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Obstructions to the integrability of
VB-algebroids

ALEJANDRO CABRERA, OLIVIER BRAHIC, AND CRISTIAN ORTIZ

VB-groupoids are vector bundle objects in the category of Lie
groupoids: the total and the base spaces of the vector bundle are
Lie groupoids and the vector bundle structure maps are required
to define Lie groupoid morphisms. The infinitesimal version of V13-
groupoids are VB-algebroids, namely, vector bundle objects in the
category of Lie algebroids. Following recent developments in the
area, we show that a VB-algebroid is integrable to a VB-groupoid
if and only if its base algebroid is integrable and the spherical pe-
riods of certain underlying cohomology classes vanish identically.
We illustrate our results in concrete examples. Finally, we obtain
as a corollary computable obstructions for a 2-term representa-
tion up to homotopy of Lie algebroid to arise as the infinitesimal
counterpart of a smooth such representation of a Lie groupoid.
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1. Introduction

Lie theory for Lie algebroids and Lie groupoids has been extensively studied
in recent years in connection with Poisson, symplectic and related geometries
[111, 14], 16HI8]. A paradigmatic example of the interplay between Lie theory
and Poisson/symplectic geometry arises from the correspondence between
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Poisson manifolds and symplectic groupoids ([12]). On the Lie theoretical
side, we recall that a Lie groupoid G = M can be differentiated, giving rise
to a Lie algebroid A = Lie(G) — M, in analogy to Lie groups and Lie al-
gebras. The connection comes from the fact that a Poisson manifold (M, )
gives rise to a Lie algebroid A =T M — M and, if A = Lie(G), then the
(source simply-connected, s.s.c.) integration G carries an additional compat-
ible symplectic structure. The Poisson geometry of (M, ) can be studied,
to a large extent, through the multiplicative symplectic geometry of G (see
e.g. [12, [16]).

On the other hand, it is well known that, unlike in the case of Lie groups
and Lie algebras, not every Lie algebroid can be realized as the infinitesimal
counterpart of a Lie groupoid. A Lie algebroid A which is isomorphic to one
of the form Lie(G) for some Lie groupoid G is called integrable. The obstruc-
tions appearing in this integrability problem were identified by Crainic and
Fernandes in [I5] in terms of certain monodromy groups N (A) associated
to A. (These monodromy groups are not easily computable in general.)

In this paper, we are concerned with the integrability of an enriched class
of Lie algebroids called VB-algebroids. VB-algebroids and VB-groupoids are
examples of double structures, namely, they given by squares

D24 H-%,q
J b 1L
E-2 M E- .\

where the vertical arrows denote Lie algebroid structures (respectively, Lie
groupoid structures) and the horizontal arrows denote vector bundle struc-
tures. Vertical and horizontal structures are required to be compatible in
the sense that the vertical structure maps must define morphisms for the
horizontal structure and vice-versa (see [10, 21], 22] for minimalistic charac-
terizations). We shall use the notation (D, A, E, M) for VB-algebroids and
(H,G,E, M) for VB-groupoids.

The application of the Lie functor to the diagram underlying a VB-
groupoid (H, G, E, M) gives rise to a VB-algebroid (Lie(H), Lie(G), E, M),
which is the infinitesimal counterpart of (H,G, E, M) (see e.g. [27]). A VB-
algebroid isomorphic to the infinitesimal counterpart of a VB-groupoid will
be called integrable. For example, given a Lie algebroid A — M, its tangent
and cotangent bundles can be seen to inherit the structure of VB-algebroids
(TA, A, TM,M) and (T*A, A, A*, M), respectively. Analogously, given a Lie
groupoid G = M with Lie(G) = A, both its tangent and cotangent bundles



Obstructions to the integrability of VB-algebroids 441

define VB-groupoids which integrate the above VB-algebroids (see e.g. [21],
929, 27]).

The concept of VB-algebroid was introduced by Pradines [32] and it has
been further studied by Mackenzie [27], Gracia-Saz and Mehta [21], among
other authors (see [29,34] for their relation to supergeometry). VB-groupoids
were also studied in [22] 27]. Lie theory for VB-algebroids and VB-groupoids
was systematically studied in [10].

VB-algebroids and VB-groupoids have shown to be specially important
in the infinitesimal description of Lie groupoids equipped with multiplica-
tive geometric structures, namely, in the study of generalizations of the
symplectic/Poisson correspondence mentioned earlier. For example, multi-
plicative differential forms turn out to be equivalent to cocycles involving
the VB-groupoid structure on T'G while multiplicative multivector fields to
cocycles involving T*G. Their infinitesimal counterpart then becomes clear:
they correspond to cocycles for VB-algebroid structures arising from T A
and T*A (see [9, 28] and references therein). More general VB-groupoids
and VB-algebroids appear when considering other multiplicative geometries
like multiplicative foliations [19 24, 25] or, more generally, multiplicative
Dirac structures [26, BI]. The VB-structure plays a fundamental role in all
these cases and hints that Lie theory in the VB-category is an interesting
object to study within this area.

The aim of this work is to characterize the obstructions appearing in
the integrability problem for VB-algebroids, namely, the obstructions for
the existence of a VB-groupoid (H,G, E, M) such that Lie(H,G,E, M) is
isomorphic to a given VB-algebroid. A key result on that matter was shown
in [10], stating that a VB-algebroid (D, A, E, M) is integrable iff D — F is
integrable as a Lie algebroid. This means that if the total space D — E of
a VB-algebroid is integrable then so is A — M and, furthermore, the extra
vector bundle structure integrates automatically at the level of the (s.s.c.)
Lie groupoids. For this reason we only need to study the integrability of D.

Our main result is given by Theorem which states that a VB-
algebroid (D, A, E, M) is integrable iff A is integrable and the spherical
periods of certain cohomology classes associated to (D, A, E, M) vanish.
Assuming that A is integrable, we first show that the obstructions to the
integrability lie in N'(D) Nker(p : D — A) and then express the elements in
this set as spherical integrals of an underlying 2-cochain on A. The first part
comes from the general theory of obstructions of [I5] adapted to the V-
case and the second from the description of the structure of a VB-algebroid
in terms of connections and cochains given in [2I]. The vanishing of these
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integrals can also be seen as the condition for certain algebroid cohomology
classes to be in the image of the Van Est map ([13]).

We end this introduction with a second ‘extrinsic’ approach to VB-
algebroids and VB-groupoids. Here, the key point stems from the work
of Gracia-Saz and Mehta, [21I] and [22], where they showed that, upon
non-canonical splittings, a VB-algebroid (resp. VB-groupoid) structure boils
down to a representation up to homotopy ([3,4]) of A (resp. of G) on a 2-term
complex coming from the fibers of the horizontal structures. Ordinary rep-
resentations of A and G define particular cases of the ‘up to homotopy’ ones
(and hence of VB’s), but these last are strictly more general. For example,
the adjoint and coadjoint representations of A, which are well known to be
only ‘up to homotopy’ for a general A, arise from the intrinsic VB-algebroid
structure of T'A and T*A after suitable splitting.

As an application of our main result and building on the above corre-
spondences, we obtain a notion of integrability of a 2-term representation
up to homotopy of a Lie algebroid A and characterize the underlying ob-
structions by translating our main result from the world of VB-algebroids to
that of representations. (This notion of integrability coincides with the one
stemming from [5].)

This paper is organized as follows. In section 2 we present background
material on VB-groupoids and VB-algebroids, including the main examples
and properties. We also recall the notion of splitting of a VB-algebroid and
its relation to representations up to homotopy. In section 3, we briefly review
the general theory of obstructions from [I5] and then prove Theorem 3.4
Proposition and Theorem which are the main results of this work.
In Section 4 we apply our results to obtain Corollary which provides
general criteria for the integrability of two-term representations up to homo-
topy. Lastly, we mention the role of integrability in the simplicial formalism
for integration of representations up to homotopy given in [6].

Acknowledgements

The authors would like to thank the PPGMA at UFPR, Curitiba, as well as
IMPA, Rio de Janeiro, for supporting several visits while part of this work
was carried out. Also, the authors thank Henrique Bursztyn, Matias del
Hoyo, Thiago Drummond and Rajan Mehta, for interesting discussions and
useful comments and suggestions that have improved this paper. Brahic
was supported by CNPq (Programa Ciéncia sem Fronteiras 401253/2012-
0). Cabrera also thanks CNPq (Projeto Universal 471864/2012-9) for sup-
port. Ortiz thanks CNPq (Projeto Universal 482796/2013-8) and CAPES-
COFECUB (grant 763/13) for supporting this work. The authors are very



Obstructions to the integrability of VB-algebroids 443

grateful to the anonymous referees for all comments and suggestions which
have improved this manuscript significantly.

2. Background material about VB-groupoids and
VB-algebroids

In this section we briefly recall the definition of VB-groupoids and their in-
finitesimal counterparts, VB-algebroids. There are several ways to introduce
such structures, we shall follow [10] and do this by emphasizing the role of
the underlying homogeneous structures.

Given a vector bundle g : V' — M, we shall denote by my : V — V the
fiberwise scalar multiplication by A € R. The map m: R x V — V; (\,v) —
m(v), satisfies my o m,, = my,, m; = id and the regularity condition that
%m,\(v)b\:o = 0 implies v = mg(v). Such an R-action is called homoge-
neous structure associated to the vector bundle structure on V. The base
manifold M can be identified with the zero section mo(V) and the bundle
projection with mg, namely,

M ~mo(V), g~mgy:V — M.

It is important to recall from [23] that homogeneous structures character-
ize the underlying vector bundle structure completely. Moreover, a smooth
map defines a vector bundle morphism iff it commutes with the underly-
ing homogeneous structures. This point of view was used in [10] to give
the characterizations of VB-algebroids and VB-groupoids that we shall work
with below.

2.1. VB-groupoids

A VB-groupoid can be roughly defined as a Lie groupoid object in the cat-
egory of vector bundles. To make this more precise, consider a diagram:

(2.1) H-2,q

I, 1

E- .M

where double arrows denote Lie groupoid structures and single arrows de-
note vector bundle structures. Denote by m the homogeneous structure cor-
responding to the vector bundle H — G and m¥ the one corresponding to
E— M.
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The original definition of a VB-groupoid involves requiring compatibility
between the Lie groupoid structure and all the structure maps underlying
the vector bundle structure. (Minimal sets of axioms can be found in [22].)
Following the perspective used in [10], since the homogeneous structure m
encodes the vector bundle structure altogether, it turns out to be enough to
ask for compatibility between the groupoid structure and m only.

Definition 2.1. A VB-groupoid (H,G, E, M) is a diagram like (2.1)) such
that my : H — H defines a Lie groupoid morphism covering mf EFE—> F
for each A € R. Given two VB-groupoids (H,G,E, M) and (H',G', E', M),
a morphism of VB-groupoids is Lie groupoid morphism ® : H — H’ over
amap ¢ : F — E’ such that it commutes with the underlying homogeneous
structures (m, m) and (m/,m*").

The equivalence to other definitions can be found in [10]. We shall use
the notation §,t,1 (resp. s,t,1) for the source, target and units maps of H
(resp. G).

Example 2.2 (Pair VB-groupoid). Let E — M be any vector bundle.
Then (E x E,M x M,E, M) defines a VB-groupoid where the underlying
groupoids are the pair groupoids. The diagram (2.1]) reads:

ExE——MxM

I

E— M.

Example 2.3 (Tangent groupoid). Let G = M be a Lie groupoid. The
application of the tangent functor to each of the structural maps that de-
fine G, gives rise to a Lie groupoid T'G' = T'M, referred to as the tangent
groupoid of G. One easily checks that (T'G,G,TM,M) is a VB-groupoid
whose diagram is:

TG —— G

I

TM —— M.

Example 2.4 (Cotangent groupoid). Let G = M be a Lie groupoid
with Lie algebroid A. It was shown in [12], that the cotangent bundle 7*G
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is a Lie groupoid over A*. The source and target maps are defined by
S(ag)u = ag(Tly(u — Tt(u))) and E(ﬁg)” = Bg(Trg(v))

where oy € T/ G, u € Ag)G and By € Ty G, v € Ay(,)G. Here, | and r de-
note the left and right multiplication by g € G, respectively. The multipli-
cation on T*(@ is defined by

(ag o Bp)(Tu(Xg, Yn)) = ag(Xg) + Bu(Ya)

for (Xg,Yh) S T(g,h)G(Z) and p : G(g) = {(g, h) eGxG: s(g) = t(h)} -G
denotes the multiplication map on G. We refer to T*G with the groupoid
structure over A* as the cotangent groupoid of G. One observes that
(T*G,G, A*, M) is a VB-groupoid with diagram:

™G ——G

I

A*— M.

The last two examples provide a glimpse of the existence of a rich theory
of duality for VB-groupoids and VB-algebroids, see for example [27), 33].

2.2. VB-algebroids

As for the case of a VB-groupoid, a VB-algebroid can be thought of as a
Lie algebroid object in the category of vector bundles. More precisely, one
may consider a commutative square in which vertical arrows correspond to
Lie algebroid structures while horizontal arrows to the projection of a vector
bundle structure:

D24
pDJ/ pa

E-22, 0

(2.2)

We shall denote by m the homogeneous structure corresponding to the top
horizontal bundle D — A and by m® the one corresponding to E — M.
As for VB-groupoids, we follow [10] and require a compatibility between
vertical Lie algebroid structures and the homogeneous structure m; the
equivalence to other definitions can be also found in that reference. (See
[21] for different sets of axioms for a VB-algebroid and their equivalence.)
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Definition 2.5. A VB-algebroid (D, A,E,M) is a diagram like
where the vertical arrows D — E and A — M are equipped with Lie al-
gebroid structures such that my : D — D defines a Lie algebroid morphism
covering mf : E — FE for each A € R. Given two VB-algebroids (D, A, E, M)
and (D', A", E', M) a morphism of VB-algebroids is a Lie algebroid mor-
phism ® : D — D’ covering a map ¢ : E — E’ which commutes with the
underlying homogeneous structures (m, m?) and (m/,m?").

Given this definition, we can introduce the notion of a double vector
bundle as a VB-algebroid (D, A, E, M) encoded in diagram in which
the Lie algebroid structures are trivial (see also [21l 27 [32]). Hence, every
VB-algebroid has an underlying double vector bundle structure, given by the
same diagram and by forgetting the Lie algebroid structures defined
on the vertical arrows.

We now briefly recall general facts about structure of double vector bun-
dles and VB-algebroids (see |21} 23, 27] for a more detailed treatment).
Given a double vector bundle (D, A, E, M), the vector bundles A and E are
called the side bundles. The zero sections are denoted by 04 : M — A,
0f: M — E, OQ :A— D and Og : E — D. Elements of D are written
(d,a,e,m), where d € D, m € M and a = p(d) € A, e = pp(d) € E,,.

In a double vector bundle, the compatibility of the homogeneous struc-
tures m and m” imply (see [23]) that the two additions and scalar mul-
tiplications on D, seen as a vector bundle over either A or F, satisfy the
following interchange laws:

(d1 +E d2) +4 (ds +£ dy) dy +4d3)+pg (do+4ds3)
t-a(di+pdy) =(t-adi)+E (t-ad),
t-p(di+ads)=(t-pd)+a(tEds),

)

t-a(sgpd)=s-g(t-ad).

= (
= (

whenever these make sense, namely, for any s,t € R and dq,ds,ds,dy € D
such that (dl,dg) € DxgD, (dl,dg) € DxaD, (dg,d4) € DxgD, (dg,d4) €
D xasDanddeD.

Definition 2.6. The core C' of a double vector bundle is the intersection
of the kernels of p and pp. It has a natural vector bundle structure over M,
the projection of which we denote by pc : C — M. The inclusion C < D
is usually denoted by

C 2 cr— 2 € p H(02) Nppt(0F).
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Elements in C), can be added and multiplied by scalars using the vector
bundle structure of D over either A or E. However, as an easy consequence of
the interchange laws given above, the two resulting sums and multiplications
do coincide. Therefore, C inherits of a well defined vector bundle structure
over M.

This vector bundle structure can yet be understood alternatively as fol-
lows. Consider the short exact sequence of vector bundles over E:

(2.3) 0— K — p®% ppA — 0.

Then, the core coincides with the pull back of K to M via the zero section
0¥ : M — E. Moreover, using addition in the vector bundle D — A, one
gets an identification K ~ p},C' (see eq. (2.4) below).

Example 2.7. Given a vector bundle pg : E — M, the quadruple given
by (TE,TM,E, M) defines a double vector bundle. To understand its core,
recall that there is a natural identification

ve: B,

s(e) = ker(Tepp) CTLE, 2 — %\t:o(e +tz),

between a fiber of the vector bundle and its vertical tangent space at a point
e € E. The core of TE is then given by vy=(E) ~ E, namely, the vertical tan-
gent space at points of the zero section of E. Considering the standard tan-
gent Lie algebroid structures on TE — FE and TM — M, (TE,TM,E, M)
defines a VB-algebroid structure.

A double vector bundle morphism (D, A, E, M) — (D', A", E', M’) is,
according to Definition a vector bundle morphism (®,¢): (D — E) —
(D' — E’) which commutes with the underlying homogeneous structures. In
particular, it also defines a vector bundle morphism (D — A) — (D' — A')
for the other side bundle structures and, hence, it induces a morphism ®|¢ :
C — C' between the cores of D and D', respectively.

An example of a double vector bundle morphism is the anchor map
pp: D — TE of a VB-algebroid (D, A, E, M). When seen as a morphism
(D — E) — (TE — E) it covers the identity on F while, when seen as a
morphism (D — A) — (TE — T'M), it covers the anchor map pq: A —
TM. The induced morphism between the cores is

a:pD’C:C_)Ea
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where FE is identified with the vertical bundle in TE at the zero section as
in Example This map is called the core anchor of DT|

Example 2.8. Given a Lie algebroid A — M, the tangent functor can be
used to determine a VB-algebroid structure on (T'A, A, TM,M) (see, e.g.,
[27]). The core is identified with A and the core-anchor map is 9 = p4 : A —
TM.

Example 2.9. Let A — M be a vector bundle. The cotangent bundle
T*A inherits the structure of a vector bundle over A*. Moreover, if A is
a Lie algebroid, then T*A — A* inherits a Lie algebroid structure mak-
ing (T*A, A, A*, M) into a VB-algebroid. The Lie algebroid structure on
T*A — A* can be described in Poisson-geometric terms as follows. The Lie
algebroid structure on A induces a linear Poisson structure on A*, therefore,
its cotangent bundle T*A* — A* is equipped with a linear Lie algebroid
structure. There exists a canonical isomorphism of double vector bundles
R :T*A — T*A* covering the identity of A*, called reversal isomorphism in
[27] (in fact, R generalizes the classical Legendre-Fenschel transform [20]).
The Lie algebroid structure on T*A is then defined by pulling back the one
on T*A* via the isomorphism R. The underling core is identified with T*M
and the core-anchor map with the transpose of p4.

Finally, we recall the notion of core and linear sections on a double vector
bundle. Given a section ¢ € I'C', the corresponding core section ¢ : £ — D
is defined as

(2.4) élem) = 0B (em) 44 c(m), m € M, e, € Epy,.

We denote the space of core sections by I'.(F, D). A section x € I'(E, D)
is called linear if y : E — D defines a vector bundle morphism covering a
section a : M — A. The space of linear sections is denoted by I'y(E, D). The
definition of a VB-algebroid implies that the following bracket conditions are
satisfied:

[Te(E, D), Tu(E, D), C Ty(E, D),
E,D)lp Cc T.(E, D),
(2'5) [FC(E7 D)7FC(E’ D)]D =0.

'q‘
=
iS!
3
~
ol

In [21], the authors adopt a different convention in which the core anchor is
minus the map defined here.
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This can be seen directly by noticing that the Lie algebroid isomorphism
defined by (m)\,mf ), for A # 0, Iﬁl\ates a linear section « to itself and a
core section ¢ to the core section (Ac¢). (In fact, the above bracket relations
characterize completely the VB-algebroid structure on a given double vector
bundle, see [21] for details.)

2.3. Lie theory for VB-groupoids and VB-algebroids

We summarize here the basics about Lie theory for VB-algebroids and V-
groupoids which will allow us to state the integrability problem that is the
main object of study of this paper. A detailed study of Lie theory in the
VB-setting can be found in [10].

Given a Lie groupoid G =% M, we denote by Lie(G) — M its Lie al-
gebroid following the convention that the vector bundle underlying Lie(G)
is ker(T's)|[y(ar) and that the Lie bracket comes from right invariant vec-
tor fields. The corresponding Lie functor going from the category of Lie
groupoids to the category of Lie algebroids will be denoted by Lie.

Not every Lie algebroid A — M is isomorphic to Lie(G) for some Lie
groupoid G. When it is the case, we say that A is integrable and that
G integrates A. Moreover, for an integrable Lie algebroid A, the s-simply
connected Lie groupoid integrating A is unique up to isomorphism. We shall
denoted by G(A) = M such an s-simply connected integration. (In Sec-
tion this notation will correspond to a particular s-simply connected
integration given by the Weinstein groupoid of A).

Similarly, given a VB-groupoid (H,G, E, M) we obtain a VB-algebroid
structure on the quadruple (Lie(H ), Lie(G), E, M) by applying the Lie func-
tor to the morphisms defined by ¢y : H — G and my (see [10} 27]). We
obtain a functor that we also denote by:

Lie: VBg — VBA,

where VBg and VBa denote the categories of VB-groupoids and VB-
algebroids, respectively.

Definition 2.10. A VB-algebroid (D, A, E, M) is called integrable if there
exists a VB-groupoid (H, G, E, M) such that Lie(H,G, E, M) is isomorphic
to (D, A, E, M) as a VB-algebroid. In this case, we say that the VB-groupoid
(H,G, E, M) integrates the V-algebroid (D, A, E, M).

A key point for the study to be developed in this paper is the following
result from [10]: (D, A, E, M) is integrable as a VB-algebroid if and only if
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its top Lie algebroid structure D — FE is integrable as a Lie algebroid. More
precisely,

Theorem 2.11 ([10]). Let (D,A,E, M) be a VB-algebroid. If the Lie al-
gebroid D — E is integrable, then the Lie algebroid A — M 1is integrable
and (G(D),G(A), E, M) admits a natural VB-groupoid structure integrating
(D,A,E, M) as a VB-algebroid.

We mention that the construction of the VB-groupoid structure involves
lifting the R-action m underlying D — A to G(D) by means of Lie’s second
theorem and showing that it fulfills the regularity condition of an homo-
geneous structure. In the context of the present paper, Theorem will
allow us to study the obstructions for the integrability of a VB-algebroid by
focusing on the Lie algebroid D — FE.

To end this subsection, we describe two natural operations in the cat-
egory of vector bundles that restrict in a straightforward manner to VB5-
groupoids and VB-algebroids, namely, pull-backs and (in particular) direct
SUMS.

Let (D, A, E, M) be a VB-algebroid and (H, G, E, M) be a VB-groupoid.
Given another VB-algebroid (D', A, E', M), the sum (D &4 D', A E @&y
E’, M) inherits a natural VB-algebroid structure. Analogously, using the ob-
vious notations, (H ®&¢ H',G, E &y E', M) inherits a natural VB-groupoid
structure and we have:

(2.6) Lie (H ®a H,G,E EI,M)
= (Lie(H) ®rie(c) Lie(H'), Lie(G), E &y E', M) .

More generally, given a Lie algebroid morphism ¢ : B — A covering
f: N — M and denoting ¢*D — B the pull-back bundle associated to the
vector bundle D — A, one can show that (¢*D, B, f*FE, N) inherits a natu-
ral VB-algebroid structure. In the groupoids category, if F': G’ — G is a Lie
groupoid morphism covering f : N — M, one shows that (F*H,G’, f*E, N)
inherits a natural VB-groupoid structure and that

Lie (F*H, G’,f*E,N) = (L’ie(F)*Eie(H),Eie(G’), f*E,N) .
A systematic treatment of pull-backs in the categories of Lie groupoids and

algebroids, together with their behavior with respect to Lie, can be found
in [10].
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2.4. Split VB-algebroids and representations up to homotopy

Here we follow closely the reference [21] to recall some facts about splittings
of VB-algebroids and their relation to representations up to homotopy.

First, notice that given a double vector bundle (D, A, E, M), there are
three vector bundles over M associated to it: the two sides A and E and the
core C. Conversely, given three vector bundles A, E, C over M, their fiber
product

DAE,C:AXMEXMC

admits a double vector bundle structure with sides A, F and core C given
by the natural set-theoretic identifications

Dapc ~paE ©aApaC ~ ppAdr ppC.

A double vector bundle of this form is said to be split and we shall use the
symbol Dy g c to denote it.

Definition 2.12. Given a double vector bundle (D, A, E, M) with core
C, a splitting of (D, A, E, M) is a double vector bundle isomorphism A :
D s gc — D inducing the identity morphisms on A, F and C.

Splittings can be shown to exist for any double vector bundle; let us
review the argument given in [21]. First, we observe that the above split-
tings correspond to a special subset of splittings of the sequence whose
dependence on the E-fibers is also linear. Grabowski and Rotkiewicz [23]
proved that these exist locally (in M) and [21] proposed to infer the global
existence via a Cech cohomological argument.

Splittings also form an affine space modeled on Hom(A ® E,C') which,
in turn, can be seen as the group of splittings of D g ¢ itself acting by

(2.7) Axy E xp C 3 (a,e,c) = (a,e,c+0(a,e)), 0 € Hom(A® E,C).

Thus, any two splittings of a given double vector bundle differ by a trans-
formation of o € Hom(A ® E, C) as above.

Example 2.13. Let pg: E — M be a vector bundle and (TE,TM, E, M)
be the associated double vector bundle. Splittings of TE are in one-to-one
correspondence with linear T'M-connections on E. Indeed, a T'M-connection
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V on E defines a horizontal lift for each e € F,

d
hory : Ty (oM — T.E, X — £|t:0 holj(t) e,
where x(t) is a curve in M with velocity X at ¢t =0 and holf(t) t By —
E, ) is the linear holonomy defined by V. The tangent bundle of E is thus
split into horizontal and vertical parts and the induced map

d
h:TM xp E xy E—TE, (X, e, z2) hory (X) + £|t:0(e + t2),

defines a bijection. The fact that horV is linear implies that h defines a
double vector bundle morphism (i.e. it is locally given by a transformation
of the form ) It evidently induces the identity on side bundles and,
to check that it is also the identity on the cores, one observes that e = 0F
and X = 0T™ implies horY (X) = 0LF and recalls the identification of E
as the core of TE (c.f. Example . Conversely, given h one can define an
underlying T'M-connection V by defining h(X, e,0) to be the horizontal lift
horY (X) of X € TM and the fact that h preserves the double vector bundle
structure implies that the induced holonomy (and, hence V) is linear.

Given a VB-algebroid (D, A, E, M) and a splitting h, there is an in-
duced VB-algebroid structure (ppp,[, |p,n) on D gc which we shall call
split. We now describe such split VB-algebroid structures and relate them
to representations up to homotopy.

The first observation is that the induced core-anchor 0:C — E on
D 4 g ¢ is the same as the one for D, since h preserves cores. To characterize
the rest of the VB-algebroid structure, we observe that there are natural
maps of sections

I'A) = I(E,Dagc), a— o, al(e) = (a opE(e),e,()C)
I(C) = I'(E,Dagpc), ¢+ é ée) = (0% e,copp(e)),

defining linear and core sections of D4 g ¢, respectively. Following [21] fur-
ther, the formulas

V/ch = [Oél, é]D,h,
(&, VEe) = pala)(&,e) = (L, @),
(2’8) w(av )(e) = [alvﬁl]D,h(e) - [avﬁ]%(e)v
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define A-connections V¢ and V¥ on C and E, respectively, and a curvature-
like object w € T'(A?A*) ® Hom(E, C), where o € T'(A), e € T\(E), c € T(C)
and £ € I'(E™) is also seen as a fiberwise-linear function on E. Notice that
the formulas above make sense because of the bracket relations .

We will refer to (V¥ V® w) as the connection data defined by the
splitting h of (D, A, E, M ). Recall that an A-connection on a vector bundle
V — M is an R-bilinear map V : T'(A) x I'(V) — I'(V) satisfying Vs =
fVas and Vo(fs) = fVas+ Ly, (a)(f)s, for all a €T'(A),s € ['(V), and
f e C>®(M). An A-connection defines an operator dy on V-valued A-forms
Q°(A;V) =T (A*A* ® V) by the formula

(2.9) dvw(oa,...,ae01) = > (D Hw(ai, a5],. 0, Gy by, )
1<J

§ : z+1 A
+ VaLw al,...,ai,...,akJrl).

This operator is of degree 1 and a derivation for the natural Q(A)-module
structure,

dv(as) = (daa)s + (—1)Pa(dvs),

where d4 denotes the Chevalley-Eilenberg differential on Q°*(A), o € QP(A)
and s € I'(V). Moreover, the curvature of V is Ry = d2v so that the A-
connection is flat iff <12v = 0.

It turns out that the VB-algebroid structure on D4 g ¢ is completely

characterized by the connection data together with the core-anchor 0 :
C—E.

Theorem 2.14. (J21]) Let A — M be a Lie algebroid and E, C vector
bundles over M. The formulas define a 1:1 correspondence between
split VB-algebroid structures (Da g.c, A, E, M) with core anchor 0 : C — E
and quadruples (0, VP, VC, w) as above satisfying the following relations:

doVY=vVFop,

—w o d = Ryec,

—Jow = Rye,
dygnomz,cyw = 0,
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where Rye and Ryc denote the curvatures of VE and V¢ respectivelgﬂ
while V79 denotes the A-connection on Hom(E,C) naturally induced
by VE and V.

Let us move on to the interpretation of the split VB-algebroid structure
in representation-theoretic terms. Recall that a representation of A on a
vector bundle V is a flat A-connection V on V. From Theorem we
see that the connection data will not define representations of A on E and
C' in general. Nevertheless, it can be understood as a representation up to
homotopy of A on the 2-term complex

c?p,

where the curvature of the connections (V#,V®) is controlled by w and 9
(see the Section for an interpretation in terms of holonomies and chain
homotopies.)

Remark 2.15 (Induced representation in cohomology). According
to a general principle, a representation up to homotopy on a chain complex
should induce an honest representation in cohomology. Indeed, notice that
the cohomology of 0: C' — FE seen as a 2-term complex is ker 9 & coker 0.
Whenever these define smooth bundles, the relations in Theorem imply
that the connections V¢ and V¥ induce A-connections VK9 and Veokerd
on ker 0 and coker 0, respectively, and that these are flat.

To introduce a formal definition of a representation up to homotopy,
consider £ = C @ E the graded vector bundle with C in degree —1 and F in
degree 0. In analogy with an ordinary connection, an A-superconnection
on & is an operator D: Q*(A)@T(E) = N*(A) @ T'(€) such that it is of
degree 1 with respect to the total grading and that it is a graded derivation
of the natural °(A)-module structure. The superconnection is said to be
flat if D2 = 0. A (2-term) representation up to homotopy of 4 on £ is
a flat A-superconnection on & (see [3| 21]).

2Notice additional minus signs with respect to the formulas in [21I] coming from
different sign conventions in the definitions and of 0. The consistency of the
second and third equations in Thm. [2.14] with our present definitions can be directly
verified computing the Jacobi identity on linear-linear-core sections and the identity
saying that pp j preserves brackets for two linear sections, respectively. We thank
the referee for this observation.
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Such a differential D can be decomposed as
D =Dy+ D+ Da,

where, setting & = @&, D; sends QF(A) @ T(&) to QA @ T(E_i41).
Following [21]], Dy is related to the core-anchor 9, D; to dyes and dyc, and
D5 to multiplication by w as follows:

(2.10) D(c+e) =dc+dyec+dyee+w(e), ceT(C),ecT(E).

The relations given in Theorem [2.14] are equivalent to the flatness condition
D? = 0.

In this way, 2-term representations up to homotopy are in 1:1 corre-
spondence with split VB-algebroid structures (0, VP ve, w)on Dy gc. We
shall come back to representations up to homotopy in Section [

Remark 2.16 (Change of splitting). Recall that changes of splitting
of a given double vector bundle correspond to elements o € Hom(A ® FE, C)
acting as in the equation . Given a VB-algebroid structure on Dy g ¢
characterized by (0,VE, v, w), a change of splitting o transforms the data
into (8, VF,VC, &) where:

=0, VS -Vl =—-06,00, VE_VEI=_09o0,
(2.11) ‘Z)a,,ﬁ = Wa,8 ~ Ola,B]a —+ Javg — ngg + VgUﬁ
— Vgaa — 0,003 + 03004,

where «, 3 € I'(A) and 04, 03 are seen as sections of Hom(F, C). Details can
be found in [21, Thm. 4.14].

Remark 2.17 (The Chevalley-Eilenberg differential of D). Every
Lie algebroid A has a differential induced on its space of forms I'(A®*A*). In
the case of a VB-algebroid (D, A, E, M), we denote by Dj, the dual with
respect to the vector bundle D — E and then we get a differential dp on
I'(E,A*Dy,). Suppose that D = Dy g ¢ is split. Then, D}, = A* X E X
C* and we have the following identification:

T(E,A°*D%) = T(A®A*) @ C®(E) @ T(A*C*).

Following [21], the subspace I'(A®*A*) ® I'(E*) @ I'(C*) C T'(E, A*Dj};) made
of linear functions on E and degree 1 forms on C'is invariant under dp. This
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subcomplex is in duality with Q°(A) @ T'(£) as Q°(A)-modules (notice that
E* = E* @ C*) and, moreover, dp is the dual of the superconnection D:

(Dw,n) = da(w,n) — (=1)“/(w,dpn),

for w € Q*(A) @ T(E) and 5 € Q*(A) ® T(E).
3. Integrability of VB-algebroids

In this section, we explain how the general theory of integrability for Lie
algebroids of [15] specializes to the case of VB-algebroids. We also make
use of the structure of regular V3-algebroids introduced in [21] to provide
integral expressions for the obstructions to the integrability.

3.1. General theory of obstructions

Here, we briefly recall the construction of the Weinstein groupoid of a Lie
algebroid and of the monodromy groups that control its smoothness. The
reader is referred to [I5] for a full exposition.

Let A be a Lie algebroid over M, with anchor p4 : A — T'M. We consider
the interval I = [0, 1] and denote by ¢ the standard parametrization of 1. Any
vector bundle map T — A can be written as adt, with a : I — A a path
covering v :=pa oa : I — M on the base manifold. Such a map adt : T1 —
A defines a Lie algebroid morphism iff

d

paca=—7,

in which case a is called an A-path. We will denote by P(A) the set of all
A-paths.

Let us now consider a smooth family of A-paths a® : I — A, parametrized
by s € I, such that the base end-points 7*(0) and +*(1) are fixed. In that
case, there exists [I5] a unique family of A-paths b'ds : TT — A, with b°(s) =
0 and such that adt+ bds: TI> — A is a Lie algebroid morphism. (Here
I? := I x I is parametrized by (¢, 5).) The family a® is called an A-homotopy
between the A-paths a®dt and a'dt if the homotopy condition b'(s) = 0, Vs €
I is satisfied. One may also define an A-homotopy directly as a Lie algebroid
morphism

adt +bds : TI> — A

satisfying the boundary conditions: b|=o,; = 0.
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Given an arbitrary (not necessarily integrable) Lie algebroid, one can
always consider the Weinstein (or fundamental) groupoid associated to A,
which is defined as:

G(A) == P(A) [~

where ~ denotes the equivalence relation defined by A-homotopies. The
set P(A) can be endowed with the structure of a Banach manifold from
which G(A) inherits a topology. The concatenation of A-paths endows G(A)
with the further structure of a topological groupoid over M, which is source
simply connected by construction. The source and target maps correspond
to the initial and final points, respectively, of the base map v : I — M of
the A-path.

The Weinstein groupoid is universal in the sense that a Lie algebroid
admits a smooth integration G (i.e. Lie(G) ~ A) if and only if G(A) is a Lie
(hence smooth) groupoid. In this case, there is a covering map G(A) — G,
and Lie(G(A)) ~ A as well.

As explained in [15], integrability of a Lie algebroid A — M is controlled
by its monodromy groups. Given a point x € M, we denote by gf =
ker(pa|z) the isotropy Lie algebra at z € M. The monodromy group at x
consists of all elements a € ker(p4|,) which, considered as constant A-paths,
are A-homotopic to a trivial path, that is:

NA),={acgt: a~0,}Cgl

where both a, 0; € P(A) denote constant A-paths. The union of the mon-
odromy groups over z € M is usually denoted by N (A) C A. The relevance
of the monodromy groups to the integrability problem is given by the theo-
rem below.

Theorem 3.1 ([15]). Let pa: A — M be a Lie algebroid and G(A) its
Weinstein groupoid. The following assertions are equivalent:
i) A is integrable.
it) G(A) is smooth.
iii) Any sequence (an) C N(A) converging to a trivial element 0, consists
of trivial elements for n big enough.

3.2. Obstructions to the integration of VB-algebroids
We now turn to the problem of integrability of a VB-algebroid: given a

VB-algebroid (D, A, E, M) we address the problem of the existence of a
VB-groupoid (H,G, E, M) integrating it.
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As a first approximation, we remind the reader that (D, A, E, M) is
integrable if D is integrable as a mere Lie algebroid over E. Indeed, if D is
integrable, then Theorem [2.11| guarantees that the s-simply connected Lie
groupoid integrating D comes canonically equipped with the structure of a
VB-groupoid integrating (D, A, E, M).

The next observation is that for D to be integrable, A needs to be
integrable as well.

Proposition 3.2. Let (D, A, E,M) be a VB-algebroid. If D is integrable
then A is integrable.

Proof. 1t follows from the definition of a VB-algebroid that the zero section
02 : A< D defines a Lie algebroid morphism. This makes A into a Lie

subalgebroid of D. In particular, A is integrable whenever D is integrable.
O

It is important to observe that the converse of Proposition |3.2) does not
hold in general (see Example below). In the sequel, we shall always
assume that A is integrable, and then we find obstructions for D being
integrable. We start with a general observation regarding the integrability
of Lie algebroids.

Lemma 3.3. Let Ay — My and As — My be Lie algebroids, and ¢ : Ay —
Ay a Lie algebroid morphism. If Ay is integrable and N (A1)q, Nker(éls,) =
{Ofll} for all z1 € My, then A; is integrable.

Proof. Consider a sequence of monodromy elements (vy,)neny C N (A1) con-
verging to 041 for some 2 € Mj. Then (¢(v,))nen is a sequence of elements
of N(A2) converging to 02&). Since A is integrable, ¢(v,) = 042 for n big
enough, thus v, € ker¢ = {Oﬁ;} for n large, which proves that A; is inte-
grable. O

From a general perspective, Lemma [3.3| may seem far from an optimal
criteria for integrability (think of the identity map A — A, or a trivial map
A — 0). However, in the case of a VB-algebroid, it turns out to give a suffi-
cient condition.

Theorem 3.4. Let (D, A,E, M) be a VB-algebroid. Then, D is integrable
if and only if A is integrable and N'(D) Nkerp = {0P}.

Proof. Assume that A is integrable and N'(D)Nker p={02}. Since p : D— A
is a Lie algebroid morphism, we conclude that D is integrable by Lemma|3.3
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Conversely, if D is integrable, then Proposition implies that A is inte-
grable as well. Now, suppose that there exists a non trivial element & €
N (D). Nker p|., where e € E. Consider a sequence (A, )neny C R of non van-
ishing numbers converging to zero in R. Then (m),(§))nen is a sequence
of non trivial elements of A(D) which converges to 04 € A C D, where
x = pg(e). This contradicts the integrability of D. O

Below, we list a few immediate consequences of Theorem [3.3] To that
end, we recall that a Lie algebroid A can be restricted to one of its leafs
L C M and that, denoting by A; = A|r, — L the resulting Lie algebroid,
the inclusion i4, : A;, < A defines a Lie subalgebroid. Considering the
Lie algebroid morphism p : (D — E) — (A — M), it follows that the preim-
age D|a, = p~1(AL) of the subalgebroid A, C A defines a Lie subalgebroid
of D. In particular, D|,4, inherits a Lie algebroid structure over E|; and,
by considering the restriction of the homogeneous structure of D, it fol-
lows that (D|a,,Ar, E|r, L) defines a VB-algebroid. This structure can be
alternatively understood as a pull-back of (D, A, E, M) along the map i4,,

(3.1) (D|a, :==1ia,D,Ar,E|r, L).

Corollary 3.5. Let D be a VB-algebroid over A. Then D is integrable if
and only if A is integrable and D|4, — E|r, is integrable for each leaf L C M
of A.

Proof. The image of a Lie algebroid morphism TI? — A lies entirely over
a single leaf of A since I? is connected. This morphism then co-restricts
to a map TI? — Ay, for some leaf L of A. In particular, this holds for D-
homotopies as well and, therefore, the monodromy groups of D over points
of E|r, coincide with the monodromy groups of D|4,. Then, the condition
in Theorem needs to be checked only on D|4, for each leaf L of A. O

Remark 3.6. Corollary may seem somewhat unexpected. Indeed, the
obstructions to the integrability of an arbitrary Lie algebroid have both
a longitudinal and a transverse nature with respect to the base foliation.
In practice, this means that one has to compute the monodromy groups
leafwise, and then make sure that they do not admit any accumulation
point when moving from one leaf to another. From this point of view, a
VB-algebroid shows a much more rigid behavior, since one has to check the
vanishing of the intersection N'(D) N ker p, which can be done independently
over Ay for each leaf L.
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Corollary 3.7. Let D be a VB-algebroid over A with core C' and side E.
If the core anchor 0 : C — FE is injective, then D is integrable iff A is.

Proof. Recall that by construction, the monodromy group N (D), of a Lie
algebroid D at some point e € E lies in the isotropy algebra g2 = ker(pple)
at e. Let us now look closer into ker p. First, notice that pp sends ker p to
ker T'pg and that, as for any arbitrary VB-algebroid, the observation given
below the sequence shows that

kerp ~ pLC < Ea®C, kerTpg ~ppE < Eo L.

Then, the restriction of pp to kerp takes the form pp(e,c) = (e, dc). It fol-
lows that V(D). Nkerp|. C {e} x ker d for any e € E. When the core anchor
is injective, the condition N'(D)Nkerp = {02} is therefore automatically
satisfied. O

The following example illustrates the computation of monodromy groups
in a Poisson geometric context and, in particular, how to apply Theorem 3.4]

Example 3.8 (An integrable VB-algebroid). Consider the dual vector
space suj of the Lie algebra sus and let £ = C' = suj x R be seen as trivial
line bundles over M = su}. The linear Poisson structure 7y € X?(su}) given
by

M = xlaxz A Ogs + x28x3 A Ogt + 133({9331 A Og2,
where x¢ denote standard linear coordinates on suj ~ R3, defines a (inte-

grable) Lie algebroid A = T}, suj over M. On the split double vector bundle
D = Dy g,c given by

D =T*suf x R x R —2— T*su3

| |

suy X R ——— suj
we introduce a VB-algebroid structure (D, T suj, I/, su3) by setting

[de',dxd]p = da® + 2% e e, pp(da’) = 2%0y — 270,
[da',¢)p = 0, pp (&) =0,

where (7,7, k) denotes a cyclic permutation of (1,2,3), e : E — R denotes
the fiberwise linear coordinate, ¢ = 1 € I'C' is the constant section with ¢ €
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I'(E, D) the corresponding core section and dz’ = (dz?)! are sections of T*M
seen as linear sections of D (recall Section . (Notice that the core anchor
0 of this VB-algebroid is zero.)

Let us verify that N (D). Nker(p) = 02(e) and thus, by Theorem [3.4
that D is integrable. To that end, we shall introduce a Poisson structure g
on the total space of X and define a Lie algebroid isomorphism ¢ : (T} E —
E) — (D — E). We do this in order to reduce the computation of the mon-
odromy groups N (D) ~¥ N (T, = ) to that of the variation of symplectic
areas along the leaves of the Poisson manifold (E, ), as explained in [16].

The Poisson structure on E is given by introducing a re-scaling factor
depending on the fiber coordinate

mE = (1+&%2) 7y € X*(E =M x R).

The corresponding cotangent Lie algebroid T; E — E is given by

[da', dz’]r, = (1 + &%/2) da* + 2" ede,
[dx', dé], =0,
prp (dz?) = (1+ é2/2) (2%0p — 21 0),
Prp (dé) =0,

where (i, j, k) are again cyclic permutations of (1,2, 3). It is easy to see that,
defining ¢ : (T"E — E) — (D — E) as the vector bundle morphism over the
identity which satisfies

G(da') = (1+%2) dat, y(de) = (1+e¥2)%¢,

then v defines a Lie algebroid isomorphism. (Notice, though, that v is not
a double vector bundle morphism for the cotangent double vector bundle
structure on T*E.) The symplectic foliation of 7g is given by singular leaves
which are reduced to a point of the form {(0Osy;,€)}, and by symplectic
spheres of the form S? x {€} with S? C su} ~ R3 the sphere of radius r =
||(x!, 2%, 23)|] having symplectic area given by

A(r, &) = 4rr(1 + &%/2)~ L.

By [16], Prop. 5], the monodromy groups of Ty E are given by differentiating
A in the transverse directions:

dr _ rede
1+e%2 (1+e%2

N(T*E):47r< )2).2, if 7 £ 0.
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(On the subset of singular leaves {r =0}, N(T"E) clearly vanishes.) By
applying the isomorphism ¢ we deduce that the monodromy groups of D
are given by:

Am (r=t Y0, 2'da’ — réc) - Z, on {r # 0},
N(D) =
D) {{OS} on {r =0}.

In conclusion, elements in A (D) Nker p must have z° = 0, leaving 02 (e) as
the only possibility and thus showing that D is integrable.

3.3. VB-algebroids of regular type

In this Section we shall restrict our study of integrability to the sub-class of
VB-algebroids called regular. It will turn out that this class already encodes
all the ingredients needed for the general case.

First, let us recall some basic definitions from [21].

Definition 3.9. A VB-algebroid (D, A, E, M) is called regular if the core
anchor 0 : C — F has constant rank. A regular VB-algebroid is called of
type 0 (respectively of type 1), if the core anchor 0 : C' — E is zero (re-
spectively an isomorphism).

Example 3.10. Given an arbitrary VB-algebroid (D, A, E, M) and a leaf
L of A, the restriction (D|4,, AL, F|r, L) defined by is always regular.
Indeed, let g2 = ker(pp|.) denote the isotropy Lie algebra of D at e € E. It
is easy to check that, for e = 0F, gL, = gZ! @ ker(0,) for any z € M. Now,
for any Lie algebroid, the isotropy Lie algebras have constant rank along its
leaves. By noticing that as z varies within L, 0 varies inside a fixed leaf
of D, we see that both gODE and g? have constant rank over x € L. We thus
deduce that the core anchor O, has constant rank when z varies within a
leaf L of A.

It follows from Corollary [3.5| and Example that one is always led to
deal with the regular case. We start by looking at each case separately.

Integrability of type 1 VB-algebroids. By Corollary 3.7, a VB-algebroid
of type 1 (D1, A, Eq1, M) is integrable if and only if A is integrable as well.
In this case, one can even describe the integration explicitly as follows.
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The key observation, made in [21], is that every type 1 VB-algebroid is
isomorphic to a particular one defined by E; and A, namely,

(3.2) Dy = p(TE),

where p% (TE1) is given by the pull-back VB-algebroid of (T'Ey, TM, E1, M)
by the morphism p : A — T'M. Hence, the core of p* (T'E) is E1 and the
core-anchor is idg,. In terms of a splitting p% (TE1) ~ Da g, E,, & type 1
VB-algebroid structure is equivalent to an A-connection VF = V¢ = v
on E; together with (minus) its curvature w = —Rye,; (see the Section [2.4)).

If G is a Lie groupoid integrating A, we denote by H = (s,t)*(E1 X Ey)
the pull-back VB-groupoid of the pair VB-groupoid (E1 x By, M x M, Ey, M)
by the Lie groupoid morphism (s,t) : G — M x M. Concretely,

H=s"FE,®ct'E;
={(e,9,€¢') € E1 x G x Ey : pp(e) = s(g), pe(¢) =t(g)} = B

where the source, target and identity maps are (e, g,¢') = e, t(e, g,¢') = €

and 1(e) = (e, 1 (¢)» €); while multiplication is given by

) "PE
(e;g.€)- (f.h, f') = (f.gh,€).

It is not hard to verify that Lie(H) ~ p* (T'E) directly from the definitions,
and thus:

Proposition 3.11. Let (D1, A, E1, M) be a VB-algebroid of type 1 and G
any integration of A. Then, the VB-groupoid (s,t)*(E1 x Ey) integrates D;.

Alternatively, the result can be seen as a direct consequence of the fact
that the Lie functor from VB-groupoids to VB-algebroids commutes with
pull-backs since Lie(s,t) = pa.

Integrability of type 0 VB-algebroids. Let (Dy, A, Ey, M) be a V-
algebroid of type 0 with core Cy. In this Section, we show that the elements
in N (Dp) Nker(p) which obstruct the integrability of Dy can be expressed
through an integral formula.

First, we shall follow [2I] and characterize the structure of Dy in terms
of connection data. Given a splitting of Dy as in Section [2.4] with associated
connection data (Vo \AE wp), since the core anchor 0 is zero, the relations
in Thm. say that both A-connections are flat. Moreover, dyuom(ms,.co) de-
fines a differential on Q(A; Hom(Ey, Cy)) for which wy is a 2-cocycle. Differ-
ent choices of splitting (recall the formulas in Remark induce the same
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flat A-connections Vo, V¢ on Ey and Cj, while modifying wy by an exact
2-form in the complex (Q(A; Hom(Ejy, Cp)), dyuomze.co) ). In this way, isomor-
phism classes of type 0 VB-algebroids correspond to triples (VEO, V&, [wol),
with [wo] € H2(A; Hom(Ep, Cp)) denoting the class in the underlying coho-
mology. (See also [21].)

Our integral formula for the elements in N (Dy) Nker(p) will involve the
following ingredients.

Definition 3.12. An A-sphere is a Lie algebroid morphism o : T1?> — A
with I = [0, 1] satisfying o|rgr= = 0. The second A-homotopy group ma(A)
is given by A-homotopy classes of such spheres (see [§] for further details).
The boundary 012 is mapped to a point € M called the base point of the
sphere.

Let W be a vector bundle over M and A — M a Lie algebroid. Suppose
that V is a flat A-connection on W, o :TI? — A an A-sphere covering
v :I? - M and w € Q?(A4; W) a 2-form on A with values in W. Considering
the holonomy with respect to the flat pullback 7I%-connection 0*V along
any path (0,0) — (¢,s) on I%, one can define a trivialization 7 : v*W —
I? x W, (0,0)- We thus introduce the following integral:

/w = /12 7(0"w) € Wy(0,0)-

Recall that taking holonomy ‘flattens’ the bundle geometry, namely, it trans-
forms dj,-v) on Q(I%;v*W) into de Rham differential d on Q(TI2, Wi0,0)):

(3.3) Todjy-y) =doT.

We thus have an induced map

/ cmo(Ayx) x HX (A, W) — W,

The integrability problem for type 0 VB-algebroids can be then summarized
in the following way.

Proposition 3.13. Let (Dg, A, Eg, M) be a VB-algebroid of type 0 with
underlying class [wo] € H?(A; Hom(Ey, Co)). Then, Dq is integrable if and
only if A is integrable and the periods of wy vanish, namely, for every [o] €
ma(A), we have that

/wo = 0.
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Proof. The proof consists in showing that, for any e € Ey, we have

N (Do) N ker(p) = { JECHCE m(A,pE(e))},

so that the claim follows from Theorem 3.4} Consider an element v € N'(Dp).
Nker(p). By definition, there exist a Dg-homotopy h : TI1? — Dy between
the constant Dy-paths vdt and Og(e)dt. The map o :=poh : TI?> — A then
defines an A-sphere by direct inspection of the boundary conditions h|pas=
and we denote by « : I? — M the base map of . We want to show that

v= /owo(e).

To that end, consider a splitting Dy ~ D4 g, ¢, With associated connection
data (VF°, V% wyg). In the split VB-algebroid, the homotopy h takes the
form

h=(0,6,0):TI> - Axy E xp C,

where é : I2 — E is a map covering v which can be seen as a section of v*E
and 1 : TI? — C can be seen as a 1-form on I? with values on v*C. Let us
split the condition that h is a Lie algebroid morphism into conditions for é, o
and 1. First, o must be a Lie algebroid morphism covering . Secondly, recall
that the induced pullback map h* : T'(Eo, A® Dy, ) — Q*(T1?) between forms
must commute with differentials. A computation shows that this implies

(recall eq. (2.10) and Remark [2.17))
digeveel€ =0,  dig-yeo)) = 0 wo(€),

where 0*VFo and 0*V denote the (flat) pullback connections on *Cj
and ~v*Ej, respectively. Using parallel transports 770 and 7¢° with respect
to these flat connections we can trivialize v*Cy and v*Eqy to I? x E0|7(0,0)
and I? x Coly(0,0), respectively. Then, the flat section é gets transformed
into the constant section with value é(0,0) = e and v gets transformed into
a 1-form 1)y on I? with values in the vector space C |ps(e) Which, because of
eq. (3.3)), satisfies the equation

dipg = 7 0 0wy o 70 (e).
Integrating both sides over I? and using Stokes’ theorem together with the

boundary conditions (the only non-trivial boundary values being 10(0)|(,0)
= v for any t € I), we get the desired formula for v.
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Conversely, given o : TI? — A an A-sphere one can define é by parallel
transport of e and 1) as above with v € Q!(I?; Cly(0,0)) given by

o = (/01 /Slg(u,r)dudr> dt + (/Otg(u, s)du — t/ol g(u, s)du> ds,

where we have written 7°(c*wg)(é) = g(t, s)dt A ds for g : I — Coly(0,0)-
Evaluating at s = 0,1, we see that h = (0, ¢é,1) defines a D-homotopy be-
tween the constant D-path vdt with v = fa wo(e) and the zero path 02dt,
so that v € N (Dy). Nker(p). O

Let us give a cohomological interpretation of the integrability criteria.
Assume that the flat A-connections can be integrated to representations of
an integration G of A on both Ejy and Cy. In such a case, there is an induced
representation of G on Hom(Ey, Cy) and, to answer the question of how to
lift wo from A to G, one is lead to consider the Van Est map

VE : H*(G,Hom(Ey, Cy)) — H*(A, Hom(Ey, Cy)).

(More details will be given in Examples below.) The Van-Est map
for Lie groupoids and algebroids was studied in [I3]. If G is source simply-
connected, then the representations VF and V always integrate to rep-
resentations of G on Ey and Cj, respectively. Moreover, in this case, the
Van Est map between degree 2-cohomologies is injective. For an element
in H?(A,Hom(FEy,Cp)) to be in the image of VE, the criteria given in [I3]
Cor. 2] is exactly the vanishing of the corresponding spherical periods as in
Prop. [3.13

Proposition 3.14. A type 0 VB-algebroid (Dy, A, Eyg, M) is integrable iff
A is integrable and [wy] lies in the image of the Van Est map, namely:

J&o € H*(G(A), Hom(Ey, Cp)) such that VE(&g) = [wol-

Remark 3.15. In the case when Dy is integrable, there is a way of con-
structing an integrating VIB-groupoid by integrating each piece in the con-
nection data. Namely, let G be an integration of A such that V¥ and
V< integrate to representations of G on Ey and Cy. Furthermore, let &g €
H?(G,Hom(Ejy, Cy)) be such that VE(g) = [wo]. In this case, the data given
by the representations of G on Ey and Cj together with any representative
of the class wy can be used to define a (type 0) VB-groupoid that we shall
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denote (Hog,, G, Ey, M). In Section 4] Examples we provide an ex-
plicit definition of this VB-groupoid and show how it defines an integration
of the given type 0 VB-algebroid.

Integrability of general regular type VB-algebroids. Consider a V13-
algebroid (D, A, E, M) of regular type. The key point for us is the following
result of [2I] saying that such a VB-algebroid can be decomposed into type
0 and type 1 components.

Theorem 3.16 ([21]). Let (D, A, E, M) be a VB-algebroid of regular type.
There exists (unique up to isomorphism) VB-algebroids (Dy, A, Eg, M) and
(D1, A, E1, M) respectively of type 0 and type 1, such that D ~ Dy @4 D;.

The decomposition of Theorem [3.16|is based on decomposing the core-
anchor map 0 : C — FE into a direct sum of a trivial map and an isomor-
phism. Namely, one uses isomorphisms C >~ ker 9 @ Im 0 and E ~ coker 9 &
Im 0 so that 0 ~ 0 @ idyy, 9. The proof consists in showing that these iso-
morphisms can always be lifted to the full VB-algebroid structure by means
of an appropriate choice of splitting.

The type 0 component Dy can be thus assumed to have core Cy = ker 0
and side Ey = coker 9. Recall from Remark that any set of connection
data (VF,VY w) for D defines flat A-connections V9 and veokerd on
ker 0 and coker 0, respectively. Moreover, using the decompositions of F
and C into type 0 and type 1 components, one can define the projection
wo € Q2(A; Hom(coker 9, ker 9)) of w, which turns out to be a cocycle for
the induced differential dymnom(corero,xeroy. Because of the change of splitting
formulas of Remark the data (V™9 Wkerd [4]) characterizing the
isomorphism class of the type 0 component is independent of the initially
chosen splitting and it is thus intrinsically associated to the regular VB5-
algebroid D.

Proposition 3.17. Let (D, A,E, M) be a VB-algebroid of regular type.
Then the following assertions are equivalent:

(i) D is integrable,
(i) Dy is integrable,
(iii) A is integrable and the periods of wy € Q%(A, Hom(coker 9, ker 9)) van-
ish, namely:

/wo =0, for every [o] € m2(A),

(iv) A is integrable and [wo] lies in the image of the Van Est map, namely:
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there exists &y € H?(G(A), Hom(coker 9, ker 0)) such that VE(&o) = [wo).

Proof. This follows from Theorem [3.16] Propositions [3.11} [3.13] and [3.14]
and from the fact that the functor Lie preserves direct sums. 0

Remark 3.18. In the integrable case, an integrating VB-groupoid can be
given as H := (s,t)*(E1 x E1) ®¢ Ho s, where each summand was explained
in Proposition and Remark respectively.

3.4. Computing the obstructions

So far, to compute the obstructions to the integrability of a VB-algebroid D,
we must pick a leaf L of A, extract the type 0 part of the regular VB-algebroid
D| 4, and then compute the corresponding spherical integrals. In this section,
we show that there is a more practical formula for the obstructions only
involving the connection data associated to any global splitting of D.

Consider a VB-algebroid (D, A, E, M) together with a splitting, and
denote by (VP , V% w) the corresponding connection data. Given an A-
homotopy o = adt + bds : T1?> — A, we shall denote ; rather than (¢, s)
the base map. Similarly, for any ¢,#’ € [0, 1], we will denote af, , : T'[t,t'] — A
the A-path aljy . (sydt, while:

E .
hOIai’,t : E%f — E,y:/,

c .
holS : Cyy = C.

will denote the corresponding holonomies. We also associate to ¢ a map
Fy: Ely0,0) = Cly,0) defined by the integral formula

3.4) -
Fy(e) = // holc% o wys(ab)o holaEfo(e) dtds € Cly1,0, € € Ely0,0)-
0Jo ’ ‘

When an A-connection is flat, the corresponding holonomy only depends on
the A-homotopy class of the underlying A-path. For the connection data
(VE, VY, w) we shall show that a generalized (or homotopy) version of this
fact holds. The first step is to recall the following lemma which relates the
holonomy and the curvature of an A-connection by an integral formula.
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Lemma 3.19. For an arbitrary A-connection V on a vector bundle V. — M
and any A-homotopy adt + bds : TI?> — A, the following relation holds:

1
(3.5) diholgs (z) = / holY. o Ry(a,b),; oholl. (z)dt,
S 1,0 0 1,t t,0

where Ry € Q%(A,End(V)) denotes the curvature of V.

This result goes back to [30] in the case of usual linear connections (i.e.
T M-connections) and can be proved by a simple argument of variation of
parameters. The case of an arbitrary A-connection follows by pulling back
the A-connection along o : T1? — A.

Lemma 3.20. Let (VF,V®, w) denote connection data associated to D and
0 =adt +bds : TI> - A an A-homotopy as above. Then,

holaEiO — holf?p = —doF,, holacio - holgfyo — _F,00.

Proof. This is a direct consequence of Lemma [3.19] For instance, taking
e € E,(0,0), we compute that:

1,1
OF,(e) = / / 9 oholl. o w(a,b)ys oholl. (e)dtds
0Jo ’ :
1,1
:// holfito Gw(a,b)%soholffo(e)dtds
0J0 ’ ’
1,1
:—// holf.ifo RVE(a,b)Woholffo(e)dtds
0Jo !

'd
= —/0 gholaEio(e)ds

= holf(l),o(e) - hOlaEi,o (e).

Here we used the relations in Theorem to, first, commute 0 and hol”
and, second, to obtain the curvature of V¥ and apply Lemma The
proof of the second statement is analogous. U

Remark 3.21. There is a clear interpretation of the above Lemma in
terms of the 2-term complex 0 : C' — E (see also [3, Prop. 3.13]). Namely,
an A-path a defines a chain morphism Hol, = (holacll07 holZ ,) while an A-

homotopy o defines a chain homotopy Fy : E, ) — C,(1) between the Holg:-o
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and Hol,s=::

0
Cy0) — E(0)

hOlSso,lJ/ F"/// J(h()lfso,l
7

K
Gy =5 By

Let us go back to our integrability problem. An A-sphere o = adt + bds :
TI? — Abased at m € M can be seen as an A-homotopy between the trivial
A-path 04(m)dt and itself. The resulting map F, € Hom(E,,,C,,) will be
denoted:

\Y 1,1
(3.6) / w(e) := // hol% o w(a,b)y; o holaEfo(e)dtds € Cp, ec Ey,
o 0J0 ’ '

and will be called the period of w along . We can now relate the ob-
structions to the integrability of D to the periods of the globally defined
w. To that end, let L be the leaf of A such that the A-sphere o lies in
Ap — A. Since the restriction D|y4, is of regular type, we can consider a
decomposition:

T :Dl|a, — D, =Dq 1, &4 D11, T=To® T,
where D; 1, is of type i = 0, 1. Let

T¢:0lp, — Cp =kerd® Cy 1, T =7 T,
TY . E|, — E, = cokerd ® Im 9, TE:%EGBﬂE,

be the isomorphisms induced by 7. We shall denote by
Wo,z, =€ Q*(Ap, Hom(coker 0, ker 9))

the projection of w to the type 0 factor defined by wp = 7BCow|AL o
(TE) | cokero- Then, Lemma implies that

v
T7¢ (/ w(e)) = /wO,L(eo) ®0€kerddCy p,

for any A7 —sphere o, e € E|;, and &y := 73" (e). This is so because the holon-
omy associated to the trivial A-path is trivial and, hence, F, o 0 = 0 and
0o F, = 0 so that F, takes the above form using the decomposition 7. No-
tice that, since wy 1, is a cocycle, the period of w along o depends only on
the homotopy class of o as in the type 0 case.
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By applying Corollary and Proposition we see that (3.6) gives
an integral expression for the obstructions in terms of a global splitting of

D. Therefore, one can state the following:

Theorem 3.22. A VB-algebroid (D, A, E, M) is integrable if and only if A
is integrable and, for any connection data (V¥,VC, w) induced by a splitting
of D, the periods of w vanish, namely:

v
/ w=0, Voem(A).

Remark 3.23. A VB-algebroid together with a splitting can be seen as a
special case of a Lie algebroid extension

kerp D —y A,

with a complete Ehresmann connection in the sense of [7]. In [§] it is shown
that there is an associated transgression map 0 : pLm2(A) — G(kerp) that
fits into a long homotopy exact sequence and which is related to the inte-
grability of the fibration ([7]). A careful inspection shows that, indeed, the
integral formula in Theorem [3.22] coincides with the transgression map of
[8]. We shall expand on this aspect of things in a future work.

We conclude this section with an explicit example of a non-integrable
VB-algebroid (D, A, E, M) in which A is integrable.

Example 3.24 (A non integrable VB-algebroid). Consider E = S? x
R and C = S? x R, both seen as a trivial vector bundles over M = S2. Let
A := T'S? be the tangent algebroid of 52, and consider the split double vector
bundle D = Dy g ¢, so that

D= TS xR x R—— T2

| |

S2 x R—— 52,
We define a VB-algebroid structure on D by setting:

(X, Y]p =[X,Y]re: +ewo(X,Y) &, pp(X) =X,
[X,¢élp =0, pp(¢) = 0.

Here X,Y € I'(T'S?) are vector fields on S2, & : E — R is the fiberwise linear
coordinate function, wg denotes the standard symplectic structure on S2
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and ¢ € T'.(F, D) denotes the core section corresponding as in (2.4) to a
non-vanishing constant section ¢ € I'(C'). The homogeneous structure for
D — A is defined by my(a,e, c) = (a, e, \c).

It is easy to verify that this defines the structure of a VB-algebroid
(D, TS?, E,S?) whose core-anchor is zero, i.e., that D is a VB-algebroid of
type 0. Observe that h(X) = X defines a horizontal lift whose associated
A-connections are trivial and whose curvature is given by:

w=uwy® (eE®c) € N*(S* Hom(E,C)).

Theorem [3.22] can be directly applied to conclude that D is not integrable.
Namely, an A-sphere o : TI? — T'S? must be the derivative of its base map
v : I? = 82 (which collapses I? to a point) and the integral reduces
to the standard integral

[ e@=e [ [ e o

which will not vanish for all spheres ¢ since wy is a volume form.

Remark 3.25. The above non-integrable Example has a very similar
structure to that of the previous integrable Example In the integrable
Example though, the spherical periods of our Theorem [3:22] vanish auto-
matically because mo(A) = 0. Indeed, this happens because G = T*SU(2) =
suj integrates A =T suj and, then, the second homotopy group of A co-
incides with the one of the source fibers of G, namely, with m(SU(2)) =0
(see also [8, 13, [15]).

4. Integrating 2-term representations up to homotopy

In this section, we study Lie theory of 2-term representations up to homotopy
by translating the results already obtained for VB-algebroids by means of
the equivalence of [21], as recalled in Section

4.1. Representations up to homotopy of Lie groupoids

Recall from Section that 2-term representations up to homotopy of A
on & = C @ E correspond to VB-algebroid structures (9, VZ, V¢, w) on the
split double vector bundle Dy gc = A Xy E x )y C. Fixing the underlying
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algebroid A, we thus have an assignment
VB : 'Repgo(A) — VBA<A)

where Repgo(A) denotes the category of 2-term representations up to
homotopy of A and VBa(A) the category of VB-algebroids of the form
(D, A, E, M). Notice that the image of VBa consists of split VB-algebroids.
The notion of morphism between representations up to homotopy can be
found in [3] (see also [2I]) and VBa turns out to be a functor (see [19]). In
particular, two elements of Rep2,(A) are isomorphic if the corresponding
split VB-algebroids are.

In this subsection, we follow [22] and introduce the analogue of the above
correspondence for Lie groupoids.

First, we introduce the notion of a 2-term representations up to ho-
motopy of a Lie groupoid G over M. To that end, recall that any vector
bundle F — M determines a smooth category L(E) whose objects are el-
ements of M, and morphisms between z,y € M are linear maps FE, — £,
(not necessarily invertible). We say that a smooth map A:G — L(E) is
a quasi-action of G on F if A preserves both source and target maps. A
quasi-action is said to be unital if it preserves the units (i.e. it is the identity
on objects) and flat if it preserves composition. Notice that a representa-
tion of G on FE is just a flat unital quasi-action A : G — L(E) such that
Ayt Egg) — Eyg) is invertible for each g € G.

Definition 4.1. Let G be a Lie groupoid over M. A representation up
to homotopy of G on the graded vector bundle £ = C @ E, is given by a
quadruple (9, A%, AF Q) where:

e 0:C — F is a bundle map,
e A® and A¥ are unital quasi-actions on C, E, respectively,

e QecI(GW, Hom(s’(*Q)E, t’("l)C’)) is a section assigning to each compos-
able pair (g1,92) € G a linear map Q, 4, : FEg(g,) = Cy(g,) Which is
normalized (i.e. Qg, 4, = 0 if either g; or go is a unit),

satisfying the following conditions:

Al od=00AS
AgAg; o Agéh + Q51175728 =0

EANE E _
A91A92 B Aghgz + 8991792 =0

C E
(4'1) Agl nggg - 99192»93 + 99179293 - Q91792Aga =0
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for every composable triple (g1, g2, g3) in G.

In other words, a representation up to homotopy of G on € =C ® F is
given by unital quasi-actions on C' and FE, which are not necessarily flat,
but the flatness of those is controlled by the 2-cocycle €. One can also think
that this notion corresponds to that of a representation of G on the 2-term
complex

c3E.

Remark 4.2. Representations up to homotopy of G on an arbitrary graded
vector bundle £ can be defined in cohomological terms, as a differential in the
complex C(G;E) of E-valued groupoid cochains. This notion can be found
in [4] for arbitrarily graded £ and the equivalence to the above definition in
the 2-term case, in [22].

Following [22] further, there is a 1:1 correspondence between 2-term
representations up to homotopy of G on &€ = C' @ F and VB-groupoid struc-
tures on (t*C ©gs*E,G,E, M), as follows. We denote the elements of
t*C ©¢ s*F as triples (¢, g, e) with ¢ € Cy(y), g € G and e € Eg(,. The source,
target, identity and multiplication maps are then given by

§(c,g,e) =6, f(c,g,e) = 8(0) + Af(e)a ie = (Oc(m)a ]-:me) ,ec€ b,
(4.2) (c1,91,€1) - (c2,92,€2) = (c1 + A; (c2) = Qgy.g.(€2), 91 - g2, €2) -

Such VB-groupoid structures will be called split.

Remark 4.3 (VB-groupoid splittings). VB-groupoids can be split in a
similar way to the splitting of VB-algebroids described in Section [2.4] For
any VB-groupoid (H,G, E, M), there is an associated short exact sequence
of vector bundles over G:

VEC s H —»s*E,

where the map on the right is v — (¢g(7v), $(7)). The vector bundle C' —
M given by C = 1*V is called the right core of H and multiplication
by zero on H can be used to identify VF ~t*C. A right splitting of
(H,G,E, M) is a splitting hg of the above short exact sequence such that
ha(1z,e) = 1., for all z € M, e € E,. The corresponding vector bundle
isomorphism H ~ t*C ®g s*F induces a split VB-groupoid structure on
(t*C ®¢ s*E,G,E, M) in the sense defined above. Thus, each splitting hg
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for H determines a 2-term representation up to homotopy of G on C & F.
The reader is referred to [22] for further details.

Denoting Repgo(G) the category of 2-term representations up to homo-
topy of G and VBg(G) the category of VB-groupoids with base G, we get
an assignment

VBg : Rep2 (G) — VBg(G),

whose image consists of split VB-groupoids.

Example 4.4. Let (9,A%,A® Q) be a representation up to homotopy
of G. When the map 0 is zero, egs. imply that A® and A® define
ordinary representations of G on E and C, respectively. Then, Hom(FE, C)
also inherits a representation of G given by

Hom(E, C)ls(g) 2 ¢ — AS o po Al € Hom(E, C)ly ().
Moreover, one can define a 2-cochain
@ € C*(G;Hom(E, C)) = T(G®, t{ Hom(E, C))
in groupoid cohomology with coefficients in Hom(F, C) out of  by:

~ L E
Wyi,92 = Q91792 o Agz_lgfl’

The last equation in is then equivalent to requiring @ being a cocycle
in C?(G;Hom(E,C)) in the sense of, e.g., [I3]. The corresponding split VB-
groupoid is the analogue of the type 0 VB-algebroid of Section and we
get that these are analogously characterized by representations of G on E
and C together with a cohomology class in H?(G;Hom(E, C)). (See also
[22]).

4.2. Lie theory for 2-term representations

Let G be a Lie groupoid with Lie algebroid A. By means of the corre-
spondence between representations up to homotopy and VB-algebroids/V5-
groupoids, we shall define a differentiation operation LieZ, : Rep2 (G) —
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Rep?,(A) by the commutative diagram

RepZ,(G) Y25 VBa/(C)

Lie;l Jﬁie

Rep2 (A) Y225 VB (4)

and we shall write Lie2 (0g, AP, AC Q) = (94, VF,VC, w).

To that end, we need to verify that this assignment Lie2, is well de-
fined, namely, we must check that the VB-algebroid associated to a split
VB-groupoid by the Lie functor is naturally split.

To see this, consider a split VB-groupoid structure on I' = t*C @ s*F.
Let c € Cy, e € E; and g(e) € G a curve such that s(g(e)) =z for any e,
and ¢(0) = 1(z), so that §(0) = a defines a Lie algebroid element in A, =
ker(T's)y,. Using the notation of equations (4.2), the curve

e y(e) = (eAg(g)c,g(e),e) el

is contained in the §-fiber and starts at y(0) = (0, 1,,¢e) = 1.. Then, §(0) €

Lie(T'). defines a Lie algebroid element which, under the identifications 7T ~
(Tt)*TC @1 (Ts)*TE and TC|ge ~ C & T'M, can be written as

¥(0) = (c® p(a), a,0) € Lie(T'). C Tio1,,¢)L
We thus get the desired splitting map

ir : Dapc — Lie(T),
(a,e,c) = (c® p(a),a,0)|0,1,.e)

It also follows from the previous argument that the core anchor is preserved
by L'iego, namely, that Og = 0. Indeed, the anchor map of Lie(I') ~ D g ¢
is given by pp = T't o ir, so we obtain from (4.2):

d
ppla,e,c) = % [AgE(E) (e + €dgc)] € T.E

e=0

where a = ¢|.—¢ as before. Thus, the induced core anchor is given by d4(c) :=
pp(04,0F ¢) = dg(c) where we used the identification of E as the core of
TFE given in Example

For the rest of the structure maps, we get the following formulas.
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Lemma 4.5. Let (0,AF A% Q) c Rep? (G) a 2-term representation up
to homotopy of G, and (0,VF, VY w) = Lie?_ (0,AF, A Q) € Rep? (A)
the induced representation of A. Then the following relations hold:

d o
Vie(r) = P Al ()1 (eoto g2 (x))
e=0
d a
Vic(z) = e A(%Sg(x))*l(c otogg(z))
e=0
82 C C
w(@,ﬂ)(e<l’)) - @ e=0 [A(Qf(ﬂ:))*l © A(¢?oto¢§(:)§))*l © Q¢?°to¢?(ﬂf)7¢?(x)(e(x)>
r=0

c c
— Bge (@)t © D(gtotoge(x) 1 ° Q¢foto¢g(w),¢g(x)(e(x))]

where v ~1, € M C G, e e T'(E), c € I'(C) and o, € T(A) are algebroid
sections inducing the right-invariant flows @<, qb’? on G.

Proof. This follows by direct computation using the definitions for the
connection data out of the Lie algebroid structure which, in turn, comes
from the groupoid structure on I'. The key point is that the relevant
brackets correspond to Lie brackets of the following right-invariant vector
fields on I': for ¢ € T'(C), the right-invariant vector field ¢ € X(I") has flow
defined by

¢ (k,g,€) = (k +ec(t(g)),g,€), (k,g,€) € t*C By s™E;

for a € T'A, the right-invariant vector field y, € X (I") defined by the linear
section ot of D A,E,c is defined by

d C «a
Xa’(qg’e) = de‘e:O (Agi)?(:v)c - Q¢?(I),g(e)7 (be (.’IJ) "9, 6) € T(c,g,e)ry

where x = t(g). The formulas then follow straightforwardly from (2.8). O

Remark 4.6. The above formulas coincide with the ones underlying
the differentiation map Repo,(G) — Rep,(A) introduced in [5] (when re-
stricted to our particular case of 2-term representations).

Example 4.7. Let (0,AF, A, ) be a representation up to homotopy in
which 9 =0 and let © € C?(G;Hom(E, C)) be the associated groupoid 2-
cocycle as in Example Then, the last equation in the above Lemma is
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equivalent to
w = VE(w),

where VE: C'(G;Hom(E,C)) — Q (A;Hom(E,C)) denotes the Van-Est
map [I3]. The split VB-groupoid (Hy 4, G, E, M) = VBg(d = 0, AE,AC Q)
then defines an integration of the underlying type 0 VB-algebroid, namely,

Lie(Hy,, G, E, M) ~ VBa(d = 0,VF VY VEW®)),
where VZ and V© are defined by the equations in the above Lemma.
4.3. Integrability and obstructions

Finally, the following is the natural notion of integrability for 2-terms rep-
resentations up to homotopy of a Lie algebroid stemming from the differen-
tiation map LieZ, .

Definition 4.8. A representation up to homotopy (9, V¥ VY, w) of a Lie
algebroid A is said to be integrable if there exists an integration G of
A and a representation up to homotopy (dg, AF, AY Q) € Rep? (G) such
that Lie2, (0g, AP, AC Q) is isomorphic to (9, VF,VC, w).

Suppose that (9, VF, VY w) € Rep?,(A) is integrable in the sense above.
Then, an integration (9g, AP, A% Q) € Rep? (G) can be obtained as fol-
lows. Take a VB-groupoid (H,G, E, M) integrating the VB-algebroid D =
VBa (9, VE,VC, w) and consider a splitting of H (c.f. Remark producing
an element (9g, AP, AC Q) € Rep? (G). Since Lie preserves isomorphisms,
we get:

VBA(9,VE VY, w) = D ~ Lie(H) ~ Lie(VBg(dg, AF,AY Q)
= VBa(Lie2 (g, AP, AY,Q)),

and, thus, that (0g, AF, A%, Q) integrates (9, VF, VY, w).

Example 4.9. (Adjoint and coadjoint representations) Consider an inte-
grable Lie algebroid A, and G an arbitrary Lie groupoid integrating A.
Since the Lie groupoids T'G and T*G have Lie algebroids which are re-
spectively isomorphic to T'A and T*A (see e.g. [27, 28]), we deduce that
both TA and T*A are integrable as VB-algebroids. The choice of a T'M-
connection on A, determines a splitting for both TA and T*A (as in Ex-
ample obtaining the so-called adjoint and coadjoint representations
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up to homotopy aday, adjy € Rep? (A) of A on the 2-term complexes
pa: A—=TM, and py : T*M—A*, respectively. We thus obtain the fact that
adgv,ad)y € Rep2 (A) are integrable if and only if A is integrable. In-
tegrations of ads v, adj can be obtained by splitting TG and TG as in
Remark [£.3] respectively, for any integration G of A.

The integrability problem for a 2-term representation up to homotopy
of a Lie algebroid is then tied to the integrability problem for the corre-
sponding VB-algebroid. Here, we shall rephrase the integrability criteria for
VB-algebroids given in Section [3]in terms of the representation data.

Given a 2-term representation up to homotopy (9, VF, V¢ w) of A,
and a leaf a L C M of A, we obtain a representation up to homotopy
(0r, VE: VO wr) € Rep?, (Ar) by pulling back the superconnection un-
derlying (9, VP, V%, w) along the inclusion A7 < A. Recall that the associ-
ated VB-algebroid, VBa (0r,, VEr, VO wp) is of regular type, hence it comes
with a class associated to the type 0 part:

wro € H? (A, Hom(coker 0, ker dr)) .

Then, as a direct consequence of Corollary Proposition and Theo-
rem |3.22| we obtain the following result.

Corollary 4.10. Let A be a Lie algebroid and (0,VF, VY w) € Rep?, (A)
a 2-term representation up to homotopy of A. The following assertions are
equivalent:
i) (0,VE, VY w) € Rep?,(A) is integrable.
ii) A is integrable and (0r,VFr VO wr) € Rep?,(Ar) is integrable for
each leaf L of A.
iii) A is integrable and, for any leaf L of A, the periods of wr, o vanish:

/wgg =0, for every o € ma(AL),
g

iv) A is integrable and the periods of w vanish:

v
/ w =0, for every o € ma(A).
g

Remark 4.11 (Relation to simplicial integration). In [6], the authors
provide an integration scheme that applies to general representations up to
homotopy of A on graded vector bundles. In this Remark, we elaborate on
how the integrability problem is reflected in their construction. Given a Lie
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algebroid A and a representation up to homotopy £ € Rep.(A), the au-
thors of [6] provide a representation up to homotopy “[ &” of the (infinite
dimensional) infinity groupoid Il (A) associated to A. Some of these rep-
resentations of I, (A) come from representations up to homotopy (in the
sense of the present paper) of the Weinstein groupoid G = G(A) but not all of
them do. Indeed, focusing on the 2-term case and denoting £ € Rep2,(T'S?)
the representation up to homotopy underlying Example [3.24] it is shown in
[0, Prop.5.4] that f £ cannot be quasi-isomorphic to a representation com-
ming from G(T'S?). Within the setting of this paper, this problem can be
understood from the fact that the underlying VB-algebroid is not integrable,
i.e. it is an integrability problem for the VB-algebroid D = VBa(E).
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