ Γ(L). Under assumption 7.13 and the condition
A = dKL

f for some f ∈ C∞(M), Lred is a Jacobi bundle and there is an
isomorphism of line bundles L ' π∗Lred identifying sections of Lred with
admissible sections of L and the Jacobi bracket on Γ(Lred) with the Jacobi
bracket on Γadm(L).

In the generic case, i.e. KL regular but not simple, both Assumption 7.13
and the assumption A = dKL

f are still valid locally, but they may fail to
be valid globally. However, M is globally equipped with a Jacobi structure
tranverse to KL that we now describe.

Consider the short exact sequence

(7.6) 0 −→ KL
∇K−→ DL −→ D⊥L −→ 0.

whereD⊥L := DL/ im∇K . Sections ofD⊥L should be interpreted as deriva-
tions of L transverse to KL. Similarly, sections of the tensor product J⊥1 L :=
(D⊥L)∗ ⊗ L∗ = J1L/(KL ⊗ L∗) should be interpreted as first order differ-
ential operators Γ(L)→ C∞(M) transverse to KL.

Now, let N be a submanifold of M complementary to KL, i.e. such that
TxM = TxN ⊕ (KL)x for all x ∈ N . Any ∆ ∈ Γ(D⊥L) can be restricted to
N to give a genuine derivation of L|N as follows. Let ∆ = ∆̃ + im∇K , with
∆̃ ∈ DerL. Moreover, let λ be a section of L|N and let λ̃ be a section of L
such that λ̃|N = λ, at least locally around a point x ∈ N . Put

(∆|N (λ))x := (∆̃(λ̃))x.

It is easy to see that ∆|N : Γ(L|N )→ Γ(L|N ) is a well defined derivation.
Sections of J⊥1 L can be restricted to N in a similar way.
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Proposition 7.15. Let (L,L) be a Dirac-Jacobi bundle with regular null
distribution, and (1, 0) /∈ Γ(L). The Dirac-Jacobi structure L induces a canon-
ical section J⊥ of ∧2J⊥1 L⊗ L. Moreover, for every submanifold N of M
complementary to KL, J⊥ restricts to a Jacobi bracket {−,−}N on Γ(L|N ).

Proof. From the proof of Corollary 7.10, the image of ∇K is EL. So, the
dual of sequence (7.6), tensorized by L, reads

0←− K∗L ⊗ L←− J1L←− E0
L ←− 0.

From (4.7), we have E0
L=prJ1L. Recall that J⊥1 L=J1L/(KL ⊗ L∗) = (E0

L)∗.
Hence a section of ∧2J⊥1 L⊗ L is the same as a morphism

∧2(prJ1L) −→ L.

Thus, let ϕ,ψ be sections of prJ1L. There are ∆,� ∈ DerL such that
(∆, ϕ), (�, ψ) ∈ Γ(L). Put

(7.7) J⊥(ϕ,ψ) := 〈�, ψ〉.

The morphism J⊥ : (prJ1L)⊗2 → L is obviously well defined. Moreover, since
L is isotropic, J⊥ is skew-symmetric. This proves the first part of the Propo-
sition.

For the second part, let N ⊂M be a submanifold complementary to KL.
Restrict J⊥ to N in the obvious way to get a skew-symmetric, first order,
bidifferential operator {−,−}N on sections of L|N . Every section of L|N
can be extended, locally around any point of N , to a ∇K-constant, hence
admissible, local section of L, and

{λ|N , µ|N}N = {λ, µ}|N

for all admissible, local sections λ, µ of L defined around N , where {−,−} is
the Jacobi bracket of admissible sections. The Jacobi identity for {−,−}N
now follows from the Jacobi identity for {−,−}. �

Remark 7.16. Every submanifold N ⊂M complementary to KL can be
locally understood as (the image of) a section of the projection M →Mred

onto the leaf space of KL. The proof of Proposition 7.15 then shows that
{−,−}N is the pull-back of the Jacobi bracket on Γ(Lred).
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8. Morphisms of Dirac-Jacobi bundles

Let (M,C) and (M ′, C ′) be precontact manifolds. A morphism of precon-
tact manifolds f : (M,C)→ (M ′, C ′) is a smooth map f : M →M ′ such
that df(C) ⊂ C ′. In particular, df induces a morphism of line bundles F :
TM/C → TM ′/C ′ over f . As it will be clear from what follows, it is in
practice useful demanding, additionally, that F is a morphism in the cate-
gory VBreg (see Section 2), i.e. it is an isomorphism on fibers (this choice
excludes, for instance, the embedding of a line, with the zero rank distri-
bution, as an integral manifold in a contact manifold, from morphisms of
precontact manifolds). In terms of the precontact forms θ : TM → TM/C
and θ′ : TM ′ → TM ′/C a morphism of precontact manifolds is a regu-
lar morphism of line bundles F : TM/C → TM ′/C ′ over a smooth map
f : M →M ′ such that θ′ ◦ df = F ◦ θ. On the other hand, let (L, {−,−})
and (L′, {−,−}′) be Jacobi bundles over manifolds M and M ′ respectively. A
morphism of Jacobi bundles or, shortly, a Jacobi morphism, is a regular mor-
phism F : L→ L′ such that {F ∗λ′, F ∗µ′} = F ∗{λ′, µ′}′ for all λ′, µ′ ∈ Γ(L′).
The two notions of morphism of precontact manifolds, and Jacobi morphism,
do not agree on contact manifolds. Hence, similarly as for Dirac manifolds,
there are two distinct notions of morphisms of Dirac-Jacobi bundles. What
follows in this section parallels [1, Section 5] (see also [3]). However, mor-
phisms of Dirac-Jacobi bundles exhibit a few novel features which make
discussing them slightly more complicated than discussing morphisms of
standard Dirac manifolds.

8.1. Backward Dirac-Jacobi morphisms

Similarly as for Dirac manifolds, under suitable regularity conditions, a
Dirac-Jacobi structure can be pulled-back along a regular morphism of line
bundles. Namely, let L→M and L′ →M ′ be line bundles, and let F : L→
L′ be a regular vector bundle morphism over a smooth map F : M →M ′.
Additionally, let L′ be a Dirac-Jacobi structure on L′.

Definition 8.1. The backward image of L′ along F is the, non-necessarily
regular, distribution in DL defined as:

BF (L′) := {(∆, F ∗ψ′) : (F∗∆, ψ
′) ∈ L′} ⊂ DL.
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Definition 8.2. A backward Dirac-Jacobi map F : (L,L)→ (L′,L′) be-
tween Dirac-Jacobi bundles is a regular morphism of line bundles F : L→ L′

such that L = BF (L′).

Remark 8.3. Let ΓF be the distribution in DL⊕ F ∗(DL′) defined by

ΓF := {((∆, ψ), (∆′, ψ′)) : ∆′ = F∗∆ and ψ = F ∗ψ′}.

Clearly, ΓF is the kernel of the smooth vector bundle epimorphism

DL⊕ F ∗(DL′) −→ J1L⊕ F ∗(DL′)
((∆, ψ), (∆′, ψ′)) 7−→ (ψ − F ∗ψ′, F∗∆−∆′)

Hence it is a smooth vector bundle (of rank dimM + dimM ′ + 2). Notice
that BF (L′) is the image of ΓF ∩ F ∗L′ under projection DL⊕ F ∗(DL′)→
DL onto the first summand. It is easy to see that the kernel of surjec-
tion ΓF ∩ F ∗L′ → BF (L′) consists of points in DL⊕ F ∗(DL′) of the form
((0, 0), (0, ψ′)), with (0, ψ′) ∈ L′, and F ∗ψ′ = 0. Summarizing, there is a
short (point wise) exact sequence

(8.1) 0 −→ ker j1F ∩ F ∗L′ −→ ΓF ∩ F ∗L′ −→ BF (L′) −→ 0,

where the second arrow is the inclusion F ∗(DL′) ↪→ DL⊕ F ∗(DL′), and the
third arrow is the projection DL⊕ F ∗(DL′)→ DL. Finally, BF (L′) is a max-
imal isotropic distribution in DL. To see this, let x ∈M . Upon selecting a
generator µ in Lx and the generator F (µ) in LF (x), maximal isotropy of
BF (L′) immediately follows from [1, Proposition 5.1]. In particular, BF (L′)
has constant rank.

Proposition 8.4. If rank(ker j1F ∩ F ∗L′) is constant, then the backward
image BF (L′) is a vector subbundle of DL. In this case, (L,BF (L′)) is a
Dirac-Jacobi bundle.

Definition 8.5. Let L→M and L′ →M ′ be line bundles and let F : L→
L′ be a regular morphism of line bundles over a smooth map F : M →M ′.
A section α = (∆, ψ) of DL and a section α′ = (∆′, ψ′) of DL′ are F -related
if ψ = F ∗ψ′ and, additionally, ∆ and ∆′ are F -related.

Proof of Proposition 8.4. The proof is an adaptation of the analogous proof
for the Dirac case [1, Proof of Proposition 5.9], and it is very similar to
that one. We report it for completeness. Let rank(ker j1F ∩ F ∗L′) be con-
stant. Since rankBF (L′) is also constant, then, from (8.1), rank ΓF ∩ F ∗L′
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is constant as well. Hence ΓF ∩ F ∗L′ is a vector bundle, and so is BF (L′). It
remains to prove that BF (L′) is involutive. To see this, it is useful to prove
the following

Lemma 8.6. Let x0 ∈M be a point such that the rank of dF and the rank
of ker j1F ∩ F ∗L′ are constant around x0. Then, for every α0 ∈ BF (L′)x0

,
there exist a local section α of BF (L′) and a local section α′ of L′ such that
αx0

= α0 and, additionally, α and α′ are F -related.

Proof of Lemma 8.6. Let x0 be as in the statement and let r := rankx0
dF .

Then we can choose coordinates (x1, . . . , xm) in M , centered in x0, and
coordinates (y1, . . . , yn) in M ′, centered in y0 := F (x0), such that F looks
like

(8.2) F (x1, . . . , xm) 7→ (x1, . . . , xr, 0, . . . , 0),

around x0. Moreover, let µ′ be a local generator of Γ(L′) around y0. Fi-
nally let S be the submanifold in M defined by xr+1 = · · · = xm = 0 so
that 1) F establishes a (local) diffeomorphism F : S → S′ = imF = {yr+1 =
· · · = yn = 0}, and 2) F |S : L|S → L′|S′ is an isomorphism over F : S → S′.
In order to find α and α′ as in the statement, first extend α0 to a lo-
cal section αS = (∆S , ψS) of BF (L′)|S , and use the isomorphism F |S to
find a section α′S = (∆′S , ψ

′
S) of L′|S′ such that (ψS)x = F ∗(ψ′S)F (x) and

F∗(∆x) = (∆′S)F (x) for all x ∈ S. Next, using (8.2), extend ∆S to a section
∆ of DL such that F∗(∆x) = (∆′S)F (x) for all x in a neighborhood of x0.
Then α := (∆, F ∗ψ′S) is a section of BF (L′) and αx0

= α0. Finally, extend
α′S to a section of L′ in any way and notice that α, α′ are F -related. �

Now, we are ready to prove that BF (L′) is involutive. Let Υ be the
Courant-Jacobi tensor of BF (L′). We want to show that Υ = 0. To see this,
first compute Υ at a point x0 as in the hypothesis of Lemma 8.6. Thus, let
(αi)0 ∈ BF (L′)x0

, and let αi be sections of BF (L′), and α′i sections of L′,
such that (αi)x0

= (αi)0 and αi, α
′
i are F -related, i = 1, 2, 3. Then it is easy

to see from (2.1) that

Υ((α1)0, (α2)0, (α3)0) = Υ(α1, α2, α3)x0
= ΥL′(α

′
1, α
′
2, α
′
3)F (x0) = 0,

i.e. Υ vanishes at all points x0 as in the statement of Lemma 8.6. Since such
points are dense in M , it follows that Υ vanishes everywhere. �



i
i

“4-Vitagliano” — 2018/7/4 — 17:40 — page 533 — #49 i
i

i
i

i
i

Dirac-Jacobi bundles 533

In analogy with the Dirac case, we call clean intersection condition the
condition that ker j1F ∩ F ∗L′ has constant rank (see [1, Section 5]). Clearly,
it always holds when L′ = Lω for some 2-cocycle ω in (Ω•L′ , dD).

Example 8.7. Let (L,L) be a Dirac-Jacobi bundle over a smooth man-
ifold M , and let F : S ↪→M be the inclusion of a submanifold. Equip S
with the restricted line bundle L|S and let F : L|S ↪→ L be the inclusion.
Now ker j1F is the annihilator D(L|S)0 of D(L|S) in (J1L)|S . It is easy to
see that, actually, D(L|S)0 = N∗S ⊗ L|S ⊂ T ∗M |S ⊗ L|S ⊂ (J1L)|S , where
N∗S is the conormal bundle to S. Hence the clean intersection condition
reads: L ∩ (N∗S ⊗ L|S) has constant rank. If this condition is satisfied, then
L|S inherits a Dirac-Jacobi structure

(8.3) BF (L) = {(∆, F ∗ψ) ∈ DL|S : (∆, ψ) ∈ L},

(cf. [9, Section 3.1]). For instance, let KL be a regular distribution, and let
S ⊂M be a submanifold complementary to KL (see Subsection 7.2). Then,
L ∩ (N∗S ⊗ L|S) = 0 and the clean intersection condition is automatically
satisfied. Indeed a form η ∈ L ∩ (N∗S ⊗ L|S) annihilates tangent vectors to
S. Being in L, η does also annihilate tangent vectors in KL. Since KL|S
and TS span the whole TM |S , it follows that η = 0. Under the additional
assumption that (1, 0) /∈ Γ(L), the backward image BF (L) is precisely the
Dirac-Jacobi structure corresponding to the bracket {−,−}S induced by L
on Γ(L|S) (Proposition 7.15). Indeed, BF (L) ∩D(L|S) consists of points
in L|S of the form (∆, 0) with σ(∆) ∈ TS. But, from (∆, 0) ∈ L, we also
get σ(∆) ∈ KL, hence σ(∆) = 0, and from (1, 0) /∈ Γ(L), we get ∆ = 0. So,
from (4.13), BF (L) is the Dirac-Jacobi structure corresponding to a Jacobi
bracket {−,−}. That {−,−} = {−,−}S now follows from (7.7).

8.2. Forward Dirac-Jacobi morphisms

Under suitable regularity conditions, a Dirac-Jacobi structure can be pushed-
forward along a regular morphism of line bundles. Namely, let L→M and
L′ →M ′ be line bundles, and let F : L→ L′ be a regular morphism of line
bundles over a smooth map F : M →M ′. Additionally, let L be a Dirac-
Jacobi structure on L.

Definition 8.8. The forward image of L along F is the, non-necessarily
regular, distribution in F ∗DL′ defined as:

FF (L) := {(F∗∆, ψ′) : ((∆, F ∗ψ′) ∈ L′} ⊂ F ∗(DL).
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Definition 8.9. A forward Dirac-Jacobi map F : (L,L)→ (L′,L′) between
Dirac-Jacobi bundles is a regular morphism of line bundles F : L→ L′ such
that FF (L) = F ∗L′.

Clearly, an isomorphism F : L→ L′ over a diffeomorphism F : M →M ′

is a forward Dirac-Jacobi map if and only if it is a backward Dirac-Jacobi
map, and this happens iff

(F∗∆, (F
−1)∗ψ) ∈ L′ for all (∆, ψ) ∈ L.

So the two notions of Dirac-Jacobi maps agree for isomorphisms. An iso-
morphism which is (either a backward or a forward) Dirac-Jacobi map is a
Dirac-Jacobi isomorphism.

Remark 8.10. The forward image FF (L) is the image of ΓF ∩ L under the
projection DL⊕ F ∗(DL′)→ F ∗(DL′) onto the second summand. It is easy
to see that the kernel of the surjection ΓF ∩ L→ FF (L) consists of points
in DL⊕ F ∗(DL′) of the form ((∆, 0), (0, 0)), with (∆, 0) ∈ L, and F∗∆ = 0.
Summarizing, there is a short (point wise) exact sequence

(8.4) 0 −→ ker dDF ∩ L −→ ΓF ∩ L −→ FF (L) −→ 0,

where the second arrow is the inclusion DL ↪→ DL⊕ F ∗(DL′) and the third
arrow is the projection DL⊕ F ∗(DL′)→ F ∗(DL′). Finally, FF (L) is a max-
imal isotropic distribution in DL. This follows from [1, Proposition 5.1] sim-
ilarly as for backward images. In particular, FF (L) has constant rank.

In order to check whether or not the forward image does actually deter-
mine a Dirac structure on M ′ one should check two things: first, whether
or not FF (L) is a vector subbundle of F ∗(DL), and second, whether or not
FF (L) descends to a vector subbundle of DL. The first issue is addressed in
the following

Proposition 8.11. If rank(ker dDF ∩ L) is constant, then the forward im-
age FF (L) is a vector subbundle of F ∗(DL′).

Proof. It immediately follows from (8.1) by a similar argument as that in
the proof of Proposition 8.4. �

We call clean intersection condition, the condition that ker dDF ∩ L has
constant rank. Clearly, it always holds when L = LJ for some Jacobi bundle
(L, J) over M .
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Remark 8.12. The clean intersection condition is equivalent to the condi-
tion that ker dF ∩KL has constant rank. Indeed, ker dDF is mapped point-
wise isomorphically onto ker dF by the symbol map σ : DL→ TM . Hence
ker dDF ∩ L = ker dDF ∩ EL is mapped point-wise isomorphically onto
ker dF ∩KL. In particular, ker dDF ∩ L has constant rank if and only if
so does ker dF ∩KL.

Next issue is addressed as follows. The fiber FF (L)x of FF (L) over a
point x ∈M is a subspace in the fiber of F ∗(DL′) over x. The latter is the
fiber DF (x)L

′ of DL′ over F (x). Hence, as for standard Dirac structures, it
is natural to give the following

Definition 8.13. Dirac-Jacobi structure L is F -invariant if FF (L)x is in-
dependent of the choice of x in a fiber of F .

Now, suppose for a moment that rank dF is constant. Then the image
of F is locally a submanifold. If L satisfies the clean intersection condition
with respect to F , and, additionally, it is F -invariant, then FF (L) descends
to a vector subbundle of DL′ (over every smooth piece of F (M)) whose fiber
at F (x) is FF (L)x, x ∈M . In particular, in order to get a vector subbundle
of DL′ over the whole M ′, we need F to be a surjective submersion. Even
more, we have the following

Proposition 8.14. Let F : M →M ′ be a surjective submersion. If the rank
of ker dDF ∩ L is constant, and L is F -invariant, then the forward image
FF (L) descends to a Dirac-Jacobi structure on L′.

Proof. The clean intersection condition and the F -invariance guarantee that
FF (L) is a vector bundle descending to a maximal isotropic vector subbundle
of DL′. Denote it by L′. It remains to prove that L′ is involutive. This can
be done similarly as in Proposition 8.4 and [1, Proposition 5.9]. Details are
left to the reader. �

Example 8.15. Let (L,L) be a Dirac-Jacobi bundle over a smooth mani-
fold M , and let LN → N be a line bundle. Moreover, let F : L→ LN be a
regular morphism of line bundles over a surjective submersion F : M → N
with connected fibers, such that ker dF ⊂ KL. In this case, the clean in-
tersection condition holds, without further assumptions, in view of Re-
mark 8.12. Moreover, if, additionally, ker dDF ⊂ L, then L is F -invariant.
To see this, first notice that the Lie derivative L� along a derivation � ∈
Γ(ker dDF ) ⊂ DerL preserves sections of L. Namely, let (∆, ψ) ∈ Γ(DL),
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and put L�(∆, ψ) := ([�,∆],L�ψ). Then L�(∆, ψ) ∈ Γ(L) for all (∆, ψ) ∈
Γ(L). Indeed

L�(∆, ψ) = ([�,∆],L�ψ) = [[(�, 0), (∆, ψ)]].

In its turn, since (�, 0) ∈ Γ(ker dDF ) ⊂ Γ(L), then [[(�, 0), (∆, ψ)]] is in Γ(L)
by involutivity of L. In particular, L is preserved by the flow of �, for all
� ∈ Γ(ker dDF ). Hence, since fibers of F are connected, for any x, x′ in
the same F -fiber, there is a Dirac-Jacobi isomorphism G : L→ L, over a
diffeomorphism G : M →M , such that G maps x to x′ and, additionally, G
is F -vertical, i.e. F ◦G = F . It is now easy to see that

FF (L)x′ = {(F∗∆, ψ′) : (∆, F ∗ψ′) ∈ Lx′}
= {((F ◦G)∗∆

′, ψ′) : (∆′, (F ◦G)∗ψ′) ∈ Lx}
= FF◦G(L)x = FF (L)x,

so that L is F -invariant. Hence FF (L) descends to a Dirac-Jacobi structure
on LN . Denote it by LN . By construction ELN = LN ∩DLN = (dDF )(EL).
For instance, let ker dDF = EL, so that ker dF = KL. This means that dis-
tribution KL is simple, its leaf space is N , and F : M → N is the natural
projection. Additionally, (1, 0) /∈ Γ(L) and the canonical (ker dF )-connection
in L = F ∗LN is the one induced by L (see Subection 7.2). Hence LN is the
Dirac-Jacobi structure corresponding to the Jacobi bundle induced on N by
(L,L). Clearly F : (L,L)→ (LN , LN ) is both a forward Dirac-Jacobi map
and, from Example 8.7, a backward Dirac-Jacobi map.

Remark 8.16. The two conditions ker dF ⊂ KL, and ker dDF ⊂ L ap-
pearing in Example 8.15 are not equivalent. While from ker dDF ⊂ L im-
mediately follows ker dF ⊂ KL, the converse is not true. For instance, let
M = R2, L = RM and let L = L∇, where ∇ is any flat connection in L.
So EL is the image of ∇ and KL = TM . In particular, ker dF ⊂ KL for
any F . Now let N consist of one point ∗, LN = R{∗} → N = {∗}, and let
F : M ×R→ R{∗} = R be the projection onto the second factor. It is easy
to see that ker dDF is the image of the canonical trivial connection ∇0 in L.
Hence, unless ∇ = ∇0, the kernel of dDF is not contained into L.

9. Coisotropic embeddings of Dirac-Jacobi bundles

Let (L,L) be a Dirac-Jacobi bundle over a smooth manifold M , and let
S ⊂M be a submanifold. The inclusion ι : L|S ↪→ L of the restricted line
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bundle is a regular morphism. Hence L induces a Dirac-Jacobi structure
Bι(L) on L|S (up to a clean intersection condition, see Subsection 8.1).
When L is the Dirac-Jacobi structure corresponding to a precontact form
θ : TM → L, then Bι(L) is the Dirac-Jacobi structure corresponding to the
pull-back precontact form ι∗θ : TS → L|S . On the other hand, when L is
the Dirac-Jacobi structure corresponding to a Jacobi bracket {−,−} on L,
in general Bι(L) does not correspond to a Jacobi bracket on L|S . In other
words, Jacobi brackets “do not pass to submanifolds” and we need to work in
the general setting of Dirac-Jacobi bundles when dealing with submanifolds
in a Jacobi manifold.

Coisotropic submanifolds are of a special interest. In Poisson geome-
try, they model first class constraints of Hamiltonian systems. Moreover the
graph of a Poisson morphism is a coisotropic submanifold is a suitable prod-
uct Poisson manifold. Similar considerations hold in Jacobi geometry. For
instance the graph of a Jacobi map is a coisotropic submanifold in a suitable
product Jacobi manifold [19].

Now, a presymplectic manifold can be coisotropically embedded in a
symplectic manifold if and only if the null distribution is regular, and the
coisotropic embedding is essentially unique. This classical result, due to Go-
tay (see [16] for details), plays an important role in symplectic geometry.
For instance, Gotay’s Theorem can be used to show that deformations of
a coisotropic submanifold S in a symplectic manifold are controlled by an
L∞-algebra depending only on the intrinsic presymplectic geometry of S
[31]. There is a contact version of Gotay’s Theorem stating that a precon-
tact manifold can be coisotropically embedded in a contact manifold if and
only if the null distribution is regular, and the coisotropic embedding is es-
sentially unique. One can use the latter result to study deformations of a
coisotropic submanifold in a contact manifold (see [25] for more details).
Similarly, any Dirac manifold can be regarded as a coisotropic submanifold
(with the pull-back Dirac structure) in a Poisson manifold, if and only if the
null distribution is regular [5, Section 8]. This can be used, for instance, to
reduce the quantization problem of the Poisson algebra of admissible func-
tions on a Dirac manifold to the quantization problem of the Poisson algebra
of basic functions on a coisotropic submanifold [4]. It is natural to ask: can
one unify the above mentioned coisotropic embedding theorems in contact
and Dirac geometry, proving an analogous result for Dirac-Jacobi bundles?
In this section we show that the answer is affirmative (see Theorem 9.2).

Let (L, {−,−}) be a Jacobi bundle. As already remarked, the Jacobi
bracket {−,−} can be regarded as a morphism J : ∧2J1L→ L and defines a
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morphism J ] : J1L→ J1L⊗ L = DL, ψ 7→ J(ψ,−). Recall that a submani-
fold S ⊂M is called coisotropic (with respect to (L, J)) if Xλ := (σ ◦ J ])(λ)
is tangent to S for all sections λ of L such that λ|S = 0. More information
about coisotropic submanifolds in Jacobi geometry may be found, e.g., in
[25].

Let (LS ,L) be a Dirac-Jacobi bundle over a manifold S.

Definition 9.1. A coisotropic embedding of (LS ,L) in a Jacobi bundle
(L, J) over a manifold M is an embedding ι : LS ↪→ L over an embedding
ι : S ↪→M , such that

1) the image of ι is a coisotropic submanifold of M , and

2) L = Bι(LJ), i.e. ι : (LS ,L)→ (L,LJ) is a backward Dirac-Jacobi map.

Theorem 9.2. Dirac-Jacobi bundle (LS ,L) can be embedded coisotropically
(i.e. there is a coisotropic embedding) into a Jacobi bundle if and only if the
null der-distribution EL = L ∩DLS is regular.

Proof. The proof parallels the proof of the analogous proposition for Dirac
manifolds [5, Theorem 8.1]. Let (LS ,L) be a Dirac-Jacobi bundle over S,
and let ι : LS → L be a coisostropic embedding into a Jacobi-bundle (L, J)
(over an embedding ι : S →M). In the following, we use ι to regard S as a
submanifold in M and identify LS with L|S . The rank of EL = L ∩DLS is
an upper semi-continuous function on S. On the other hand, it is also lower
semi-continuous. Indeed,

L = Bι(LJ) = {(∆, ι∗ψ) : (∆, ψ) ∈ LJ}
= {(J ](ψ), ι∗ψ) : ψ ∈ (J1L)|S and J ](ψ) ∈ DLS}.

Since S is coisotropic, it follows that

EL = {J ](ψ) : ψ ∈ ker j1ι}.

But ker j1ι = N∗S ⊗ LS is a vector bundle (see Example 8.7). So, EL =
J ](N∗S ⊗ LS) is a smooth distribution. Hence it is regular.

Conversely, let EL be a regular distribution in DLS . Restricting to con-
nected components of S, if necessary, we can assume that EL is a vector
bundle. We want to show that there is a Jacobi bundle on a neighborhood
of the zero section 0 of the vector bundle π : E†L := E∗L ⊗ LS → S such that

0 : S → E†L is a coisotropic embedding.
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Pick a complement G of EL in DLS , i.e. DLS = G⊕ EL. Equip E†L
with the pull-back line bundle L := π∗LS , and define a maximal isotropic
subbundle LG ⊂ DL, depending on G, as follows. Abusing the notation, we
denote again by π : L = π∗LS → LS the projection. Thus, take the back-
ward image Bπ(L) ⊂ DL. The clean intersection condition is automatically
satisfied. Hence Bπ(L) is a Dirac-Jacobi structure on L.

There is a canonical 1-cochain ΘG in (Ω•L, dD). The value of ΘG at ε ∈ E†L
is the composition:

(9.1) DεL
dDπ // DxLS // (EL)x

ε // (LS)x ,

where x = π(ε) and the second arrow is the projection with kernel Gx.
Take the differential ωG := −dDΘG. There is an alternative description of
ωG. Namely, the splitting DLS = G⊕ EL induces a splitting J1LS = (G∗ ⊗
LS)⊕ E†L, whence an embedding E†L ↪→ J1LS of vector bundles. Recall that
J1LS is equipped with a canonical contact form θ taking values in the pull-
back line bundle J1LS ×S LS (see, e.g., [25, Example 5.5]). Consider the
2-cocycle ωJ1LS := −dD(θ ◦ σ). It is easy to see that ωG coincides with the
pull-back of ωJ1LS along the embedding L ↪→ J1LS ×S LS over the embed-
ding E†L ↪→ J1LS .

Next, use ωG to “gauge transform” Bπ(L) and get a Dirac-Jacobi struc-
ture (see Example 4.14):

LG := τωGBπ(L) = {(∆, ψ + i∆ωG) : (∆, ψ) ∈ Bπ(L)}.

We claim that LG is the Dirac-Jacobi structure corresponding to a Jacobi
bracket on Γ(L), at least around the (image of the) zero section 0 of π.
To prove the claim, it suffices to show that the characteristic leaves of LG
are either genuinely contact or genuinely lcs around 0. Thus, describe the
characteristic foliation of LG. It is easy to see that ILG = prDLG = π−1

∗ IL. It
immediately follows that all characteristic leaves of LG are of the form Ô :=
π−1(O) where O is a characteristic leaf of L, and, for every characteristic
leaf O of L,

ILG |Ô = π−1
∗ (IL|O) =

{
D(L|Ô) if O is precontact

π−1
∗ (im∇O) if O is lcps

(here, when O is lcps, ∇O is the connection in LS |O). In particular, Ô is
precontact (resp. lcps) if and only if O is such. Compute the 2-cocycle ωÔ.
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First, let O be precontact. A direct check shows that, in this case,

(9.2) ωÔ = π∗ωO + ι∗ωG,

where ι : L|Ô ↪→ L is the inclusion. Now, we show that ωÔ is non-degenerate

around the image of the zero section 0 : Ô → O, which, abusing the notation,
we denote again by 0. It suffices to show that the point-wise restriction ωÔ|0
is non-degenerate. Recall that the exact sequence

0 −→ (ker dπ)|0 −→ T Ô|0
dπ−→ TO −→ 0

splits via the inclusion d0 : TO → T Ô|0. Moreover, since Ô = E†L|O → O is

a vector bundle, then (ker dπ)|0 ' Ô. Summarizing, there is a direct sum
decomposition T Ô|0 = TO ⊕ Ô. Denote by pÔ : T Ô|0 → Ô the projection
with kernel TO.

Similarly, the exact sequence

0 −→ (ker dDπ)|0 −→ D(L|Ô)|0
dDπ−→ D(LS |O) −→ 0

splits via the inclusion dD0 : D(LS |O)→ D(L|Ô)|0. Moreover, the compo-

sition σ ◦ pÔ : (ker dDπ)|0 → Ô is an isomorphism. Hence there is a direct

sum decomposition D(L|Ô)|0 = D(LS |O)⊕ Ô. Accordingly, a section ε of

Ô identifies with the unique differential operator Dε : L|Ô → L|Ô such that
Dελ = 0 for all fiber-wise constant sections λ ∈ Γ(L|Ô), and Dεe = 〈ε, e〉 for
all fiber-wise linear sections e ∈ Γ(L|Ô) (a fiber-wise linear section of L is
a section of the form

∑
f ⊗ λ where the f ’s are fiber-wise linear function

on Ô and the λ’s are fiber-wise constant sections of L|Ô, i.e. pull-back sec-
tions π∗λ0, with λ0 ∈ Γ(LS |O) - in particular, fiber-wise linear sections of
L|Ô identify with sections of EL|O). Now, notice that EL|O ⊂ D(LS |O) and
D(LS |O) = GO ⊕ EL|O where GO = G ∩D(LS |O) (GO differs from G|O in
general, because sections of G are derivations Γ(LS)→ Γ(LS) but, in gen-
eral, not all of them are tangent to O). Summarizing, there is a direct sum
decomposition D(L|Ô)|0 = GO ⊕ EL|O ⊕ Ô.

From (9.2), ωÔ|0 = (π∗ωO)|0 + (ι∗ωG)|0. Compute the first summand

(π∗ωO)|0. Since Ô is the kernel of π∗ : D(L|Ô)|0 → D(LS |O), and, from (7.1),
EL|O = kerωO, then (π∗ωO)|0 is given by matrix

GO EL|O Ô
GO ωO|GO 0 0
EL|O 0 0 0

Ô 0 0 0

,
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where ωO|GO is non-degenerate. Now, compute the second summand (ι∗ωG)|0.
From (9.1), ΘG vanishes on 0. Hence, for all ∆,� ∈ D(L|Ô),

(ι∗ωG)|0(∆|0,�|0) = ∆|0(ΘG(�))−�|0(ΘG(∆)).

Let ∆|0 ∈ Γ(G). Clearly, ∆ can be chosen in such a way that (pE ◦ dDπ)∆ =
0 so that ΘG(∆) = 0 (here pE : D(LS |O)→ EL|O is the projection with
kernel GO). Since ∆|0 is tangent to 0, we also have

∆|0(ΘG(�)) = ∆|0(ΘG(�)|0) = 0.

Hence (ι∗ωG)|0(∆|0,�|0) = 0 whenever ∆|0 ∈ Γ(G). Similarly,

(ι∗ωG)|0(∆|0,�|0) = 0

when both ∆|0,�|0 ∈ Γ(EL|O) or ∆|0,�|0 ∈ Γ(Ô). Finally, let ∆|0 = ε ∈
Γ(Ô) and �|0 = e ∈ Γ(EL|O). In particular, � is tangent to 0 so that

�|0(ΘG(∆)) = �|0(ΘG(∆)|0) = 0.

Choose � such that (pE ◦ dDπ)∆ = e and ∆ = Dε. With these choices, it is
easy to see that ∆|0(ΘG(�)) = 〈ε, e〉. We conclude that (ι∗ωG)|0 is given by
the matrix

GO EL|O Ô
GO 0 0 0
EL|O 0 0 −〈−,−〉
Ô 0 〈−,−〉 0

,

where 〈−,−〉 : Ô ⊗ EL|O → LS |O is the duality pairing (twisted by LS |O).
Hence ωÔ|0 is given by the non-degenerate matrix

GO EL|O Ô
GO ωO|GO 0 0
EL|O 0 0 −〈−,−〉
Ô 0 〈−,−〉 0

.

So, locally around 0, the characteristic leaf Ô is actually a contact leaf.
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Now, let O be lcps. A direct computation shows that ωÔ = σ∗ωÔ with

ωÔ = π∗ωO + (∇Ô)∗ι∗ωG,

where the second summand is defined by (∇Ô)∗ι∗ωG(X,Y ) := ωG(∇ÔX ,∇ÔY ),

for all X,Y ∈ T Ô. Similarly as above, we want to show that ωÔ is non-

degenerate around the image 0 of the zero section of Ô → O and, to do
this, it suffices to prove that ωÔ|0 is non-degenerate. First of all, notice that
the symbol σ : DLS → TS establishes an isomorphism between EL|O and
EL|O := kerωO whose inverse isomorphism is given by the connection ∇O.
In particular, EL|O is a vector subbundle of TO, and there is a direct sum
decomposition TO = GO ⊕ EL|O, where

GO := σ(G ∩D(L|Ô)) = σ(G) ∩ TO.

Hence there is a direct sum decomposition T Ô|0 = GO ⊕ EL|O ⊕ Ô. Sim-
ilarly as in the contact case, one proves that ωÔ|0 is given by the non-
degenerate matrix

GO EL|O Ô
GO ωO|GO 0 0
EL|O 0 0 −〈−,−〉
Ô 0 〈−,−〉 0

.

where 〈−,−〉 : Ô ⊗ EL|O → LS |O is the duality pairing. Details are left to
the reader. So, locally around 0, the characteristic leaf Ô is a lcs leaf.

It remains to prove that the zero section of E†L is a coisotropic embedding
of S. This immediately follows from [25, Corollary 3.3.(3)] and the fact that
0 ∩ Ô = O for every characteristic leaf O of (LS ,L). �

The construction in the proof of Theorem 9.2 depends, a priori, on the
choice of a complementary vector bundle G. However, two different choices
of G determine isomorphic Jacobi bundles, at least around the zero section
of E†L, as shown by the following

Proposition 9.3. Let (LS ,L) be a Dirac-Jacobi bundle over a manifold
S, such that EL is a vector bundle and let G0, G1 ⊂ DLS be two com-
plementary vector subbundles, i.e. E ⊕G0 = E ⊕G1 = DLS. Finally, let
(L := π∗LS , J0) (resp. (L := π∗LS , J1)) be the Jacobi structure determined
by G0 (resp., G1) on a neighborhood of the (image of the) zero section 0 of
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π : E†L → S as in the proof of Theorem 9.2. Then there is a Jacobi isomor-
phism Φ : (L, J0)→ (L, J1) locally defined around 0, such that Φ ◦ 0 = 0.

Proof. The proof parallels the proof of [5, Proposition 8.2]. We use the same
notations as in the proof of Theorem 9.2. Let G0, G1 be as in the state-
ment, and let A : G0 → EL be the vector bundle morphism whose graph is
G1 ⊂ G0 ⊕ EL = DLS . Let Gt be the graph of the vector bundle morphism
tA : G0 → EL, t ∈ [0, 1]. The Gt’s interpolate between G0 and G1. Clearly,
DLS = Gt ⊕ E for all t. Hence every Gt determines a Dirac-Jacobi structure
Lt on L. Moreover, Lt corresponds to a Jacobi bundle (L, Jt), at least around
0. We claim that the time-1 flow Φ of the (time dependent) derivation

∆t := J ]t

(
d

dt
ΘGt

)
∈ DerL

fixes 0 and maps J0 to J1. Since ΘGt vanishes on 0 for all t’s, so does ∆t,
hence Φ ◦ 0 = 0 (in particular, Φ is well defined around 0). Finally, notice
that the Jt’s share the same characteristic foliation:

{Ô : O is a characteristic leaf of DS}.

In particular, ∆t is tangent to Ô for all O. Denote by ωÔ(t) the 2-cochain

on Ô induced by Lt. If O is precontact then ωÔ(t) is non degenerate around
0 and

ωÔ(t) = ωÔ(0) + ι∗(ωGt − ωG0
).

It follows from the contact version of the Moser lemma that Φ maps ωÔ(0)
to ωÔ(1). Similarly in the lcps case. Details are left to the reader. So Φ
maps the contact/lcs foliation of J0 to the contact/lcs foliation of J1, hence
it maps J0 to J1. �

Any Jacobi bundle as the one constructed in the proof of Theorem 9.2
will be called a Jacobi thickening of (LS ,L). The above proposition shows
that the Jacobi thickening is unique up to isomorphisms. Hence every Dirac-
Jacobi bundle (LS ,L) such that EL is a regular distribution, admits an
essentially canonical coisotropic embedding.

Remark 9.4. Let (LS ,L) be a Dirac-Jacobi bundle such that EL is a
regular distribution, and let (L, J) be a Jacobi thickening. The proof of
Theorem 9.2 shows that the contact/lcs characteristic leaves of (L, J) are
Jacobi thickenings of the precontact/lcps characteristic leaves of (LS ,L). In
the case when S has just one characteristic leaf, i.e. (LS ,L) corresponds to
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either a precontact or a lcps manifold, Jacobi thickening reproduces either
the contact thickening of [25] or the lcs thickening of [24].

Example 9.5. Let LS be a line bundle over a smooth manifold S, and let
V ⊂ DLS be an involutive vector subbundle. The vector bundle V inherits
from DLS a Lie algebroid structure. Moreover, the inclusion V ↪→ DLS is a
representation of the Lie algebroid V in the line bundle LS . So V is a Jacobi
algebroid in the sense of [25]. In particular, there is a Jacobi bundle (L :=
π∗LS , J), with fiberwise linear Jacobi bracket J , over the total space of the
vector bundle π : V ∗ ⊗ LS → S (see [25] for details). Now, let L = V ⊕ V 0

be the Dirac-Jacobi structure on LS corresponding to V . The distribution
EL = V is automatically regular, hence (LS ,L) admits a Jacobi thickening.
Namely, let G ⊂ DLS be a complementary vector subbundle, i.e. V ⊕G =
DLS . Then G determines a Jacobi bundle (L, JG) on a neighborhood of
the zero section 0 of π : V ∗ ⊗ L→ S, and 0 is a coisotropic embedding. We
claim that JG is in fact independent of G and coincides with J . In other
words, we claim that, for every α, β ∈ Γ(V ) and ε ∈ V ∗ ⊗ LS ,

(9.3) JG(j1
εα, j

1
εβ) = 〈ε, [α, β]〉,

where, in the left hand side, we interpret α, β as fiber-wise linear sections of
L (see the proof of Theorem 9.2 for a definition of fiber-wise linear sections).

In order to prove (9.3), recall that ωO = 0 for every characteristic leaf
O of V ⊕ V 0. Now denote by ` the restriction LS |O. Assume that O is
precontact. Then V |O = D` and V ∗ ⊗ L|O = J1`. As in the proof of Theo-
rem 9.2, denote by ι : Ô → V ∗ ⊗ L the inclusion. By definition ι∗ΘG agrees
with the contact form on J1`, hence ωÔ = π∗ωO + ι∗ωG = ι∗ωG agrees with

the canonical 2-cocycle on J1` and Equation (9.3) holds for all ε ∈ Ô. On
the other hand, if O is lcps, then V |O = im∇S where ∇S : TO → D` is a
flat connection. Hence V ∗ ⊗ L|O identifies with T ∗O ⊗ ` and L|Ô identifies

with (T ∗O ⊗ `)×O `. Similarly as in the precontact case, connection ∇Ô in
L|Ô induced by L agrees with the pull-back connection π∗∇S , and ωÔ agrees
with the canonical lcs form on T ∗O ⊗ `. Hence Equation (9.3) holds for ε
belonging to lcs leaves as well.

Example 9.6. Let (LS ,L) be a Dirac-Jacobi bundle over a smooth man-
ifold S. From Proposition 7.3, if the null distribution KL is regular, so is
EL, hence (LS ,L) can be coisotropically embedded in a Jacobi bundle. So
regularity of KL is sufficient for coisotropic embedding. However, it is not
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necessary as the following example shows. Let M = R2 with standard coor-
dinates x, y and L = RM so that DL = (TM ⊕RM )⊕ (T ∗M ⊕RM ). More-
over, let J ∈ Γ(∧2(J1L)∗ ⊗ L) = Γ(∧2(TM ⊕RM )) be the Jacobi bracket
on C∞(M) given by

J = x
∂

∂y
∧ ∂

∂x
+

∂

∂y
∧ 1.

It is easy to see that S = {y = 0} is a coisotropic submanifold. Moreover,
LJ can be pulled-back to (LS := L|S = RS) giving a Dirac-Jacobi structure
L ⊂ DLS = (TS ⊕RS)⊕ (T ∗S ⊕RS) generated by

1 + x
∂

∂x
, dx− x · 1.

In particular, EL is spanned by 1 + x ∂
∂x and it is, as expected, a smooth

rank one vector bundle. On the other hand, KL is spanned by x ∂
∂x . So its

rank is one everywhere except in x = 0 where it is zero.

10. Integration of Dirac-Jacobi structures on line bundles

A Lie algebroid is integrable if it is isomorphic to the Lie algebroid A(G) of
a Lie groupoid G. An integration of a Lie algebroid A is a Lie groupoid G
together with an isomorphism A ' A(G). A geometric structure X on a Lie
groupoid G, which is compatible with the groupoid structure in a suitable
sense, usually determines a geometric structure on A(G) which is compatible
with the algebroid structure in a suitable sense, and is to be considered as
the “infinitesimal counterpart of X”. Conversely, let A be an integrable Lie
algebroid, and let G be an integration on A. Suppose that A is equipped
with a geometric structure X , compatible with the algebroid structure. It
is natural to wonder whether X is the infinitesimal counterpart of a suit-
able structure X on G. If this is the case, we say that (A,X ) integrates to
(G,X ). There are many examples of positive answers to the above question.
For instance, Poisson manifolds integrate, if at all integrable, to symplectic
groupoids. More generally, Dirac manifolds integrate, if at all integrable,
to presymplectic groupoids [2]. In [21] Iglesias and Wade show that E1(M)-
Dirac manifolds integrate to cooriented precontact groupoids. In this section
we discuss the case of a generic Dirac-Jacobi bundle using the language of
Spencer operators introduced by Crainic, Salazar and Struchiner in [12].

As already mentioned in the introduction, we assume that the reader is
familiar with (fundamentals of) the theory of Lie groupoids, Lie algebroids
and their representations (see, e.g., [10] and references therein). Here we
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will only recall some aspects of the theory. The unfamiliar reader will find
a quick introduction to all other aspects relevant for this section in [33] (see
Section 1.2 therein, see also Chapter 4).

Let G ⇒M be a Lie groupoid with source s, target t and unit u. We iden-
tify M with its image under u. Denote by G2 = {(g1, g2) ∈ G × G : s(g1) =
t(g2)} the manifold of composable arrows and letm : G2 → G, (g1, g2) 7→ g1g2

be the multiplication. We denote by pr1, pr2 : G2 → G the projections onto
the first and the second factor respectively.

Recall that the Lie algebroid A(G) of G consists of tangent vectors to the
source fibers at points of M . Every section α of A(G) corresponds to a unique
right invariant, s-vertical vector field αr on G such that α = αr|M . The Lie
bracket in Γ(A(G)) is induced by the commutator of right invariant vector
fields, and the anchor of A(G)→ TM is given by ρ(α) = t∗(α) = t∗(α

r|M ),
for all α ∈ Γ(A(G)). We denote by φzα the time-z flow of αr.

Now, let E →M be a vector bundle carrying a representation of G,
i.e. a smooth map G ×s E →M , written (g, e) 7→ g · e, satisfying the usual
properties of an action. The infinitesimal counterpart of a G-action is a
representation of A(G), i.e. a flat A(G)-connection ∇ : A(G)→ DE given by

(10.1) ∇αe =
d

dz

∣∣∣∣
z=0

g(z)−1 · et(g(z))

where z 7→ g(z) is any smooth curve in the s-fiber through x, such that
g(0) = x and ġ(0) = α. Here x ∈M , and α ∈ A(G)x.

Proposition 10.1. There is a canonical flat ker ds-connection ∇G :
ker ds→ Dt∗E in the pull-back bundle t∗E such that

(10.2) ∇α = t∗(∇Gαr |M )

for all α ∈ Γ(A(G)).

Proof. Let g : x→ y ∈ G, X ∈ ker dgs, and let z 7→ g(z) be a smooth curve
in s−1(x) such that g(0) = g, and ġ(0) = X. Define ∇GX ∈ Dgt

∗E as follows.
For s ∈ Γ(t∗E) put

(10.3) ∇GXs :=
d

dz

∣∣∣∣
z=0

g · g(z)−1 · s(g(z)).

It is straightforward to check that ∇G is a well-defined ker ds-connection in
t∗E. Moreover ∇G[X,Y ] = [∇GX ,∇

G
Y ] for all right invariant vector fields X,Y .
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Since right invariant vector fields generate Γ(ker ds), it follows that ∇G is
a flat connection. Finally, Equation (10.2) immediately follows from (10.3)
and (10.1). �

A t∗E-valued differential form ω on G is multiplicative (see [12]) if

(m∗θ)(g1,g2) = pr∗1θg1 + g1 · (pr∗2θg2),

for all (g1, g2) ∈ G2. Various geometric structures on Lie groupoids are en-
coded by multiplicative forms (with generically non-trivial coefficients). Stan-
dard examples are provided by presymplectic groupoids, contact groupoids
and multiplicative foliations of groupoids. Crainic, Salazar and Struchiner
realized that the infinitesimal counterparts of vector bundle valued multi-
plicative forms are what they call Spencer operators [12].

Let A→M be a Lie algebroid, with anchor ρ : A→ TM , and Lie bracket
[−,−] : Γ(A)× Γ(A)→ Γ(A). Moreover, let E →M be a vector bundle car-
rying a representation ∇ of A. Crainic, Salazar, and Struchiner define E-
valued k-Spencer operators on A, for all positive integers k. I’m only inter-
ested in the case k = 1.

Definition 10.2. An E-valued 1-Spencer operator on A is a pair (D, l),
where

D : Γ(A) −→ Ω1(M,E)

is a first order differential operator, and

l : A −→ E

is a vector bundle morphism such that

(10.4) D(fα) = fD(α) + df ⊗ l(α),

and, moreover,

D([α, β]) = L∇αD(β)− L∇βD(α)(10.5)

l([α, β]) = ∇αl(β)− iρ(β)D(α)(10.6)

for all α, β ∈ Γ(A), and f ∈ C∞(M).

Formula (10.5) contains the Lie derivative of an E-valued form ω on M
along a derivation ∆ ∈ DerE (in the case of Formula (10.5), ∆ = ∇α for
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some α ∈ Γ(A)) which can be defined by

(L∆ω)(X1, . . . , Xk)

= ∆(ω(X1, . . . , Xk))−
k∑
i=1

ω(X1, . . . , [σ(∆), Xi], . . . , Xk),

for ω ∈ Ωk(M,E), X1, . . . , Xk ∈ X(M). In particular, if the flow of ∆ is
{Φz}, and the flow of the symbol σ(∆) is {Φz}, then

(10.7) L∆ω =
d

dz

∣∣∣∣
z=0

Φ∗zω,

where

(Φ∗zω)x(X1, . . . , Xk) = Φz|−1
Ex

(
ωΦz(x)((Φz)∗X1, . . . , (Φz)∗Xk)

)
,

for all x ∈M , and X1, . . . , Xk ∈ TxM .

Example 10.3. Let E →M be a vector bundle. Recall that E-valued one
forms on M , Ω1(M,E), embed into sections of the first jet bundle J1E, via
the C∞(M)-linear map

γ : Ω1(M,E)→ Γ(J1E), df ⊗ ε 7→ j1fε− fj1ε,

f ∈ C∞(M), ε ∈ Γ(E), and γ fits in an exact sequence

(10.8) 0 −→ Ω1(M,E)
γ−→ Γ(J1E)

prE−→ Γ(E) −→ 0

Additionally, (10.8) splits via the first order differential operator

Dclass : Γ(J1E)→ Ω1(M,E)

well-defined by

Dclass
(∑

fj1λ
)

=
∑

df ⊗ λ

(see also [12, Example 2.8]). More precisely, Dclass ◦ γ = − id. Notice that

(10.9) Dclass(fψ) = fDclass(ψ) + df ⊗ prE(ψ),

for all f ∈ C∞(M) and ψ ∈ Γ(J1E). Hence (Dclass,prL) is an E-valued 1-
Spencer operator on the Lie algebroid J1E with trivial bracket and anchor.
Following Crainic, Salazar and Struchiner, we call Dclass the classical Spencer
operator.
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Theorem 10.4 (Crainic, Salazar, and Struchiner [12]). Let E →M
be a vector bundle carrying a representation of a Lie groupoid G ⇒M , with
source s, target t, and unit u, and let A be the Lie algebroid of G. Then any
multiplicative form θ ∈ Ω1(G, t∗E) induces an E-valued 1-Spencer operator
(D, l) on A, given by

(10.10)
D(α) = u∗(L∇Gαr θ)
l(α) = u∗(iαrθ)

.

If, additionally, G is s-simply connected, then the above construction estab-
lishes a one-to-one correspondence between multiplicative E-valued 1-forms
on G and E-valued 1-Spencer operators on A.

Remark 10.5. It immediately follows from (10.3) and (10.7) that Formulas
(2.8) in [12] are indeed equivalent to the more compact (10.10).

My next aim is to show that a Dirac-Jacobi bundle is the same as a
Lie algebroid equipped with a 1-Spencer operator of a certain kind. It will
then follow from Theorem 10.4 that Dirac-Jacobi bundles integrate, if at
all integrable, to (non-necessarily coorientable) precontact groupoids (see
below).

It is useful to revise slightly the definition of 1-Spencer operator, at least
in the case when it takes values in a line bundle. Thus, let A→M be a Lie
algebroid.

Proposition 10.6. The following two sets of data are equivalent (see also
[12, Remark 2.9]):

1) A line bundle L→M carrying a representation of A, and an L-valued
1-Spencer operator (D, l) on A,

2) a vector bundle morphism (∇,D) : A→ DL⊕ J1L = DL such that

(10.11) σ ◦ ∇ = ρ

and

(10.12) (∇,D)([α, β]) = [[(∇,D)(α), (∇,D)(β)]].

Moreover, im(∇,D) is automatically isotropic for every (∇,D) as above.

Proof. First let L→M be a line bundle carrying a representation ∇ of A,
and let (D, l) be an L-valued 1-Spencer operator on A. It follows from (10.4)
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that the map D : Γ(A)→ Γ(J1L), defined by D(α) := γ(D(α))− j1l(α), is
C∞(M)-linear. Hence it comes from a vector bundle morphism, also denoted
by D : A→ J1L. Consider (∇,D) : A→ DL⊕ J1L = DL. Equation (10.11)
is automatically satisfied. Now, using (10.5), (10.6) and the fact that dD ◦
j1 = dD ◦ dD = 0, we get

D([α, β]) = γ(D([α, β])− j1l([α, β])

= γ(L∇αD(β)− L∇βD(α))− j1(∇αl(β)− iρ(β)D(α))

= L∇α(γ(D(β))− j1l(β))− L∇βγ(D(α)) + dDiρ(β)D(α)

= L∇αD(β)− L∇βγ(D(α)) + dDi∇βγ(D(α))

= L∇αD(β)− i∇βdDγ(D(α))

= L∇αD(β)− i∇βdDD(α),

for all α, β ∈ Γ(A). Hence

(∇[α,β],D([α, β])) = ([∇α,∇β],L∇αD(β)− i∇βdDD(α))

= [[(∇α,D(α)), (∇β,D(β))]]

= [[(∇,D)(α), (∇,D)(β)]].

Conversely, let (∇,D) : A→ DL be a vector bundle morphism such that
(10.11) and (10.12) hold. Put, D := Dclass ◦D , and l := prL ◦D , where prL :
J1L→ L is the natural projection and Dclass : Γ(J1L)→ Ω1(M,L) is the
classical Spencer operator defined in Example 10.3. This means that

(10.13) D(α) = j1l(α)− γ(D(α)),

for all α ∈ Γ(A). Then (10.4) follows from (10.9), σ ◦ ∇ = ρ follows from
(10.11), and ∇[α,β] = [∇α,∇β], (10.5) and (10.6) follow from (10.12). More-
over, the construction of (∇,D, l) from (∇,D) clearly inverts the construc-
tion of (∇,D) from (∇,D, l).

Finally, compute

〈〈(∇,D)(α), (∇,D)(β)〉〉 = 〈∇α, j1l(β)− γ(D(β))〉+ 〈∇β, j1l(α)− γ(D(α))〉
= ∇αl(β)− iρ(α)D(β) +∇βl(α)− iρ(β)D(α)

= l([α, β]) + l([β, α])

= 0,

where we used (10.13) and (10.6).
�
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Corollary 10.7. Let A→M be a Lie algebroid with rankA = dimM + 1,
let L→M be a line bundle carrying a representation of A, and let (D, l) be
an L-valued 1-Spencer operator on A such that the associated vector bundle
morphism (∇,D) : A→ DL is an embedding, then (L, im(∇,D)) is a Dirac-
Jacobi bundle. Conversely, let (L,L) be a Dirac-Jacobi bundle over M , and
let i : L ↪→ DL be the inclusion, then (D := Dclass ◦ prJ1 ◦ i, l := prL ◦ prJ1 ◦
i) is an L-valued 1-Spencer operator on the Lie algebroid L→M .

In other words, a Dirac-Jacobi bundle is essentially the same as a rank
dimM + 1 Lie algebroid L→M equipped with a 1-Spencer operator with
values in a line bundle L such that the associated vector bundle morphism
(∇,D) : L→ DL is injective.

Proposition 10.8. Let G ⇒M be a Lie groupoid, with source s, target t,
and unit u, A the Lie algebroid of G, and let L→M be a line bundle carrying
a representation of G. Moreover, let θ ∈ Ω1(G, t∗L) be a multiplicative form,
(D, l) the induced L-valued 1-Spencer operator on A, and let (∇,D) : A→
DL be the associated vector bundle morphism. Then (∇,D) is injective if
and only if

(10.14) (∇G)−1 (ker dDt ∩Kω|M ) = 0,

where Kω = kerω, and ω is the 2-cocycle in (Ω•t∗L, dD) corresponding to θ
via Proposition 3.3.

Proof. It suffices to show that

ker∇∩ ker D = (∇G)−1 (ker dDt ∩Kω|M ) .

We concentrate on the right hand side, which is more explicitly given by

(∇G)−1 (ker dDt ∩Kω|M ) = {α ∈ ker ds|M : t∗(∇Gα|M ) = ω|M (∇Gα,−) = 0}.

First of all, from (10.2), ker∇ = (∇G)−1(ker dDt|M ). We claim that ker D =
(∇G)−1(Kω|M ). To see this, let α ∈ Γ(A), and x ∈M . Denote α̂r := ∇Gαr .
So, from (10.13) and (10.10),

D(αx) = j1
xl(α)− γ(D(α)x)

= j1
xu
∗(iαrθ)− γ(u∗(Lα̂rθ)x)

= u∗
(
j1
xiαrθ − γ(Lα̂rθ)x

)
.(10.15)
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Now, put Θ = γ(θ) = σ∗θ = θ ◦ σ ∈ Ω1
t∗L = Γ(J1t∗L), and notice that

γ(Lα̂rθ) = Lα̂rΘ. Hence, from (10.15), αx ∈ ker D iff

0 = 〈γ(Lα̂rθ)x − j1
xiαrθ,∆〉

= i∆ (Lα̂rΘ− dDiα̂rΘ)

= i∆ (iα̂rdDΘ) ,

= i∆u
∗ (iα̂rdDΘ) ,

for all ∆ ∈ DxL. We conclude that αx ∈ ker D if and only if u∗ (iα̂rdDΘ)x =
0. Now, recall that θ is multiplicative. It follows that Θ is multiplicative as
well, i.e.

(10.16) (m∗Θ)(g1,g2) = pr∗1Θg1 + g1 · (pr∗2Θg2),

for all (g1, g2) ∈ G2, where m∗ is the pull-back of elements in Ω•t∗L along the
regular line bundle morphism m∗t∗L→ t∗L (similarly for pr∗1,pr∗2). Since dD
commutes with pull-backs, dDΘ is also multiplicative. So, From Lemma 10.9
below, u∗ (iα̂rdDΘ)x = (iα̂rdDΘ)x. Hence αx ∈ ker D if and only if iα̂rωx = 0,
i.e. (∇Gαr)x ∈ Kω. This concludes the proof. �

Lemma 10.9. Let G ⇒M and L→M be as in the statement of Proposi-
tion 10.8. Moreover, let Θ ∈ Ω•t∗L be multiplicative, i.e. Θ satisfies (10.16).
Then iα̂rΘ = t∗u∗iα̂rΘ, for all α ∈ Γ(A).

Proof. First of all, it is easy to check that, from right invariance of αr, right
invariance of α̂r = ∇Gαr follows, i.e., for any g : x→ y ∈ G, right translation
Rg : s−1(y)→ s−1(x) maps α̂r|s−1(y) to α̂r|s−1(x). In particular,

α̂rg = (Rg)∗α̂
r
t(g),

for all g ∈ G. Now, let Θ ∈ Ωk+1
t∗L . Take ∆1, . . . ,∆k ∈ Dgt

∗L = Dt(g)L. We
can express α̂rg and ∆i as (cf. [12, Proof of Lemma 4.2])

α̂rg = (Rg)∗(α̂
r
t(g)) = m∗(α̂

r
t(g), 0g) and ∆i = m∗(t∗(∆i),∆i),
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i = 1, . . . , k. Hence, from multiplicativity,

(iα̂rΘ)g(∆1, . . . ,∆k)

= Θg(α̂
r
g,∆1, . . . ,∆k)

= Θg(m∗(α̂
r
t(g), 0g),m∗(t∗(∆1),∆1), . . . ,m∗(t∗(∆k),∆k))

= (m∗Θ)(t(g),g)((α̂
r
t(g), 0g), (t∗(∆1),∆1), . . . , (t∗(∆k),∆k))

= (pr∗1Θt(g) + g · (pr∗2Θg))((α̂
r
t(g), 0g), (t∗(∆1),∆1), . . . , (t∗(∆k),∆k))

= Θt(g)(α̂
r
t(g), t∗(∆1), . . . , t∗(∆k))

= (u∗(iα̂rΘ))t(g)(t∗(∆1), . . . , t∗(∆k))

= (t∗u∗(iα̂rΘ))g(∆1, . . . ,∆k).

�

Definition 10.10.

1) A precontact groupoid is a triple (G, L, θ) where G ⇒M is a Lie
groupoid such that dimG = 2 dimM + 1, L→M is a line bundle car-
rying a representation of G, and θ ∈ Ω1(G, t∗L) is a multiplicative 1-
form satisfying condition (10.14).

2) A Dirac-Jacobi Lie algebroid is a Lie algebroid A→M equipped with
a Lie algebroid isomorphism A ' L onto a Dirac-Jacobi structure L
on a line bundle.

Collecting the above results we get the following

Theorem 10.11. Let G ⇒M be a Lie groupoid such that dimG =
2 dimM + 1, and let A be the Lie algebroid of G. If G is s-simply connected,
construction in Theorem 10.4 establishes a one-to-one correspondence be-
tween precontact groupoid structures on G and Dirac-Jacobi Lie algebroid
structures on A.

Appendix A. Dirac-ization trick

Jacobi bundles are equivalent to homogeneous Poisson manifolds of a spe-
cial kind, namely principal R×-bundles M̃ →M equipped with a Poisson
structure Π on the total space M̃ such that (Π, E) is a homogeneous Poisson

structure, i.e. LEΠ = −Π = h∗−1Π. Here, h−1 : M̃ → M̃ is the multiplication

by −1 ∈ R×, and E is the Euler vector field on M̃ , i.e. the fundamental vec-
tor field corresponding to the canonical generator 1 in the Lie algebra R of
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the structure group R×. Often, properties of Jacobi bundles can be proved
using their interpretation as homogeneous Poisson structures. This is the so
called Poissonization trick exploited, for instance, by Crainic and Zhu in [13]
to study integrability of Jacobi brackets. At the same time, precontact man-
ifolds can be understood as homogeneous presymplectic manifolds (of a spe-

cial kind), i.e. principal R×-bundles M̃ →M equipped with a presymplectic

structure ω̃ on M̃ such that LE ω̃ = ω̃ = −h∗−1ω (see, e.g., [35]). Actually,
this last construction inspired the interpretation of precontact distributions
presented in Section 3.

Similarly, Dirac-Jacobi bundles can be understood as homogeneous Dirac
manifolds. This was already proved by Iglesias-Ponte and Marrero for E1(M)-
Dirac structures, i.e. Dirac-Jacobi structures on trivial line bundles [20, Sec-
tion 5]. In this appendix, we consider the general case. Namely, we define
homogeneous Dirac manifolds and prove their equivalence with Dirac-Jacobi
line bundles. Let us start with the remark that a line bundle L→M can
be understood as a principal R×-bundle. Namely, take the slit dual bun-
dle M̃ := L∗ r 0, where 0 is the (image of the) zero section of L. There

is an obvious (fiber-wise) action h : R× × M̃ → M̃ , (t, υ) 7→ htυ, of R× on

M̃ which makes it a principal R×-bundle over M . On the other hand, ev-
ery principal R×-bundle is of this form. Now, denote by π : M̃ →M the
projection, and by E ∈ X(M̃) the Euler-vector field on M̃ . Sections of L

identify with (degree one) homogeneous functions on M̃ , i.e. those functions
f such that E(f) = f = −h∗−1f . We denote by λ̃ the homogeneous function
corresponding to section λ ∈ Γ(L).

Proposition A.1.

1) There is an embedding of C∞(M)-modules ι : DerL ↪→ X(M̃), ∆ 7→
∆̃, with ∆̃ uniquely determined by ∆̃(λ̃) = ∆̃(λ). Moreover [̃∆,�] =
[∆̃, �̃] for all ∆,� ∈ DerL.

2) The image of ι consists of degree zero homogeneous vector fields, i.e.,

vector fields X on M̃ such that [E , X] = 0, and h∗−1X = X.

3) Geometrically, there are canonical isomorphisms π∗DL'π∗J1L'TM̃
of vector bundles over M̃ , and the embedding Γ(DL) ↪→Γ(π∗DL)'
Γ(TM̃) agrees with ι.

Proof. For point (1), it is enough to notice that a vector field on M̃ is
completely determined by its action on homogeneous functions. The same
argument shows that every vector field in the image of ι is homogeneous of
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degree zero. To see that every degree zero homogeneous vector field X is in
the image of ι, and complete the proof of point (2), notice that X preserves

homogeneous functions. For point (3), define an isomorphism π∗J1L ' TM̃
by mapping (υ, F ) ∈ π∗J1L, with υ ∈ L∗x r 0, and F ∈ (J1)xL, x ∈M , to

the unique tangent vector X ∈ TυM̃ mapping a homogeneous function λ̃ to
X(λ̃) := F (λ), where λ ∈ Γ(L). The last equality can be read from the right
to the left to define the inverse isomorphism. Finally, define an isomorphism
π∗DL ' π∗J1L by mapping (υ,∆) ∈ π∗DL, with υ as above, and ∆ ∈ DxL,
to (υ, υ ◦∆) ∈ (J1)xL. The last claim in the statement immediately follows

from the definition of isomorphism π∗DL ' TM̃ . �

Remark A.2. According to the proof of Proposition A.1, a tangent vector
X ∈ TυM̃ identifies with the point (υ,∆) ∈ π∗DL, where ∆(λ) := X(λ̃)υ∗,
and υ∗ ∈ Lx is the unique point such that 〈υ, υ∗〉 = 1.

Proposition A.3.

1) There is an embedding of C∞(M)-modules ι∨ : Γ(J1L) ↪→ Ω1(M̃), ψ 7→
ψ̃, with ψ̃ uniquely determined by ψ̃(∆̃) = 〈̃∆, ψ〉. Moreover, j̃1λ = dλ̃,
for all λ ∈ Γ(L).

2) The image of ι∨ consists of degree one homogeneous 1-forms, i.e.,

1-forms σ on M̃ such that LEσ = σ = −h∗−1σ.

3) Geometrically, there are canonical isomorphisms π∗(DL)∗ ' π∗J1L '
T ∗M̃ of vector bundles over M̃ , and the embedding Γ(J1L) ↪→Γ(π∗J1L)

' Γ(T ∗M̃) agrees with ι∨.

Proof. For point (1), it is enough to notice that a differential 1-form on M̃ is
completely determined by its contraction with degree zero homogeneous vec-

tor fields. In particular, it follows from j̃1λ(∆̃) = ˜〈∆, j1λ〉 = ∆̃(λ) = ∆̃(λ̃) =

(dλ̃)(∆̃) that j̃1λ = dλ̃. The same argument shows that every differential 1-
form in the image of ι∨ is homogeneous of degree one. To see that every
degree one homogeneous differential 1-form σ is in the image of ι∨, and
complete the proof of point (2), notice that σ maps degree zero homoge-
neous vector fields to degree one homogeneous functions. Point (3) follows
from Proposition A.1. �

Put T M̃ := TM̃ ⊕ T ∗M̃ .

Theorem A.4.
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1) There is an embedding of C∞(M)-modules ι : Γ(DL) ↪→ Γ(T M̃),
(∆, ψ) 7→ (∆̃, ψ̃). Moreover ι intertwines the bi-linear pairing 〈〈−,−〉〉 :
Γ(DL)× Γ(DL)→ Γ(L) and the symmetric bi-linear pairing 〈〈−,−〉〉

M̃
:

Γ(T M̃)× Γ(T M̃)→ C∞(M̃) in the sense that

〈〈ι(α), ι(β)〉〉
M̃

= 〈̃〈α, β〉〉, α, β ∈ Γ(DL).

Embedding ι does also intertwine bracket [[−,−]] on Γ(DL) and Dorf-

man bracket on Γ(T M̃).

2) The image of ι consists of pairs (X,σ), where X is a degree zero ho-
mogeneous vector field and σ is a degree one homogeneous differential
1-form.

3) Geometrically, there is a canonical isomorphism π∗DL ' T M̃ of vec-

tor bundles over M̃ . Embedding Γ(DL) ↪→ Γ(π∗DL) ' Γ(T M̃) agrees
with ι.

Proof. The statement immediately follows from Propositions A.1 and A.3.
The only part deserving some more comments is that about the Dorfman
bracket in point (1). The latter follows from the identity

(A.1) L∆̃ψ̃ = L̃∆ψ,

for all ∆ ∈ DerL, and ψ ∈ Γ(J1L). In order to prove Equation (A.1), it suf-

fices to notice that the embeddings Γ(L) ↪→ C∞(M̃), and Γ(J1L) ↪→ Ω1(M̃),

uniquely extend to an injective cochain map (Ω•L, dD) ↪→ (Ω•(M̃), d), ω 7→ ω̃
such that

ω̃(∆̃1, . . . , ∆̃k) = ˜ω(∆1, . . . ,∆k),

for all ∆1, . . . ,∆k ∈ DerL, and ω ∈ Ωk
L. �

Now, let L→M and M̃ be as above. Denote again by π : M̃ →M the
projection.

Proposition A.5. Let (L,L) be a Dirac-Jacobi bundle over M . The sub-

bundle π∗L ⊂ π∗DL ' T M̃ is a Dirac structure on M̃ .

Proof. It immediately follows from Theorem A.4 and dimension counting.
�
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Definition A.6. The Dirac structure π∗L is called the Dirac-ization of the
Dirac-Jacobi structure L. A Dirac structure on M̃ is homogeneous if it is
the Dirac-ization of some Dirac-Jacobi structure L on L.

Remark A.7. When (L,L) is the Dirac-Jacobi bundle corresponding to a
Jacobi bundle (L, {−,−}) (resp. a precontact distribution C) on M , then
its Dirac-ization L̃ = π∗L corresponds to the Poissonization of (L, {−,−})
(resp. the presymplectization of C).

Let (L,L) be a Dirac-Jacobi bundle over M , and let L̃ be its Dirac-
ization. We conclude this section discussing the relationship between the
characteristic foliation FL of L and the characteristic (presymplectic) folia-
tion FL̃ of L̃. First of all, notice that the diagram

TM̃
dτ

**

//

��

DL
σ

��

T M̃

prT
??

//

��

DL

AA

��

TM
τ

��

M̃ //M

T ∗M̃ //

@@

J1L

::

commutes. It immediately follows that prT L̃ = π∗prDL. In particular, TFL =
(dτ)(TFL̃), hence leaves of FL̃ project onto leaves of FL under π. More pre-
cisely, π establishes a surjection between leaves of FL̃ and leaves of FL.

If O is a leaf of FL, and Õ is a leaf of FL̃ projecting onto O, then the

tangent bundle T Õ is π∗(IL|O) ⊂ π∗DL ' TM̃ . Now, recall that, if O is
lcps, then IL|O is actually the image of a flat connection ∇O in L|O. Con-
sider the dual connection, also denoted by ∇O, in L|∗O and its restriction to

M̃ |O = π−1(O) = L|∗O r 0. The above discussion shows that Õ is (locally)

the image of a ∇O-constant section of π : M̃ |O → O. On the other hand, if O
is precontact, then IL|O = D(L|O) and Õ coincides with M̃ |O. In particular,

(A.2) dim Õ =

{
dimO if O is lcps

dimO + 1 if O is precontact.

Remark A.8. Identity (A.2) provides an alternative way to prove Corol-
lary 6.4. Namely, it is known that the parity of the dimensions of character-
istic leaves of a Dirac manifold is locally constant (see, e.g., [15, Corollary
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3.3]). Together with (A.2) this immediately implies Corollary 6.4. Addition-
ally, it follows from (A.2) that, locally, the dimension of a lcps leaf and the
dimension of a precontact leaf have different parities.

We also have L̃ ∩ TM̃ = π∗(L ∩DL). This shows that the null distribu-
tion KL̃ of L̃ projects onto KL point-wise isomorphically. This can be also

seen as follows. Let O be a leaf of FL and let Õ be a leaf of FL̃ over O.

Moreover, let ωÕ ∈ Ω2(Õ) be the presymplectic structure on Õ induced by

L̃. Clearly, ωÕ is completely determined by its values on vector fields of the

form ∆̃, with ∆ a section of IL|O. Hence, if O is lcps, ωÕ is completely
determined by

ωÕ(∇̃OX , ∇̃OY ) = 〈∇̃OY , ψ̃〉 = ˜〈∇OY , ψ〉 = ˜ωO(X,Y ),

where X,Y ∈ X(O), and ψ ∈ Γ((J1L)|O) is such that (∇OX , ψ) is a section
of L|O. If O is precontact, ωÕ is completely determined by

ωÕ(∆̃, �̃) = 〈�̃, ψ̃〉 = 〈̃�, ψ〉 = ˜ωO(∆,�),

where ∆,� ∈ DerL|O, and ψ ∈ Γ((J1L)|O) is such that (∆, ψ) is a section
of L|O. In any case,

ωÕ = ω̃O|Õ.
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